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Abstract—We develop a distributed controller to position
a team of aerial vehicles in a configuration that optimizes
communication-link quality, to support a team of ground
vehicles performing a collaborative task. We propose a graeént-
based control approach where agents’ positions locally mimize
a physically motivated cost function. The contributions ofthis
paper are threefold. We formulate of a cost function that
incorporates a continuous, physical model of signal qual,
SIR. We develop a non-smooth gradient-based controller tha
positions aerial vehicles to acheive optimized signal quigy
amongst all vehicles in the system. This controller is provaly
convergent while allowing for non-differentiability due to agents
moving in or out of communication with one another. Lastly, we
guarantee that given certain initial conditions or certain values
of the control parameters, aerial vehicles will never disconect
the connectivity graph. We demonstrate our controller on
hardware experiments using AscTec Hummingbird quadrotors
and provide aggregate results over 10 trials. We also proviel
hardware-in-the-loop and MATALB simulation results, which
demonstrate positioning of the aerial vehicles to minimize
the cost function H and improve signal-quality amongst all
communication links in the ground/air robot team.

Distributed control of groups of robots working collabo-
ratively to acheive a task has been the focus of many rec
research efforts. These systems are particularly infagest
because of their inherent robustness to failures, and bBeca

INTRODUCTION

rescue tasks, collaborative construction, and the magleli

or even thousands of intelligent spacecraft will work imtsa

to achieve collaborative tasks in space exploration [1f Th
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case of exploration in an unknown environment with ambient
noise exemplifies the need for communication networks that
can be optimized adaptively. We propose a nonsmooth,
gradient-based approach to positioning a group of aerial
vehicles in a configuration that optimizes communication-
link quality amongst a team of ground vehicles performing
an independent, collaborative task. We acheive this dlsgect
via careful design of an appropriate cost function that é&nth
minimized by the placement of the aerial vehicles.

A common approach to distributed minimization of a cost
function is to design a gradient-based controller wheretge
follow a distributed gradient descent on that cost function
We design a cost function that incorportates the Signal-To-
Interference Ratio (SIR) from the communication literatur
which is a physically-based, continuous measure of link
quality between any two communicating agents [2]. Local
minima of our cost function achieve a tradeoff between max-
imizing the SIR for any single link, and equalizing the com-
munication capability, also SIR, over all links in the graph
We model signal strength between two agents that degrades
with distance and drops non-smoothly to zero outside of the
cogmmunication radiusk. The non-differentiability due to
géents entering or leaving the communication radius of one
another necessitates the use of results from the nonsmooth

Ltability analysis literature [3] to prove convergencedodl
of their potential to solve a large range of interesting prob y y [3]to p g

lems such as the exploration of an environment, search al

jnima of the cost function. Furthermore, for certain aliti
nditions and controller parameter values, we prove that

m

¢

) i " "erial vehicles will never move in such a way so as to
of biological systems. However, many applications of dISa

tributed systems require that agents work at large distanc
from one another, or in noisy environments, where communliﬁ.

. . . i
cation quality can degrade or be lost altogether. The Nation
Aeronautics and Space Administration (NASA) has recentl
focused attention on swarm-based missions where hundre

isconnect the communication graph.

We implement our controller on a team of AscTec Hum-
ngbird flying quadrotor robots providing network covesag
for ground vehicles, using xBee-PRO modules for wireless
dommunication. We present aggregate results of ten haedwar
eXperiment trials, demonstrating positioning of a team of
three quadrotor aerial vehicles to provide optimized com-
munication for a group of three ground vehicles. We also
present the results of hardware-in-the-loop simulaticors f
up to three aerial vehicles and four ground vehicles, and
MATLAB simulation results for up to eight aerial vehicles
and eight ground vehicles. Our MATLAB simulations also
show that we can adjust the behavior of the aerial vehicles to
optimize SIR values over individual links, or an equaliaati

of SIR values over all links in the communication graph, by
adjusting a design parametgrin the cost functionH.

e
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Fig. 1. These figures show the initial and converged conftgura for two aerial vehicles and three ground sensors.rigiic) demonstrates the new
equilibrium acheived when one flier is re-assigned to a giosmtion.

A. Related Work order to acheive their assigned task. We propose the use of

The development of distributed control of groups of robot& groulr()fofmh aerial v§h|crl1e_sl to prr?wdeha con_1n|1unk|Jcat|(:nl
working collaboratively to achieve a task has been a rebeargetWork for the ground vehicles, where the aerial robots fo
focus in broad ranging fields including dynamic routinglOW a distributed control law and are placed at locations$ tha
problems [4], [5], collaborative construction tasks [6]odnA optimiz_e communicg_tion link quality amongst a!l vehicles
eling of biological systems, and coverage [7], [8]. In manyalccordr:ng toa §ge0|f|c cosf. V\ée assumke that I is Iarged
of these applications communication across the netwof{'°49 to provide a connected network amongst ground ve-
is an important and challenging problem. The paper [ icles, 2) that communication only exists amongst neigbor

concerns formation control of agents under communicatioffithin a distance radiug where signal strength is modeled
constraints. Other work concerns using a communicatighy /i described later in this section, and that 3) the ground
tether to link a ground, or base station, to an exploring ageﬁeh'de dynamps are zero as necessary for the mathematical
[10], [11]. The paper [12] addresses the communicatioHrOOf' although in the practical setting we may allow ground

problem by integrating information theoretic measures intvehicles to move given that their velocities are much smalle

the objective function and demonstrates this approach ong%f’?m those of fthe aegfll vehicles. We note that assur?pn(]zn
chain configuration of mobile robots. is common for problems using Lyapunov-type proofs o

A second challenge we address in this paper is to enSLﬁE’lb'“ty' Due to the distributed na.ture of our problem, al!
agents have access only to local information and thus will

that aerial vehicles will never move to disconnect the co .
r%e unaware of disconnected subclusters. Therefore we must

munication graph. This is a difficult problem in a distribdite | that th icafi work d of
system because each agent’s controller only accounts fop0 assume that the communication network composed o

local information and the connectivity status is a globa oth air and ground vehicles is initially in a connectedestat

property of that graph. Other research efforts have focased althou_gh our controllle.r IS robus_t .to changes in the network
tention solely on the problem of maintaining connectivity f including agents arriving or exiting. Our hardware results

distributed systems [13], [10], [14]. Many of these works usdemonstrated in Figure 4 include such a scenario, where

distributed algorithmic methods of checking the connégtiv an aerial vehicle is disabled and the remaining aerial ¥ehic
of the graph via gossip algorithms, local minimum spannin ositions themselves to compensate for the loss of thelaeria

trees, or other iterative approaches. Our approach allows f e\f;\|/cle._ ¢ tivity of th hi i
a continuous method of connectivity maintenence usind loc © aim 10 ensure conneclivity o the graph In a continuous

information at the expense of a more conservative controll ashcli(.)t_n by fe::]her piacmg ab r?quwement .tthatl thet |n|t|zgl
Less conservative approaches to this problem could imalveconditions ot the system are below some critical cost, or by

combination of our distributed controller for communiceti adjusting a design parametin our cost function to ensure

optimization and an algorithmic check for graph connettivi that a_erlal vehlcles will never break .eX|st|ng cqnnectlons
. Aerial vehicles are controlled via a gradient descent
such as the work in [14].

. : . ) . . method, where we allow for a nonsmooth cost function that
This paper is organized as follows: Section |l describes . . . .
; . iS non-differentiable at the points where agents come in and
the problem and our approach, Section Il provides the . .
. out of communication radius of each other. Due to the local
nonsmooth convergence analysis of our controller and prog : o : .
. . . non-differentiability of the cost function, we must instiea
of connectivity maintenence, and Section IV presents the ex . . : :
: . . _—Use the generalized gradient of the cost function which we
perimental and MATLAB results. We conclude with Section 9H ! T
Vv denoteg = throughout. We find the direction of descent for

the resulting nonsmooth gradient vector field such that the

Il. PROBLEM FORMULATION controller takes the form

We are interested in the problem wherground vehicles, )
performing a collaborative task such as coverage, search, o 2 = —Ln(0H)(z:)- @)
exploration of an environment, are required to communicahere Ln(0H)(xi) : R — R? is the generalized gradient
over distances greater than their communication raffius  vector field, and-Ln(0H)(z;) is a direction of descent of



Strength of Communication Over Link ij

H atz; € R? [3]. In Section Il we find the generalized 1.2
gradient vector field of the cost function and show that th
resulting positions of the aerial vehicles converge taaait
points of this cost function. Bg
We design our cost function to incorporate a physically ¢!l
based, continuous, measure of signal quality called tt« .
Signal-to-Intereference Ratio (SIR) [2]. The SIR value o
the linki-j improves with increasing communication strength ~ 0-2¢

Po-C

between agents and j and decreases with increasing envi- § 1
ronmental noiseV; and interfering communication amongst - ‘ ‘ IKR .
1's other neighbors as seen from the definition of SIR: o 2 4 6 8 10
1]
SIR;; = fi (2) Fig. 2. Plot of f;;.
Ni + Zke/\/i\j fik Y

Where \V;\, is the set of neighbors of not including j.

The communication strength over lirj is denotedf;;. We  of each link. The design parametaris used to adjust the
choose an example model for the signal strength that dropgighting of the first term versus the second term in the cost
off proportional tod;; ", but we emphasize that other, morefynction. A higher weighting on the second term corresponds
problem specific models for signal strength can be used witg agents seeking to equalize their SIR values amongst all of
our controller so long as this function is locally Lipschétzd  their neighbors whereas a higher weighting on the first term
regular and models no communication outside of the radiygi| result in agents greedily improving individual SIR Ks.

R. These properties are important for the analysis of oyp Section 11l we prove that there exists a critical value of

controller but we defer this discussion to section Ill. Wey ). that prevents agents from disconnecting from existing
define f;; as neighbors and demonstrate this range of behaviors for the
controller in Figure 3.
d%il -C , dj <R Because the cost functidi is non-smooth due to the non-
fij = Y 0 , dj>R () differentiability of fi; atd;; = R, our controller requires a

non-smooth stability analysis as described in the nexisect
whereC = % is a constant to ensure continuity& = R,
and we defined;; = ||i— j||. Thus the communication [1l. NON-SMOOTH ANALYSIS
strength model reaches a maximum value g — C

In this section of the paper we present the stability analysi
at d;; = 0 and drops off bya asd;; > 0 with a non-

of the controller presented in (1). We also describe the

smooth transition to zero ai;; = R as seen in Figure 2. g ficient conditions to ensure connectivity preservafion
This non-smooth transition is necessary to model 10ss @fo communication graph.

communication between two agents at a distance larger than
R from each other. Finally, we present our cost functidn A Non-Smooth Analysis of Controller

A The cost functionH presented in Section Il is non-
H = ZZ —SIR;; + SIR. 53 (4) smooth at the point where agents move in and out of the
i i v communication radiugz of each other. This is reflected as

Where the ternd € (0, 1] is included to ensure that the cost2 Non-smooth transition to zero in the functigiy at the

function H is continuous at the point where agents becom@int di; = R. As a result, the derivative does not exist at

disconnected and the value 81 R;; = 0. A smallers value this point an_d we must instead f|r_1d the generalized gr_adu_ent

has the effect of putting more Wéight on the second term &nd genera_llzed gradient yector field of our cost function in

the cost function. It is evident that the cost function iskglo Order to build the appropriate controller.

and thus uses position information for all agents. However, 1) Generalized Gradient and the Generalized Gradient

as shown in equation (8) the control for each agent is locaYector Field: Following the theory of discontinuous dynam-

as all non-neighbor information drops out in the derivativeical systems, due to the local non-differentiability &f the

Figure 6 shows optimization of a non-smooth H as agengPntroller in (1) in fact uses thgeneralized gradiengt.

enter the communication neighborhoods of others. The generalized gradient of a functighat a point of non-
Minimization of this cost function corresponds to a comdifferentiability, z, is presented in [3], as the convex hull

promise of two competing goals. The first term in the cosgf the all the possible limits of the gradient at neighboring

function favors increased SIR over all communication link$oints where the gradient is defined. More precisely:

in the graph while the second term favors equal SIR over

each individual link, which can be thought of as equal re-5p ,

source allocation where SIR measures communicationyabilit 7~ = ¢© {lim,, .V H(z) Vz; : 2 — 2,2 ¢ Qu}. (5)



where co denotes convex hulf : R? — R is a locally gradientd(f1/f2)(z) = (1/f2(x))(f20f1 — f10f2).

Lipschitz function, and2;; c R? denotes the set of points

whereH fails to be differentiable. Moreover, tlgeneralized We combine the result§heorem land Theorem 2of Jorge
gradient vector field Ln(22) : RY — R?, is defined in Cortes’ Discontinuous Dynamical Systente produce a
[3] where Ln : B(R?) — B(Rd) is a set-valued map that result similar to Proposition 11 of the same work. We state
associates to each subsét of RY the set of least-norm this result here as Lemma 1.

elements of its closuré. Most importantly,—Ln(%—f) is

a direction of descent off atx € R? [3]. Finding the  Lemma 1:Let H : RY — R be locally Lipschitz and
generalized gradient for an arbitrary nonsmooth functior-bgu|ar, Then, the strict minimizers off are strongly
can be a daunting task, however for our case, becausgple equilibria of the nonsmooth gradient flow &f.

the function f;; is smooth everywhere except &, the Fuyrthermore, if there exists a compact and strongly inméria
generalized gradient is equivalent to the normal gradiént et for the nonsmooth dynamics in (1), then the solutions

all points outside of?, where atR it takes the value zero. of the nonsmooth gradient flow asymptotically converge to
The generalized gradient vector field ff for our problem  the set of critical points off [3].

is:
We are now ready to state and prove our theorem for
[8fw] stability and convergence properties of our controller i). (
o0x;
{_ap(zifmj)umﬁzjua*} d. <R Theorem 1:Aerial vehicles following the direction
{ (lwi =5 (1" +1) oY of descent of the generalized gradient &f such that
{0y, di 2R zi(t) = —Ln(g—g) will asymptotically converge to the

®)  critical points of H where the strongly stable critical points

Knowing the generalized vector field gk, is sufficient for are local minima off/.

finding the generalized vector field of the cost functiin ) )
This relies on the fact thaf;; is Lipschitz and regular. A Proof: The proof of this theorem follows readily from

function is said to be locally Lipschitz at € R¢ if there Leémma 1, using the fact thali is locally Lipschitz and
exist aL, ande € (0,00) such that||f(y) — f(y/)|| < regular, and that there exists a compact and strongly iwtri

Lo lly — /| for all y,y/ € B(x,¢) where B(z,¢) is a ball Set for (1). The maximum of a finite set of continuously
centered at: of radiuse. A function is said to be regular differentiable functions is a locally Lipschitz and regula
when its right directional derivativg’(z;v) is equal to its function [3]. Thus the funcUonfU is regular because it

generalized directional derivativé’ (x; v), [3], where: can be written asfi; = max{z" To41 C,0} where both
fdij) = daﬂ — C and f(d; ) = 0 are continuously
fly+hv) — f(y) differentiable functions and thug;; is a locally Lipschitz

fO(z;v) = lim sup

P h (") and regular function. Combining equations (3) and (2), it is

clear thatH ,from (4), is an algebraic composition of signal
The proof of f;; Lipschitz and regular, as well as the finalstrength functions. Since the signal-strength functfpnis
form of the controller using the generalized vector field oLipschitz and regular, by applying tf8um RulendQuotient
H is presented in the next subsection. Ruleit follows that H is both Lipschitz and Regular. Lastly,
2) Stability of Controller: We present our main stability we show that there exists a compact and strongly invariant

result as Proposition 1 but we first present supporting tesulkset for the dynamical system in (1). The generalized gradien
from the nonsmooth analysis literature. The first resulés arg—g for agenti goes to zero when agents outside of the
the Sum Ruleand Quotient Rulefor algebraic operations on communication radiug for all other N — 1 agents and thus
nonsmooth functions summarized in [3]. These results amwe define the setM, to be the set of points for which the
important for conserving Lipschitz and regular propertiegeneralized gradient is non-zero. L&t C R be the set
of nonsmooth functions and for finding the generalizedf all points inside the radiu8 R(N — 1) from the origin
gradient of a function that is an algebraic composition ofvhere, for the case of one ground rolgotwe placeg at the
such functions. origin. By definition this set is both closed and bounded in a

ball B(0,2R(N — 1)) and is thus compact. This generalizes
Sum Rulelf f;,f2:RY — R are locally Lipschitz and regular readily to the case of more than one ground robot if we find
atz € R? and s;,s, € R, then the functions, f; + sof>  the union of all such sets. Furthermore, a solution to (1)
is locally Lipschitz and regular at and the generalized with any initial conditionz, € M remains inM because
gradientd(sy f1 + saf2)(z) = $10f1 + $20fa. gTF{(p) =0 Vp ¢ M and soM is a strongly invariant set.

]

Quotient Rulelf fi,fo: R* — R are locally Lipschitz and Using the Product Rule and the Sum Rule, and the fact that
regular atz € R? and s, s> € R, then the functionf;/f>  fi; is Lipschitz and regular, we now present the final form
is locally Lipschitz and regular at and the generalized of our controller from (1).



will never disconnect an existing connection. This is degac

. OH graphically in Figure 3.
Ti = —L”[axi] 1) Minimum cost of a Disconnected Networkhe cost
N N of disconnecting an edge in the communication graph, or
- Z Z _OSIRy (1+ A(STRy; +6)72). (8) e_qually, the_ cost of a missing connection in the communica-
=1 =1 O tion graph is given by:
Where 2 was defined above in (6) ané . is A
Hijla,,=r = 5 (10)
OST Ry = To find the minimum cost of a disconnected graph, we
O 8. oN or find the minimum number of missing connections for a
Fr Dz T Zke/\/i\j % disconnected graph. If we look at the case of two discon-

— Jij 9)

N; + Z%M\j fir (N; + Z%M\j fir) 2 nected subgraphs, the number of elements in each subgraph
T ' is s and N — s respectively, wheréV is the total number

B. Connectivity Maintenence of elements. The functior(s) = s(N — s) denotes the

We use the fact that the aerial vehicles are following aumber of missing connections between the two subgraphs
gradient descent on the cost functiéh to identify initial (we assume subgraphs are fully connected). Minimizifg
conditions that prevent agents from moving to disconnest.r.t. £ yields s = 1, meaning that the minimum number of
the communication graph. Because of the distributed natudésconnections in a graph is acheived whea 1. All other
of our controller, we do not employ any global checks ortases where the number of subgraphs is less than one is a
graph connectivity and thus require that the communicatiosubcase of this one. Therefore we find that the minimum
graph is initially connected. We present two approacheswumber of edge disconnections for a disconnected graph is
to maintaining graph connectivity. The first approactl2(N — 1) and the cost for this graph is:
identifies the minimum cost of a disconnected network
and requires that the initial conditions of any network A
are below this value. The second approach is to find &d =2(N — 1)3 +) > —STRyw + A(STRyw +6) "
critical value of A in (4) such that aerial vehicles will uFs wts (11)

never move outside of a radiug from their neighbors Furthermore, we are interested in thenimumcost of such

and thus will remain connected. The main differenc% raph. The theoretical minimum of Equation (4) would be
between these two approaches is that the first approach’i ph. ' inimu quatl wou

a check on initial conditions to ensure that connectivit)?c eived when the SIR value for all the agents in the second

is maintained, while the second approach is a desigSUbgraph is maximal. The maximum theoretical value of the

perspective where a value of the parametés chosen as a g]Rij from Equation (2) is acheived when the distance of

. i . . _the two agentg and j goes to zero and when interfering
function of other parameters in (4) to prevent disconnectio o J : . .
communication fromi’s neighbors, or environmental noise

Theorem 2:Given that the network begins in a connectedvi is not accounted fgr. This maximum is the same maxi-
: ; . . mum as that off;; and ismax{SIR;;} = P, — C. Plugging
state, the aerial vehicles will not move in such a wa ;

to disconnect the graph under either of the two foIIowinéglrsa:n(;%égi:g;tegugfggﬂ_we find the minimum possitfe

conditions:
1) The initial cost of the systenH{ begins below the \
minimum cost of a disconnected gragh,,,. Hg,, =2(N —1)~—
2) The design parameter), in (4) takes a value 0 .
A > it Where A\t is the value at which the dot (N =1)(N -2) ((PO —C) = AP — C) +9) )

product%T(xi — x;) = 0 for the pairi-j where (12)
d;; = max |l — | s:t. di; <R . Therefore we conclude that if the initial configuration has
a cost Hiniial < Hag,,, then the aerial vehicles will remain
Proof: We identify the minimum cost of a disconnectedconnected for all time.
graph that we calH,,,,. Because our controller requires that
agents will move to decrease the cat, if the initial cost  2) Finding Critical Value of\ to Ensure ConnectivityWe
of the systemH, < H,,, then the network will remain find the A for which two agents that are currently neighbors,
connected. For the second part of the theorem we identifyill not move a distance larger thaR from each other.
a value of the parametex such that an agent will never The intuition behind this criticah value is the observation
disconnect from its neighbors in the worst-case scenarighat as the distance between two agerjsapproaches the
Namely, we ensure that the dot pI’OdL%%T(:Ci —x;) = communication radiusk, A can be chosen such that the
0 in the limit asd;; — R so that agent’s velocity generalized gradien% will have a zero component in
component in the direction away fromis zero and thus the direction pointing away frony, and thus the agent
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Fig. 3. This plot shows the force felt by a communication e&hin the presence of two ground (sensor) agents, S1 and 88monstrates the effect
of the design parametex on the communication vehicle gradient field where conniégtie maintained forA > Acyit. Figures a through ¢ show how the
controller exhibits greedy SIR-maximizing behavior foradhm\ values and an increasingly symmetric configuration dematisg a balanced SIR over all
links for larger \ values.

will never move further than the distande away from j, To find At we must analyze the upper bound to the
V4 € N;. This corresponds to the that forces equation (16). This corresponds to finding the case where
the link -5 is most easily disconnected. From the Equation
oHT (14) we see that the upper bound is when the gradient dot
0z, product=5 e (x;—x;) is maximized, or equivalently, when

Where the vecto(z; — z;) points fromj to i andj is a all agentsz;, # x; have a maximum value of the gradient

neighbor at a distance approachifgfrom i. We expand 2ffux in the direction exactly opposite to the vectay —z;).
Equation (13): If we ignore agent interference in the Signal-to-Interfere

Ratio to get a upper bound ofi,,,, this is the case where
all agents not including are co-located at a point that is
opposite of the directioni-j with respect toi so that the

B (aHij N OH;; N Z 5Huw)T

v v (Al O vector exactly opposite toz; — x;) is (z, — x;). We place
*(z; —xj) =0 (14) all N —2 agents at a distanck — ~ from ¢, where
Where H..T
~ = arg max OH i (T — ;). (19)
v Oz

OH 3SIRMU
B~ g (L ASIRuw +0)” %) (15)  Thus the smallest value of lambda for which we are guaran-

As seen in Equation (14) and (15), the gradient- baseged to preserve connectivity is:
controller for agent is a combination of the gradients of

the SIR values betweehand k, Vk € N;, weighted by the At = _( _ aPR® B aPR®
inverse of the value of the SIR for that paif-z;. This (R* 4+ 1)2(N; + (N —2)P) (R® +1)2N;

weighting is directly influenced by, but goes to zero when NOSIR; T OSIR,; "
X = 0. Therefore, it is intuitive that a largex value will + > e (xi —zj) + “om (zi — ffj))
amplify the effect of the valu&IR,, — 0 in Eq (15), w ’ ’ .
and thus_the conFribution of the grf_;ldientt_)from the agent (2(1)2 n ZN(SIRW +5)2 OSIR;y (@i — ;)
whose distance is approachirg will dominate for larger ] ox; '
values of\. Solving for A from Equation (14), we find: 9SIR..T 1
4 (STRuy; +6) 222200 (g — xj)) (20)
_YNyN BSIRuw (zi—z;) Oz;
A z S N(SIRyw+8)~ 2% (wi—z;) (16) Placing all neighbor#, not includingj, of i at a distance
As the distancel., — R. we note ;hat' (R—~) from, and using the upper bound on SIR by ignoring
" ’ ’ all third party neighbor interference in the SIR terms excep
9SIR..T interference frony, we find the following expressions which
o 9z —xj) — can be plugged into the above equation to fing:
a —2 pa—2 . \—1p2
aPy(R*+1)2R*72(Ni+ Y fu) 'R (17) P .
kEN T (zi —xj) = — N (R—v)R-
and g '
1 (R 'y -C ON; T 2
SIRi; = SIRji — 5. (18) T( oz, W) tagl) (1)



and Quadrotor Position Trajectories
3000

2500 . @ gﬁ):r\éerged Positions 3
051w s
aT_wl (xi - xj) = _]\;Ul (R — ’}/)R (22) 1500
! w _ 1000 2 5
P £ s p S
SIR [ [ — _C N —1 23 £ L
" ((R—'y)o‘+1 ) (Vi) (23) . t . |
PO -500 . SN . % .
SIRui = (p——yayg ~ Q)™ (24) S
U R w :
Qi = QAo = aPo((R — 7)0‘ + 1)72(R — '7)0‘*2 (25) 200 o —2000  ~1000 (o ) 1000 2000 3000
Because we have found the minimum value\dbr which (@) Initial and Converged Positions for Hardware
— 98" (z; — x;) = 0,V4, we have shown that if we choose Trial.
A > Acrit, agentz; will never move out of the ball of radius 20945 S Fnton st o 10 AT Qadtor 1l
R centered at;;.
. 400
IV. RESULTS 350

In this section we present the results of implementing our
controller on a quadrotor hardware testbed, hardwaréén-t 250
loop simulations, and MATLAB simulations.
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A. Hardware Implementation %% e 1000 1500
We tested our controller on a group of three aerial vehicles (b) Aggregate Cost Function over Ten Hardware
which are AscTec Hummingbird flying quad-rotor robots Trials.

each with _an ARM micro-proc_essor and 2.4 GHz xBee r_noqfig. 4. Position trajectories and aggregate cost functamtliree fliers
ules for wireless communication, and three ground vehicle@hown as blue solid line in Fig 6(a) ) with flier equilibriunpgitions
We conducted the experiments in a room equipped with rgarked as blue squares and ground vehicle positions masketisquares.
Vi ti t t h ition inf ti After reaching equilibrium one of the fliers is deactivatead anoved to

icon moton cgp ure system where position intormation W%e side while the remaining fliers find a new equilibrium gosi (post-
broadcasted wirelessly to each robot and all computatiaactivation trajectories shown in dotted magenta line).
was performed onboard each of the robots in real time. For
our hardware experiments we set the controller parameters _ _
A =1> A\t and§ = 0.001, and the communication C. MATLAB Simulation
parametera. = 2. We demonstrate that the aerial vehicles We test a configuration with 16 total vehicles, where 8 are
acheive a configuration that locally minimizes the cé&t ground sensors and the remaining 8 are aerial communication
Figure 4 shows minimization of the cost functiéhaveraged vehicles. We set the control parametérs 0.001 and the\
over ten trials with errorbars indicating the one standargarameter to\ = 10 > \..;; to target equalized SIR values
deviation around the mean. Each experiment lasted on thenongst aerial vehicles. The aerial vehicles shown in blue
order of one minute. have initial positions at a depot in the top right and bottom

We demonstrate the adaptive capabilities of the controlléeft corners. Green circles denote the communication sadiu
by disabling one of the aerial vehicles and relocating thief the farthest sensors, sensors 1 and 6, to demonstrate that
aerial vehicle to a fixed position on the ground. As showierial vehicles are initialized out of communication range
in Figure 4, the remaining aerial vehicles re-adjust theiwith other sensors and aerial vehicles in the team. The
equilibrium position to compensate for this change in theesulting agent trajectories and cost function demoresrat

system. Figure 4 non-smooth transitions for the points where agents entdr ea
others communication radius as shown in Figure 6.
B. Hardware-in-the-Loop Simulation V. CONCLUSION

We tested our controller on a total of 7 ARM micro- This paper presents the formulation of a distributed con-
controllers communicating wirelessly via xBee-XSC wisse troller to optimize signal-link quality amongst a team of ai
modules. The tests were conducted on four ground vehiclemd ground vehicles, where the ground vehicles are perform-
and three aerial communication vehicles with control paraning a collaborative task independent of the aerial vehjcles
etersA = 1 > Aqir andé = 0.001. Figure 5 shows the and the task of the air vehicles is to position themselves to
minimization of the cost and Figure the trajectories of th@ptimize signal-quality amongst all vehicles in the netor
aerial vehiles with final equilibrium positions marked agébl We control the aerial vehicles via gradient descent on a
circles. cost function comprised of a continuous, physically-based
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Fig. 5. Position data and cost function for hardware-irdtdmp simulation
where aerial vehicle trajectories are shown as blue lines @mnverged
positions as blue dots. The ground vehicles are plotted dsgeares in

this figure.

measure of signal quality, the Signal-to-InterferenceidRa
We assume that agents are only in communication within

Fig.
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6. Matlab simulation results of converged positions qosition

trajectories for 8 aerial vehicles and 8 ground vehicleshwibn-smooth
cost function H. Initial aerial vehicle positions are shoas blue circles,
converged positions are shown as filled blue circles, andctaries are
shown as a blue line in Figure 6(a). Communication radius esfoss 1
and 6 shown in green demonstrate that not all agents are imoaination
t initially. Trajectories as well as cost function show nenemth transitions

a radiusR and our provably convergent controller allows

for neighbors to enter and exit each other’s communicatiorfﬁ] S-K. Yun and D. Rus

at the points where agents enter each others communicatighborhood.

“Optimal distributed planning of Hiwobot

neighborhood in a nonsmooth manner. We demonstrate our placement on a 3d truss,” imtelligent Robots and Systems,Proc of
controller in hardware experiments using AscTech quadrrot

vehicles, in hardware-in-the-loop simulations, and in MAT

LAB simulations, demonstrating the positioning of the akri

vehicles to minimize the cost functidi and improve signal-

(8]

quality amongst all communication links in the ground/air

robot team.

Acknowledgements

El

The authors would like to thank Wil Selby and Lauren Whitd10]

for their help with hardware experiments.

REFERENCES

[1] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff, “Nasawarm
missions: the challenge of building autonomous softwark Profes-

sional vol. 6, pp. 47-52, 2004.
[2]

azine,|[EEE vol. 28, pp. 36—-73, 2008.
[4]

P. Gupta and P. R. Kumar, “The capacity of wireless nelew$r1999.
[3] J. Cortes, “Discontinuous dynamical systemSgntrol Systems Mag-

M. Pavone, E. Frazzoli, and F. Bullo, “Distributed padis for equi-

table partioning: Theory and applications,” ecision and Control,

IEEE International Conference ¢r2008.
(5]

E. Frazzoli and F. Bullo, “Decentralized algorithms fahicle routing

in a stochastic time-varying environment,” Decision and Control,

IEEE International Conference ¢r2004.

[11]

[12]

[13]

[14]

IEEE International Conference ¢r2007.

7] M. Schwager, B. Julian, and D. Rus, “Optimal coverage rfarltiple

hovering robots with downward-facing cameras,” Robotics and
Automation,Proc of International Conference, @009.

J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Cogeraontrol
for mobile sensing networks,” itEEE Transactions of Robotics and
Automation 2004.

N. Ayanian, V. Kumar, and D. Koditschek, “Synthesis ofntmllers
to create, maintain, and reconfigure robot formations witnmuni-
cation constraints,” intelligent Robotic Systems, IEEE International
Conference on2009.

E. Stump, A. Jadbabaie, and V. Kumar, “Connectivity mgement in
mobile robot teams,” ilRobotics and Automation, IEEE International
Conference on2008, pp. 1525-1530.

O. Burdakov, P. Doherty, K. Holmberg, J. Kvarnstromdd R. Ols-
son, “Positioning unmanned aerial vehicles as commupicatlays
for surveillance tasks,” irRobotics Science and Systems, Conference
on, 2009.

E. W. Frew, “Information-theoretic integration of s#ng and commu-
nication for active robot networksi¥obile Networks and Applications
vol. 14, pp. 267—280, 2009.

N. Michael, M. Zavlanos, V. Kumar, and G. Pappas, “Maining
connectivity in mobile robot networks,” iExperimental Roboti¢cser.
Springer Tracts in Advanced Robotics. Springer Berlindd#ierg,
2009, vol. 54, pp. 117-126.

A. Cornejo, R. Ley-Wild, F. Kuhn, and N. Lynch, “Keepingobile
robot swarms connected,” MIT-CSAIL, Tech. Rep., June 2009.



