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ABSTRACT 

As truly ubiquitous wearable computers, mobile phones are 

quickly becoming the primary source for social, behavioral, and 

environmental sensing and data collection. Today‟s smartphones 

are equipped with increasingly more sensors and accessible data 

types that enable the collection of literally dozens of signals 

related to the phone, its user, and its environment. A great deal of 

research effort in academia and industry is put into mining this 

raw data for higher level sense-making, such as understanding 

user context, inferring social networks, learning individual 

features, predicting outcomes, and so on.  In many cases, this 

analysis work is the result of exploratory forays and trial-and-

error. Adding to the challenge, the devices themselves are a 

limited platform, and any data collection campaign must be 

carefully designed in order to collect the right signals, in the 

appropriate frequency, and at the same time not exhausting the 

device‟s limited battery and processing power. There is need for a 

more structured methodology and tools to help with designing 

mobile data collection and analysis initiative. 

In this work we investigate the properties of learning and 

inference of real world data collected via mobile phones over 

time. In particular, we look at the dynamic learning process over 

time, and how the ability to predict individual parameters and 

social links is incrementally enhanced with the accumulation of 

additional data. To do this, we use the Friends and Family dataset, 

which contains rich data signals gathered from the smartphones of 

140 adult members of a young-family residential community for 

over a year, and is one of the most comprehensive mobile phone 

datasets gathered in academia to date.  

We develop several models that predict social and individual 

properties from sensed mobile phone data, including detection of 

life-partners, ethnicity, and whether a person is a student or not. 

Then, for this set of diverse learning tasks, we investigate how the 

prediction accuracy evolves over time, as new data is collected. 

Finally, based on gained insights, we propose a method for 

advance prediction of the maximal learning accuracy possible for 

the learning task at hand, based on an initial set of measurements. 

This has practical implications, like informing the design of 

mobile data collection campaigns, or evaluating analysis 

strategies. 
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1. INTRODUCTION 
Mobile phones, and increasingly smartphones, have become an 

integral part of many people‟s everyday lives. Users carry their 

smartphone almost everywhere, and use it in order to perform 

many of their day-to-day communication and activities. These 

include connecting with family and friends via voice calls or text 

messaging, searching for information on the Internet, installing 

and using different mobile applications for business and pleasure, 

using location based services such as navigation instructions, or 

using the smartphone as alarm clock in order to wake up on time 

in the morning.  

The pervasiveness of mobile phones has made them popular 

scientific data collection tools, as social and behavioral sensors of 

location, proximity, communications and context. Eagle and 

Pentland [1] coined the term ``Reality Mining'' to describe 

collection of sensor data pertaining to human social behavior. 

While existing works have demonstrated results for modeling and 

inference of social network structure and personal information out 

of mobile phone data, most are still mainly proofs of concept in a 

nascent field. The work of the “data scientist” is still that of an 

artisan, using personal experience, insight, and sometimes “gut 

feeling”, in order to extract meaning out of the plethora of data 

and noise.  

As the field of computational social science matures, there is need 

for more structured methodology. One that would assist the 

researcher or practitioner in designing data collection campaigns, 

understanding the potential of collected datasets, and estimating 

the accuracy limits of current analysis strategy vs. alternative ones 

Such methodology would assist it in the process of maturing from 

a field of “craft” into a field of science and engineering. 

In this work, we present a first step in this direction. Specifically, 

we investigate the learning and prediction of social and individual 

models from raw phone-sensed data. We focus on social ties and 

individual descriptors that can be tied to social affiliation and 

affinity. For these prediction tasks, we look at the dynamic 

learning process over time, and how the ability to predict 



individual parameters and social links is enhanced over time with 

the accumulation of additional data.  

To do this, we use the Friends and Family dataset, which contains 

rich data signals gathered from the smartphones of 140 adult 

members of a young-family residential community for over a 

year[2], as well as self-reported personal and social-tie 

information. 

We first build classifiers for predicting personal properties like 

nationality or gender. We then proceed to predict more 

complicated social links such as the subject‟s life-partner, or 

“significant other”. 

When analyzing the improvement in performance of the social 

prediction over time, we show that it resembles the Gompertz 

function – a known mathematical model that has been used to 

approximate many processes in a variety of fields, including 

growth of tumors and adoption of technological services in 

communities, among others. 

Our key contributions presented in this paper are as follows:  

 We demonstrate characteristics of incremental learning 

of multiple social and individual properties from raw 

sensing data collected from mobile phones, as the 

information is accumulated over time.  

 We show that for different learning tasks, prediction 

methods, and input signals, the evolving learning of 

social and individual features, as mobile phone sensing 

data accumulates over time, can be fitted to the form of 

a Gompertz function. 

 Furthermore, we propose a method for advance 

prediction of the maximal learning accuracy possible for 

the learning task at hand, using just the first few 

measurements. This information can be useful in several 

ways, including: 

o Informing real-time resource allocation for 

data collection, for an ongoing data collection 

campaign. 

o Estimating accuracy limits and time needed 

for desired accuracy level of a given method.  

o Early evaluation of modeling and learning 

strategies.  

 Finally, we present new models for predicting social 

and individual features from raw mobile-phone sensed 

data, which were developed as part of the 

methodological analysis.   

 

The paper is organized as follows: We start by presenting related 

work in Section 2. In section 3 we discuss the  methodology of the 

experiment and our learning techniques. Section 4 contains the 

results, and discussion and future work appear in Section 5. 

Concluding remarks are given in Section 6. 

2. SCIENTIFC BACKGROUND 
In recent years, the social sciences have been undergoing a digital 

revolution, heralded by the emerging field of „„computational 

social science‟‟. Lazer, Pentland, et al. [3] describe the potential 

of computational social science to increase our knowledge of 

individuals, groups, and societies, with an unprecedented breadth, 

depth, and scale. Computational social science combines the 

leading techniques from network science [4-6] with new machine 

learning and pattern recognition tools specialized for the 

understanding of people's behavior and social interactions [7].  

2.1 Mobile Phones As Social Sensors 
The pervasiveness of mobile phones the world over has made 

them a premier data collection tool of choice, and they are 

increasingly used as social and behavioral sensors of location, 

proximity, communications and context. Eagle and Pentland[1] 

coined the term "Reality Mining" to describe collection of sensor 

data pertaining to human social behavior. They show that using 

call records, cellular-tower IDs, and Bluetooth proximity logs, 

collected via mobile phones at the individual level, the subjects' 

regular patterns in daily activity can be accurately detected[1, 7]. 

Furthermore, mobile phone records from telecommunications 

companies have proven to be quite valuable for uncovering 

human level insights. As one example, Gonzales et al. show that 

cell-tower location information can be used to characterize human 

mobility and that humans follow simple reproducible mobility 

patterns[8]. This approach has already expanded beyond 

academia, as companies like Sense Networks [9], are putting such 

tools to use in the commercial world to understand customer 

churn, enhance targeted advertisements, and offer improved 

personalization and other services.  

2.2 Individual Based Data Collection 
On one hand, data gathered through service providers include 

information on very large numbers of subjects, but on the other 

hand, this information is constrained to a specific domain (email 

messages, financial transactions, etc.), and there is very little if 

any contextual information on the subjects themselves. The 

alternative approach, of gathering data at the individual level, 

allows collecting many more dimensions related to the end user, 

many times not available at the operator level. Madan et al.[10], 

follow up on Eagle and Pentland's work [1], and show that mobile 

social sensing can be used for measuring and predicting the health 

status of individuals based on mobility and communication 

patterns. They also investigate the spread of political opinion 

within a community [11]. Other examples for using mobile 

phones for individual-based social sensing are those by Montoliu 

et al. [12], Lu et al. [13], and projects coming from CENS center, 

e.g. Campaignr by Joki et al. [14],  and additional works as 

described in [15]. Finally, the Friends and Family study, which 

our paper uses as its data source, is probably the richest mobile 

phone data collection initiative to date as the number of signals 

collected, study duration, and the number of subjects. The 

technical advancements in mobile phone platforms and the 

availability of mobile software development kits (SDKs) to any 

developer is making the collection of Reality Mining type of data 

easier than ever before. 

In addition to mobile phones, there have been other types of 

wearable sensor-based social data collection initiatives. A notable 

example is the Sociometric Badge by Olguin et al. which captures 

human activity and socialization patterns via a wearable sensor 

badge and are used mostly for data collection in organizational 

settings [16]. The results of our work are applicable to these types 

of studies as well. 

2.3 Learning and Prediction of Social and 

Individual Information 
Many studies involving predicting individual traits and social ties 

were conducted in the recent years in the general context of social 

networking. As few examples, relevant works have been 

published by Liben-Nowell and Kleinberg [17], Mislove [18] ,and  

Rokach et. al. [19]. These works combine machine learning 

algorithms together with social network data in order to build 

classifiers. 



 

 

3. METHODOLOGY 

3.1 Mobile Data Collection System 
Aharony et al.[2]. developed a social and behavioral sensing 

platform that runs on Android operating-system based mobile 

devices, which can continuously record a broad range of data 

signals. Each type of signal collected by the system is 

encapsulated as a conceptual „„probe‟‟ object. The probes 

terminology is used rather than „„sensors‟‟ as probes include 

traditional sensors such as GPS or accelerometer, but also other 

types of information not traditionally considered as sensor data, 

like file system scans or logging user behavior inside applications. 

Additional signals include information such as cell tower ID, 

wireless LAN IDs; proximity to nearby phones and other 

Bluetooth devices; call and SMS logs; statistics on installed phone 

applications, running applications, media files, general phone 

usage; and other accessible information.  

The dataset described in the next section was collected using this 

system, with a configuration that included over 25 different types 

of data signals. The deployment also included an on-phone survey 

component, and integrated applications such as an alarm clock 

app. Figure 1 illustrates the deployed system configuration, 

enabling automated data upload, as well as remote configuration 

settings and remote updating of the system itself. Figure 2 gives 

an overview of the back-end side of the system. The software 

system, named “Funf”, has been released as open source and 

available at [20].  

The “Friends and Family” living laboratory study was conducted 

over a period of 15 months between March 2010 and June 2011, 

with a subject pool of 140 individuals. It is the first study 

conducted under the Social fMRI methodology, which uses 

mobile phones together with a data-rich collection approach to 

create a “virtual imaging chamber” around a community in-situ 

[2]. To the best of our knowledge, it is the most comprehensive 

mobile phone experiment performed in academia to date.  

3.1.1 Community Overview 
The research goals of the Friends and Family study touch on 

many aspects of life, from better understanding of social dynamics 

to health to purchasing behavior to community organization. It 

was conducted with members of young-family residential living 

community adjacent to MIT. All members of the community are 

couples, and at least one of the members is affiliated with the 

university. The community is composed of over 400 residents, 

approximately half of which have children. In March 2010 the 

first pilot phase of the study was launched with 55 participants, 

and in September 2010, the second phase of this study was 

launched with 85 additional participants. The participants were 

selected randomly, in a way that would achieve a representative 

sample of the community and sub-communities.  

3.1.2 Privacy Considerations 
The study was approved by the Institutional Review Board (IRB) 

and conducted under strict protocol guidelines. One of the key 

concerns in the design of the study was the protection of 

participant privacy and sensitive information. For example, data is 

linked to coded identifiers for participants and not their real world 

personal identifiers. All human-readable text, like phone numbers 

and text messages are captured as hashed identifiers, and never 

saved in clear text. Collected data is physically secured and de-

identified before being used for aggregate analysis.  

 
Figure 1. Friends and Family Phone System Overview 

 

 
Figure 2. Back-End Data Aggregation Overview 

 

3.1.3 Friends and Family Dataset  
To the best of our knowledge, the dataset generated from the 

study is probably the largest and richest dataset ever collected on 

a residential community to date. The accumulated size of the 

database files uploaded from the study phone devices adds up to 

over 60 Gigabytes. The data is composed of over 30 million 

individual scan events (for all signals combined), where some 

events capture multiple data signals. Just as example, the dataset 

includes: 

• 20 million wifi scans, which in turn accumulated 243 

million total scanned device records.  

• 5 million Bluetooth proximity scans, which in turn 

accumulated 16 million total scanned device records. 

• 200,000 phone calls.  

• 100,000 text messages (SMS). 

 

In the analysis presented in this paper we give special focus to the 

data that was collected in November 2010 and April 2011, after 

the mobile platform was improved, new features such as different 

call types where added, and several hardware problems where 

fixed. These two months are ones where there were no major 

holiday breaks in the academic schedule of the university, and the 

bulk of participants were physically on campus.  

In addition to the phone-based data, the study also collected 

personal information on each participant The dataset includes 

information on age, gender, religion, origin, current and previous 

income status, ethnicity, and marriage information, among others. 



3.2 Machine Learning Predictions 
In order to evaluate learning over time, which is the main goal of 

our current work, we needed a set of learning and prediction 

models to work with. These are mostly illustrative models, which 

enable us to conduct our main analysis.  

In order to achieve our final goal of predicting participants' 

personal and social information, we utilized two approaches – first 

is a machine learning approach, described in this section, and the 

second is a social network based prediction approach, described in 

the following section.  

The first step in applying the machine learning methodology is to 

create feature vectors for each participant in the study. Each 

feature vector contains information on the participant‟s 

communication and phone usage patterns as were collected during 

the study. 

In order to cope with the huge amount of data collected during the 

study, we developed code using C# and Python’s NetworkX 

library [21]. Our code parsed the collected data, and extracted 

feature vectors for each participant. We extracted 32 different 

features within a specified time interval. Namely, we collected the 

following features for each participant: 

 Internet usage features: we calculate the number of 

distinct searches performed using the phone‟s browser, 

and the number distinct bookmarks saved by the user. 

 Calls pattern features: we compute the total number of 

calls, the number of unique phone numbers each user 

was in contact with, and the total duration of all calls. 

We also calculate the number of 

incoming/outgoing/missing calls and the total call 

durations according per call type. 

 SMS messages pattern features: we compute the total 

number of SMS messages, the number of unique phone 

numbers each participant connected with via SMS, and 

the of total incoming/outgoing SMS messages. 

 Phone applications related features: we count the 

number of applications installed and uninstalled on each 

device. We also compute the total number of currently 

running applications (originally sampled every 30 

seconds). 

 Alarm features: we count the number of alarm-clock 

alarms and the number of “snooze” presses for each 

participant that used our alarm clock app. 

 Location features: we calculated the number of 

different cellular cell tower ids and the number different 

wifi network names names seen by the smartphone. 

These features act as a rough indication of the number 

of different locations a participant visited during the 

time period. 

 

Our next step was to extract all participant features for different 

time intervals. Using the extracted features we can build different 

classifiers that are able to predict the participants` personal 

information. We used the WEKA software [22] in order to test 

different machine learning algorithms. In our experiments we 

evaluated a number of popular learning methods: we used 

WEKA's C4.5 decision trees, Naive-Bayes, Rotation-Forest, 

Random-Forest, and AdaBoostM1. Each classifier was evaluated 

using the 10-fold cross validation approach, and in order to 

compare results between different classification algorithms, we 

used each classifier‟s Area Under Curve, or AUC measure (also 

referred to as ROC Area) and F-measure results. In order to obtain 

an indication of the usefulness of various features, we analyzed 

their importance using WEKA‟s information gain attribute 

selection algorithm 

Using the machine learning approach we built five different 

classifiers that predict the following: (1) the gender of the 

participant, (2) whether the participant is a student or not, (3) 

whether the participant has children or not, (4) whether the 

participant is above the age of 30, and (5) whether the participant 

is a native US citizen or not.  

3.3 Social Network Predictions 
Another method for predicting a participant‟s personal 

information details is using the participants' different social 

networks. Using the data collected in the study. We can span 

different types of social networks between the participants, 

according to different interaction modalities. Namely, we can 

define the following social networks: 

 SMS Social Network: we can construct the 

community‟s SMS messages social network (see Figure 

2) as a weighted graph            according to the 

SMS messages the participants sent. Each weighted 

link              in this social network represent 

connection between two different phone numbers 

     , while w is the strength of the link defined as 

the number of SMS message send between the two 

phone number1. The SMS network also includes 

encoded phone numbers outside of the study which 

were contacted by more than one participant. 

 Bluetooth Social Network: we can construct a 

weighted network graph            of face-to-

face interaction according to information collected 

about nearby Bluetooth devices. Each link         
    in this social network represent the fact that the two 

devices        encounter each other at least one 

time, while the w is the strength of the link, defined as 

the number of times the two devices encounter one 

another. 

 Calls Social Network: Similar to the SMS social 

network, we can construct a network based on the 

participant‟s call graph            according to 

the participants` phone calls. In this social network 

each link             represents the fact at least one 

call was made between two different phone numbers 

,      ,  while w is the strength of the link. defined 

as the number of calls between u and v. 

By using the social networks defined above, together with 

different graph theory algorithms, we can predict different types 

of personal and social information. In order to predict the 

participants' significant other we analyzed the Bluetooth social 

network. We predicted that each participant‟s significant other is 

the person that the participant spent the most time with during the 

measured interval. Namely, let      then: 

significant-other(u))                   

                      

                                                                 

1 In some cases, the number interaction may not be fully accurate 

due to the fact we do not have the full connection information 

for phone number outside the study 

 



In order to predict the subjects‟ ethnicity we used the SMS social 

network (Figure 3). We used the Louvain algorithm for 

community detection [23], which separates the graph into disjoint 

groups. 

At each iteration, we assume that we have information on the 

ethnicity of at least some of the nodes. The general idea is to then 

generate an ethnicity prediction for the members of each detected 

community based on the ethnicity of the majority of known nodes 

in that community. This is similar to the ideas of the label 

propagation approach [24] and in [18].  

 

Figure 3. SMS Social Network Graph of created over 65 

weeks (graph also includes unknown out-of-study nodes, 

which connect to at least two known in-study nodes). Different 

vertex colors represent different ethnicity2.  

 

3.4 Prediction Accuracy Evolution over Time 
As discussed, the goal of this work is to study and analyze the 

evolution of the learning process of personal features and 

behavioral properties along the time axis. For this analysis, we 

care less about the specific learned models and their 

generalizability, but rather care about using them to study and 

benchmark the evolution of the learning process as data 

accumulates. Understanding this process is of significant 

importance to researchers in a variety of fields, as it would 

provide approximation for the amount of time that is needed in 

order to "learn" these features for some given accuracy, or 

alternatively, what is the level of accuracy that can be obtained for 

a given duration of time.  

In order to model this process we used the Gompertz function: 

        
 

                                                                 

2 All graphs in this paper where created by using Cytoscape 

software 

This model is flexible enough to fit various social learning 

mechanisms, while providing the following important features: 

(a) Sigmoidal advancement, namely – the longer the 

process continues the more precise its conclusions will 

be. 

(b) The rate at which information is gathered is smallest at 

the start and end of the learning process. 

(c) Asymmetry of the asymptotes, implied from the fact 

that for any value of t, the amount of information gathered in 

the first t time steps is greater than the amount of information 

gathered at the last t time steps. 

The Gompertz function is frequently used for modeling a great 

variety of processes (due to the flexible way it can be manipulated 

using the parameters a, b, and c), such as mobile phone uptake 

[25], population expansion in a confined space [26], or growth of 

tumors [27]  

Following is an illustration of the Gompertz function: 

 

 

Figure 4. An illustration of the Gompertz function. The charts 

represent the following functions (from left to right):  

 

The applicability of the Gompertz function for the purpose of 

modeling the evolution of locally "learning" the preferences and 

behavior patterns of users was demonstrated in [28], where a 

prediction of the applications that mobile users would chose to 

install on their phones was generated using an ongoing learning 

process, and closely resembles the form of the Gompertz function.  

For generating the models presented here, we have ran a 

Gompertz regression on data obtained from the predictors and 

classifiers developed using the methods described above. Each 

predictor/classifier was executed on data gathered between 

November 1th and November 30th, 2010. Starting from an input 

of a single day (November 1st), in each consecutive execution, 

another day of data was added to the input (so that iteration #1 

was on data from November 1st, execution #2 had input of data 

two days, November 1 and 2 together, and so on, until an 

accumulation of 30 days in which the classifier ran on data from 

the entire month of November. Figure 7 - Figure 10 in the results 

section present the results of 4 of the classifiers that we have run 

(more results were omitted due to space considerations and will 

appear in an extended version this work).   

 

4. RESULTS 

4.1 Machine Learning Classifiers Results 
Using the machine learning algorithms we succeed in predicting 

different personal information. Our prediction results vary 

according to the amount of data, the number of features, and the 

time periods for which the classifier ran on. 

 Gender prediction - we predicted the gender of the 

participants. Our dataset included the gender 

information on 103 participants. Our decision tree 



classifier (J48) got AUC of 0.642 and F-measure of 

0.611, where the most influential features where the 

number of Internet searches and the number of alarms. 

In general, female participants perform fewer search 

queries using their smartphones. 

 US-natives prediction – we tried to predict whether the 

origin of the participant is inside or outside the United 

States. Our dataset contained information about the 

origin of 86 participants. Our Naïve-Bayes classifier got 

AUC of 0.728 and an F-measure of 0.806. Where the 

most influence features where: the number of incoming 

and outgoing SMS. In general, participants born outside 

the United States send and receive fewer SMS messages 

than US natives. 

 Have children prediction – we tried to predict which 

of the participants in the study have children. Our 

dataset contained information about the children of 63 

participants. Our Naïve-Bayes classifier got AUC of 

0.803 and an F-measure of 0.682, when using only four 

features: Number of missing calls, total number of 

application installed, distinct number of application 

installed, and number of alarms set. In general, 

participants that have children have more missed calls 

and fewer applications installed. 

 Is student prediction – we tried to predict which of the 

study participants are students (vs a different 

occupation). Our dataset contained information on about 

88 participants, almost half of them are students.  Our 

Rotation-Forest classifier gave AUC of 0.639 and an F-

measure of 0.625 

 Age prediction - we tried to predict which of the study 

participants are above 30 years old or above. Our 

dataset contained information about 80 participants, out 

of them 34 were age 30 or above. Our decision tree 

classifier (J48) got AUC of 0.592 and an F-measure of 

0.562, where the most influential features where the 

number of Internet searches and the number of calls. In 

general, participants above the age of 30 performed 

fewer search queries using their smartphones. 

 

Table 1. Predicting Personal Information Results 

 
Influential 

Features 
AUC F-Measure 

Age  Searches Number 0.592 0.562 

Children Missing Calls  0.803 0.682 

Gender Searches Number 0.642 0.611 

Student - 0.606 0.608 

Origin SMS Messages 0.728 0.806 

4.2 Social Network Predictions Results 
We predicted that each participant‟s significant other is the person 

that the participant spent the maximum time with during the study 

according to the Bluetooth social network graph. We ran this 

prediction on the face-to-face interactions Bluetooth graph that 

was created during time period of 30 days in November 2010 

(Figure 3). Our prediction succeeded in classifying 65.6% of the 

couples (44 out of 67).  

 

Figure 5. Bluetooth social network graph of face-to-face 

interaction during November 2010– significant other are with 

the same shape and color each link represents at least 100 

interaction. 

The Louvain method for community detection partitioned the 

SMS social network into 13 disjoint groups (Figure 5). Using our 

method we succeeded in predicting the ethnicity of 60% of the 

participants (77 out of 128).  



 

Figure 6. Partitioned SMS Social Network Using Louvain 

Algorithm–each group have different ethnicity according to 

the major ethnicity of the group (similar to label propagation 

algorithms) (Blue: Asian, Purple: White, Green: Middle 

Eastern) 

4.3 Incremental Learning over Time Results 
We have shown in the previous subsections that using different 

communication patterns and social network graphs we are able to 

predict specific personal and social information. Our next step 

was to examine how our classifiers evolve over time. We ran 

different classifiers with increasingly accumulating daily data that 

was collected from the month of November 2010. We obtained 

the following results for four of the classifiers, as presented in 

Figure 7 - Figure 10. 

Figure 7 shows the classifier for whether a participant is US born 

or not (e.g. an international student or their spouse). The vertical 

axis represents the area under curve (AUC) values. The fitted 

Gompertz function has parameters of (0.8, -0.4, -0.14), with 

regression residual standard error of 0.02591, and achieved 

convergence tolerance of 7.404e-06. 

Figure 8 shows the classifier for whether a participant is a student 

or not. Again, the vertical axis represents AUC, values. The fitted 

Gompertz function has parameters of (0.69, -0.35, -0.06), with 

regression residual standard error of 0.02237, and achieved 

convergence tolerance of 4.095e-06. 

Figure 9 shows the classifier for whether we can predict that a 

participant‟s significant other. The vertical axis represents the 

percentage of correct matches. The fitted Gompertz function has 

parameters of (0.66, -0.78, -0.12), with regression residual 

standard error of 0.02762, and achieved convergence tolerance of 

1.505e-06. 

Figure 10 shows the classifier for whether we can predict a 

participant‟s ethnicity. The vertical axis represents the percentage 

of correct predictions. The fitted Gompertz function has 

parameters of (0.68, -2.18, -0.05), with regression residual 

standard error of 0.06676, and achieved convergence tolerance of 

5.568e-06. 

 

Figure 7. Participants' origin Naïve-Bayes classifiers AUC 

results 

 
Figure 8. Predicting If the Participant is a Student over Time: 

Rotation-Forest Classifier AUC results 



 

 

Figure 9. Predicting Significant Other over Time – we chose 

the significant other as the node with the maximum strength.  

 

 

Figure 10. Predicting ethnicity using SMS social network over 

time (65 weeks) – after every week we analyze the graph with 

the same method as described at 3.4 (Louvain Algorithm). 

Figure 11 demonstrates the correlations among the learning 

process dynamics of several features. It was calculated using the 

Pearson product-moment correlation coefficient (a measure of 

the linear dependence between two variables X and Y, giving a 

value between +1 and −1). The correlation is defined as the 

covariance of the two variables divided by the product of their 

standard deviations. In general, variables of correlation higher 

than 0.5 are usually considered strongly correlated.  

 

 

Figure 11.  Pearson correlation between the learning process 

dynamics for three of the properties we predict. As might  be 

expected, there are some strong correlation between the 

different evolution trajectories of the learning processes of the 

three features. However, notice that while some are very 

highly correlated (e.g. Origin \ Significant other), which might 

point out a strong correlation in the underlying data itself (i.e. 

people tend to get married more within the same ethnic 

group), other display lower correlation (e.g. Origin \ Is 

student). 

  

5. DISCUSSION AND FUTURE WORK 

As reviewed in section 3.4, the Gompertz function is a well-

known technique that has been used to model processes over time. 

Our analysis confirms that the evolving learning of social and 

individual features, as mobile phone sensing data accumulates 

over time, can also be fitted to the form of a Gompertz function. 

We see that this result is true for the prediction of different 

features, both social and individual, and for a set of different 

prediction methodologies, using a varying number of input 

signals, all collected via mobile phones in a field deployment.  

Correlations between the evolution trends of the different learning 

process, as depicted in Figure 11, may imply underlying 

correlation between the raw data itself, and can hence be used as 

additional validation for correlated features and observations 

(such as the suggestion that people might have a higher tendency 

to marry within their own ethnic group, as has been widely 

observed [33,34]). In addition, this information could be used for 

informing the design of data collection configuration for an 

ongoing or future data collection initiative. For example, if we 

know of two features that are highly correlated in the same 

experiment, but one of them is very “cheap” to gather from a 

processing or battery power perspective, while the other is very 

expensive, we might decide that the cheaper one is sufficient (e.g. 

one requires just reading the phone‟s built-in call-log database 

while the other requires battery-intensive GPS scanning). 

Alternatively, we might want to make sure that two correlated 

values are gathered in order to strengthen the result and help deal 

with noise.  



We can take our findings further, and extrapolate, using the 

learned Gompertz functions, the learning behavior and limits over 

time. Figure 12 shows the result of this extrapolation, two years 

into the future (the original source data is just one month). We can 

now gain different insights. First, extrapolation can be used to 

predict our maximal expected accuracy. In addition we can 

estimate where we are on each signal‟s estimated accuracy curve. 

We can then use this information to evaluate the analysis method, 

anticipate the timeline for increased accuracy, and understand 

when it is time to stop collecting/analyzing as we have reached a 

state of saturation. Another possible use is comparing different 

learning processes to one another, and using this information as 

part of the experiment or analysis management process. In 

addition, deviation from the expected curves might actually point 

at problems in the data collection process. 

 

 

Figure 12. Extrapolation of the learning process based on the 

Gompertz regression for the four learning tasks, in linear 

scale (top) and log-log scale (bottom).  

There are different reasons that might explain why there are the 

saturation limits in accuracy of our learning. For example, we can 

take the learning of user parameters which are based on Bluetooth 

proximity, as we have used in our prediction of significant-other 

ties and have also been used in [2,10, 28]. All of these analyses 

assume that the phone is an accurate proxy for its owner and is 

located where the owner is. It has been shown by Dey et al. [35] 

that people actually carry the phone with them much less than 

they might think. This discrepancy could account for some of the 

inaccuracies of trying to learn user parameters based on phone-

sensed data. 

Based on our observations, we can suggest this approach as a 

mechanism for answering several important questions, such as: 

 Given a social network, how easy would it be for 

someone who monitors the behavioral activities of its 

members to infer it? 

 What kinds of social features are more difficult to learn 

than others? 

 What is the highest level of prediction accuracy that can 

be reached in a reasonable amount of time? 

 

This could, in-turn, inform the allocation of data collection, 

processing, and analysis resources, as well as investigator time. 

Aside from their academic importance, such questions may also 

have significant financial implications. Social information has 

become a valuable data on its own merit, of high and tangible 

value, as it is used by many marketing and advertising platforms 

for doing targeted advertising to maximize their advertisement 

“hit” rates.. 

Furthermore, this insight may also have broader implications in 

areas of defense and homeland security, due to the importance of 

social information for cyber criminals and terrorists: 

 Selling to highest bidder (both "legit" bidders, 

advertisers, etc., or in the black market to other 

attackers) [29] .      

 Bootstrapping other attacks – e.g. using this as part of a 

complex "Advanced Persistent Threats" (APT) attack 

[30, 31].  

 Business espionage - e.g. analyzing a competitor's 

customer base and profile high-yielding customers for 

targeted marketing [32]. 

 

6.   CONCLUSIONS 
The contributions of the work describes in this paper are the 

following: 

 We demonstrated characteristics of incremental learning 

of multiple social and individual properties from raw 

sensing data collected from mobile phones, as the 

information is accumulated over time.  

 We have shown that for different learning tasks, 

prediction methods, and input signals, the evolving 

learning of social and individual features, as mobile 

phone sensing data accumulates over time, can be fitted 

to the form of a Gompertz function. 

 Furthermore, we proposed a method for advance 

prediction of the maximal learning accuracy possible for 

the learning task at hand, using just the first few 

measurements. This information can be useful in many 

ways, including: 

o Informing real-time resource allocation for 

data collection, for an ongoing data collection 

campaign. 

o Estimating accuracy limits and time needed 

for desired accuracy level of a given method.  

o Early evaluation of modeling and learning 

strategies.  

 Finally, we presented new models for predicting social 

and individual features from raw mobile phone sensed 

data, which were developed as part of the 

methodological analysis. 

Our main goal in this discussion was to investigate the learning 

process over time, rather than evaluate the specific models and 

how they generalize. In future work we intent to come back to 

each of these models and evaluate it in detail. We are also 



continuing our investigation of the properties of learning and 

prediction of human and social constructs based on mobile phone 

gathered data.  

While there will always be the need for the expert and 

experienced “data artisan”, with the exponential increase in 

accumulated data and the rise of a big-data ecosystem, there is an 

imperative need to create a more accurate science and engineering 

of data collection, processing, and analysis. Our work is a 

building block in this larger effort. 
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