
MIT Open Access Articles

Private Constrained PRFs (and More) from LWE

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Brakerski, Zvika, Tsabary, Rotem, Vaikuntanathan, Vinod and Wee, Hoeteck. 2017.
"Private Constrained PRFs (and More) from LWE."

As Published: 10.1007/978-3-319-70500-2_10

Publisher: Springer International Publishing

Persistent URL: https://hdl.handle.net/1721.1/137864

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137864
http://creativecommons.org/licenses/by-nc-sa/4.0/

Private Constrained PRFs (and more) from LWE

Zvika Brakerski∗ Rotem Tsabary∗ Vinod Vaikuntanathan† Hoeteck Wee‡

Abstract

In a constrained PRF, the owner of the PRF key K can generate constrained keys Kf that
allow anyone to evaluate the PRF on inputs x that satisfy the predicate f (namely, where f(x)
is “true”) but reveal no information about the PRF evaluation on the other inputs. A private
constrained PRF goes further by requiring that the constrained key Kf hides the predicate f .

Boneh, Kim and Montgomery (EUROCRYPT 2017) presented a construction of private
constrained PRF for point function constraints, and Canetti and Chen (EUROCRYPT 2017)
presented a completely different construction for NC1 constraints. In this work, we show two
constructions of LWE-based constraint-hiding constrained PRFs for general predicates described
by polynomial-size circuits.

The two constructions are based on two distinct techniques that we show have further ap-
plicability by constructing weak attribute-hiding predicate encryption schemes. In a nutshell,
the first construction imports the technique of modulus switching from the FHE world into the
domain of trapdoor extension and homomorphism. The second construction shows how to use
the duality between FHE secret-key/randomness and ABE randomness/secret-key to construct
a scheme with dual use of the same values for both FHE and ABE purposes.

∗Weizmann Institute of Science, {zvika.brakerski,rotem.tsabary}@weizmann.ac.il.
†MIT, vinodv@mit.edu.
‡ENS, hoeteck@di.ens.fr.

Contents

1 Introduction 1
1.1 Our Results . 2

2 Technical Overview 4
2.1 Dual-Use of Secret and Randomness . 5
2.2 Modulus Switching and Trapdoor Extension in Hermite Normal Form 6
2.3 From PE to Constraint Hiding CPRF . 7

3 Preliminaries 8
3.1 Constrained Pseudo-Random Functions . 8
3.2 Weakly Attribute Hiding Predicate Encryption . 10
3.3 Learning With Errors . 11
3.4 Trapdoors and Discrete Gaussians . 11
3.5 Lattice Evolution . 12
3.6 Fully Homomorphic Encryption (FHE) . 13
3.7 The Banerjee-Peikert Pseudorandom Function . 13

4 Our First Construction: The Dual-Use Technique 14
4.1 Lattice Evolution of Matrix-Valued Functions . 14
4.2 Weakly Attribute-Hiding Predicate Encryption . 15
4.3 Constraint Hiding Constrained PRF . 19

5 Our Second Technique: Modulus Switching in HNF 21
5.1 Weakly Attribute Hiding Predicate Encryption . 22
5.2 Constraint Hiding Constrained PRF . 26

i

1 Introduction

Lattice-based cryptography, and in particular the construction of cryptographic primitives based
on the learning with errors (LWE) assumption [Reg05], has seen a significant leap in recent years.
Most notably, we now have a number of constructions of cryptographic primitives that “compute
on encrypted data”. For example, fully homomorphic encryption (FHE) [Gen09, BV11, BGV12,
GSW13], which enables arbitrary computation on encrypted data without knowledge of the secret
key; attribute-based encryption (ABE) [SW05, GPSW06, GVW13, BGG+14], which supports fine-
grained access control of encrypted data via the creation of restricted secret keys; new forms of
pseudo-random functions (PRF) such as constrained PRFs [BW13, KPTZ13, BGI14]; and many
more.

In this paper, we continue this line of inquiry and develop two new constructions of private
ABE schemes (also called predicate encryption [BW07,KSW08,BSW11,O’N10]) and two new con-
structions of private constrained PRFs [BLW17], private variants of ABE and constrained PRFs
respectively, that take us further along in the quest to extend the limits of computing on encrypted
data using LWE-based techniques. Our private constrained PRFs support polynomial-time com-
putable constraints, generalizing the recent results of Boneh, Kim and Montgomery [BKM17] for
point functions and Canetti and Chen [CC17] for NC1 functions.

In constructing these schemes, we develop two new techniques that we believe are as interesting
in their own right as the end results themselves. We proceed to introduce the protagonists of our
work and describe our results and techniques.

Predicate Encryption. Predicate Encryption (PE) is a strengthening of ABE with additional
privacy guarantees [BW07, KSW08, BSW11, O’N10]. In a predicate encryption scheme, cipher-
texts are associated with descriptive attributes x and a plaintext M ; secret keys are associated
with Boolean functions f ; and a secret key decrypts the ciphertext to recover M if f(x) is true
(henceforth, for convenience of notation later in the paper, we denote this by f(x) = 0).

The most basic security guarantee for attribute-based encryption as well as predicate encryp-
tion, called payload hiding, stipulates that M should remain private given its encryption under
attributes x∗ and an unbounded number of unauthorized keys, namely secret keys skf where f(x∗)
is false (we denote this f(x∗) = 1). The additional requirement in predicate encryption refers to
hiding the attribute x∗ (beyond leaking whether f(x∗) is true or false). It turns out that this re-
quirement, called attribute-hiding, can be formalized in two ways. The first is the definition of weak
attribute-hiding, which stipulates that x∗ remains hidden given an unbounded number of unautho-
rized keys. The second, called strong attribute-hiding, stipulates that x∗ remains hidden given an
unbounded number of keys, which may comprise of both authorized and unauthorized keys. Both
these requirements can be formalized using simulation-based and indistinguishability-based defini-
tions (simulation based strong attribute hiding is known to be impossible [AGVW13]); jumping
ahead, we remark that our constructions will achieve the stronger simulation-based definition but
for weak attribute hiding.

A sequence of works showed the surprising power of strong attribute-hiding predicate encryp-
tion [BV15a,AJ15,BKS16]. A strong attribute-hiding PE scheme (for sufficiently powerful classes
of predicates) gives us a functional encryption scheme [BSW11], which in turn can be used to build
an indistinguishability obfuscation (IO) scheme [BV15a,AJ15], which in turn has emerged as a very
powerful “hub of cryptography” [GGH+16,SW14].

1

The only strong attribute-hiding predicate encryption schemes we have under standard cryp-
tographic assumptions are for very simple functionalities related to the inner product predicate
[KSW08, BW07, OT12], and build on bilinear groups. On the other hand, Gorbunov, Vaikun-
tanathan and Wee (GVW) [GVW15a] recently constructed a weak attribute-hiding predicate en-
cryption scheme for all circuits (of an a-priori bounded polynomial depth) from the LWE assump-
tion. They also pointed out two barriers, two sources of leakage, that prevent their construction
from achieving the strong attribute-hiding guarantee. Indeed, Agrawal [Agr16] showed that both
sources of leakage can be exploited to recover the private attribute x∗ in the GVW scheme, under
strong attribute-hiding attacks in the GVW scheme (that is, using both authorized and unautho-
rized secret keys).1

Private Constrained PRFs (CPRFs). Constrained Pseudorandom Functions (CPRFs) [BW13,
KPTZ13, BGI14] are pseudorandom functions (PRF) where it is possible to delegate the compu-
tation of the PRF on a subset of the inputs. Specifically, an adversary can ask for a constrained
key σf corresponding to a function f , which is derived from the (global) seed σ. Using σf it is
possible to compute PRFσ(x) for all x where f(x) is true (in our notation, again, f(x) = 0). How-
ever, if f(x) = 1 then PRFσ(x) is indistinguishable from uniform even for an adversary holding σf .
The original definition considers the case of unbounded collusion, i.e. security against an adversary
that can ask for many different σfi , but this is currently only achievable for very simple function
classes or under strong assumptions such as multilinear maps or indistinguishability obfuscation.
Many of the applications of CPRFs (e.g. for broadcast encryption [BW13] and identity based key ex-
change [HKKW14]) rely on collusion resilience, but some (such as the puncturing paradigm [SW14])
only require releasing a single key. Brakerski and Vaikuntanathan [BV15b] showed that single-key
CPRF is achievable for all functions with a-priori depth bound and non-uniformity bound under
the LWE assumption.

Boneh, Lewi and Wu [BLW17] recently considered constraint hiding CPRFs (CH-CPRF or
private CPRFs) where the constrained key σf does not reveal f (so, in a sense, the constrained
key holder cannot tell whether it is computing the right value or not). They showed various
applications for this new primitive, as well as constructions from multilinear maps and obfuscation
for various function classes. Very recently, Boneh, Kim and Montgomery [BKM17] showed how
to construct single-key private CPRFs for point functions, and Canetti and Chen [CC17] showed
how to construct a single-key private CPRF for the class of NC1 circuits (i.e. polynomial-size
formulae). Both their constructions are secure under the LWE assumption. They also showed that
even collusion resistance against 2-keys would imply indistinguishability obfuscation.

The technical core of these constructions is lattice-based constructions of PRFs, initiated by
Banerjee, Peikert and Rosen [BPR12] and developed in a line of followup works [BP14, BLMR15,
BFP+15,BV15b].

1.1 Our Results

In this work, we present two new techniques for achieving the attribute-hiding guarantee from the
LWE assumption. We exemplify the novelty and usefulness of our techniques by showing that they
can be used to derive new predicate encryption schemes and new constraint-hiding constrained

1In addition, we also have several constructions of functional encryption schemes for computing inner products over
large fields [ABCP15,BJK15,ALS16] (as opposed to the inner product predicate) and for quadratic functions [Lin16,
Gay16] from standard assumptions.

2

PRFs [BLW17, CC17]. In particular, under the (polynomial hardness of the subexponential noise
rate) LWE assumption, we construct:

• Our main result is two constructions of single-key constraint-hiding constrained PRF families
for all circuits (of an a-priori bounded polynomial depth). This generalizes recent results
of [BKM17] who handle point functions and [CC17] who handle NC1 circuits. Our new
techniques allow us to handle arbitrary polynomial-time constraints (of an a-priori bounded
depth), which does not seem to follow from previous PE techniques, e.g., [GVW15a]. We
describe constrained PRFs, constraint-hiding and our constructions in more detail in the
sequel.

• Along the way to our main result, we also derive two new predicate encryption schemes that
achieve the weak attribute-hiding security guarantee. Our predicate secret keys are shorter
than in [GVW15a] by a poly(λ) factor. They also avoid the first source of leakage identified
in [GVW15a,Agr16]. We will describe these features in more detail in the sequel.

Technical Background. Like [GVW15a], we build a predicate encryption scheme starting from
an FHE and an ABE, following the “FHE+ABE” paradigm introduced in [GVW12,GKP+13] for
the setting of a-priori bounded collusions. The idea is to first use FHE to produce an encryption
Ψ of the attribute x, and use Ψ as the attribute in an ABE. This paradigm allows us to reduce
the problem of protecting arbitrary polynomial-time computation f on a private attribute x to
protecting a fixed computation, namely FHE decryption, on the FHE secret key. Henceforth, we
suppress the issue of carrying out FHE homomorphic evaluation on the encrypted attribute, which
can be handled via the underlying ABE as in [GVW15a], and focus on the issue of FHE decryption,
which is where we depart from prior works.

With all LWE-based FHE schemes [BV11,BGV12,GSW13,BV14,AP14], decryption corresponds
to computing an inner product modulo q followed by a threshold function. While constructing a
strongly attribute hiding PE scheme for this function class is still beyond reach,2 GVW construct
an LWE-based weakly attribute hiding scheme by extending previous works [AFV11], and show
how to attach it to the end of the decryption process of [BGG+14] ABE. Specifically, Agrawal,
Freeman and Vaikuntanathan [AFV11] showed how to construct weakly attribute hiding PE for
orthogonality checking modulo q, i.e. the class where attributes x and functions fy correspond to
vectors and decryption is possible if 〈x,y〉 = 0 (mod q). GVW rely on an additional feature of
LWE-based FHE: that the value to be rounded after the inner product can be made polynomially
bounded. Thus inner product plus rounding can be interpreted as a sequence of shifted inner
products that are supported by [AFV11]. This in particular means that an authorized decryptor
learns which of the shifts had been the successful one, a value that depends on the FHE randomness.
This is one of the reasons why the GVW scheme is not strongly attribute hiding; there are others
as described in [Agr16].

First New Technique: Dual Use. In this technique, we use the same LWE secret for the FHE
and the ABE. Our main observation is that the structure of the [BGG+14] ABE scheme and that of
the [GSW13] FHE scheme are so very similar that we can use the same LWE secret in both schemes.
This can be viewed as encrypting the attribute under some FHE key, and then providing partly
decrypted pieces as the ABE ciphertext. The PE decryption process first “puts the pieces together”

2There are constructions for function classes that semantically seem astonishingly similar, such as inner product
over the integers followed by rounding [ALS16] but there appears to be a big technical gap between these classes.

3

according to the FHE homomorphic evaluation function, which makes the ABE ciphertext decrypt
its own FHE component, leaving us with an ABE ciphertext which is ready to be decrypted using
the ABE key. Proving security for this approach requires to delicately argue about the randomness
used in the FHE encryption.

Second New Technique: Modulus Switching and HNF Lattice Trapdoors. In this tech-
nique, we attempt to implement the rounding post inner-product straightforwardly by rounding the
resulting ciphertext. This does not work since the attribute is encoded in the ciphertext in a robust
way, so it is not affected by rounding (this is why more sophisticated methods were introduced in
the past). However, we show how to homomorphically modify the rounding in a way that makes
the rounding effective for small noise, and yet preserves the most significant bits properly encoded.
Interestingly, for the proof of security of our PE scheme, we utilize the ability of generating trap-
doors for LWE lattices of the form [I‖A] (which corresponds to Hermite Normal Form), even when
generating a trapdoor for A itself is not possible.

We first construct predicate encryption schemes using our techniques, on the way to our main
results, which are constructions of constraint-hiding CPRFs for general constraints. With this ex-
ecutive summary, we move on to a more in-depth technical discussion of our results and techniques.

2 Technical Overview

We provide a brief overview of the GVW predicate encryption scheme, along with our constructions,
focusing on the points where they differ and supressing many technical details.

The [GVW15a] scheme. In the GVW scheme, the decryption algorithm on input an encryption
of x and the secret key for f , computes a vector over Zq of the form:

s[A‖Af − (f(x) · t+ δ)G] + noise (1)

where Af is deterministically derived from the public parameters and f (the precise derivation is
not relevant for the overview), and f(x) · t+δ corresponds to the inner product of a FHE ciphertext
(upon homomorphic evaluation) and the corresponding secret key. Here, δ is a small noise value
bounded by B, and t� B is a large constant, most commonly t =

⌊ q
2

⌉
(but we will also use other

values, see below). As usual in LWE-based constructions, the vector s is an “LWE secret”, and we
use noise to denote non-specific low norm noise that is added to the ciphertext and accumulates as
it is processed.3

Decryption should be permitted when f(x) = 0, which indicates that the policy f accepts the
attribute x, (and forbidden when f(x) = 1). Therefore, the GVW scheme gives out trapdoors for
the 2B + 1 lattices

[A‖Af − βG], ∀|β| ≤ B ,

and decryption tries all trapdoors until one works. This is called the “lazy OR” evaluation in
[GVW15a] and has at least two problems: (1) In the context of a predicate encryption scheme, this
ruins security by letting a successful decryption leak the FHE noise δ; and (2) Looking ahead, in
the context of a constraint-hiding CPRF scheme (where one switches the function f and the input
x), it ruins even correctness, preventing the holder of a constrained key from recovering the PRF
value s[A‖Ax]; rather, she only gets s[A‖Ax − βG] for some small noise term β.

3A knowledgeable reader might notice that in [GVW15a] there is a plus sign in Eq. (1) instead of the minus sign.
This alternative notation is equivalent and will be more useful for us.

4

Moving on, in the proof of security, a simulator needs to generate secret keys whenever f(x) = 1.
To this end, the reduction knows a short Rf for which

ARf = Af − (t+ δ∗)G (2)

We can then rewrite
[A‖Af − βG] = [A‖ARf + (δ∗ + t− β)G]

and since β − δ∗ − t 6= 0, we will be able to generate trapdoors for this lattice knowing only Rf

using the trapdoor extension techniques of [ABB10b,MP12].

2.1 Dual-Use of Secret and Randomness

Our first technique hinges on the key observation is that the structure of the [BGG+14] ABE
scheme and that of the [GSW13] FHE scheme are so very similar that we can use the same LWE
secret in both schemes; we refer to this as the “dual use” technique.

Instead of (1), we will compute a vector of the form

s[B‖Bf −Ψf] (3)

Here, Ψf denotes the GSW FHE ciphertext upon homomorphic evaluation under the key (s −1).
We stress that we are reusing s here. Concretely, Ψf can be written as:(

B

sB + e

)
Rf + f(x)G

where Rf is small. Ψf refers to Ψf with the bottom row Ψf deleted so that it has the same height
as B. Again, we need to first explain how to arrive at a vector of this form, and second, how to
generate secret keys for such vectors.

Compactification. Using techniques from ABE, we can generate vectors of the form:

s[B‖Bfj − ψf,jG]

where ψf,j ∈ Zq are the entries of Ψj and G refers to G with the bottom row deleted. In particular,
we can write

Ψf =
∑
j

ψf,j ·Ej

where Ej is a 0, 1-matrix whose j’th entry is 1 and 0 everywhere else. Then, we can write

Bf + Ψf =
∑
j

(Bfj − ψf,jG) ·G−1
(Ej)

Dual Use Decryption. The secret key for f is a trapdoor for the lattice [B‖Bf]. Observe that
whenever f(x) = 0, we have (s −1)Ψf ≈ 0 (property of GSW FHE), which means we can compute

s[B‖Bf −Ψf] + [0‖Ψf] ≈ s[B‖Bf]

and thus decrypt.

5

In order to generate secret key whenever f(x) = 1 in the proof of security, the reduction knows
a short Wf for which

BWf = Bf −Ψf

We can then rewrite

[B‖Bf] = [B‖BRf + Ψf] = [B‖B(Rf −Wf) + G]

and we will be able to generate trapdoors for this lattice knowing only Rf ,Wf .

2.2 Modulus Switching and Trapdoor Extension in Hermite Normal Form

The crux of this technique is to replace Eq. (1) with a computation producing a vector of the form

s[A′‖A′f − f(x)G′] + noise (4)

where G′ is a different gadget matrix and A′f is again deterministically derived from the public
parameters and f . We will also make sure to sample a small s, specifically from the LWE noise
distribution (this is known as LWE in Hermite Normal Form (HNF) and was shown equivalent to
the standard form [ACPS09]), the reason for doing so will be clear in a little bit. Next, we will
address two challenges: first, how to arrive at a vector of this form, and second, how to generate
secret keys for such vectors, both of which require new techniques.

Modulus Switching. We first describe how to get to Eq. (4) starting from Eq. (1) (to get to
the latter, we will proceed as in GVW). We would like to use the magnitude gap between t and δ,
and, inspired by modulus switching techniques in FHE [BV11,BGV12], “divide by t” to remove the
dependence on δ. This seems odd at first since t ·G and δ ·G actually have the same magnitude, so
dividing by t will not eliminate the δ component. Therefore we will first find a linear transformation
that maps δG into a matrix of small entries, while mapping t ·G into a gadget matrix with big
entries. Recall that eventually this transformation is to be applied to the processed ciphertext from
Eq. (1), so due to the noise component, we are only allowed linear operations with small coefficients
(or more explicitly, multiplying on the right by a matrix with small values).

As we pointed out δG and tG have the same magnitude so it might seem odd that a low-
magnitude linear transformation can shift them so far apart. However, since G is a matrix with
public trapdoor, it is possible to convert G into any other matrix M using a small magnitude
linear transformation which is denoted by G−1(M) (note that this is just a formal notation, since
G doesn’t have an actual inverse). Specifically, we will multiply by G−1(Gp), where Gp is the
gadget matrix w.r.t a smaller modulus p = q/t (we assume that p is integer). Recall that our
conceptual goal is to divide by t, and end up with a ciphertext in Zp, we can now reveal that indeed
G′ = Gp. Applying this transformation to the ciphertext results in

s[A‖AfG
−1(Gp)− f(x)tGp]− [0‖δsGp] + noise , (5)

and indeed, since we use low-norm s, we have that ‖δsGp‖ � q, and we can now think about it as
part of the noise. However, tGp is still not a valid gadget matrix over Zq. Still, we can now divide
the entire expression by t which results in

s
[
bA/te︸ ︷︷ ︸

A′

‖
⌊
AfG

−1(Gp)/t
⌉︸ ︷︷ ︸

A′f

−f(x)Gp

]
+ noise (mod p) , (6)

6

as in Eq. (4). This technique is reminiscent of the one used by Boneh, Kim and Montgomery [BKM17]
in constructing a private CPRF for point functions (but was obtained independently of theirs).

HNF Trapdoor Extension. The standard way to generate keys that decrypt whenever f(x) = 0
is to provide a trapdoor for [A′‖A′f] (over Zp) as in previous ABE schemes. Indeed, this will provide
the required functionality, but introduce problems in the proof. As in Eq. (2), the simulator can find
a low-magnitude Rf s.t. ARf = Af + (t + δ∗)G, however, when applying our modulus switching
from above, we get

A′R′f = A′f −Gp −E ,

where E is a low-magnitude error matrix which is the result of the bias introduced by δ∗ and various
rounding errors (note that E is easily computable given R′f). Therefore, we have that

[A′‖A′f] = [A′‖A′R′f + Gp + E] ,

which is no longer a form for which we can find a trapdoor using R′f .
To resolve this, we observe that we can find a trapdoor for the matrix [I‖A′‖A′f] = [I‖A′‖A′R′f+

Gp + E], which corresponds to generating trapdoors for lattices in Hermite Normal Form. This
follows from the trapdoor extension methods of [ABB10b,MP12] since

[I‖A′‖A′R′f + Gp + E] ·

 −E
−R′f

I

 = Gp .

We will therefore change the way secret keys are generated in our scheme, and generate them as
trapdoors for [I‖A′‖A′f] instead of trapdoors for [A′‖A′f]. This might seem problematic because our
ciphertext processes to s[A′‖A′f−f(x)G′]+noise as in Eq. (4) and not to s[I‖A′‖A′f−f(x)G′]+noise.
However, since s is short, the zero vector itself has the form 0 = sI + noise (with noise = −s), and
therefore we can always extend our ciphertext to this new form just by concatenating the zero
vector.

Comparison with GVW15 Predicate Encryption. [GVW15a] pointed out that there are two
barriers to achieving strongly attribute-hiding predicate encryption from LWE. First, multiple shifts
approach to handle threshold inner product for FHE decryption leaks the exact inner product and
therefore cannot be used to achieve full attribute-hiding. That is, authorized keys leak the FHE
decryption key and in turn the private attribute x. Second, we do not currently know of a fully
attribute-hiding inner product encryption scheme under the LWE assumption. Here, authorized
keys leak the error terms used in the ciphertext. Indeed, Agrawal [Agr16] showed that both sources
of leakage can be exploited to recover the private attribute x in the GVW scheme. Both of our
new constructions do not explicitly contain the first source of leakage.

2.3 From PE to Constraint Hiding CPRF

It was shown in [BV15b] that the [BGG+14] ABE structure can be used to construct constrained
PRFs for arbitrary bounded-uniformity bounded-depth functions, without collusion. Namely, a
pseudorandom function where it is possible to produce a constrained key σf for a function f whose
description length is a-priori bounded by ` and its depth is a-priori bounded by d, s.t. the constrained
key can be used to compute PRF(x) for all x where f(x) = 0. At a high level, they considered a

7

set of public parameters for the ABE scheme, and some ciphertext randomness s (currently not
corresponding to any concrete ciphertext). To compute the PRF at point x, the considered the
circuit Ux which is the universal circuit that takes an `-bit long description of a depth-d function,

and evaluates it on x. Now, they compute PRFs(x) =
⌊
sAUx
T

⌉
for a sufficiently large T . This

essentially the deterministic variant to setting PRFs(x) = sAUx + noise except here the noise is
deterministic since the PRF computation needs to be deterministic. The matrix AUx is exactly the
matrix that would be computed in the ABE decryption process if given a key skUx . The constrained
key corresponds to an ABE ciphertext encrypting the description of f Therefore, constrained keys
can be processed like ABE ciphertexts into the form s(AUx − Ux(f)G) + noise, for any circuit Ux.
Indeed, when f(x) = 0 the constrained key can be used to compute PRF(x). The construction
itself is more complicated and contains additional features to ensure pseudorandomness in all of
the points that cannot be computed using the constrained key.

This seems to be readily extendable to the PE setting, where the attribute hiding property
should guarantee the constraint hiding of the CPRF. Indeed, now as in Eq. (1), the constrained key
will only process to s(AUx−(tf(x)+δ)G)+noise. When f(x) = 0 this is equal to s(AUx−δG)+noise
which does not allow to compute the correct value.

However, it is easy to see how using either of our new methods it is possible to overcome this
issue. In a sense, in both methods the FHE noise which is embodied in the δ term is made small
enough to be conjoined with the noise. The modulus switching technique allows to remove the
δ term via multiplication by G−1(Gp) and dividing by t, and in the dual use method, the FHE
noise is not multiplied by G to begin with. There are many other technical details to be dealt
with, but they are resolved in ways inspired by [BV15b]. One technical difference between our
solution and [BV15b] is that we do not use admissible hash functions to go from unpredictability
to pseudorandomness, but instead we “compose” with the Banerjee-Peikert [BP14] pseudorandom
function, which saves some complication as well as tightens the reduction somewhat. This could
be used even in the setting of [BV15b] when constraint hiding is not sought.

Organization of the Paper. We start the rest of this paper with background information on
lattices, LWE, trapdoors and FHE schemes in Section 3. Our first technique, namely dual-use,
and the resulting PE and private CPRF scheme are presented in Section 4. Our second technique,
namely HNF trapdoors and modulus switching, and the resulting PE and private CPRF schemes
are presented in Section 5. These two sections can be read independently of each other. In each
section, we first present the PE scheme and then the private CPRF scheme.

3 Preliminaries

3.1 Constrained Pseudo-Random Functions

In a constrained PRF family [BW13, BGI14, KPTZ13], the owner of a PRF key σ can compute a
constrained PRF key σf corresponding to any Boolean circuit f . Given σf , anyone can compute
the PRF on inputs x such that f(x) = 0. (As described before, our convention throughout this
paper is that f(x) = 0 corresponds to the predicate f being satisfied). Furthermore, σf does
not reveal any information about the PRF values at the other locations. A constrained PRF
family is constraint-hiding if σf does not reveal any information about the internals of f . This
requirement can be formalized through either an indistinguishability-based or simulation-based

8

definition [BLW17,CC17,BKM17]. Below, we present the definition of a constrained PRF adapted
from [BV15b].

Definition 3.1 (Constrained PRF). A constrained pseudo-random function (PRF) family is de-
fined by a tuple of algorithms (KeyGen,Eval,Constrain,ConstrainEval) where:

• KeyGen(1λ, 1`, 1d, 1r) is a ppt algorithm that takes as input the security parameter λ, a circuit
max-length `, a circuit max-depth d and an output space r, and outputs a PRF key σ and
public parameters pp.

• Evalpp(σ, x) is a deterministic algorithm that takes as input a key σ and a string x ∈ {0, 1}∗,
and outputs y ∈ Zr;

• Constrainpp(σ, f) is a ppt algorithm that takes as input a PRF key σ and a circuit f :
{0, 1}∗ → {0, 1}, and outputs a constrained key σf ;

• ConstrainEvalpp(σf , x) is a deterministic algorithm that takes as input a constrained key σf
and a string x ∈ {0, 1}∗, and outputs either a string y ∈ Zr or ⊥.

Previous works define and analyze the correctness, pseudorandomness and constraint hiding
properties separately. However, for our purposes it will be easiest to define a single game that
captures all of these properties at the same time. This definition is equivalent to computational
correctness and selective punctured pseudorandomness [BV15b], and selective constraint hiding
[BLW15].

Definition 3.2. Consider the following game between a PPT adversary A and a challenger:

1. A sends 1`, 1d and f0, f1 ∈ {0, 1}` to the challenger.

2. The challenger generates (pp, seed) ← Keygen(1λ, 1`, 1d, 1r). It flips three coins b1, b2, b3
$←

{0, 1}, intuitively b1 selects whether f0 or f1 are used for the constraint, b2 selects whether a
real or random value is returned on queries non-constrained queries, and b3 selects whether
the actual or constrained value is returned on constrained queries.

The challenger creates seedf ← Constrainpp(seed, fb1), and sends (pp, seedf) to A.

3. A adaptively sends unique queries x ∈ {0, 1}∗ to the challenger (i.e. no x is queried more
than once). The challenger returns:

y =


⊥, if f0(x) 6= f1(x).
U(Zr), if (f0(x) = f1(x) = 1) ∧ (b2 = 1).
ConstrainEvalpp(σf , x), if (f0(x) = f1(x) = 0) ∧ (b3 = 0).
Evalpp(σ, x), otherwise.

4. A sends a guess (i, b′).

The advantage of the adversary in this game is defined as Adv[A] = |Pr[b′ = bi]− 1/2|. A family
of PRFs (KeyGen,Eval,Constrain,ConstrainEval) is a single-key constraint-hiding selective-function
constrained PRF if for every PPT adversary A, Adv[A] = negl(λ).

9

3.2 Weakly Attribute Hiding Predicate Encryption

Following prior works, we associate C(x) = 0 as true and authorized, and C(x) 6= 0 as false and
unauthorized.

Syntax. A Predicate Encryption scheme PE for input universe X , a predicate universe C, a
message space M, consists of four algorithms (PE.Setup,PE.Enc, PE.KeyGen,PE.Dec):

PE.Setup(1λ,X , C,M) → (pp,msk). The setup algorithm gets as input the security parameter
λ and a description of (X , C,M) and outputs the public parameter pp, and the master key
msk.

PE.Enc(pp, x, µ) → ct. The encryption algorithm gets as input pp, an attribute x ∈ X and a
message µ ∈M. It outputs a ciphertext ct.

PE.KeyGen(msk,C) → skC . The key generation algorithm gets as input msk and a predicate
C ∈ C. It outputs a secret key skC .

PE.Dec((skC , C), ct)→ µ. The decryption algorithm gets as input the secret key skC , a predicate
C, and a ciphertext ct. It outputs a message µ ∈M or ⊥.

Correctness. We require that for all PE.Setup(1λ,X , C,M)→ (pp,msk), for all (x,C) ∈ X × C
such that C(x) = 0, for all µ ∈M,

Pr

[
PE.Dec((skC , C), ct) = µ

]
≥ 1− negl(λ),

where the probabilities are taken over the coin of PE.Setup, skC ← PE.KeyGen(msk,C), ct ←
PE.Enc(pp, x, µ).

Definition 3.3 (PE (Weak) Attribute-Hiding). Fix (PE.Setup,PE.Enc,PE.KeyGen, PE.Dec). For
every stateful p.p.t. adversary Adv, and a p.p.t. simulator Sim, consider the following two experi-
ments:

expreal
PE,Adv(1λ): expideal

PE,Sim(1λ):

1: x← Adv(1λ,X , C,M)
2: (pp,msk)←

PE.Setup(1λ,X , C,M)
3: µ← AdvPE.KeyGen(msk,·)(pp)
4: ct← PE.Enc(pp, x, µ)
5: α← AdvPE.KeyGen(msk,·)(ct)
6: Output (x, µ, α)

1: x← Adv(1λ,X , C,M)
2: (pp,msk)←

PE.Setup(1λ,X , C,M)
3: µ← AdvPE.KeyGen(msk,·)(pp)
4: ct← Sim(mpk,X ,M)
5: α← AdvPE.KeyGen(msk,·)(ct)
6: Output (x, µ, α)

We say an adversary Adv is admissible if all oracle queries that it makes C ∈ C satisfy C(x) 6= 0
(i.e. false). The Predicate Encryption scheme PE is then said to be (weak) attribute-hiding if
there is a p.p.t. simulator Sim such that for every stateful p.p.t. adversary Adv, the following two
distributions are computationally indistinguishable:{

expreal
PE,Adv(1λ)

}
λ∈N

c
≈

{
expideal
PE,Sim(1λ)

}
λ∈N

10

3.3 Learning With Errors

The Learning with Errors (LWE) problem was introduced by Regev [Reg05]. Our scheme relies on
the hardness of its decisional version.

Definition 3.4 (Decisional LWE (DLWE) [Reg05] and its HNF [ACPS09]). Let λ be the security
parameter, n = n(λ) and q = q(λ) be integers and let χ = χ(λ) be a probability distribution over Z.
The DLWEn,q,χ problem states that for all m = poly(n), letting A← Zn×mq , s← Znq , e← χm, and

u← Zmq , it holds that
(
A, sA + e

)
and

(
A,u

)
are computationally indistinguishable. The problem

is equally hard in its “Hermite Normal Form”: when sampling s← χn.

In this work we only consider the case where q ≤ 2n. Recall that GapSVPγ is the (promise)
problem of distinguishing, given a basis for a lattice and a parameter d, between the case where the
lattice has a vector shorter than d, and the case where the lattice doesn’t have any vector shorter
than γ ·d. SIVP is the search problem of finding a set of “short” vectors. The best known algorithms
for GapSVPγ ([Sch87]) require at least 2Ω̃(n/ log γ) time. We refer the reader to [Reg05, Pei09] for
more information.

There are known reductions between DLWEn,q,χ and those problems, which allows us to ap-
propriately choose the LWE parameters for our scheme. We summarize in the following corollary
(which addresses the regime of sub-exponential modulus-to-noise ratio).

Corollary 3.1 ([Reg05, Pei09, MM11, MP12, BLP+13]). For any function B = B(n) ≥ Õ(
√
n)

there exists a B-bounded distribution ensemble χ = χ(n) over the integers s.t. for all q = q(n),
letting γ = Õ(

√
nq/B), it holds that DLWEn,q,χ is at least as hard as the quantum hardness of

GapSVPγ and SIVPγ. Classical hardness GapSVPγ follows if q(n) ≥ 2n/2 or for other values of q

for Ω̃(
√
n) dimensional lattices and approximation factor q/B · poly(ndlog qe).

3.4 Trapdoors and Discrete Gaussians

Let n, q ∈ Z,
g = (1, 2, 4, . . . , 2dlog qe−1) ∈ Zdlog qe

q

and m = ndlog qe. The gadget matrix G is defined as the diagonal concatenation of g n times.
Formally, G = g ⊗ In ∈ Zn×mq . For any t ∈ Z, the function G−1 : Zn×tq → {0, 1}m×t expands each
entry a ∈ Zq of the input matrix into a column of size dlog qe consisting of the bit-representation
of a. For any matrix A ∈ Zn×tq , it holds that G ·G−1(A) = A (mod q).

The (centered) discrete Gaussian distribution over Zm with parameter τ , denoted DZm,τ , is the

distribution over Zm where for all x, Pr[x] ∝ e−π‖x‖
2/τ2 .

Let n,m, q ∈ N and consider a matrix A ∈ Zn×mq . For all v ∈ Znq we let A−1
τ (v) denote the

random variable whose distribution is the Discrete Gaussian DZm,τ conditioned on A ·A−1
τ (v) = v

(mod q). If h
$← A−1

τ (v) then ‖h‖ ≤ kτ
√
m with probability at least 1− e−Ω(k2).

A τ -trapdoor for A is a procedure that can sample from a distribution within 2−n statistical
distance of A−1

τ (v) in time poly(n,m, log q), for any v ∈ Znq . We slightly overload notation and
denote a τ -trapdoor for A by A−1

τ . The following properties have been established in a long
sequence of works.

Corollary 3.2 (Trapdoor Generation [Ajt96, MP12]). There is a probabilistic polynomial-time
algorithm TrapGen(1n, q,m) that for all m ≥ m0 = m0(n, q) = O(n log q), outputs (A,A−1

τ0) s.t.
A ∈ Zn×mq is within statistical distnace 2−n from uniform and τ0 = O(

√
n log q log n).

11

We use the most general form of trapdoor extension as formalized in [MP12].

Theorem 3.3 (Trapdoor Extension [ABB10b, MP12]). Given A ∈ Zn×mq , with a trapdoor A−1
τ ,

and letting B ∈ Zn×m′q be s.t. A = BS (mod q) where S ∈ Zm′×m with largest singular value
s1(S) ≤ σ, then (A−1

τ ,S) can be used to sample from B−1
στ .

Note that since only an upper bound on the singular value is required, this theorem implies
that A−1

τ ′ is derived from A−1
τ whenever τ ≤ τ ′. A few additional important corollaries are derived

from this theorem. We recall that s1(S) ≤
√
nm ‖S‖∞ and that a trapdoor G−1

O(1) is trivial.

The first is a trapdoor extension that follows by taking S = [I ‖ 0].

Corollary 3.4. Given A ∈ Zn×mq , with a trapdoor A−1
τ , it is efficient to sample from [A‖B]−1

τ for
all B.

Next is a trapdoor extension that had been used extensively in prior work. It follows from
Theorem 3.3 with S = [−RT ‖I]T .

Corollary 3.5. Given Ā ∈ Zn×m′q , and R ∈ Zm′×m with m = ndlog qe, it is efficient to sample

from [Ā‖ĀR + G]−1
τ for τ = O(

√
mm′ ‖R‖∞).

Note that by taking Ā uniform and R to be a high entropy small matrix, e.g. uniform in
{−1, 0, 1} and relying on the leftover hash lemma, Corollary 3.2 is in fact a special case of this one.

The following shows a different method for trapdoor extension which corresponds to matrices
in Hermite Normal Form. This trapdoor generation method is mentioned in passing in [MP12]
as a method for improving parameters by relying on computational assumptions. Our use of this
property is quite different. Technically it follows from Theorem 3.3 with S = [−ET ‖ −RT ‖I]T .

Corollary 3.6 (Trapdoor Extension in HNF). Let n, q,m′ ≥ 1 and let m = ndlog qe. Given

Ā
$← Zn×m′q , R ∈ Zm′×m and E ∈ Zn×m, the trapdoor [I‖Ā‖ĀR+G+E]−1

τ is efficiently computable

for τ = O(
√
mm′ ‖R‖∞ +

√
mn ‖E‖∞).

3.5 Lattice Evolution

The following is an abstraction of the evaluation procedure in recent LWE based FHE and ABE
schemes that developed in a long sequence of works [ABB10b, MP12, GSW13, AP14, BGG+14,
GVW15b]. We use a similar formalism as in [BV15b,BCTW16] but slightly rename the functions.

Theorem 3.7. There exist efficient deterministic algorithms EvalF and EvalFX such that for all

n, q, ` ∈ N, and for any sequence of matrices (A1, . . . ,A`) ∈ (Zn×ndlog qe
q)`, for any depth-d Boolean

circuit f : {0, 1}` → {0, 1} and for every x = (x1, . . . , x`) ∈ {0, 1}`, the following properties hold.

• The outputs Hf = EvalF(f,A1, . . . ,A`) and Hf,x = EvalFX(f, x,A1, . . . ,A`) are both matri-
ces in Z(`ndlog qe)×ndlog qe;

• It holds that ‖Hf‖∞ , ‖Hf,x‖∞ ≤ (n log q)O(d).

• It holds that

[A1−x1G‖A2−x2G‖ . . . ‖A`−x`G] ·Hf,x = [A1‖A2‖ . . . ‖A`] ·Hf − f(x)G (mod q) (7)

We will call this the “key equation” for matrix evolution.

12

For a proof of this theorem, we refer the reader to [BV15b]. This evolution method was extended
by [AFV11,GVW15a] to show that in the case of the inner product function it is possible to compute
EvalFX with only one of the two operands.

Theorem 3.8. There exist efficient deterministic algorithms EvalFip and EvalFXip as follows. Let

n, q, `, ~A = (A1, . . . ,A`),x be as above. Let `′ ∈ N and ~B = (B1, . . . ,B`′) ∈ (Zn×ndlog qe
q)`

′
, and let

f : {0, 1}` → {0, 1}`′ be a depth d boolean circuit with `′ output bits. Then:

• Hf = EvalFip(f, ~A, ~B) and Hf,x = EvalFXip(f,x, ~A, ~B) are both in Z((`+`′)ndlog qe)×ndlog qe;

• It holds that ‖Hf‖∞ , ‖Hf,x‖∞ ≤ `
′(n log q)O(d);

• It holds that for all y ∈ Z`′(
[~A‖~B]− [x‖y]⊗G

)
·Hf,x = [~A‖~B] ·Hf − 〈f(x),y〉G (mod q) , (8)

where the inner product is over the integers (or equivalently modulo q).

We note that EvalFXip does not take y as input and furthermore that y can have arbitrary
integer values (not necessarily binary). We will later extend these theorems to functions that
output matrices in Section .

3.6 Fully Homomorphic Encryption (FHE)

A (secret-key) homomorphic encryption (HE) scheme w.r.t a function class F is a semantically
secure encryption scheme adjoined with an additional p.p.t. algorithm Eval s.t. for all f ∈ F and x ∈
{0, 1}` it holds that if sk is properly generated and cti = Encsk(xi), then Decsk(Eval(f, ct1, . . . , ct`)) =
f(x) with all but negligible probability. The following is a corollary of the [GSW13] encryption
scheme. We note that the common use of the scheme is with t = q/2 but we will use t ≈ √q in this
work.

Lemma 3.9 (Leveled FHE [GSW13]). Let q, n, t, d ≥ 1 and let χ be B-bounded. If q > 2t ≥
4B(ndlog qe)O(d) then there exists an FHE scheme for the class Fd of depth d circuits based on
DLWEn,q,χ with the following properties.

• The ciphertext length is `c = poly(ndlog qe).

• Decryption involves (i) preprocessing the ciphertext (independently of the secret key) into a
binary vector c ∈ {0, 1}`s for `s = poly(ndlog qe); (ii) taking inner product 〈c, s〉 (mod q)
for an integer secret-key vector s, which results in tµ + δ with |δ| ≤ B(ndlog qe)O(d); (iii)
extracting the output µ from the above expression.

Moreover, for any f ∈ Fd, the depth of f ′(·) = FHE.Eval(f, ·) is at most d′ = d·polylog(ndlog qe).

3.7 The Banerjee-Peikert Pseudorandom Function

Banerjee and Peikert [BP14] introduced an LWE-based key homomorphic pseudorandom function
which was the basis for the [BV15b] constrained PRF. While [BV15b] only drew from the ideas
in [BP14], we use their construction explicitly as a building block, which simplifies our analysis.
We present their construction using the our instance evolution terminology.

13

For all x ∈ {0, 1}`, consider the circuit (more precisely, arithmetic formula) Tx(y0, y1) which
computes the product

∏
i∈[`] yxi using a balanced binary multiplication tree. Note that we are never

actually computing Tx on any input. We are only using its formal combinatorial structure for the
purpose of evolution as described next.

Corollary 3.10 (follows from [BP14, Theorems 3.7, 3.8]). Let n, p, ` ≥ 1 be integers, let χ be B-
bounded and assume DLWEn,p,χ. Then there exists an efficiently computable randomized function

E : {0, 1}` → Zndlog pe with bounded norm ‖E‖∞ ≤ B
√
` · (ndlog pe)log `, such that, letting C0,C1

$←
Zn×ndlog pe
p and denoting ~C = (C0,C1), Cx = EvalF(Tx, ~C) for all x.

Fs(x) = sCx + E(x) (mod p)

is pseudorandom, where s
$← Znp . Furthermore, the same holds for

F ′d(x) = dG−1
p (Cx) + E(x) (mod p)

where d
$← Zndlog pe

p and Cx, E as above.

4 Our First Construction: The Dual-Use Technique

In this section, we present the dual-use technique and construct a new weakly attribute-hiding PE
scheme and a constraint-hiding constrained PRF based on LWE. We will use the machinery for
lattice evolution developed in Section 3.5. First, in Section 4.1, we extend this machinery to work
for computations that output not just scalars but matrices. Then, in sections 4.2 and 4.3, we
describe our weakly attribute-hiding PE scheme and a constraint-hiding constrained PRF scheme,
respectively.

4.1 Lattice Evolution of Matrix-Valued Functions

We first extend evolution of matrices from Section 3.5 to deal with functions whose output is a
matrix instead of a bit (we still treat the input as bits).

Notation. Given a matrix X ∈ Zn×n log q
q , we will index its n2 log q entries by numbers, for

convenience of notation (as opposed to the standard practice of using a pair of numbers to index
the row and column separately). We use xj,τ ∈ {0, 1} where j ∈ [n2 log q], τ ∈ [log q] to denote the
τ ’th bit of the j’th entry of X. This means that we can write

X =
∑
j,τ

xj,τ · 2τEj

where Ej is a 0, 1-matrix whose j’th entry is 1 and 0 everywhere else. Throughout, we use j ∈
[n2 log q], τ ∈ [log q] and i ∈ [`] and we avoid explicitly quantifying over these variables.

Matrix computation. Suppose f : x1, . . . , x` 7→ Xf where these matrices have the same dimen-
sions as A1,A2, . . . ,A`. Then, we require the following key relation between Hf and Hf,x:[

A1 − x1G
∣∣ · · · ∣∣A` − x`G

]
·Hf,x =

[
A1

∣∣ · · · ∣∣A`

]
·Hf −Xf (9)

14

Constructing Hf,x and Hf . Let fj,τ : x1, . . . , x` 7→ {0, 1} denote the function that outputs τ ’th
bit of the j’th entry of Xf . Then, we define Hf as follows.

Hf,j,τ := EvalF(fj,τ , {Ai}), Hf :=
∑
j,τ

Hf,j,τ ·G−1(2τEj)

Then, the key relation (Equation 9) follows readily from the following relations:[
A1 − x1G

∣∣ · · · ∣∣A` − x`G
]
·Hf,j,τ,x =

[
A1

∣∣ · · · ∣∣A`

]
·Hf,j,τ − xf,j,τG

and
∑
j,τ

xf,j,τG ·G−1(2τEj) = Xf

where the first equation is the key relation for functions with scalar output. These two relations
together show us that the setting of

Hf :=
∑
j,τ

Hf,j,τG
−1(2τEj), Hf,x :=

∑
j,τ

Hf,j,τ,xG−1(2τEj)

satisfies equation 9.

4.2 Weakly Attribute-Hiding Predicate Encryption

In this section, we describe the dual use technique and use it to construct a weakly attribute-hiding
predicate encryption scheme.

Notation. We use gadget matrices G ∈ Z(n+1)×(n+1) log q
q and we write G ∈ Zn×(n+1) log q

q to
denote all but the last row of G. Given a circuit computing a function f : {0, 1}` → {0, 1},
and GSW FHE encryptions Ψ := (Ψ1, . . . ,Ψ`) of x1, . . . , x`, we write Ψf to denote fhe.eval(f,Ψ).
Noting that Ψf is a matrix, we let Ψf denote the last row of Ψf , and Ψf to denote all but the last

row of Ψf . In addition, we write f̂ to denote the circuit that computes Ψ 7→ Ψf , namely it takes
as input the bits of Ψ and outputs the matrix Ψf .

We let e
σ←− Zm denote the process of sampling a vector e where each of its entries is drawn

independently from the discrete Gaussian with mean 0 and standard deviation σ over Z.

Our predicate encryption scheme works as follows.

• Setup(1λ, 1`, 1d): sample (B, TB) where B ∈ Zn×(n+1) log q
q and TB denotes the trapdoor for

B. Pick Bj
$← Zn×(n+1) log q

q and p
$← Znq . Output

mpk :=
(

B, {Bj}j∈[L],p
)
,

msk :=
(

TB

)
where L = ` · (n+ 1)2 log2 q.

15

• Enc(mpk,x,M ∈ {0, 1}): pick s
$← Znq , e, e0, ej

σ←− Zm, e′ σ←− Z,Ri ∈ {0, 1}(n+1) log q×(n+1) log q

and compute

Ψi :=

(
B

sTB + eT

)
Ri + xiG

Let ψ1, . . . , ψL denote the binary representation of Ψ := [Ψ1 | · · · | Ψ`]. Compute

cT0 := sTB + eT0 , cTj := sT [Bj − ψjG] + eTj

and κ := sTp + e′ +M · bq/2c (mod q).
The PE ciphertext consists of the FHE ciphertext Ψ and the ABE ciphertexts computed as
above. That is,

ct :=
(

Ψ, c0, {cj}j∈[L], κ
)

• KeyGen(msk, f): Let f̂ denote the circuit computing Ψ 7→ Ψf and

Hf̂ := EvalF(f̂ , {Bj}j∈[L]), Bf̂ := [B1 | · · · | BL] ·Hf̂

Sample a short skf using TB such that

[B | Bf̂] · skf = p

Output skf .

• Dec((skf , f), ct): Let f̂ denote the circuit computing Ψ 7→ Ψf and parse the ciphertext ct as
(Ψ, c0, {cj}j∈L, κ). Compute:

Ψf := f̂(Ψ)

Hf̂ ,Ψ := EvalFX(f̂ ,Ψ, {Bj}j∈[L])

cf̂ := [c1 | · · · | cL] ·Hf̂ ,Ψ + Ψf

Compute
κ′ := [c0 | cf̂] · skf

and output the MSB of κ− κ′.

We now analyze the correctness of the PE scheme (in the process setting the parameters) and prove
its (selective) security under the polynomial hardness of LWE with a sub-exponential modulus-to-
noise ratio.

Theorem 4.1 (Correctness). The PE construction above is correct as per Definition 3.2.

Proof. The key relation tells us that

[B1 − ψ1G | · · · | BL − ψLG] ·Hf̂ ,Ψ = [B1 | · · · | BL] ·Hf̂ −Ψf = Bf̂ −Ψf

Multiplying both sides by sT , we have

cf̂ ≈ sT [B1 − ψ1G | · · · | BL − ψLG] ·Hf̂ ,Ψ + Ψf

= sTBf̂ − sTΨf + Ψf

= sTBf̂ − [sT | −1] ·Ψf

≈ sTBf̂ − f(x) · [sT | −1] ·G

16

where the first approximate equality is because of the accumulated error which is a product of the
LWE errors and the low-norm matrix Hf̂ ,Ψ, the second equality is because of the key relation, and
the final approximate equality is because of the decryption equation of the GSW FHE scheme.
Then, when f(x) = 0,

κ′ := [c0 | cf̂] · skf ≈ sT [B | Bf̂] · skf = sTp

Now, decryption succeeds in recovering M since κ := sTp + e′ +M · bq/2c (mod q).

Setting Parameters. The error growth on FHE evaluation is by a multiplicative factor of
(n log q)O(df) where df is the depth of the circuit computing f . Furthermore, the error growth

on ABE evaluation has magnitude at most (n log q)O(df̂) where df̂ is the depth of the circuit that

performs GSW FHE evaluation for the function f . We know that df̂ = d ·poly(log n, log log q). The

total error growth thus has magnitude (n log q)d·poly(logn,log log q) which should be at most q/4 for
correctness.

On the other hand, we would like to set q = O(2n
ε
) for some constant ε so as to rely on the

hardness of sub-exponential-error LWE. It is possible to find a setting of parameters that satisfy
all these conditions, analogous to Section 5.1.

Theorem 4.2 (Security). The scheme PE is secure as per Definition 3.3 under the LWEn,q,χ
assumption, and thus under the worst case hardness of approximating GapSVP, SIVP to within a

2Õ(nε) factor in polynomial time.

Proof. We provide a proof sketch for selective security of the PE scheme.

First, we describe a set of auxiliary algorithms consisting of alternative algorithms (Setup∗,KeyGen∗,Enc∗)
that will be used in the proof of security. We are given A =

(
B
c

)
,p, p′ and the selective challenge

x∗. Here, (c, p′) is either (sTB + e, sTp + e′) or uniformly random.

Setup∗(B,p,x∗) : pick W′
j

$← {0, 1}n×(n+1) log q,Ri ∈ {0, 1}(n+1) log q×(n+1) log q. Compute

Ψi := ARi + x∗iG

Bj = BW′
j + ψjG

where, as before, ψj denote the bits of Ψ = [Ψ1 | · · · | Ψ`]. Output

mpk :=
(

B, {Bj}j∈[L],p
)
,

msk∗ :=
(
{W′

j}j∈[L]

)
Enc∗(B,p,x∗) : Compute

cT0 := cT , cTj := cTW′
j

Output
ct :=

(
Ψ, c0, {cj}j∈[L], p

′ +M · q/2
)

KeyGen∗(msk∗, f) : On input f such that f(x∗) 6= 0,

Bf̂ = [BW′
1 + ψ1G | · · · | BW′

L + ψLG] ·Hf̂

= [BW′
1 | · · · | BW′

L] ·Hf̂ ,Ψ + Ψf

= B(W′
f̂

+ Rf) + f(x∗)G

17

where

W′
f̂

:= [W′
1 | · · · |W′

L] ·Hf̂ ,Ψ, Ψf = ARf + f(x∗)G

We can then sample a short skf using W′
f̂

+ Rf such that

[B | Bf̂] · skf = p

Output skf .

We now proceed to describe a sketch of the proof of security through a sequence of games, using
the auxiliary algorithms described above.

Game 0. Real world.

Game 1. Switch to Setup∗,Enc∗ that are given A =
(
B
c

)
and use W′

j . When c is the LWE
vector relative to B, game 0 and game 1 are statistically close by an application of the leftover
hash lemma. (In this proof sketch, we ignore the issue of smoothing the errors in the ciphertext,
which can be done by noise flooding). Note that in this game, the challenger does not know the
LWE secret s.

Game 2. Switch to KeyGen∗ that uses (W′
j ,Ri) instead of TB. The difference between game 1

and game 2 is that in the former, secret keys are generated using TB whereas in the latter, they
are generated using W′

f̂
+ Rf , by employing the ABB trick [ABB10a]. Thus, games 1 and 2 are

statistically indistinguishable.

Game 3. Switch c in A from sTB + e to a random c (this changes both abe.ct and Ψ). Games
2 and 3 are computationally indistinguishable by the LWE assumption.

Game 4. switch from KeyGen∗ back to KeyGen. Games 3 and 4 are statistically indistinguishable
by the same argument as Games 1 versus 2.

Now, in game 4, we argue that x∗1, . . . , x
∗
n is information-theoretically hidden, as follows:

• First, note that the distribution of the NO keys only depends on [B | Bf̂], that is, on

(mpk, f,TB), and leak no information about the FHE encryption randomness R1, . . . ,Rn.

• Secondly, mpk and the ciphertext depend on the ψi’s and the W′
j ’s, but not on the FHE

encryption randomness R1, . . . ,Rn.

• Using these two observations, we argue that ψi hides x∗i . Indeed, by left-over hash lemma,
we know that ARi is statistically close to uniform given A =

(
B
c

)
, and therefore completely

hides x∗i .

18

Remark: Relation to the GVW15 Security Proof. Many of the steps in the proof are
analogous to what happens in GVW15. The crucial difference is that in GVW15, the leftover
hash lemma (LHL) was used to hide the FHE secret key which is embedded as part of the ABE
attributes. Using the fact that NO keys do not leak any information about the randomness Wj

used to simulate ABE ciphertext, one can apply LHL to this randomness and therefore, hide the
FHE secret key, and consequently, hiding the attributes. In our scheme, LHL is applied to the
randomness Rj used for FHE encryption, and not on the randomness W′

j used to simulate the
ABE ciphertext.

4.3 Constraint Hiding Constrained PRF

We now present a Constraint Hiding CPRF construction that relies on the [BV15b] CPRF together
with the dual use technique from Section 4.2.

Our constraint hiding CPRF scheme works as follows.

• CPRF.Keygen(1λ, 1`, 1`x , 1d) takes as input the security parameter λ, the maximum descrip-
tion length ` of constraint functions, their input length `x and depth d, and outputs public
parameters pp and a secret key σ for the CPRF scheme. Let L = ` · (n+ 1)2 log2 q.

Sample B,B1, . . . ,BL
$← Zn×(n+1) log q

q and D,C1, . . . ,C`x ∈ Zn×mq for some m = Ω(n log q).
Sample a uniformly random vector s ∈ Znq . Output

pp :=
(

B, {Bj}j∈[L], {Cj}j∈[`x],D
)
,

σ := s

• CPRF.Evalpp(σ, x) outputs the evaluation of the PRF on an input x.

Let Ux : {0, 1}` → {0, 1} be the circuit that takes as input a description of a function f and

outputs f(x). Now consider the circuit Ûx : {0, 1}L → Zn×(n+1) log q
q that takes as input a

GSW encryption f̂ of the description of f and outputs Ψx where Ψx = FHE.Eval(Ux, f̂).

Let Ûx denote the circuit computing Ψ 7→ Ψx and

HÛx := EvalF(Ûx, {Bj}j∈[L]), BÛx := [B1 | · · · | BL] ·HÛx

Compute Cx = EvalF(Tx,C1, . . . ,C`x) (as defined in Section 3.7) and fix Mx = DG−1(Cx).
The PRF output is

y =
⌊
sT ·BÛxG

−1(Mx)
⌉
.

• CPRF.Constrainpp(σ, f) outputs a constrained key σf .

Pick e, e0, ej
σ←− Zm,Ri ∈ {0, 1}(n+1) log q×(n+1) log q and compute GSW ciphertexts

Ψi :=

(
B

sTB + eT

)
Ri + fiG

where (f1, . . . , f`) is the description of the function f .

19

Let ψ1, . . . , ψL denote the binary representation of Ψ := [Ψ1 | · · · | Ψ`]. Compute

cT0 := sTB + eT0 , cTj := sT [Bj − ψjG] + eTj

The constrained key consists of the FHE ciphertext Ψ and the “ABE ciphertexts” computed
as above. That is,

ct :=
(

Ψ, c0, {cj}j∈[L]

)
• CPRF.ConstrainEvalpp(σf , x) takes as input a constrained key σf and an input x and outputs

a (potential) PRF output.

Let f̂ denote the circuit computing Ψ 7→ Ψx (as above) and parse the constrained key ct as
(Ψ, c0, {cj}j∈L). Compute:

Ψx := Ûx(Ψ)

HÛx,Ψ := EvalFX(Ûx,Ψ, {Bj}j∈[L])

cÛx := [c1 | · · · | cL] ·HÛx,Ψ + Ψx

Output

y′ =
⌊
cÛxG

−1(Mx)
⌉

Theorem 4.3 (Correctness, Pseudorandomness, Constraint Hiding). Under the DLWEn,q,χ hard-
ness assumption, CPRF is correct, pseudorandom and constraint hiding.

Proof. Correctness follows from a computation similar to the one in Section 4.2. In particular, the
key relation tells us that

[B1 − ψ1G | · · · | BL − ψLG] ·HÛx,Ψ = [B1 | · · · | BL] ·HÛx −Ψx = BÛx −Ψx

Multiplying both sides by sT , we have

cÛx ≈ sT [B1 − ψ1G | · · · | BL − ψLG] ·HÛx,Ψ + Ψx

= sTBÛx − sTΨx + Ψx

= sTBÛx − [sT | −1] ·Ψx

≈ sTBÛx − f(x) · [sT | −1] ·G

Then, when f(x) = 0, the constrained evaluation algorithm outputs

y =
⌊
cÛxG

−1(Mx)
⌉

=
⌊
sTBÛxG

−1(Mx)
⌉

which is indeed the PRF output on x. The error growth behaves as in the PE scheme and thus,
the parameters are set as in Theorem 4.1.

The proof of security closely follows the outline of Theorem 5.5 for our modulus-switching based
private CPRF construction. We omit the details from this version.

20

5 Our Second Technique: Modulus Switching in HNF

This section contains our PE and CH-CPRF constructions based on the modulus switching method.
We start with a technical lemma that explains how rounding is used to push the FHE noise into
the ABE noise, as explained in the introduction. This is followed by our construction of a Weakly
Attribute Hiding Predicate Encryption in Section 5.1 and our construction of Constraint Hiding
Constrained PRF in Section 5.2.

Throughout this section we denote bxep =
⌊
x
q/p

⌉
when the operand is x ∈ Zq and output in

Zp, for q, p that will be defined appropriately in the relevant sections. We extend this operator
to vectors and matrices by applying it element-wise. We start with the aforementioned rounding
lemma.

Lemma 5.1. Let n,m′, t, p be integers and consider q = t · p. Let FHE be the scheme guaranteed
in Lemma 3.9, with some depth bound d, let d′, B as in the lemma statement, and assume that t
conforms with the conditions of the lemma. Denote m = ndlog qe.

Let sk ∈ Z`sq ← FHE.Keygen(1λ) and x̃ ∈ Z`pq ← FHE.Enc(sk, x) for some x ∈ {0, 1}`, and for

any circuit f : {0, 1}` → {0, 1} define the circuit f ′ : {0, 1}`p → {0, 1}`s as f ′(·) = FHE.Eval(f, ·).
Let M ∈ Zn×m′p , ~A ∈ Zn×`pmq , ~B ∈ Zn×`smq . Denote

Af = [~A ‖ ~B] ·Hf , Ψf = [~A− x̃⊗ ~G ‖ ~B− sk⊗ ~G] ·Hf,x

where Hf = EvalFip(f ′, ~A, ~B) and Hf,x = EvalFXip(f ′, x̃, ~A, ~B). Then

1. Ψf = Af − (f(x) · t+ e)G where |e| ≤ BFHE = B(ndlog qe)O(d).

2.
⌊
ΨfG

−1(M)
⌉
p

=
⌊
AfG

−1(M)
⌉
p
− f(x)M + E where ‖E‖∞ ≤ 2 +

BFHE‖M‖∞
t .

Proof. By Theorem 3.8,

Ψf =
[
~A− x̃⊗ ~G ‖ ~B− sk⊗ ~G

]
·Hf,x

= [~A‖~B] ·Hf − 〈f ′(x̃), sk〉G
= Af − 〈FHE.Eval(f, x̃), sk〉G

where by Lemma 3.9, 〈FHE.Eval(f, x̃), sk〉 = t · f(x) + e with |e| ≤ B(ndlog qe)O(d), so (1) follows.
Moreover, ⌊

ΨfG
−1(M)

⌉
p

=
⌊
(Af − (t · f(x) + e)G)G−1(M)

⌉
p

=
⌊
AfG

−1(M)− t · f(x)M− eM
⌉
p

=
⌊
AfG

−1(M)− eM
⌉
p
− f(x)M

=
⌊
AfG

−1(M)
⌉
p
− f(x)M−E

where E = (e/t)M + ∆ for a rounding-errors matrix ‖∆‖∞ ≤ 2, and therefore ‖E‖∞ ≤ 2 + |e| ·
(‖M‖∞ /t).

21

5.1 Weakly Attribute Hiding Predicate Encryption

The scheme is parameterized by ε ∈ (0, 1) which governs the lattice hardness assumption that un-
derly the construction. Essentially, with parameter ε the scheme will be secure under the polynomial

hardness of approximating lattice problems to within a 2Õ(nε)-factor.

• PE.Setup(1λ, 1d) → (pp,msk). Define ` = λ (this is the supported attribute length). Set
n = (λd)1/ε. Let χ be the B = Õ(

√
n)-bounded distribution from Corollary 3.1. Let p, τ be

integer parameters set such that τ ≥ z1, p ≥ 4z2 · τ for parameters z1, z2 = 2d·polylog(n) that
will be specified throughout the analysis. Let t = Θ(p) and q = p · t. Denote m = ndlog qe.
Recall Corollary 3.2 and let m0 = m0(n, q) as in the corollary statement. Let FHE be the
scheme from Lemma 3.9 with depth parameter d, define `s, `c, d

′ as in the lemma statement,
and let `p = ` · `c.
Recall Corollary 3.2 and let m0 = m0(n, p) as in the corollary statement. Consider m′ =
max{(n + 1)dlog qe + 2λ,m0} (note that m0 is w.r.t p but m′ needs to be larger than (n +
1)dlog qe). Generate a matrix with a trapdoor (A,A−1

τ0)← TrapGen(1n, p,m′), i.e. A ∈ Zn×m′p .

Sample a uniform v
$← Znp . Generate uniform ~A

$← (Zn×mq)`p and ~B
$← (Zn×mq)`s .

Let msk = A−1
τ0 and pp = (A,v, ~A, ~B).

• PE.Encpp(µ, x) → ct. Generate sk ← FHE.Keygen(1λ), s.t. sk ∈ Z`sp and compute x̃ ←
FHE.Enc(sk, x). Sample a vector s

$← χn, an error vector e
$← χm

′
and an error scalar e

$← χ.

Sample RA
$← {0, 1}(m′×m)`p and RB

$← {0, 1}(m′×m)`s . Sample a matrix At
$← Zn×m

′

t and a

vector vt
$← Znt . Encrypt as follows:

u0 = sA + bsAt + eep (mod p)

uµ = sv + bsvt + eep + µbp/2e (mod p)

~a = s(~A− x̃⊗Gq) + eRA (mod q)

~b = s(~B− sk⊗Gq) + eRB (mod q)

Output ct = (x̃,u0,uµ, ~a, ~b).

• PE.Keygenmsk(f)→ skf . Define f ′(·) = FHE.Eval(f, ·) and compute Af = [~A‖~B] ·Hf , where

Hf ← EvalFip(f ′, ~A, ~B). Compute Âf =
⌊
AfG

−1(Gp)
⌉
p
. Use A−1

τ0 to sample [hf‖kf] =

[I‖A‖Âf]−1
τ (v), i.e. s.t. [A‖Âf]kf = v − hf (mod p). Output skf = kf .

• PE.Decpp(ct, skf) → µ. Compute Hf,x ← EvalFXip(f ′, x̃, ~A, ~B) and set af,x = [~a‖~b]Hf,x.
Compute âf,x = (1/t)(af,xG

−1(Gp)) and b′ = uµ− [u0‖âf,x]kf (mod p). Return 0 if |b′| < p
4

and 1 otherwise.

Analysis. Correctness and security are stated and proven next. We note that since q ≤ 2n regard-
less of the exact manner we choose p, τ we have that any polynomial of the form poly(λ,B, (ndlog qe)O(d′))
is upper bounded by a function of the form 2d·polylog(n). This is since ndlog qe ≤ n2, λ < n and
d′ = d · polylog(ndlog qe) = d · polylog(n).

Theorem 5.2 (Correctness). The PE construction above is correct as per Definition 3.2.

22

Proof. Let ct be an encryption of message µ under attribute x and let kf be a secret key for

a function f . Let Hf = EvalFip(f ′, ~A, ~B), Hf,x = EvalFXip(f ′, ~A, ~B), Af = [~A‖~B] · Hf , and

denote Ψf = [~A − x̃ ~G‖~B − sk~G] · Hf,x. By Lemma 5.1, Ψf = Af − (f(x) · t + e)G where
|e| ≤ BFHE = B(ndlog qe)O(d). Then

af,x = [~a‖~b]Hf,x

=
(
s([~A‖~B]− [x̃‖sk]⊗G) + e[RA‖RB]

)
Hf,x

= sΨf + e[RA‖RB]Hf,x

= s (Af − (f(x) · t+ e)G) + e[RA‖RB]Hf,x

Therefore,

âf,x =
af,xG

−1(Gp)

t

=
s (Af − (f(x) · t+ e)G) G−1(Gp)

t
+

e[RA‖RB]Hf,xG
−1(Gp)

t︸ ︷︷ ︸
e1

=
sAfG

−1(Gp)

t
− f(x)sGp−(e/t)sGp︸ ︷︷ ︸

e2

+e1

= s ·
⌊

AfG
−1(Gp)

t

⌉
− f(x)sGp + e1 + e2 + s∆︸︷︷︸

e3

,

where ∆ is the matrix of rounding errors, i.e. ‖∆‖∞ ≤ 1/2. We can bound the error e′ = e1+e2+e3

as follows: ‖e1‖∞ ≤ Bm′(`p + `s)(ndlog qe)O(d′)ndlog pe/t, ‖e2‖∞ ≤ nBp(ndlog qe)O(d)/t, ‖e3‖∞ ≤
nB/2. Note that `p, `s = poly(ndlog qe), hence ‖e′‖∞ ≤ poly(λ,B, (ndlog qe)O(d′)).

It follows that if indeed f(x) = 0 then âf,x = sÂf + e′. Now, recall that the distribution of

kf ,hf is Gaussian with parameter τ subject to [A‖Âf]kf = v − hf (mod p). Therefore ‖kf‖∞ ≤
τ
√
λ(m+m′) and ‖hf‖∞ ≤ τ

√
λn with all but 2−λ = negl(λ) probability. By definition,

u0 = sA + bsAt + eep , uµ = sv + bsvt + eep + µbp/2e

Denote e0 = bsAt + eep and eµ = bsvt + eep, then ‖e0‖∞ , |eµ| ≤ (n+ 1)B. Therefore,

b′ = uµ − [u0‖âf,x]kf

= sv + eµ + µbp/2e − s[A‖Âf − f(x)Gp]kf − [e0‖e′]kf
= µbp/2e+ eµ − shf − [e0‖e′]kf︸ ︷︷ ︸

e′′

+f(x)s[0‖Gp]kf

where |e′′| < τ · poly(λ,B, (ndlog qe)O(d′)). Therefore there exists some z2 = 2dpolylog(n) s.t. when
we set p > 4z2τ we get that |e′′| < p

4 . Hence, if f(x) = 0 then b′ = µbp/2e + e′′ ∈ µbp/2e ± p
4 and

in particular µ = 0 implies |b′| < p
4 and µ = 1 implies |b′| > p

4 .

Theorem 5.3 (Security). The scheme PE is secure as per Definition 3.3 under the LWEn,q,χ
assumption, and thus under the worst case hardness of approximating GapSVP, SIVP to within a

2Õ(nε) factor in polynomial time.

23

Sketch. Define the simulator Sim(pp) → ct that generates ct = (x̃,u0,uµ, ~a, ~b) by computing
x̃ ← FHE.Enc(sk, 0`) and sampling all the other ct parts uniformly from Zq as required. We now
show a sequence of hybrids, where the first hybrid corresponds to expreal and the last hybrid
corresponds to expideal with the simulator Sim we just defined.

Hybrid H0. This is expreal.

Hybrid H1. We change the Setup algorithm, specificaly the generation of ~A, ~B: Let x be
the attribute declared by the adversary. Generate sk ← FHE.Keygen(1λ) and compute x̃ ←
FHE.Enc(sk, x). Sample RA

$← {0, 1}m′×(m`p) and RB
$← {0, 1}m′×(m`s), and define

~A = (tA + At)RA + x̃⊗Gq, ~B = (tA + At)RB + sk⊗Gq .

A is statistically close to uniform in Zn×m′p and At is uniform in Zn×m
′

t , therefore the matrix
tA + At is close to uniform in Zq. Since each RA,RB are sampled uniformly and independently
and m′ ≥ (n+ 1)dlog qe+ 2λ, indistinguishability follows from the extended leftover hash lemma.

Hybrid H2. We change the Enc algorithm. Sample s ← χnq , e ← χm
′

q and e ← χq as in the
original encryption algorithm, then compute

u′0 = s(tA + At) + e, u′µ = s(tv + vt) + e .

Encrypt as follows:

u0 =
⌊
u′0
⌉
p
, uµ =

⌊
u′µ
⌉
p
, ~a = u′0RA, ~b = u′0RB.

The distributions remain as in the original scheme so statistical indistinguishability is maintained:

u0 =
⌊
u′0
⌉
p

= bs(tA + At) + eep = sA + bsAt + eep
uµ =

⌊
u′µ
⌉
p

= bs(tv + vt) + eep = sv + bsvt + eep
~a = u′0RA = (s(tA + At) + e)RA = s(~A− x̃⊗Gq) + eRA

~b = u′0RB = (s(tA + At) + e)RB = s(~B− sk⊗Gq) + eRB

Hybrid H3. We change the Keygen algorithm. We’re only required to generate keys for f s.t.
f(x) = 1, otherwise the adversary is not admissible. Recall that in PE.Keygen we sample from
[I‖A‖Âf]−1

τ (v), where Âf =
⌊
AfG

−1(Gp)
⌉
p

and Af = [~A‖~B] ·Hf . Using the notation

Ψf = [~A− x̃⊗Gq‖~B− sk⊗Gq] ·Hf,x ,

after the changes that were made in the previous hybrid, we have:

Ψf = [~A− x̃⊗Gq‖~B− sk⊗Gq] ·Hf,x = (tA + At)[RA‖RB] ·Hf,x .

24

so ⌊
ΨfG

−1(Gp)
⌉
p

=
⌊
(tA + At)[RA‖RB] ·Hf,xG

−1(Gp)
⌉
p

= A[RA‖RB] ·Hf,xG
−1(Gp) +

⌊
At[RA‖RB] ·Hf,xG

−1(Gp)
⌉
p

= A[RA‖RB] ·Hf,xG
−1(Gp) + E′

∥∥E′∥∥∞ ≤ (ndlog qe)O(d′)

and by Lemma 5.1,⌊
ΨfG

−1(Gp)
⌉
p

=
⌊
AfG

−1(Gp)
⌉
p
− f(x)Gp + E ‖E‖∞ ≤ 2 +

BFHE · p
t

Therefore, when f(x) = 1,

Âf =
⌊
AfG

−1(Gp)
⌉
p

=
⌊
ΨfG

−1(Gp)
⌉
p

+ Gp −E

= A[RA‖RB] ·Hf,xG
−1(Gp) + Gp + E′ −E

where ‖E′ −E‖∞ ≤ poly(λ,B, (ndlog qe)O(d′)). Given [RA‖RB]Hf,xG
−1(Gp) we can also compute

E′ −E, and then, by Corollary 3.6, we can compute the trapdoor [I‖A‖Âf]−1
τ for any τ ≥ z1 for

z1 = O(
√
mm′

∥∥[RA‖RB]Hf,xG
−1(Gp)

∥∥
∞ +

√
mn

∥∥E′ −E
∥∥
∞)

≤ poly(λ,B, (ndlog qe)O(d′)) ≤ 2d·polylog(n) .

We will choose our parameters so that indeed τ ≥ z1 which will allow us to sample from [In‖A‖Âf]−1
τ (v).

Note that in this hybrid A−1
τ0 is no longer used.

Hybrid H4. In Setup: Generate A uniformly instead generating it with a trapdoor. Statistical
indistinguishability holds by Corollary 3.2.

Hybrid H5. In Enc: Generate u′0,u
′
µ uniformly in Znq ,Zq respectively. This is indistinguishable

assuming hardness of DLWEq,n,χ. Note that now u0 = bu′0ep and uµ =
⌊
u′µ
⌉
p

are uniform in Znp ,Zp
as well.

Hybrid H6. In Enc: Genrate ~a and ~b uniformly from Zmp . This is indistinguishable by the
extended leftover hash lemma since u′0 is uniform, RA,RB were randomly and independently
generated and m′ ≥ (n+ 1)dlog qe+ 2λ. The only information that ct reveals now is x̃.

Hybrid H7. In Setup: Generate A together with a trapdoor (the opposite of Hybrid 4). Statistical
indistinguishability holds by Corollary 3.2.

Hybrid H8. In Keygen: Generate keys with A−1
τ0 (the opposite of Hybrid 3). Indistinguishability

holds since the keys are sampled from the same distribution.

Hybrid H9. In Setup: Generate the matrics ~A, ~B as in the real Setup algorithm (the opposite of
Hybrid 1). Indistinguishability holds by the leftover hash lemma.

25

Hybrid H10. Change x̃ to x̃← FHE.Enc(sk, 0`). By Lemma 3.9, those hybrids are indistinguish-
able under DLWEn,q,χ. In this hybrid the Enc algorithm is equivalent to the simulator Sim that
was defined at the beginning of the proof, therefore it is equivalent to expideal.

5.2 Constraint Hiding Constrained PRF

We present a constraint hiding constrained PRF scheme that supports all functions expressible by
boolean circuits of depth d, input length k and description length `, for predefined polynomials
`, k, d. We will rely on the hardness of LWE with sub-exponential noise to modulus ratio, as in
our predicate encryption scheme. Working with a predefined polynomial input length k makes
the analysis much simpler than [BV15b], however we note that relying on a different hardness
assumption (a variant of one dimensional SIS) it is possible to support a-priori unbounded inputs
as in [BV15b].

• CPRF.Keygen(1λ, 1`, 1k, 1d) → (pp, σ). We let n be a parameter to be chosen later as a
function of λ, `, k, d. We let q = p · t and t′ be s.t. t′|p. If we wish to rely on the hardness of

lattice problems with approximation ratio 2Õ(nε), then all values p, t, t′ will be of size 2Õ(nε) as
well. The resulting constrained PRF scheme will support constraint functions of description
length `, input length k and depth d. The PRF itself outputs random elements in Zp/t′ , i.e.
log(p/t′) bits of randomness.

Denote m = ndlog qe and m′ = ndlog pe. Let FHE be the scheme from Lemma 3.9 with
depth parameter d, define `c, `s, d

′ as in the lemma statement, where `c is the FHE ciphertext
length, `s is the FHE key length and d′ is the max depth of FHE.Evalpp(f, ·) for any f of
depth at most d. Denote `p = ` · `c. Let Gq and Gp denote the gadget matrices of dimensions
n× ndlog qe and n× ndlog pe respectively.

Generate ~A
$← (Zn×mq)`p and ~B

$← (Zn×mq)`s . Generate D
$← Zn×m′p and ~C = [C0‖C1]

$←
(Zn×m′p)2. Sample a vector s

$← χn and compute sk ← FHE.Keygen(1λ). Sample an error

vector eb
$← χm`s and let ~b = s(~B − sk ⊗ Gq) + eb. The public parameters are pp =

(~A, ~B, ~C,D, ~b) and the master seed is σ = (s, sk).

• CPRF.Evalpp(σ, x) → y ∈ Zp/t′ . Let Ux : {0, 1}` → {0, 1} be the circuit that takes as input

a description of a function f and outputs f(x). Now consider the circuit U ′x : {0, 1}`p →
{0, 1}`s that takes as input an encryption of a description of f , i.e. f̃ = FHE.Enc(sk, f), and
outputs FHE.Eval(Ux, f̃), i.e. an FHE encryption of f(x). Compute Ax = [~A‖~B] ·Hx, where
Hx ← EvalFip(U ′x, ~A, ~B). Compute Cx = EvalF(Tx, ~C) (as defined in Section 3.7) and fix
Mx = DG−1

p (Cx) mod p. Output

y =

⌊
s ·

AxG
−1
q (Mx)

t′ · t

⌉
.

• CPRF.Constrainpp(σ, f) → σf . Compute f̃ = FHE.Enc(sk, f). Sample an error vector ea
$←

χm`p and compute ~a = s(~A− f̃ ⊗Gq) + ea. Output σf = (~a, f̃).

26

• CPRF.ConstrainEvalpp(σf , x) → y′ ∈ Zr. Compute af,x = [~a‖~b] · Hf,x, where Hf,x ←
EvalFXip(U ′x, f̃ , ~A, ~B), and output

y′ =

⌊
af,xG

−1
q (Mx)

t′ · t

⌉

Analysis. The following will be useful in the security and correctness proof.

Lemma 5.4. Let d′ denote the depth of the circuit U ′x. Consider af,x and Ax as defined in
CPRF.ConstrainEval and CPRF.Eval, then:

af,xG
−1
q (Mx)

t
= s

AxG
−1
q (Mx)

t
− f(x)sMx + e′′

where ‖e′′‖∞ ≤ poly(λ,B, (ndlog qe)O(d′)).

Proof. Recall that ‖[ea‖eb]‖∞ ≤ B and ‖Hf,x‖∞ ≤ (ndlog qe)O(d′). Hence

af,x = [~a‖~b] ·Hf,x

= s [~A− f̃ ⊗Gq‖~B− sk⊗Gq] ·Hf,x︸ ︷︷ ︸
Ψx

+ [ea‖eb] ·Hf,x︸ ︷︷ ︸
e

where ‖e‖∞ ≤ poly(λ,B, (ndlog qe)O(d′)). Therefore

af,xG
−1
q (Mx)

t
=

(sΨx + e)G−1
q (Mx)

t
= s ·

ΨxG
−1
q (Mx)

t
+ e/t ·G−1

q (Mx)︸ ︷︷ ︸
e′

(10)

where ‖e′‖∞ ≤ poly(λ,B, (ndlog qe)O(d′)).
By Lemma 5.1, Ψx = Ax − (f(x) · t+ e)Gq where |e| ≤ BFHE = B(ndlog qe)O(d), therefore

ΨxG
−1
q (Mx)

t
=

AxG
−1
q (Mx)

t
− f(x)Mx − e/tMx︸ ︷︷ ︸

E

‖E‖∞ ≤ BFHE · (p/t) (11)

From Equations 10 and 11, we get

af,xG
−1
q (Mx)

t
= s ·

ΨxG
−1
q (Mx)

t
+ e′

= s ·

(
AxG

−1
q (Mx)

t
− f(x)Mx −E

)
+ e′

= s
AxG

−1
q (Mx)

t
− f(x)sMx +−sE + e′︸ ︷︷ ︸

e′′

where ‖e′′‖∞ ≤ poly(λ,B, (ndlog qe)O(d′)).

Theorem 5.5 (Correctness, Pseudorandomness, Constraint Hiding). Under the DLWEn,q,χ hard-
ness assumption, CPRF is correct, pseudorandom and constraint hiding.

Proof. Let A be a PPT adversary against CPRF and consider the game from Definiton 3.2. The
proof proceeds with a sequence of hybrids.

27

Hybrid H0. The game from the definition.

Hybrid H1. Change the way that the vectors ~a and ~b are computed in Constrain and Keygen
respectively: Define the matrices Â = ~A − f̃ ⊗Gq and B̂ = ~B − sk ⊗Gq. Then let ~a = sÂ + ea

and ~b = sB̂ + eb where ea
$← χm`p , eb

$← χm`s . This is simply a change in notation.

Hybrid H2. Change the Eval algorithm. Up to this hybrid, in Eval we computed Mx = DG−1
p (Cx)

and the output was

y =

⌊
s ·

AxG
−1
q (Mx)

t′ · t

⌉
.

Consider the vector d = sD + ed where ed ← χndlog pe. In this hybrid the output of Eval will be

y∗ =
⌊v

t′

⌉
where v =

af,xG
−1
q (Mx)

t
+ f(x)

(
dG−1

p (Cx) + E(x)
)

and E(·) is the function from Corollary 3.10, and in particular |E(x)| ≤ B
√
k · (ndlog pe)log k.

We analyse now the event that y∗ 6= y. Note that

dG−1
p (Cx) = s DG−1

p (Cx)︸ ︷︷ ︸
Mx

+ edG
−1
p (Cx)︸ ︷︷ ︸
e

= sMx + e ‖e‖∞ ≤ B · ndlog pe

By Lemma 5.4,

af,xG
−1(Mx)

t
= s · AxG

−1(Mx)

t
− f(x)sMx + e′′

∥∥e′′∥∥∞ ≤ poly(λ,B, (ndlog qe)O(d′))

Hence

y =

⌊
s · AxG

−1(Mx)

t′ · t

⌉
=

⌊
1

t′

(
af,xG

−1(Mx)

t
+ f(x)sMx − e′′

)⌉
=

⌊
1

t′

(
af,xG

−1(Mx)

t
+ f(x)

(
dG−1

p (Cx)− e
)
− e′′

)⌉

=

 1

t′

af,xG
−1(Mx)

t
+ f(x)

(
dG−1

p (Cx) + E(x)
)
− (f(x)E(x) + f(x)e + e′′)︸ ︷︷ ︸

e′′′


=

⌊
1

t′
(
v − e′′′

)⌉
where ‖e′′′‖∞ is bounded by a value E′ = poly(λ,B, (ndlog qe)O(d′), B

√
k ·(ndlog pe)log k). Therefore

y∗ 6= y only when there exists i ∈ [ndlog pe] such that the ith entry of the vector v is E′-close to
t′Z+ t′/2, i.e. when the ith entry of the vector tv is tE′-close to (t · t′)Z+ (t · t′)/2. Let Borderlinex
denote this event, then ¬Borderlinex =⇒ y∗ = y. We can bound the advantage in distinguishing
between this hybrid and the previous one by the probability of Borderline =

∨
x Borderlinex:

|AdvH2(A)−AdvH1(A)| ≤ Pr
H2

[Borderline]

28

Lemma 5.6. The following holds:

Pr
[∨
x∈{0,1}k

Borderlinex

]
≤ ndlog pe2kE′/t′ = negl(λ) , (12)

where the probability is over the randomness of the key generation algorithm in H2.

Proof. Fix an arbitrary value for x and some coordinate i ∈ [ndlog pe] and note that

tv = af,xG
−1
q (Mx) + f(x)t

(
dG−1

p (Cx) + E(x)
)

where af,x = [~a‖~b]Hf,x = s[Â‖B̂]Hf,x + [ea‖eb]Hf,x. Recall that ‖s‖∞ ≤ B < t < p, where
p, t are prime and q = p · t, so each entry of s is a unit in Zq. Simillarly,

∥∥Hf,xG
−1
q (Mx)

∥∥ ≤
(ndlog qe)O(d′) < t ≤ p and so each entry of Hf,xG

−1
q (Mx) is a unit in Zq.

Since [Â‖B̂] is uniform over Zn×m(`p+`s)
q , it follows that each entry of s[Â‖B̂]Hf,xG

−1
q (Mx)

is uniform over Zq and so the marginal distribution of the ith entry of tv as a function of the
randomness of Keygen is uniform over Zq. Therefore, the probability of this value being tE′-close
to (t · t′)Z + (t · t′)/2 is at most E′/t′. Applying the union bound over all possible values of x and
i, the lemma follows.

Note that in this hybrid, if f(x) = 0 then the output of Eval is identical to the output of
ConstrainEval, so the adversary has no advantage in guessing b3.

Hybrid H3. Change d: sample it uniformly from Zndlog pe
p . This change is computationally

indistinguishable under DLWEn,p,χ.

Hybrid H4. Change again Eval: compute v by first sampling a vector ux
$← Zmp and setting

v =
af,xG

−1
q (Mx)

t
+ f(x)ux .

Recall that the adversary can query each distinct x once. By Corollary 3.10, those hybrids are
indistinguishable under DLWEn,p,χ.

In this hybrid, if f(x) = 1 then the output of Eval is uniformly distributed over Zmp , so the
adversary has no advantage in guessing b2.

Hybrid H5. Change Constrain: compute f̃ as f̃ ← FHE.Enc(sk, 0). By Lemma 3.9, those hybrids
are indistinguishable under DLWEn,q,χ. At this stage the adversary has no information about f
and therefore it has no advantage in guessing b1, which completes the proof.

Choice of parameters. In order to satisfy the requirements in the above proof, we require that
ndlog pe2kE′/t′ = negl(λ). For the sake of concreteness, we will set negl(λ) to 2−λ. Recalling that
E′ = poly(λ,B, (ndlog qe)O(d′), B

√
k · (ndlog pe)log k), we get t′ ≥ 2O(λ+k+(d+log k)·polylog(n)). This

can be satisfied by setting n = (λkd)1/ε and setting t′ = 2Õ(nε) appropriately. Then p, t can be
chosen to be polynomially related in size to t′ s.t. t, t′, p/t′ are prime.

29

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the stan-
dard model. In EUROCRYPT, pages 553–572, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In CRYPTO, pages 98–115, 2010.

[ABCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In Jonathan Katz, editor, Public-
Key Cryptography - PKC 2015 - 18th IACR International Conference on Practice and
Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1,
2015, Proceedings, volume 9020 of Lecture Notes in Computer Science, pages 733–751.
Springer, 2015.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast crypto-
graphic primitives and circular-secure encryption based on hard learning problems.
In CRYPTO, pages 595–618, 2009.

[AFV11] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner
product predicates from learning with errors. In ASIACRYPT, 2011.

[Agr16] Shweta Agrawal. Interpolating predicate and functional encryption from learning with
errors. IACR Cryptology ePrint Archive, 2016:654, 2016.

[AGVW13] S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption:
New perspectives and lower bounds. CRYPTO, 2013.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO, pages 308–326, 2015.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
STOC, pages 99–108, 1996.

[ALS16] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption
for inner products, from standard assumptions. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part III, pages 333–362, 2016.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error.
In Garay and Gennaro [GG14], pages 297–314.

[BCTW16] Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee. Targeted homomor-
phic attribute-based encryption. In TCC, pages 330–360, 2016.

[BFP+15] Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie
Stevens. Key-homomorphic constrained pseudorandom functions. In Theory of Cryp-
tography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,
March 23-25, 2015, Proceedings, Part II, pages 31–60, 2015.

30

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
EUROCRYPT, pages 533–556, 2014.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Public-Key Cryptography - PKC 2014 - 17th International Confer-
ence on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina,
March 26-28, 2014. Proceedings, pages 501–519, 2014.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryp-
tion without bootstrapping. In ITCS, 2012.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product
encryption. In ASIACRYPT, pages 470–491, 2015.

[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable prfs from
standard lattice assumptions. In Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages 415–
445, 2017.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. In EUROCRYPT,
pages 852–880, 2016.

[BLMR15] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic prfs and their applications. IACR Cryptology ePrint Archive, 2015:220,
2015.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Boneh et al. [BRF13], pages 575–584.

[BLW15] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions
privately. IACR Cryptology ePrint Archive, 2015:1167, 2015.

[BLW17] Dan Boneh, Kevin Lewi, and David Wu. Constraining pseudorandom functions pri-
vately. In Public Key Cryptography (PKC) Conference, 2017. To appear.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudoran-
dom functions. In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages
353–370, 2014.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, pages 719–737, 2012.

31

[BRF13] Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors. Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. ACM,
2013.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In TCC, pages 253–273, 2011.

[BV11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In FOCS, 2011.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
Moni Naor, editor, Innovations in Theoretical Computer Science, ITCS’14, Princeton,
NJ, USA, January 12-14, 2014, pages 1–12. ACM, 2014.

[BV15a] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 171–190. IEEE Computer Society, 2015.

[BV15b] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part II, volume 9015 of Lecture Notes in Computer Science, pages 1–30.
Springer, 2015.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Salil P. Vadhan, editor, Theory of Cryptography, 4th Theory of Cryptography
Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceed-
ings, volume 4392 of Lecture Notes in Computer Science, pages 535–554. Springer,
2007.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru,
India, December 1-5, 2013, Proceedings, Part II, pages 280–300, 2013.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from lwe. In
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30
- May 4, 2017, Proceedings, Part I, pages 446–476, 2017.

[CHKP12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. J. Cryptology, 25(4):601–639, 2012.

[Gay16] Romain Gay. Functional encryption for quadratic functions, and applications to pred-
icate encryption. IACR Cryptology ePrint Archive, 2016:1106, 2016.

32

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178.
ACM, 2009.

[GG14] Juan A. Garay and Rosario Gennaro, editors. Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, volume 8616 of Lecture Notes in Computer Science. Springer, 2014.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. SIAM J. Comput., 45(3):882–929, 2016.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC, pages 555–564, 2013.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM
Conference on Computer and Communications Security, CCS 2006, Alexandria, VA,
USA, Ioctober 30 - November 3, 2006, pages 89–98. ACM, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 197–206. ACM, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Pro-
ceedings, Part I, volume 8042 of Lecture Notes in Computer Science, pages 75–92.
Springer, 2013.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, pages 162–179,
2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In Boneh et al. [BRF13], pages 545–554.

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, pages 503–523, 2015.

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomor-
phic signatures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld,

33

editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 469–477. ACM,
2015.

[HKKW14] Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adap-
tively secure constrained pseudorandom functions. Cryptology ePrint Archive, Report
2014/720, 2014. http://eprint.iacr.org/.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
669–684. ACM, 2013.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In Nigel P. Smart, editor, Ad-
vances in Cryptology - EUROCRYPT 2008, 27th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April
13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer Science, pages
146–162. Springer, 2008.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. IACR Cryptology ePrint Archive, 2016:257, 2016.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample com-
plexity of LWE search-to-decision reductions. In Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, pages 465–484, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, pages 700–718, 2012.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchi-
cal) inner product encryption. In EUROCRYPT, pages 591–608, 2012. Also, Cryptol-
ogy ePrint Archive, Report 2011/543.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 333–342,
2009.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 84–93, 2005.

34

http://eprint.iacr.org/

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987.

[SW05] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484.
ACM, 2014.

35

	Introduction
	Our Results

	Technical Overview
	Dual-Use of Secret and Randomness
	Modulus Switching and Trapdoor Extension in Hermite Normal Form
	From PE to Constraint Hiding CPRF

	Preliminaries
	Constrained Pseudo-Random Functions
	Weakly Attribute Hiding Predicate Encryption
	Learning With Errors
	Trapdoors and Discrete Gaussians
	Lattice Evolution
	Fully Homomorphic Encryption (FHE)
	The Banerjee-Peikert Pseudorandom Function

	Our First Construction: The Dual-Use Technique
	Lattice Evolution of Matrix-Valued Functions
	Weakly Attribute-Hiding Predicate Encryption
	Constraint Hiding Constrained PRF

	Our Second Technique: Modulus Switching in HNF
	Weakly Attribute Hiding Predicate Encryption
	Constraint Hiding Constrained PRF

