
MIT Open Access Articles

Optimal Vertex Fault Tolerant Spanners (for fixed stretch)

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bodwin, Greg, Dinitz, Michael, Parter, Merav and Williams, Virginia Vassilevska. 2018. 
"Optimal Vertex Fault Tolerant Spanners (for fixed stretch)."

As Published: 10.1137/1.9781611975031.123

Publisher: Society for Industrial and Applied Mathematics

Persistent URL: https://hdl.handle.net/1721.1/137786

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137786


Optimal Vertex Fault Tolerant Spanners

(for fixed stretch)

Greg Bodwin1, Michael Dinitz*2, Merav Parter1, and Virginia Vassilevska Williams�1

1MIT CSAIL
2Johns Hopkins University

Abstract

A k-spanner of a graph G is a sparse sub-
graph H whose shortest path distances match
those of G up to a multiplicative error k. In
this paper we study spanners that are resistant
to faults. A subgraph H ⊆ G is an f vertex
fault tolerant (VFT) k-spanner if H \ F is a
k-spanner of G \F for any small set F of f ver-
tices that might “fail.” One of the main ques-
tions in the area is: what is the minimum size
of an f fault tolerant k-spanner that holds for
all n node graphs (as a function of f , k and n)?
This question was first studied in the context
of geometric graphs [Levcopoulos et al. STOC
’98, Czumaj and Zhao SoCG ’03] and has more
recently been considered in general undirected
graphs [Chechik et al. STOC ’09, Dinitz and
Krauthgamer PODC ’11].

In this paper, we settle the question of the
optimal size of a VFT spanner, in the setting
where the stretch factor k is fixed. Specif-
ically, we prove that every (undirected, pos-
sibly weighted) n-node graph G has a (2k −
1)-spanner resilient to f vertex faults with
Ok(f1−1/kn1+1/k) edges, and this is fully op-
timal (unless the famous Erdös Girth Conjec-
ture is false). Our lower bound even generalizes
to imply that no data structure capable of ap-
proximating distG\F (s, t) similarly can beat the
space usage of our spanner in the worst case. To
the best of our knowledge, this is the first in-
stance in fault tolerant network design in which
introducing fault tolerance to the structure in-
creases the size of the (non-FT) structure by
a sublinear factor in f . Another advantage of
this result is that our spanners are constructed
by a very natural and simple greedy algorithm,
which is the obvious extension of the standard

*Supported in part by NSF awards 1464239 and 1535887.
�Supported in part by NSF grants CCF-1417238, CCF-

1528078 and CCF-1514339, and BSF grant BSF:2012338.

greedy algorithm used to build spanners in the
non-faulty setting.

We also consider the edge fault tolerant
(EFT) model, defined analogously with edge
failures rather than vertex failures. We show
that the same spanner upper bound applies in
this setting. Our data structure lower bound
extends to the case k = 2 (and hence we close
the EFT problem for 3-approximations), but it
falls to Ω(f1/2−1/(2k) · n1+1/k) for k ≥ 3. We
leave it as an open problem to close this gap.

1 Introduction

A spanner ([45, 46]) of a graph is a subgraph
that approximately preserves its shortest path metric.
More formally, a subgraph H = (V,E′ ⊆ E) is a t-
spanner of a graph G = (V,E) if

distH(u, v) ≤ t · distG(u, v) for all u, v ∈ V

(t is called the stretch of the spanner). Spanners were
introduced by Peleg and Ullman [46] and Peleg and
Schäffer [45], and have a wide range of applications
in routing [47], synchronizers [6], broadcasting [5, 43],
distance oracles [49], graph sparsifiers [32], and even
preconditioning of linear systems [28]. The most
common objective in spanners research is to achieve
the best possible existential size-stretch trade-off.
Most notably, a landmark result of Althöfer et al. [3]
proved that for any integer k ≥ 1, every graph
G = (V,E) has a (2k − 1)-spanner H ⊆ G with
O(n1+1/k) edges, and moreover, there exist graphs for
which this size-stretch tradeoff cannot be improved
(if we assume the girth conjecture of Erdős [29]).
In fact, their existentially optimal upper bound was
obtained via an extremely simple and natural greedy
construction algorithm: consider the edges of G in
non-decreasing order of their weight and add an
edge {u, v} to the current spanner H if and only if
distH(u, v) > (2k − 1)w(u, v). It is easy to verify
that this algorithm never creates cycles of length 2k

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1884

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



or less in H, and simple folklore upper bounds imply
that any graph of girth > 2k has O(n1+1/k) edges.

A crucial aspect of real-life systems that is not
captured by the standard notion of spanners is the
possibility of failure. If some edges (e.g., communica-
tion links) or vertices (e.g., computer processors) fail,
what remains of the spanner might not still approx-
imate the distances of what remains of the original
graph. This motivates the notion of fault-tolerance
for spanners. The canonical model was first intro-
duced by Levcopoulos, Narasimhan, and Smid [34]
(who happened to work in the geometric setting): a
subgraph H is an f vertex (edge) fault tolerant t-
spanner for G if

distH\F (u, v) ≤ t · distG\F (u, v)

for every u, v ∈ V and F ⊆ V (F ⊆ E), |F | ≤ f.

In other words, a fault tolerant spanner H contains
a spanner for G \ F for every set F of f nodes/edges
that could fail.

The question of whether it is possible to con-
struct a sparse fault tolerant spanner for an arbitrary
undirected weighted graph (rather than a geometric
graph) was raised by Czumaj and Zhao [23]. This
was answered in the affirmative by Chechik, Lang-
berg, Peleg and Roditty [22] who gave the first re-
sults on fault-tolerant spanners for general graphs.
They presented constructions of an f -vertex fault tol-
erant (2k − 1)-spanner of an n-node graph G of size

O(f2kf+1 · n1+1/k log1−1/k n), and an f -edge fault
tolerant (2k − 1)-spanner of G of size O(f · n1+1/k).
Hence, Chechik et al. [22] showed that introducing
tolerance to f edge faults costs us an extra fac-
tor of f in the size of the spanner, while introduc-
ing tolerance to f vertex faults costs us a factor of
f2kf+1 in the size (compared to the size of a non-fault
tolerant spanner of the same stretch). Dinitz and
Krauthgamer [25] later improved the edge bound for

vertex faults to O
(
f2−

1
kn1+

1
k log n

)
. In two special

cases of “mixed” error functions, a further improved
size/stretch tradeoff for vertex faults was obtained in
[4]; the authors also showed efficient algorithms for
computing these mixed fault-tolerant spanners.

While this prior work provided a significant lead
on the problem, it left behind two interesting knowl-
edge gaps.

1. It is open whether these dependencies are
“right;” no nontrivial lower bounds for the prob-
lem are yet published, and so improvements to
these upper bounds are conceivable. For exam-
ple, it is natural to wonder: is it possible to pay
only an extra factor of f and still achieve vertex

fault-tolerance (as is possible for edge failures)?
Even more fundamentally: can we pay even less
than f and still achieve f -fault tolerance?

2. One of the major pros of the textbook (non-
faulty) greedy spanner construction of Althöfer
et al. [3] is the simplicity and obvious correctness
of the algorithm. The prior work on fault
tolerant spanners exhibits new and interesting
techniques, but cannot reasonably be viewed
as an analog or extension of the classic greedy
spanner. It is thus open whether a similar degree
of algorithmic simplicity can be achieved in the
fault tolerant model.

In this paper, we present new upper and lower
bounds for fault tolerant spanners that directly ad-
dress both of these issues.

Our Contribution. We answer the above ques-
tions affirmatively. First, we show that we can con-
struct vertex and edge-fault tolerant spanners that
cost only o(f) more than their non-fault tolerant
counterparts.

Theorem 1.1. (Main Result, Upper Bound)
Let G = (V,E,w) be an undirected graph with real
edge weights and no negative-weight cycles. Let k ≥ 1
be a fixed integer. For any (possibly non-constant)
positive integer f , G has an f -VFT (2k− 1)-spanner
on Ok(f1−1/kn1+1/k) edges. The same bounds can
be achieved for f -EFT spanners.

Interestingly, the construction algorithm behind
Theorem 1.1 (Algorithm 2.1) is indeed the natural
generalization of Althöfer et al. [3]: we simply con-
sider the edges of the graph in non-decreasing order of
weight, and we add an edge (u, v) to the current span-
ner H if and only if distH\F (u, v) > (2k − 1)w(u, v)
for any possible fault set F . Correctness of the algo-
rithm is once again trivial. However, this time it is
highly nontrivial to prove an upper bound the density
of the final spanner H, and it is the main endeavor
of this paper to establish this.

The Ok in the sparsity bound in Theorem 1.1
hides a 2O(k) factor (which is a constant for fixed k).
We leave it as an open problem to determine whether
this exponential dependence on k is necessary.

To the best of our knowledge, Theorem 1.1 is
the first construction of any fault tolerant graph
structure whose size has a sublinear dependence in f .
Perhaps the most basic fault tolerant structures are
those preserving connectivity, where the connected
components of H \ F are the same as for G \ F for
any fault set F of size at most f . Even for this much
simpler requirement, the existing constructions of FT
connected subgraphs [40] pay a factor of at least f in

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1885

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



the size compared to the size of the non-fault tolerant
structure. In fact, a common belief in fault tolerant
network design is that paying a factor f in the size
of the fault tolerant structure is the best one can
achieve [40]. Showing that this belief is wrong is
a core contribution of this paper. We hope that it
will motivate finding other graph predicates where
requiring fault tolerance only costs us a sublinear
factor of f compared to the size of the non-faulty
structure.

For the case of vertex faults, we complement
Theorem 1.1 with a matching lower bound:

Theorem 1.2. (Lower Bound, Vertex Faults)
For any positive integers k and f , assuming the
Erdös Girth Conjecture [29], there exist infinite
families of undirected unweighted n-node graphs
on Ω(f1−1/k · n1+1/k) edges for which any f VFT
(2k − 1)-spanner H must contain all the edges of G.

The Girth Conjecture is widely believed and widely
used as a basis for lower bounds in spanners research.
It has been confirmed for k ∈ {1, 2, 3, 5} [51] (and
thus our lower bounds are unconditional for these
values of k), and it is open for all other values of
k.

For edge fault-tolerance we can prove the same
lower bound for the special case of k = 2, but for
larger stretch values we give a weaker lower bound.
We leave it as an open question to close this gap for
k ≥ 3.

Theorem 1.3. (Lower Bound, Edge Faults)
For any positive integers k and f , assuming the
Erdös Girth Conjecture [29], there exist infinite
families of undirected unweighted n-node graphs on{

Ω
(
f1/2n3/2

)
when k = 2

Ω
(
f1/2−1/(2k)n1+1/k

)
when k ≥ 3

edges for which any f EFT (2k− 1)-spanner H must
contain all the edges of G.

In fact, by applying some standard tricks to our
new lower bound constructions, we can generalize to
prove strong incompressibility theorems:

Theorem 1.4. (Strong Incompressibility) For
any positive integers k ≥ 2 and f , assuming the
Erdös Girth Conjecture [29], there is no algorithm
that can process n-node graphs G = (V,E) into a
data structure DG on o

(
f1−1/kn1+1/k

)
bits such that

DG can answer queries (in any amount of time) of
the form (s, t, F ), where s, t ∈ V, F ⊆ V, |F | ≤ f ,

with a value ̂distG\F (s, t) satisfying

distG\F (s, t) ≤ ̂distG\F (s, t) ≤ (2k−1) ·distG\F (s, t).

Theorem 1.5. (Strong Incompressibility) For
any positive integers k ≥ 2 and f , assuming the
Erdös Girth Conjecture [29], there is no algorithm
that can process n-node graphs G = (V,E) into a
data structure DG on{

o
(
f1/2n3/2

)
when k = 2

o
(
f1/2−1/(2k)n1+1/k

)
when k ≥ 3

bits such that DG can answer queries (in any amount
of time) of the form (s, t, F ), where s, t ∈ V, F ⊆
E, |F | ≤ f , with a value ̂distG\F (s, t) satisfying

distG\F (s, t) ≤ ̂distG\F (s, t) ≤ (2k−1) ·distG\F (s, t).

Note that the spanner H ⊆ G promised by
Theorem 1.1 functions as a data structure DG for
these purposes, and thus these bounds are essentially
optimal.1

Discussion of our techniques. As mentioned
previously, the fault-tolerant spanners in Theorem 1.1
are constructed by the natural generalization of the
greedy spanner of Althöfer et al. [3] into the fault-
tolerant setting. It is easy to see that the spanner H
built by the greedy algorithm is an f -fault tolerant
(2k− 1)-spanner, both for vertex and for edge faults.
Our main technical contribution in this paper is in
the analysis of the number of edges m in H. We
overview this here.

In the non-faulty greedy spanner algorithm, the
output spanner H is shown to have no cycles of
length at most 2k. In our algorithm, we focus on
counting the closely related notion of closed walks
of length exactly 2k. Our output spanner H might
have many closed walks of length 2k; let this number
be C. At a very high level, we attempt to give
both a lower bound L(m,n, f) and an upper bound
U(m,n, f) on C, and then derive an upper bound
on m in terms of n, f by rearranging the inequality
L(m,n, f) ≤ U(m,n, f).

First, it is not too hard to obtain a lower bound
L(m,n, f) on the number of closed 2k-walks of length
up to 2k using an argument based on the Cauchy-
Schwartz inequality: we have C = Ω((m/n)2k) as
long as m ≥ 100kn1+1/k, say (this lower bound
actually holds for 2k-cycles as well, as shown by
Morris and Saxton [38]; a simple argument for k = 2
can be found in [18]). Based on this lower bound,
it turns out that the desired bound on m follows
if we can upper bound the number of short cycles
in H by O(m(fm/n)k−1), as we then would get

1More precisely, these data structure lower bounds are
optimal up to a logn factor, since the spanner on |E| edges
can take up to |E| · logn bits to encode.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1886

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



(m/n)2k ≤ O(fk−1mk/nk−1) which implies m ≤
O(f1−1/kn1+1/k), as desired.

Unfortunately, the only thing that our greedy
VFT spanner algorithm gives us is that when an
edge {u, v} is added to H, there is a set F of f
nodes such that every short enough u  v path
includes a node in F . A major difficulty is to go
from this disjoint paths condition to upper-bounding
the number of short closed walks. To overcome this
difficulty, we take several steps. First we present
a regularization technique that allows us to assume
that the output spanner H is roughly regular. This
rough regularity allows us to say that the number
of i-walks starting from any given vertex is roughly
Di, where D = Θ(m/n) is the average degree of H.
For the special case k = 2, this makes our upper
bound argument quite clean (see Section 3): for any
pair of nodes u, v, when the edge {u, v} is added, the
number of 3-walks from u to v is Θ(fD), since all
these paths must intersect one of the f nodes x ∈ F ,
and (by rough regularity) the remaining node in the
walk must be one of the Θ(D) possible neighbors of
x. Thus, by a union bound over the edge set of H,
the total number of closed 4-walks is O(fDm) and
the desired upper bound on m follows.

For larger k, however, a difficulty arises in ex-
tending this argument. Let us generously suppose
that all the 2k − 1 walks connecting u and v go
through one of f neighbors of v. Can one still ar-
gue that the total number of 2k − 1-walks connect-
ing u and v (when {u, v} is added to H) is at most
O(m(fm/n)k−1)? A naive extension of the previ-
ous argument would only give an upper bound of
O(mfD2k−2) which is quite far from what we want.

To obtain a better argument, we introduce quite
a bit of machinery. For instance, instead of bounding
the number of closed 2k-walks, we show that it is
sufficient to bound the number of pairs of k-walks
that meet at the same endpoints. We also introduce
the notion of blockades, which allows us to only count
certain types of walks, and allows us to push through
a delicate inductive argument that finally achieves the
correct upper bound of O(m(fm/n)k−1) that leads to
our main upper bound theorem.

Additional Related Work. Constructing
fault tolerant spanners for geometric graphs (or
graphs from “simple” metric spaces such as doubling
metrics) has been further studied in [36, 35, 1, 48, 19].
The study of robust geometric spanners, where re-
moving few vertices from the graph harms only a
small number of other vertices, was initiated in [16].

In general graphs, the construction of sparse
fault tolerant subgraphs has received a significant
amount of recent attention [44, 40]. Construction of

purely additive fault tolerant spanners were studied
in [17, 11, 15]. Concerning exact distances from a
single (or few) sources, [41] introduced the notion
of FT-BFS structures that contain a BFS tree tree
from s in G \ {e} for every failing edge e ∈ E(G).
They showed an upper bound of O(n3/2) edges and
provided a matching lower bound graph example.
FT-BFS structures avoiding 2 faults with optimal size
were given in [39]. Approximate versions of FT-BFS
structures (where the structure is allowed to have
a stretch on the s × V distances) were studied in
[33, 42, 12, 14].

A natural data structure analog of fault-tolerant
subgraphs are distance sensitivity oracles, which are
small data structure that are used to answer queries
of the form: “what is the distance between s and t in
G when a set of F edges fail”? There is a long line of
literature on constructing distance sensitivity oracles
[24, 9, 10, 31, 8, 50, 27, 13] and related structures
such a fault tolerant routing schemes [30, 20] and
labeling schemes [2]. Recently, [21] provided an
efficient construction of distance sensitivity oracles
that support f = O(log n/ log log n) many faults
with polylogarithmic query time. In an another
breakthrough, [26] showed a connectivity sensitivity
oracle that supports f ∈ [1, n] vertex failures with
O(fm log n) space, update timeO(g2) and query time
O(g) where g ≤ f is the number of actual faults.

Turning to reachability in directed graphs, [7]
showed that for any number of faults f ≥ 1, there is
a subgraph H ⊆ G with O(2fn) edges that preserves
the reachability from s after the failure of any f
edges. They also showed that this upper bound is
existentially tight.

2 Preliminaries

We begin with a formal definition of fault tolerant
spanners:

Definition 1. (Fault Tolerant Spanners)
Let G = (V,E,w) be an undirected weighted graph
without negative weight cycles. We say that a
subgraph H ⊆ G over the same vertex set is an f
vertex (edge) fault tolerant t-spanner of G if, for any
set F of f vertices (edges), we have

distH\F (u, v) ≤ t · distG\F (u, v) for all u, v ∈ V

where G \ F and H \ F denote these graphs with the
set F of vertices (edges) removed.

We abbreviate vertex fault tolerant and edge fault
tolerant by VFT and EFT, respectively. We will
construct our spanners in Theorem 1.1 using the
following natural construction algorithm:

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1887

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Definition 2. In a graph H, a pair of nodes (u, v)
is (t, f) vertex (edge) protected if there is no set
F of f vertices (edges), with u, v /∈ F ,2 such that
distH\F (u, v) > t · w(u, v).

Algorithm 2.1. Input: An undirected weighted
graph G = (V,E,w) and positive integers f, k.

1. Initialize H ← (V, ∅)

2. For each (u, v) ∈ E in order of ascending edge
weight:

(a) If (u, v) is not currently (2k − 1, f) vertex
(edge) protected in H:

i. Add (u, v) to H

3. Return H

Output: H, an f VFT (EFT) (2k − 1)-Spanner of
G.

It is essentially trivial to see that the output
graph H is indeed a (2k − 1) spanner of the input
graph G:

Theorem 2.1. The graph H returned by Algorithm
2.1 is an f VFT (EFT) (2k−1)-spanner of the input
graph G = (V,E).

Proof. Let F be any set of f node (edge) faults.
Consider any u, v ∈ V and consider a shortest path
π between u and v in G\F . Consider any edge (x, y)
on π. We have that either (x, y) is in H (and hence
H \ F since (x, y) ∈ G \ F ), or the algorithm chose
not to add it to H. If the latter event occurs, it must
have been that distH\F (x, y) ≤ (2k − 1) · w(x, y) (by
the protection definition, this holds for all fault sets).
Thus, there is a path in H \ F of weight at most∑

(x,y)∈π distH\F (x, y) ≤ (2k − 1) distG\F (u, v). The
theorem follows.

The vast majority of this paper is devoted to
showing the upper bound n1+1/kf1−1/k ·2O(k) on the
density of H as stated in Theorem 1.1.

Our lower bounds are conditional on the standard
Erdös Girth Conjecture, which we recall:

Conjecture 1. (Erdös Girth Conjecture [29])
For any positive integer k, there exist infinite families
of n-node graphs with Ω(n1+1/k) edges and girth
2k + 2.

2The restriction u, v /∈ F is only meaningful when vertex
protection is considered; in the case of edge protection there is

no analogous requirement.

The paper is outlined as follows. In the main
body of this paper, we will highlight our matching
upper and lower bounds for k = 2 (i.e. 3-spanners)
and any f , for both edge and vertex faults. The
upper bound for k = 2 is far simpler to prove than
the upper bound for k ≥ 3, and in some sense
its supporting arguments form the base case for an
inductive attack on larger k. We will informally
describe the extension of our argument to larger
k, but due to space constraints, the formalities are
deferred to the appendix.

3 Upper Bound for 3-Spanners

First, we have:

Lemma 3.1. Suppose that Theorem 1.1 holds for k =
2 for all graphs G whose corresponding output graphs
H have the property that their maximum degree is
at most c times their minimum degree, for some
universal constant c. Then Theorem 1.1 holds in
general.

The proof is deferred to Appendix A, as it is some-
what long but orthogonal to the main new ideas of
this paper. We shall assume in the rest of this sec-
tion that H (the graph output by Algorithm 2.1) is
“approximately regular” in the sense of Lemma 3.1.
More specifically, throughout this paper, we let D
be a number such that all nodes in H have degree
Θk(D).

As usual, a walk in H is a sequence of nodes (pos-
sibly with repeats) in which every pair of adjacent
nodes is connected by an edge. A walk has length i
(also called an i-walk) if it contains i + 1 nodes. A
walk is closed if its first and last nodes are the same.
We shall also say that an edge (u, v) belongs to a walk
w if the nodes u, v appear in adjacent positions of w.
Let c2k denote the number of closed 2k-walks in H.

Definition 3. If H is the spanner produced by Algo-
rithm 2.1 on an input graph G = (V,E), then for an
edge (u, v) ∈ E, the graph H(u,v) = (V,E′) is defined
as the subgraph of H containing exactly the edges con-
sidered before (u, v) during the greedy algorithm (not
including (u, v) itself).

Lemma 3.2.

c4 = O(|EH | · fD)

Proof. We give the argument for vertex faults here;
the argument for edge faults is essentially identical.
We shall argue that each edge added to H during Al-
gorithm 2.1 completes O(fD) closed 4-walks, which
then implies the lemma by a simple union bound.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1888

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



If we choose to add an edge (u, v) to H, then
(u, v) is not (3, f) protected in H(u,v). Thus, there
is a set F of |F | ≤ f nodes such that every u  v
3-walk contains a node in F . Additionally, for each
node x ∈ F , there are O(D) u v 3-walks including
the node x, since 3 of the 4 nodes on this walk are
specified (u, v, and x) and the fourth node must be
one of the O(D) neighbors of x. Applying a union
bound, the total number of u  v 3-walks in H(u,v)

is O(fD). See Figure 1 for a picture associated with
this argument.

For each such u  v 3-walk in H(u,v), we
complete at most 8 closed 4-walks by adding (u, v)
to H(u,v) (specifically, each such 3-walk corresponds
to a single “circular 4-walk;” we may then choose any
of the 4 nodes on this walk to serve as the start/end
node of the appropriate closed walk, and it may be
travelled in either of two directions). The lemma
follows.

u v

First layer
size is
|F | = f

O(fD) walks
from u to

second layer

Figure 1: In Lemma 3.2, we show that each edge
(u, v) added to H completes at most O(fD) u  v
3-walks. In this picture we have drawn the separating
node set F as coinciding with the first layer of the
graph.

Lemma 3.3.

|EH | = O
(
nc

1/4
4

)
Proof. The total number of 2-walks in H is Θ(nD2),
since we have n choices for start node and Θ(D)
neighbors for each node. Each ordered pair of
(possibly identical) 2-walks (w1, w2) in H with the
same start and end nodes corresponds uniquely to a
closed 4-walk, obtained by walking w1 and then w2 in
reverse. Thus, denoting by ku,v the number of u v

2-walks, we may calculate

c4 =
∑

(u,v)∈V×V

k2u,v

≥

( ∑
(u,v)∈V×V

ku,v

)2

n2
Cauchy-Schwarz Inequality

=
Θ(n2D4)

n2
= Θ(D4)

and thus nc
1/4
4 ≥ Θ(nD) = |EH |.

We are now ready to prove our upper bound for
k = 2.

Proof. [Proof of Theorem 1.1 for k = 2] Combining
Lemmas 3.2 and 3.3, we compute

|EH | = O
(
n (|EH | · fD)

1/4
)

|EH |3 = O
(
n4fD

)
|EH |2 = O

(
n3f

)
since |EH | = Θ(nD)

|EH | = O
(
n3/2f1/2

)
.

4 Lower Bound for 3-Spanners

We prove Theorems 1.2 and 1.3 in the special case
k = 2. Incompressibility arguments for Theorems
1.4 and 1.5 can be found in Appendix C. Our lower
bounds for k = 2 are unconditional, since the girth
conjecture has been proved in this special case:

Lemma 4.1. (e.g. Wenger [51]) For all n, there
exist n-node graphs on Ω

(
n3/2

)
edges without cycles

of length 4 or less.

We argue first for vertex faults:

Proof. [Proof of Theorem 1.2, case k = 2] Start with a
graph G from Lemma 4.1. We construct a new graph
G′ as follows. Let t = df/2e. We set VG′ = V (G)×[t],
and let EG′ = {{(u, i), (v, j)} : {u, v} ∈ E(G) ∧ i, j ∈
[t]}. Let G′ = (VG′ , EG′). Intuitively, we can think
of G′ as being obtained by replacing each vertex of
G by a set of t copies of the vertex, and each edge of
G is replaced by a complete bipartite graph between
the two sets of copies. We will prove Theorem 1.2 by
proving that the only f VFT 3-spanner of G′ is itself,
and that it has the required number of edges.

We first claim that the only f VFT 3-spanner
of G′ is G′ itself. To see this, suppose that H
is a subgraph of G′ which does not contain some
edge {(u, i), (v, j)} ∈ EG′ . Let F = {(u, `) : ` 6=
i} ∪ {(v, `) : ` 6= j}, i.e., we let the fault set be all
copies of u except for (u, i) and all copies of v except

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1889

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



(v, j). Note that |F | ≤ f . Now consider the shortest
path from (u, i) to (v, j) in H \ F . Let this path be
(u, i) = (x0, i0), (x1, i1), (x2, i2), . . . , (xp, ip) = (v, j).
Note that for any 0 ≤ a ≤ p−1, it cannot be the case
that xa = u and xa+1 = v, since no such edges exist
in H \ F . Thus u = x0, x1, . . . , xp = v is a walk from
u to v in G which does not use the edge {u, v}. By
adding {u, v} to this path, we get a cycle of length at
most p+ 1. Since G has girth at least 5, this implies
that p ≥ 4. Thus in H \F the distance between (u, i)
and (v, j) is at least 4, while in G′ \ F they are at
distance 1. So H is not an f VFT 3-spanner of G′,
and hence the only f VFT 3-spanner of G′ is G′ itself.

So G′ is the only f VFT 3-spanner of itself,
and it remains only to analyze its size. Clearly
|VG′ | = t|V (G)|, and by Lemma 4.1 we know that
|E(G)| ≥ Ω(|V (G)|3/2). Thus

|EG′ | = Ω(
(
|E(G)|t2

)
= Ω

(
t2|V (G)|3/2

)
= Ω

(
t2 ·
(
|VG′ |
t

)3/2
)

= Ω
(
f1/2|VG′ |3/2

)
as claimed.

And next for edge faults:

Proof. [Proof of Theorem 1.3, case k = 2]
We construct a new graph G′ exactly as in

the VFT case. As before, let H be a subgraph
of G′ missing some edge {(u, i), (v, j)}. Let F =
{{(u, i), (v, `)} : ` ∈ [t] \ {j}} ∪ {{(u, `), (v, j)} : ` ∈
[t] \ {i}} be the fault set, and note that |F | ≤ f . In
other words, we fail every edge from (u, i) to copies
of v except for the edge to (v, j), and similarly we fail
all edges from (v, j) to copies of u except for (u, i). So
in G′ \ F the edge {(u, i), (v, j)} is still present, but
it is not in H \ F . Moreover, in H \ F there are no
paths of length at most 3 from (u, i) to (v, j) that use
as an intermediate node any other copy of u or copy
of v. Hence any path of length at most 3 must be of
the form (u, i), (x, a), (y, b), (v, j) where u, x, y, v are
all distinct (possibly with either x or y missing). This
implies that u, x, y, v form either a 3- or a 4-cycle in
G, which contradicts Lemma 4.1. Thus H \ F is not
a 3-spanner of G′ \F , so H is not a f EFT 3-spanner
of G′.

Thus G′ is the only f EFT 3-spanner of itself.
Using the same analysis as in the VFT case, we
get that |E(G′)| ≥ Ω(f1/2|V (G′)|3/2), proving the
theorem.

5 Overview: Upper Bounds for Larger k

For simplicity, we will focus on the case k = 3 in
this overview. The most natural attempt to extend
our upper bounds to k = 3 goes as follows: first
one generalizes Lemma 3.2, and then one generalizes
Lemma 3.3 by considering 3-walks rather than 2-
walks, and then one combines the two statements as
before. Unfortunately, the upper bounds implied by
this approach are quite weak. One easily generalizes
Lemma 3.3 to show that

|EH | = O
(
nc

1/6
6

)
,

and one easily generalizes Lemma 3.2 to show

c6 = O
(
|EH | · fD3

)
.

However, plugging these equations into the proof
used before, we actually find no improvement in the
previous upper bound: we still get

|EH | = O
(
n3/2f1/2

)
while we should hope for something much better.

Let us now informally sketch a method for im-
proving the generalization of Lemma 3.2. Recall that,
from Lemma 3.2 itself, we have c4 = O (|EH | · fD)
(note that this proof holds even in the setting k = 3).
Thus, on average, each node v participates in O(fD2)
closed 4-walks. Additionally, we have Θ(D2) 2-walks
starting at v. Hence each of these two walks (on av-
erage) is responsible for creating at most O(f) closed
4-walks in H, and so (on average) there are only O(f)
2-walks between any two nodes.

Assume for a moment that we could move from
an average to worst-case version of this statement,
and assume a hard limit of O(f) 2-walks between
any two nodes. This fact could be used to improve
our generalization of Lemma 3.2, reasoning as follows.
Suppose we add the edge (u, v) to H(u,v) during
Algorithm 2.1. Then, there is a set F of f nodes
that lie on any u  v 5-walk. Consider any such
node x, and assume without loss of generality that
x is in the first half of any u  v 5-walk. We then
count the number of u  v 5-walks including x as
follows: there are D2 ways to choose the first four
nodes on the walk (since u, x are two of them), and
there are f ways to choose the last two nodes on
the walk (since v is the last node on the walk and
we have specified the fourth node on the walk, and
we have assumed that there are only O(f) possible 2-
walks between these nodes). Hence there are O(fD2)
u  v 5-walks including x; applying a union bound
over F , we have O(f2D2) u v 5-walks in total, and
this leads to an improved bound

c6 = O
(
|EH | · (fD)2

)
.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1890

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



This is precisely the bound on c6 needed to prove
Theorem 1.1 for k = 3! Of course, it “only” remains
to justify our assumption that there are no more
than O(f) 2-walks between any two nodes, while we
have only proved this statement in the average case.
This requires new machinery. At a high level, we
accomplish this by carefully restricting our attention
to a subset of the paths in H; in particular, we
“block” 2-paths that exceed the desired O(f) bound,
and then use something morally similar to the above
proof to show that each edge (u, v) completes only
O(f2D2) “unblocked” closed 6-walks. It is a careful
balancing act to define these terms in the right way
while still having an analog of Lemma 3.3 that applies
when only “unblocked” closed 6-walks are considered.
However, with enough precision, it can be done.

Some additional technical work not mentioned
here is required to avoid a dependence of the form
e.g. O(poly(k)) in our upper bound. We defer a
discussion of this point to the appendix.

6 Overview: Lower Bounds for Larger k

Details of these proofs can be found in Ap-
pendix C. The proof of Theorem 1.2 in its full gen-
erality is essentially the obvious generalization of the
k = 2 case. We simply have to start with a graph
G with arises from the girth conjecture rather than
from Lemma 4.1. We then use the same construction
(making f/2 copies of each node, and turning each
edge into a complete bipartite graph between the as-
sociated copies). For any edge {(u, i), (v, j)} in this
graph, if the spanner does not include this edge and
if we fail all other copies of u and v, the shortest path
from (u, i) to (v, j) in the spanner must correspond
to a walk from u to v in G which does not use the
edge {u, v}. But by construction G has large girth,
so all such walks are too long. Hence {(u, i), (v, j)}
must be in the spanner.

In the case of edge faults (Theorem 1.3), when
k > 2 the same construction unfortunately no
longer works. To see why, consider as before some
edge {(u, i), (v, j)} which is in the graph but not
the spanner. If we use the same fault set F as
in the k = 2 case, there will still be a path in
G \ F of length 5 from (u, i) to (v, j) of the form
(u, i), (x, a), (u, b), (v, c), (y, d), (v, j). Here x is any
neighbor of u in G and y is any neighbor of v and
a, b, c, d are arbitrary indices. This will be the case
even if the original graph G has large girth.

To get around this problem, we make even fewer
copies of each vertex. In particular, we will make
only t = b

√
fc copies of each vertex. Now, instead of

our fault set being all edges from (u, i) to copies of v
and all edges from (v, j) to copies of u, we can simply

remove all edges between copies of u and copies of
v except for {(u, i), (v, j)}. Now the same logic as
before implies that this edge must be in the spanner,
but when we analyze the size of the graph we get only
Ω
(
f1/2−1/(2k)|VG′ |1+1/k

)
.

References

[1] Mohammad Ali Abam, Mark De Berg, Mohammad
Farshi, and Joachim Gudmundsson. Region-fault
tolerant geometric spanners. Discrete & Computa-
tional Geometry, 41(4):556–582, 2009.

[2] Ittai Abraham, Shiri Chechik, Cyril Gavoille, and
David Peleg. Forbidden-set distance labels for
graphs of bounded doubling dimension. ACM
Transactions on Algorithms (TALG), 12(2):22,
2016.

[3] Ingo Althöfer, Gautam Das, David P. Dobkin, Deb-
orah Joseph, and José Soares. On sparse spanners
of weighted graphs. Discrete & Computational Ge-
ometry, 9:81–100, 1993.

[4] G. Ausiello, P. G. Franciosa, G. F. Italiano, and
A. Ribichini. Computing graph spanners in small
memory: fault-tolerance and streaming. Discrete
Mathematics, Algorithms and Applications, pages
591–605, 2010.

[5] Baruch Awerbuch, Alan Baratz, and David Peleg.
Efficient broadcast and light-weight spanners. Un-
published manuscript, November, 1991.

[6] Baruch Awerbuch and David Peleg. Network syn-
chronization with polylogarithmic overhead. In
Foundations of Computer Science, 1990. Proceed-
ings., 31st Annual Symposium on, pages 514–522.
IEEE, 1990.

[7] Surender Baswana, Keerti Choudhary, and Liam
Roditty. Fault tolerant subgraph for single source
reachability: generic and optimal. In Proceedings of
the 48th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 509–518, 2016.

[8] Surender Baswana, Utkarsh Lath, and Anuradha S
Mehta. Single source distance oracle for planar di-
graphs avoiding a failed node or link. In Proceedings
of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms, pages 223–232. SIAM, 2012.

[9] Aaron Bernstein and David Karger. Improved dis-
tance sensitivity oracles via random sampling. In
SODA’08: Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms,
pages 34–43, Philadelphia, PA, USA, 2008. Society
for Industrial and Applied Mathematics.

[10] Aaron Bernstein and David Karger. A nearly op-
timal oracle for avoiding failed vertices and edges.
In Proceedings of the forty-first annual ACM sympo-
sium on Theory of computing, pages 101–110. ACM,
2009.

[11] Davide Bilò, Fabrizio Grandoni, Luciano Gualà, Ste-
fano Leucci, and Guido Proietti. Improved purely

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1891

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



u v
· · ·

First layer
size is
|F | = f

O(fD2) walks
from u to
third layer

f ways
to complete a
walk from the

third layer to v

Figure 2: Assuming a maximum of O(f) 2-paths between any two nodes, each edge (u, v) added to H
completes at most O(f2D2) u v 3-walks. In this picture we have again drawn the separating node set F
as coinciding with the first layer of the graph.

additive fault-tolerant spanners. In Algorithms -
ESA 2015 - 23rd Annual European Symposium, Pa-
tras, Greece, September 14-16, 2015, Proceedings,
pages 167–178, 2015.

[12] Davide Bilò, Luciano Gualà, Stefano Leucci,
and Guido Proietti. Fault-tolerant approximate
shortest-path trees. In Algorithms - ESA 2014
- 22th Annual European Symposium, Wroclaw,
Poland, September 8-10, 2014. Proceedings, pages
137–148, 2014.

[13] Davide Bilò, Luciano Gualà, Stefano Leucci, and
Guido Proietti. Compact and fast sensitivity oracles
for single-source distances. In 24th Annual European
Symposium on Algorithms, ESA 2016, August 22-
24, 2016, Aarhus, Denmark, pages 13:1–13:14, 2016.

[14] Davide Bilò, Luciano Gualà, Stefano Leucci, and
Guido Proietti. Multiple-edge-fault-tolerant ap-
proximate shortest-path trees. In 33rd Symposium
on Theoretical Aspects of Computer Science, STACS
2016, February 17-20, 2016, Orléans, France, pages
18:1–18:14, 2016.

[15] G. Bodwin, F. Grandoni, M. Parter, and V. Vas-
silevska Williams. Preserving distances in very
faulty graphs. In Proc. of 44th International Collo-
quium on Automata, Languages, and Programming
(ICALP), to appear, 2017.

[16] Prosenjit Bose, Vida Dujmovic, Pat Morin, and
Michiel Smid. Robust geometric spanners. SIAM
Journal on Computing, 42(4):1720–1736, 2013.

[17] Gilad Braunschvig, Shiri Chechik, David Peleg, and
Adam Sealfon. Fault tolerant additive and (µ, α)-
spanners. Theor. Comput. Sci., 580:94–100, 2015.

[18] Karl Bringmann, Fabrizio Grandoni, Barna Saha,
and Virginia Vassilevska Williams. Truly sub-
cubic algorithms for language edit distance and rna-
folding via fast bounded-difference min-plus prod-

uct. In IEEE 57th Annual Symposium on Founda-
tions of Computer Science, FOCS 2016, 9-11 Octo-
ber 2016, Hyatt Regency, New Brunswick, New Jer-
sey, USA, pages 375–384, 2016.

[19] T-H Hubert Chan, Mingfei Li, and Li Ning. Sparse
fault-tolerant spanners for doubling metrics with
bounded hop-diameter or degree. Algorithmica,
71(1):53–65, 2015.

[20] Shiri Chechik. Fault-tolerant compact routing
schemes for general graphs. Automata, Languages
and Programming, pages 101–112, 2011.

[21] Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim
Kaplan. 1 + ε-approximate f-sensitive distance ora-
cles. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 1479–1496, 2017.

[22] Shiri Chechik, Michael Langberg, David Peleg, and
Liam Roditty. Fault tolerant spanners for general
graphs. SIAM J. Comput., 39(7):3403–3423, 2010.

[23] Artur Czumaj and Hairong Zhao. Fault-tolerant ge-
ometric spanners. Discrete & Computational Geom-
etry, 32(2):207–230, 2004.

[24] Camil Demetrescu, Mikkel Thorup, Rezaul Alam
Chowdhury, and Vijaya Ramachandran. Oracles
for distances avoiding a failed node or link. SIAM
Journal on Computing, 37(5):1299–1318, 2008.

[25] Michael Dinitz and Robert Krauthgamer. Fault-
tolerant spanners: better and simpler. In Proceed-
ings of the 30th Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2011, San
Jose, CA, USA, June 6-8, 2011, pages 169–178,
2011.

[26] Ran Duan and Seth Pettie. Connectivity oracles for
graphs subject to vertex failures. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1892

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



on Discrete Algorithms, pages 490–509. SIAM, 2017.
[27] Ran Duan and Tianyi Zhang. Improved distance

sensitivity oracles via tree partitioning. arXiv
preprint arXiv:1605.04491, 2016.

[28] Michael Elkin, Yuval Emek, Daniel A Spielman,
and Shang-Hua Teng. Lower-stretch spanning trees.
SIAM Journal on Computing, 38(2):608–628, 2008.

[29] Paul Erdős. Extremal problems in graph theory. In
IN “THEORY OF GRAPHS AND ITS APPLICA-
TIONS,” PROC. SYMPOS. SMOLENICE. Cite-
seer, 1964.

[30] Cyril Gavoille and Andrew Twigg. Compact
forbidden-set routing on planar graphs. Unpublished
as yet, 2008.

[31] Fabrizio Grandoni and Virginia Vassilevska
Williams. Improved distance sensitivity oracles via
fast single-source replacement paths. In Founda-
tions of Computer Science (FOCS), 2012 IEEE
53rd Annual Symposium on, pages 748–757. IEEE,
2012.

[32] Michael Kapralov and Rina Panigrahy. Spectral
sparsification via random spanners. In Proceedings
of the 3rd Innovations in Theoretical Computer
Science Conference, pages 393–398. ACM, 2012.

[33] Neelesh Khanna and Surender Baswana. Approxi-
mate shortest paths avoiding a failed vertex: Opti-
mal size data structures for unweighted graph. In
27th International Symposium on Theoretical As-
pects of Computer Science-STACS 2010, pages 513–
524, 2010.

[34] Christos Levcopoulos, Giri Narasimhan, and Michiel
Smid. Efficient algorithms for constructing fault-
tolerant geometric spanners. In Proceedings of
the thirtieth annual ACM symposium on Theory of
computing, pages 186–195. ACM, 1998.

[35] Christos Levcopoulos, Giri Narasimhan, and Michiel
Smid. Improved algorithms for constructing fault-
tolerant spanners. Algorithmica, 32(1):144–156,
2002.

[36] Tamas Lukovszki. New results on fault tolerant ge-
ometric spanners. Algorithms and Data Structures,
pages 774–774, 1999.

[37] Jǐŕı Matoušek. On the distortion required for em-
bedding finite metric spaces into normed spaces. Is-
rael Journal of Mathematics, 93(1):333–344, 1996.

[38] R. Morris and D. Saxton. The number of C2k-free
graphs. Adv. Math., 298:534–580, 2016.

[39] Merav Parter. Dual failure resilient BFS structure.
In Proceedings of the 2015 ACM Symposium on
Principles of Distributed Computing, PODC 2015,
Donostia-San Sebastián, Spain, July 21 - 23, 2015,
pages 481–490, 2015.

[40] Merav Parter. Fault-tolerant logical network struc-
tures. In The Distributed Computing Column. Ste-
fan Schmid, 2016.

[41] Merav Parter and David Peleg. Sparse fault-
tolerant BFS trees. In Algorithms - ESA 2013 -
21st Annual European Symposium, Sophia Antipo-
lis, France, September 2-4, 2013. Proceedings, pages

779–790, 2013.
[42] Merav Parter and David Peleg. Fault tolerant ap-

proximate BFS structures. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Ore-
gon, USA, January 5-7, 2014, pages 1073–1092,
2014.

[43] David Peleg. Distributed computing: a locality-
sensitive approach. SIAM, 2000.

[44] David Peleg. As good as it gets: Competitive
fault tolerance in network structures. In Symposium
on Self-Stabilizing Systems, pages 35–46. Springer,
2009.

[45] David Peleg and Alejandro A. Schäffer. Graph
spanners. Journal of Graph Theory, 13(1):99–116,
1989.

[46] David Peleg and Jeffrey D. Ullman. An optimal
synchronizer for the hypercube. SIAM J. Comput.,
18(4):740–747, 1989.

[47] David Peleg and Eli Upfal. A trade-off between
space and efficiency for routing tables. J. ACM,
36(3):510–530, 1989.

[48] Shay Solomon. From hierarchical partitions to
hierarchical covers: Optimal fault-tolerant spanners
for doubling metrics. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing,
pages 363–372. ACM, 2014.

[49] Mikkel Thorup and Uri Zwick. Approximate dis-
tance oracles. Journal of the ACM (JACM),
52(1):1–24, 2005.

[50] Oren Weimann and Raphael Yuster. Replacement
paths and distance sensitivity oracles via fast matrix
multiplication. ACM Transactions on Algorithms,
9(2):14, 2013.

[51] Rephael Wenger. Extremal graphs with no c4’s,
c6’s, or c10’s. Journal of Combinatorial Theory,
Series B, 52(1):113–116, 1991.

A Regularizing H

Before diving into our main analysis, it will be
convenient as before to assume that H is “approxi-
mately regular.” We justify this assumption by the
following argument.

Lemma A.1. Suppose that Theorem 1.1 holds for all
graphs G whose corresponding output graphs H have
the property that their maximum degree is at most
c times their minimum degree, for some universal
constant c. Then Theorem 1.1 holds in general.

Proof. We shall prove this lemma by showing the
contrapositive. We suppose that G = (V,E) is an
n-node graph that serves as a counterexample to
Theorem 1.1 (i.e. its corresponding output graph H
has n1+1/kf1−1/kω(1)k edges). Our goal is then to
show that there is a subgraph G′ ⊆ G on at least
n1/(2k) nodes that also serves as a counterexample
to Theorem 1.1, and the maximum degree of G′ is

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1893

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



larger than its minimum degree by a factor of Ok(1).
Hence, in the proof of Theorem 1.1 we may assume
this approximate regularity condition. We will then
rule out the existence of a family of G′, and this
rules out the general existence of G. Note that the
constraint that G′ has at least n1/(2k) nodes is used to
ensure that an infinite family of G implies an infinite
family of G′; any super-constant function would work
equally well for our application of this lemma.

First, we may assume that G = H; if our
algorithm discards any edge in G, we may simply
delete this edge from G and it is clear that this
deletion will not change the corresponding output
graph H. Let n be the number of nodes in G = H
and let D be its average degree. Partition the nodes
of G into two sets: the set A of nodes that have degree
cD or less, and the set B of nodes that have degree
more than cD (for some constant c = ck that will
be chosen later). By Markov’s inequality we have
|B| ≤ n/c. Partition the edges of G into three sets:
EA where both endpoints are in A, EB where both
endpoints are in B, and EAB that has one endpoint
in each. Compare the sizes of EA, EB , EAB ; keep all
edges in the largest set and discard all edges in the
other two (ties may be broken arbitrarily). We now
split into cases based on which set survived.

(a) EA Survived. We now have a maximum
degree of cD in the remaining graph, while its average
degree is still Ω(D) (since we have only discarded a
constant fraction of the edges). Let D′ be the new
average degree of EA, and repeatedly delete all nodes
from G that have degree D′/4 or less until all nodes
have degree at least D′/4. Note that only n · D′/4
edges (which is at most half the remaining edges in G)
will be removed in this way. The remaining subgraph
G′ is now sparser than the original graph G by only
a constant factor and its maximum and minimum
degrees are both Θ(D). Additionally, the number
of nodes n′ in G′ is n′ = Ω(|E|)/Θ(D) = Ω(n). Thus
G′ satisfies the lemma.

(b) EB Survived. We now obtain a subgraph
G′ by deleting all nodes in A (which now have degree
0). The average degree in the remaining subgraph
G′ is at least cD/3, and it has 1/c as many nodes
as before. It is not necessarily the case that G′ is
approximately regular, but we may now recurse the
argument on G′ to enforce this property (it remains
to be proved that this recursion terminates before
removing too many nodes from G). Note that G′ has
higher average degree and fewer nodes than G, so it
still serves as a counterexample graph to our claimed
bound.

(c) EAB Survived. The average degree of the
nodes in A is now at least D/6, since we have deleted

at most 1/3 of the edges since setting D and (since
the graph is now bipartite) each edge is incident on
one node in A. Our next step is to delete all nodes
from A except for the |B| nodes in |A| with the
highest remaining degree. The average degree in the
remaining subgraph G′ is then still at least D/6. We
also have 2|B| ≤ 2

c · n nodes remaining in G′. We
then once again recurse the analysis on the remaining
subgraph (and we will prove shortly that this re-
cursion terminates before removing too many nodes).

In the latter two cases, we recurse the analysis
on a subgraph G′ of the original graph. We will now
show that, if c is chosen to be suitably large, then
the recursion must eventually terminate in case (a)
while the graph still has poly(n) nodes (where n is the
number of nodes in the original graph G). Naturally,
throughout the recursion, the average degree D∗ in
the subgraph being considered cannot exceed the
number of nodes n∗ in that subgraph. However, after
k rounds of recursion that avoid case (a), we have

D∗ ≥ D

6k
≥ n1/k

6k

and
n∗ ≤ n · (2/c)k

We thus have

n1/k

6k
≤ n · (2/c)k

(c/12)k ≤ n1−1/k

k log(c/12) ≤ (1− 1/k) log n ≤ log n

Thus, by choosing c sufficiently large, we have that
k ≤ logn

c′ (for some constant c′ = log(c/12) that
can be made arbitrarily large by choice of c). This
means that the recursion bottoms out at depth logn

c′ ,
at which point the average degree of the graph is

D∗ ≥ n1/k

3logn/c′
≥ n1/k

n1/c′′
= n1/k−1/c

′′

where c′′ is another constant that can be made arbi-
trarily large by pushing c′ arbitrarily large. Choosing
c′′ ≥ 2k we have D∗ ≥ n1/(2k) and so the recur-
sion must terminate while the graph still has at least
n1/(2k) nodes, as claimed.

Now if we set c′′ = 2k, then we are setting
c = 12 · 9k. If the recursion bottoms out after
i ≤ k levels in case (a), then after applying case
(a), the average degree is D∗ ≥ D/(2 · 6i) and the
number of nodes is n∗ ≤ n(2/c)i. We will explicitly
show that the subgraph G∗ we have obtained is a
counterexample, providedG was. We know that inG,

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1894

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



the number of edges is Dn/2 ≥ n1+1/kf1−1/kQ where
Q ≥ ω(1). We will show that in G∗, the number of
edges is ≥ (n∗)1+1/kf1−1/kQ, and hence G∗ is also a
counterexample.

First, notice that n∗ ≤ n(2/c)i = n(1/(6 · 9k)i ≤
n/(2k ·6ki). Thus, (n∗)1/k ≤ n1/k/(2 ·6i). Now, since
D ≥ 2n1/kf1−1/kQ (since G is a counter example),
we get that D∗ ≥ D/(2·6i) ≥ 2f1−1/kQn1/k/(2·6i) ≥
2f1−1/k(n∗)1/kQ, and hence the number of edges in
G∗ is D∗n∗/2 ≥ f1−1/k(n∗)1+1/kQ, and so G∗ is also
a counterexample of nontrivial size.

Hence, it suffices to refute the existence of “ap-
proximately regular” graphs G′ that violate Theorem
1.1. By contrapositive of Lemma A.1, this would im-
ply that no general graph may violate Theorem 1.1.
Note that this argument implies Lemma 3.1 by plug-
ging in k = 2.

As we proceed, we will assume that the maximum
and minimum degrees of the input graph G differ
by a factor of Ok(1). In fact, as before we may
assume that G = H, so we may assume this same
approximate regularity property for H. Moreover,
we will assume that all nodes in H have degree in
the interval [D,ψkD] for some parameter D that we
carry into the following proofs. From the argument
in Lemma A.1, we have that ψk ≤ 2O(k).

B Upper Bounds for k ≥ 3

We now prove Theorem 1.1 for larger k. For
convenience, we will assume that all edges in H
have unique weights, and are thus considered by our
algorithm in a consistent order (or it suffices that ties
between equally-weighted edges are broken in some
consistent fashion).

B.1 Definitions, Notation, and some Intu-
ition First let us introduce some new notation re-
lated to walks in H. We write w to denote the reverse
of a walk w, we write wi to denote the ith node in
the walk i (indexing from 0), and for two walks w1, w2

such that the last node of w1 equals the first node of
w2, we write w1w2 to denote their concatenation in
the natural way.

As mentioned in Section 5, it is easy to prove
a suitable generalization of Lemma 3.3 but hard to
prove a suitable generalization of Lemma 3.2. The
difficulty in proving Lemma 3.2 for k > 2 is in
handling pair of nodes u, v for which the number
of u  v k-walks is much larger than the average
number of k-walks over all nodes pairs in the graph.
Our solution is to “block” these irregular parts of the
graph, essentially throwing away a constant fraction
of the available walks in the graph in exchange for

a guarantee of “regularity” on the ones that survive.
Specifically, we will shortly define a set B of walks
in H, where each b ∈ B is called a blockade. A walk
w in H is blocked by some B if there is a blockade
b ∈ B such that b or b is a sub-walk of w (we use the
notation b ⊆ w or b ⊆ w).

After appropriately designing B, it is tempting to
generalize Lemma 3.2 by counting unblocked closed
walks. A technical detail of introducing blocks is that
this is no longer quite the right object to count. Let
us define:

Definition 4. An i-walk meet is an ordered pair of
(possibly identical) i-walks with the same start and
end points.

The proof of Lemma 3.2 works by observing that the
number of 2-walk meets is the same as the number
of closed 4-walks, up to constant factors. However,
it is not necessarily the case that the number of
unblocked i-walk meets is within a constant factor
of the number of unblocked closed 2i-walks. Indeed,
the number of i-walk meets can be much larger. This
happens because there are 2i different i-walk meets
corresponding to each closed 2i-walk, and one can
imagine that some of these are blocked but others
are unblocked. With this in mind, our proof works
by counting i-walk meets directly rather than passing
through any attempt to count closed walks, as before.

We shall write WB, XB to denote the set of
walks in H that are unblocked and blocked by B,
respectively. We will frequently omit the superscript
when it is simply B (we never refer to W in the
absence of a blockade set). We also use the following
modifiers on the sets B,W,X: we denote by Bi,B≤i
the subset of walks in B of length i or length at most i,
respectively, and we denote by B[s t] to denote the
subset of walks in B with endpoints s, t (and similar
notation is used on W,X). Note that XBi is not to
be confused with Bi.

Similarly, we denote by MBi is the set of all
unblocked i-walk meets in H, and MBi [s  t] is the
subset of these where both walks in the meet start at
s and end at t. We will also frequently suppress the
superscript, although there is always an implicit B.

Our goal is to establish the following inequality:

Θ(D)2k ≤
∣∣∣MB≤k−1

k

∣∣∣ ≤ Θk

(
|EH | · (fD)k−1

)
which will then imply an upper bound on |EH |
by some straightforward algebra. The left-hand
inequality is shown in Lemmas B.1 and B.2. The
high level idea here is that, if we only block a small
enough constant fraction (dependent on k) fraction

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1895

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



x

a

b

c

Figure 3: In this picture, the closed 4-walk w starting
and ending at x is blocked by the path (a, b, c) ∈ B,
but both paths in the 2-walk meet [(x, a, b), (x, c, b)]
associated with it are still unblocked. This explains
why the number of unblocked 2-walk meets can po-
tentially be much larger than the number of un-
blocked closed 4-walks.

of the i-walks for all i ≤ k, then the number of
unblocked k-walk meets is still nearly as large as one
would expect without blockades (using the Cauchy-
Schwartz Inequalty). The main technical effort goes
into the right-hand inequality. This is proved using a
delicate interlacing inductive argument, in which two
complementary counting arguments are proved for
the case i = 2 and then used to boost each other up to
i = k. Specifically, we show an interesting interplay
between (1) bounding the number of unblocked i-walk

meets MB≤i−1i and (2) choosing i-length blockades to

bound the number of unblocked i-walks WB≤ii [u  
v] between any given pair of nodes u, v (Lemma
B.4). The latter bound is then used to bounding the

number of unblocked i+ 1-walk meets MB≤ii+1 , and so
on.

B.2 Lower Bound for |Mk| (Generalization of
Lemma 3.3) The following lemma generalizes the
fact used in the k = 2 setting that we have Θ(nD2)
2-walks in H to consider.

Lemma B.1. There is some φk > 0 (independent of
n, f) such that the following property holds: if Bi
contains at most a φk fraction of all i-walks in H

for all i, then

|Wi| ≥ nΘ(D)i for all i ≤ k.

Proof. First note that we have

nDi ≤ |Wi ∪Xi| ≤ n(ψkD)i

total walks in H (recall that by our regularization
procedure, we can assume that all vertices have
degree in [D,ψkD]). We now upper bound Xi. Each
x ∈ Xi has a subpath x ⊇ b ∈ B. We may thus
upper bound Xi by the following (somewhat loose)
estimate:

|Xi| ≤
i∑

j=2

|Bj | · (2ψkD)i−j ,

since each blocked path x ∈ Xi may be obtained via
i−|b| extensions of some blockade b ∈ B≤i by adding
an edge to its front or back, and there are up to 2ψkD
ways to extend any given walk by 1 edge on either
end. Since |Bj | ≤ φkn(ψkD)j we have

|Xi| ≤
i∑

j=2

nφk · (2)i−j(ψkD)i ≤ nφk(2ψkD)i.

Hence, choosing φk ≤ 1
(4ψk)k

(this is overkill), we have

|Xi| ≤ n(D/2)i

And so

|Wi| ≥ |Wi ∪Xi| − |Xi| ≥ nDi − n(D/2)i = nΘ(D)i

and the lemma follows.

With this, we can prove:

Lemma B.2. (Generalization of Lemma 3.3)

If |Wk| = nΘ(D)k, then |EH | = Ok

(
n |Mk|1/(2k)

)
.

Proof. The proof is essentially identical to that of
Lemma 3.3. We have

|Mk| =
∑

(u,v)∈V×V

|Wk[u v]|2

≥

( ∑
(u,v)∈V×V

|Wk[u v]|

)2

n2
Cauchy-Schwarz Inequality

=

(
nΘ(D)k

)2
n2

= Θ(D)2k

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1896

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



and so

|Mk|1/(2k) ≥ D

n |Mk|1/(2k) ≥ nD

n |Mk|1/(2k) = Ωk (|EH |)

which implies the lemma.

B.3 Upper Bound for |Mk| (Generalization
of Lemma 3.2) We now begin to work towards a
generalization of Lemma 3.2. The argument will be
inductive in nature. Lemma 3.2 will essentially serve
as the base case, and the inductive step is split across
the next two lemmas.

Lemma B.3. Suppose that |Wj [u v]| = Ok
(
f j−1

)
for all u, v and all j < i for some fixed i ≤ k. Then

|Mi| = Ok
(
|EH | · (fD)i−1

)
.

Proof. For a given i-walk meet (w1, w2), we will say
that the shift sx of a node x ∈ w1 ∪ w2 is its first
position in w1w2 (so 0 ≤ sx < 2i). Similarly, the
shift s(u,v) of an edge (u, v) is the first position of
this edge in w1w2 (where the first edge in w1w2 is
indexed from 0).

As before, when we choose to add any (u, v) to
H, it is not (2k − 1, f) protected in H(u,v) and so
there is a set F of |F | ≤ f nodes (with u, v /∈ F )
such that every u v walk of length 2i−1 intersects
some node x ∈ F . Note that each (w1, w2) ∈Mi that
is completed by the addition of the edge (u, v) to H
corresponds to a u v walk of length 2i−1 for i ≤ k
(obtained by joining the common start/endpoint of
w1w2 to create a circular walk, and then removing
the edge (u, v) from this walk). Thus x ∈ w1 ∪ w2

for some x ∈ F . Our proof strategy is: we fix a
shift s(u,v) for the edge (u, v), we fix a node x ∈ F
and a shift value sx for x, and we will show that
the addition of the edge (u, v) to H(u,v) completes
only Ok

(
f i−2Di−1) i-walk meets including the node

x in which (u, v), x have their prescribed shift values.
Since there are Ok(f) possible choices of x ∈ F, 0 ≤
sx, s(u,v) ≤ 2k, this implies

|Mi| = Ok
(
|EH | · (fD)i−1

)
by a simple union bound over (u, v) ∈ EH and over
the possible choices of x, sx, s(u,v).

In the rest of this proof we will assume 0 ≤
s(u,v) ≤ i − 1, and so (u, v) ∈ w1 (we also assume
without loss of generality that u precedes v in w1).
The proof for the remaining case i ≤ s(u,v) < 2i is

identical with the roles of w1, w2 swapped. We will
denote by M ′i the subset of Mi satisfying the criteria
mentioned thus far (i.e. with (u, v) at shift s(u,v) and
x at shift sx). We split into two cases, depending on
the value of sx.

(a) Suppose 0 ≤ sx ≤ i+1. Let P be the set of
i+ 1-walks in H(u,v) that include node u in position
s(u,v), node v in position s(u,v) + 1, and node x in
position sx (P can even include blocked walks). We
next count |P |. Supposing sx > s(u,v), after fixing
the node u in position s(u,v), there are (ψkD)s(u,v)

ways to choose a prefix for the walk, and there are
(ψkD)i−1−s(u,v) ways to choose a suffix for the walk,
since v, x have fixed positions following u. Hence
|P | = (ψkD)s(u,v) · (ψkD)i−1−s(u,v) = Ok(Di−1). If
instead we have sx < s(u,v) then the argument and
bound are identical (with a factor of ψkD shifted from
the prefix to the suffix).

For each p =
(
p0, . . . , pi+1

)
∈ P , let Qp be

the set of suffixes such that for each q ∈ Qp, we
have qp = w1w2 for some (w1, w2) ∈ M ′i . We
now count |Qp|. Note that each q ∈ Qp has the
form q = w1w2 \ p, and so q is an i − 1-subwalk
of w2; since w2 is unblocked by definition of i-walk
meets, it follows that q is unblocked as well. Thus
Qp ⊆Wi−1[pi+1  p0], and so

|Qp| ≤
∣∣Wi−1[pi+1  p0]

∣∣ = Ok
(
f i−2

)
We then have

|M ′i | =
∑
p∈P
|Qp| ≤ |P | ·Ok

(
f i−2

)
= Ok

(
f i−2Di−1)

as claimed.
(b) Instead suppose i + 2 ≤ sx < 2i. This

implies that x /∈ w1 so x ∈ w2. The proof is now only
a slight tweak on the previous case. We define P to
be the set of i-walks (not i + 1 walks as before) in
H(u,v) that have u in position s(u,v) and v in position
s(u,v)+1. By an identical counting argument as in the
previous case, we have |P | = Ok(Di−1). As before,
for each fixed p =

(
p0, . . . , pi

)
∈ P we define Qp as

the set of suffixes such that for each q ∈ Qp, we have
qp = w1w2 for some (w1, w2) ∈ Mi, and our goal is
to count |Qp|. Note that we then have q = w2 and
so q is unblocked. Unlike before, we have x ∈ q so
we may split each q ∈ Qp into two subpaths over q.
Specifically, let

Q1 :=
{
q1 ⊆ q | q01 = pi, qsx−i1 = x, q ∈ Qp

}
and

Q2 :=
{
q2 ⊆ q | q02 = x, q2i−sx2 = p0, q ∈ Qp

}
Copyright © 2018 by SIAM

Unauthorized reproduction of this article is prohibited1897

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



(in other words, for any q ∈ Qp, we split q over
the node x and add its prefix to Q1 and its suffix
to Q2). Since each q ∈ Qp is unblocked, we also
have that each q1 ∈ Q1, q2 ∈ Q2 is unblocked. Thus
Q1 ⊆ Wsx−i[p

i  x] and Q2 ⊆ W2i−sx [x  p0]. We
then have

|Qp| ≤ |Q1|·|Q2| ≤ Ok
(
fsx−i−1

)
·Ok

(
f2i−sx−1

)
= Ok

(
f i−2

)
and so, as before,

|M ′i | =
∑
p∈P
|Qp| = |P | ·Ok

(
f i−2

)
= Ok

(
f i−2Di−1)

as claimed.

We next show:

Lemma B.4. Let 2 ≤ i ≤ k. Suppose that∣∣∣MB≤i−1

i

∣∣∣ = Ok
(
|EH | · (fD)i−1

)
.

Then there exists a set Bi of i-length blockades such
that∣∣∣WB≤i−1∪Bi

i [u v]
∣∣∣ = Ok

(
f i−1

)
for all u, v ∈ V

and Bi contains at most a φk fraction of all i-walks
in H, for any desired constant φk > 0 depending only
on k.

Proof. We construct Bi iteratively as follows: ini-
tially Bi = ∅; we then repeatedly choose the node

pair u, v that maximizes
∣∣∣WB≤i−1∪Bi

i [u v]
∣∣∣ (ties

may be broken arbitrarily), choose any walk b ∈
W
B≤i−1∪Bi

i [u  v], and add b to Bi (note that the

sets W
B≤i−1∪Bi

i [u  v] shrink throughout this pro-
cess as we grow Bi). Repeat until no more walks may
be added to Bi without destroying the property that
Bi contains at most a φk fraction of all i-walks in H.

We now argue that Bi satisfies the lemma. Ob-
serve that |Mi[s t]| = |Wi[s t]|2 for any s, t ∈ V .
Suppose towards a contradiction that Bi does not sat-
isfy the lemma; that is,∣∣∣WB≤i−1∪Bi

i [u v]
∣∣∣ = ωk

(
f i−1

)
for some u, v ∈ V.

Then while we iteratively build Bi, each time we
choose a node pair s, t that maximizes∣∣∣WB≤i−1∪Bi

i [s t]
∣∣∣, we must have∣∣∣WB≤i−1∪Bi

i [s t]
∣∣∣ = ωk

(
f i−1

)
.

Thus, when we add some b ∈ W
B≤i−1∪Bi

i [s  
t] to Bi, the size of (|Wi[s t]| − 1)

2
falls from

|Wi[s t]|2 to

(|Wi[s t]| − 1)
2

= |Wi[s t]|2 − Ω (|Wi[s t]|)

= |Wi[s t]|2 − ωk
(
f i−1

)
and so the total number of i-walk meets in H falls
by an additive ωk

(
f i−1

)
term in each iteration of

building Bi. By Lemma B.1 there are nΘk(D)i total
i-walks in H, so

|Bi| = φk · nΘk(D)i = nΘk(D)i.

Hence the number of i-walk meets falls by

ωk
(
f i−1

)
· nΘk(D)i = ωk

(
|EH | · (fD)i−1

)
from start to finish of the process of building Bi
(since |EH | = nΘk(D)). This is a contradic-

tion, since we assumed that initially
∣∣∣MB≤i−1

i

∣∣∣ =

Ok
(
|EH | · (fD)i−1

)
. Thus Bi satisfies the lemma

statement.

Lemma B.5. (Generalization of Lemma 3.2)
There is a blockade set B for which

|Mk| = Ok
(
|EH | (fD)k−1

)
and for all i ≤ k, the set Bi contains at most a φk
fraction of all i-walks in H, for any desired constant
φk > 0 depending only on k.

Proof. We will inductively show that two statements
hold for all 2 ≤ i ≤ k:

� (The lemma statement) There is a blockade set
B≤i−1 (with maximum blockade length i − 1)
such that (1) Bj contains at most a φk fraction
of all j-walks in H for all j ≤ i − 1, and (2)∣∣∣MB≤i−1i

∣∣∣ = Ok
(
|EH | (fD)i−1

)
.

� (An auxiliary statement) We have∣∣WBj [u v]
∣∣ = Ok

(
f j−1

)
for all u, v ∈ V

and j ≤ i− 1.

We first argue the base case i = 2. For the first
condition (lemma statement), we appeal to Lemma
3.2 to argue that the bound holds even when B≤1 = ∅.
Specifically, note that without blockades, each closed
4-walk in H corresponds in the natural way to Θ(1)
i-walk meets. Thus∣∣∣M∅2 ∣∣∣ = O (|EH | · fD) .

We also note that the auxiliary statement holds
trivially when i = 2; it simply states that there is
at most 1 edge between any two nodes.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1898

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Now we argue the inductive step, assuming that
both of the above properties hold for i. The first
part of the induction (the lemma statement) coincides
with the premise of Lemma B.4, so we may find a set
Bi as in the conclusion of Lemma B.4. That is, we
have∣∣∣WB≤i−1∪Bi

i [u v]
∣∣∣ = Ok

(
f i−1

)
for all u, v ∈ V.

This statement (together with the auxiliary inductive
hypothesis) proves the auxiliary statement for the
case i + 1. The auxiliary statement for the case
i + 1 also coincides with the premise of Lemma B.3;
applying this lemma, we have∣∣∣MB≤i−1∪Bi

i+1

∣∣∣ = Ok

(
|EH | · (fD)

i
)
.

This is the lemma statement for the case i + 1,
which completes the inductive hypothesis. Hence
the first part of our inductive hypothesis (the lemma
statement) holds in the case i = k, which completes
the proof.

B.4 Proof of Theorem 1.1 It is now a matter of
algebra to complete the proof of Theorem 1.1.

Proof. [Proof of Theorem 1.1] Let B be a blockade
set as in Lemma B.5. By Lemma B.5, we have

|Mk| = Ok
(
|EH | (fD)k−1

)
.

Additionally, since Bi has at most a φk fraction of
all i-walks for each i, we have |Wi| ≥ nΘ(D)k (by
Lemma B.1) and so

|EH | = Ok

(
n |Mk|1/(2k)

)
by Lemma B.2. Combining these, we compute

|EH | = Ok

(
n
(
|EH | (fD)

k−1
)1/(2k))

|EH |2k−1 = Ok

(
n2k (fD)

k−1
)

|EH |k = Ok
(
nk+1fk−1

)
since |EH | = Θk(nD)

|EH | = Ok

(
n1+1/kf1−1/k

)
as claimed.

C Lower Bounds for Larger k

We now prove our lower bounds in full generality.

C.1 Proof of Theorem 1.2 Let G be a graph
from the girth conjecture (Conjecture 1), i.e., a
graph with girth at least 2k + 2 and Ω(n1+1/k)

edges. We construct a new graph G′ as follows.
Let t = df/2e. We set VG′ = V (G) × [t], and let
EG′ = {{(u, i), (v, j)} : {u, v} ∈ E(G) ∧ i, j ∈ [t]}.
Let G′ = (VG′ , EG′). Intuitively, we can think of G′

as being obtained by replacing each vertex of G by
a set of t copies of the vertex, and each edge of G is
replaced by a complete bipartite graph between the
two sets of copies. We will prove Theorem 1.2 by
proving that the only f VFT (2k − 1)-spanner of G′

is itself, and that it has the required number of edges.
We first claim that the only f VFT (2k − 1)-

spanner of G′ is G′ itself. To see this, suppose that
H is a subgraph of G′ which does not contain some
edge {(u, i), (v, j)} ∈ EG′ . Let F = {(u, `) : ` 6=
i} ∪ {(v, `) : ` 6= j}, i.e., we let the fault set be all
copies of u except for (u, i) and all copies of v except
(v, j). Note that |F | ≤ f . Now consider the shortest
path from (u, i) to (v, j) in H \ F . Let this path be
(u, i) = (x0, i0), (x1, i1), (x2, i2), . . . , (xp, ip) = (v, j).
Note that for any 0 ≤ a ≤ p−1, it cannot be the case
that xa = u and xa+1 = v, since no such edges exist
in H \ F . Thus 〈u = x0, x1, . . . , xp = v is a (possibly
non-simple) path from u to v in G which does not use
the edge {u, v}. By adding {u, v} to this path, we get
a cycle of length at most p+ 1. Since G has girth at
least 2k + 2, this implies that p ≥ 2k + 1, and thus
that in H \F the distance between (u, i) and (v, j) is
at least 2k + 1, while in G′ \ F they are at distance
1. Thus H is not an f VFT (2k − 1)-spanner of G′,
and hence the only f VFT (2k − 1)-spanner of G′ is
G′ itself.

So G′ is the only f VFT (2k − 1)-spanner of
itself, and it remains only to analyze its size. Clearly
|VG′ | = t|V (G)|, and by assumption |E(G)| ≥
Ω(|V (G)|1+1/k). Thus

|EG′ | = |E(G)|t2 = Ω(t2|V (G)|1+1/k)

= Ω

(
t2 ·
(
|VG′ |
t

)1+1/k
)

= Ω
(
f1−1/k|VG′ |1+1/k

)
.

C.2 Proof of Theorem 1.3 Our proof is very
similar to the proof of Theorem 1.2. The case of
k = 2 was proved in Section 4, so we only prove
the theorem for k ≥ 3, where we are forced to use
a slightly different construction which will give only
the weaker bound claimed in Theorem 1.3.

Let t = b
√
fc. We set VG′ = V (G) × [t],

and as before set EG′ = {{(u, i), (v, j)} : {u, v} ∈
E(G) ∧ i, j ∈ [t]} (where G is a graph from the girth
conjecture). Let H be a subgraph of G′ missing some
edge e = {(u, i), (v, j)}. As in the other lower bounds,
we will prove that H cannot be an f EFT (2k − 1)

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1899

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



spanner of G′, and thus the only f EFT (2k − 1)-
spanner of G′ is G′ itself.

Consider the fault set F = {{(u, i′), (v, j′)} : i′ 6=
i ∨ j′ 6= j}. In other words, we remove all edges be-
tween copies of u and copies of v except for the edge e
(which is therefore in G′\F but not in H\F ). Now let
P = 〈(u, i) = (x0, i0), (x1, i1), (x2, i2), . . . , (xp, ip) =
(v, j)〉 be the shortest path from (u, i) to (v, j) in
H \ F . Note that for any 0 ≤ a ≤ p − 1, it cannot
be the case that xa = u and xa+1 = v, since no such
edges exist in H \F . Thus 〈u = x0, x1, . . . , xp = v〉 is
a (possibly non-simple) path from u to v in G which
does not use the edge {u, v}. By adding {u, v} to this
path, we get a cycle of length at most p+ 1. Since G
has girth at least 2k+ 2, this implies that p ≥ 2k+ 1,
and thus that in H\F the distance between (u, i) and
(v, j) is at least 2k + 1, while in G′ \ F they are at
distance 1. Thus H is not an f EFT (2k−1)-spanner
of G′, and hence the only f EFT (2k− 1)-spanner of
G′ is G′ itself.

It remains only to analyze the size of G′. By
construction, |VG′ | = t|V (G)|, and by assumption
|E(G)| ≥ Ω(|V (G)|1+1/k). Thus

|EG′ | = |E(G)|t2 = Ω(|V (G)|1+1/kt2)

= Ω

(
t2 ·
(
|VG′ |
t

)1+1/k
)

= Ω
(
t1−1/k|VG′ |1+1/k

)
= Ω

(
f1/2−1/(2k)|VG′ |1+1/k

)
.

C.3 Strong Incompressibility We now show
how to generalize the above proofs to obtain strong
incompressibility (Theorems 1.4 and 1.5). This type
of argument was first used by Matoušek [37].

The proof of Theorem 1.4 (incompressibility un-
der vertex faults) goes as follows. Let G∗ = (V,E∗)
be the graph described in the proof of Theorem 1.2.
There are 2|E

∗| possible subgraphs of G∗ on the
same vertex set. Consider two distinct such sub-
graphs G1 = (V,E1) 6= G2 = (V,E2), let D1 be the
data structure created by processing G1, let D2 be
the data structure created by processing G2, and let
((u, i), (v, j)) ∈ E1 \ E2. As before, let

F := {(u, `) : ` 6= i} ∪ {(v, `) : ` 6= j} .

By the previous argument, we then have

distG1\F ((u, i), (v, j)) = 1

and

distG2\F ((u, i), (v, j)) ≥ 2k + 1

and so

̂distG1\F ((u, i), (v, j)) ≤ 2k − 1

and
̂distG2\F ((u, i), (v, j)) ≥ 2k + 1.

Thus D1,D2 produce different answers to the query
((u, i), (v, j), F ), so they must have different repre-
sentations. Since this holds for any two subgraphs
G1, G2 ⊆ G∗, we have a family of 2|E

∗| graphs that
all have different representations, and so by the pi-
geonhole principle the data structure DG for one of
these subgraphs G ⊆ G∗ occupies at least |E∗| =
Ω
(
f1−1/kn1+1/k

)
bits of space, thus completing the

proof.
The proof of Theorem 1.5 is identical, taking F

to be a set of edge faults as described in the above
proof of Theorem 1.3.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1900

D
ow

nl
oa

de
d 

07
/0

9/
19

 to
 1

8.
10

.6
5.

20
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Preliminaries
	Upper Bound for 3-Spanners
	Lower Bound for 3-Spanners
	Overview: Upper Bounds for Larger k 
	Overview: Lower Bounds for Larger k
	Regularizing H 
	Upper Bounds for k 3 
	Definitions, Notation, and some Intuition
	Lower Bound for |Mk| (Generalization of Lemma 3.3)
	Upper Bound for |Mk| (Generalization of Lemma 3.2)
	Proof of Theorem 1.1

	Lower Bounds for Larger k
	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Strong Incompressibility



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     16
     17
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     16
     17
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     16
     17
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     16
     17
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     16
     17
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     16
     17
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     16
     17
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     17
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



