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Abstract— We develop a distributed controller to position
a team of aerial vehicles in a configuration that optimizes
communication-link quality, to support a team of ground
vehicles performing a collaborative task. We propose a gradient-
based control approach where agents’ positions locally minimize
a physically motivated cost function. The contributions ofthis
paper are threefold. We formulate of a cost function that
incorporates a continuous, physical model of signal quality,
SIR. We develop a non-smooth gradient-based controller that
positions aerial vehicles to acheive optimized signal quality
amongst all vehicles in the system. This controller is provably
convergent while allowing for non-differentiability due to agents
moving in or out of communication with one another. Lastly, we
guarantee that given certain initial conditions or certain values
of the control parameters, aerial vehicles will never disconnect
the connectivity graph. We demonstrate our controller on
hardware experiments using AscTec Hummingbird quadrotors
and provide aggregate results over 10 trials. We also provide
hardware-in-the-loop and MATALB simulation results, which
demonstrate positioning of the aerial vehicles to minimize
the cost function H and improve signal-quality amongst all
communication links in the ground/air robot team.

I. I NTRODUCTION

Distributed control of groups of robots working collabo-
ratively to acheive a task has been the focus of many recent
research efforts. These systems are particularly interesting
because of their inherent robustness to failures, and because
of their potential to solve a large range of interesting prob-
lems such as the exploration of an environment, search and
rescue tasks, collaborative construction, and the modeling
of biological systems. However, many applications of dis-
tributed systems require that agents work at large distances
from one another, or in noisy environments, where communi-
cation quality can degrade or be lost altogether. The National
Aeronautics and Space Administration (NASA) has recently
focused attention on swarm-based missions where hundreds
or even thousands of intelligent spacecraft will work in teams
to achieve collaborative tasks in space exploration [1]. The
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case of exploration in an unknown environment with ambient
noise exemplifies the need for communication networks that
can be optimized adaptively. We propose a nonsmooth,
gradient-based approach to positioning a group of aerial
vehicles in a configuration that optimizes communication-
link quality amongst a team of ground vehicles performing
an independent, collaborative task. We acheive this objective
via careful design of an appropriate cost function that is then
minimized by the placement of the aerial vehicles.

A common approach to distributed minimization of a cost
function is to design a gradient-based controller where agents
follow a distributed gradient descent on that cost function.
We design a cost function that incorportates the Signal-To-
Interference Ratio (SIR) from the communication literature,
which is a physically-based, continuous measure of link
quality between any two communicating agents [2]. Local
minima of our cost function achieve a tradeoff between max-
imizing the SIR for any single link, and equalizing the com-
munication capability, also SIR, over all links in the graph.
We model signal strength between two agents that degrades
with distance and drops non-smoothly to zero outside of the
communication radiusR. The non-differentiability due to
agents entering or leaving the communication radius of one
another necessitates the use of results from the nonsmooth
stability analysis literature [3] to prove convergence to local
minima of the cost function. Furthermore, for certain initial
conditions and controller parameter values, we prove that
aerial vehicles will never move in such a way so as to
disconnect the communication graph.

We implement our controller on a team of AscTec Hum-
mingbird flying quadrotor robots providing network coverage
for ground vehicles, using xBee-PRO modules for wireless
communication. We present aggregate results of ten hardware
experiment trials, demonstrating positioning of a team of
three quadrotor aerial vehicles to provide optimized com-
munication for a group of three ground vehicles. We also
present the results of hardware-in-the-loop simulations for
up to three aerial vehicles and four ground vehicles, and
MATLAB simulation results for up to eight aerial vehicles
and eight ground vehicles. Our MATLAB simulations also
show that we can adjust the behavior of the aerial vehicles to
optimize SIR values over individual links, or an equalization
of SIR values over all links in the communication graph, by
adjusting a design parameterλ in the cost functionH .
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Fig. 1. These figures show the initial and converged configurations for two aerial vehicles and three ground sensors. Figure 1(c) demonstrates the new
equilibrium acheived when one flier is re-assigned to a ground station.

A. Related Work

The development of distributed control of groups of robots
working collaboratively to achieve a task has been a research
focus in broad ranging fields including dynamic routing
problems [4], [5], collaborative construction tasks [6], mod-
eling of biological systems, and coverage [7], [8]. In many
of these applications communication across the network
is an important and challenging problem. The paper [9]
concerns formation control of agents under communication
constraints. Other work concerns using a communication
tether to link a ground, or base station, to an exploring agent
[10], [11]. The paper [12] addresses the communication
problem by integrating information theoretic measures into
the objective function and demonstrates this approach on a
chain configuration of mobile robots.

A second challenge we address in this paper is to ensure
that aerial vehicles will never move to disconnect the com-
munication graph. This is a difficult problem in a distributed
system because each agent’s controller only accounts for
local information and the connectivity status is a global
property of that graph. Other research efforts have focusedat-
tention solely on the problem of maintaining connectivity for
distributed systems [13], [10], [14]. Many of these works use
distributed algorithmic methods of checking the connectivity
of the graph via gossip algorithms, local minimum spanning
trees, or other iterative approaches. Our approach allows for
a continuous method of connectivity maintenence using local
information at the expense of a more conservative controller.
Less conservative approaches to this problem could involvea
combination of our distributed controller for communication
optimization and an algorithmic check for graph connectivity
such as the work in [14].

This paper is organized as follows: Section II describes
the problem and our approach, Section III provides the
nonsmooth convergence analysis of our controller and proof
of connectivity maintenence, and Section IV presents the ex-
perimental and MATLAB results. We conclude with Section
V.

II. PROBLEM FORMULATION

We are interested in the problem wheren ground vehicles,
performing a collaborative task such as coverage, search, or
exploration of an environment, are required to communicate
over distances greater than their communication radiusR in

order to acheive their assigned task. We propose the use of
a group ofm aerial vehicles to provide a communication
network for the ground vehicles, where the aerial robots fol-
low a distributed control law and are placed at locations that
optimize communication link quality amongst all vehicles
according to a specific costH . We assume that 1)m is large
enough to provide a connected network amongst ground ve-
hicles, 2) that communication only exists amongst neighbors
within a distance radiusR where signal strength is modeled
by fij described later in this section, and that 3) the ground
vehicle dynamics are zero as necessary for the mathematical
proof, although in the practical setting we may allow ground
vehicles to move given that their velocities are much smaller
than those of the aerial vehicles. We note that assumption
3 is common for problems using Lyapunov-type proofs of
stability. Due to the distributed nature of our problem, all
agents have access only to local information and thus will
be unaware of disconnected subclusters. Therefore we must
also assume that the communication network composed of
both air and ground vehicles is initially in a connected state,
although our controller is robust to changes in the network
including agents arriving or exiting. Our hardware results
demonstrated in Figure 4 include such a scenario, where
an aerial vehicle is disabled and the remaining aerial vehicle
positions themselves to compensate for the loss of the aerial
vehicle.

We aim to ensure connectivity of the graph in a continuous
fashion by either placing a requirement that the initial
conditions of the system are below some critical cost, or by
adjusting a design parameterλ in our cost function to ensure
that aerial vehicles will never break existing connections.

Aerial vehicles are controlled via a gradient descent
method, where we allow for a nonsmooth cost function that
is non-differentiable at the points where agents come in and
out of communication radius of each other. Due to the local
non-differentiability of the cost function, we must instead
use the generalized gradient of the cost function which we
denote∂H

∂xi
throughout. We find the direction of descent for

the resulting nonsmooth gradient vector field such that the
controller takes the form

ẋi = −Ln(∂H)(xi). (1)

WhereLn(∂H)(xi) : R
d → R

d is the generalized gradient
vector field, and−Ln(∂H)(xi) is a direction of descent of



H at xi ∈ R
d [3]. In Section III we find the generalized

gradient vector field of the cost function and show that the
resulting positions of the aerial vehicles converge to critical
points of this cost function.

We design our cost function to incorporate a physically-
based, continuous, measure of signal quality called the
Signal-to-Intereference Ratio (SIR) [2]. The SIR value of
the link i-j improves with increasing communication strength
between agentsi and j and decreases with increasing envi-
ronmental noiseNi and interfering communication amongst
i’s other neighbors as seen from the definition of SIR:

SIRij =
fij

Ni +
∑

k∈Ni\j
fik

(2)

WhereNi\j is the set of neighbors ofi not including j.
The communication strength over linki-j is denotedfij . We
choose an example model for the signal strength that drops
off proportional todij

−α, but we emphasize that other, more
problem specific models for signal strength can be used with
our controller so long as this function is locally Lipschitzand
regular and models no communication outside of the radius
R. These properties are important for the analysis of our
controller but we defer this discussion to section III. We
definefij as

fij =

{

P0

dα
ij+1 − C , dij ≤ R

0 , dij ≥ R
(3)

whereC = P0

Rα is a constant to ensure continuity atdij = R,
and we definedij = ‖i − j‖. Thus the communication
strength model reaches a maximum value ofP0

dα
ij+1 − C

at dij = 0 and drops off byα as dij > 0 with a non-
smooth transition to zero atdij = R as seen in Figure 2.
This non-smooth transition is necessary to model loss of
communication between two agents at a distance larger than
R from each other. Finally, we present our cost functionH .

H =
∑

i

∑

j 6=i

−SIRij +
λ

SIRij + δ
(4)

Where the termδ ∈ (0, 1] is included to ensure that the cost
function H is continuous at the point where agents become
disconnected and the value ofSIRij = 0. A smallerδ value
has the effect of putting more weight on the second term of
the cost function. It is evident that the cost function is global
and thus uses position information for all agents. However,
as shown in equation (8) the control for each agent is local,
as all non-neighbor information drops out in the derivative.
Figure 6 shows optimization of a non-smooth H as agents
enter the communication neighborhoods of others.

Minimization of this cost function corresponds to a com-
promise of two competing goals. The first term in the cost
function favors increased SIR over all communication links
in the graph while the second term favors equal SIR over
each individual link, which can be thought of as equal re-
source allocation where SIR measures communication ability

Fig. 2. Plot offij .

of each link. The design parameterλ is used to adjust the
weighting of the first term versus the second term in the cost
function. A higher weighting on the second term corresponds
to agents seeking to equalize their SIR values amongst all of
their neighbors whereas a higher weighting on the first term
will result in agents greedily improving individual SIR links.
In Section III we prove that there exists a critical value of
λ, λcr, that prevents agents from disconnecting from existing
neighbors and demonstrate this range of behaviors for the
controller in Figure 3.

Because the cost functionH is non-smooth due to the non-
differentiability of fij at dij = R, our controller requires a
non-smooth stability analysis as described in the next section.

III. N ON-SMOOTH ANALYSIS

In this section of the paper we present the stability analysis
of the controller presented in (1). We also describe the
sufficient conditions to ensure connectivity preservationfor
the communication graph.

A. Non-Smooth Analysis of Controller

The cost functionH presented in Section II is non-
smooth at the point where agents move in and out of the
communication radiusR of each other. This is reflected as
a non-smooth transition to zero in the functionfij at the
point dij = R. As a result, the derivative does not exist at
this point and we must instead find the generalized gradient
and generalized gradient vector field of our cost function in
order to build the appropriate controller.

1) Generalized Gradient and the Generalized Gradient
Vector Field: Following the theory of discontinuous dynam-
ical systems, due to the local non-differentiability ofH , the
controller in (1) in fact uses thegeneralized gradient∂H

∂xi
.

The generalized gradient of a functionf at a point of non-
differentiability, x, is presented in [3], as the convex hull
of the all the possible limits of the gradient at neighboring
points where the gradient is defined. More precisely:

∂H

∂x
= co {limzi→z∇H(zi) ∀zi : zi → z, zi /∈ ΩH} . (5)



where co denotes convex hull,H : R
d → R is a locally

Lipschitz function, andΩH ⊂ R
d denotes the set of points

whereH fails to be differentiable. Moreover, thegeneralized
gradient vector field, Ln(∂H

∂x
) : R

d → R
d, is defined in

[3] where Ln : B(Rd) → B(Rd) is a set-valued map that
associates to each subsetS of R

d the set of least-norm
elements of its closurēS. Most importantly,−Ln(∂H

∂x
) is

a direction of descent ofH at x ∈ R
d [3]. Finding the

generalized gradient for an arbitrary nonsmooth function
can be a daunting task, however for our case, because
the function fij is smooth everywhere except atR, the
generalized gradient is equivalent to the normal gradient at
all points outside ofR, where atR it takes the value zero.
The generalized gradient vector field offij for our problem
is:

Ln[
∂fij

∂xi

] =
{

{−αP (xi−xj)‖xi−xj‖
α−2

(‖xi−xj‖
α+1)2 } , dij < R

{0} , dij ≥ R

(6)

Knowing the generalized vector field forfij is sufficient for
finding the generalized vector field of the cost functionH .
This relies on the fact thatfij is Lipschitz and regular. A
function is said to be locally Lipschitz atx ∈ R

d if there
exist a Lx and ε ∈ (0,∞) such that‖f(y) − f(y′)‖ ≤
Lx ‖y − y′‖ for all y, y′ ∈ B(x, ε) whereB(x, ε) is a ball
centered atx of radius ε. A function is said to be regular
when its right directional derivativef ′(x; v) is equal to its
generalized directional derivativef0(x; v), [3], where:

f0(x; v) = lim
h→0+

sup
y→x

f(y + hv) − f(y)

h
(7)

The proof offij Lipschitz and regular, as well as the final
form of the controller using the generalized vector field of
H is presented in the next subsection.

2) Stability of Controller: We present our main stability
result as Proposition 1 but we first present supporting results
from the nonsmooth analysis literature. The first results are
the Sum RuleandQuotient Rulefor algebraic operations on
nonsmooth functions summarized in [3]. These results are
important for conserving Lipschitz and regular properties
of nonsmooth functions and for finding the generalized
gradient of a function that is an algebraic composition of
such functions.

Sum Rule: If f1,f2:Rd → R are locally Lipschitz and regular
at x ∈ R

d and s1, s2 ∈ R, then the functions1f1 + s2f2

is locally Lipschitz and regular atx and the generalized
gradient∂(s1f1 + s2f2)(x) = s1∂f1 + s2∂f2.

Quotient Rule: If f1,f2: R
d → R are locally Lipschitz and

regular atx ∈ R
d and s1, s2 ∈ R, then the functionf1/f2

is locally Lipschitz and regular atx and the generalized

gradient∂(f1/f2)(x) = (1/f2
2 (x))(f2∂f1 − f1∂f2).

We combine the resultsTheorem 1andTheorem 2of Jorge
Cortes’ Discontinuous Dynamical Systemsto produce a
result similar to Proposition 11 of the same work. We state
this result here as Lemma 1.

Lemma 1:Let H : R
d → R be locally Lipschitz and

regular. Then, the strict minimizers ofH are strongly
stable equilibria of the nonsmooth gradient flow ofH .
Furthermore, if there exists a compact and strongly invariant
set for the nonsmooth dynamics in (1), then the solutions
of the nonsmooth gradient flow asymptotically converge to
the set of critical points ofH [3].

We are now ready to state and prove our theorem for
stability and convergence properties of our controller in (1).

Theorem 1:Aerial vehicles following the direction
of descent of the generalized gradient ofH such that
ẋi(t) = −Ln( ∂H

∂xi
) will asymptotically converge to the

critical points ofH where the strongly stable critical points
are local minima ofH .

Proof: The proof of this theorem follows readily from
Lemma 1, using the fact thatH is locally Lipschitz and
regular, and that there exists a compact and strongly invariant
set for (1). The maximum of a finite set of continuously
differentiable functions is a locally Lipschitz and regular
function [3]. Thus the functionfij is regular because it
can be written asfij = max{ P0

dα
ij+1 − C, 0} where both

f(dij) = P0

dα
ij+1 − C and f(dij) = 0 are continuously

differentiable functions and thusfij is a locally Lipschitz
and regular function. Combining equations (3) and (2), it is
clear thatH ,from (4), is an algebraic composition of signal
strength functions. Since the signal-strength functionfij is
Lipschitz and regular, by applying theSum RuleandQuotient
Rule it follows that H is both Lipschitz and Regular. Lastly,
we show that there exists a compact and strongly invariant
set for the dynamical system in (1). The generalized gradient
∂H
∂xi

for agenti goes to zero when agenti is outside of the
communication radiusR for all otherN −1 agents and thus
we define the set,M, to be the set of points for which the
generalized gradient is non-zero. LetM ⊆ R

d be the set
of all points inside the radius2R(N − 1) from the origin
where, for the case of one ground robotg, we placeg at the
origin. By definition this set is both closed and bounded in a
ball B(0, 2R(N − 1)) and is thus compact. This generalizes
readily to the case of more than one ground robot if we find
the union of all such sets. Furthermore, a solution to (1)
with any initial conditionx0 ∈ M remains inM because
∂H
∂xi

(p) = 0 ∀p /∈ M and soM is a strongly invariant set.

Using the Product Rule and the Sum Rule, and the fact that
fij is Lipschitz and regular, we now present the final form
of our controller from (1).



ẋi = −Ln[
∂H

∂xi

]

=

N
∑

i=1

N
∑

j=1

−
∂SIRij

∂xi

(1 + λ(SIRij + δ)−2). (8)

Where ∂fij

∂xi
was defined above in (6) and∂SIRij

∂xi
is

∂SIRij

∂xi

=

∂fij

∂xi

Ni +
∑

k∈Ni\j fik

− fij

∂Ni

∂xi
+

∑

k∈Ni\j
∂fik

∂xi

(Ni +
∑

k∈Ni\j fik)−2
(9)

B. Connectivity Maintenence

We use the fact that the aerial vehicles are following a
gradient descent on the cost functionH to identify initial
conditions that prevent agents from moving to disconnect
the communication graph. Because of the distributed nature
of our controller, we do not employ any global checks on
graph connectivity and thus require that the communication
graph is initially connected. We present two approaches
to maintaining graph connectivity. The first approach
identifies the minimum cost of a disconnected network
and requires that the initial conditions of any network
are below this value. The second approach is to find a
critical value of λ in (4) such that aerial vehicles will
never move outside of a radiusR from their neighbors
and thus will remain connected. The main difference
between these two approaches is that the first approach is
a check on initial conditions to ensure that connectivity
is maintained, while the second approach is a design
perspective where a value of the parameterλ is chosen as a
function of other parameters in (4) to prevent disconnection.

Theorem 2:Given that the network begins in a connected
state, the aerial vehicles will not move in such a way
to disconnect the graph under either of the two following
conditions:

1) The initial cost of the systemH begins below the
minimum cost of a disconnected graphHdmin.

2) The design parameter,λ, in (4) takes a value
λ ≥ λcrit where λcrit is the value at which the dot
product ∂H

∂xi

T
(xi − xj) = 0 for the pair i-j where

d∗ij = max ‖xi − xj‖ s.t. d∗ij < R .

Proof: We identify the minimum cost of a disconnected
graph that we callHdmin. Because our controller requires that
agents will move to decrease the cost,H , if the initial cost
of the systemH0 < Hdmin then the network will remain
connected. For the second part of the theorem we identify
a value of the parameterλ such that an agent will never
disconnect from its neighbors in the worst-case scenario.
Namely, we ensure that the dot product∂H

∂xi

T
(xi − xj) =

0 in the limit as dij → R so that agenti’s velocity
component in the direction away fromj is zero and thus

will never disconnect an existing connection. This is depicted
graphically in Figure 3.

1) Minimum cost of a Disconnected Network:The cost
of disconnecting an edge in the communication graph, or
equally, the cost of a missing connection in the communica-
tion graph is given by:

Hij |dij=R =
λ

δ
(10)

To find the minimum cost of a disconnected graph, we
find the minimum number of missing connections for a
disconnected graph. If we look at the case of two discon-
nected subgraphs, the number of elements in each subgraph
is s and N − s respectively, whereN is the total number
of elements. The functionc(s) = s(N − s) denotes the
number of missing connections between the two subgraphs
(we assume subgraphs are fully connected). Minimizingc(s)
w.r.t. k yields s = 1, meaning that the minimum number of
disconnections in a graph is acheived whens = 1. All other
cases where the number of subgraphs is less than one is a
subcase of this one. Therefore we find that the minimum
number of edge disconnections for a disconnected graph is
2(N − 1) and the cost for this graph is:

Hd = 2(N − 1)
λ

δ
+

∑

u6=s

∑

w 6=s

−SIRuw + λ(SIRuw + δ)−1

(11)
Furthermore, we are interested in theminimumcost of such
a graph. The theoretical minimum of Equation (4) would be
acheived when the SIR value for all the agents in the second
subgraph is maximal. The maximum theoretical value of the
SIRij from Equation (2) is acheived when the distance of
the two agentsi and j goes to zero and when interfering
communication fromi’s neighbors, or environmental noise
Ni is not accounted for. This maximum is the same maxi-
mum as that offij and ismax{SIRij} = P0−C. Plugging
this into the cost function we find the minimum possibleH
for a disconnected graph:

Hdmin =2(N − 1)
λ

δ
−

(N − 1)(N − 2)
(

(P0 − C) − λ((P0 − C) + δ)−1
)

(12)

Therefore we conclude that if the initial configuration has
a costHinitial < Hdmin then the aerial vehicles will remain
connected for all time.

2) Finding Critical Value ofλ to Ensure Connectivity:We
find theλ for which two agents that are currently neighbors,
will not move a distance larger thanR from each other.
The intuition behind this criticalλ value is the observation
that as the distance between two agentsi-j approaches the
communication radiusR, λ can be chosen such that the
generalized gradient∂H

∂xi
will have a zero component in

the direction pointing away fromj, and thus the agenti
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Fig. 3. This plot shows the force felt by a communication vehicle in the presence of two ground (sensor) agents, S1 and S2. It demonstrates the effect
of the design parameterλ on the communication vehicle gradient field where connectivity is maintained forλ ≥ λCrit. Figures a through c show how the
controller exhibits greedy SIR-maximizing behavior for small λ values and an increasingly symmetric configuration demonstrating a balanced SIR over all
links for largerλ values.

will never move further than the distanceR away fromj,
∀j ∈ Ni. This corresponds to theλ that forces

−
∂H

∂xi

T

(xi − xj) = 0 (13)

Where the vector(xi − xj) points from j to i and j is a
neighbor at a distance approachingR from i. We expand
Equation (13):

−
(∂Hij

∂xi

+
∂Hji

∂xi

+
∑

{u,w}6={i,j},{j,i}

∂Huw

∂xi

)T

∗ (xi − xj) = 0 (14)

Where

∂Huw

∂xi

= −
∂SIRuw

∂xi

(1 + λ(SIRuw + δ)−2) (15)

As seen in Equation (14) and (15), the gradient-based
controller for agenti is a combination of the gradients of
the SIR values betweeni andk, ∀k ∈ Ni, weighted by the
inverse of the value of the SIR for that pairxi-xk. This
weighting is directly influenced byλ, but goes to zero when
λ = 0. Therefore, it is intuitive that a largerλ value will
amplify the effect of the valueSIRuw → 0 in Eq (15),
and thus the contribution of the gradient oni from the agent
whose distance is approachingR will dominate for larger
values ofλ. Solving forλ from Equation (14), we find:

λ =
−

∑ N
u

∑N
w

∂SIRuw
∂xi

T
(xi−xj)

∑

N
u

∑

N
w (SIRuw+δ)−2 ∂SIRuw

∂xi

T
(xi−xj)

(16)

As the distancedij → R, we note that:

∂SIRij

∂xi

T

(xi − xj) →

αP0(R
α + 1)−2Rα−2(Ni +

∑

k∈Ni

fik)−1R2. (17)

and

SIRij = SIRji →
1

δ
. (18)

To find λcrit we must analyze the upper bound to the
equation (16). This corresponds to finding the case where
the link i-j is most easily disconnected. From the Equation
(14) we see that the upper bound is when the gradient dot
product∂Huw

∂xi

T
(xi−xj) is maximized, or equivalently, when

all agentsxk 6= xj have a maximum value of the gradient
∂Huw

∂xi
in the direction exactly opposite to the vector(xi−xj).

If we ignore agent interference in the Signal-to-Interference
Ratio to get a upper bound onHuw, this is the case where
all agents not includingj are co-located at a point that is
opposite of the directioni-j with respect toi so that the
vector exactly opposite to(xi − xj) is (xw − xi). We place
all N − 2 agents at a distanceR − γ from i, where

γ = arg max
γ

∂Hwi

∂xi

T

(xw − xi). (19)

Thus the smallest value of lambda for which we are guaran-
teed to preserve connectivity is:

λcrit = −
(

−
αPRα

(Rα + 1)2(Ni + (N − 2)P )
−

αPRα

(Rα + 1)−2Nj

+
∑

w

N ∂SIRiw

∂xi

T

(xi − xj) +
∂SIRwi

∂xi

T

(xi − xj)
)

∗
(

2(
1

δ
)2 +

∑

w

N
(SIRiw + δ)−2 ∂SIRiw

∂xi

T

(xi − xj)

+ (SIRwi + δ)−2 ∂SIRwi

∂xi

T

(xi − xj)
)−1

(20)

Placing all neighborsk, not includingj, of i at a distance
(R−γ) from i, and using the upper bound on SIR by ignoring
all third party neighbor interference in the SIR terms except
interference fromj, we find the following expressions which
can be plugged into the above equation to findλcrit:

∂SIRiw

∂xi

T

(xi − xj) = −
aiw

Ni

(R − γ)R−

P0

(R−γ)α − C

N2
i

(
∂Ni

∂xi

T

(xi − xj) + aijR
2) (21)



and

∂SIRwi

∂xi

T

(xi − xj) = −
awi

Nw

(R − γ)R (22)

SIRiw = (
P0

(R − γ)α + 1
− C)(Ni)

−1 (23)

SIRwi = (
P0

(R − γ)α + 1
− C)(Nw)−1 (24)

aiw = awi = αP0((R − γ)α + 1)−2(R − γ)α−2 (25)

Because we have found the minimum value ofλ for which
− ∂H

∂xi

T
(xi − xj) = 0, ∀j, we have shown that if we choose

λ ≥ λcrit, agentxi will never move out of the ball of radius
R centered atxj .

IV. RESULTS

In this section we present the results of implementing our
controller on a quadrotor hardware testbed, hardware-in-the-
loop simulations, and MATLAB simulations.

A. Hardware Implementation

We tested our controller on a group of three aerial vehicles
which are AscTec Hummingbird flying quad-rotor robots
each with an ARM micro-processor and 2.4 GHz xBee mod-
ules for wireless communication, and three ground vehicles.
We conducted the experiments in a room equipped with a
Vicon motion capture system where position information was
broadcasted wirelessly to each robot and all computation
was performed onboard each of the robots in real time. For
our hardware experiments we set the controller parameters
λ = 1 > λcrit and δ = 0.001, and the communication
parameterα = 2. We demonstrate that the aerial vehicles
acheive a configuration that locally minimizes the costH .
Figure 4 shows minimization of the cost functionH averaged
over ten trials with errorbars indicating the one standard
deviation around the mean. Each experiment lasted on the
order of one minute.

We demonstrate the adaptive capabilities of the controller
by disabling one of the aerial vehicles and relocating this
aerial vehicle to a fixed position on the ground. As shown
in Figure 4, the remaining aerial vehicles re-adjust their
equilibrium position to compensate for this change in the
system. Figure 4

B. Hardware-in-the-Loop Simulation

We tested our controller on a total of 7 ARM micro-
controllers communicating wirelessly via xBee-XSC wireless
modules. The tests were conducted on four ground vehicles,
and three aerial communication vehicles with control param-
etersλ = 1 > λcrit and δ = 0.001. Figure 5 shows the
minimization of the cost and Figure the trajectories of the
aerial vehiles with final equilibrium positions marked as blue
circles.
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Fig. 4. Position trajectories and aggregate cost function for three fliers
(shown as blue solid line in Fig 6(a) ) with flier equilibrium positions
marked as blue squares and ground vehicle positions marked as red squares.
After reaching equilibrium one of the fliers is deactivated and moved to
the side while the remaining fliers find a new equilibrium position (post-
deactivation trajectories shown in dotted magenta line).

C. MATLAB Simulation

We test a configuration with 16 total vehicles, where 8 are
ground sensors and the remaining 8 are aerial communication
vehicles. We set the control parametersδ = 0.001 and theλ
parameter toλ = 10 > λcrit to target equalized SIR values
amongst aerial vehicles. The aerial vehicles shown in blue
have initial positions at a depot in the top right and bottom
left corners. Green circles denote the communication radius
of the farthest sensors, sensors 1 and 6, to demonstrate that
aerial vehicles are initialized out of communication range
with other sensors and aerial vehicles in the team. The
resulting agent trajectories and cost function demonstrates
non-smooth transitions for the points where agents enter each
others communication radius as shown in Figure 6.

V. CONCLUSION

This paper presents the formulation of a distributed con-
troller to optimize signal-link quality amongst a team of air
and ground vehicles, where the ground vehicles are perform-
ing a collaborative task independent of the aerial vehicles,
and the task of the air vehicles is to position themselves to
optimize signal-quality amongst all vehicles in the network.
We control the aerial vehicles via gradient descent on a
cost function comprised of a continuous, physically-based
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Fig. 5. Position data and cost function for hardware-in-the-loop simulation
where aerial vehicle trajectories are shown as blue lines and converged
positions as blue dots. The ground vehicles are plotted as red squares in
this figure.

measure of signal quality, the Signal-to-Interference Ratio.
We assume that agents are only in communication within
a radiusR and our provably convergent controller allows
for neighbors to enter and exit each other’s communication
neighborhood in a nonsmooth manner. We demonstrate our
controller in hardware experiments using AscTech quad-rotor
vehicles, in hardware-in-the-loop simulations, and in MAT-
LAB simulations, demonstrating the positioning of the aerial
vehicles to minimize the cost functionH and improve signal-
quality amongst all communication links in the ground/air
robot team.
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