
MIT Open Access Articles

Improving Incremental Planning Performance 
through Overlapping Replanning and Execution

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: 2019. "Improving Incremental Planning Performance through Overlapping Replanning 
and Execution." 2019 International Conference on Robotics and Automation (ICRA).

As Published: 10.1109/ICRA.2019.8793642

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/137781

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137781
http://creativecommons.org/licenses/by-nc-sa/4.0/


Improving Incremental Planning Performance through Overlapping
Replanning and Execution

Matthew Orton, Siyu Dai, Shawn Schaffert, Andreas Hofmann, and Brian Williams

Abstract— Deployment of motion planning algorithms in
practical applications has lagged due to their slow speed in
reacting to disturbances. We believe that the best way to address
this is to reuse learned planning and control information
across queries. In previous work, we introduced Chekov, a
reactive, integrated motion planning and execution system
that reuses learned information in the form of an enhanced
roadmap. We have previously shown how we can use Chekov
to formulate trajectory optimization problems that result in
superior performance in static environments. In this work,
we show how incremental planning can be incorporated into
the formulation of optimized trajectories from roadmap seed
trajectories. Further, we show how an incremental planner can
be adapted to reduce the overhead incurred for replanning
when trajectories become invalid during execution.

I. INTRODUCTION

Deployment of motion planning in commercial automation
has lagged due to a number of key deficiencies. For a motion
planner to be practical for such deployments, it must be
able to react to changing scenarios. Further, the generated
trajectories should be intuitively pleasing, and should not
alarm human agents that may be collaborating with the
robot. It also implies that they should be near optimal and
repeatable; if the motion planner is repeatedly given the same
formulation, the trajectories it produces should be the same.

Existing motion planners can solve problems with com-
plex obstacle configurations with guarantees on optimality,
but many of these planners are too slow in the less complex
environment configurations typical of practical deployments.
Additionally, changing environments create uncertainty about
the current and future states of obstacles, but most current
motion planners assume static, known environments. Further,
many of the current planners lack the capability to reuse
learned information for future queries. Such information
might be computed offline, or may be learned through pre-
vious queries. This deficiency means that persistent control
policy information cannot be used across queries. While
incremental planners do reuse information from one planning
problem to the next, many still pause for replanning when
any part of the current plan is invalidated.

Robotic systems deployed in the real world have to con-
tend with a variety of challenges. The robot’s sensors may
provide noisy data, and the actuators may not provide com-
pletely precise movements. For example, in a mobile robot,
the wheels often slip against the ground. Humans in the
environment may move quickly and in unpredictable ways.
Robots cannot spend an unbounded amount of time searching
for an optimal motion plan; they must find solutions quickly
in order to react effectively to new information.

The problem of moving a robot in uncertain environments
is challenging. Often, there is significant complexity with
path planning alone, due to the robot and environment
geometry. Adding dynamic obstacles, noisy environment
estimates, dynamics and actuation limits, and temporal con-
straints makes the problem even more challenging. Current
motion planning and execution systems do not adequately
address all of these challenges simultaneously: they assume
the environment is static, or at least, predictable; they do
not support task-level plans with temporal constraints; and
many do not simultaneously support collision avoidance and
complex dynamics.

We have previously developed Chekov, a reactive mo-
tion execution system that addresses these requirements
[1]. Chekov avoids obstacles, incorporates dynamic models
and control policies, and observes temporal constraints. We
have also have shown the benefits of combining a sparse
roadmap approach [2] with recent advances in obstacle-aware
trajectory optimization [3], [4]. The resulting optimized
trajectories are superior to the trajectories produced by the
roadmap alone [5].

In this work, we address the limitations in the previous
Chekov with regard to changing environments. This frame-
work features a pre-computed roadmap and cache of shortest
path solutions. However, these solutions are with respect to
static environment obstacles, and must be validated to ensure
that they do not collide with dynamic obstacles. We address
this by incorporating incremental search techniques into the
roadmap planner to reduce the computational cost. Addition-
ally, we show how the effective time required for replanning
can be reduced by parallel execution and planning.

Incremental search has been an active area of research for
many years. With the D* Lite algorithm [6], a robot moves
to a neighboring state that minimizes its cost to goal and
updates any edges within a scan radius whose costs have
changed due to changes in the environment. Successors to D*
Lite include Adaptive A*(AA*) [7], Generalized Adaptive
A* (GAA*) [7], and Multipath Adaptive A* (MPAA*) [8].
These algorithms all require updating all states that have
been affected by changed edge costs within a visibility
range along with establishing consistency in the heuristic
values that have been affected. This can require a substantial
computation and time if the visibility range is large, which
is the reason these algorithms were not implemented for the
research presented here. In fact, the the authors of MPAA*
and MPGAA* address how MPGAA* performance suffers
when presented with extended visibility ranges due to the
number of heuristic updates required. While developments



have been made as recently as 2017 to address this limitation
[9], the problem scenarios in the research we are presenting
use a full visibility range, which is problematic for MPGAA*
and its improved variants. For this reason, we have opted
for an approach involving repeated A* searches with lazy
collision checking.

II. PROBLEM STATEMENT AND APPROACH

The problem solved by Chekov is to plan and execute
robot motions that accomplish a task specified by a set of
temporal and spatial constraints. The resulting motions must
be near-optimal with respect to a specified objective function.
After plan execution has started, the system must react
quickly to disturbances. This fast reaction is key to providing
robots the capability to operate effectively in uncertain, fast-
changing environments.

The inputs to Chekov are: 1) an environment containing
obstacles; 2) a plant model representing the actuation limits
of the robot; 3) the current state of the robot; 4) a set
of spatial and temporal constraints that represent goals to
be achieved; and 5) an objective function for optimization.
The outputs of Chekov are control commands to the robot
such that all constraints are observed, including achievement
of goal regions and avoidance of obstacles, and such that
its behavior is optimal according to the objective function
(see also [1]). We make a number of key assumptions that
we believe are consistent with a large class of practical
robot manipulation problems. First, we assume that the
manipulation workspace can be characterized by a limited
set of pre-grasp poses. Second, we assume that the pre-grasp
to grasp motion is short, and is best handled by visual and
force servoing loops, rather than open-loop planners. Third,
we assume that the collision environments are not overly
complex. We are not trying to solve “piano mover” problems,
rather we assume a small set of potential dynamic obstacles,
such as a workpiece, another robot, or a human.

In previous work, we demonstrated key innovations that
we endeavor to build upon here. First, we extended the
roadmap approach used previously in Chekov by incor-
porating obstacle-aware trajectory optimization [3], [4] in
order to improve optimality. Second, we developed three
new environments that represent typical scenarios and made
use of a fourth developed previously in the motion planning
community to characterize planner performance in a set of
“practically” relevant tests. In that work, we focused on
static rather than dynamic obstacles because static obstacles
occupy the majority of the workspace in many practical
applications. The separation of static and dynamic obstacles
is a key insight that enables superior performance.

In this work we address the problem of dynamic obstacles.
We take an integrated approach that considers both planning
and plan execution. As in our previous work, we begin by
providing the motion plan query as an input to the roadmap
planner. We then provide the output of this planner as input
to obstacle-aware trajectory optimization, called TrajOpt [3],
[4], resulting in an optimized, smooth plan. As part of
this process, we maintain a map of correspondence points

between the output of the roadmap planner and the output
of TrajOpt. This allows us to divide the plan into segments,
and maintain a correspondence between the segments in the
roadmap plan, and the segments in the TrajOpt plan.

When the TrajOpt plan is output, plan execution be-
gins. We continually monitor plan execution, checking for
dynamic obstacles that may intersect future segments. In
particular, before the next segment of a TrajOpt trajectory is
executed, it is checked for collisions. If it is not collision-free,
execution is halted and replanning occurs. Otherwise, the
next segment is sent to the joint controller for execution and
the remaining segments of the TrajOpt plan to be executed
are checked for collisions to determine if replanning during
execution should occur.

A key, innovative feature of our replanning approach is
that it combines trajectory optimization with incremental
search through use of the segment map. When a segment
is identified to be in collision, the segment map is used
to find the corresponding segment in the roadmap, allowing
for fast incremental repair using the roadmap planner. The
repaired roadmap plan is then input to TrajOpt for subsequent
optimization, as before.

A second innovative feature of our approach is reduction
of delays through replanning during the execution of up-
coming segments of an invalid trajectory if the particular
segments being executed are still valid. This parallel replan-
ning and execution can dramatically reduce delays, and also
give rise to a new metric, which we call Effective Planning
Time. This metric provides a more appropriate indication of
the actual temporal penalty imposed by the disturbance.

III. IMPLEMENTATION

From our previous work in [5], we have four representa-
tional environments: a tabletop with a pole (Fig. 1), a tabletop
with a container, a kitchen and a shelf with boxes (Fig.
2) environment. The environments have varying degrees of
difficulty that are reflected in the results from our previous
work. Additionally, we generated 5000 planning tests for
comparing different versions of our planner to one another
as well as to other existing planners. Each of the 5000 cases
consists of randomly sampled start and target end-effector
pose pairs that are collision-free and kinematically feasible.
These cases were developed for the Baxter robot [10] with
its 7-DOF left arm as the manipulator. Based on our initial
tests, TrajOpt works quite similarly on other manipulators,
so here we take the Baxter left arm as our primary testbed.

A. Addressing Dynamic Obstacles

In order to address dynamic obstacles, new methods had
to be developed for our roadmap-based planner to allow it
to provide collision-free solutions to TrajOpt. One of the
avenues pursued was to develop solution caches that contain
multiple alternative solutions for each pair of roadmap nodes
in addition to the shortest path. The alternative solutions were
found by obstructing the robot workspace with obstacles
representative in size, shape and pose to what would be
expected in the given environment. While the results found



Fig. 1. The “tabletop with a pole” environment

Fig. 2. The “shelf with boxes” environment

from these augmented solution caches did not strike us as
noteworthy, the tests developed through extending the 5000
cases for each environment with sets of obstacles inserted
into the workspace proved to be useful for the next avenue
we pursued: online search.

The online strategies we developed for avoiding dynamic
obstacles are based on an implementation of A* adapted for
the roadmap-based planner (Fig. 3). When expanding search
nodes, the algorithm performs collision checks if necessary,
and then caches collision check results. This lazy collision
checking approach limits collision checking to newly en-
countered edges. Since our test workspaces tend to be fairly
open, the constructed roadmaps have many edges relative to
the number of sampled nodes, and most solutions contain
only a few (around 5) nodes. This allows A* search for a
given roadmap to be fairly quick to return a solution relative
to the time spent checking the solution for collisions. As a
result, repeated searches are not costly since edges already
encountered do not have to be collision checked. While the
approach described here does not attempt to predict how the
environment will change in the future, the capabilities of
this approach would also be useful for systems that do make
predictions about dynamic obstacles.

In developing our approach, we also considered D*Lite
[6]. At a high level, D* Lite consists of the following steps:

1) Search for a plan from the goal to the current state of
the robot

2) Move from the current state to the state that brings the
robot closest to the goal and update the current state
accordingly

3) Check if knowledge of obstacles has changed within a
scan radius of the robot

• If so, update all edges with changed costs and
update the shortest path from the goal to the new
current state

4) Repeat steps 2 and 3 until the goal has been reached

However, D* Lite is generally used to address scenarios
involving mobile robots operating in environments with
limited visibility. In contrast, motion planning for robot
arms tends towards scenarios where the full state of the
environment along a planned trajectory can be observed.
We have found that D* Lite does not perform well when
changes occur near the goal configuration for a planning
problem because these changes often invalidate work done
in previous search iterations. This concern along with some
initial simulations involving an adaptation of D* Lite to fit
our problem characteristics have led us to move away from
this algorithm.

The approach we are presenting here incorporates incre-
mental execution and execution monitoring with A* Repair
and TrajOpt (Fig. 4). It starts out using TrajOpt to optimize
a collision-free path returned from A* Repair. When the
roadmap path is optimized, a mapping is created from the
points in the optimized trajectory to the seed trajectory, so
the optimized trajectory can be broken up into segments
according to the roadmap edges.

At each execution iteration, the remaining trajectory to
execute is checked segment by segment. If any part of
the trajectory is in collision, replanning will occur on that
iteration. However, if the trajectory segment that would be
executed next is collision-free, that segment will be executed
this iteration regardless of collisions found in any other
segment. This leads to a key innovation of this paper:
replanning can occur while this segment is being executed.
In turn, replanning is performed between the goal and the
endpoint of the segment executed during replanning. This
effectively reduces the time it takes to replan by the time it
takes to execute the collision-free segment.

To properly evaluate this innovation, we make use of a new
metric in our analysis. This metric, Effective Planning Time,
is the difference between the entire time taken for replanning
and execution and the time taken just for execution. This
provides a clear measure of how much time is saved through
overlapping replanning and execution.



1: function GETCOLLISIONFREEPATH(G, sstart, sgoal, validEdges)
2: for all e ∈ G.Edges do
3: validEdges.Add(e);
4: path = GETSHORTESTCACHEDPATH(sstart, sgoal);
5: success = True;
6: while success do
7: collisionFree, = CHECKPATHCOLLISIONS(

path, validEdges);
8: if collisionFree then return path;

9: success, path = COMPUTESHORTESTPATH(G, sstart,
sgoal, validEdges);

10: return Failure;

11: function COMPUTESHORTESTPATH(G, sstart, sgoal, validEdges)
12: evaluated = ∅;
13: discovered = ∅;
14: parentMap = ∅;
15: for all s ∈ G.States do
16: f(s) = g(s) =∞;
17: discovered.Add(sstart);
18: g(sstart) = 0;
19: f(sstart) = h(sstart, sgoal);
20: while discovered is not empty do
21: scurrent = discovered.Pop();
22: if scurrent = sgoal then
23: path = RECONSTRUCTPATH(parentMap, scurrent)
24: return True, path;
25: discovered.Remove(scurrent);
26: evaluated.Add(scurrent);
27: for neighbor ∈ G.Neighbors(scurrent) do
28: if neighbor ∈ evaluated then
29: continue;

. Checking validEdges is the only deviation from standard A*
30: if G.Edge(scurrent, neighbor) 6∈ validEdges then
31: continue;
32: if neighbor 6∈ evaluated then
33: discovered.Add(neighbor);
34: score = g(scurrent) + cost(scurrent, neighbor);
35: if score ≥ g(neighbor) then
36: continue;
37: parentMap(neighbor) = scurrent;
38: g(neighbor) = score;
39: f(neighbor) = g(neighbor) + h(neighbor, sgoal);
40: return False, []

Fig. 3. A* Repair and helper functions. GetCollisionFreePath is the
main A* Repair method and ComputeShortestPath is an A* implementation
adapted to incorporate knowledge of in-collision edges with h serving as
the heuristic, g as the cost from start to current, and f as the cost from start
to goal through current. ReconstructPath works as it would in a standard A*
implementation. CheckPathCollisions checks the path for collisions, obtain
pairs of nodes surrounding in-collision edges, and updates validEdges
accordingly.

IV. SIMULATIONS AND RESULTS

In this section, we highlight results from the roadmap
framework used in [5] to establish a baseline of performance
for Chekov in static environments with and without collision
checking. Then we show how online search can be incorpo-
rated to improve performance in environment configurations
that differ from the static case. Finally we adapt this ap-
proach to the incremental case and show how replanning
overhead can be reduced for incremental algorithms through
interleaving replanning with execution of previously planned
trajectory components that are confirmed to still be valid
at the time of execution. While one of the key innovations
of our motion planner is the use of TrajOpt in conjunction

1: function MAIN(G, sgoal, overlapExecution)
2: for all e ∈ G.Edges do
3: validEdges.Add(e);
4: success, path = GETCOLLISIONFREEPATH(G, scurrent, sgoal,

validEdges);
5: if success = False then
6: return False
7: optimizedPath, pathMap = OPTIMIZEPATH(path);
8: pathIndex = 0;
9: while scurrent 6= sgoal do

10: nextSegment = optimizedPath[pathMap[pathIndex] :
pathMap[pathIndex+ 1]];

11: excuteSegment = validPath = True;
12: if nextSegment is in collision then
13: excuteSegment = validPath = False;
14: for i from pathIndex+ 1 to Size(path)− 1 do
15: segment = optimizedPath[pathMap[i] :

pathMap[i+ 1]];
16: if segment is in collision then
17: validPath = False;
18: if overlapExecution = False and (validPath = False) then
19: excuteSegment = False;
20: if excuteSegment = True then
21: Move the robot along nextSegment and update scurrent;
22: pathIndex = pathIndex+ 1;

. Only scan for changes if there is not a valid full path to the goal
23: if validPath = False then
24: success, path = GETCOLLISIONFREEPATH(G,

scurrent, sgoal, validEdges);
25: if success = False then
26: return False
27: optimizedPath, pathMap = OPTIMIZEPATH(path);
28: pathIndex = 0;

Fig. 4. A* Repair with incremental execution and execution monitoring.

with a roadmap-based planner, only the last simulation
discussed in this section involves trajectory optimization. The
preceding two simulations provide comparisons only within
the roadmap-based planner.

A. Roadmap Performance in All Environments

The first set of simulations evaluates roadmap performance
in each of the four static environments. The results in Table I
denoted Connections have no collision checks performed on
roadmap edges and were previously shown in [5]. Collision
checks are still performed on connections made from the
start and end test points to existing roadmap nodes for all
simulations. We present a comparison of these results to
simulation results with collision checking for roadmap edges
in order to better contextualize the remaining results in this
paper.

Since the roadmaps are constructed to be collision-free in
the static environment, all nodes and edges in the roadmap
will be collision-free for these tests. This means that all
failures in these simulations are caused by not being able to
make a straight-line, collision-free connection from the start
or end point for a case and an existing node in the roadmap.
Additionally, all paths returned by the roadmap come from a
precomputed solution cache, so the majority of the time for a
roadmap query is consumed by checking roadmap edges for
collisions in some cases and establishing the collision-free
connections to the roadmap in all cases. The main takeaway
is that checking roadmap edges for collisions results in a



TABLE I
ROADMAP PERFORMANCE IN ALL ENVIRONMENTS

Roadmap Collision
Checking1

Failure
Rate

Average
Runtime(s)

Average
Path

Length(rad)
Tabletop with a Pole

500
Nodes

Connections 0.18% 0.1596 1.284
All Edges 0.18% 1.033 1.284

1000
Nodes

Connections 0.18% 0.1434 1.238
All Edges 0.18% 1.001 1.238

Tabletop with a Container
500

Nodes
Connections 1.40% 0.2054 1.310
All Edges 1.40% 1.170 1.310

1000
Nodes

Connections 0.76% 0.1806 1.320
All Edges 0.76% 1.159 1.320

Kitchen
500

Nodes
Connections 2.80% 0.4248 1.289
All Edges 2.80% 2.441 1.289

1000
Nodes

Connections 1.92% 0.3792 1.285
All Edges 1.92% 2.279 1.285

Shelf with Boxes
500

Nodes
Connections 15.50% 0.4456 1.308
All Edges 15.50% 1.569 1.308

1000
Nodes

Connections 12.06% 0.3876 1.302
All Edges 12.06% 1.566 1.302

1 Collision checks are either just performed on connections made to
existing roadmap nodes or on all edges in a trajectory, roadmap edges
and connections to roadmap nodes.

substantial increase in average query time, so any planning
approach where a static environment is not assumed should
seek to minimize unnecessary collision checks.

B. Online Planning to Avoid Obstacles

The goal for the roadmap-based planner is to quickly
produce collision-free seed trajectories for optimization. One
of the key aspects of our approach to the roadmap-based
planner is the utilization of a pre-computed set of paths
that are collision-free in a static environment. While this
may be sufficient for many cases, it should be expected
that scenarios will arise due to dynamic obstacles where no
collision-free solution exists in the cache that will satisfy the
planning query. To address the dynamic obstacles, we use
the following approach. First, we check cached solutions to
see if any are collision free for the query. If no solution is
collision-free, the collision checks that were performed are
used (cached) to invalidate parts of the roadmap to speed up
the subsequent search for a solution that is in fact collision-
free (see A* Repair algorithm description above).

The simulations used to observe the benefits provided by
A* Repair to the existing all-pairs shortest path (APSP)
solution cache approach build off the original 5000 cases
used to test planners in our four static environments. Each
of the individual 5000 cases is run multiple times for a given
simulation, but every time a case is run, an obstacle from a
small set of obstacles is inserted into the environment at
one of a finite set of poses associated with that obstacle.
This served to obstruct parts of the environment in ways
that appeared representative of what may be encountered in a
similar environment in the real world. Obstacles were placed
in a way to ensure that the robot still had some range of

TABLE II
OBTAINING A COLLISION-FREE PATH IN MODIFIED ENVIRONMENTS

Environment Path Retrieval1 Success Rate2 Average
Runtime(s)

Tabletop with a
Pole

APSP Cache 11.75% 0.5041
A* Repair 44.92% 0.8118

Tabletop with a
Container

APSP Cache 10.62% 0.4982
A* Repair 35.65% 0.6903

Kitchen APSP Cache 8.24% 0.9681
A* Repair 33.93% 1.377

Shelf with Boxes APSP Cache 6.32% 0.6046
A* Repair 24.70% 0.7939

1 Path retrieval refers to how a collision-free trajectory is obtained by
the roadmap. In on case, failure occurs when the cached solution
is in collision for the pair of roadmap nodes connected to. For the
other case, the roadmap is searched with A* Repair if the original
cached solution is in collision and failure occurs if no collision-free
path exists in the roadmap for the pair of points connected to.

2 Success rate here refers to the percentage of cases where a collision-
free solution could be found out of cases where the solution used for
the static environment has been forced into collision by an inserted
obstacle.

motion, but unlike with the original 5000 cases, no effort
was made to guarantee that a case was still solvable by any
planner once an obstacle was inserted.

The results in Table II shows how often a different cached
solution can still be used when the shortest possible solution,
including added length from establishing connections, is in
collision. More importantly, the results provide insight into
one of the trade-offs of using online search: more collision-
free solutions will be found in changing environments at the
expense of a longer average query time. The degree to which
this trade-off is worth it would depend on the nature of the
planning scenario, how often failures occur, and what the
price of any given failure is.

Fig. 5. A cube is inserted in the path of the end-effector to force replanning
to occur.

C. Replanning During Execution

With A* Repair, we can see how online search can be
incorporated into the existing roadmap-based planner and
APSP solution cache. Through relying on a lazy collision
checking approach and reusing information from previous
checks, A* Repair minimizes collision checking, which is the



most time consuming step for our planner. However, in its
original implementation, A* Repair requires full replanning
when a path becomes invalid during execution. This led to an
investigation into incremental planners and how they could
incorporate trajectory optimization. While this did not result
in the development of new incremental planning algorithms,
it did yield an interesting innovation nonetheless. We have
found that there are benefits to be had for any existing
incremental planner through the interleaving of replanning
and execution. When a trajectory is discovered to be invalid,
it does not need to result in the immediate cessation of
execution. If the next segment in the trajectory is still valid,
it can still be executed and replanning can begin during this
execution.

These simulations conducted to demonstrate the benefit
of overlapping replanning with execution also start with the
5000 cases we generated for each of the four environments.
For each case, the planner produces an initial optimized
trajectory using the roadmap-based planner with TrajOpt. A
10cm cube is then inserted at the end-effector pose halfway
along the optimized trajectory right before execution (see
Fig. 5). This invalidates the original trajectory and forces
replanning either before or during execution depending on
whether or not overlapping is allowed.

From the results in Table III, we see that the executed
path length increases when overlapping is allowed between
replanning and execution. This should be expected because
the trajectory segment that is executed during replanning
is no longer part of an optimal plan for the environment
in that state. The longer paths are also the primary cause
for the lack of improvement in total time and execution
time. However, what is most noteworthy about these results
is the consistent improvement in effective planning time
through interleaving replanning and execution. These results
demonstrate a potential for incremental planners to take
advantage of time delays that naturally come with trajectory
execution on physical systems. They also showcase a metric
to allow us to capture the benefits from utilizing what is
generally lost time during execution. All of this aligns with
our goal of developing a more reactive and intuitive motion
planner through minimizing any delays where the robot is
not in motion.

V. DISCUSSION

Our results here build off the benefits we have pre-
viously demonstrated through combining a roadmap-based
planner with obstacle-aware trajectory optimization. We have
expanded the existing planning framework to account for
dynamic obstacles. The approach we took is to implement
online search that utilizes work performed checking precom-
puted shortest path solutions for collisions. From there we
investigated how incremental search can be incorporated with
the roadmap and trajectory optimization.

It was in this investigation that we realized the benefits
that could be achieved through overlapping replanning and
execution when using incremental planners. The goal is to
complete as much of the replanning process as possible while

TABLE III
PERFORMANCE COMPARISON OF OVERLAPPING AND

NON-OVERLAPPING (SERIAL) REPLANNING AND EXECUTION

Roadmap Approach1
Executed

Path
Length(rad)

Total
Time(s)2

Execution
Time(s)

Effective
Planning
Time(s)3

Tabletop with a Pole
500

Nodes
Overlapping 6.447 7.346 5.064 2.282

Serial 6.061 7.161 4.781 2.380
1000

Nodes
Overlapping 6.065 7.165 4.794 2.371

Serial 5.665 6.939 4.493 2.446
Tabletop with a Container

500
Nodes

Overlapping 6.619 7.431 5.148 2.283
Serial 6.351 7.386 4.953 2.433

1000
Nodes

Overlapping 6.457 7.435 5.075 2.36
Serial 6.193 7.463 4.884 2.579

Kitchen
500

Nodes
Overlapping 6.249 7.919 4.871 3.048

Serial 5.970 7.845 4.682 3.163
1000

Nodes
Overlapping 6.099 8.001 4.780 3.221

Serial 5.829 8.027 4.596 3.431
Shelf with Boxes

500
Nodes

Overlapping 6.769 7.920 5.361 2.559
Serial 6.582 8.037 5.229 2.808

1000
Nodes

Overlapping 6.514 7.891 5.177 2.714
Serial 6.357 8.059 5.066 2.993

1 Whether replanning and execution overlapped or were handled serially
2 The elapsed time from when the cube is inserted in the environment to

when execution of the trajectory has completed
3 The difference between the Total Time metric and the Execution Time

metric

executing trajectory segments that are still valid within a
larger plan that is invalid. In order to capture this benefit, we
had to define a new metric. This metric, effective planning
time, measures the difference between total replanning and
execution time and the time of just execution for a given
planning query.

A trade-off exists in this approach with regards to the
resolution of path segments within a full trajectory that was
not explored in this paper. If path segments are longer, the
execution of individual segments allow more time for replan-
ning during execution, but longer segments allow obstacles
to invalidate larger portions of a trajectory than may be
necessary. Also, there may be cases when it is better to not
execute the next segment of a trajectory due to it bringing the
robot closer to a collision. However, if incremental planners
can be tuned to complete the replanning process within the
execution of these segments, then effective planning time can
be reduced to zero and there will be no perceptible delay
caused by environment changes that invalidate trajectories
that had been collision-free. This helps move us towards
our goal of having reactive and intuitive motion planning
and execution systems for robots that could one day be
commonplace in everyday lives.

REFERENCES

[1] A. Hofmann, E. Fernandez, J. Helbert, S. Smith, and B. Williams,
“Reactive integrated motion planning and execution.” AAAI
Press/International Joint Conferences on Artificial Intelligence, 2015.



[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[3] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential
convex optimization.” in Robotics: science and systems, vol. 9, no. 1.
Citeseer, 2013, pp. 1–10.

[4] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[5] S. Dai, M. Orton, S. Schaffert, A. Hofmann, and B. Williams, “Improv-
ing trajectory optimization using a roadmap framework.” International
Conference on Intelligent Robots and Systems, 2018.

[6] S. Koenig and M. Likhachev, “D*lite,” in Eighteenth National Con-
ference on Artificial Intelligence. American Association for Artificial
Intelligence, 2002, pp. 476–483.

[7] X. Sun, S. Koenig, and W. Yeoh, “Generalized adaptive a*,” in
Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 1. International Foundation
for Autonomous Agents and Multiagent Systems, 2008, pp. 469–476.

[8] C. Hernandez, J. A. Baier, and R. J. A. Acha, “Making a* run faster
than d*-lite for path-planning in partially known terrain,” 2014.

[9] C. Hernandez, R. Asin, and J. Baier, “Improving mpgaa* for extended
visibility ranges,” 2017.

[10] RethinkRobotics, “Baxter,” http://www.rethinkrobotics.com/baxter/.


