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ABSTRACT

The way we perceive a sound depends on many aspects–
its ecological frequency, acoustic features, typicality, and
most notably, its identified source. In this paper, we present
the HCU400: a dataset of 402 sounds ranging from easily
identifiable everyday sounds to intentionally obscured ar-
tificial ones. It aims to lower the barrier for the study of
aural phenomenology as the largest available audio dataset
to include an analysis of causal attribution. Each sample has
been annotated with crowd-sourced descriptions, as well as
familiarity, imageability, arousal, and valence ratings. We
extend existing calculations of causal uncertainty, automating
and generalizing them with word embeddings. Upon analysis
we find that individuals will provide less polarized emotion
ratings as a sound’s source becomes increasingly ambiguous;
individual ratings of familiarity and imageability, on the other
hand, diverge as uncertainty increases despite a clear negative
trend on average.

Index Terms— auditory perception, causal uncertainty,
affect, audio embeddings

1. MOTIVATION

Despite a substantial body of literature, human auditory pro-
cessing remains poorly understood. In 1993, Gaver intro-
duced an ecological model of auditory perception based on
the physics of an object in combination with the class of
its sound-producing interaction [1]. He suggests that ev-
eryday listening focuses on sound sources, while musical
listening focuses on acoustic properties of a sound, and that
the difference is experiential. Current research has corrob-
orated this distinction– studies show that listeners primarily
group sounds by category of sound-source, sometimes group
sounds by location/context, and only in certain conditions fa-
vor groupings by acoustic properties [2, 3]. Recent work with
open-ended sound labeling demonstrates that limited cate-
gorization tasks may encourage more detailed descriptions
along valence/arousal axes (i.e. for animal sounds) or using
acoustic properties (i.e. for mechanical sounds) if sound-
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source distinctions are too limited for the categorization task
[4].

It has been suggested that non-verbal sounds from a liv-
ing source are processed differently in the brain than other
physical events [5]. Symbolic information tends to underly
our characterization of sounds from humans and animals (i.e.
yawning, clapping), while acoustic information is relied on
for other environmental sounds [6, 7, 8]. Furthermore, in [9]
Dubois et al. demonstrated that, for complex scenes, the per-
ception of pleasant/unpleasantness was attributed to audible
evidence of human activity instead of measurable acoustic
features.

It is clear from the above research that any examination
of sound phenomenology must start with a thorough charac-
terization of a sound’s interpreted cause. In many cases how-
ever, a sound’s cause can be ambiguous. In [10] Ballas intro-
duced a measure of casual uncertainty (Hcu) based on a large
set of elicited noun/verb descriptions for 41 everyday sounds:
Hcui =

∑n
j pij log2pij . (For sound i, pij is the proportion

of labels for that sound that fall into category j as decided by
experts reviewing the descriptions). He shows a complicated
relationship between Hcu and the typicality of the sound, its
familiarity, the average cognitive delay before an individual
is able to produce a label, and the ecological frequency of the
sound in his subjects’ environment. Hcu was further explored
in [11] using 96 kitchen sounds. Lemaitre et al. demonstrated
that Hcu alters how we classify sounds: with low causal un-
certainty, subjects cluster kitchen sounds by their source; oth-
erwise they fall back to acoustic features.

In this paper, we introduce the HCU400 dataset– the
largest dataset available for studying everyday sound phe-
nomenology. In this dataset, we include 402 sounds that were
chosen to (1) capture common environmental sounds from
everyday life, and (2) to fully sample the range of causal
uncertainty. While many of the sounds in our dataset are
unambiguous, over 100 of the sounds are modified to inten-
tionally obscure their source– allowing explicit control of
source-dependent effects.

As part of the dataset, we include high-level emotional
features corresponding to each sound’s valence and arousal,
in line with previous work on affective sound measurement
[12]. We also account for features that provide other insights
into the mental processing of sound– familiarity and image-
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ability [13, 14]. We explore the basic relationships between
all of these features.

Finally, we introduce word embeddings as a clustering
technique to extend the original Hcu, and apply it to the free
response labels we gathered for each sound in the dataset.
Deep learning has provided a new tool to represent vast
amounts of semantic data in a highly compressed form; these
techniques will likely make it possible to model and gener-
alize source-dependent auditory processing phenomena. The
HCU400 represents a first step in that direction.

Fig. 1. A screenshot of the interface shown to AMT workers.

2. DATASET OVERVIEW

The HCU400 dataset consists of 402 sound samples and 3
groups of features: sound sample annotations and associated
metadata, audio features, and semantic features. It is available
at github.com/mitmedialab/HCU400.

2.1. Sourcing the Sounds

All sounds in the dataset are sourced from the Freesound
archive (https://freesound.org). We built tools
to rapidly explore the archive and re-label sound samples,
searching for likely candidates based on tags and descrip-
tions, and finally filtering by star and user ratings. Each
candidate sound was split into 5 second increments (and
shorter sounds were extended to 5 seconds) during audition.

A major goal in our curation was to find audio samples
that spanned the space from “common and easy to identify”
to “common but difficult to identify” and finally to “uncom-
mon and difficult to identify”. We explicitly sought an even
distribution of sounds in each broad category (approximately
130 sounds) using rudimentary blind self-tests. In sourcing
sounds for the first two categories, we attempted to select
samples that form common scenes one might encounter, such
as kitchen, restaurant, bar, home, office, factory, airport,
street, cabin, jungle, river, beach, construction site, warzone,
ship, farm, and human vocalization. We avoided any samples
with explicit speech.

To source unfamiliar/ambiguous sounds, we include a
handful of digitally synthesized samples in addition to ar-
tificially manipulated everyday sounds. Our manipulation
pipeline applies a series of random effects and transforms
to our existing samples from the former categories, from
which we curated a subset of sufficiently unrecognizable re-
sults. Effects include reverberation, time reversal, echo, time
stretch/shrink, pitch modulation, and amplitude modulation.

2.2. Annotated Features

We began by designing an Amazon Mechanical Turk (AMT)
experiment as shown in Figure 1. Participants were presented
with a sound chosen at random, and upon listening as many
times as they desired, provided a free-text description along-
side likert ratings of its familiarity, imageability, arousal, and
valence (as depicted by the commonly used self-assessment
manikins [12]). The interface additionally captured metadata
such as the time taken by each participant to complete their re-
sponses, the number of times a given sound was played, and
the number of words used in the free-text response. Roughly
12000 data points were collected through the experiment, re-
sulting in approximately 30 evaluations per sound after dis-
carding outliers (individual workers whose overall rankings
deviate strongly from the global mean/standard deviation).

2.3. Audio Features

Low level features were extracted using the Google VG-
Gish audio classification network, which provides a 128-
dimensional embedded representation of audio segments
from a network trained to classify 600 types of sound events
from YouTube [15]. This is a standard feature extraction
tool, and used in prominent datasets. A comprehensive set
of standard features extracted using the OpenSMILE toolkit
[16] is also included.

2.4. Semantic Features

A novel contribution of this work is the automation and exten-
sion of Hcu using word embeddings and knowledge graphs.
Traditionally, these are used to geometrically capture seman-
tic word relationships; here, we leverage the “clustering ra-
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Typing Modified Chair Sliding
Cluster Radius = 6.3 Cluster Radius = 8.7
typing on a keyboard bowling ball
Typing on keyboard electric tube
typing PVC pipe building pressure and release
typing Error message on computer
Typing on a keyboard High Speed Frisbee
someone typing beer mug sliding on bar
Someone typing on keyboard driving a car
keyboard toy car hitting wall
typing filling up a tub
... ...

Fig. 2. Left: Average ConceptNet embedding where the radius represents our Hcu metric; red bubbles and the ’ mod’ suffix
are used to indicate sounds that have been intentionally modified. Right: examples from our free-text capture, demonstrating
the difference between labels of large radius and small radius clusters.

dius” of the set of label embeddings as a metric for each
sound’s Hcu.

We employed three major approaches to embed each la-
bel: (1) averaging all constituent words that are nouns, verbs,
adjectives, and adverbs– a common/successful average en-
coding technique [17]– (2) choosing only the first or last noun
and verb, and (3) choosing a single ’head word’ for each em-
bedding based on a greedy search across a heavily stemmed
version of all of the labels (using the aggressive Lancester
Stemmer [18]). In cases where words are out-of-corpus, we
auto-correct their spelling, and/or replace them with a syn-
onym from WordNet where available [19]. Labels that fail to
cluster are represented by the word with the smallest distance
to an existing cluster for that sound (using WordNet path-
length). This greedy search technique is used to automati-
cally generate the group of labels used in the Hcu calculation.
Both Word2Vec [20] and Conceptnet Numberbatch [21] were
tested to embed individual words.

After embedding each label, we derived a ’cluster radius’
score for the set of labels, using the mean and standard devia-
tion of the distance of each label from the centroid as a base-
line method. We also explore (k=3) nearest neighbor intra-
cluster distances to reduce the impact of outliers and increase
tolerance of oblong shapes. Finally, we calculate the sum
of weighted distance from each label subgroup to the largest
’head word’ cluster– a technique which emphasizes sounds
with a single dominant label.

We also include a location-based embedding to capture in-
formation pertaining to the likelihood of concept co-location
in a physical environment. In order to generate a co-location
embedding, we implement a shallow-depth crawler that oper-
ates on ConceptNet’s location relationships (’Located-Near’,
’Located-At’, etc) to create a weighted intersection matrix
of the set of unique nouns across all our labels as a pseudo-
embedding. Again, we derive the centroid location and mean
deviation from the centroid of the labels (represented by the
first unique noun) for a given sound sample.

Given the number of techniques, we compare and include
only the most representative pipelines in our dataset. All clus-
tering approaches give a similar overall monotonic trend, but
with variations in their derivative and noise. Analysis of clus-
ter labels in conjunction with scores suggests that a distance-
from-primary-cluster definition is most fitting. Most embed-
ding types are similar, but we prefer ConceptNet embeddings
over others because it is explicitly designed to capture mean-
ingful semantic relationships.

Our clustering results from a Processed ConceptNet em-
bedding are plotted in Figure 2. Intentionally modified sounds
are plotted in red, and we see most sounds with divergent
labeling fall into this category. Sounds that have not been
modified are in other colors– here we see examples of com-
pletely unambiguous sounds, like human vocalizations, ani-
mal sounds, sirens, and instruments.

3. BASELINE ANALYSIS AND DISCUSSION

Fig. 3. Split ranking correlation plots and Spearman rank co-
efficient values for the four likert annotated features.



Fig. 4. Correlation Matrix displaying the absolute value of
the Pearson correlation coefficient between the mean values
of annotated features, metadata, and four representative word
embedding based clustering techniques.

First, we find that the likert annotations are reliable
amongst online workers, using a split ranking evaluation
adapted from [22]. Each of the groups consisted of 50 %
of the workers, and the mean ranking was computed after
averaging N=5 splits. The resulting spearman rank coeffi-
cient value for each of the crowd-sourced features is given in

Fig. 5. Feature distributions grouped by extremes in the “Pro-
cessed CNET” cluster metric; red points represent data at ≤
15th percentile (the most labeling agreement and least am-
biguous); blue dots are ≥ 85th percentile (high Hcu).

Figure 3. This provides the basis for several intuitive trends
in our data, as shown by Figure 4 – we find a near linear
correlation between imageability and familiarity, and a sig-
nificant correlation between arousal and valence. We also
find a strong correlation between imageability, familiarity,
time-based individual measures of uncertainty (such as such
“time to first letter” or “num of times played”), and the label-
based, aggregate measures of uncertainty (the cluster radii
and Hcu).

We next see strong evidence of the value of word em-
beddings as a measure of causal uncertainty – the automated
technique aligns well with the split of modified/ non-modified
sounds (see Fig. 2) and a qualitative review of the data labels.
Our measure also goes one step beyond Hcu, as the cluster
centroid assigns representative content to the group of labels.
Initial clustering of sounds by their embedded centroids re-
veals a relationship between clusters and emotion rankings
when the source is unambiguous, which could be generalized
to predict non-annotated sounds (i.e., sirens, horns, and traf-
fic all cluster together and have very close positive arousal
and negative valence rankings; similar kinds of trends hold
for clusters of musical instruments and nature sounds).

Furthermore, we use this data to explore the causal rela-
tionship between average source uncertainty and individual
assessment behavior. In Figure 5, we plot the distributions of
pairs of features as a function of data points within the 15th
(red) and greater than 85th (blue) percentile of a single cluster
metric (“Processed CNET”). It confirms a strong relationship
between the extremes of the metric and individual delibera-
tion (plot e), as reported by [10]. We further find that more
ambiguous sounds have less extreme emotion ratings (a); the
data suggest this is not because of disagreement in causal at-
tribution, but because individuals are less impacted when the
source is less clear (b). This trend is not true of imageability
and familiarity, however; as sounds become more ambigu-
ous, individuals are more likely to diverge in their responses
(d). Regardless, we find a strong downward trend in average
familiarity/imageability scores as the source becomes more
uncertain (c).

4. CONCLUSION

It is known that aural phenomenology rests on a complex in-
teraction between a presumed sound source, the certainty of
that source, the sound’s acoustic features, its ecological fre-
quency, and its familiarity. We have introduced the HCU400–
a dataset of everyday and intentionally obscured sounds that
reliably captures affective features, self-reported cognitive
features, timing, and free-text labels. Our analysis demon-
strates (1) the efficacy of a quantified approach to Hcu using
word embeddings; (2) the quality of our crowd-sourced likert
ratings; and (3) the complex relationships between global un-
certainty and individual rating behavior, which offers novel
insight into our understanding of auditory perception.
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