THE EVOLUTION OF LIQUID NATURAL
GAS CON WATER

by

C. CARL MUSCARI
B.S.,Cornell University
1973

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF
SCIENCE
at the
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY
August,1974

Signature of Author

Department of Mechanical Engineering,
August 12,1974

Certified by

Thésis Supervisor

Accepted by
Chairman,Departmental Committee on Graduate Students

58, INST, ch,’

(NOV 14 1974

LIBRARIES




-2

THE EVOLUTION OF LIQUID NATURAL

GAS ON WATER

by

C. CARL MUSCARI

Submitted to the Department of Mechanical Engineering
on August 12, 1974 in partial fulfillment of the
requirements for the degree of Master of Science in
Mechanical Fngineering.

ABSTRACT

With Euler's Equations as the starting point, appropriate physical
and geometrical assumptions are made to establish the governing
equations for the simultaneous spread and evaporation (burning) of a
liquid natural gas (LNG) spill on water: A constant local rate of
evaporation (burning) per unit area is assumed.

After non-dimensionalization, the characteristic form of these
equations is derived and their numerical solution according to the
method of characteristics established.

Determined from the solution are (1) the maximum radial extent of
the spill, (2) duration of the entire process based on the time for
complete dissipation of the spill volume, (3) graphical representations
of remaining spill volume vs. time, rate of evaporation vs. time, and
spill thickness vs. distance (from origin of spill) for discrete times.

Finally, an appendix outlines considerations of a similarity
solution to the governing equations. The resulting proof establishes its
nonexistence.

Thesis Supervisor: James A, Fay
Title: Professor of Mechanical Engineering
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Introduction

In the world today, large scale transportation of natural gas over
water is carried out predominantly in the liquid state (normal boiling
point = -258° F) via mammoth surface vessels,

By 1980, approximately fifty LNG transport tankers are expected to
be in service. Furthermore, it is anticipated that this number will
continue to grow during subsequent years as the demand and resulting
profitability of discovering new natural gas sources increases. The fire
hazard represented by a spreading, burning pool of liquified natural gsas
on water due to an unscheduled release from such a tanker has been
extensively examined.!*2?3

Upon release, the spreading liquid may either boil off violently to
form a huge, volatile cloud of gas, dispersing close to the water's
surface! or ignition could be initiated by some random source, creating
a spreading pool of fire of very high intensity but having a relatively
short term.’®

It is the intent of this thesis to develope, in as general and
complete a manner deemed reasonable, a mathematical description of this
spreading and simultaneous dissipation of the liquid spill, whether it be
burning or evaporating. The conclusions drawn are, of course, directly
applicable to any such highly evaporative fluid exhibiting the appropriate
physical characteristics underlying the founding equations.

It is hoped that the significantly improved accuracy of some of its

determinations (as they relate to previously published values®) and the

new information provided by its other aspects, will be assistive to
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existing and future analyses dealing with the assessment and management

of the unusual fire hazards represented by LNG tanker spills?
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I. Formulation of the Physical Model

The mechanics of LNG spreading on water parallels to a large extent
one phase in the spread of an oil spill on water. The major distinction
between the two processes is the associated mass loss rate by burning or
evaporation of the LNG.

The physical processes acting in the spread of an oil spill on water
were first delineated by Fay8 in his recognition of three principle
regimes of flow through which the spreading film passes. They are in
order:

(1) The gravity-inertia regime ( "inertia spread" )
where the liquid spreading is caused by a hydro-
static pressure difference between the liquid
and the water. This spreading force is opposed
primarily, at this point, by the fluid inertia.

(2) The gravity-viscous regime ( "viscous spread" )
wherein the friction between the spreading slick
and the water below it predominates as the opposing
force to the hydrostatic pressure difference.

(3) The surface tension-viscous regime ( 'surface
tension spread" ) resulting from the diminishment
of the hydrostatic pressure difference as the
driving force and its subsequent replacement by
that of the surface tension imbalance at the oil-
air-water interface at the edge of the expanding

slick.
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Relative to the spread of LNG, only the physics of the:-first regime is
seen to act. Before the second or third regime would be established,
all of the 1iquid will have evaporated or burned.

There remains the question of possible freezing of the water under
the spill as it evaporates. Experiments have shown that in any real
spill situation, no ice is expected to form whether the pool ignites or
not.? The assumption of a constant mass loss ratz per unit area stands
independent of whether ice is formed or not.

Hoult considered analytically, and in separate fashion, the
description of all three regimes of flow relative to oil spreading.1°
His solution, as it pertains to inertia spread, will serve to provide the
initial conditions from which the solution to the flow for all remaining
time is mapped via the method of characteristics. The initial data are
evaluated at a time very close to the start of the spill when the rate of
evaporation (mass/time) or burning is very small (see figure 5) and as
such has not significantly modified the flow from that of the non-
evaporative oil spill. A complete explanation of how that solution was
used in terms of the transformations between variables there and those

employed here is given in appendix A.
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II. Formulation of the Mathematical Model

Pertaining to the axially symmetric spread of the LNG, the general

continuity equation in cylindrical co-ordinates takes the reduced form,

'oJ

iprvr) + g;(pvz) =0

"
Q)|

r

where the approximations implied are:
(1) constant density of the liquid
(i1) The radial velocity, Vs is considered
independent of the axial directionm,z.
In the development which follows,we use the notation, U, in place of V..
Integrating in the z-direction from O to h, i.e. over the thickness

of the spill at any r and t:

13 B
;'5;'5 prU.dz + (pv,), = (pv,)o = 0
Noting that:
(1) (v, )o= O
1) o 3= (v ) -

where m = the constant mass loss rate per

unit area due to either burning or evaporation

and g%-; local temporal variation of the spill

thickness.

h
3 )
(141) —3£ pxrU dz = i (prhv)

and substituting accordingly, we arrive at a final form,
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Continuity: —h- l-é—(rhU) = 2 (1)
ot r or o]

If the right hand side of this equation were taken as zero, the result
would be that derived by Hoult for the spread of an oil spill.ll

The general momentum equation, as it pertains here, may be written,

U ou -1 3p
5t + U
having used again the approximation, gg'= 0. With the hydrostatic

] 3p . pop 20
pressure written as p = pgAh then 3 Apg I , leading to the

final form,

U U 3h
Momentum: 3t +U Pl -Ag T (2)

This result is identical to that used by Hoult for an oil spill,
As with the case of 0il, the leading edge of the LNG spill is viewed

as an intrusion and as such must satisfy the boundary conditionl?

1
Leading Edge: Ug = (XgAhLE)g (3)

where A is a constant between 1 and 2 to be determined by experiment.
Fay13 has argued, on the basis of calculations relating to this boundary
condition due to von Karitan, that the value of A should be 2. This value
will be used in the calculations which follow.

It is convenient, at this point, to nondimensionalize the governing
equations. From an order of magnitude analysis, the accelerating force

may be taken as F ~ (pgAh)hR where R is the
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spill radius. The inertia of the spill may be characterized as

ma ~ phR2(R/t?)

1
Equating the two expressions: ghh = R2/t2 or t ~ R/(ghAh)Z .

But h ~ V/R? so that

. e
2

t ~ R%/(ghv) (4)

Furthermore, t, = V/(ﬁ/p)R: (5)

is the characteristic time for the evaporation of the entire spill volume
where Re is the radius at that point in time. Elimination of Re from
equation 5 using 4 with RpRe, we have,

1

L
ty = [(p/i) (V/gh)2]?

1
2

and since R: = t_(gAV)2  wve have finally

1 11
R, = [(p/)Z (gAv®)+]2

- .. rSummarizing, the characteristic measures by which the physical

quantities may be nondimensionalized are:

V = initial spill volume

1

[(p/m) (V/gh)2]

characteristic time of evaporation

L 11
2 = [(1/w)(V/gh)2]2

rt
#

1 11
[(1/w)2(gAve)¥]2

o)
]

characteristic radius corresponding to te
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Choosing to define:

r-Rt*,t=tt*,U-ReU*,w-lz—w*,'and haY.ih*
e e —— Rt R
te e e e

where the starred quantities represent nondimensional values, and

substituting into equation 1:

n*u* #0h* *aU* v *
('7—')—"*' + ("z?-)-;r + (—z— Wi r ( ) 3eF = -(?? v
e e e e Rt e e e

and the group, -;{-z-t— » 1s seen to divide out of the equation,leaving:
e e

oh* . U'n* .« On* | ..
'3—{:*". % +U 3r*+h ark = ¥

Since the group, %TE = w ( after substitution for Re and te ), it follows
e e

that w* = 1 and thus:

*
-gb-*+ -a—*(Uh**)'-

In a similar fashion, the momentum equation may be nondimensionalized as

follows:

*
‘ eﬁr“* g v’ 3, = - tedni,
ce

Dividing through by the group, f_g ’
te
au* au* 2 3n*

*
T + U T*"As('i:e)g;k
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2
the =1,

R
e

Recognizing that

u* . au* on*
T il

Nondimensionalizing the boundary conditiom, equation 3,
'tR_e)zU*z - 2 V,%
€ 'LE gAi:hLE

*2 Vtz *

ULk

*
=2 g~ 2y

Summarizing, the nondimensional system of equations which is to be solved

is:
au* au* | an*
Momentum: 3e* * u* et = 0 (6)
. m* 1 3 L ak -
Continuity: P + o+ ar*(U h™r™) 1 (7)
Leading Edge 1
Boundary Condition: U:E = (ZhEE)E' (8)

An initial attempt at solution of equations (6) through (8) involved
a search for an appropriate similarity transformation which would reduce
this set of equations to that of an ordinary system of differential equa-
tions. It was discovered that no such variable transformation of the form
n= ™V for any u and v .exists. The specific analysis underlying
this conclusion is presented in appendix B..

Having, therefore, to operate directly on equations (6) through (8)
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as a system of partial differential equations, the method of characteris-

tics was chosen as a means of solution.
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III. Solution: The Method of Characteristics!?

Solution by the method of characteristics is very widely employed

in the study of compressible fluid mechanics but ig, at the same time,

applicable to any tw6o- or three- dimensional system of equations of the

hyperbolic type. The defining criterion for this classification is set

forth below for the case of two independent variables.

Owing to such extensive use, clear expositions on the theory

underlying its application are as equally frequent and extensive.!“,!% In

light of this, the development which follows concerns itself, in most

respects, only with the formalisms of the method as they apply to this

particular system of equations, relying on the sources alluded to above to

be assistive in the way of theory.

In addition to equations 6 through 8, we may write:
* *
= %%*dr* + %%*dt*

as follows from the definition of the total derivitive,

6), (7), (9), (10) in the more expressive array,

* * sy
®
S 53 G SRS

£ 3U%  w* _ on* .
I M Tl T 0

* * *
ar* %g* + gE% at* = dU

(9)

(10)

Writing equations
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ah * ah *
* =
dr e + dt et dh
and letting F = - ( + l), BU may be solved for using Cramer's
Rule.
F 0 u* 1
0 1 1 0
Let K =
du* de* o 0
dh* o0 dr*  dt*
and
h* 0 v* 1
vt 1. 1 0
N=1 ar* a* o 0
0 0 dr*®  de*

au* K
then-a—r'* ¥ -

In order to establish those directions in the :r*-t* and U*-n*
planes across which the respective derivitives of h* and U* are indeter-

minate, the determinants, N and K are expanded and set equal to zero.
N = (dr*- v*de*)dr*- v¥de*de* + @*2-n*)de*2= 0
which rearranges to form the equation,

&2 cgguo + U*2-1*) =0 (1)
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% %« dbh* de*, - & _
K’dl’-Udt""(ﬁ*?FEﬁ*)dt 0
leading to the relationm,
dh* de* | & dr*
FTikd F FIic3 + U=~ Frd 0 (12)
*
Equation (11) is quadratic in %{* and has the solutions,
* 1
T = U* 2 %2 (13)

which define the characteristic directions in the r*-t* plane. It is
the fact that the radicand, 4h* , associated with the quadratic formula
pertaining to equation (11) ,is greater than zero for all h* that the sys~-
tem of equations is classified as hyperbolic and therefore permits
solution by the method of characteristics.

If equations (13) are substituted accordingly into equation (12),the
following relations result:

dh* de* ! dr* %
—_— = *y7 = *- *
du F(ﬁ*)-"(h) ++a?* v (b™)

gh* _ _ de* *\3 de* _ % .

where "+ »" indicates the substitution made. Writing these equations in

the more compact notation,

dh* de* o owd o drt e+ 1
ar T PR * (T gm = U S ()2

Operating further on the left hand relations:
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1 L
gF*- %* 2+ 4 - F(%*)2

7le

and finally we have the characteristic form of equations (6) and (7):

1 1
S2eMT + 1% = - GoTEL 4 1 (14a)

h*y*

d2aHE - vh] = - GoTET 4 ) (14b)

which are associated respectively with the characteristic directions,

1
LA N (h*)? (15a)

1
P Tl u* - (*)2 (15b)

in the r*-t* plane.

If the right hand sides of equations (14) were zero then they could
be directly integrated with the constants of integration evaluated at
points along some line of information in the r*-t* plane where the
values of the functions, U* and h* and their derivitives are known. The
result would be the compatibility relations which are to be satisfied along
the r*-t* characteristics. The network of characteristics in the h*- U*
plane could thus be established independently from the physical character-
istics of the r*-t* plane defined by equations (15). Furthermore,
establishing the corresponding network of curves in the r*-t* plane
would be equally facilitated by using an appropriate averaging of the

physical values (U*, h* which would be then known) between points of inter-
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section in the r*-t* network corresponding to the points of intersection
in the completed U*-h* network. This,however, is not the case,with the
differential form of the compatibility relations (equations (14) ) being
explicitly dependent on the independent variables, r* and t*,

For the case in question, the values of U¥* and h* at a point,
P(r*, t*), cannot be determined before the paths of the physical
characteristics are known in the r*- t¢* plane. The complication is, of
course, the fact that the directions of the physical characteristics,
given by equations (15), are, in turn, dependent on h* and U?*.

What this suggests is a method of successive approximations by
which the r*-t* characteristic network and corresponding values of u*
and h* are simultaneously mapped out forward in time from the line of
initial information.

Outline of this method, as it applies here, proceeds as follows:
Consider figure 1 along the horizontal line, AB sccorresponding to some
initial time, t; , where the values of U*¥ and h* are known. We wish to
establish the location of the point, ¢.( along with the values of U* and
h* there ), which lies at the intersection of the plus characteristic.

* *
( %%;-) passing through point a and the negative characteristic (g%;)
+ -
passing through point b .
Between points a and ¢ we may write (l4a) in finite difference

form:
]

1 1
2[(DT - 0)7) + (U2 - v¥)

P = Gca (16a)
c a



Nondimensional Time, t*
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C: = plus characteristic at point a

C; = negative characteristic at point b

AB = line of initial information

Nondimensional Radius, r*

Fig. 1. Progression of the r*- t*
Characteristic Network from the

Initial Data Line.
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1
where Gca is the average value of the function, G-= (%*)EF , between
points a and c¢ . Writing (14b) in finite difference form between points

b and c:

i RN
207 ~ MPIE) + (W} - uh)

* _ ek
t tb

= Gcb (16b)

It is reiterated that in both of the equations, the right hand sides
are evaluated at the average value of the function, G = -G—*)z(——H:-+ 1),
between the respective points.

Equations (16a) and (16b) may be solved simultaneously to yield

expressions for h: and U: :

1 1
hE = 350, (eh- ) - Gy (2-ef) - 2[GHT + GHZ] + @ - U A7)

Goq (ta-t¥) - G, (c*-c*) + z[(h*)% - (h*)-;'] + (U* + U%)} (18)
ca'¢c a c b a b a b

(=]
*
nﬂ:d

The appropriate iteration proceeds as follows:
(1) As the first approximation to the direction of
the respective characteristics at a and b ,
the values of U* and h* at a and b are
used in equations (15) as they apply. The re-
sulting intersection of the characteristics

provides the first estimation of r: and :2..

(2) With G evaluated (for the initial execution
of this step only) at points a and b as

they apply, and using the value of t: deter-
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mined in step 1, estimations of U: and

h: are determined.

(3). The average directions of the characteristics
between points a and ¢ , and b and ¢
are then redetermined by equations (15), using
the improved values of U: and h: for the
evaluation of the slope at point c¢ . This
leads to a more accurate location of point c¢ .
With the resulting new value of t: and averaging
G as it applies between the respective points,
this time using the last set of values for U:
and hz to compute G at point c ,steps two
and three are repeated.

This procedure is carried out until the values of U: and h: are
repeatable to a third decimal place. In the actual calculations made,
point c¢ would be labeled (a,b) representing the intersection of the
Plus and minus characteristics originating at the initial data points, a
and b respectively. In this way, each intersection of the r*-t*
network is uniquely located.

With the initial data line divided Into a suitable number of discrete
points, including the endpoints (labeled sequentially 1 to 33 for the
calculations here), the intersections of the respective alternating plus
and minus characteristics of these points are determined in the above
fashion.

The right endpoint of the initial data line demands special attention
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since it represents the leading edge of the spreading spill. The leading
edge must move in accordance with the boundary condition, equation (8).
That is, the particle path on the r*-c* plane corresponding to the

leading edge point, must move in the direction,
dr* - * %— ¥y
qox = (hip) as)

In order that with advancing t* the leading edge should always be
located, the intersection of the plus characteristic of the point adjacent
to the leading edge (the one most advanced in t*) with the particle path

%

is always determined. The values of r* s £, h* and U* at the new

location of the spill front are determined by somewhat different relations.

The values of U* and h* relating to the intersection on the ~r*-

t*

plane of the leading edge path and the plus characteristic of the
adjacent point must satisfy equations (15a) and (19) simultaneously.
Again to accurately establish this intersection an iteration procedure is
required.

Considering again the three point configuration of figure 1, this
time with the line bc being viewed as the endpoints of a segment of the
leading edge path, the first estimate of the location of ¢ is provided
by evaluating equation (15a) with the values of h* and U* at a and
evaluating equation (19) with the corresponding values at b . Then with

1
U: = (Zh:)z in equation (16a) and using t: determined above, h: and

U: are solved for by the relatioms,

x *\g o ,_ % 3
Uc [2(h8)2 + Ua + Gac(tc-ta)]/[l + (2)2] (20)
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then
(4 c

*

With the new values of Uc and hz , & better estimate of the location

of point ¢ and hence t: is obtained by computing the average slope of
the plus characteristic between a and c¢ and averaging the particle
direction between b and ¢ . This scheme is also carried out until the
values of H: and h: are repeated to the third decimal place.

After this first '"advance" of intersections is determined, including
the new location of the leading edge, the entire procedure is repeated
successively with the newly located points (and their corresponding values

* and U*) from left to right with the exception that a new boundary

of h
point is not located on the second advance. This results from the fact
the the boundary point location of the first advance of intersections
already lies on the plus characteristic of the point adjacent to it. It
would have, therefore, its owfi co-ordinates as the simultaneous solution
to equations (15a) and (19). Therefore, to .establish the next location

of the leading edge, the intersection of the plus characteristic of the
right most point of intersection of the second advance with the leading
edge path starting with the edge location of the first advance is required.
And so it is, that a new location of the leading edge motion is provided
on alternate advances of intersectioms. It will be noticed that under
this scheme, the number of points available to establish characteristic

intersections is diminished by one after alternate advances. Reference to

figure 2, illustrating the actual r*-t* characteristic network which
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resulted, will be useful in following the above discussion.

For the actual network developed, the initial data line was divided
into thirty-three discrete points. The network was developed from these
points. All points of intersection on this network, other than those of

the indicated boundaries, are located by their characteristic co-ordinates.

The co-ordinates are determined by the characteristics which inter-
sect there. Every characteristic starts from either the initial data line
or the boundary representing the path of the leading edge. These points
of origin are all nambered,with all leading edge boundary points character-
ized by numbers between 33 ond 52 inclusively. Thus the notation,
(10,35), locates the point which lies at the intersection of the plus
characteristic starting at point 10 of the initial data line and the minus
characteristic starting at the leading edge boundary point, 35.

A plus characteristic at any point is always distinguished from that
of the minus characteristic by its more gradual slope on the r*-t* plane.

As each point was located, its value of U* s h* . r* , and t* were
recorded and a complete table of the U* and h* values (as opposed to map-
ping a v*-n* network) corresponding to all points on the characteristic
network 1is presented in appendix C . Entry to the table is made by
locating the-characteristic co-ordinates there, as read directly from
figure 2 . Any values of U* and h* stherefore, in the region of influence
of the initial data line could be assessed via interpolation by the values

*
of r

*
R t* , h and u* relating to the nearest points of characteristic
intersections.

As the spill spreads and evaporates, the thickness associated
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with its more central regions reduces to the neighborhood of zero before
the outer portions of the spill. An inner boundary to the spreading spill
was established arbitrariliy at those radii where h* attained a value of
less than .01 . This was necessary since, as equation (17) demonstrates,
n* may never really be computed as zero. As a result, if an arbitrary
tolerance for h* is not established the numerical solution expands to
regions of physical non-relevance.

In order to insure that an adequate number of such points would be
accurately located, a criterion of h* < .001 was used in the calculations.
That is, if a point located on the r*-t* plane had a value of h*
associated with it which was less then .00l, it was plotted but then
dropped from the calculational scheme of characteristic intersections
outlined above, When all possible intersections were established, linear
interpolations on radii were carried out between points having the same
t* (to two decimal places) and values of h* surrounding and close to
.01 . In many cases, values of r* and t* corresponding to h*=.01
resulted directly from the main calculational scheme of locating charac-
teristic intersections.

Through these points, so located, an inner boundary was drawn (see
figure 2 ). Characteristic intersections lying outside of this boundary
were then eliminated from the final illustration of the characteristic
network representing the domain of influence of the initial data line.

As has been alluded to a number of times above, the procedure of
solution is initiated at some finite t*= to = .05 . This starting point

corresponds to the initial line of information on the r*-t* characteristic
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plane. It is necessary that t: be greater than zero since the physical
model presents the entire spill process as being initiated from a point.
This geometric idealization leads to unmanageable singularities in the
governing equations (6) through (8) at t*= 0 and r*= 0 . In order to
circumvent difficulties of this sort, the spill process is extrapolated
from t;= .05, as opposed to tg- 0, where it is assumed that during the
interim period (0 ﬁ_tfﬁ .05), the spill pracess is described adequately
by the analytic equations of Hoult for small " pertaining to an oil
spill on water. The validity of this assumption is dealt with in section
IV . A more comprehensive discussion of this incorporation of Hoult's
work, as it pertains to the initial conditions used here, is presented in

appendix A .
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I Discussion and Results

The entire calculational procedure in all its aspects, including
the calculation of values pertaining to the initial data line, was
computer programmed. This permitted extensive iteration leading to a
highly accurate mapping of the r*-t* characteristic network and the
determination of the corresponding values of h* and u*.

The completed mapping of the characteristic network appears in
figure 2. 1In order to preserve the accuracy of the computer output, the
data were plotted on graph paper permitting an accuracy of .005. As a
result, the actual plot could not be included here but rather had to be
first photo-reduced from an area of 13 X 16 square inches to that shown
in figure 2. Owing to this, earlier (in terms of t*) portions of the
plot may appear rather nebulous.

Both the maximum radial extent (in terms of r*) and duration of the
entire spill process may be read directly from the characteristic plet as
the r*-t* co-ordinates of the intersection of the imner (h*= ,01) and
outer (leading edge path) boundaries. This particular point is labeled
52. The values corresponding to this intersection are r*= 1.209 and
t*= ,767 . These values, however, are considered to be slightly less
than the true values for the prccess, since the connection between this
point and the last located inmer boundary point was a simple linear
extrapolation, with the endpoint, 52, being situated at the last possible
location of the leading edge.

Somewhat more accurate values are provided by the dimensionless

volume (V*) versus t* curve (see figure 4). The extrapolated value
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*

of t (a rather small extrapolation compared to that alluded to above)

corresponding to zero volume is t*= .80 . The related value of r* is
obtained by linearly extrapolating the leading edge path on the r*-t*
network to the point where t*s .80 . The corresponding value of ™

was found to be 1.23 . These values are considered more accurate because
the later points on the v*-t* plot, pertaining to later times in the
spi;l process, are considered to be more accurately located when compared
with the points of the last portions of the inner boundary path.

The V*-t* plot was calculated by computing the volumes represent-
ed by the dimensionless thickness versus radial distance curves (figure
3) for discrete t* ,

In order to establish the curves of figure 3, horizontal lines were
drawn on the characteristic network corresponding to the dimensionless
times appearing on the figure. On these horizortzl lines, an adequate
number of intersections with plus and minus characteristics were located.

Then for any plus characteristic intersected, the values of h* and U*

relating to that point of intersection must satisfy equation (15a),

* 1 L
_fgi = U+ D7 = 0%+ @2 =m, (15¢)
and equation (16a)

% 1 1 * *

2[(h})2 - (W*)2] + (U] - U))

i a i a
= G (16c)

o o ca
i a

where the subscript, i, denotes the values pertaining to the intersection

of the horizontal line (i.e. the one in question) with the plus character-
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istic, t* is, of course, known from the level on the t* axis at which

i

the line was drawn. The subscript, a, denotes the point representing- the

next characteristic intersection as one moves along the plus characteris-

tic in question in the negative t* direction. With respect to this
point [point a], U* and h* have already been determined in establish-
ing the characteristic network. The subscript, c, denotes that character-
istic intersection as one moves along the plus characteristic in question
in the positive t* direction. Data pertaining to this point are also
completely determired for the same reason. All these points, a,c, and i
lie on the same characteristic and thus equations (15c) and (16c) result.
G is evaluated at its average value between points a and ¢ and,

ca

therefore, the values of h: and U; are given by the simultaneous solu-

tion of these equations:

1
% _ *_ % *yo 2
hy [Gca(ti ta) + 2(ha)2 m + Ua] (22)
then . el
Ui =m - (hi)2 (23)

In an exactly analogous fashion, the values of U* and h*
corresponding to a point of intersection of the horizontal line with a

minus characteristic must satisfy equations (15b),

dr® ok ak ok 3 ‘
Fradai A CW EL R WL (15d)

and (16b),

1 1
2[(DZ - @)1 + (U5 - )

% _ ok cb
5%
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where points b and c¢ are directly analogous in direction along the
minus characteristic to points a and c¢ along the plus characteristic
of the preceding discussion.

Solving equations (15d) and (16d) simultaneously:
¥ = [e, (t% - t¥*) + 2¢( *)%+ mn_ - U¥)?
1= Gty = & b2+ m_ =Ty

1
*. *\7
Ui m_ + (hi)

Using these equations as they pertained, the plot of h* wvs.
radial distance for t* between .05 and .7 at intervals of .05 were
established. These curves are seen to confirm the location of the
inner boundary (h* = .01) on the r*-t* characteristic plane.

* dv*
and Frad (rate of evaporation)

The plots of v* versus t
versus t* follow directly from the thickness profiles with the rate
of evaporation curve being the derivitive of figure 4 . Both of these
curves affirm that the approximation of utilizing the analytic solutiom
of oil spill behavior for that of the LNG spill at small t* is sound.
This is indicated by the fact that at t* = .05 (starting peint of the
analysis), only about .3% of the total spill volume has evaporated and
the rate of evaporation has reached only about 7% of its peak value,

It might be further noted that the graph of %%:- versus t* may
also be viewed as the surface area of the spill versus time since a
constant mass loss rate per unit area has been assumed during the

development. This curve exhibits a very symmetrical behavior with a

maximum, constant rate of evaporation (or surface area) attained for a
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period of At* = .16 .
In summary, it is concluded that the duration and maximum radial
extent of the spill process are given by t* = .8 and r* = 1.23

respectively. Dimensionally, we have:

SIC PR
re 1.23Re 1.23(w)“(gAV )

1,5V \+
tev = .8te = .8@-’-) (EA_)“

Using a more finely divided initial data line at t* = ,02, which
yields a finer characteristic network (much too fine to accurately plot),
these values were found to be insignificantly altered.

These values compare to those reported by Raj and Kalelkar'®:

1 1
r, = (%)T(g/sv’ )E

A 1 v 1
tey = 67CEDTEPT

vhere L= density of the LNG

A = heat of evaporation of the LNG

q = heat flux to the LNG

According to the authors, q is comprised of two components: heat
flux due to contact with the water and heat flux due to the radiation
from the fire. 1In chis light, the group, &gi , termed,the regression
rate, is seen to be identical to the factor, %- , as defined above and

thus the non-dimensionalizations used by Raj and Kalelkar and those used
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in the above development are also identical. This permits direct
comparison of the values of tev and T, -

We find, therefore, an increase in the predicted duration of the
spill process of approximately 20% and a corresponding increase in
radial extent of 23%Z over those values reported by Raj and Kalelkar.
This, accordingly, would significantly affect the magnitudes of their
assessmeuts of safe separation distances from a burning LNG pool fire for

people and combustible materials.
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Appendix A

Utilization of Hoult's Solutidn for Small Time

As has been pointed out (see Section III), the initial information
of thickness and velocity profiles from which the entire solution was
mapped out via the method of characteristics was provided by Hoult's
analytic solution of the inertia spread regime of flow for the spread of
an oil spill.!” The relevant data are evaluated at a time small enough
so that the flow of the LNG to this point in time may be considered to
closely approximate that of the oil (see Section 1IV).

In his development, the following were derived as the governing

equations:

U U oh

Momentum: 52-+ 4] 5;—+ gAs;» 0 (24)
oh , 19

Continuity: c + - Br(rUh) = 0 (25)

Leading Edge 1

Boundary Condition: ULE = [AgAhLElz (26)

Co
Mass Conservation: V= Zn{ rh dr = constant

To this system of equations, the following similarity variable
was determined:

-1 -1
n = (gAV)*rt?

with U= %—v(n) and h = — H(M)
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It should be noted at this point that the relations set forth in
the discussion which follows will be found tc be, in some respects,
mildly discrepant with the analogous expressions derived by Hoult. This
is attributed to an algebraic oversight on his part. The direction and
motivation of the theory, however, remains identical to his.
After transformation of equations (24) through (27) and the

resulting integration thereof, the following was determined:

v = 1 @7)
n'#
H() = 3 + Kn® (28)

where K 1is a constant of integration. Application of the mass con-

straint and the leading edge boundary condition leads to the equations,

"
2 4 max 1
Knmex + 16 m (1)
nu
4 _ = max 2
Mpax = 4AHM ) = A(=—+ 4Kn_ ) (i1)

for K and nmax’ where nmax corresponds to that value of n at the
leading edge where r is maximized. Hoult presented a solution to these
equations for the case of A = 1 . For the problem developed here, (i)
and (ii) had to be re-solved for the case of A = 2 leading to the

result:

Nnax = 1.502 and K=0

With respect to Hoult's development:
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t r* NS
vi) = LU, B = Eh and 0= (gaV)ere?

Pertaining to the analysis of the LNG spill:

t x _R? 3 t
Uv* = (-ﬁe)U,h --‘-,eh, r*-i—, t =<
e e e

where Re and te are defined in Section II above.

Comparing the variables respectively:

t
- U * *
v _r R .ty t * _ T
™=t (—et )(r) o and thus U rs
ie-U e
e

L. %2__ = (%_)2 = r*  and therefore h* = %}2H
-ﬁeh e

Now;
L
p)

IO A R* = Oz, ¢ = &
(gA)Vt and e (w g ’ Te w’ “gh

n* may also be written as:

@ dp¥

O eavyees

e

This expression, in turn, is seen to equal e which leads,
e

finally, to the transformation,
%, kot
n=r(t%)
Thus we need specify tg and then determine the values of h* and

U* with the transformations between variables derived above for points
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along the horizontal line on the characteristic network representing t: .

That is, for a given point along this line, r* and t* may be read
-1 ™
directly and therefore, n = r*(t*)Z is determined. Then H{n) = a

8
*

(from equation (28) with K = 0) and h* = %*zﬂ(n) and U* = E%w from
equation (27) and the variable transformations of the preceding page.
This procedure is carried out for a suitable number of points along the

1

horizontal line, the extent of which is determined by r* =n__ _ (t¥)2
max max ' 0

Division of the line by thirty-three points for the calculatiouns
made here, was found to be "suitable' in providing a characteristic
network of satisfactory detail throughout the region of influence. For
purposes of calculation, the initial data line was considered to start
at r* = .01 1in order to avoid difficulties of indeterminate division by

zero relating to the compatibility relations derived in Section III .

In figure 3, the thickness profile corresponding to t* = .05 = t;

is the initial profile calculated from Hoult's worl.
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Appendix B

Considerations of a similarity Transformation

In the initial analysis of equations (6) through (8), an investi-
gation pertaining to the possibility of a similarity variable was carried
out. The existence of such a variable, meeting the leading edge boundary
condition and necessary mass constraint, would have reduced the problem
to a system of ordinary differential equations and, as such, would have
simplified the solution. The approach used in this endeavor follows.

A similarity variable of the form,

n a (29)

is the initial and only assumption made. Additionally, che most general

forms of h* and U* are postulated:

v* = r*e*B ) (30) and b* = r*¢Vu(m) (31)

The unknown exponents, A, B, u, v, x and y are to be determined from the
conditions of similarity which are established upon substitution of the
assumed functional forms into equations (6) through (8) . This substitu-

tion results in the following expressions for Momentum:

+ xr*x'lt*ya(n) + r*xt*y(gg)%g-- 0 (32)

and for Continuity:
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y T um) + Y EHE 4 et )AL P myv in)

+ AT Ay )8 4 AR S S (33)

and for the leading edge boundary condition:
r*2A X *2BY 02 () = H() (34)

The conditions of similarity which determine the values of A, B, u,
v, X and y are established from the requirement that each of the
coefficients in equations (32) through (34) must reduce to a constant or

at most a power of n . Thus, for example,

r*At*B(%%) - nc - pRUC #vVC (35)

on -1

(noting that 3¢ = vr UerV=L fron equation (29) ) for the coefficient of
the second term in equation (32) , It is important to note that c¢ it-
self becomes an unknown exponent. In this manner, a system of sixteen
non-linear , algebraic equations may be formed by equating exponents of
like variables in each such statcement of constancy or power of n (equa-
tion (35) ). This seemingly overwhelming set of equations reduce easily,
however (by appropriate operation), to three linear equations which are
independent and establish the necessary relationships between A and B,

x and y, and u and v which must be met for similarity to exist.

They are: 3 + 2y = 2 (36)
3A+2B=1 37)

u_ =2
vT3 38
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The additional unknown exponents introduced by equation of the
coefficients in equations (32) through (34) with powers of n are
defined once the conditions of (36) through (38) are met,

There remains, however, an additional constraint in the formulation
of this approach to the problem which is that of global mass conservation:

R* (%) t*

V = 21/ r*nh* dr* + nf R*z(t ) dt = constant (39)
0 0

where R*(t*) is the leading edge, nondimensional radius. With

*U_*V u=-1l_xv
M ar*

n=r t ; dn = ur and
*1- u k=V
= ( =)r dn (1)
When n =7 then r* = R*(t*) that 1s, R*(t*) = (t*-vn )%
max ’ ’ max
which leads to
? )G~)
R* (¢*) = t* Yt (11)

max

Remembering that h* = r*xt*yH(n) and substituting (i) and (ii) into

equation (39):

n 2v
Zﬂf ?a§x+2 *? u)(u) %

V= t*y)u(n)dn + 1rf t no__dt
0

max

( ) (u-2v)

- 2"f( 2T () 9 4 Mgy ¢* © 40)

(u -~ 2v)

*
It is easily shown that the factor, r x+2t*y » of equation-40, to

be constant or a power of n , implies a relationship between x and y
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which is directly inconsistent with that of equation (36) .
More obvious, however, is the fact that the explicit t* depen-
dence of the second term of equation (40) cannot be eliminated in a
fashion consistent with the established requirement of equation (38) .
That is, neither u or (u-2v) may be set to zero.
It is therefore concluded that an appropriate similarity transfor-
#U_%V

mation of the form, n =xr" t , for the system of governing equations

6), (7), (8) and (39) does mot exist.
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Appendix C

Tabular Solution Pertaining to the r*-t* Characteristic Network

CHARACTERISTIC

PLUS

NEGATIVE CHARACTERISTIC

2 3 4 5 6 7
2 h*=  0.020 0.000
U*= 0.200 0.164
3 h:= 0.045 0.033 0.043 0.000
U= 0.300 0.278 0.228 0.452
A h*= 0.080 0.054 0.022 0.049
U*= 0.400 0.379 0.356 0.349
5 h*= 0.125 0.101 0.078
U*= 0.500 0.480 0.461
6 h*= 0.180 0.157
U*= 0.600 0.580
7 h¥*= 0.245
U*= 0.700



CHARACTERISTIC

PLUS
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Tabular Solution Pertaining to the r*-t* Characteristic Network

Vel

10

11

12

13

NEGATIVE CHARACTERISTIC

.131
. 665

.054
.440

.135
.562

221
.680

.320
. 800

9

0.000
1.107

0.024
0.420

0.115
0.544

0.200
0.662

0.296
0.780

0.405
0.900

10

.001
.399

.094
.527

. 180
. 046

274
.762

.380
. 880

.500
.000

11

.073
.510

.16l
.630

.254

. 764

.357
. 862

473
.980

.605
.100

12

.050
491

<143
.014

.234
. 730

.336
. 846

. 449
.962

.577
.080

. 720
.200

= O o O

= O

13

.006
L491

124
.599

.216
.716

.316
.830

.427
.946

.552
.062

.690
.180

.845
.300
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Tabular Solution Pertaining to the r*-t* Characteristic Network

PLUS CiilARACTERISTIC

NEGATIVE CHARACTERISTIC

14 15 16 17 18

G n*= 0.000

U*= 0.366
7 h*= 0.105 0.085 0.064 0.036 0.211
U*= 0.584 0.569 0.553 0.538 0.748
8 h*= 0.199 0.181 0.164 0.147 0.130
u*= 0.702 0.688 0.675 0.662 0.648
9 h*= 0.297 0.280 0.263 0.246 0.230
u*= 0.816 0.802 0.789 0.776 0.764
10 h*= 0.406 0.387 0.369 0.351 0.334
U*= 0.930 0.915 0.902 0.889 0.876
11 h*= 0.528 0.506 0.486 0.466 0.448
U*= 1.045 1.030 1.015 1.001 0.988
12 h*= 0.664 0.639 0.615 0.594 0.573
U*= 1.162 1.145 1.129 1.114 1.100
13 h*= 0.814 0.785 0.759 0.734 0.711
U*= 1.280 1.262 1.245 1.228 1.2i3
14 h*= 0.980 0.947 0.917 0.889 0.863
U*= 1.400 1.380 1.362 1.344 1.328
15 h¥*= 1.125 1.090 1.058 1.029
U*= 1.500 1.480 1.461 1.444
16 h*= 1.280 1.244 1.210
U*= 1.600 1.580 1.561
17 h*= 1.445 1.407
U*= 1.700 1.680
18 h*= 1.620

U*= 1.800



=55=
Tabular Solution Pertaining to the r*-t* Characteristic Network

PLUS CHARACTERISTIC

NEGATIVE CHARACTERISTIC

19 20 21 22 23
7 h:= 0.086 0.073 0.056 0.027 0.000
U= 0.986 0.976 0.973 0.999 1.028
8 h*= 0.112 0.093 0.072 0.047 0.028
U*= 0.635 0.621 0.608 0.594 0.558
9 h*= 0.214 0.198 0.182 0.166 0.149
U*= 0.752 0.740 0.729 0.717 0.706
10 h*= 0.318 0.302 0.286 0.271 0.256
u*= 0.864 0.852 0.841 0.830 0.820
11 h*= 0.430 0.414 0.397 0.382 0.366
U*= 0.975 0.963 0.952 0.941 0.930
12 h*= 0.554 0.535 0.518 0.501 0.484
U*= 1.037 1.074 1.062 1.050 1.039
13 h¥*= 0.690 0.669 0.649 0.631 0.613
U*= 1.200 1.186 1.173 1.160 1.149
14 h:= 0.838 0.815 0.793 0.772 1.259
u”= 1.313 1.298 1.284 1.271 1.259

*

15 h o= 1.001 0.975 0.950 0.927 0.905
U*= 1.423 1.412 1.397 1.383 1.370
16 h*= 1.179 1.149 1.122 1.095 1.070
U*= 1.544 1.527 1.511 1.496 1.482
17 h#= 1.371 1.338 1.307 1.278 1.250
U*= 1.661 1.643 1.627 1.611 1.596
18 h:= 1.580 1.543 1.508 1.475 1.444
t"= 1.780 1.761 1.743 1.726 1.710
19 h*= 1.805 1.763 1.724 1.687 1.653
U*= 1.900 1.880 1.861 1.843 1.826
20 *= 2.000 1.956 1.915 1.877
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Tabular Solution Pertaining to the r*-t* Characteristic Network

CHARACTERISTIC

PLUS

NEGATIVE CHARACTERISTIC

24 25 26 27 28

8 h¥*= 0.001

U*= 0.592
9 h*=  0.132 0.114 0.096 0.075 9.050
U*= 0.694 0.682 0.670 0.657 0.646
10 h*= 0.241 0.226 0.211 0.196 0.180
U*= 0.809 0.799 0.789 0.778 0.768
11 h:= 0.351 0.336 0.322 0.307 0.293
U= 0.920 0.909 0.900 0.890 0.880
12 h¥*= 0.468 0.453 0.438 0.423 0.408
U*= 1.208 1.018 1.008 0.998 0.989
13 h:= 0.595 0.579 0.563 0.547 0.532
%= 1.137 1.126 1.116 1.106 1.096
14 h¥*= 0.734 0.715 0.698 0.681 0.664
U*= 1.247 1.235 1.224 1.214 1.203
15 h:= 0.884 0.864 0.844 0.826 0.807
U= 1.357 1.345 1.333 1.322 1.311
16 h:= 1.047 1.024 1.003 0.982 0.962
U= 1.469 1.456 1.443 1.431 1.420
17 h*=  1.224 1.199 1.175 1.152 1.130
U*= 1.581 1.567 1.554 1.542 1.530
18 n*= 1.414 1.386 1.360 1.334 1.310
U*= 1.695 1.680 1.666 1.653 1.640
19 h:= 1.620 1.589 1.559 1.531 1.504
U*= 1.810 1.794 1.780 1.765 1.752
20 h*= 1.840 1.806 1.773 1.742 1.712
U*= 1.926 1.909 1.894 1.878 1.864
21 2.076 2.038 2.001 1.967 1.934

c =
*

2.042 2.025 2.009 1.993 1.978



PLUS CHARACTERISTIC

Tabular Solution Pertaining-zg-the r*-t* Characteristic Network

10

11

12

13

14

15

16

17

18

19

20

21

22

23

h*=
Uk=

h*=
Uk=

NEGATIVE CHARACTERISTIC

29

0.164
0.758

0.279
0.871

0.394
0.979

0.517
1.087

0.648
1.194

0.790
1.300

0.943
1.409

1.109
1.518

1.287
1.628

1.478
1.738

1.683
1.850

1.902
1.963

2.136
2.077

2.384
2.192

30

0.148
0.748

0.862
0.862

0.380
0.970

0.502
1.077

0.633
1.184

0.773
1.291

0.925
1.398

1.088
1.506

1.264
1.616

1.453
1.726

1.656
1.837

1.872
1.949

2.103
2.062

2.348
2.176

31

0.132
0.737

0.250
0.852

0.366
0.962

0.488
1.068

0.618
1.174

0.757
1.281

0.907
1.388

1.069
1.496

1.243
1.604

1.430
1.714

1.629
1.824

1.843
1.936

2.071
2.048

2.313
2.161

32

0.114
0.726

0.236
0.843

0.353
0.953

0.474
1.060

0.603
1.166

0.741
1.272

0.890
1.378

1.050
1.485

1.222
1.593

1.406
1.702

1.604
1.812

1.815
1.923

2.040
2.034

2.279
2.147

33

0.082
0.708

0.212
0.829

0.331
0.939

0.452
1.046

0.580
1.152

0.716
1.257

0.863
1.363

1.021
1.469

1.190
1.576

1.371
1.684

1.566
1.793

1.773
1.903

1.994
2,013

2.228
2.125

34

0.039
0.692

0.189
0.812

0.310
0.923

0.431
1.030

0.558
1.136

0.693
1.241

0.838
1.346

0.994
1.451

1.160
1.558

1.339
1.665

1-530
1.773

1.733
1.881

1.950
1.991

2.180
2.102



PLUS CHARACTERISTIC
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Tabular Solution Pertaining to the r*-t* Characteristic Network

10

11

12

13

14

15

16

17

18

19

20

21

22

23

h*=
Uk=

h#*=
U%k=

h*=
U%=

h*=
U=

h*=
Uk=

h*=
U=

h#*=
Uk=

h=
Uk=

h*=
U=

h*=
U*=

h*=
Uk=

h*=
Uk=

h*=
Uk=

h*=
U=

NEGATIVE CHARACTERISTIC

35

0.025
0.653

0.173
0.780

0.295
0.913

0.417
1.020

0.544
1.125

0.678
1.230

0.822
1.335

0.976
1.440

1.141
1.546

1.318
1.652

1.506
1.759

1.708
1.868

1.922
1.977

2.150
2.086

36

0.155
0.787

0.280
0.901

0.402
1.009

0.529
1.114

0.662
1.219

0.805
1.323

0.958
1.428

1.121
1.533

1.296
1.639

1.483
1.746

1.682
1.853

1.893
1.962

2.118
2.071

37

0.135
0.773

0.264
0.889

0.387
0.998

0.513
1.103

0.646
1.207

0.788
1.311

0.939
1.415

1.101
1.520

1.274
1.625

1.458
1.731

1.655
1.838

1.864
1.946

2.086
2.054

38

0.112
0.757

0.246
0.876

0.370
0.985

0.497
1.091

0.629
1.195

0.770
1.298

0.920
1.402

1.080
1.506

1.251
1.611

1.434
1.716

1.628
1.823

1.834
1.930

2.054
2.038

39

0.085
0.740

0.227
0.862

0.353
0.972

0.480
1.078

0.612
1.182

0.751
1.285

0.900
1.388

1.059
1.492

1.228
1.596

1.408
1.701

1.600
1.806

1.804
1,913

2.020
2.020

40

0.046
0.725

0.207
0.246

0.334
0.958

0.462
1.064

0.593
1.168

0.732
1.271

0.880
1.374

1.037
1.477

1.204
1.580

1.382
1.685

1.572
1.790

1.773
1.895

1.987
2.002



PLUS CHARACTERISTIC
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Tabular Solution Pertaining to the r*-t* Characteristic Network

11

12

13

14

15

16

17

18

19

20

21

22

23

24

h*=
Uk=

h*=
U=

hv=
U=

h*=
U*k=

h*=
Uk=

h*=
U=

h*=
Uk=

h*=
Uk=

h*=
Uk=

h*=
U*=

h*=
U#k=

h*=
Uk=

h*=
U=

h#*=
U*:

41

0.006
0.704

0.184
0.829

0.315
0.942

0.442
1.049

0.574
1.153

0.712
1.255

0.858
1.358

1.014
1.461

1.180
1.564

1.356
1.667

1.543
1.772

1.741
1.876

1.952
1.982

2.175
2.088

42

0.003
0.528

0.158
0.809

0.293
0.925

0.422
1.032

0.554
1.136

0.692
1.239

0.837
1.341

0.991
1.443

1.154
1.546

1.328
1.649

1.513
1.752

1.709
1.857

1.917
1.962

2.136
2.067

43

0.127
0.787

0.270
0.906

0.401
1.014

0.533
1.119

0.670
1.221

0.814
1.323

0.967
1.425

1.129
1.527

b b
[ .
o N

1.483
1.732

1.676
1.835

1.881
1.940

NEGATIVE CHARACTERISTIC

44

0.090
0.760

0.245
0.884

0.378
0.994

0.511
1.099

0.648
1.202

0.791
1.303

0.942
1.405

1.102
1.506

1.272
1.608

1.452
1.710

1.643
1.813

45

0.017
0.753

0.216
0.860

0.354
0.972

0.487
1.077

0.624
1.180

0.767
1.282

0.917
1.382

1.076
1.483

1.243
1.584

1.421
1.686

46

0.385
0.864

0.184
0.830

0.327
0.946

0.463
1.053

0.600
1.156

0.742
1.257

0.891
1.357

1.048
1.458

1.214
1.558



PLUS CHARACTERISTIC
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Tabular Solution Pertaining to the r*-t* Characteristic Network

NEGATIVE CHARACTERISTIC

47 48 49 50 51 52

12 h*= 0.064 0.000
Uk= 1.323 1.470

13 h*= 0.147 0.099 0.002
Uk= 0.794 0.749 0.717

14 h#= 0.298 0.267 0.232 0.193 0.146 0.096
U= 0.915 0.378 0.830 0.766 0.666 0.438

15 h¥*= 0.437 0.410 0.381 0.351 0.322
Uk= 1.024 0.989 0.946 0.888 0.803

16 h¥*= 0.575 0.549 0.523 0.497
Uk= 1.127 1.094 1.052 0.997

17 h#= 0.717 0.691 0.666
U= 1.229 1.195 1.154

18 h¥= 0.865 0.839
Uk= 1.329 1.295

19 h¥= 1.021
Uk= 1.429



PLUS CHARACTERISTIC
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Tabular Solution Pertaining to the r*-t* Characteristic Network

NEGATIVE CHARACTERISTIC

21 22 23 24 25
21 h#*= 2,205 2.159 2.116
U*= 2,100 2.080 2.061
22 h*= 2.240 2.372 2.328 2.285
U#= 2.200 2.180 2.161 2.142
23 h#= 2.645 2.596 2.549
U*= 2.300 2.280 2.260
24 h#*= 2.880 2.829
Uk= 2.400 2.380
25 h#*= 3.125

Uk 2.500



PLUS CHARACTERISTIC
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Tabular Solution Pertaining to the r*-t* Characteristic Network

NEGATIVE CHARACTERISTIC

26 27 28 29 30
22 h*= 2,245 2.207 2.171
Uk= 2,125 2,108 2.092
23 h*= 2,505 2.463 2.422 2.384 2.348
U= 2,242 2.225 2.208 2.192 2.176
24 h*= 2,780 2.734 2.690 2.648 2.608
U*= 2,360 2.342 2.324 2,307 2,291
25 h*=  2.072 3.021 2.973 2.927 2.883
U*=  2.480 2.460 2.442 2.424 2.407
26 h*= 3,380 3.325 3.272 3.222 3.174
U*=  2.600 2.580 2.560 2.542 2.524
27 h#*= 3.645 3.588 3.533 3.481
U= 2.700 2.680 2.660 2.642
28 h*= 3.920 3.861 3.804
U= 2.800 2.780 2.760
29 h*= 4.205 4.144
U= 2.900 2.880
30 h*= 4.500

Uk= 3.000



PLUS CHARACTERISTIC
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Tabular Solution Pertaining to the r*-t* Characteristic Network

NEGATIVE CHARACTERISTIC

31 32 33 34 35
24 h*= 2,570 2.533 2.477 2.424 2.391
U*= 2,276 2.260 2.237 2.213 2.197
25 h*= 2,842 2.801 2.740 2.683 2.646
U%= 2,391 2.375 2.351 2.325 2.309
26 h*= 3,129 3.085 3.019 2.956 2,916
U#= 2,507 2.490 2.465 2.438 2.421
27 h#*= 3,432 3.384 3.312 3.244 3.120
U= 2.624 2.606 2.580 2.552 2.534
28 h*= 3,750 3.699 3.620 3.546 3.499
U= 2,742 2.724 2.696 2.667 2.649
29 h*= 4,085 4.029 3.945 3.864 3.813
U*= 2,860 2.841 2,813 2.783 2.764
30 h*=  4.437 4.376 4.285 4,198 4.142
U*= 2,980 2.960 2.930 2.900 2.879
31 h*=  4.805 4.740 4.641 4,547 4.487
U*=  3.100 3.080 3.049 3.016 2.996
32 h#= 5.120 5.014 4,912
Uk= 3.200 3.168 3.134
33 h#*= 5.645

U*k= 3.360



PLUS CHARACTERISTIC
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Tabular Solution Pertaining to the r*-t* Characteristic Network

NEGATIVE CHARACTERISTIC

36 37 38 39 40
24 h*= 2,357 2.322 2.286 2.250 2.213
U= 2,181 2.164 2.146 2.128 2.109
25 h*=  2.609 2,571 2.532 2.492 2.452
U= 2,292 2.274 2.256 2.237 2.217
26 h*= 2,875 2.833 2,791 2.748 2.704
U= 2,404 2.385 2.366 2.346 2.325
27 h*=  3.155 3.110 3.064 3.017
U*=  2.516 2.497 2.477 2.456
28 h*= 3,450 3.401 3.351
Uk=  2.629 2.610 2.589
29 h*= 3,760 3.707
U*= 2,744 2.723
30 h*=  4.085

U*= 2,858



PLUS CHARACTERISTIC

Tabular Solution Pertaining to the r*-t* Characteristic Network

-65-

N
&

N
w

h¥=
Uk=

h#*=
U*=

41

2.175
2.088

2.410
2.196

NEGATIVE CHARACTERISTIC

42

2
2.067

=
W
=)



