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Abstract The weakly nonlinear rheology of a surfac-

tant solution of wormlike micelles is investigated from

both a modeling and experimental perspective using

the framework of medium amplitude parallel superposi-

tion (MAPS) rheology. MAPS rheology defines material

functions, such as the third order complex compliance,

which span the entire weakly nonlinear response space

of viscoelastic materials to simple shear deformations.

Three-tone oscillatory shear deformations are applied

to obtain feature-rich data characterizing the third or-

der complex compliance with high data throughput.

Here, data for a CPyCl solution are compared to the an-

alytical solution for the MAPS response of a reptation-

reaction constitutive model, which treats micelles as

linear polymers that can break apart and recombine

in solution. Regression of the data to the model pre-

dictions provides new insight into how these breakage

and recombination processes are affected by shear, and

demonstrates the importance of using information-rich

data to infer precise estimates of model parameters.
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1 Introduction

The rheology of surfactant solutions of wormlike mi-

celles (WLMs) has received considerable attention for

decades, in part because of the commercial significance

of these materials – which can be found in many com-

mon household products such as shampoos and surface

cleaners (Rubin and Van Blarcom 1983; Smith 1995), as

well as being used in industrial applications such as oil

extraction (Rodrigues 2015; Yang 2002) – and in part

because certain aspects of their rheology are described

by well-known phenomenological constitutive models,

thus making them ideal model materials. Selecting and

parameterizing an appropriate constitutive model for

WLMs and comparing the response in a nonlinear flow

enables us to tests the complete understanding of the

microstructural physics of these materials and how this

microstructure is connected to macroscopic mechanical

properties.

While it has been shown that the linear viscoelastic

response of multiple formulations of WLMs is consis-

tent with a simple single-mode Maxwell model, multi-

ple distinct constitutive models have been proposed to

describe the nonlinear rheology of these materials. For

instance, the Giesekus model has been employed to de-

scribe the medium amplitude oscillatory shear (MAOS)

signatures (Gurnon and Wagner 2012) and both the

parallel (PS) and orthogonal superposition (OS) re-

sponse of certain WLMs (Kim et al. 2013), while other

authors have used the Oldroyd 8-constant framework to

fit the nonlinear response of WLMs during the startup

of steady shear flow (Saengow et al. 2019). The Oldroyd

8-constant framework can accurately describe the mea-

sured rheology because of the number of adjustable pa-

rameters (Oldroyd and Wilson 1950), but has no direct

connection to the microstructural physics of WLMs.
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The Giesekus model, on the other hand, treats the elon-

gated micelles in solution as a physical network of de-

formable flexible polymers (Giesekus 1982). Though the

stretching, reptation, and interactions between micelles

can be understood in the same way as for polymers,

WLMs in solution undergo additional distinct physical

processes, such as breakage and recombination, which

are not considered in the Giesekus model (hence the

nomenclature ‘living polymers’). Thus both the Giesekus

model and Oldroyd 8-constant framework are clearly

deficient in their physical depiction of the wormlike mi-

crostructure.

Many of the deficiencies of the Giesekus and Ol-

droyd models are addressed in a constitutive model de-

signed by Cates specifically for WLMs (Cates 1990).

This model again treats the micelles as reptating poly-

mers in solution, with the key difference that it explic-

itly models the breakage and recombination reactions

of micellar structures. This “reptation-reaction” (RR)

model has been successfully applied to predict some

properties of WLMs, such as the flow curve measured

in steady shearing flow (Spenley et al. 1993). However,

applications of the model are limited, in part due to

it’s formulation as an implicit integral equation and the

complexity of the breakage and recombination survival

functions, all of which render analytical and numerical

solutions to the model more difficult than those for dif-

ferential equations such as the Giesekus and Oldroyd

models.

Despite the difficulty in solving the RR model for

strongly nonlinear flows, it is possible to obtain ex-

act analytical solutions to the model asymptotically.

The ability to obtain analytical solutions in asymp-

totic studies is particularly valuable for model fitting

applications, because it avoids the computationally ex-

pensive step of computing gradients of numerical so-

lutions to integral or differential constitutive models

with respect to model parameters. In this study, we

will use the framework of medium amplitude paral-

lel superposition (MAPS) rheology to obtain expres-

sions for the first and third order response functions

of the RR model that govern the weakly nonlinear be-

havior of the model in arbitrary simple shearing defor-

mation protocols (Lennon, McKinley and Swan 2020).

These response functions will be compared to experi-

mental MAPS data obtained for a cetylpyridinium chlo-

ride solution using a recently-developed three-tone os-

cillatory deformation protocol. This three-tone protocol

has been demonstrated to produce large and feature-

rich data sets with high data throughput (Lennon, Geri,

McKinley and Swan 2020), and a quantitative fit of the

RR model to this expansive data set will be performed

to gain new insight into the physics of the breakage and

recombination processes in this WLM system.

2 MAPS Rheology

When a complex fluid with time-invariant properties is

subjected to a simple shearing deformation, the result-

ing shear stress σ(t) is a nonlinear functional of the im-

posed shear strain γ(t). Just as analytic functions may

be written as polynomials in the form of the Taylor

series, the functional relationship between shear stress

and the strain history possesses a polynomial expan-

sion called the Volterra series. Within the framework of

MAPS rheology, only the linear and leading order non-

linear terms in this expansion are considered, resulting

in the following truncated frequency-domain Volterra

series (Lennon, McKinley and Swan 2020):

σ̂(ω) = G∗1(ω)γ̂(ω) (1)

+
1

(2π)2

∫ ∫ ∫ ∞

−∞

G∗3(ω1,ω2,ω3)γ̂(ω1)γ̂(ω2)γ̂(ω3)

× δ(ω −

3∑
m=1

ωm)dω1dω2dω3 +O(γ̂5).

Here, we express the shear stress in terms of its Fourier

transform:

σ̂(ω) =

∫ ∞

−∞

e−iωtσ(t)dt, (2)

and likewise for the shear strain. The third-order trun-

cated Volterra series reveals two response functions that

govern the medium amplitude, simple shear response

space. The first, G∗1(ω), is the complex modulus familiar

from linear viscoelastic theory. The response function

G∗3(ω1,ω2,ω3) is called the third order complex mod-

ulus. Working in the frequency domain is convenient

because it is often possible to directly obtain the ana-

lytical form for the third order complex modulus from

asymptotic analysis of constitutive models, and because

it is possible to directly measure this response function

at discrete points in three-frequency space (ω1,ω2,ω3)

for real viscoelastic materials (Lennon, Geri, McKinley

and Swan 2020). In the remainder of this work, we will

demonstrate these salient features of MAPS rheology

for the RR model and for a real surfactant solution of

WLMs.

Though equation 1 is written in terms of the com-

plex moduli, there are other representations of MAPS

rheology that may be more convenient in certain cir-

cumstances. These representations are obtained by in-

stead writing the shear stress as a functional of the

shear strain rate, or by writing the shear strain as a
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functional of the shear stress. We may define new re-

sponse functions for each representation, but in fact all

representations convey the same information. For in-

stance, in the stress-controlled Volterra series obtained

by swapping the stress and strain in equation 1, the

third order response function is called the third order

complex compliance, which is related directly to the

linear and third order complex moduli:

J∗3(ω1,ω2,ω3) =

−
G∗3(ω1,ω2,ω3)

G∗1(ω1)G∗1(ω2)G∗1(ω3)G∗1(ω1 + ω2 + ω3)
. (3)

While in Section 3.2 we find the solution for the third

order complex modulus in the RR model, we employ the

third order complex compliance in Section 5 to present

stress-controlled MAPS data obtained experimentally

for a solution of WLMs. For a more detailed description

of the mathematical foundations of MAPS rheology, we

refer readers to reference (Lennon, McKinley and Swan

2020).

3 The Reptation-Reaction (RR) Model for

Wormlike Micelles

3.1 Model Equations

In the RR model (Cates 1990), the stress tensor σ
obeys:

σ =
15

4
G0

[
W −

1

3
I

]
, (4)

with the tensor W governed by the following integral

equation:

W =

∫ t

−∞

B(v(t ′)) exp

[
−

∫ t

t′
D(v(t ′′))dt ′′

]
Q(Et′t )dt ′.

(5)

The wormlike micellar structures are abstracted as seg-

ments of a tube encapsulating the micelle as it is ori-

ented and deformed by the flow. New segments of tube

may be created or destroyed by breakage or recombi-

nation processes, or by elongation of the micelles. The

function B(v(t ′)) in equation 5 represents the rate at

which tube segments were created at time t ′ in the

past, while the function D(v(t ′′)) represents the rate

at which tube segments were destroyed at time t ′′ in

the past. The temporal dependence of these functions

comes through the time-varying rate of tube retraction

v(t):

v(t) = K (t) : W (t), (6)

where K (t) = ∇v is the velocity gradient tensor. The

tensor Q(Et′t ) describes the effect of tube elongation,

where Et′t is the deformation tensor describing the ac-

cumulated deformation between an arbitrary time t ′

and the present time t. In this sense, equation 5 in-

tegrates the contributions to the stress tensor due to

the elongation of tube segments created at time t ′ with

rate B(v(t ′)) over all past times, weighted by the cumu-

lative tube segment survival probability described by

an integral of D(v(t ′′)).
While the functions B(v), D(v), and Q(Et′t ) are pre-

scribed by the RR model, they are quite complex. They

are presented in full in Appendix A. Asymptotic expan-

sion of Q(Et′t ) is analytically tractable, and will be used

to obtain the solution for the third order complex mod-

ulus in the following section. However, it is not practical

to use the full expressions for B(v) and D(v) in analyt-

ical and numerical studies of the model. Rather, these

functions can be approximated with the constraint that

in the absence of deformation, tube segments are cre-

ated and destroyed at a rate set by the time scale τ

associated with curvilinear diffusion of micelles within

tube segments, B(0) = D(0) = τ−1, along with the con-

straints that B(v) ∼ −v for large negative values of v,

D(v) ∼ v for large positive values of v, and:

D − B = v, (7)

which preserves the net rate of tube retraction.

Although this single integral model makes signifi-

cant advances in modeling the physics of WLMs, it does

nonetheless exclude certain physical processes, such as

constraint release (CR) (Graham et al. 2003). Recently,

a more detailed microscopic modeling framework for

WLMs has been developed to include CR (Peterson

and Cates 2020); however, this framework consists of

a system of partial differential equations, for which an-

alytical solutions are difficult to obtain even in the lin-

ear regime. Moreover, whether CR processes play an

important role in the rheology of WLMs is not yet fully

appreciated, and it is thought that CR may be sup-

pressed or less important in these living polymer sys-

tems compared to in unbreaking entangled polymeric

systems (Spenley et al. 1993; Milner et al. 2001). There-

fore, in this study we neglect CR effects and consider

only the single integral modeling framework of the orig-

inal reptation-reaction model.

3.2 MAPS Response

Despite the complexity of the RR model compared to

the simpler differential forms of the Giesekus and Ol-

droyd models, it is still possible to obtain an exact
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analytical solution for the third order complex modu-

lus arising from the model. The detailed mathematical

steps involved in obtaining this expression are given in

the Supplemental Material, and the full expression for

the solution is left to Appendix B due to its complexity.

However, it is useful to note that the final expression

for the third order complex modulus can be written as

the sum of three contributions:

G∗3(ω1,ω2,ω3) = (α − 1)G∗3,B + αG∗3,D + G∗3,Q, (8)

where G∗3,B results from the nonlinear dependence of

the function B(v) on the deformation protocol, G∗3,D
from the nonlinear dependence of D(v) on the deforma-

tion protocol, and G∗3,Q from the nonlinear dependence

of the Q(Et′t ) tensor on the deformation protocol. The

parameter α is defined as follows:

α ≡
dD
dv

����
v=0

= 1 +
dB
dv

����
v=0

, (9)

to be consistent with equation 7. Because the approxi-

mations for the creation and destruction functions B(v)

and D(v) can take any form subject to the previously

described constraints, α may be treated as the single

adjustable parameter in the MAPS response of the RR

model. The only other model parameters, G0 and τ,

govern the linear response of the model, thus α is the

only adjustable parameter that may be used to fit the

model to weakly nonlinear data.

Equations 8 and 9 along with the expressions in Ap-

pendix B are significant in that they represent exact an-

alytical solutions for the RR model in unsteady, weakly

nonlinear shear flows. To the authors’ knowledge, no

other solutions for this model in unsteady nonlinear

flows presently exist. It is especially significant that,

due to the generality of MAPS rheology, the solution

presented in this section is actually valid for all un-

steady, weakly nonlinear shear flows of the RR model.

4 Materials and Methods

4.1 Wormlike Micellar Solution

The surfactant solution of wormlike micelles used in

this study consists of cetylpyridinium chloride (CPyCl),

sodium salicylate (NaSal), and sodium chloride (NaCl)

in de-ionized water at concentrations of 100:60:33 mM.

CPyCl and NaSal were supplied by Alfa Aesar, and

reagent grade NaCl was purchased from Sigma Aldrich.

This fluid formulation and the applied MAPS protocol

are the same as those used in previous work (Lennon,

Geri, McKinley and Swan 2020); however, we repeat the

experiments with a new batch of fluid for the purpose

of this study.

4.2 Rheometry

We perform a small amplitude oscillatory shear (SAOS)

frequency sweep and three-tone MAPS tests on the

WLMs using a DHR-3 Discovery Hybrid Rheometer

from TA instruments, with TRIOS software v5.0.0. All

tests were performed using a 60mm, 2◦ aluminum cone

with a truncation gap of 58µm, with the lower Peltier

plate maintained at 25◦C. To reduce the effects of sol-

vent evaporation, the cone-and-plate fixture was cov-

ered by a solvent trap and sealed using hexadecane oil.

4.3 Three-tone MAPS Experiments

To measure the third order complex compliance, we use

the stress-controlled three-tone oscillatory shear exper-

imental protocol developed in reference (Lennon, Geri,

McKinley and Swan 2020). This experimental protocol

is based on stress input signals of the form:

σ(t) = σ0 [sin(n1ω0) + sin(n2ω0) + sin(n3ω0)] . (10)

With the appropriate choice of the input parameters,

these three-tone input signals yield 19 measurements of

the third order complex compliance, J∗3(ω1,ω2,ω3), at

distinct coordinates in three-frequency space.

The stress amplitude σ0 may be selected based on

amplitude sweep data to minimize the combined effect

of bias from higher-order nonlinear effects and variance

from instrumental noise. The fundamental frequency ω0

selects the time scale probed by the three-tone experi-

ment, and the triplet of integers {n1,n2,n3} select how

the 19 measurements are distributed throughout three-

frequency space (independent of the frequency scale set

by the chosen value of ω0). For example, the integer

triplets {1,4,16} produce the spread of points depicted

in Figure 1a.

The measurements of J∗3(ω1,ω2,ω3) produced by these

three-tone MAPS experiments are complex-valued and

reside in a three-dimensional domain. Such high dimen-

sional data is not straightforward to visualize. However,

the data sets originating from MAPS experiments with

a single integer set {n1,n2,n3} have a particular struc-

ture which allows the data to be plotted using famil-

iar methods. This structure can be seen by examining

where each measured point intersects a constant L1-

norm surface. A surface with a constant L1-norm in

three dimensions is equivalent to a regular octahedron

as depicted in Figure 1b. Due to certain symmetries of

the third order complex compliance, we can guarantee

that all measured points will intersect this surface only

in one of the four colored hemiequilateral triangles la-

beled A, B, C, and D (Lennon, McKinley and Swan
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× 2
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B
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PS

MAOS

MAOS

D C
B A

ω2

ω3

ω1

|ω |1 = const

Fig. 1 a) The distribution of points at which the third order complex compliance is measured by a three-tone MAPS experiment
with input tones {n1, n2, n3 } = {1, 4, 16}. The selected value of the fundamental frequency ω0 of the three-tone input signal
can rescale this distribution, but does not affect the relative distribution of measured points. b) A constant L1-norm surface
in three-frequency space. MAPS response functions possess symmetry with respect to permutation of their arguments, and
Hermitian symmetry with respect to negation of their arguments. These symmetries reduce the domain on the L1 surface on
which MAPS response functions take unique values to the four colored subspaces: A, B, C, and D. c) Recording the positions
at which each point in (a) intersects an L1 surface as shown in (b) produces a 2D projection of coordinates that is independent
of the imposed frequency scale. These projections are set uniquely by the integer triplet {n1, n2, n3 }. Within each subspace in
this projection, we define a barycentric coordinate system which can be used to assign a unique RGB color to points within
that subspace. These colors are shown in (c) together with the location of other weakly nonlinear deformation protocols such as
medium amplitude oscillatory shear (MAOS) and parallel superposition (PS). For more details, see (Lennon, Geri, McKinley
and Swan 2020).

2020). For the example integer set {1,4,16}, recording

the locations on a single projection of these four sub-

spaces where data points intersect an L1-norm surface,

we obtain the projection of measured points shown in

Figure 1c. This projection is determined uniquely by

the selected integer set {n1,n2,n3} and is independent

of the fundamental frequency ω0.

Using the depiction of data points in Figure 1, we

may identify an alternative set of coordinates describing

the location of each data point within three-frequency

space. Within the projection of the four subspaces, we

may record the subspace name S containing a given

point, and within that subspace we may define a barycen-

tric coordinate system with three barycentric coordi-

nates – (r,g, b) – specifying the location of the data

point. The coordinate system is completed by record-

ing the L1-norm surface intersected by the data point,

|ω |1 = |ω1 | + |ω2 | + |ω3 |. To visualize the data from a

three-tone MAPS experiment, we can then create sep-

arate Bode or Nyquist plots for each subspace S, and

plot the magnitude and phase of the third order com-

plex compliance as a function of |ω |1. Points at different

barycentric coordinates can be distinguished by color,

with the coordinates (r,g, b) specifying the RGB color

of the points. Thus, by varying the fundamental fre-

quency ω0 with constant integer set {n1,n2,n3}, we im-

pose frequency sweeps at each barycentric coordinate,

which can be displayed on a shared set of axes. For

more details on the experimental design and visualiza-

ω (rad/s)

G
′ (ω

),G
′ ′ (ω

)(P
a)

SAOS sweep
MAPS sweepx

G′ (ω) G′ ′ (ω)

Fig. 2 The linear storage modulus, G′(ω), and loss mod-
ulus G′′(ω), of the CPyCl solution. Circles represent data
obtained by a SAOS frequency sweep, and crosses represent
data extracted from the three-tone MAPS experiments, with
the storage modulus shown in red and loss modulus shown in
blue. Data are compared to the predictions of the RR model
with an added Rouse contribution, represented by solid red
and dashed blue lines, respectively.

tion of three-tone MAPS experiments, we refer readers

to reference (Lennon, Geri, McKinley and Swan 2020).

5 Results

The linear viscoelasticity of the wormlike surfactant so-

lution was characterized via a stress-controlled small-
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amplitude oscillatory shear (SAOS) frequency sweep

over the frequency range of 0.1 through 100 rad/s at

a stress amplitude of 0.1 Pa. The measured linear stor-

age and loss moduli, G′(ω) and G′′(ω), are shown in

Figure 2. The data are compared to the linear response

of the RR model, which is equivalent to that of a single-

mode Maxwell model. To describe the high-frequency

upturn in the loss modulus, we superimpose a short-

time Rouse contribution onto the predictions of the RR

model (Cates 1990; Doi and Edwards 1986). Thus, the

storage and loss moduli are fit to the expressions:

G′(ω) =
G0τ

2ω2

1 + τ2ω2
, (11a)

G′′(ω) − cω1/2 =
G0τω

1 + τ2ω2
, (11b)

The data are fit to this expression using least-squares

regression, resulting in best-fit parameters of G0 = 43.2±

0.9 Pa, τ = 0.79 ± 0.02 s, and c = 0.330 ± 0.007 Pa·s1/2.

Uncertainties in the parameter estimates reflect local

estimates from the curvature of the least-squares ob-

jective function in the neighborhood of the minimum.

These uncertainty estimates are discussed in more de-

tail in the Supplemental Material.

Even without the additional contribution of the Rouse

modes at high frequency, the single-mode Maxwell pre-

dictions describe the LVE data remarkably well. This

agreement has been noted by numerous other authors

(Gurnon and Wagner 2012; Kim et al. 2013; Saengow

et al. 2019; Vasquez et al. 2007; Pipe et al. 2010). That

the RR model reduces to this prediction in the linear

regime is encouraging, but alone does not distinguish

it as more descriptive of the rheology of WLMs than

the Giesekus or Oldroyd models, which also reduce to

a single-mode Maxwell model in the linear regime. To

assess whether the RR model is truly able to capture

the rheological signatures of real WLMs requires mea-

surements in the nonlinear regime.

Three-tone MAPS experiments, as described in Sec-

tion 4.3, were conducted to study the nonlinear re-

sponse of the WLM solution. To exemplify the richness

of data from these tests, we run separate MAPS fre-

quency sweeps with the integer triplets {1,4,16} and

{5,6,9}, over the fundamental frequencies ω0 = 0.16,

0.32, 0.64, and 1.28 rad/s. These tests were each run

at separate stress amplitudes of σ0 = 0.7 Pa and two

replicates at σ0 = 0.35 Pa, and the linear and third or-

der response regressed from these tests using the poly-

nomial interpolation procedure described in (Lennon,

Geri, McKinley and Swan 2020). The real and imagi-

nary components of the linear viscoelastic complex mod-

ulus obtained from the three-tone MAPS experiments

are presented along with the (separately measured) small-

amplitude sweep data in Figure 2. The close agreement

between these two independent data sets is a positive

indication that a cubic polynomial sufficiently describes

the weakly nonlinear data without substantial bias from

higher-order nonlinearities. The third order complex

compliance data are presented in Figures 3 and 4 using

the visualization scheme previously discussed.

The MAPS data are compared to predictions of the

RR model, obtained by substituting the solution for

the third order complex modulus in equation 8, plus

the linear complex modulus in equation 11, into equa-

tion 3, using the parameters G0, τ, and c obtained from

the linear response. Therefore, while the parameter c
controlling the Rouse contribution to the loss modulus

does not enter predictions for the third order complex

modulus of the RR model, it does affect the third or-

der complex compliance implicitly through the linear

response terms in equation 3. The single adjustable pa-

rameter α in the MAPS response function was used to

fit the model predictions to the data using a weighted

least-squares scheme:

α̂ = arg min
α

[
(Ĵ(α) − J̃)TΣ−1(Ĵ(α) − J̃)

]
, (12)

where Ĵ(α) is a vector obtained by vertically concate-

nating the real and imaginary parts of the model pre-

diction for the third order complex compliance with a

particular value of α, J̃ is a vector obtained by verti-

cally concatenating the real and imaginary parts of the

experimental data set, and Σ is the covariance matrix
of the data. This weighted least-squares formulation is

appropriate when the noise signatures in the data are

expected to be normally distributed and uncorrelated,

in which case it is an unbiased, maximum likelihood

estimator (Singh et al. 2019).

Because the model prediction at third order is lin-

ear in α, this global minimum can be found analyt-

ically, and is in this case found to be α̂ = −0.1 ± 0.2.

With reference to equations 7 and 9, this corresponds to

a relatively small, even negative, slope in the destruc-

tion function D(v) at low shear rates (when v → 0),

and a substantially steeper zero-shear-rate slope in the

creation function B(v). Thus, when α < 0 the tube de-

struction rate initially decreases with deformation of

the microstructure in steady shear flow, before increas-

ing with larger deformation rates. The perhaps coun-

terintuitive result of negative α does not violate any

thermodynamic constraints, however, and we note that

the inferred range of α̂ = −0.1 ± 0.2 falls well within

the physical constraint required to ensure shear thin-

ning at small but finite shear rates, for which we re-

quire α > −59/14 (derived in the Supplemental Ma-

terial). The frequency-dependent trends for the third
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J3, 1,4,16 w RR fit
G

3 0|
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2,ω
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A B

C D

A B

C D

τ |ω |1 τ |ω |1
Fig. 3 The magnitude (left) and phase angle (right) of the third order complex compliance measured for the wormlike micellar
surfactant solution, obtained from a MAPS frequency sweep with {n1, n2, n3 } = {1, 4, 16} over the fundamental frequencies
ω0 = 0.16, 0.32, 0.64, and 1.28 rad/s. The data are divided into subspaces A, B, C, and D as labeled in the subpanels, and
are visualized according to the procedure described in Section 4.3 and in (Lennon, Geri, McKinley and Swan 2020), with
different colors also denoted by different symbols to aid in readability. Measured data are shown with symbols connected by
dashed lines, and predictions of the RR model with the best fit value of α = −0.1 are shown with solid lines. Data and model
predictions have been made dimensionless using the parameters G0 and τ inferred from the linear response data. Note that
the phase angle measured in subspace D for this experiment is positive rather than negative, because those measurements
correspond to a negative frequency channel in the output response.

J3, 5,6,9 w RR fit

A B

C D

A B

C D

arg
J* 3(ω 1

,ω
2,ω

3)

τ |ω |1

G
3 0|

J* 3(ω 1
,ω

2,ω
3)|

τ |ω |1
Fig. 4 The magnitude (left) and phase angle (right) of the third order complex compliance measured for the wormlike micellar
surfactant solution, obtained from a MAPS frequency sweep with {n1, n2, n3 } = {5, 6, 9} over the fundamental frequencies ω0 =

0.16, 0.32, 0.64, and 1.28 rad/s. The data are divided into subspaces A, B, C, and D as labeled in the subpanels, and are
visualized according to the procedure described in Section 4.3 and in (Lennon, Geri, McKinley and Swan 2020), with different
colors also denoted by different symbols to aid in readability. Measured data are shown with symbols connected by dashed lines,
and predictions of the RR model with the best fit value of α = −0.1 are shown with solid lines. Data and model predictions
have been made dimensionless using the parameters G0 and τ inferred from the linear response data.

order complex compliance predicted by the RR model

with α = −0.1 are presented alongside the experimental

MAPS data in Figures 3 and 4.

The close agreement between the experimental data

and the model predictions with α = −0.1 highlights the

strength of the RR model in describing the linear and

weakly nonlinear simple shear rheology of this WLM

solution. In nearly every case, the model is accurate

to within a factor of two in predicting the magnitude

of the measured third order complex compliance, and

is very often even more accurate than that. Moreover,

the trends with respect to both varying the frequency

L1-norm and with respect to changing barycentric co-

ordinates that are seen in the data are also predicted

by the RR model. The same is true of the phase an-

gle. The agreement between measurements and model
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J3, 1,4,16 w R fit

Pre
dic

ted
G

3 0|
J* 3(ω 1

,ω
2,ω
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arg
J* 3(ω 1

,ω
2,ω

3)

Measured G30 |J*3 (ω1, ω2, ω3) |

Measured arg J*3 (ω1, ω2, ω3)
Fig. 5 Parity plots of the magnitude (top) and phase
angle (bottom) of the third order complex compliance,
J∗3(ω1, ω2, ω3), comparing the values measured by the three-
tone MAPS experimental protocol to the values predicted
by the RR model with α = −0.1. Data from both MAPS
frequency sweeps (Figures 3 and 4) are shown on the same
axes, with points colored according to the scheme depicted in
Figure 1. Horizontal error bars correspond to the estimated
uncertainty in the data (Lennon, Geri, McKinley and Swan
2020), and vertical error bars reflect bounds on the model
predictions with α = −0.1 ± 0.2.

predictions across the entire data set can be captured

compactly by computing parity plots of the measured

and predicted magnitude and phase angle of the third

order complex compliance, as presented in Figure 5. In

the parity plot for the measured and predicted magni-

tude, nearly all data points are tightly scattered around

the line of parity. The only small systematic devia-

tions occur when the model slightly under-predicts the

data points with the largest magnitude, corresponding

to measurements at lower |ω |1. The data and model

predictions for the phase angle also lie close to par-

ity. Some slight systematic deviation from parity is ob-
served, which by comparison with Figures 3 and 4 can

α
(̂ J(

α)
−J̃

)T Σ−1
(̂ J(

α)
−J̃

) RR
Giesekus
CRM

Fig. 6 The weighted sum-of-squares error between the model
predictions Ĵ(α) and the experimental MAPS data J̃ as a
function of the single adjustable parameter α in the RR and
Giesekus models. The corresponding value of the weighted
sum-of-squares error for the corotational Maxwell model
(CRM), which does not have any adjustable parameters to
fit the MAPS data, is shown with a horizontal dashed line.

be associated with the data points measured at the

highest imposed frequency. The few data points that

deviate strongly from parity – namely four of the green

colored points in the parity plot of the magnitude, and

two green and one blue data points in the parity plot

of the phase angle – may not reflect a deficiency in

the model, but rather instrumental limitations, such

as bias from the moment of inertia of the cone-and-

plate fixture, or approaching the gap loading limit for

high-frequency nonlinear measurements (Lennon, Geri,

McKinley and Swan 2020). Still, the observation that

such close agreement between the RR model and MAPS

data can be achieved by determining only a single ad-

justable parameter is striking. Moreover, this observa-

tion, combined with the observation that the linear rhe-

ology in Figure 2 is well-described by a single-mode

Maxwell model, is consistent with the suggestion that

constraint release is indeed suppressed in this system.

The fit of the RR model to the experimental data

is even more impressive when we also consider how the

data compares to the predictions of other common con-

stitutive models. The Giesekus model has been pre-

viously shown to predict a frequency dependence in

both the magnitude and phase angle of the third order

complex compliance that is inconsistent with the data

shown in Figures 3 and 4 (Lennon, Geri, McKinley and

Swan 2020). This observation is further affirmed by ex-

amining parity plots of the Giesekus model prediction,

akin to those in Figure 5, which are presented in the

Supplemental Material and show the systematic devi-

ations between observation and prediction. The coro-

tational Maxwell model provides a better qualitative
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description of the experimental MAPS data, although

the results are still not as good a quantitative descrip-

tion as the best fit to the RR model. This result can

be rationalized by observing that the third order com-

plex modulus previously derived for the corotational

Maxwell model (Lennon, McKinley and Swan 2020)

closely resembles the contribution G∗3,Q to the third or-

der complex modulus of the RR model (equation 8), dif-

fering only by a constant factor of 7/6 (as derived in the

Supplemental Material). This slight difference in mag-

nitude, combined with enhancements in the predictions

from the terms G∗3,B and G∗3,D , account for the closer fit

and lower residual error of the RR model to the MAPS

data. Other models in the Oldroyd 8-constant frame-

work may also be able to reduce the discrepancy be-

tween the corotational Maxwell model predictions and

experimental data, but such fits lack the microstruc-

tural physical basis that is gained from the RR model.

To demonstrate the superiority of the RR model

in describing the MAPS data quantitatively, we plot

the value of the weighted sum-of-squares objective as

a function of the adjustable parameter α in the RR

and Giesekus models in Figure 6. For the RR model,

we display predictions in the range α ∈ [−1,1], and

for the Giesekus model we restrict α ∈ [0,1) to main-

tain the positive definiteness of the conformation ten-

sor (Hulsen 1990). The weighted sum-of-squares error

computed from the corotational Maxwell model, which

has no adjustable parameters that can be used to im-

prove the fit to the MAPS data, is shown with a dashed

horizontal line. The smallest value of the weighted sum-

of-squares error from the RR model is clearly less than

the minimal error obtained from either the corotational

Maxwell model or the Giesekus model, providing a quan-

titative confirmation that the RR model provides the

best fit of the models considered here to the experimen-

tal data obtained using our MAPS protocol.

The multi-tone MAPS test has proven here to be

a sensitive protocol for discerning between constitutive

models; however, it is one of many nonlinear tests avail-

able for characterizing complex fluids. Therefore, it is

important to consider whether the optimal model se-

lected using MAPS data describes other well-known

features of wormlike micellar solutions in different flows,

such as shear banding in steady shear flow (Salmon

et al. 2003; Moorcroft and Fielding 2014; Fardin et al.

2012). In Figure 7, we present the measured steady flow

curve for this wormlike micellar solution, which exhibits

a plateau indicative of shear banding for steady shear

rates Ûγ0 > 15 s−1. The predictions of the RR model

with α = −0.1 (and suitable approximations for B(v)

and D(v), provided in the Supplemental Material) are

shown in blue. The RR model alone (dashed line) pre-

σ(· γ
0)

(Pa
)

·γ0 (1/s)

RR
Giesekus
Data

Fig. 7 Steady shear flow curve for the WLM solution on
a semi-logarithmic scale. Filled symbols depict experimental
data, and blue lines show the predictions of the RR model
with α = −0.1 and using the approximations for B(v) and
D(v) provided in the Supplemental Material. Red lines show
the predictions of the Giesekus model with α = 0.88. Dashed
lines correspond to the raw model predictions, and solid lines
correspond to model predictions with a shear banding plateau
in the stress connecting the low-rate model predictions and
high-rate Rouse or solvent effects.

dicts a non-monotonic flow curve; therefore in combi-

nation with high-rate Rouse or solvent contributions, a

shear-banding plateau is predicted (solid line) which

coincides nearly exactly with the experimentally ob-

served plateau. The Giesekus model similarly predicts

a shear-banding plateau for α > 0.5; however, with the

optimal estimate of α = 0.88 inferred from MAPS, this

plateau underestimates that seen in the data. Thus, the

conclusion drawn from the MAPS data – that the RR

model more accurately describes the weakly nonlinear

shear rheology of this micellar solution – extends to the

steady flow behavior of the solution, indicating that

MAPS provides transferable insight into the nonlinear

rheology of complex fluids. How well this insight trans-

fers to other nonlinear properties, such as normal stress

differences in shear flows, is a potentially fruitful avenue

for future explorations.

6 Discussion

Because the RR model is derived from a microstructural

model, we may interpret the optimal estimate for α in

terms of real physical processes. Specifically, α relates

to the asymptotic dependence of the rates of creation

and destruction of tube segments on the rate of tube

contraction. In his presentation of the model, Cates as-

sumes that the functions approximating the creation

and destruction rates are symmetric about v = 0 – that
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is, that a small increase to the net rate of tube retrac-

tion is equivalently a result of decreased tube creation

rate and increased tube destruction rate. This symmet-

ric case is described by α = 0.5. However, our best es-

timate of α is slightly below zero, indicating that these

creation and destruction processes are not symmetric.

From equation 9, the best fit value of α = −0.1 ± 0.2

actually indicates that small increases in the net re-

traction rate are mostly due to a decreased rate of tube

segment creation as the shear rate is increased, and that

the rate at which tube segments are destroyed does not

initially change much as the material is deformed. This

asymmetry may be due, for instance, to different free

energy barriers required for the breakage and combi-

nation of micelles. Though a more detailed study of

this phenomenon is outside the scope of this work, we

note that insights such as this are not easy to obtain in

other modelling frameworks, but are facilitated by the

sensitivity of MAPS data to this specific feature of the

model.

To reach this conclusion regarding asymmetric tube

creation and destruction processes requires that a suffi-

ciently sensitive estimate of α can be extracted from ex-

perimental data, and that the hypothesis of symmetric

creation/destruction processes (corresponding to α =

0.5) lies outside the window of uncertainty. Due to the

large size and feature-rich nature of MAPS data sets,

it was possible to make an estimate with this preci-

sion. The sensitivity is also evident in Figure 6, which

demonstrates that the weighted sum-of-squares error in

the data set using the symmetric hypothesis of α = 0.5

is nearly double the error of the best fit, and is ac-

tually greater than the error for the simpler corota-

tional Maxwell model. The same sensitivity may not

be present in other tests. For example, we can also

prune the full MAPS data set presented in Figures 3

and 4 to include only the 24 data points present on

the third harmonic of each input tone in the three-tone

protocol (corresponding to three points from each of

the eight experiments with distinct ω0 and {n1,n2,n3}).
This data is consistent with the third harmonic data

that would be available in medium amplitude oscilla-

tory shear (MAOS) tests (Ewoldt and Bharadwaj 2013).

The resulting best estimate for the model parameter α

is instead α̂ = −0.2 ± 0.7 with this pruned data set.

The uncertainty in this estimate is now substantially

higher than the case when all 152 MAPS data points

are included (corresponding to 19 points from each of

the eight combinations of ω0 and {n1,n2,n3}), and now

is too large to effectively rule out the symmetric case

of α = 0.5. This is despite the fact that obtaining the

same number of third harmonic MAOS data points us-

ing single-tone tests would actually require more exper-

iments than were used to obtain all of the MAPS data

in Figures 3 and 4. Thus, three-tone MAPS tests are

able to provide information that is more sensitive to

specific nonlinear features of interest without requiring

more experimental work than other weakly nonlinear

techniques.

7 Conclusions

Constitutive modeling plays a critical role in under-

standing complex fluids and engineering their material

characteristics. Selecting the model that is most ap-

propriate for, and most descriptive of, a certain mate-

rial is a difficult and sometimes ambiguous task, but

nonetheless an important one. In many cases, it is de-

sirable to choose a microstructural model originating

from physical considerations about the material under

study, as this provides a conduit to understanding spe-

cific structural characteristics of the material that may

be designed to target specific material properties. How-

ever, for many constitutive models derived from mi-

crostructural physics, such as the RR model developed

by Cates for wormlike micellar fluids, quantitative com-

parisons to data can be quite difficult due to their more

complex mathematical structure compared to simpler,

phenomenological models. Without analytical solutions

to certain flows, for instance, tasks such as comparing

the model response to measured data and particularly

parameter estimation using experimental data become

much more laborious.

Using asymptotic analysis and the MAPS rheology

framework, however, it is often possible to obtain an-

alytical solutions for complicated constitutive models

at third order. In this work, we have used these tools

to obtain analytical solutions for the RR model in a

medium amplitude oscillatory flow for the first time.

These asymptotic solutions enabled us to construct a

weighted least-squares parameter estimation problem

that could be solved exactly, and which provided de-

tailed insight into a distinct physical feature driving

the weakly nonlinear rheological signatures of WLMs.

This insight was made possible by the large and feature-

rich MAPS data set obtained using a three-tone defor-

mation protocol. From constitutive modeling to experi-

mentation, this study has demonstrated that the MAPS

rheology framework can be a powerful tool for under-

standing and describing the nonlinear shear response of

complex fluids.
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A The Reptation-Reaction Model Equations

The stress tensor in the reptation-reaction model is speci-
fied by equations 4 and 5, along with the companion equa-
tion 6. Completing the model specifications requires equa-
tions for the tube creation rate B(v), destruction rate D(v),
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and the evolution of the Q(E t ′t ) tensor describing tube elon-
gation. The creation and destruction rates are specified by
two ensemble-averaged integrals over the position of the end
of a micelle, X(t):

D =
2

L̄τ̂

〈∫ ∞

0
e−t/τ̂ max

0<t ′<t
[X(t′)]dt

〉
, (13)

B =
2

L̄τ̂

〈∫ ∞

0
e−t/τ̂

(
max
0<t ′<t

[X(t′)] − X(t)

)
dt

〉
. (14)

Angular brackets here represent ensemble averages over the
stochastic processes of diffusion and reactions at the end of
the micelles, such as breakage and recombination. In these ex-
pressions, L̄ represents the time-averaged micelle length L(t),
and τ̂ a time scale related to the recombination process (this
time scale is distinct from the time scale τ defined in Section
3.1, which reflects a time scale associated with diffusion of
the end of the micelle).

The tensor Q(E t ′t ) represents the average orientation over
an isotropic distribution of unit vectors u:

Q(E t ′t ) =
1

4π

∫
S

[E t ′t · u][E t ′t · u]

|E t ′t · u |
d2u, (15)

where S represents the surface of the unit sphere, and |x |
represents the L2-norm of a vector x.

B MAPS Response of the Reptation-Reaction

Model

The third order complex modulus of the reptation-reaction
model may be written as the sum of three terms:

G∗3(ω1, ω2, ω3) = (α − 1)G∗3,B + αG
∗
3,D +G

∗
3,Q . (16)

The term G∗3,B represents the contribution due to nonlinearity
in the tube creation function B(v):

G∗3,B(ω1, ω2, ω3) = (17)

−
2G0

45

∑
j

∑
k, j

ω jωkτ
2

1 + iτω j

[
1

1 + iτ(ω j +ωk )
−

1

1 + iτ
∑

l ωl

]
.

The term G∗3,D represents the contribution due to nonlinear-
ity in the tube destruction function D(v):

G∗3,D (ω1, ω2, ω3) = (18)

2G0

45

∑
j

∑
k, j

iτω jωk

ω j +ωk

1

1 + iτω j

[
1

1 + iτ(ω j +ωk )

−
1

1 + iτ
∑

l ωl
+

1

1 + iτω6− j−k
− 1

]
.

The term G∗3,Q represents the contribution due to nonlin-

earity in the Q(E t ′t ) tensor. Because, in simple shear, Q(E t ′t )

may be written as a quadratic polynomial in the accumulated
strain (see the Supporting Information), this factor arises as
a time-strain separable contribution to the third order com-
plex modulus. It may therefore be expressed in terms of the
linear modulus (equation 11):

G∗3,Q (ω1, ω2, ω3) = (19)

−
1

7

G∗
(∑

j

ω j

)
−

∑
j

G∗
©­«
∑
k, j

ωk
ª®¬ +

∑
j

G∗(ω j )

 .

Finally, the parameter α is defined in terms of the limiting
slope of D(v) (or B(v)):

α ≡
dD

dv

����
v=0

= 1 +
dB

dv

����
v=0

, (20)

where v = 0 in simple shear corresponds to the limit of either
zero shear-rate or zero shear stress.
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