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Philosophy. '

ABSTRACT

The problem being considered is the control of power load changes in
a nuclear power plant. In particular, the problem is that of making large
and fast load changes without causing serious disturbances to the plant
operaticn. In order to make such load changes, a control strategy is
designed to coordinate two major plant inputs - the reactor control rods
and the turbine load. However, to be viable the control must overcome
several kinds of variation and uncertainty in plant behavior. Some varia-
tions are due to slow physical changes in the plant. Other variations in
behavior are due to unmeasured current plaant conditions and to random
disturbances. These variations, together with the inadequacy of simple
models to describe the plant, lead to uncertainty in the plant behavior.
The major contribution of this thesis is to provide means for overcoming
the problems of variation and uncertainty, so that large and fast power
load changes can be made.

The control developed in this study makes use of a stochastic model.
A low order state variable form stochastic model is used to represent the
plant. The parameters of this model are identified from measurement data
records, using a maximum likelihood identification techaique. The
stochastic model is then used in a state estimator which gives estimates
of important unmeasured Plant variables. The stochastic model is also
used to adjust control coastraints and to predict the plant performance
during the load change for display and monitoring purposes. In the event
that the plant behavior deviates from the model predictions, the model is
adapted to be consistent with the plant performance. These techniques
together overcome the difficulties of variation and uncertainty in the
nuclear plant behavior, thus permitting large, fast load changes to be
made without upsetting the plant operation.

A nuclear power plant was not available for experimentation; there-

fore, a detailed and realistic high order simulation of a plant was used.
The simulated plant included nonlinear effects, disturbances and measurement
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noise. The simulation was run on an analog computer which was treated as

an actual plant by the digital centrol computer. The experiments per-
formed in this study clearly demonstrate the feasibility of control of
large and fast load changes on a nuclear pover plant, and thesc can be

made much more smoothly than the conventional control of small load changes.
The experiments also demonstrate the feasibility of detecting and adapting
to plant variation, and the feasibility of control in the presence of
uncertainty.

Thesis Supervisor: Fred C. Schweppe
Title: Associate Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION

1.1 The Load Change Problem

A nuclear power plant of the pressurized water type is the subject of
this study. About half of the commercial nuclear power plants in the
United States are of this type. Some of the newer plants exceed 1000
megawatts in electrical power at full load. Nuclear power plants are
rapidly becoming a major source of the nation's powver supply. As these
nuclear plants become more dominant, it will become necessary to provide
improved load change control for them, so that they can be easily used to
balance the power load of a network. The balance of pover in a network
can be upset by customer load changes, by plant failures and by other
causes. The restoration of balance in the powver network may depend on
the ability of power plants to undergo large, fast changes in the power
which they produce.

As a preface to the discussion of the load change problem, the basic
elements of a pressurized water nuclear power plant are briefly summarized
here. The plant consists basically of a reactor which generates thermal
power, two circulating water and steam loops to transfer the heat, and a
turbine to transform the thermal power into mechanical power which then
drives the electrical generators.

A power load change consists of changing the power produced in the

reactor and the power delivered by the turbine. This must be done in a
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manner which does not seriously disturb the plant operation. Large and
fast load changes require a control which provides sirwltaneous coordinatec
control for both the reactor control rods and the turbine load setpoint.
This is necessary to avoid large deviations in plant variables. Any
residual deviations can then be corrected by feedback control. TIf these
inputs are not coordinated, as is the case for typical existing control
schemes, a large, fast power load change can cause serious deviations in
important plant variables which, in turn, can trigger an automatic
emergency plant shutdown.

The design of a control to coordinate the reactor and turbine power
changes is made difficult by variation in plant behavior. The variation
causes the plant to respond differently to the same inputs at different
times. Thus a fixed control system such as conventional analog control
Systems cannot consistently handle large and fast load changes. This
problem is exemplified by the following quote from the systen documentation
for a large nuclear power plant. [17]

The Reactor Control System is flexible and will try to
follow all load changes. However, for a given plant
condition, there is a load change magnitude beyond
which a reactor trip is likely. Thus, a restriction
may be placed on the capability of the plant to follow
load demands such as may be requested by the area load
control dispatcher. :

In fact, the conventional control systems do not adapt to cope with
plant variation, and this together with the lack of coordination of the

turbine and reactor restrict the capability for large, fast load changes

using existing coatrol systems.
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Changes in plant conditions, disturbances, measurement noise and
unmeasured variables are the major sources of variation and resultant
uncertainty in plant behavior. A suitable control for large and fast
load changes must overcome the effects of variation and uncertainty, to
provide smooth operation under the full range of normal conditions.

The plant variations which occur are now coansidered in more detail.
The variations considered in this study are:

l. Variations in the initial reactor state. The behavior of the
plant varies, depending on the initial condition of some unmeasured
reactor states. The major instance is the dynamic behavior of the reactor
at high power levels. This depends on the unmeasured concentration of

. i . . 135
certain fission product isotopes. The most important isotopes are Xe

and its precursor 1135. The behavior of the reactor is more sluggish
before these isotopes accumulate than after. In addition to the effect
on dynamic behavior, the initial states of the xcl35 and the 1135 also
have an influence on the feasible magnitude and speed of load changes at
high powver levels which remain within the control capabilities. If the
reactor has a high concentration of these isotopes, then the range of
allowed load changes must be restricted.

2. Variations in the ifnitial Plant states outside the reactor.
Initial states outside of the reactor also have a significant influence
on whether an acceptable plant deviation will occur during a given load
change. For example, the behavior of the primary loop pressure during

the load change depends on the initial states of the pressurizer. The

pPressure may or may not experience large deviations, depending on the
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3. Slow physical variations. he plant behavior changes slowly over
the fuel cycle, which is about a year. The major effects are due to
changes in the composition of the fuel and changes in the concentration
of certain chemicals in the moderator water which circulates through the
reactor which, in turn, produce significant modifications in the plant
behavior. In particular, the magnitude of the effects on the reactor due
to variation ian the fuel and moderator temperatures change.

4. Apparent variations due to nonlinearity. As the process is
operated at different load conditions the nonlinearity of the process
leads to apparent behavior changes. These are not true variations since
the behavior is repeatable by returning to previous load conditions. 1If
the nature of the noanlinearity is known, then these effects can be
predicted. However, if Ehe nature of the noalinearity is not known,
then the effects of it are considered to be plant variations. That is,
the plant is behaving differently, just as if a true physical variation
as described in item 3 above had occurred.

5. Random variations. The reactor is continually subject to minor
disturbances [60] and the measurements are subject to noise. These
factors cause some variation of a random nature in the plant behavior.

The above sources of variation in plant behavior, due to variations
in fnitial state, physical plant changes, nonlinearity and randomness,
all act to make large and fast load changes a difficult control problem.
This problem is solved by using a range of estimation and control
techniques which reduce the uncertainty, adapt to the variation and

which thereby provide smooth control of large and fast load changes.
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1.2 The Scope of the Study

In the previous section the load change problem was defined. To
reiterate, the goal is to produce large and fast load changes in a
smooth manner without serious disturbances to the plant operation. This
requires a control to coordinate two major plant inputs, the reactor
control rods and the turbine load setpoint. Due to the complexity of
the problem the coordination of these inputs requires a model of the
plant so that the coordinating control actions can be calculated. This
model is a crude representation of the plant. It has errors which appear
as disturbances to the control scheme. 1In addition, the actual plant is
subject to several types of variation, which lend uncertainty to any
plant model. The problems of model error, plant variation, and the
resultant uncertainty are the major considerations of this study. Means
are developed to cope with these effects so that large and fast load
changes can be made smoothly.

A number of techniques from modern control and estimation theory
are applied in this study to overcome the problems of variation and
uncertainty. Techniques of identification, prediction, control and
adaptation are used in a set of computer programs for load change control.
These programs are erperimentally tested on a detailed simulation of a
nuclear power plant, which includes the effects of variation, disturbance

. . . 1
noise and measurement noise. The simulation is run on an analog computer.

lln this study the word simulation alwvays refers to the analog
computer detailed simulation of the plant, while the word model always
refers to the crude plant model in the digital computer.
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The estimation and control programs are run on a digital computer which
treats the analog sirulation as if it were a plant. Table 1.2-1
i1llustrates the expcrimental part of this study. The plant inputs which
are controlled by the digital computer are the reactor control rods and
the turbine load setpoint. The plant measurements which are used by the
digital computer are the reactor power, primary loop average temperature,l
turbine power, rod group position measurement and turbine load setpoint
measurerent,

A model of the plant to be used in the digital computer for estima-
tion and control purposes is developed. The model is stochastic, being
composed of a deterministic part and a noise part. The deterministic
part of the model contains approximations of the major plant phenomena.
There are six states and twelve parameters in this part of the model.

The noise portion of the model includes disturbances to the states of

the deterministic model and noise added to the measurements. The
parameters of both the deterministic and the noise parts of the model

are considered initially unknown. Thus, the overall stochastic model has
a specified structure, but the parameters are considered initially unknown
to be identified to match the model to the measured plant performance.

Values of the parameters of the Stochastic model are based on data
records from the simulated plant taken during load change. The criterion

. . . . . 2
for choosing the parameter values is maximum likelihood. A separate

The average of two temperature measurements, one each at the reactor
inlet and outlet.

This technique is discussed in Section 3.5.
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TABLE 1.2-1

The Experimental Procedure of the Study

Analog Computer: used to simulate the plant.

A. Coupled nonlinear simulations of the physical processes,

including the reactor, heat exchanger, pressurizer, turbine
and other parts.

B. Disturbance noise and measurement noise added to enhance
realism,

Analog to Digital Interface: one second scan intervals.

A. Measurements: -reactor power

-primary loop average temperature
—turbine 1load

-rod group position
—turbine load setpoint

B. Manipulated control inputs: -rod group speed
—turbine load setpoint

Digital Computer: used for calculations and control.

A. Stochastic model parameter identification.

B. Kalman filtering to give estimates of measured and unmeasured

states.
C. Prediction of bands of uncertainty.

D. Calculation of control inputs,

E. Display of predicted plant performance prior to the load change.

F. Display of realized vs. predicted performance during the load
change.

G. On-line hypothesis testing to detect plant variation.

H. Adaptation of the model.
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hypothesis test technique is used to see if the maxinum likelihood
identification is successfully producing a stochastic model consistent
with the plant data records.1

After the stochastic model has been identified, it is used in a
number of separate applications. One of these is the design of a state
estimator to provide estimated values of the plant states. The type of
state estimator used in this study is a Kalman filter. This state
estimator, which is discussed nmore fully in Appendix B, is designed
automatically by the computer once the ‘stochastic model parameters are
kKnown. The use of a state estimator provides estimated values of the
important unmeasured states. For example, the concentrations of fission
Product isotopes in the reactor are estimated in this way for use in the
control strategy. Other uses of the stochastic model are discussed
shortly, after the following presentation of the control strategy.

To guarantee smooth operation during the load change, the control
which is proposed must keep the plant within certain specified and calcu-
lated control constraints, and it must make the load change subject to
limited control capabilities. The directly specified constraints con-
sidered here are the conventional deviation limits cn primzary loop
temperature, primary loop pressure, pressurizer level, available control
reactivity, rate of control rod motion, and reactor and turbine power
rate of change constraints. In addition to these directly specified

constraints, the control also observes certain indirectly specified or

This technique is discussed in Section 3.6.
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calculated constraints on power changes due to the initial states in the
reactor, e.g., Xenon effects. These constraints are all observed to
ensure smooth plant operation during and after load change.

The control equations are based on the deterministic portion of the
model. This control is modified, as described later, to operate in the
presence of uncertainty. The control coordinates two major plant inputs
which directly affect the reactor and the turbine to keep the plant within
specified and calculated constraints during the load change. The plant
load is changed in minimum time subject to the constraints.

The control constraints are adjusted to provide for uncertainty by
use of the stochastic model. The nOminall state behavior is predicted
for the load change, together with the state covariance about the nominal.
This covariance is used as a measure of the variation which might be
expected in performance, considering the fact that the process is
stochastic rather than deterministic. A band of uncertainty about the
nominal trajectory is defined based on this covarizance representing the
99.7% probability, a priori, that the state will be within the band at a
given time.

The calculated band of uncertainty is used to adjust the state
constraints - to make them more restrictive. Thus the rnominal plant
behavior is well within the actual coastraints and in fact the entire
99.7% probability band of expected plant behavior lies within the actual

constraints. Thus, the coatrsl can Operate in the presence of uncertainty,

The nominal trajectory is the result of prediction using the
deterministic model only. In other words, the disturbance is assumed to
be zero for the nominal predicted trajectory.
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even though the control equations are based on the deterministic portion
of the model.

In addition to the direct control applications of adjusting the
constraints and estimating the states, the stochastic model is also used
to aid in the menitoring of the plant during the load change. To
accomplish this, the calculated 99.7% probability performance bands of
the plant measurementsl about the nominal trajectory are calculated and
are displayed prior to the start of the load change. As the load change
progresses, the realized plant measurements are superposed on this display,
so that the plant operator can monitor the actual vs. predicted performance
The reactor power and the primary loop average temperature were chosen
for this display purpose to fllustrate the prediction capability.

The plant performan;e during the load change is automatically
monitored by the computer using two distinct criteria. The first criterion
makes use of the predicted measurement performance bands discussed above.
The load change can be aborted if these bands are violated. (Howéver
since an occasional noise spike on the measurements can cause a bounds
violation, it is desirable to abort only if several points are outside
the bounds.) The other criterion makes use of a statistical test called
a hypothesis test. For the test used in this study,2 it is found that
when the plant behavior is different from that predicted by the stochastic

model, the hypothesis test quickly detects this error. The hypothesis

The predicted measurement bands consider both the disturbance and the

measurement noise, while the predicted state bands consider the disturbance
noise only.

See Section 5.5.
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test consistently detects plant variation before the observed plant
performance under the control is noticeably deviating from the predicted
measurereat bands. Thus, of the two criteria, the hypothesis test is
more sensitive to plant variation.

Variation in the plant is detected by the measurement bands test and
the hypothesis test discussed above. In the event of a variation, the
load change is stopped and the model of the plant is adapted, based on
the data acquired during the abortive load change. This procedure proves
capable of adapting to plant variation and of producing a model which is
once again consistent with the plant data.

In summary, the scope of this study involves the application of
several techniques from modern system theory to the load change problem.
These techaiques include the identification of a stochastic model of the

plant, and the use of this model for state estimation and prediction.

Bands of predicted measurements are used for display and monitoring. A
hypothesis test is used to determine if the model is consistent with the
Plant data. The result of all taese techniques is to provide smooth,

fast and large load changes in the presence of Plant variation and

uncertainty.

1.3 Related Studies

This investigation brings together a number of techniques to provide
control in the preseace of variation and uncertainty, and to thereby

provide improved control of the nuclear pcwer plant during load changes.
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Prior work of a theoretical nature has provided the groundwork for this
study.

The identification technique used here is maximum likelihood. This
technique was developed by R. A. Fisher (24]. The technique has been
previously used for identification of the parameters of dynamic systems,
particularly by Astrom [5]. The theoretical convergence propercies of
maximum likelihood techniques for special forms of state variable models
have been considered by Kashyap [36]. The form of mzximum likelihood
technique used in this study, with general form state variable stochastic
models, was developed by Schweppe [58].

Techniques other than maximum likelihood have been used for
identification of the parameters of stochastic models. These techniques,
generally called adaptive filtering, use the errors in on-line state
estimators to make corrections in the parameters of a stochastic model,
Jazwinski [32] considers dealing with variations by adapting a disturbance
noise covariance matrix in a manner which requires some assumptions on
the form of the covariance matrix. Bryson and Ho [13] adapt the magnitude
of a factor multiplying the measurement covariance matrix. Mehra [46]
develops a tecknique for identifying noise covariance matrices, given the
deterministic part of the model. He uses a hypothesis test to see if tha
hypothesis of a correct model snould be rejected. Anderson et al. [2]
consider the estimation of the deterministic and the noise parameters of
a model for the special case where all states are measured. None of the
above adaptive filtering approaches has the generality of the wmaximum

likelihood technique used in this study. With this methed, it is
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possible to identify parameters in the deterministic and the noise portions
of a state variable stochastic model without the necessity for measure-
ments of all states. The maximum likelihood identification te;hnique

thus ranks as the most general of the available techniques for identifying
the parameters of a stochastic model.

The specific problem of identifying parameters in a nuclear reactor
model has been previously studied. Habegger [27] estimates parameters in
a model by considering them as states in a state estimator. Sage and
Masters [55] use a least squares approach to identify parameters in a
reactor model. Ciechanowicz and Bogumil [16] use spectral techniques to
identify parameters in a simple linear model of a reactor. None of these
previous reactor identification studies has the generality of this study,
which identifies the parameters of both the deterministic and the
stochastic portions of a sixth order nonlinear model of the nuclear power
plant.

A number of previous studies have considered the optimal control of
the nuclear reactor for power changes. All of the prior studies consider
low power operation, where the plant to reactor coupling is negligible.

At high power operation, the plant coupling via temperature feedback of

the circulating moderator water can rapidly affect the reactor behavior.
Thus the plant coupling due to this circulating water is a major considera-
tion in the reactor behavior for high power operation. Some of the prior
studies make the lower power operation restriction explicit, such as
Marciniak [45], while others effectively assume low pover operation by

setting the coupling to zero before deriving results as in Duncombe and

Rathbone [21].
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The prior studies have generally considered constraints on the reactor
and the control rods. Hovever, the constraints on the remainder of the
plant, particularly the primary loop pressure, have been negleéted in prior
studies. This is not a problem for low power operation, where the plant
coupling is small, but it is a major consideration at high power operation.

Some previous investigations have considered the effects of Xenon for
the reactor shutdown problem. The effect of Xenon on load changes at high
powver is also important, although it has not been considered in most prior
studies. This is another case of an effect which can be negiected at low
powver levels, where natural Xenon decay dominates Xenon burnoff, but which
is important at high power levels.

None of the prior studies for optimal control of the nuclear plant
during power changes are valid for high power operation. There are several
studies valid for low power operation, in particular, those of Harciniak
[45]), Monta (47], Duncombe and Rathbone [21] and Weaver [64]. There are
also numerous pPrior studies on the somewhat related problem of optimal
shutdown to minimize Xenon poisoning, in particular the studies of Ash [3],
Lewens et al. [43], Roberts et al. (52], [53], and Rosztoczy [54]. How-
ever, this is the first study to consider the important effects which

occur at high power cperation.

1.4 The Contribution of this Studvy

The practical applications of modern control and estimation theory

usually require low order models of processes. Many processes, in
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particular nuclear power plants, are complex nonlinear processes which

can only be crudely described by low order models. The errors which occur
due to using a crude model are similar to the errors produced By
disturbances, and to some extent model €rrors can be handled by using a
stochastic model .which allows for disturbances. This study considers
maxinum likelihood identification of the parameters of both the determinis-
tic and the stochastic parts of a low order nonlinear model as a means of
coping with some inaccuracy in the low order model. The resulting model
is then used for estimation, prediction and control of a realistic
simulated plant. A contribution of this study is that it provides a

means for using modern control and estimation theory in a realistic
environment where the available models are low order, but where the actual
process is more complex.

The nuclear power plant is subject to the types of variations common
to many processes. This study provides a number of techniques for coping
with such variations. The parameters of a stochastic model are identified
by a maximum likelihood technique to provide a model consistent with the
plant data. The model adequacy is monitored by means of a hypothesis
test to detect plant variation. In the event of variation, the model
parameters are adapted. The control of the plant is based on calculated
state constraints, which consider the estimated initial condition of the
plant. These constraints are then modified - made more restrictive - to
take into account che uncertainty predicted by the stochastic model. The
control is based on the state estimates provided oy an on-line state

estimator. These techniques, taken together, provide a2 means for conitrol
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in the presence of the variation and uncertainty which normally occur in
a nuclear power plant, as well as in many other processes.

The unique problems of high power operation of nuclear poﬁer plants
make prior work on low power reactor operation of little relevance to
this problem. Further, cthis study is the first to consider the optimal
control problem for the overall plant as opposed to the reactor alone.
This problem includes consideration of the coupling between the reactor
and the remainder of the plant. The results of this study should be
directly applicable to actual pressurized water nuclear power plants,
providing the capability for large, fast and smooth load changes. Thus,
in addition to proving the usefulness of several theoretical techniques,
this study also makes a contribution in that it provides a practical

solution to the load change problem which is demonstrated on a detailed

simulated plant.



CHAPTER 2

THE NUCLEAR PLANT

2.1 Plant Description

A brief description of the pressurized water nuclear power plant is
presented here. The details of the physical Processes are discussed
further in the simulation Summary, Appendix A. The effects described
here are considered in the design of the nuclear plant control.

Figure 2.1-1 shows the major parts of the nuclear power plant, which
includes the reactor, the primary loop, the pressurizer, the heat
exchanger, the secondary loop, the throttle valves, and the turbine-
generator unit.

The energy flow through the plant is accomplished by the water
circulating around the primary and secondary loops. Heat is produced in
the reactor by nuclear fission. As Figure 2.1-1 illustrates, the primary
loop contains water which carries heat energy from the reactor to the
heat exchanger, where the heat is transferred to the secondary loop. The
water in the secondary loop boils in the heat exchanger, producing steam.
The throttle valves admit steam to the turbine. The turbine produces shaft
pover from the expansion of the steam. The generator, driven by the shaft,
produces electric pover.,

The reactor is now considered in more detai]. During normal operation
the nuclear fission process is in critical steady state. In general, eack
fission is caused by an interaction betwean a neutron at thermal energy

235 :
and an atom of U 3 - A fission produces on the average more thaa two
-26—
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neutrons. Some of these neutrons are absorbed or leak from the reactor.
At critical steady state there remains a net of one neutron which enters
into additional fission, and thus steady state is maintained.

A small fraction of the neutrons produced by a fission arc not
produced immediately. This small fraction, called delayed neutrons,
results from the decay of certain fission products. Delayed neutrons
effectively slow down the reactor fission dynamiecs during a transient.

The reactor can be controlled by control rods vhich absorb neutrons.
When the reactor is in a critical steady state, the control rod absorption
together with all other absorptions and leakage of neutrons result in a
net of one neutron available for fission for each neutron that caused
fission. As the control rods are inserted, a larger fraction of neutrons
are absorbed in each generation and the reactor power decreases. As
control rods are withdrawvn, a lower fraction of neutrons are absorbed and
the reactor power increases.

Boron compounds are put into the water which flows through the reactor.
Boron acts as an absorber of neutrons as a control rod does. Thus the
concentration of boron in the reactor can be manipulated to affect the
state of the reactor. In general, this concentration is only adjusted
slowly, whereas the fast control of the reactor is handled by the control
rods.

The water which flows through the reactor core serves as a moderator.
The high energy neutrons from fission are slowed down or moderated in the
water. This is necessary because neutrons slowed to low energy have a

much higher probability of interaction with fuel atoms to cause fissicn.
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Water provides a good moderator because the collision of neutrons
with light atoms, such as hydrogen in the wvater, is more effective in
slowing down the neutrons than collision with relatively heavy metal atoms.

The water also serves as a means of transferring heat. Nearly all
of the heat produced by fission comes from the kinetic energy of the
fission fragments and it appears in the fuecl. The heat is transferred
to the flowing water, which moves through the reactor core in a time on
the order of seconds.

The reactor transient behavior will now be considered. The role of
the control rods in changing the reactor power or fission rate has been
discussed previously. There are several other major variables which also
affect the dynamic behavior of the reactor. Thess include temperature
changes which may occur in the fuel and the moderator water and changes

in the concentration of certain isotopes which absorb neutrons, such as

As the moderator and fuel temperatures rise, there are various
physical changes in material dimensions, material densities, neutron
energy spectrum, and other effects in the reactor. As temperatures vary,
these effects generally cause a change in the balance between production
and destruction of neutrons. These effects are called moderator and fuel
temperature feedback effects. In a pressurized water reactor these
feedback effects are generally negative and they help to stabilize the
reactor.

The moderator water in the primary loop may have its temperature

disturbed due to turbine load changes. These temperature disturbances
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then irnfluence the reactor. Thus plant load changes can influence the
reactor behavior, and the overall plant must be considered in discussing
the behavior of the reactor.

Because of the moderator temperature effect, the power changes at the
turbine can initiate a transient in the reactor. This effect is generally
a stabilizing influence on the plant, as the temperature transient caused
by a turbine power change will tend to change the reactor power in the
same direction as the turbine power change. The size of this effect
varies over the fuel cycle (about a year) as the concentration of Boron
in the moderator is changed.

The transient behavior of the reactor depends strongly on the
concentration of certain isotopes which absorb neutrons. The major effect

is duve to Xe135

» which is a strong absorber of neutrons. The concentration
of Xe135 is negligible during a reactor startup, but the concentration
builds up slowly during steady high power operation, due to the Creation

of xel35 from the decay of certain products of fission. At equilibrium

at high power levels, this creation of Xe135 and the loss of Xelas, mostly
due to neutron absorption, are in balance. The concentration of Xe135 can
change significantly in a period of minutes if the reactor power is changed.
This gives the effect of a significant change in the fraction of neutrons
which are absorbed. The effect of xe135 at high power levels is a
destabilizing influence. A rise in reactor power produces an initial
transient decrease in the Xe135, which tends to make reactor power increase
still more. However, the steady state effect of a reactor power increase

is a larger Xe135 concentration. That {is, the initial fast transient is
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in the opposite direction to the steady state change. This complex
phenomenon, which involves other isotopes as well as Xelas, is discussed
in further detail in Section 3.2,

The other portions of the nuclear power plant are now considered.
As Figure 2.,1-1 illustrates, the pressurizer is a surge tank with heaters
and sprays to provide pressure control for the primary loop. A transient
change in the pPrimary loop average water temperature will cause a surge
flow into or out of the Pressurizer, as the primary loop water expands

or contracts. This surge flow will cause a bpressure transient. Thus

the primary loop average temperature changes.

As Figure 2.1-1 illustrates, a heat exchanger couples the Primary and
secondary loops. The heat Xchanger is a shell and tube type. The second-
ary side of the exchanger contains boiling water. The steam is separated
and goes to the turbine. The boiling temperature and the heat transfer
are influenced by secondary loop pressure, and thus the primary loop is
Strongly coupled to pressure changes in the secondary loop. A set of
throttle valves admits steam to the turbine. The turbine reacts rapidly
to changes in steam flow. A common approximation is that the load on the
plant is proportional to steam flow.

A discussion of the plant should inciude some mention of the measure-—~
ments and coantrols which are typically present. A plant may have hundreds
of variables monitored for safety and other purposes. However, only a few
Major measurements are of interest in the load change problem. These

include reactor powver, primary loop pressure, temperatures of the hot and
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cold legs in the primary loop, pressurizer level, rod group positions,

steam flow to the turbine, and electric load cn the plant. Al]l of these

major plant inputs: the rods, the pressurizer heaters and sprays, the

secondary loop feedwater pumps, aand the throttle valves. Table 2.1-1

water nuclear power plant. In the next section the behavior of the plant

under transient conditions is considered.

2.2 Plant Behavior During Transients

In this study a detailed simulation of a pressurized wvater nuclear
bower plant was used for experimentation. This simulation is described
in detail in Appendix A. The simulation includes the major parts of the
Plant discussed in Section 2.1 and shown in Figure 2.1-1. 1In addition to
the simulation of the various physical parts of the plant, the simulation
also includes disturbance noise and noise on the measurements. The overall
simulation does not represent plant behavior exactly, but it does have
sufficient detail to illustrate the plant behavior during transients. The
Structure of the simulation is shown in Figure 2.2~1. As this figure
illustrates, the analeg controls for the pressurizer, the turbine, and
the reactor were part of the simulation.

A number of response tests are presented in this section to illustrate

the behavior of the plant. The first transient response exveriment, shown
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Description

Rod Control

Pressurizer Control

Heat Exchanger Control

Turbine Control
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TABLE 2.1-1

Analog Control Configuration

Measurements

- Reactor Power

-~ Turbine Power

- Primary Loop Temperature

- Pressurizer Pressure

- Pressurizer Level

- Steanm Flow
- Feedwater Flow

- Level in Exchanger

- Load Demand

-~ Turbine Power

Plant Inputs

Control Rods

Heaters

Sprays

Feedwater Pumps

or Valves

Throttle Valves
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in Figure 2.2-2, gives the responsc to a withdrawal of control rods at

the maximum withdrawal rate. As the rods are withdrawn, the reactivity

increases, leading to a reactor power increase. The overall behavior of

the plant during this transient can be thought of as due to the mismatch

between reactor power and turbine power. The extra power is giving rise

to the primary loop temperature increase. The transient shown is for a
moderator temperature coefficient of -1 x 10—4 AK/°F and for the case of

no Xenon poisoning. A smaller moderator temperature coefficient or more

Xenon would lead to more severe transients than those shown.

The transient response shown in Figure 2.2-3 shows the effect of a

step change in the load setpoint. The analog turbine control systen

manipulates the throttle valves to accomplish the load change. The analog
rod control system has been disconnected for this experiment to show the

behavior of the reactor in the absence of rod motion. Eventually, a new

steady state is reached, in the absence of rod motion, where the moderator

temperature is lower and where the reactor power is higher. If the rod

control system had been used also, a desired primary loop average tempera-

ture can be adjusted without changing plant load, just as in the first
experiment described above. The behavior shown in Figure 2.2-3 is for
the same conditions of Xenon

and moderator temperature coefficient as in

Figure 2,2-2,

Experiments performed under the normal analog control of the plant

are aow discussad. In particular, the behavior of the plant for different

moderator temperature coefficients and for different Xenon concentration
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is considered. Figure 2.2-4 shows the plant transient response to a step

in plant load setpoint under conditions of a large moderator feedback

effect, -1 x 10-4 AK/°F and no Xenon. The transient change in reactor

pover is due both to the effect of the control rods and the effect of the
transient in moderator temperature. The primary loop pressure and the
pressurizer level both experience significant variations as the primary
loop temperature changes.

Figure 2.2-5 shows the plant response to the same 10% step in plant

load setpoint, but for the case of a much smaller moderator temperature

coefficient, -1 x 10-'5 AK/°F. The temperature transient in this case is

more severe, leading to larger transients in pressure and in pressurizer
level.

Figure 2.2-6 shows the plant response for a 10% step in plant load
setpoint for the case of an initial high Xenon concentration, corresponding
to a load change after a period of high power operation. The effect of
the Xenon is to make the reactor pover change occur more rapidly, which
reduces the initial temperature transient. However, the Xenon effect
continues, leading to a tendency for reactor power to rise. The rising
primary loop temperature and the power mismatch are detected by the analog
control system, which drives the rods to counter these effects.

For the load changes considered in this section (10% load changes)
the analog control system performs acceptably. A number of variables are
disturbed during the load change, particularly the primary loop pressure,

but the deviations are withina acceptable bounds. However, the undesirable
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deviations in pressure and other variables get worse as larger load change
steps are attempted with the analog control system. Thus the analog
control system is limited to small step load changes. In contrast, the
computer control developed in this study is capable of large, fast load
changes, with less deviation in the pressure and some other important
transient variables than is produced by the analog control for the small

load change experiments described in this section.
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CHAPTER 3

THE MODEL IDENTIFICATION

3;1 Introduction to the Identification Problem

In this study a load change control is developed for the nuclear

power plant. The control is based on a model of the plant. However the

nuclear plant is a complex process. The types of simple low order models
which are required for control purposes can only approximate the actual

plant. There are several methods used in this study which compensate for
part of the approximation and which allow a low order model to be useful

in the control of the complex plant. The methods used include determin-—

istic modeling of the major physical phenonmena, modeling of the disturbance

and measurement noise effects, and identification of the parameters of

the overall model.

The model considered in this study is a stochastic model, that is, a

model which contains a deterministic part and which also contains a

representation of disturbance noise and measurement noise. The use of a

Stochastic model allows a means of coping with the random behavior of the

process. In addition to this, the use of a Stochastic model compensates

for some model errors. This occurs because the effect of model errors
is that the state does not behave quite as predicted - which is the same

effect which a disturbance noise produces. Thus the disturbance noise
portion of the model represents random disturbances and also a certain

amount of model error. The result of using a stochastic model is that

-43-
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means are provided to cope with both random process variations and with
some model error.

The stochastic model has a number of parameters which are not assumed
to be known. In the deterministic part of the model the Structure is
determined by physical laws, but the coefficients or parameters of the
model are assumed to be varying or unknown. In the noise part of the
model, the parameters of the disturbance noise and the measurement noise
are also assumed to be unknown. The parameters of the stochastic model
are identified to find the closest fit of the stochastic model behavior
to the observed plant behavior.

The criteria for identification of the parameters of the overall
stochastic model, comprised of the determinisfic and the noise models,
is that of maximum likelihood. This technique involves the choice of
parameters to maximize the conditional probability of the observed data
for the set of Parameters. The technique involves a direct search over
the parameters to find the maximum likelihood fit.

To sum up, the problem is identification of the parameters of a state
variable stochastic model using plant data records. The solution to this
{dentification problen, using the maximum likelihood criterion, has been
developed theoretically by Schweppe [58] in the general form used here.
This work represents the application to a process of this general state

variable stochastic model parameter identification techaique.

3.2 The Deterministic Model

The deterministic portion of the model is considered first. The

basic procedure for constructing the model was to represecent the major

A i e i st et e
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energy storage, generation, and energy output phenomena in terms of simple
lumped models. Thus the known plant structure was used in defining the
model structure. The alternative procedure, to consider the plant unknown
except for model order, was rejected due to the large number of unknown
parameters which would result.

The nuclear reactor is represented by one group of delayed neutrons

with a prompt jump approximation:

dD

de " P B Y (3.2-1)
D

where:
D 1is delayed neutron precursor density
PR,is reactor power
Y 1s normalized reactivity

b4 is a parameter which is identified and adapted.

The above equations are widely used as a simple model for the reactor.
This study also considers a number of effects which influence the reac—

tivity vY. The model used for the reactivity about a nominal operating

point is:
Y = -bl(PR-PR ) - bZ(TAV.TAVQ) + b3(RrR°) - bs(X-xo) (3.2-3)
where: °
TAv is primary loop average temperature
R is control rod group positicn

. a5 . . .
X is Xel concentration or poisoning
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The zero subscript denotes opcrating point values. The parameters which

give the magnitudes of the reactivity effects, b b2’ b3, and b8’ are

l’
all identified and adapted.

The reactivity effects are now discussed in more detail. The
paramceter b1 in equation (3.2-3) for the reactor power feedback effect
on reactivity represents the fuel coefficient. The use of reactor powver
rather than modeling a separate fuel temperature is equivalent to assuming
a fast thermal time constant for fuel temperature.

The primary loop average temperature feedback effect, b2 in equation
(3.2-3), represents the moderator temperature coefficient. An unsuccessful
model which lumped the fuel and moderator feedback effects was also
tested. The fuel and moderator effects tend to act together during rod
reactivity experiments. >However, during disturbances arising from load
changes, the fuel and primary lobp moderator water temperatures tend to
move in opposite directions. Thus both effects must be included in a

load change model.

A Xenon (Xe135) effect on reactivity, represented by the parameter

b8 In equation (3.2-3), is included since Xenon effects can produce

serious transients for pover changes at high power levels. The fact that
enon production changes siowly, while at high power levels Xenon burnoff
changes directly with reactor power, leads to the significant Xenon

transients at high pover levels. Nearly all of the Xel3s is created by

135 135
I decay. The Xe is destroyed by natural decay at low powver levels,

but a burnoff of Xenon due to reactor flux dominates at high power levels.

An approximate model is:
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a8

= bll I - blO X - b9 PR X (3.2-4)
where:

b9 1s a parameter which is identified and adapted. The parameters

blo and bll’ associated with very slow effects, were not identified in
this study. These parameters were set to theoretical values. They could

be identified by analysis of long term data records if desired.

The 1135 concentration in the reactor has a significant effect on

high power operation because of the role of 1135 in producing Xel35. The
135

I can be approximately represented as being created by fission and
destroyed by natural decay. The equations for this are

dI _

dc T P2 Prby T (3.2-3)

135

where I is the concentration of I . This is a slow process which takes

hours to experience significant transients. For this reason the parameters

bll and b12 are not identified or adapted in this study, but are set to

theoretical values.
The control rods are modeled as an incrementally linear reactivity

effect, represented by the parameter b3 in equation (3.2-3). This 1is

tecognized as an approximation. The effect of nonlinear incremental rod

worth appears as a reactivity disturbance and the later inclusion of
disturbance noise in the model copes with this effect.

The rod control is modeled as:



(3.2-6)

where U the rod rate of withdrawal, is a manipulated input of the plant.

In most plants the control rods are under an analog control system

which is complex and nonlinear. In this study it is assumed that this

analog control is replaced by digital control, thus the rod control is a

plant input included in the model and available for control.

The model for the remainder of the plant, external to the reactor,

is now considered. The primary loop is modeled as an energy storage.

T dT,.

: —dc = bS(PR-PRo) - b6(PT-PTO) 3.2-7)
where:

ﬂi TAV is primary loop average temperature

PR, is reactor power

: PT is turbine power

e

Tk, e A e

The parameters bS and b6 are identified and adapted.

The turbine and its control system constitute a dynamic system with

a time constant on the order of seconds.

The plant load is not directly
adjustable,

so that in adjusting load via the analog control setpoint this

dynanic system must be considered. The turbine and its analog control

System are modeled as a first order system

o dc = b7 v = b7 PT (3.2-8)
~ Where:

PT is the turbine power
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u, is the plant load setpoint, a manipulated input of the

plant.

The parameter b7 is identified and adapted.

The deterministic model developed in this section can be expressed as:

dx
EE = _f_(-’u) ) (3'2-9)

where:

S

is a six dimensional vector of plant states
u is a two dimensional vector of plant inputs

b is a twelve dimensional vector of parameters

X is taken as

X

¥y = h(x,u,b) (3.2-11)
where
P —
PR
T
PT
R
Y
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3.3 The Stochastic Model

‘ZK = -t-l‘('}—{'K"EK"b-) + _‘!_K (3.3*1)

where the Subscripts K refer to the sampled values at a time labeled K.

Ye the measurement Sensor noise, is assumed to be zero mean white Gaussianp

noise with covariance .

(W wt) = W (3.3-2)

The covariance matrix W is assume

ad to be unknown, to be identified from

the data records.

The result of allowing for disturbance

inputs to the model is that the model states are described by probability

distributionsg 2t a particular time. These distributions evolve through

tize. In order tc consider the way in which these distributions evolve,

a2 model lipnearized about the nominal expected state at each time K is

formed, Srall deviations from the €xpected state propagate approximately

according to this linearized model. Tt is assumed that the probabilicy

distribution about the nominal state evolves according to this model also.
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The system is lincarized about the nominal trajectory x*(t). 1In

order to derive this trajectory, the continuous time differential

equations must be integrated. The initial state Eﬁ-l is the initial
condition for the integration. The effect of the input is approximated

as
t
* = — - -
u*(t) Y1 vy e Y 1) (3.3-3)
where
A =rc - k-1 (3.3-4)

This approximation is not necessary when the inputs are under computer

contrel, since the inputs then change only at times ¢

K-

The deviations from the nominal trajectory §£ are:

~

- _ Uk
EREIER X

(3.3-5)
X T kel X t Gy (3.3-6)
where AK—l is the solution at time tK of
3f(x,u,b)
: '3% = = ® (3.3-7)
= x*,u* b
3
; with injitial condition
ey 1) =1 (3.3-8)
The vector V.

~g representing the disturbance nois

se, is assumed to be zero
- BRen, white Gaussian noise with identity covariance. The matrix ¢ is
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assumed to be unknown, to be identified. This structure allows the number
of disturbance inputs to be chosen as a model parameter, and the number

of identified stochastic parameters can be thus varied to meet the needs
of the problem without necessarily requiring large numbers of unknown

parameters.,

The linearized model for the measurements about the nominal trajectory

gives the nominal measurements:

Ig = Blgaueab ) - hlxe,ug,b) 3.3-9)
so approximately

where:

CK = 3w . (3.3-11)
- X By »b.

and the noisy measurements are

-.éK = zK + EK (3-3-12)

This completes the description of the stochastic model of the plant. This
model is used for a variety of purposes in the study.

The model is summarized in Figure 3.3-1. The major manipulated
Inputs are the reactor control rods rate of movement and the turbine load
setpoint,.

The model has a stochastic structure to allow for model errors,

disturbances to the states, and measuremant noise. The basic behavior of
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the model can be understood in terms of reactor power, turbine power and
energy storage. There are dynamics associated with both the reactor power
and the turbine power. If these two povers are somchow maintained equal,
then the plant energy is constant and the stored energy in the plant is

not seriously disturbed even if the pover is rapidly changing. 1If the

reactor power and the turbine are mismatched, then the plant energy is

changing.

3.4 Initial Parameter Estimates

The identification technique requires a search over the parameaters
to determine, at least locally, the maximum iikelihood estimates. This
search is expedited by making some reasonable initial guesses on the
parameters. The initial guess on the deterministic parameters was found
by a fast least squares fit of the deterministic model to the data which
vere aCquired from the simulated plant. The initial guesses for the
stochastic noise model were made by a simple analysis of the noise in the
simulated plant data records. The procedures used to generate these
initial guesses are now considered in more detail.

A least squares identification was used to obtain tentative values

for b, the parameters of the deterministic model. The cost function was

of the form:

N 3 -
I® = T ] e (y)? (3.4-1)
K=1 i=1 1

where:

y represents model predictions
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Z represents mecasurement data

C represents weighting factors

The rod position and load setpoint values are taken from the data records
and used as if they were deterministic for this calculation. The measure-
ments being considered in the cost function are:

Z; Treactor power measurement

z, primary loop average temperature measurement

24 turbine power measurement.

The data was taken at one second intervals. The length of the data
records varied from 100 to 300 seconds during which the plaat was in a
transient load change condition. The reactor power measurement was quite
noisy with standard deviation on the order of 2 to 3% of the total signal,
while the other measurements were less noisy. This was intended to match
actual plant measurement conditioas (60]. The costs were chosen so that
equal costs were assessed for a 1% reactor power error, a 1% turbine power

error, and a 1°F primary loop average temperature error.

The search technique was a modified Davidon~Fletcher-Powecll [19], [25].

This method starts as a Steepest descent search. As the search proceeds

and information is gathered from the search, the method approaches Newton's

method in efficiency. For quadratic cost functions this is a conjugate
directions search, like the conjugate gradients method, and it converges
ia the same number of steps as the number of parameters being identified.

In comparison Newton's method conver es in one step for uadratic cost
P ’ g p q

functions, but it requires considercble computation. The Davidon-Fletcher-
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Powell method combines the best features of both conjugate gradients and
Newton's methods, and it is a powerful technique for ninimizing functions
which approximate a quadratic at the ninima, the usual case. fhere are
other good search techniques which could have been used (11], [31], but
the Davidon-Fletcher-Powell method was chosen due to its excellent
convergence properties.

The starting point b = 0 was originaily chosen for the search to
test the possibility of identification with no a-priori guesses of
parameter values. This resulted in local minima which were poor fits.
This problem was resolved by starting from a crude guess of the values
in b, which were based en guesses of the time constants and magnitudes
of the effects represented by these parameters. A local grid search
using 3 values of each parameter was conducted about the crude guess.

The search was then initiated from the best point on the grid search.

The search gencerally converged after 2K to 3K directional searches, where
K is the number of parameters identified. Each directionzl search requires
K+l evaluatioas to determine the gradient and an average of 4 evaluations
along the search direction. The total number of cost function evaluations
vas thus generally 2K(K+5) to 3K(K+5). The computer time for this search
was 2 to 5 minutes, depending on the number of parameters, length of data
record, and nurber of directional searches. This time could undoubtably
be reduced in practice by more efficient programming. A typical run
1dentifying 9 parameters and using 200 seconds of data with one second

Sample intervals takes & minutes for the least squares identification on

an IBM 360-50 computer.



o n,\ulﬂlxdh‘i‘m'

muju AT i

-57-
Figure 3.4-1 shows a data record which was taken from the simulated

plant. The deterministic predictions of the model are superposed on

this figure to illustrate the model fit. The initial estimates of the

deterministic parameters, derived from the least squares fit procedure,

were used to make the predictions.

In addition to initial estimates of the deterministic model parameters,

it is also necessary to derive initial estimates of the noise model

parameters. The estimate for the covariance of the measurement noise is

taken directly from the measurement data records. The measurement

covariance W is estimated from successive differences, making use of the

theoretical relationship
(]
E (Uzgmze ) Mzgmz 1) = 2R - 2R | + 2u (3.4-2)

where

R, = & (g v ) (3.4-3)

1]
R, =& Gy vy ) (3.4-4)
are autocorrelation matrices for the process outputs,

For a process with time constants long compared te the sauple time

Rb and R—l are close in value and if the neasurement noise covariance W

dominates the difference, then approximately

= l - - L 4
W= g <Cyemzg ) (-2 0> (3.4-5)

where < > indicates time average and where W is assumed stationary. Thus

2 simple techaique for estimating the me=surerent noise directly from the
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data records has been developed. Since this measurement noise covariance
estimation is so straightforward and logical, this was chosen as the final
estirmation technique for the measurement noise parameters W.

An initial guess on the disturbance noise input matrix G was derived
to provide a starting point for the search for the identification of the
disturbance parameters. This guess was made to match the model covariance
to the covariance produced by the noise on the measurements of the inputs

operating through the linearized input matrix:

9f (x,u,b)
B = (3.4-6)
ou x*,u* p
Zo'=u’=

If the measurements of the irputs have a covariance U (estimated as in the

case of the process mzasurements), then the matrix Go is chosen so that

Since G° is just an initial guess, the procedure is simplified by retaining

only the diagonal elements of U in U° and by setting
c, = B\ U (3.4-8)

Procedures have been described for the finitial estimates or guesses
for the parameters of the model, the deterministic parameters b and the
Stochastic matrix parameters W and G. The parameters b end G are further
ldentified by maximum likelihood techniques, while the initial estimate
of W is retained as is. The further identification of b generally produced

small chznges, however the further identification of G gives a much
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different final identification. The initial guesses on the parameters

do not satisfy a statistical hypothesis test, described later, while the
final maximum likelihood estimates do give a model which is statistically
consistent with the plant. Thus the initial guesses developed in this

section cannot be accepted as final, and a further maximum likelihood

identification is necessary.

3.5 Maximum Likelihood Identification

The likelihood function is formed from t he conditional probability
function of the observations given the parameters by considering the

latter as if the parameters were unknown and the observations known. The

likelihood function is:

i (@ = pz,} (3.5-1)
ol n'® = ezl @

where the parameters & include the deterministic parameters b and the

parameters of the noise model in the matrix G. The data record {z.}

N
is a set of N measurement vectors which a2re taken from the plant. If o

were given then the probability density function for any set {EK}N is

given a-priori by p({gK}Nl @), the conditional probability density

function. TIf the data {E¥}N is given and a is unknown, then the same

function is viewed as a likelihood function.

The maximum likelikood estimate of the parameters & is the estimate

which maximizes the likelihood function, or equivalently which maximizes

the log likelihood function. The latter function is easily computed

usiag a Kalman filter which is described in Appendix B. An importaat
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property of the Kalman filter is used in this method. The Kalman filter
produces the conditional mean and covariance of the states and residuals
at time K. For Gaussian probability distributions these are sufficient
statistics to produce the conditional probability functions. The Kalman
filter can thus be used to generate the conditional probability density
function p(EN [ {EK}N—l’E)' This function is used in a manner described
later in this section to determine the likelihood function. Thus the
calculation of the likelihood function for the stochastic state variable
problem makes use of properties of the Kalman filter.

The model at hand is a nonlinear one, so it is lincarized at each
time step about the estimated state. This gives the effect of a time
varying linear model. The estimates of the states are defined as:

gk, the a-priori estimate of Xe» before observing z,
E;’ the a-posteriori estimate of X after observing 2z
The nominal trajectory, and the linearization are as described in Section
3.3.
The extended Kalman filter for the systen is described by the

equations for the propagation of the mean and the covariance:

* - ~ -1 - ~
X = B ¥ g GelCp Ty Cp + W1 (z¢ = h(R ,u,,b)) (3.5-2)
Tge1 = 8 By &g + GG' (3.5-3)
-1
= - t a _
Pp = T — T Cg(C T Cg + W) G Tk (3.5-4)

K is the covariance matrix for the a-posteriori state estimates

Pe =& [Ggix) GFx) ") (3.5-5)

b G



-62-

and where FK is the covariance matrix for the a-priori state estimates.
= ~ - ~ - [l _
Ty E [ Gx) Eemx ) '] (3.5-6)

The a-priori estimate X+l is found by integrating the nonlinear differen—

. * s oo .
tial equations from the state X An initial state and covariance, §§ and

Po' must be specified.
The residuals of the Kalman filter are of particular interest, these

residuals represent the difference between model prediction and observations.

Ix = 2zx — hGx,u,b) (3.5-7)

which according to the linearized model is

I, = CK X +w (3.5-8)

The residuals are theoretically a zero mean white Gaussian process with

covariance matrix:

Re = Cx PK é.+-w (3.5-9)

The fact that for a correct model the residuals are a white noise process,
that is, uncorrelated in time, is used in the hypothesis test. An
incorrect model will produce correlated residuals and the hypothesis test
Is designed to be sensitive to correlation to detect this.

The manner in which the likelihood function is maximized, making use
of the extended Kalman filter, is now considered. The probability function

p({EK}Nj @) is defined as the likelihood function. The valuc of @ which
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maximizes this function is called the maximum likelihood estimate. This

value of a also maximizes the log of the likelihood function

Ey(@ = loglp({z by )] (3.5-10)
Now by Bayes rule
pllzg byl @ = oz | @ plzglized, ;.0 (3.5-11)

Thus, the log likelihood function can be calculated recursively.

En(@ = g @ + Lloglp(zyl{z 1y ;. )] (3.5-12)

The probability term is known from the covariance matrices propagated by

the Kalman filter.

K, -1/2 L 1
p(gul{zK}N_l,g) = [(2m) [det RN[] exp{- 7 o' Ry ryt (3.5-13)
where RN is the covariance matrix of the residuals EN' K2 is the dimension

Iy Taking logs, the propagation equation is

2 @ =26 (@) - In [det Ry| - K, In 27 - £ RL Iy (3.5-14)

This equation can be appended to the extended Kalman filter to generate the
log likelihood function. The filter is rerun over data with a new
parameter set a to evaluate the likelihood function for the new &. An
efficient search procedure, described previously in Section 3.4, is used

to find the maximum likelihood values of the parameters a. Figure 3.5-1

shows the Kalman filter with the likelinood calculation appended.
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FIGURE 3.5-1 A Kalman Filter with Likelihood Calculation Appended
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3.6 Hypothesis Test

The time required for a re-identification makes it desirable to
continue to use a model so long as it adequately represents plant behavior.
To evaluate this, a hypothesis test is used.

The residuals of the extended Kalman filter are considered. The
null hypothesis Ho is that these residuals are a white sequence of Gaussian

distributed independent random vectors:

LIRS SERTREY
with zero mean and covariance which is propagated by the filter equations:
= ¢ 0 -—
RK CK,PK CK + W (3.6-1)

The desired form of the fiypothesis test is a single statistic, which under

the null hypothesis has a known distribution and which is also sensitive

in some sense to an alternative hypothesis. The alternative hypothesis
Hl is that the sequence of vectors {EK} is serially correlated. The
statistic which is considered is a simple extension to multiple variables

of the Mean Square Successive Difference Test waich is used by statisti-

cians for the same purpose [12]. The principle of the test is to estimate
the covariance from the samples in two different ways, one of which is

sensitive to serial correlation. The required calculations are:

?hdz

-_1

N
1 s )
S = o1 KZI (ry-r) (rp-1) (3.6-3)
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N-1
o1
P =3¢ K£1 (1 ) (g g5 ) ! (3.6-4)

If the model is correct, then the residuals are uncorrelated and S and D
are both unbiased estimates of R. If RK is not stationary, but if the
model is correct, then S and D should still be approximately equal, and
they will be estimates of the average of Rk.

The statistic D is inseansitive to serial correlation, while the
statistic S is not. Thus if the model is correct and the residuals are
white, then D and S will be comparable, while if the model is incorrect
and the residuals are correlated they will tend to be different.

The test is simplified by considering the diagonal elements of R.
If sL and dL are the L-th diagonal elements, thean

o

;--l
L

uL N-2
-1

is approximately unit normazl under the hypothesis Ho for large N.

Brownlee [12] states that this is a good approximation for N as small as

10.

In order to incorporate all the diagonal elerents in the hypothesis

test, a statistic is calculated:

T=yp' u (3.6-6)

Since the U, are theoretically unit normal under hypothesis Ho’ T is
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theoretically Chi-squared with KZ degrees of freedom, where Kz is the
dimension of p. Table 3.6-1 shows the theoretical variation with dimension
and level of significance.

This hypothesis test proved to be very sensitive to model error, as
is desired. The statistic T performs about as expected under hypothesis
Ho when the model fit is good. However, if the plant is varied the
statistic gets large quickly, giving a forewarning of model error. This
occurs because the statistic is sensitive to correlation in the residuals,
and in the case of correlated residuals the statistic tends to grow as N
gets larger. The hypothesis test thus provides the means of judging the
acceptability of model fit, both for the initial maximum likelihood

identification, and also for the on-line performance tests.

3.7 Results of Model Identification

The uncertain parameters of the model were identified by a maximum
likelihood procedure. Initial estimates of the parameters of the
deterministic portion of the model were first found using the techniques
described in Section 3.4. With these initial guesses the time required
for a maximum likelihood identification was about 10 minutes of IBM 360-50
Computer time per 100 seconds of data for 10 undetermined parameters. In
Practice, this identification time could be improved by orders of magnitude
depeading on programn efficiency, approximation in the calculations, and

the speed of the computer. There was no effort to minimize this computer

time in this study.
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TABLE 3.6-1

Chi-Squared Probability Table

B 1is a vector of theoretically unit normal components
T=u'w is a Chi-squared distributed random variable

p 1is the probability that T <E

Dimension of

Values of E for Specific Probabilities
Vector
p = .999 p=.95 p=.9 p = .5
1 10.8 3.84 2.71 . 455
2 13.8 5.99 &.61 1.39
3 16.3 7.81 6.25 2.37
4 18.5 9.49 7.78 3.35

5 20.5 11.1 9.24 4.35
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The identifications were made using data taken with and without

analog control. The experiments support the following conclusions:

1.

Different short data records from the same plant yield soﬁewhat
different parameter values. These values are consistent with the
search started at two different initial points.

A plant variation (decrease of moderator feedback by a factor of

10) followed by a re-identification yields a successful model fit.
All identifications were successful starting from a crude guess of
parameters. These crude guesses varied in error from a factor of 2
to a factor of 10.

Data taken under analog control, for three different experiments and
for various load changes from 10% to 40%, tended to give mutually
consistent parameater values. Data taken without analog control gave
a somevhat different set of parameter values. The models of each,
when evaluated for the other type, gave fair model fits. It is thus
considered acceptable to perform the initial fdentification using

data taken with the plant under analog control.

The maximum likelihood identifications were dcne on a plant startup

model with no equilibrium Xenon. The results of identifications for four

Separate data sets are shown in Table 3.7-1. In general the deterministic

nodel parameters do not vary much for good fits, while the stochastic model

pParameters vary considerably, indicating local minima or non-unique minima.

All of these identifications provide acceptable model fits. The hypothesis

test indicates that the models are consistent with the data. The



-70-

TABLE 3.7-1

Results of Maximum Likelihood Identifications

PARAMETERS
Deterministic Initial Run A Run B Run C Run D
bl +2. +1.9968 +2.0026 +2.1947 +2.0003
b, +2. +2.0004  +1.9992  +42.2279 +1.9997
b3 +1. +1.0036 + .9982 +1.0363 +1.1998
b4 .01 .0103 .0108 .0088 .0043
bS .2 .2031 .1994 .2087 .1954
b6 175 1751 .1758 .1973 1793
Stochastic
8, 0. - .0024 - .0039 .0000 .0004
g, 0. - .0010 .0035 - .0002 .0008
g4 0. .0009 .0004 - .0011 .0014
g, .007217 - .001l6 - .0001 - .0004 - .0005
Other Results:
Negative Log Likelihood:
Run A Run B Run C Run D
-.1887.75 -1884.23 -1859.68 -1901.64

Hypotheses Test Vector (Elements theoretically are unit nermal if mecdel fits):

Run A Run B Run C Run D

7151 1431 -1.6352 -.2553
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TABLE 3.7-1 (Continued)

Hypothesis Test Statistic (Theoretically Chi-squared with 2 degrees of

freedom if model fits):

Run A Run B Run C Run D
1.192 .769 3.477 .8069

Probability of a test statistic worse than the observed, given a correct

model:
Run A Run B Run C Run D

55% 687% 17% 67%
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corresponding results for a model with Xenon, identifying 9 deterministic
parameters and 10 stochastic parameters, is given in Table 3.7-2.

One search was performed using the hypothesis test as the.performance
criteria rather than the negative log likelihood. The best fit models
under these two criteria are not precisely the same; however, the two
criteria do have a very strong tendency to move together, and the likeli-
hood function and hypothesis test statistic values were not significantly
different using the altercate criteria.

The numerical solution techniques were fouad to be an important
factor in the validity of the maximum likelihood search. The numerical
gradient calculations in particular, involving differences of numbers
which are the end result of extensive calculations, a2re a critical factor.
There are two major sources of error: truncation error, which results
from using approximations to solve the differential equations, and
accumulated roundoff error, which results from the roundoff which occurs
in representing every number at every calculation by a finite computer
word. These effects, if they are recognized, can be corpensated.
Truncation error can be reduced by using more accurate integration
methods, and roundoff can be reduced by using double precision arithmetic
or by changing to another computer with a greater word length. This
situation is conceptually shown in Figure 3.7-1.

An experiment was employed in this study to detect these errors by
repetitive calculation of a gradient at a point near the minimum of the
search, with a smaller step at each gradient calculation. Actually each

parameter had an individual step size, in ratio to its magnitude, and this



-73-

TABLE 3.7-2

Results of Identification for a Larger Model with Xenon Effects

Deterministic Parameters Stochastic Parameters
b1 1.59 g .00010
b2 2.00 g, .00156
b3 .21 g3 -.00269
ba .05 g, .00045
bS .31 g5 .00113
b6 .23 g6 .00265
b7 .13 g, -.00111
b8 .52 gg .00004
b9 3.12 gg -.00012

10 .00001

Hypothesis Test Rosult: Probability of a worse test statistic

if the model is correct: 4&477%.
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ratio was the adjusted value. The first use of this method showed ro
convergence, indicating that a program change to reduce truncation or
roundoff error was necessary. The integration technique was changed fron
Euler to fourth order Runge~Kutta at a cost of nearly 50 percent in the
total computation time. This reduced truncation error.

The effect of roundoff error is more difficult to correct. The
effect of finite computer word size is to add a term similar to pseudo-

random noise to the performance function.
J(at+d) = J¥*(atA) + vy (3.7-1)

where J* is the accurate value and where W) represents pseudo-random
noise due to Computer roundoff. When the noisy performance functions are

used to calculate gradients, the result is approximately the true gradient

Plus a noise term

E@ = g*@ +F G ~w,) (3.7-2)

As the step size used for the gradient approximation gets small, the
gradient does not converge to the true g*(a), but rather it becomes more
noise dominated.

The gradients at a value of & near the minimum are shown in Figure
3.7-2. This shows that computational or roundoff noise definitely exists
and that it limits the resolution severely for the maximum likelihood
technique. The noise can be reduced by multipie sampling (at small

Separations) or by using a computer with a larger word size.
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On the basis of the identification results and the roundoff error
tests, some conclusions can be drawn. The maximum likelihood technique
seems most useful in identifying the parameters of the noise portion of
the model, particularly the parameters of the disturbance noise. On the
other hand, for the deterministic model parameters, the maximum likeljhood
has poor resolution and a nuch longer computing time relative to the
least squares technique.

The procedure followed in this study was to perform the maximum
likelihood search off-line on data records to arrive at a stochastic model.
The parameters of the noise portion of the model were then assumed constant,
and the on-line adaptation was of the deterministic model parameters only,
using the least squares technique. 1In a plant application it would be
desirable to Put the maximum likelihood identification on line as well
tc provide on-line adaptation of the disturbance noise parameters.

The identification or model adaptation need be repeated only when a
hypothesis test indicates that the model validity is degraded. This model
adaptation may be done between load changes, using data acquired during

the load change. This was the procedure used in the dermonstraticn of the

identification in this study.



CHAPTER 4

THE DETERMINISTIC CONTROL

4.1 Definition of the Control Problem

A goal of this study is to provide a control scheme which can make

large and fast load changes without serious disturbances to the nuclear

plant. This control must operate in the presence of variation and

uncertainty. The problem is attacked in two parts. The first part,

discussed in Chapter 4, deals with the deterministic control problemn,
which involves the control of the deterministic model alone with no

consideration of variation or uncertainty. The second part, discussed

in Chapter 5, presents the modifications which are made to cope with plant

variation and with uncertainty.

The goal of the control strategy developed here is to provide rapid

load changes which keep the plant within specified constraints. The

operator can choose some of these constraints to ensure smooth plant

operation. Other constraints are calculated based on plant capabilities

and on the initial plant state. Altogether the constraints define

regions of operation within which a load change can be made without

serious upsets to the plant.

If there were no constraints, then a large fast load change would be

uo problem. The turbine power would simply be changed to provide the new

load as fast as peossible, with no coasideration as to the effect on the

plant, and the rods would be used to try to restore plant equilibrium.

-78—
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This is the way that small step load changes are made by a typical analog
control system. However, this procedurc is inadequate for a large fast
load change, where it would seriously disturb the plant and cause con-
siderable deviations in some variables which should not be disturbed.
Sizable load changes should be made in a manner which does not disturb
the plant beyond some chosen constraints. This requires a coordinated
control strategy for the turbine and the reactor. The inputs to the
plant are calculated, based on a model of the plant and on the current
estimated plant state. The model used for derivation of the control was
presented in Section 3.3. The strategy developed in this study is
intended to nrovide a rapid load change without violating the chosen
plant constraints.

In the language of control theory, the plant constrazints are of two
types: input constraints and state constraints. The input constraints
to the problem are discussed more fully in the next section. These input
constraints are on the rate and extent of rod movement a2nd on the turbine
powver rate of change, which is related to an input.

The state constraints are due to a combination of chosen constraints
and calculated constraints. These arc considered in detail ia the follow-
ing section. Tne plant constraints coansidered include primary loop
pressure deviations, pressurizer level deviations, and primary loop
average temperature deviations.

In addition to the general rapid load change problem, the special
case where the constraint on the primary loop average temperature is

reduced to zero deviation is considered. This corresponds to balancing
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reactor power and turbine power throughout the load change, thereby not
disturbing the stored energy in the primary loop or, equivalently, not

disturbing the average temperature in the primary loop. This strategy

produces a somewhat slower load change, but it has the advantage of

eliminating the undesirable plant variations in primary loop pressure

and in pressurizer level. This strategy is explained more fully in

Section 4.3.

In summary, the deterministic part of the control problem is to take
the plant, without yet considering uncertainty, through a specified load
change rapidly, subject to certain constraints. The load change would be
trivial and also impractical if there were no constraints. Some of the
constraints are hard constraints, due to physical limitations or deviation
limits. Other constraints, such as turbine power rate of change, are
available as control parameters. The control problem, in the face of all

the constraints, is to provide sufficiently smooth plant behavior and to

still make fast load changes.

4.2 Input and State Constraints

The constraints on the inputs of the model are a limit on rate of

rod group motion uy and a limit on plant load setpoint u, . There 1is

another effective input constraint, which is the constraint on maximum

allowed rate of turbine power change. The rate of change of turbine
dP

power, —gr can be considered to be effectively an input to the plant,

since it is controlled directly by adjustments in the plant load setpoint
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dp
uy. The control strategy is designed as if —a%- were directly controlled,
dp
and then in implementation the desired Ty is used to calculate adjust-

ments in the actual input u,. This was the strategy used in the computer

control demonstration.

For the reasons discussed above, the constraints on the inputs are

expressed as rod rate and turbine power rate constraints

Il <y (4.2-1)
dP
|—d—£| <M, (4.2-2)

The constraint on rod movement %%~is a hard constraint, due to physical
limitations on the rate at which a rod group can be moved. The value for
the rod rate constraint used in this study was 45 inches per minute,

corresponding to typical existing plants.

dP

The constraint on the turbine power rate of change —E%- is less

rigid. The physical limitation on turbine power rate of change depends on

the rate at which the analog turbine control system moves the throttle

valves. The value of the turbine powver rate constraint used in this study

was 17 per second, which is well within the capacity of a typical plant.

A more restrictive rate may be specified to reduce turbine blade stress or

to force slower load changes. Thus the turbine power rate of change con-
straint acts as a parameter of the control scheme, which can be set at a
conservative value to slow down the load change if desired.

The reactor power rate of change is also restricted. The control

strategy developed here generally balances the turbine and reactor power
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rates of change so that only one of these needs to be constrained. The
reactor power rate of change constraint is phrased in terms of the turbine

powver constraint Hz in this study, so that the reactor constraint is

b6
< -S—S- M, (4.2-3)

The fundamental constraint could be expressed in terms of reactor power
rate of change if desired, without affecting the results of the study.

The exact values of the rod rate and turbine power rate constraints
are not important to the conclusions of the study. These constraints can
be chosen as control parameters if desired, so long as the chosen values
lie within the plant capability. The control strategy simply remains
within the constraints, whatever they are.

The state constraints which are used in the study are due to plant
conditions which must be considered during the load change. Some of these
plant conditions are pre-specified deviation limits, which will trigger a
plant shutdown if they are violated.* Examples of these are the limits on
primary loop pressure, pressurizer level, and primary loop average
temperature.

Other plant conditions which must not be violated are considered here,
which are dependent on unmeasured variables. The effect of Xenon puts a

limit on the manner in which a large load change can be made.

*An automatic emergency plant shutdown is commonly referred to as a
plant"trip". The reactor shutdown is colorfully called a "scram". In
the cases considered here, at high power operation, reactor scrams and
plant trips occur together.
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5 These limits also depend on the amount of available rod reactivity and on
the rate at which rod reactivity can be applied.

The plant state constraints are now considerced in more detail. The
explicit constraints on Primary loop pressure, pressurizer level, and
primary loop average temperature are considered first. These are the
constraints which are first violated, barring accidents, in the event of
a poor load change control for high power operatioa conditions.

The pressurizer level is considered first. During transient plant
conditions the pressurizer level changes as water surges into or out of
the pressurizer. These surges are due to changes in the primary loop
average temperature, and the resulting expansion or contraction of water,
Thus pressurizer level deviations can be related directly to deviations
in primary loop average éemperature.

Let
VT = pressurizer total volume (fixed)

Vs = steam volume

Vt = liquid volume (level is measured)

P = pressure (measured)

AT = primary loop average temperature deviation from equilibrium

The pressurizer level deviation limits are transformed into constraints

on primary loop temperature. Let:

<
]

1 low liquid volumre limit
VZ = high liquid volume limit

S = total surge




V.-V
Then AT]_ = ls L (4.2-4)
V.-V
2
at, = 2 L (4.2-5)

ATL’ AT2 are low and high limits on primary loop average temperature which
will cause a violation of the pressurizer level limit. These calculated
state constraints ATl and AT2 depend on the current liquid volume VL'

Figure 4.2-1 shows the relationship between pressurizer level
deviations and temperature deviations for a nominal plant with a 1000 ft.3
pPressurizer and with 5000 ft.3 of water in the primary loop. It is clear
that the limits on pressurizer level can be respected by observing
calculated constraints on the primary loop average temperature.

The effect of primafy loop pressure deviations is analyzed by con-
sidering the pressure in the pPressurizer. An approximation is made that
the pressurizer controls are too slow to affect the results of a fast load
change. This is a conservative approximation which is not far wrong.* As
a4 worst case approximation flashing and condensation are neglected and
the pressurizer is analyzed as a simple surge tank.

The total surge into the tank is due to the change in primary loop
average temperature, and the resulting expansion or contraction of water.

Thus the approach is to relate pressure transients under worst case

*On the nominal plant for this study, a 100 ft.3 total surge out
corresponding to 12°F primary loop average temperature drop would cause
4 pressure transient which would require about 300 seconds to correct

with a 1 Megawatt heater input. Flashing is neglected in this approxi-
mation.
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conditions to the total surge, which is in turn related to primary loop
average temperature deviations.

The pressure in the pressurizer during fast transients can be
approximately related to total surge if a gas law is assumed. The gas

law is assumed to have the general form:
PVS6 = Constant. (4.2-6)

The exponent § varies from 1.0 for an isothermal ideal gas process to
higher values for adiabatic processes. A value of 1.2 is used in this
study corresponding to a process intermediate between isothermal and
adiabatic.

If the pressure constraints are defined:
Pl low pressure limit »
P2 high pressure limit
then the equivalent liquid volume comstraints v," and V," are found in
terms of these limits on pressure and in terms of the current pressure P

and liquid volume VL.

S _ v S -
By (V=¥ ')" = BV ) (4.2-7)

) §
PZ(VT-V2 ) P(VT—VL) (4.2-8)

The state constraints on the primary loop average temperature ATl' and

AT,' due to the liquid volume limits Vl' and Vi' are found using equations

(4.2-4) and (4.2-5). Thus state constraints AT,' and AT,' have been

derived from a worst case analysis of pressure deviations. Figure 4.2-2

shows this relationship for the nominal plant considered in this study.
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In a previous analysis the constraints on pressurizer level were
translated into constraints ATl and A'l‘2 on primary loop average temperature.
Similarly constraints on pressurizer pressure, considersd for a worst case
analysis, were translated into constraints ATl' and ATZ' ocn primary loop
average temperature. A direct constraint on primary loop average tempera-
ture deviations can also be justified in terms of avoiding thermal shock
during the load change. Temperature changes cause stresses on the pipes
and joints around the plant, and avoidapce of large transients can be
Jjustified in terms of minimizing these stresses. Constraints ATl" and
ATZ" are assumed to be specified for this reason.

Three constraints on primary loop average temperature have been
derived, based on constraints on pressurizer level, pressurizer pressure,
and a direct constraint ;ﬁ average temperature. The most restrictive of

the constraints is chosen as the actual state constraint. The low devia-—

tion constraint is thus:
x = ' tr -
ATl max{ATl,ATl ,ATl } (4.2-9)
while the nigh deviation constraint is

- . t " -
AT,* = mJ.n{A'I'Z,ATZ AT, } (4.2-10)

The control Strategy is designed to maiatain primary loop average tempera-

1 2

As a special case, a suboptimal load change strategy which produces

ture within the constraints AT.* and AT_*,.

slower load changes but less plant variation can be obtained by making the
state constraints ATl* and ATZ* even more restrictive. From the preceding

analysis it is clear that an imposed choice of ATl* and ATZ* equal to zero
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will cause no deviations in primary loop pressure or pressurizer level.
This is physically due to the fact that there is no total surge into the
pressurizer if the primary loop average temperaturc is maintained constant.
This strategy is suboptimal since it leads to longer load changes, but

it is attractive in terms of smooth plant operation and so it is con-
sidered as a special case of the constrainted control problem.

The presence of Xenon, which is significant at high power operation,
imposes additional constraints on the problem. The Xenon effect is
discussed in Section 3.2. The consequences of Xenon on the control of
the plant are serious at high power levels. It is possible to initiate a
Xenon transient which causes reactivity to change more than the control
reactivity can be changed. This may occur for large fast power changes
starting from a high operating power. The problem is familiar for
reactor shutdown [3], [43], [52]. For load changes the problem is less
severe than for shutdown, but it is still a factor to be considered.

The reactivity transient produced by the Xenon must be countered by
control rod motion in order to maintain the overall reactivity couastant
after the load change. The available control rod travel is defined as:
+AR1 rod withdrawal capability in inches

-AR2 rod insertion capability in inches

The model is then used to predict the Xenon reactivity transient caused
by a change in power level. A worst case approximation is made by assuming

that the I135 population is constant. This gives the new equilibrium Xenon

b L,

+bg P

X= o -~
P1otPg By

(4.2-11)
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T
A

The maximum extent of the reactivity transient due to the Xenon is thus

b8 bll Io .
Y, = b, (XX ) = ———— 4+ b_ X (4.2-12)
X 8 o b10+b9 PR 8 “o

The available control reactivity must be capable of countering this
reactivity to ensure that the plant will remain under control throughout
the Xenon transient. Another way of looking at this is to say that the
reactor power PRAshould be constrained so that the Xenon transient effect
in the future will not exceed the available control reactivity. This
- . . 135 135 .
constraint varies as the concentrations of Xe » I and the available
control reactivity change.
The constraint is found by solving equation (4.2-12) for the limit,
with —Yx set to the total available control reactivity. The kigh limit is
b
<

8 P11 L, _Pio
2 By bg X - B, by &R

2 b

Pr

If ARZ is sufficiently large, there is no constraint on PR. The low limit

1s

®g P11 o _ P10 C6.2-14)
1 P9 bg X, +b3bg AR by

PR >

Reactor power decreases are the more severely limiting case since very
large rod withdrawal capability AR1 is needed, as shown in equation
(4.2-14), to counter the Xenon transient to reduce PR.to a small fraction

of its high power equilibrium without the Xenon causing reactor shutdown.
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At this point low and high power constraints on reactor power P

Ry

and P have been derived. These constraints represent the values that

R,

the reactor power must be kept within in order to be sure that the Xenon

transient effect will not exceed the total available rod capability. The

values for the coastraints depend on the current estimated states of the

135

135 . . s
X and I 3 concentrations, as well as on the current rod capability.

The Xenon transient causes an additional difficulty in additioa to

the maximum reactivity transient. The rate of change of reactivity due

to Xenon must be countered by the control rods continuously in order to

maintain the desired reactor power. Thus the rate at which the control

reactivity can be changed is as important as the total availsble control
reactivity. Consideration of the model developed in Section 3.2 shows
that the maximum rate of reactivity change due to Xenon, for a step change

in reactor power starting from a high power is theoretically

SIE»= b, I o b b I-b._X-b P X] (4.2-15)
dt 8 dt st’11 10 ° 9 °R

The rod reactivity rate must be fast enough to counter this transient.
This gives a constraint on allowed reactor powver change in order to not
cause a Xenon transient to exceed the rate of rod reactivity capability

b3 Mi. Tne high power constraint is

b3 Hi + b8 b b

11
P_' <
Ry bg bg X,

Io + b8 10 Kb

(4.2-16)
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and the low power constraint is

-b3 Ml + b8 bll Io + b8 blO Xo

, (4.2-17)
R b8 b9 Xo

These constraints are significant, if ever, only at high Xenon concentra-

tions. The constraint is avoidable by designing the reactor for fast rod
speed capability Mi.
The Xenon effects, in summary, give rise to reactivity transients
which must be handled by the available control reactivity. Thus a
constraint on the allowed reactor power is established to easure that the
Xenon transient does not exceed the control capabilities. Equations
(4.2-13) and (4.2-14) give the reactor powar constraint considering the
total available rod motion. Equations (4.2-16) and (4.2-17) give the
constraint in terms of the rate at which rods can be moved. The most
restrictive of these constraints must be chosen. It is important to note
that the values of the constraints depend on the Xe135 and 1135 concentra-

tions. Values for these unmeasured concentrations can be provided by the

on-line state estimation.

4.3 Control which Balances Reactor and Turbine Power

The solution developed in this study provides a rapid load change
for the deterministic model, subject to constraints on the inputs and on
the states. The theory of optimal control provides scme necessary condi-
tions for the optimal control solution for problems of this type. Referring

to the equations of Section 3.2, the system being considered is a sixth
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order nonlinear one with input and state constraints. The general form
for the necessary conditions for the solution of such problems can be

found in Denham [20]. The solution with the aid of the general necessary

conditions is a trial and error procedure. The general necessary condi-

tions do not provide a solution, but only some conditions which the
solution must satisfy. Some techniques have been used ([7], [9]) to find
solutions which satisfy the necessary conditions by trial and error,

with the deviation of a trial solution from necessary conditions used as

a cost function. In these techniques a search is conducted to try to
approach a solution which satisfies the necessary conditions. The examples
which are known to have been solved by these techniques are much simpler
than the problem at hand.

The problem is approached in this study by a much simpler technique,
which takes advantage of the particular model struéture and the signs of
certain parameters. Strictly speaking, the approach used in this study is
not a derivation or a proof of minimum time control. However the develop-—
ment is justified on the basis of physical arguments, specific to this
problem, and the resultant control is believed to be the minimum time
solution.

The load change control developed in this study consists of one or
two parts. In the first part the rods are moving at the maximum con-
strained rate, producing the fastest possible rate of reactor power change.
This strategy continues until the reactor power rate of change reaches the

power rate constraint. Thereafter, the load change is at the constrained
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rate. This sccond part of the load change does not always occur.
. The analysis of the reactor power behavior must consider thsz dynamic
effects of the delayed neutrons and the Xenon. The analysis is simplified
by the fact that thesc effects lead to reinforcing (but delayed) changes
in reactor power. An increase in reactor power, due to rod withdrawal or
other reactivity insertion, causes delayed neutrons to increase, which
gives rise to a further (but delayed) power increase. Similarly, an
increase in reactor power burns off more Zenon, producing a positive
reactivity effect similar to a rod withdrawal (but delaved). A similar
analysis holds for power decreases. Thus in terms of the effects of
delayed neutrons and Xenon, the reactor pover is increased more rapidly
over the near future if it is made as large as possible at the present
time, that is, if rods afe withdrawn at the maximum rate. Any other
strategy produces lower reactor power, not only at the present time, but
also at any time in the near future.

A control strategy is now developed for the case where the primary
loop average temperature is subject to a zero deviation constraint. That
is, the control Strategy attempts, by coordinating the reactor and the
turbine, to cause no deviation in the primary loop average temperature.
The problem is considered in parts. The first sub-problem is the energy

transfer and storage represented by the equations:

dTAv

de T bs(PR'PRO) - bs(PT‘PTO) (4.3-1)

where

PRfPR = change in reactor power
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PT—PT = change in turbine power
o

TAV primary loop average temperature.

The primary loop average temperature TAv represents stored energy in
the plant. It is evident both from the equations and from physical
reasoning that turbine pcwer may be changed at a rate corresponding to the
rate of change in reactor power without changing the energy in the plant.
Any other load change strategy will change the energy in the plant, chang-
ing the primary loop average temperaturec TAV' Thus the control strategy
must act to balance turbine power and reactor pover if the primary loop
average temperaturec is to be maintained constant.

In the initial part of a load change, the reactor power is changing
more slowly than its constraint, and the problem is to control the turbine
to match the reactor power. The desired turbine power rate of change,

from equation (4.3-1), is

iP_T = b_s. ﬂ (4.3-2)
dt b6 dt *

The model equations of Section 3.2 are used to express this in terms of
the states and inputs. The result applies for the case of constant

moderator temperature. The desired turbine power rate of change is

dR

dP’r=E_S_ baYD-z-b:,DE-bSD(bllI—blox-bg PRx) .33
dt b6 (].-*{)2 + b, D

1

The reactivity Yy and reactor pover PR are functions of the states and

inputs, and they are calculated as part of the state estimation. The rod
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rate. This second part of the load change does not always occur.

‘ The analysis of the reactor power behavior must consider thz dynamic
effects of the delayed neutrons and the Xenon. The analysis is simplified
by the fact that these effects lead to reinforcing (but delayed) changes
in reactor power. An increcase in reactor pover, due to rod withdrawal or
other reactivity insertion, causes delayed neutrons to increase, which
gives rise to a further (but delayed) power increase. Similarly, an
increase in recactor power burns off more Xenon, producing a positive
reactivity effect similar to a rod withdrawal (but delaved). A similar
analysis holds for power decreases. Thus in terms of the effects of
delayed neutrons and Xenon, the reactor power is increased more rapidly
over the near future if it is made as large as possible at the present
time, that is, if rods aée withdrawn at the maximum rate. Any other
strategy produces lower reactor powver, not only at the present time, but
also at any time in the near future.

A control strategy is now developed for the case where the primary
loop average temperature is subject to a zero deviation constraint. That
is, the control strategy attempts, by coordinating the reactor and the
turbine, to cause no deviation in the primary loop average temperature.
The problem is considered in parts. The first sub-problem is the energy

transfer and storage represented by the equations:

Tpav

~dc = bs(PR—PR ) - bs(PT-PT ) (4.3-1)
o o
where

PRfPR = change In reactor power
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PT-PT = change in turbine power

]

TAV primary loop average temperature.

The primary loop average temperature TAV represents stored energy in
the plant. It is evident both from the equations and from physical
reasoning that turbine pcwer may be changed at a rate corresponding to the
rate of change in reactor power without changing the energy in the plant.
Any other load change strategy will change the energy in the plant, chang-
ing the primary loop average temperature TAV' Thus the control strategy
must act to balance turbine power and reactor power if the primary loop
average temperature is to be maintained constant.

In the initial part of a load change, the reactor pover is changing
more slowly than its constraint, and the problem is to control the turbine

to match the reactor power. The desired turbine power rate of change,

from equatioa (4.3-1), is

dP b dpP

_r__5 R -
dt b dt (4.3-2)

6

The model equations of Section 3.2 are used to express this in terms of
the states and inputs. The result applies for the case of coanstant

moderator temperature. The desired turbine power rate of change is

dR '
dBp B b, YD+ by D go = bg Dby I = by X - by Py X) %.3-3
dt by a-v)2 +b, D

1

The reactivity y and reactor power PR_are functions of the states and

fnputs, and they are calculated as part of the state estimation. The rod
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rate %%-is at its maximum.iﬂi during this part of the load change, where

the reactor power is changing more slowly than the power rate constraint.

This phase does not last long in the case of a reactor at high power

equilibrium with a large concentration of Xe135; however, this phase is

dominant throughout a load change in the case of startup, when Xenon
effects are nil.

It is possible for the reactor pover rate of change to reach the
power rate constraint. In this case the control strategy is to change the

reactor pover and turbine power according to the maximum constrained rate.

This requires a reactor power rate of change.

R 6 T
_ 2 __ L .3-4
dt bs dt (4.3-4)

The rate of rod movement necessary to make the reactor power obey this

equation is found using the model equations of Sectien 3.2

R _ 1 | dr

6 2 T
9 - + —_— YD + - - X
t b3D bs (a-v le) dt b4 D b& D(bll I b10 X b9 PR )

(4.3-5)

dp

The turbine power rate of change —gdc 1s at the maxirum constrained rate

Hy, during this phase of the control. The above expression for the rate

of rod movement is given in terms of quantities which are calculated by

the on—-line state estimator.
Small model errors may cause a mismatch in turbine and reactor power,
which would cause the primary loop average temperature deviation to drift

away from zero. An additionmal control is proposed, so that the non-limiting
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control, either rods or turbine power, is modified to correct for such

deviations. The proposcd implementation is

dR.

A(EE) = —Kl ATAV (4.3-6)
or
dPT
A(—EE' = kz ATAV (4.3-7)

where Ki may have different values, depending on which control is non-
limiting. This control prevents the average temperature TAV from drifting
due to small model errors and small reactor and turbine power mismatch.
The gains Ki were found by on-line experimentation in this study.

To summarize the results, a rapid load change control for the case
of zero primary loop average temperature deviation requires that turbine
power and reactor power rates of change be balanced. Of these two, one
rate of change will limit the load change rate, while the other is used
to maintain the power balance. The calculation of the correct inputs,
or the coordination, requires a model. The crude plant model developed
in Section 3.2 is used for this purpose. The propesed implementztion uses
State estimates to determine the control. This becomes a feedback or
closed loop control under this propcsed implementation. This was the way

the demonstration was handled also.

4.4 Control for Rapid Load Changes

In the previous section 2 control strategy was derived which maintains

a balance between the turbinc power and the reactor pcwer throughout the
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load change. The more general case is now considered, where the deviation

in primary loop average temperature TAV has a non-zero constraint. The
negative moderator temperature coefficient, which is the usual situation,
gives an increase in reactivity for a decrease in temperature. Thus a
mismatch in reactor and turbine power, causing the temperature to drop

for load increases or to rise for load decreases, allous an even faster
load change. An example of the change in reactor pover due to allowing
a constrained deviation in primary loop temperature is shown in Figure

4.4-1 for the case of a load increase.

Assuning that the faster load change strategy is desired, the control
is modified during the time that the primary loop average temperature is
being driven toward its constraint. There are two cases to consider:

Case 1: The reactor power rate of change remains less than the power rate
constraint. In this case the control law is to move rods at
maximum rate and to change turbine power at maximum rate up to a
switch time. The turbine power rate is then set at its mirimum
(zero in this study) until the reactor power matches turbine
power. If the switch time is chosen correctly, this will occur
with primary loop average temperature at its constraint. The
control thereafter is the same as in the zero average temperature
deviation case, and the primary loop average temperature will
theoretically stay on its constraint. The switch time is
calculated by fast time simulation in this study. An equivalent
switch boundary, equal to the primary loop average *emperature at

the theoretical switch time, 1s used for the actual control.
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Case 2: When attempting the above strategy, the reactor power rate of

change matches the power rate constraint before the primary loop

average temperature reaches its constraint. This means that even

when changing turbine power at the maximum constrained rate, the
reactor power rate of change matches it before the primary loop
average temperature constraint is violated. The control in this
case is to simply change turbine power at its constrained rate
throughout the load change, and to move the rods at maximum rate
until turbine power and reactor power are matched. Thereafter,
the rods are the non-limiting control which is used to match
reactor power to turbine power. The occurrence of Case 2 is
easily detected in the fast time simulation. Case 2 can arise

when load changes are made, starting from high power equilibrium

with large concentrations of Xel35 and 1135 in the reactor.

A control strategy has been developed here based on the

deterministic model given in Section 3.2. The control strategy

is modified in Chapter 5 to allow for uncertainty in the model,
and to cope with disturbances and measurement noise. The problem
of detecting plant variation and adapting the model is also
considered in Chapter 5. Thus the control developed at this point,
in Chapter 4, is not a complete-description of the load change
control.

The various parts of the deterministic control strategy are
summarized later in Table 4.6-1. The logic structure used in the

implementation is shown fn the related Figure 4.6-1.
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4.5 Examples of Load Changes

The control strategies developed in Sections 4.3 and 4.4 were tested
under a variety of reactor conditions. The load increase problem was
considered for two values of moderator temperature coefficient and for
high and low Xenon poisoning.

Figure 4.5-1 shows a 40% load change at low Xenon poisoning, as
during startup. A moderator temperature coefficient of —10-4 AK/°F was
used. The target surface for primary loop temperature was —-8°F from
equilibrium. Notice that the turbine power or load is initially rising
at maximum rate to cause a drop in primary loop temperature. The rods
are withdrawn continuously at maximum rate during this load change, as
the reactor power is increasing more slowly than the turbine power can
be increased. The initial rise in reactor power is due to the reactivity
inserted by the lowering of the primary loop temperature. This reactivity
insertion is large here due to the large moderator temperature coefficient.
When the moderator coefficient is smaller, this initial rise is slight,
and the policy of allowing any deviation is hard to justify.

Figure 4.5-2 shows the same load change for the same plant, except
the constraint on primary loop water temperature deviation has been
reduced to zero deviation. The turbine power or load and the reactor
power are in balance throughout the load change. For this example, at
low Xenon equilibrium or startup conditions, the control rods are moved
at maximum rate throughout the load change. The turbine power rate of

increase fs controlled, via the load setpoint, to maintain turbine power

equal to reactor power.
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Figure 4.5-3 shows the 40Z load change for a plant at high Xenon
equilibrium, corresponding to a plant which has been operating at high
pover for a day or more. Notice in this case that at a point in the load
change the reactor power rate of increase matches the turbine power maxi-

mum allowed rate of increase, and the control rods become the non-limiting

control from this point on.

4.6 Load Following Control

In addition to major load changes, many powver plants are used to
regulate system frequency by picking up or dropping load as the system
frequency varies. Since many plants are presumably in this mode of opera-
tion, the load changes involved for a given plant are small. The conven—
tional analog plant contéol, since it does not adapt to varying plant
behavior, may not perform well under all conditions unless it is
readjusted.

As part of the load change problem, a model of the plant was
developed which can also be used to provide improved regulation between
load changes. The theory of optimal control provides some easily
implemented results for problems of this type. The basic solution is
to separate the problem into two parts. The plaat states are estimated
to provide values of the states for use by the control. The optimal
control is then developed for the model linearized about the current
operating point. The optimal controller is designed using the linear
system, quadratic cost approach [6], [42]. The entire procedure, including

stochastic model parameter identification, Kalman filter state estimator
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design, and the optimal controller design can be automatically carried

out by the computer, and the programs for this were developed as part of

this study.

The linear system, quadratic cost control is now considered. The

linear system about the operating point is descriked by the equations

Xepp = AX + By (4.6-1)

Y = C x (4.6-2)

where
Xx is a Kl dimensional vector of states
Yy is a K2 dimensional vector of measurements
u. is a K3 dimensional vector of inputs

A, B, C are constant matrices

The cost function is

N-1
P _.1 t l L4 -
J= KEO 2k A dep) + 7 (g R ug) (4.6-3)

The general solution, as developed by Lee [42], is determined by the

equations
P, = Cc' QC (4.6-4)

= - t -l [ -
M= Pgoy ~ Py BOB' B B R B'B_ (4.6-5)

= v v p—
P =A"M A+ C'QC (4.6-6)
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is the optimal solution with

Kyg = [B' By ; B+ r]"L B P, A (4.6-8)

Fortunately, the solution is asymptotic for large N under general condi-
tions, so that the equations can be solved recursively until PK is
stationary to within some criteria, and then a single gain matrix K can

be calculated. The solution to be implemented, then, is

Ek = -Klik. (4.6-9)
For the load following problem, the inputs are the rod rate and the plant
load setpoint. The load following demand signal is assumed to be slowly
varying with respect to the plant control time constants, so that the
problem is to correct small errors in turbine power. Thus if LD is demand
load, then (PT—LD) represents a deviacion in plant load to be corrected by
the load following control. The primary loop average temperature TAV may

also experience some deviation to be corrected, as will the reactor power

PR. The problem thus coincides with the previous formulation, with
-t
Pr
y = TAV (4.6-10)
Pr

as the measurement vector, where

PR is reactor power

TAV is primary loop average temperature

PT is turbinc pciwrer
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and with
dr
dt
Y2
where
dR . .
dc 1S rate of control rod motion
u, is setpoint of turbine power control

The control of the plant about a given operating point has been
derived in this section. The control makes use of the stochastic model
of the plant and the Kalman filter, both of which were developed for the
load change problem. Thus normal load followving control is a simple and
logical extension of thehconttol scheme. The overall control logic is
shown in Figure 4.6-1. The different control modes are defined in Table
4.6~1. This control logic provides computer control of the turbine and

reactor for the full range of normal conditions.
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TABLE 4.6-1

Control Strategy Summary

Mode™ Rod Control Turbine Power Primary Temp
1 Maximum rate: Maximum rate in Moves toward
withdrawr for direction of load its intended
load increase change constraint
insert for load
decrease
2 Same as 1 Zero rate Rate of change

Maximum rate slows as reactor

power approaches
turbine power

3 Same as 1 Manipulated to DPeviations are
Maximum rate make turbine powrer used to modify
balance reactor the turbine
power control
4 Manipulated to Maximum rate in Deviations are
make reactor direction of load used to modify
power balance change the rod control

turbine power

5 Multivariable control manipulates rods and turbine power to
provide load following for small deviations.

*The modes may not all occur during a load change. Refer to Figure
4.6-1 for the sequence and conditions under which specific modes occur.



CHAPTER 5

CONTROL IN THE PRESENCE OF VARTATION AND UNCERTAINTY

5.1 Introduction to the Problem

There are a number of sources of variation and uncertainty in the
plant. Some of the variations have been considered in previous chapters.
The effects of variations in initial state and in available rod reactivity
are considered in Chapter 4 as part of the deterministic control problem.
In addition to these variations, the plant also appears subject to slow
behavior changes and to fast variations due to random disturbances and
to model error. These slow and fast variations are considered in this
chapter. The slowv variatioas are handled by adaptation, and the fast
variations are handled by considering them to be stochastic or uncertain
processes.

The unmodeled plant variations, due to slow physical changes, or to
nonlinear effects, are handled by adapting the model parameters. There
are two methods developed for determining when the model no longer
adequately describes the plant. One of these methods is a bounds test,
which considers whether the plant variables have exceeded certain bounds
which are precalculated based on the stochastic model. The other method
is a hypothesis test, which uses a test étatistic to determine if the
plant behavior is no longer consistent with the stochastic model. When—
ever the model no longer represents the plant, the load change can be
aborted, and the model parameters are then adapted.

-111-
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Another method is used to handle the fast variations due to
disturbance and measurement noise. The problem here is to control the
plant in spite of these inevitable noise effects. From a practical point
of view, it is not important whether the noise makes the load change
slightly slower or faster, but it is important if the noise makes the
plant violate the allowed plant coustraints during the load change. Thus
the method used to cope with the noise is to adjust the state constraints -
make them more conservative - by an amount determined by the stochastic
model. The amount of the adjustment is such that the predicted value of
a state under the proposed control lies within the constraint with greater
than 99.8%Z probability.

In addition to the adjustment of the constraints, the stochastic
model is used to predict—performance bands within which the measurements
of plant performance are expected to lie. These predicted measurement
bands are based on the disturbance noise and the measurement noise, as
well as the deterministic model. They represent high and low limits
Qithin which the measurements at any time are expected to lie, with about
99.7% probability. These bands are used for two purposes. They are
displayed prior to aand during the load change, with realized plant
measurements superposed, to give the plant operator a reassurance or a
warning. The bands and the realized measurements are also automatically
monitored, to give the control computer a reassurance or a warning. In
the event of violation of the bands, either the computer or the operator
can terminate the load change.

In summary, methods are developed which allow the control of the plant

in spite of slow or fast variations in the plant. The slow variations are
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. detected, and the model parameters are adapted based on current plant
performance. The fast variations are accepted as inevitable and they are
considered in adjusting the state constraints within which the plant
should remain. The fast variations are also considered in defining
performance bands for monitoring purposes. These techniques allow the

control to operate in the presence of variation and uncertainty.

5.2 Behavior of the Stochastic Model

For a given load change, the deterministic model and the deterministic
control can be used to predict the expected behavior of the plant. However,
the plant is subject to disturbance noise and measurement noise, so its
behavior will not match the deterministic predictions. For this reason
a stochastic model, derived in Chapter 3, is used to represent the plant
more realistically.

The predictions of the stochastic model include not only the mean or
expected value of the variables, but also the covariance matrix for these
variables. A prediction thus consists not of a single value for a single
variable, but rather a prediction of a distribution for the variable. The
mean and the covariance are used to”characterize the probability distribu-
tion.

The stochastic model in Chapter 3 was derived by assuming that the
deviations caused by disturbance noise and measurement noise are small
enough so that it is reasonable to consider the model linearfzed about the
expected state. If the resultant linear time varying model is accepted

as accurate, then the probability distributions for the random vectors at
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any time remain Gaussian, and these probability distributions ;re completely
specified by the means and covariances. This is useful because the means
and covariances are easlly computed, while Gaussiam distributions are
easily interpreted.

Aside from the fact that the chosen stochastic structure is easy to
work with, there is another justification for its use. The Stochastic
model is judged by a hypothesis test to determine if it is statistically
consistent with the process data. The hypothesis test is used following
identification of the parameters of the stochastic model as described in
Chapter 3. Thus the assumptions on the noise structure which were
originally imposed are justified on the basis of statistical tests.

The use of the stochastic model for predicting plant behavior will
now be discussed. The first step in calculating the predictions is to
determine the nominal deterministic trajectory. This is the state
trajectory which results from integrating the nonlinear differential
equations of the deterministic model, given in Section 3.2. The inputs
to the model are determined from the determiniscic control, as described
in Chapter 4. The nominal state trajectory which results is taken as the
mean or expected state trajectory. This assumption is equivalent to
assuming that using a stochastic model linearized about the trajectory,
rather than a nonlinear stochastic model, gives small errors.

The covariance matrix for the states is derived by considering the
behavior of small deviations from the nominal trajectory. The deviations
are propagated by the linear time varying model derived by linearizing

about the nominal trajectory. The model, as derived in Chapter 3, is
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§K+1 = AK X + G Vg (5.2-1)

where AK is the transition matrix for the state deviations for time K to

Vi is a zero mean, white Gaussian noise process with covariance I, and G

time K+1, gKror (§Kj§§) is a deviation from the ncminal trajectory

is a matrix with parameters identified by the maximum likelihood technique.
The covariance of state deviations can easily be determined. The
deviations EKrare & zero mean random process, since v, and gb are zero

N

mean and uncorrelated. The covariance is thus propagated by

I‘K+l = A¢ Ty Ap + GG (5.2-2)
where
L = € [¥ &) (5.2-3)

The initial condition for the above equation is the covariance matrix Po,

the covariance of the state at the time the prediction calculation is made.
This covariance matrix is calculated as part of the on-line state estimator.
This state estimator, a Kalman filter, is keeping current values for the
expected values and covariances of the states. The behavior of the
covariance under prediction conditions is then found by running equation
(5.2-2) forward to give the predicted covariance of the states at a

future time.

The deviation of the state from the nomina: trajectory, described by

.

S%, has a Gaussian probability distribution under the assumptions which

have been made. The probability density function is
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Kl -1/2 1 - -1 -
p(x) = [(2m) [det I‘K[] exp (- 5 Ze Iy %} (5.2-4)

The geometry of the distribution can be understood by noting that the

contours of constant probability density are ellipsoids given by

Pl S (5.2-5)

- The probability that the state lies within certain ellipsoids can be
calculated by noting that E is Chi-squared with Kl degrees of freedom,
where Kl is the dimension of EK' Table 3.6-1 shows the probability
distribution for E for somz values of Kl' More detailed data can be
readily obtained from established tables of Chi-squared distributions [28].

As an example of the behavior of the state covariance and its inter-
pretation, Figure 5.2-1 shows an ellipse of probability .995 or 99.5% for
a two state vector. This is based on the covariance I; tazken from a2 Kalman
filter operating on am actual data record from the simulated plant. The
origin of the ellipse is the zero deviation case or the nominal state.
The stochastic model estimates that the actual state lies somewhere in
the ellipse with probability .995, and it lies outside the ellipse with
probability .005. 1In the general case, ellipsoids of any specified
probability can be found by solving equation (5.2-5) for the ellipsoid.

To summarize the behavior of the stockastic modal, it is possible to
predict not only the nominal state, but also to predict the covariances
of deviations about the nominal state. These covariances, together with
the Gaussian assumption, determine the probability distributions for the

state estimates. Since the probability distributions are known, the
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probability of the predicted state lying within certain bounds'can be
deternmined. Thus the stochastic model can be used to give a well-defined

interpretation of the amount of uncertainty in the process.

5.3 Modification of the Constraints

The control developed in Chapter 4 takes the plant through a minimum
time load change - subject to specified and calculated state constraints.
The deterministic model is used for the control calculations, and the
nominal trajectory lies within the constraints. However, if the stochastic
model is considered, there is a high probability that the constraints will
be violated. Thus it is desirable to modify the control so that the
stochastic model predictions indicate a low probability of violating the
constraints. This is easily accomplished by adjusting the constraints to
more restrictive values, and then calculating the deterministic control
of the load change based on these adjusted constraints. For this new
nominal trajectory the stochastic model predicts a low'probability of
violating the original constraints. Thus the overall control takes
account of the uncertainty, as defined by the stochastic model, by
adjusting the state constraints.

The amount by which the constraints are adjusted is now considered.
In Section 5.2 an equation was developed for propagating the predicted
State covariance matrix FK. The variance of any particular componeat of

the state can be determined from FK' The corresponding diagonal element

of FK is the variance of the marginal distribution (see Papoulis [(49]).
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thus the covariance matrix FK contains the information needed to determine
the marginal distribution of a particular state variable.

The primary loop average temperature TAV is the variable considered
here, since it provides the limiting constraint on the states during the
load change. The marginal distribution of this variable, from the state

covariance matrix, is
var(TAv)K = [I‘22]K (5.3-1)

that is, the second diagonal element of FK. This marginal distribution
of'l:‘A_V is considered in defining the amount of the adjustment for the

constraint. The three standard deviation bounds are used.

36°= 3 'var(TAV)K (5.3-2)

The probability is 99.7 percent that TAV will lie within these bouads
arcund the nominal predicted value at time K as determined by prediction

calculations before the start of the load change.

bound. Figure (5.3-1) shows this adjustment. The adjusted constraint is
then used for the actual control. The uew nominal predicted trajectory
misses the adjusted constraint by the amount 36~ The stochastic devia-
tions about this trajectory have a high probability, more than 99.8
percent, of missing the actual comstraints at any time K. This is true
because the entire 35 band lies inside the actual constraint and the

deviations outside the 39 bands on one side 2lso lie within the actual
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constraint. Thus the control scheme copes with uncertainty by adjusting

the constraints which are used in the control calculations.

5.4 Prediction of Measurement Bands

The control developed in this study is capable of large fast load
changes. Such a control can only be implemented if there are means to
quickly detect abnormal or unexpected performance. One of the ways this
is accomplished is to predict measurement bands based on the stochastic
model which give a band within which the measurcments from the plant
should lie during the load change. The measurements of reactor power and
primary loop average temperature are considered. The measurement bands
are used for monitoring purposes by the computer. The bands are also
displayed along with realized plant measurements, to provide for visual
monitoring by the plant operator.

The calculation of the measurement bands is now considered. The
bands describe deviations from the expected or nominal measurements.
These measurement deviations are commonly called residuals. The residuals
are related to the deviations of the state from the nominal and also to

the measurement noise. The residuals are determined from the equation

I s G Xt G-4-1)

where‘EK is the deviation from the nominal measurements, EK is the devia-

tion of the state from nominal, and where W is the measurement noise.*

*The stochastic model is discussed more fully in Section 3.3.
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The predicted covariance of the residuals is

= ' -
RK = cK I‘K CK + W (5.4-2)

where,FK is the covariance matrix for the predicted state at time K, and
where W is the covariance matrix of the measurement noise. The prediction
of the performance of the measurements at a future time K is specified by
the expected value determined by the deterministic prediction and by the
covariance matrix RK’

The predicted measurement bands are determined from the covariance of
the residuals. The marginal distributions of the ceomponents of the resid-—
uals have variances determined by the diagonal elcments of RK' These
marginal distributions are used for the prediction bands. The three
standard deviation band about the nominal trajectory is used as the
measurement band. This band has the following interpretation: a chosen
measurement — reactor power for example — at a future time K should lie
within the bands with a 99.7% probability.

The calculation procedure for the bands will now be considered in

more detail. The calculation of the performance bands involves calculating

two nominal trajectories, before and after the adjustment of the constraints.

The nonlinear model is linearized about these trajectories, and the linear
time varying stochastic model is used to -calculate the predicted measure-—
ment residual covariances. This entire calculation takes about 20 seconds
on an off-line 360-50 computer. The calculations were simplified before
putting them on the on-line EAI 640 control computer. The calculation
time was reduced to 5 seconds on this computer by taking advantage of the

a2pproximately asyuptotic behsvior of the covarianca early in the lozd
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change, as well as by noting the negligible variation between the
covariance matrix about the original and the adjusted nominal trajectories.
Additional programming efficiencies could reduce this timz further. These
results show that the display of predicted plant performance prior to the
load change is clearly a practical technique.

The predicted measurement bands for a load change are displayed, as
shown in Figure 5.4-1. The reactor pover and the primary loop average
temperature were chosen for this display, however other plant variables
could have been chosen. The load change ‘in the example is a 407 increase,
with a large moderator temperature feedback effect and a small Xenon
effect.

The usefulness of the predicted performance bands is enhanced by the
display of the actual realized measurenents as well as the predicted bands.
This display is shown in shown in Figure 5.4-2. The display gives a
reassurance or a warning of plant behavior, as the behavior of the plant
is visually compared to the predictions made at the start of the load
change.

An experiment was performed to illustrate the use of the measurement
bands to visually detect plant variation. For this experiment the computer
monitoring of the bounds was suppressed. A variation was made in the
simulated plant by decreasing the moderator feedback coefficient by a
factor of ten. The digital computer used the stochastic nodel, based on
the former plant behavior, to make the predictions. However, as Figure
5.4-3 shows, the plant measurements differ from the predictions. Thus the
variation in the plant can be detected by observing plant measurements and

comparing tiiem with predicted mzcasurement baads. The computer doecs this
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and it also displays the bands and measurements so the operator can also

monitor the plant performance.

To sum up, the results presented here demonstrate the value of
predicting and displaying bands of normal measurement performance prior
to the start of a load change. A demonstration is presented of the super-
position of the actual measuremeats onto the display. The plant operator
or a computer can monitor the performance of the plant during the load
change by comparing the measurements with the predictions. In the event

of abnormal behavior the load change can be aborted. Thus a practical

means of detecting and Jealing with unexpected performance has been

developed.

3.5 On-line liypothesis Testing

In the previous section a technique was developed which determined
if a plant was not performing as expected during a load change. The
method was to test whether some plant measurements, reactor power and
primary loop average temperature, deviated from the nominal predictions
by an amount greater than a calculated measurement band. In this section
another technique is developed for tiie same purpose. This technique,
called a hypotinesis test, has some advantages over the bounds test.

The hypothesis test operates on all the data taken during the load
change to determine whether the plant behavior is consistent =with the
stochastic mcdel, while the bounds test merely applies a test to datsa points
as they occur. The hypothesis test tends to give an early warning of plant

variation or model error well before the bounds tests have been violated.
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Thus the hypothesis test is a valuable tool for determining if the plant
is or is not performing as expected during the load change.

The hypothesis test is derived in Section 3.6. The basic principles
are reviewed here. Under ideal circunstances if the stochastic model
actually represents the process, the difference between the plant measure-
ments and the measuremant predictions of an on-line Kalman filter should

be uncorrelated in time. That is, these differences or residuals satisfy

the equations:

E =0, r¢1L (5.5-1)
E &5 = r (5.5-2)

If the above equations do not hold, that is, if the residuals are corre-
lated, then the actual process contains dynamic effects which do not ocecur
in the stochastic model. Thus the correlation or lack of correlation in
the residuals is used as a test to judge the correctness of the stochastic
model.

The hypothesis test statistic was discussed in Sectioa 3.6. This
test statistic has a known probability distribution when the stochastic
model is correct. In the event of a plant variation, the test statistic
becomes large and it lies so far out in the tails of the theoretical
distribution that the hypothesis of a correct model must be rejected.

The reason that the hypothesis test statistic reacts in this way is that
it is very sensitive to correlation in the residuals of the Kalmaa filter
which occur in the event the model does not fit the process.

In the demomstration the hypcthesis test is calculated every second
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during the load change, starting after the first ten seconds of data.
The performance of the hypothesis test statistic for a number of load
changes is shown in Figure 5.5-1. This represents the casc where the
stochastic model is a good representation of plant behavior. The observed
values of the hypothesis test statistic, recorded here at the end of the
load changes, all lie within the 99.9Z portion of the probabiltiy
distribution. This may appear to be a very lenient limit, However, the
performance of the test statistic when the stochastic model does not fit
the plant is so dramatic that the limit on normal values can be lenient.
Figure 5.5-2 shows the performance of the hypothesis test following
plant variation. These plant variations consist of changing the value of
the moderator feedback coefficient by a factor of two in one case (run a)
and a2 factor of five in the other (run B). The hypothesis test statistic
values at the end of the load changes are shown. A short model parameter
adaptation is performed between each load change. This adaptation,
described in Seetion 5.6, succeeds in producing a model consistent with
the plant performance, according to the hypothesis test, after four load
changes. The important point in terms of the present discussion is the
very large values that the hypothesis test statistic has in the event of
plant variation. This abnormal behavior is evident early in the load
change by monitoring the current value of the test statistic. The
hypothesis test statistic thus gives a clear early warning in the event

that the stochastic model does not match the observed plant performance.
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5.6 Parameter Adaptation

Two m=thods have been described which determine whether the stochastic
model is comsistent with the observed Performance of the plant. These
allow the control computer to

terminate the load change in the event that the plant behavior is not

consistent with the model. In this event it is desirable to quickly adapt

the model parameters, based on the data taken during the abortive load
change, and to resume the load change using the updated model.

If there were no rush, the model parameters could be re-identified
using the maximum likelihood identification procedures of Chapter 3,
which were used for the original model identification. However, this
would require on the order of an hour on the relatively slow on~line
control computer. In an actual plant it is expected that this would be
done, since the unmodeled variations in plant behavior would be slov
effects which could be coped with by occasional re-identification of the
model.

In the demonstration performed as part of this study, it was assumed
that a rapid approximate technique for adapting the parameters was
desired, which can be considereg as a temporary model fix to expedite the
load change. The time required for Parameter adaptation was reduced
considerably by using a simple technique. The assumption is made that
the noise wmodel is still valid and that the variation can pe handled by
identifying the parameters in the deterministic portion of the model. A
least squares technique, described in Section 3.4, was used in the

demonstration. This ad-hoc technique was found to produce adapted models
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which still satisfy the hypothesis test and which are Statistically
consistent with the observed plant Performance. Thus for the cases tested,
for plant parameter changes, the rapid approximate methods can be used to
update the model on-line, to produce models which once again are consistent
with the plant performance, If the amount of disturbance noise or measure—
ment noise of the actual plant had changed, this method would probably

not be adequate, and a re-identification of the noise model parameters
would be necessary.

The performance of the rapid approximate paramater adaptation
technique is illustrated by Figures 5.5-2 and 5.6~1 which represent the
Same set of experiments. The hypothesis test statistic, Figure 5.5-2,
and the search procedure cost, Figure 5.6-1, both take on large values
in the case of model performance which does not match plant performance.
The model parameters are updated betwecen successive load changes, using
the rapid 2pproximate method, and after four load changes the model is
consistent with the plant.

From the preceding discussion it is evident that a good model fit
does not occur after a single application of the rapid approximare method,
but rather it requires several load changes. However, one fact which is
Bot clear from Figures 5.5-2 and 5.6-1 is that the first adaptation after
a single load change produces a significant improvement in the model.

This is shown in Figure 5.6-2, which shows the predicted and realized
Plant performance after a single parameter adaptation. Figure 5.6-2 shows
the same load change as Figure 5.4-3, which is for a plant with a moderator

temperature coefficient changed by a factor of ten from the value in effect
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when the model was identified originally. Figure 5.4-3 shows the predicted

and realized performance before any adaptation, and Figure 5.6-2 shows the

same after a single application of the rapid-approximate parameter adapta-

tion. This required about five minutes on the on-line control computer,

but this could probably be reduced by an order of magnitude by programming

efficiencfaes and by use of a faster computer.

The results of this study show that adaptatioa of the model to cope

with plaat variation is practical. The use of rapid and approximate

methods to adapt the paramecters as a method of quickly updating the model

for use in immadiate control has been demonstrated. The technique for

the update of the model when time is not of the essense shovld be tc
re-~identify the parameters of the complete stochastic model, as described
in Chapter 3. Thus methods have been developed and dewmonstrated which

cope with the problem of plant variations.



CHAPTER 6

SUMHMARY

6.1 Problem Restatement

This study addresses <the problem of control of the nuclear power
plant during fast and large load changes. The control must take the plant
through the load change smoothly - within certain constraints. Some of
these constraints are explicit, such as the constraints on primary loop
Pressure deviations. Other constraints are implied by a combination of
several variables, such as the constraints due to the combination of
Xenon effects and available control reactivity. The control must make
the load change rapidly, .yet do so within the constraints.

The problem of control is further complicated by the variations which
occur in the plant. Slow physical variations have the effect of slow
changes in the plant dynanic behavior, while fast variations due to
several factors make the short term behavior uancertain. A visble control
MUSt operate in the presence of these normal plant variations.

The plant variables are rapidly chzanging during a large, fast load
change. For this reason it is essential to detect quickly any deviation
from expected behavior so that the load change can be terminzated before
the plant variables reach deviation limits and initiate a plant shutdown.
Furthermore, some means must be provided to reassure a plant operator
during normal load changes that the rapid changes in the variables are

normal. All these considerations are part of the load change problen.
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6.2 Results of this Study

The nuclear power plant is considered ar high power levels. A
control of the plant during load changes is developed and tested in simula-—
tion. The control coordinates the turbine and the reactor during the load
change, in order to maintain smooth plant operation during fast large load
changes. The emphasis of the control is on maintaining the plant within
certain constraints. These constraints are given or are calculated to
keep the plant variables within acceptable limits, so that automatic
plant shutdown limits will not be approached. The constraints include
power rate of change, primary loop pressure, pressurizer level, primary
loop average temperature, and constraints due to available control
capabilities. Observing all the coastraints guaranteecs smooth operation.

The techniques developed in this study were tested on a detailed
simulation of a nuclear power plant. The high-order simulation included
disturbances and measurerant noise, as well as numerous nonlinear effects.
The simulation was treated as an actual plant. Measurements were taken
via analog to digital conversion at one second intervals. The measurements
used were rcactor power, primary loop average temperature®, turbine power,
rod group position, and plant load set point. Control actions were via
digital to analog conversion, also at one second intervals. The controls
manipulated in this way were the reactor rod group speed and the turbine
load set point.

The calculation of the control actions to coordinate the reactor and

the turbine requires a plant model. This must be a low order model to be

*The average of two temperatures in the primary loop, one each at the
reactor inlet and outler.
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useful in on-line control.

This model of the Plant is formed by repre-

senting the major dynamic phenomena, including the coupling between the

reactor and the remainder of the plant. The reactor itself is represented

by a nonlinear dynamic model which includes the effects of delayed necutron

precursors, the Xenon effects, and temperature effects from the fuel and

the moderator. The deterministic model of the plant is augmented with a

noise model, representing the effects of :andom.disturbances, model

errors, and mecasurement noise. The overall model is thus a stochastic

model.

Parameters of the deterministic and the noise parts of the stochastic

model are identified from measurement data records. A maximum likelihood

method is used for the {dentification. This method finds the parameters

which maximize @ certain probability function. The maximum likelihood
P y

method is a general technique which allows identification of both the

deterministic and the noise parameters of a general state variable stochas—

tic model.

The stochastic model is considered to be hypothetical until statiscti-~
cal evidence establishes that the model is consistent with the plant. A

hypothesis test is formed which is sensitive to model error. The hypothesis

test makes use of the measurement error residuals of a Kalman filter. An
important property of the Kalman filter is used -~ the property that the

residuals are uncorrelated in time if the model is correct. The hypothesis
test is very sensitive to correlation of these residuals, and it proves to
be very effective in detecting model error. The hypothesis is used to

validate the identification, and also to detect plant variation.



to each load change. Both a nominal plant st#te trajectory and the
covariance of the states about the trajectory are predicted. The predic-
tions are used for two purposes. One use is to modify the state con-
straints, to make them more conservative, so that the stochastic model
predicts a very low probability of violating the original constraints.

The other use is to predict measurement bands, within which the plant
measurements are expected to lie with high probability. These measurement
bands are displayed before the lcad change begins, and the actual measure-
ments are superposed on the display during the load change. This display
is intended to provide a reéassurance to the plant operator during normal
load changes, and a visual warning of any unexpected behavior. The same
data is used by the computer to monitor the load change.

In the event of an unacceptable plant variation, as detected by the
hypothesis test or by the measurement bands test, the load change is
stopped. The model parameters are then adapted based on the data taken
during the abortive load change.

In summary, the results of this study demonstrate the practicality
of large, fast and smooth load changes for a nuclear powver plant. A
coordinated control is developed which maintains smooth plant operation
throughout large and rapid load changes. The control is based on a modei.
This model has its parameters identified and adapted to make the model a
best fit to mezsured plant data. The model is stochastic, and both the
noise and the deterministic model parameters are identified. The

stochastic model is used in a variety of ways to permit control in the
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presence of uncertainty. The validity of the stochastic model is checked
to detect plant variation. The result of all these techniques is a control
which not only provides large, fast load changes in a smooth manner, but

which also can operate in the presence of variation and uncertainty.

6.3 Extensions

A subset of the results could be applied, if desired, to reduce the
computer calculation time. The computer used in this study was dedicated
to the load change control, while an actual plant computer nust typically
perform many other tasks. Thus some reduction in the scope of the control
might be made for the initial plant implementation. For example, the
strategy of not disturbing the primary loop average temperature during
load change might be chosen as the standard strategy. By restricting the
control to this strategy, the control and prediction calculations are
considerably reduced. An approach like this is feasible to implement on
currently available process control computer systems.

The control results of this study could be extended by considering
different choices of constraints and goals for the control. For example,
the desired primary loop average temperature could be a chosen function
of load. This requires a minor extension of the control equations, which
would still be based on the same concepts and the same model. The
coordinated control in this case would still eliminate the undesirable
fast transients during the load change, while producing the desired

transition fn the primary loop average temperature.
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The techniques developed in this stud§ could also be extended to

other types of processes. In general, the features of the problem which

are important are:

1. The desirability of large and fast state changes without violating
some state constraints.

2. The presence of disturbances and measurement noise.

3. The possibility of plant variationsi

As one example, the problems of chemical batch processing are similar to

those encountered in this study, and the economic advantages of faster

processing are obvious and easily calculated.

The several secparate parts of this study could also be applied in
various extensions. For example, as part of this study methods were
developed for identifying a stochastic model of a plant given input-
output measurements. The stochastic model was used, among other purposes,

for constructing a Kalman filter for the process.

This procedure could

= =TT

be considered as a separate result, available for extension to other

processes -~ the automatic design by the computer of the Kalman filter for

a process.

i Another separate result which could find extended application is the
hypothesis test. There are many problems where it is appropriate to use

a Kalman filter to provide estimates of the plant states. In these cases,

the hypothesis test can be applied to the residuals of the Kalman filcer,

to provide a statistical test of the validity of the filter. In this

study the hypothesis test was used during load changes utilizing all the

measurement data during the load change. This technique could easfly be
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extended to make a continuous hypothesis test. This would reqﬁire using
a finite memory or a weighted memory procedure, so that the hypothesis of
recent valid behavior of the filter would be tested.

In summary, extensions of this study could take many forms. The
separate results of stochastic model parameter identification and the
uses of the modei could find application in other processes in addition
to nuclear power plants. The results which are specific to nuclear plant
control could be used in the form developed here or the techniques could
be modified, if desired, for plant application. The overall results of
this study thus provide a basis for modern control of nuclear power

plants and other processes which have similar control problems.
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APPENDIX A

THE NUCLEAR PLANT SIMULATION

The analog similation described here was used in lieu of a plant for

experimental testing. A number of parts of a pressurized water nuclear

plant were individually simulated, and these parts were connected as in
an actual plant to provide the overall coupled performance. The result
may not match plant performance exactly, but it does provide similar
behavior. The simulation includes a number of nonlinear effects,
disturbance effects, and measurement noise effects to make the performance
more realistic.

The simulation was constructed on an EAI-6S0 analog computer. There
were 64 amplifiers included, of which 23 were integrators. The nonlin-—
earities were produced by 2 dividers, a function generator and & limiters.
The disturbance and measurement noise originated from a noise diode. The
simulation was connected to an EAI-640 digital computer, which treated
the simulation as if it were an actual plant. The digital computer was
used for the prediction, adaptetionand control tasks. The data from the
simulated plant were acquired by analog to digital conversion at one
second intervals.

In forming the simulation, the first level of approximation was in
the choice of the time period of interest. Simulations of nuclear reactors
and turbinc-generators are often used in accident or line fault studies,

where fast transients due to abnormal operation are of interest. Imn this
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study phenomena which occur faster than about one second are considered
to be instantancous. On the other nand, phenomena which occur over a
long time span are considered to be paramcter changes. Table A-1 lists
some of the transient phenomena associated with nuclear power plants and
the time period which they occur.

The second level of approximation was to lump the various distributed
phenomena in the plant into simpler lumped model forms. This approxima-
tion was somewhat subjective and it involved consideration of the analog
computer capabilities as well as consideration of retaining accuracy.
Table A-2 gives a description of the complexity of this simulation.

The specific parts of the plant in the simulation are:

= the reactor

-~ the pressurizer

~ the heat exchanger

= the turbine

- analog control systems for the pressurizer, turbine, and rod

control
These parts are discussed in the remainder of this appendix. The overall
simulation structure is given in Figure A-1 to show the interconnection of
the parts of the plant. The physical simulation facility is showm in
Figure A-2.

The model of the reactor kinetics is ncir coansidered. The well known
point kinetic model of the reactor kinetics is used [41]. The effects

which are siwmulated are:



-151-

TABLE A-1

Time Periods of Common Nuclear Power Plant Phenomena

Time Period

Phenomena

days - months fuel depletion, corrosion and

fouling of heat exchanger and
turbine.
. 5 L

hours isotope buildup of 113 , Xe 35

spatial oscillations.
seconds to minutes load change effects on pressure,
temperature, energy transfer,
reactor kinetics, Xenon tran-
sients at high power.
less than a second local reactor power excursions.

powver system transients.
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TABLE A-2

A Description of Simulation Complexity

Subszstcm

Neutron Kinetics including

Xenon Effects

Primary Loop Energy Transfer

Steam Generator

Pressurizer including

Analog Control

Rod Control including

Analog Control

Turbinz including

Analog Control

Simulation

Nonlinear, & states

Linear, 4 states

Linear, 4 states

Nonlinear, & states

Nonlinear, & states

Linear, 3 states
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fission
delayed neutron pr2cursor isotopes
Xenon reactivity effect
moderator feedback reactivity
fuel feedback reactivity

control rod effect reactivity

The nomenclature is:

n neutron flux

0
)

concentration of delayed precursor i

™

i fraction of fission neutrons which form precursor i

>

i delay constant for precursor i

=

prompt lifetime

The slowest three delayed neutron precursor groups are retained in

the simulation. The first group neglected has a time coastant of approxi-

matel:- 3 seconds. The point kinetic model is:

3
':1[_2 = DAS nt oA e (-1
=1
de. 8
-_d.’t; = —i n - Kici i=1.,2,3 (A-Z)
3
8=} 8, (a-3)
i=1

If the net reactivity p << B, then the prempt jump approximation holds and

the first equation is approximately



A 3
n = ET‘:)‘ -El >\i ci (A—&)
The modeled rcactivity effects are:

Pp = %p A TM. fuel effect

pM = aH A TW moderator effect

pR>= o AR rod effect

= c €
px o A X Xenon effect

where:

A TH is change in metal temperature
A TW is change in water tempevature
AR is change in rod position

A X is change in Xenon concentration

The dynamic equation of the Xenon is:

dX

de A T T Ag Xm0 X
where:
kI is decay constant for 1135, the precursor to xe135
lx is the decay coastant for KlB)
cax is the absorption cross section of Xenon

The direct creation of Xenon by fission is a relatively small effect which

has been neglected. The iodine concentration, a very slow changing effect,
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is a constant in the simulation. This approximation reflects the fact
that short term experiments were of interest. A simulation valid for
long term experiments over a period of hours would include the buildup

and decay of iodine according to:

ar _ - A~-6
de ~ Yp Zgn - A I (a-6)
where:

Y; is the fractional yield of I1>°

Zf is the fission crcss section

The control rods are generally manipulated by an analog control
system. The sinulation had the capability for either digital or analog
rod control, with the choice determined by the state of a relay uader

computer or manual control. The block diagram with the analog rod control

transfer functions is shown in Figure A-3. The basic operation is that

the set point for the primary loop average temperature Ta is a function

of steady state load. The rod control responds to deviations in Tav from
this set point. The control also responds if a load mismatch between
reactor and turbine load is detected. Tne simulation model is the sarme
as the actual rod control, with a function generator used to represent
the rod speed nonlinearity.

The heat transfer to the primary loop is now considered. The
residence time of water in the core is less than two seconds. The heat

transfer to this water was modeled as a two state process:
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v
-

(A-8)

The subscript M refers to the metal in the core fuel; the subscript U

refers

v

n

-t ™

The pressurizer on the primary loop is now considered.

to the water in the core.

volume
density

heat capacity
flow

length of core

The other parameters are:

effective core heat transfer area per unit length of core

heat transfer coefficieat

thermal power generated in core

The purpose

of the pressurizer is to counteract the changes in pressure due to change

in water volume as temperature changes.
heaters and vent valves as control elements.

and condensation play a mzjor role in the pressurizer behavior.

The pressurizer includes sprays,

The phenomena of flashing

A simula-—

tion of the pressurizer based on the physical phenomena, thermodynemic

data, and the analog control system was developed.

for the pressurizer in this study is:

The simulatioa used



A.

B.
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Expansion flow

. (A-9)
d IAV

fT = o, ac TAV = average of hot and cold
leg temperature

o, = coeff%cient of expansion
(8 £t7/°F for this study)

Liquid mass balance

de IR, = mass in pressurizer (water)
dc - frt £o - fis ‘
f = charging flow (A-10)
fT = expansion flow

fWS = water to steam flow

Steam mass balance

dHS
—3c = fus — £y £, = vent flow (A-11)

Controlled flows
Vent flow:
fv is zero when P < Pz and fv increases with very high gain if

P > PZ’ where P2 is a set limit.

Water to steam flow:

= - A-12
fWS fH fD + fF C )
Heaters: EH = Heater contribution, on when P < P3, a set limie
Condensation: f£_ = condensation flow, which changes from a small

D

number for P < Pl’ a set limit, to a large number
for P > Pl’ This accounts for wall condensation

as well as showers.
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Flashing: f£_ = flashing, which rises with very high gain during

steanm volune increascs,

The primary system
is {in the absence of accidents) a constant mass System which will have

level transients during temperature transients.

The simulation of the heat exchanger or Steam generator is now

considered. The steam generator is a shell and tube heat exchanger. The
steaming causes the void fraction on the secondary side to vary up the
genarator. This void fraction, which is sensitive to secondary loop
pressure, affects the heat transfer between the primary and secondary
loops. The level in the steam generator is sensitive to the pressure on
the secondary side, due to the effect on voids. This affects the feed-
water rate somewhat, due to the level control System. However, in
practice this control is adjusted to be quite slow due to the assumption
that the secondary loop is constant mass, and therefore, level transients
are ignored unless they persist (coutrol action) or exceed specified
bounds: (emergency action).

Figure A-4 shows a block diagram of the Steam generator model. The
equations for the blocks are:

A. Prinary side inlet lump

dr, | Fi  SKL F, SK, I. a1
A T v Ty *+ 5 %2
de 11 11 Py Sy 11 11°% Sw
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FIGURE A-4 Block Diagram of Heat Exchanger
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where
Tll is the lumped temperature
TH (inlet) hot leg temperature
T2 secondary side lump temperature
i .
(—f—D primary lump residence time, is on the order of 3 seconds
SKlL
(V ) overall heat transfer cocfficient, where Kl is
11 W w conventional heat transfer coefficient
B. Primary side outlet lump
dT F SK,L F SK,L
12 1 2 1 2
= = ( + JT., ++—T,.. + ————— T (A-14
de Vi V2 Oy Sy T 120 Vi TIL Vi, oo 2

le is the outlet of the primary loop side, also called Tc or cold

leg temperature

Secondary side, energy balance

dh F F
2 2 2 SKL
=-="h, + 5= h, - =—— (2T.-T,,-T,.) (A-15
dt V2 2 VZ i VZ pw 2 11 "12
h2 is specific enthalpy in the seccondary lump
hi is feedwater enthalpy
Secondary side, steam separation
= A-1€
h2 hf + x hfg ¢
h, -h
x = 2 £ (A-1-
h
fg
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E. Secondary side, pressure

sz
—< = - A-19
T dt Fs FT ( )

FT is steam flow to turbine

T 1is time constant of pressure response

F. Secondary side, temperature in generator lump

The Clapeyron equation [62], at saturation, gives

h
e fg (A-20)
dT T(vg-vf)

The turbine model used in this study is one proposced by Aansted [1].
This model is shown in Figure A-5. The throttle valves are modeleg as a
linear relationship. The pressure P in the steam generator and the valve
open area A both affect the steam flow to the turbine ET' The analog
control system for the turbine accepts inputs from the load dispatcher
and from a speed control regulation system. In this study the load set
point, one of the major plant inputs from the control point of view, is
the load dispatcher input of the simulation. The speed or frequency
control is not used in this study.

The details of variable sczling are presented in Table A-3. In
general, the major variables are scaled in powers of 10 from their commor
engineering units. Simulation variables all have internal simulation
values of magnitude less than 1.0.

The major simulation details are shown in Figure A-1l. The variables

and parameters labeled on the drawings are actually scaled by various
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TABLE A-3

Simulation Variable Scaling

Note: All time scaling is 1.0, that is a real time sinulation was used.
Variable Description Full Scale Value
H Rezctor Power 30,000 M.V.T.
(o) Reactivity .01 AK/K
AT Temperatures (Deviation) 100°F, 1000°F
Ah Enthalpy (Dewiation) 100 btu/lb.
£ Total Surge 100 ftslsec.
v Pressurizer Volume 1000 ft3
Afvs Water-Steam Flow (Deviation 1000 Et3/sec.
Pl Primary Pressure 10000 psi
AL Load (Deviation) 1000 =T

APZ Secondary Pressure (Deviation) 1000 psi
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factors which are omitted from the drawings for claricy.

It could be argued that a less noisy simulation would result if the
scaling were “optimized". However, this would not only involve more
effort, it would also be placing over-reliance on the deterministic
aspect of the simulation. In fact, the process is subject to disturbances
and the measurements are noisy, and it was necessary to add noise to the
sinulation to produce similar noisy effects. Thus, there was no poict in
complicating the problem by using awkward yet less noisy scaling.

Several responses of the plant are discussed in Chapter 2, and the
measurement records are given there. The simulation appears to perform

as a plant would, in terms of similar transients.



APPEMNDIX B

THE KALMAN FILTER

The problem under consideration is to find an optimal estimate of the

state of a linear system. There are various criteria which could be used

to define the optimal estimate, such as minimum variance linear estimate,

maximum likelihood estimate and other criteria. There is one estimator,

the Kalman filter [35], which is optimal under a number of these criteria

for certain reasonable models of the disturbance and measurement noise of
the process. This filter is easily operated in an on-line computer
system, since the filter equations are simple. Thus the Kalman filter
has assumed a great importance in modern system contrel over the last
decade, due to its desirable theoreticzl properties and its ease of
implementation.

0f the various derivations of the Kalman filter, one of the simplest
uses the minimum variance linear estimate as the criterion. That is, the

estimate is to be the result of a linear system operating oa the data,

and it is to be the estimate with nminimum variance of all such linear
estimates. This derivation, which is presented in this appendix, does
not assumz a probability distribution for the noise; it merely requires
known means and covariances. However, if the noise is assumed to be
Gaussian, then an additional result can be claimed: that the conditiomal
probability distributions of the estimates given the data are known. This

i{s true because for Gaussian distributions the mininum variance linear

-168-
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estimate is also the conditional mean estimate [58]. The knowledge of
the mean and covariance then specify the conditionzl distribution, since
it is Gaussian. Thus although the derivation prescnted here does not
require the assuwption of Gaussian noise, such an assumption greatly
extends the theoretical interpretations of the resulting Kalran filter.
Of course, in an applicatioa the final test of the assumption s to test
the performance of the filter. This was done to some extent in this
thesis by means of a hypothesis test.

The derivation of the Kalman filter using the minimum variance

linear estimate criterion is now considered. A process is assumed of the

form:
Ferl T % X Y Ve (B-1)
g S G Rty (-2
where

is an N dimensional vector of states

is an M dimensionzl vector of plant measurenments

;1;: J:m Jg;u

is an N dimensional vector of zero mear white noise,
independent of all states and all other noise vectors

is an M dimensional vector of zero mean white noise,

;ﬁ

independent of all states and all other noise wectors

The covariances of the noise vectors are taken as

Cov(zK) =V (B-3)
Cov(gﬁ) = W (B-4)
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The noise is assumed stationary here, although this is not neecded in the

derivation.

The covariance of the state is taken as:
Cov (% = -
G = T (B-5)
Thus the covariance of the measurements is:
> = t —
COV(EK) CK FK CK + W (B-6)

The mean of the state at time K, before considering the measurements at

time K, is:

E & - Ry lk-1 (B-7)

Thus the mean of the measurements, before observing the weasurements, is

E G = Relk-1 (3-8)

The vector

X

Ze

is considered. This has mean and covariance, a-priori

E X g’;(lK——l

N (5-9)
Sk (k-1

;LN(



X r r, c!
Cov o = * €K (B-10)
-~ = t \$
2y ‘% Tk G T &+
The assumed form of the estimate is linear.
A = & , -~ _ [ -11
Xl = Fr-1 Kl - O Xx-p) (B-11)

The criterion of minimum variance is satisfied if the estimate error is
uncorrelated to the data. Any other estimate, giving an estimate error
correlated to the data, adds at least a positive semidefinite matrix to

the covariance [58].

The criterion of uncorrelated estimate error and measurement gives

the equation:

0-E (& TEe () GG k) '] (8-12)
Expanding
0-& LB 1M B B (-1 GG Eir-1) '] (B-13)

where EK'is as given by equation (B-2). It is noted that gk[K_l is viewed
as a given constant for this one step estimation problem, so that this

expression reduces to

= | S ™ | ¢ -
0 FK CK KK(C( I CK + W) (B-14)

So the minimum variance linear estimator of equacrios (B-11) is determined by

Ke = Ty Co(C T CF an~ 1 (B-15)
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Other forms of the Kalman filter result from various matrix identitiecs

[58]. The covariance of the a-posteriori estimate is given by:

1

= -— ' v . - —
PK FK FK CK(CK FK CK +) CK PK (B-16)
or by a matrix identity
— -1 1 -1 -1 _
Pp= (O + Cr W™ C) (B-17)

The a-priori estimate at time K+l is found by propagating the model

equation (B-1)

Bk = E G = & Xk (B-18)
Trer|x = A Bg % * V (8-19)

"The Kalmen filter consists of propagating the estimates using
equations (B-18) and (B-19) and updating the estimates using equations
(B-11), (B-15) and (B-16). Both the estimated states and the covariance

of the estinates are calculated.



BIOGRAPHICAL XNOTE

Robert Moore was born in 1942 in Chicago, Illinois. He attended
The University of Michigan, where he received degrees of Bachelor of
Science in Electrical Engineering (1964) and in Engineering Mathematics
(1964). He worked as a part time computer programmer during his under-—
graduate education. From 1964 to 1966 Mr. Moore was a graduate student
at the Massachusetts Institute of Technology, where he received his
Master of Science in Electrical Engineering (1965) and (professional)
Electrical Engineer Degree (1966). From 1966 to 1968 he worked as an
Application Development Engineer in the Digital Systems Division of
The Foxboro Company. In 1968 Mr. Moore returned to M.I.T. to pursue

the Ph.D. degree. His major area was automatic control and his minor

area was managenent.

-173-






