
MIT Open Access Articles

Truly subcubic min-plus product for less
structured matrices, with applications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Williams, VV and Xu, Y. 2020. "Truly subcubic min-plus product for less structured
matrices, with applications." Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms, 2020-January.

Persistent URL: https://hdl.handle.net/1721.1/137947

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137947
http://creativecommons.org/licenses/by-nc-sa/4.0/

ar
X

iv
:1

91
0.

04
91

1v
1

 [
cs

.D
S]

 1
0

O
ct

 2
01

9

Truly Subcubic Min-Plus Product for Less Structured Matrices,

with Applications

Virginia Vassilevska Williams∗and Yinzhan Xu†

Abstract

The All-Pairs Shortest Paths (APSP) problem is one of the most basic problems in computer science.

The fastest known algorithms for APSP in n-node graphs run in n3−o(1) time, and it is a big open

problem whether a truly subcubic, O(n3−ε) for ε > 0 time algorithm exists for APSP. The Min-Plus

product of two n × n matrices is known to be equivalent to APSP, where the optimal running times

of the two problems differ by at most a constant factor. A natural way to approach understanding the

complexity of APSP is thus understanding what structure (if any) is needed to solve Min-Plus product in

truly subcubic time. The goal of this paper is to get truly subcubic algorithms for Min-Plus product for

less structured inputs than what was previously known, and to apply them to versions of APSP and other

problems. The results are as follows:

(1) Our main result is the first truly subcubic algorithm for the Min-Plus product of two n × n
matrices A and B with polylog n bit integer entries, where B has a partitioning into nε × nε blocks (for

any ε > 0) where each block is at most nδ-far (for δ < 3−ω, where 2 ≤ ω < 2.373) in ℓ∞ norm from a

constant rank integer matrix. This result presents the most general case to date of Min-Plus product that

is still solvable in truly subcubic time.

(2) The first application of our main result is a truly subcubic algorithm for APSP in a new type of

geometric graph. Chan’10 solved APSP in truly subcubic time in geometric graphs whose edges have

weights that are a function of the identities of the edge’s end-points. Our result extends Chan’s result

in the case of integer edge weights by allowing the weights to differ from a function of the end-point

identities by at most nδ for small δ.

(3) In a second application we consider a batch version of the range mode problem in which one is

given a sequence of numbers a1, . . . , an and n intervals defining contiguous subsequences, and one is

asked to compute the range mode of each subsequence. Chan et al.’14 showed that any O(n1.5−ε) time

combinatorial algorithm for ε > 0 for this problem can be used to solve Boolean matrix multiplication

combinatorially in truly subcubic time. We give the first O(n1.5−ε) time for ε > 0 algorithm for this

batch range mode problem, showing that the hardness is indeed constrained to combinatorial algorithms.

(4) Our final application is to the Maximum Subarray problem: given an n × n integer matrix, find

the contiguous subarray of maximum entry sum. We show that Maximum Subarray can be solved in

truly subcubic, O(n3−ε) (for ε > 0) time, as long as every entry of the input matrix is no larger than

O(n0.62) in absolute value. This is the first truly subcubic algorithm for an interesting case of Maximum

Subarray. The Maximum Subarray problem with arbitrary integer entries is known to be subcubically

equivalent to APSP, in that a truly subcubic, O(n3−ε) time algorithm for ε > 0 for one problem would

imply a truly subcubic algorithm for the other. Because of this it is believed that Maximum Subarray

does not admit truly subcubic algorithms, without a restriction on the inputs.

We also improve all the known conditional hardness results for the d-dimensional variant of Maxi-

mum Subarray, showing that many of the known algorithms are likely tight.

∗MIT EECS and CSAIL, virgi@mit.edu
†MIT EECS, xyzhan@mit.edu

1

http://arxiv.org/abs/1910.04911v1

1 Introduction

The All-Pairs Shortest Paths (APSP) problem is one of the most basic and well-studied problems in graph

algorithms. Algorithms for APSP have been studied since the 1950s when the Floyd-Warshall algorithm

achieved a running time of O(n3) in n-vertex graphs. Over the next six decades, some improvements over

the cubic running time were developed, culminating in the current fastest n3/2Θ(
√
logn) time algorithm

by Williams [28]. Unfortunately, no truly subcubic, O(n3−ε) time for ε > 0 algorithm is known, and a

hypothesis that such an algorithm does not exist for APSP has become prominent in the field of fine-grained

complexity (see e.g. [25]).

The so called Min-Plus product of matrices A and B, defined as the matrix C with Ci,j = mink(Ai,k +
Bk,j), is known to be asymptotically equivalent to APSP (see e.g. [12]) in the sense that a T (n) time

algorithm for the Min-Plus product of two n× n matrices implies an O(T (n)) time algorithm for APSP in

n-node graphs, and vice versa. Because of this equivalence, research on APSP algorithms typically involves

studying the Min-Plus product directly.

A long line of research on APSP involves studying the Min-Plus product of structured matrices. The

relationship between APSP and Min-Plus product extends to structured instances as well: Min-Plus product

of structured matrices can be viewed as APSP in a structured layered graph with three layers. Conversely,

in the case of graphs with integer weights but also in many other cases, APSP on structured instances is

in truly subcubic time if Min-Plus product of an arbitrary matrix with a structured matrix (i.e. the graph’s

generalized adjacency matrix) is in truly subcubic time1.

Studying structured instances of Min-Plus product/APSP is important for two main reasons:

• As an approach towards truly subcubic APSP: What structure, if any, is needed to solve APSP in truly

subcubic time?

• As an approach to solve other problems faster: APSP is a very versatile problem, and many other im-

portant problems that sometimes, on the face of it, seem to have nothing to do with shortest paths, can

be reduced to APSP. Often, the instances that are produced in these reductions are actually structured,

and one could exploit this structure to get faster algorithms.

In the 1990s, Alon, Galil and Margalit [4] showed that the Min-Plus product of two n × n matrices

of integers in {M, . . . ,M} can be computed in O(Mnω log(Mn)) time, where ω < 2.373 [24, 16] is the

matrix multiplication exponent; thus Min-Plus product is in truly subcubic time, as long as the matrix entries

are small, M < O(n3−ω−ε) for ε > 0. This result is used over and over in shortest paths algorithms. For

instance, it implies that APSP in undirected [20] and directed [31] graphs with small enough integer weights

is in truly subcubic time.

Truly subcubic time algorithms for less and less structured versions of Min-Plus and APSP were de-

veloped over the years, e.g. [4, 30, 10, 23]. The most general structured Min-Plus algorithm to date is

by Bringmann et al. [9]: Min-Plus product of two n × n integer matrices A and B is in truly subcubic

time if A is arbitrary and for all rows (or similarly, columns) of B, any two consecutive entries are close:

|B[i, j] −B[i, j + 1]| ≤ nδ for small enough δ > 0. (B is then called a bounded difference matrix.)

Bringmann et al. showed that their result on bounded difference matrices subsumes all previous results

on truly subcubic Min-Plus product. They also gave several applications of their new algorithm, most no-

1For graphs with integer edge weights, this is true regardless of the structure, as one can always leverage two types of approaches

to APSP: (1) compute the distances on paths that have at most nδ vertices by iterating the Min-Plus product nδ times, and (2)

compute the distances on paths that have at least nδ vertices by random sampling and a SSSP algorithm such as Dijkstra’s, after the

usual removal of negative edge weights using Johnson’s trick and a truly subcubic time SSSP algorithm such as [17].

2

tably for language edit distance and RNA folding, that were not possible with the prior results on structured

Min-Plus product.

Even though it is very powerful, the Bringmann et al. Min-Plus product result is still not general enough

to solve some well-structured Min-Plus instances. We give one simple example. Consider a matrix X such

that for every i, j, |X[i, j] + X[i + 1, j + 1] − X[i + 1, j] − X[i, j + 1]| ≤ 1; let’s call X a bounded

discrete derivative (BDD) matrix. BDD matrices are extremely special, and we won’t be too surprised if

their Min-Plus product can be done in truly subcubic time. A truly subcubic algorithm for Min-Plus product

for BDD matrices would be useful, for instance, for finding a Maximum Subarray of a matrix with small

entries, a well-studied problem with many applications.

Unfortunately, however, BDD matrices are not bounded difference matrices, and the Bringmann et al.

algorithm does not apply to them. Even the general framework devised by Bringmann et al. cannot be used

as is. (We will go into more details in a bit.) The main goal of this paper is to modify Bringmann et al.’s

framework to support less structured matrices, and to apply the new framework to obtain the first substantial

improvements on the complexity of several studied problems.

1.1 Our results

1.1.1 New Subcubic Min-Plus Products.

Our main result is a new algorithm for Min-Plus product for less structured matrices. We begin with

defining the structure needed.

Definition 1.1 (W -approximate rank). For an n × n integer matrix M , its W -approximate rank is defined

as

min
{

rank(X) : X ∈ Z
n×n, |X −M |∞ ≤W

}

.

This W -approximate rank definition resembles the ε-approximate rank definition of Alon et al. [5]. The

difference is that we require the matrix X to be have integer entries.

Let δ > 0 be a constant and let W ≥ 0 be an integer. Consider an n × n integer matrix B with

the following structure. First partition B into nδ × nδ blocks Ba,b (containing the entries Bi,j where i ∈
(anδ, (a + 1)nδ], j ∈ (bnδ, (b + 1)nδ]). We require that every block submatrix Ba,b has W -approximate

rank at most O(1).
Our main result is:

Theorem 1.1. Let δ ∈ (0, 1]. The Min-Plus product of two n × n matrices A and B whose entries are

polylog n bit integers, and B has all its nδ ×nδ blocks of W -approximate rank at most d for 1 ≤ d = O(1)
can be computed in time

Õ
(

n
3− δ

⌊(d+1)/2⌋ +W 1/4n(9+ω)/4
)

.

Notice that the matrix A is arbitrary, as long as its entries do not get too huge, larger than 2ω(polylog n).

We would like arithmetic operations on the matrix entries to take Õ(1) time, so that this entry size is not

much of a restriction. The algorithm can handle larger entries as well. If the entries of A and B are β-bit

integers, the algorithm gets a Õ(β) overhead.

The running time of the algorithm is truly subcubic for any constant d and any constant δ > 0, as long

as W = O(n3−ω−ε) for some ε > 0.

Let us discuss first why Theorem 1.1 subsumes all previous results on truly subcubic structured Min-

Plus product. We only need to show that a bounded differences matrix also has constant W -approximate

rank blocks, as by the discussion in [9], all other known cases of truly subcubic Min-Plus can be reduced

3

to multiplying a bounded differences matrix with an arbitrary integer matrix. Suppose that B is such that

for every i and j, |Bi,j − Bi,j+1| ≤ Q for small Q. Now consider the nδ × nδ sub-blocks Ba,b of B (for

any choice of δ > 0). All columns of Ba,b differ entrywise from the first column Ba,b(1) by at most Qnδ.

Thus, if we consider the rank one matrix that has nδ columns identical to Ba,b(1), we see that Ba,b has

Qnδ-approximate rank one. Hence by Theorem 1.1, we get that for any Q = O(n3−ω−ε) for ε > 0, we can

pick δ = ε/2 and we’ll get a truly subcubic time algorithm to Min-Plus multiply an arbitrary integer matrix

A by B.

Theorem 1.1 is very general and can handle much more than just bounded difference matrices. For

instance, it is not hard to see that the aforementioned BDD matrices have constant W -approximate rank

blocks, but also many other structured instances can be solved using Theorem 1.1, as we will see in our

applications.

To prove Theorem 1.1 we modify the Min-Plus framework of Bringmann et al. [9] and combine it with

a result from computational geometry on halfspace intersection reporting.

We will give a brief overview on how we modify the Bringmann et al. framework. The framework from

[9] for computing the Min-Plus product C of integer matrices A and B consists of Phase 1, Phase 2 and

Phase 3.

Phase 1 computes a matrix C ′ which is close in ℓ∞ norm to the desired output C . This phase is not hard

to perform for the type of matrices we are considering; also, as shown by Bringmann et al., often this Phase

can be avoided by scaling, and the real difficulty is in Phase 2, and especially Phase 3.

Phase 2 iteratively takes random samples of rows of A and columns of B, and repeatedly creates new

matrices Ã and B̃ whose entries are clever linear combinations of entries of A,B, the sampled row and

column, and C ′, so that most entries of the Min-Plus product C of A and B can be easily computed from

the Min-Plus products C̃ of Ã and B̃ in O(n2) time. To perform Phase 2 efficiently, Bringmann et al.

replace any entries of Ã and B̃ that are larger than some M by∞ and use the Õ(Mnω) time algorithm [4]

to perform the Phase 2 Min-Plus products. By removing the large entries, some entries of C will not be

recoverable from the computed Min-Plus products C̃ in the Phase 2 iterations. Bringmann et al. show that

at most a truly subcubic number of sums Ai,k + Bk,j that might be close to the Min-Plus product entries

will be missed in the computation.

Phase 3 strives to recover the parts of the output matrix C that are missed by Phase 2. We know that

at most a truly subcubic number of relevant sums Ai,k + Bk,j need to be considered. If we knew which

triples i, k, j are involved in such sums, then we could finish the Min-Plus product in truly subcubic time

by computing the sums explicitly. However, the main difficulty lies exactly in finding these triples. In

particular, in the case of BDD matrices, there doesn’t seem to be enough structure for one to be able to

recover the remaining relevant triples in Step 3 efficiently.

One of the main insights in this work is that one can offload more work to Phase 2 so that in Phase 3

there is enough structure left to recover the remaining relevant triples efficiently. In particular, instead of

removing the large entries from both Ã and B̃ in Phase 2, we only remove them from Ã. Then intuitively,

Phase 2 does more work, and it turns out that in Phase 3, in truly subcubic time, one can find the remaining

triples that one needs to consider to compute the entire Min-Plus product of A and B, using a halfspace

intersection reporting data structure from computational geometry.

However, now in Phase 2 we need to compute the Min-Plus product of an arbitrary integer matrix with

a matrix with∞ entries and finite entries bounded by M . This type of Min-Plus product is no longer known

to be in Õ(Mnω) time. An Õ(Mn(3+ω)/2) time algorithm follows from prior work (e.g. [30], Lemma 3.3).

We are able to improve the dependence on M , thus allowing for a faster truly subcubic final algorithm for

Theorem 1.1.

4

Theorem 1.2. The (min,+)-product of two n × n integer matrices A and B, where A has entries in

{−M, . . . ,M} ∪ {∞} for some M ≥ 1 and B is arbitrary can be computed in Õ(
√
Mn(3+ω)/2) time.

1.1.2 Applications.

To highlight the power of our new Min-Plus algorithm, we apply Theorem 1.1 to obtain the first im-

provements in the running times for several problems: a new geometric version of APSP, a batch range

mode problem considered by Chan et al. [11] and the Maximum Subarray problem.

Geometric APSP. As we discussed earlier, typically, an algorithm for a structured version of Min-Plus

product implies an algorithm for a structured version of APSP. An almost immediate consequence of The-

orem 1.1 is that APSP for graphs whose generalized adjacency matrix has nδ × nδ blocks of constant

W -approximate rank and whose entries are polylog n bit integers can be solved in truly subcubic time when

δ > 0 and W ≤ O(n3−ω−ε) for some ε > 0.

The proof is fairly standard: iterate the Min-Plus product of Theorem 1.1 L times, where in the ith
iteration B is the generalized adjacency matrix of the graph and A is the matrix computed in the (i− 1)-th
iteration (in the first iteration A = B). Then in the Lth iteration one has computed the shortest paths in the

graph using at most L edges. To handle the paths longer than L one computes SSSP from a random sample

of Õ(n/L) vertices, and L is chosen to balance the running times.

Let us discuss what the graphs that we can handle look like: Define a (W,d, δ)-geometrically weighted

clustered graph, (W,d, δ)-GWC for short as follows. G = (V,E) is (W,d, δ)-GWC if

• V is partitioned into t = n1−δ subsets V1, V2, . . . , Vt of size O(nδ),

• for every i, j ∈ {1, . . . , t}, each v ∈ Vi is assigned a d-dimensional integer vector pi,j(v), and each

u ∈ Vj is assigned a d-dimensional integer vector qi,j(u), and

• for v ∈ Vi, u ∈ Vj , |w(v, u) − pi,j(v)T qi,j(u)| ≤W. In other words, the edge weights in Vi × Vj are

determined by a matrix whose W -approximate rank is at most d.

Notice that (W,d, δ)-GWC graphs can simulate a lot of structure. For instance, imagine that each

vertex j is represented by an integer xj , and the weights are determined by some degree d (for d = O(1))
polynomial function p of xi and xj , up to an error at most W . Then, the weights can be represented (up

to noise at most W in each entry) with inner products of vectors vi and v′j of length d2, where vi[a, b] is

the monomial of p(x′i, x
′
j) corresponding to (x′i)

a · (x′j)b with the corresponding coefficient coming from p,

evaluated at x′i = xi and x′j = 1, and v′j [a, b] is xbj; then we get that vTi v
′
j = p(xi, xj). A similar argument

can be carried over if the xi are O(1) dimensional vectors and p is a polynomial in the entries of xi and xj .

In [10], Chan studied a related version of geometrically weighted APSP where the weights between two

vertices can be arbitrary algebraic functions, instead of just dot products between two vectors or polynomi-

als. We remark that if we replace the geometric data structure that our Theorem 1.1 uses (Theorem 2.1) with

the partition theorem in [2], we can achieve APSP for arbitrary algebraic functions as in [10], as long as

the produced edge weights are integers. Moreover, our algorithm allows the edge weights to disagree with

the function of their endpoints by an additive error, while the algorithm in [10] requires the edge weights

to exactly agree with the function. In other words, in the case of integer edge weights, we obtain a more

powerful geometric APSP algorithm.

Batch Range Mode. Given a sequence a of length n, the range mode query on a range [l, r] asks for the

frequency of the most frequent element in the subsequence between the l-th and r-th element of a. Chan et

al. [11] designed a linear space data structure that answers any range mode query in Õ(
√
n) time. Because

5

the preprocessing step of the data structure is fast, this implies a Õ(n1.5) time algorithm for the batch range

mode problem in which one is given a sequence and n range mode queries to answer in batch.

Chan et al. [11] showed that any combinatorial algorithm for the batch range mode problem running in

O(n1.5−ε) time for ε > 0 would imply an O(n3−δ) time combinatorial algorithm for δ > 0 that computes

the product of two n by n Boolean matrices. This suggests that it might be hard to find such a combinatorial

algorithm for batch range mode, as Boolean matrix multiplication is often conjectured to require n3−o(1)

time using a combinatorial algorithm (see e.g. [25]). This leads to a natural question: if we do not limit

to combinatorial algorithms, what should the complexity of batch range mode be? Prior to this work,

no noncombinatorial n1.5−o(1) lower bounds (even conditional ones), and no O(n1.5−ε) time (for ε > 0)

algorithms were known to exist.

As another application of Theorem 1.1 we obtain a Õ(n1.4854) time algorithm for batch range mode,

giving the first ever O(n1.5−ε) time (for ε > 0) algorithm for the problem. Note that in this application, we

use d = 1 in Theorem 1.1, so each block of matrix B is a bounded difference matrix. Thus Bringmann et

al.’s algorithm suffices to give an O(n1.5−ε) (for ε > 0) time algorithm for batch range mode.

Maximum Subarray. In the Maximum Subarray problem, one is given a real valued square matrix and

is asked to find the contiguous submatrix of maximum entry sum. First studied by Bentley [8], the problem

has many applications, for instance in graphics (see [22]) and in databases [3, 14, 15, 13, 29].

The Maximum Subarray problem can be generalized to arbitrary dimension d: here one is given a d-

dimensional grid (or tensor) with n coordinates in each dimension (i.e. [n]d), each point in the grid has

a real value, and one is asked to return the contiguous subgrid of maximum entry sum. In 1D, Kadane’s

algorithm (presented in [8]) achieves a linear, O(n) running time. Bentley [7] showed how to use Kadane’s

algorithm to solve the 2D variant of the Maximum Subarray problem in O(n3) time; the same approach

gives an O(n2d−1) time algorithm, “Kadane’s algorithm”, for the d dimensional version for all d. Tamaki

et al. [22] and Takaoka [21] showed how to use divide-and-conquer to efficiently reduce the 2D Maximum

Subarray problem on an n× n grid to the Min-Plus product of two n× n matrices. Using the fastest APSP

algorithm to date by Williams [28], one obtains the fastest 2D Maximum Subarray algorithm to date, running

in n3/2Θ(
√
logn) time. This algorithm can be used to give the fastest known running time n2d−1/2Θ(

√
logn)

for the d-dimensional version of the problem as well.

In recent years, fine-grained complexity has yielded conditional lower bounds for Maximum Subarray.

Backurs et al. [6] and Vassilevska W. and Williams [26] showed that an O(n3−ε) time algorithm for 2D

Maximum Subarray for ε > 0 would imply an O(n3−ε′) time algorithm for Min-Plus product (and hence

APSP), for ε′ > 0. Together with the reductions of [22, 21], this implies that the 2D Maximum Subarray

problem is subcubically equivalent to APSP. One of the main hardness hypotheses of fine-grained com-

plexity is that APSP requires n3−o(1) time in graphs with integer weights (in the word RAM model with

O(log n) bit words). Under this hypothesis, the best known algorithms for 2D Maximum Subarray are

essentially optimal, up to no(1) factors, for arbitrary integer matrices.

An intriguing question is whether the 2D Maximum Subarray problem can be solved in truly subcubic,

O(n3−ε) time for ε > 0 when the entries of the input matrix are small integers in absolute value. Such

an algorithm would be very interesting in practice, as the matrix values often represent such small discrete

values.

Due to the equivalence between Min-Plus product and Maximum Subarray and since Min-Plus product

can be solved in truly subcubic time when the matrix entries are small integers, it stands to reason that a truly

subcubic algorithm might exist for the small entry Maximum Subarray problem as well. Unfortunately, the

known reductions from Maximum Subarray to Min-Plus product blow up the matrix entries, so that even if

the maximum subarray entries are in {−1, 0, 1}, the resulting matrices whose Min-Plus product we want to

6

compute might have entries that are quadratic in n. Thus, one cannot simply use the known faster algorithms

for small entry Min-Plus product to speed-up the Maximum Subarray problem with small entries. On the

lower bound end, there doesn’t seem to be a way to take an instance of Min-Plus product with arbitrarily

large entries and to create a maximum subarray instance with small entries. Thus, there is no obvious way

to show that the small entry case is hard.

We show that Theorem 1.1 can be used to obtain a truly subcubic algorithm for 2D Maximum Subarray

with bounded entries.

Examining Tamaki et al. and Takaoka’s reduction of Maximum Subarray to Min-Plus product, it can

be seen that starting with a maximum subarray instance with entries in {−M, . . . ,M}, one obtains n × n
matrices A and B that are BDD as described before:

∀X ∈ {A,B},∀i, j ∈ [n− 1], |X[i, j] +X[i+ 1, j + 1]−X[i, j + 1]−X[i + 1, j]| ≤M.

As BDD matrix Min-Plus product is a special case of Theorem 1.1 we immediately obtain a truly subcubic

time algorithm for Maximum Subarray for matrices with entries bounded in absolute value by O(n0.62).

Conditional lower bounds for d-Dimensional Maximum Subarray. Backurs et al. [6] showed that the

d-Dimensional Maximum Subarray problem requires n3d/2−o(1) time (in the word-RAM model of compu-

tation) under the following popular hardness assumption (see e.g. [25]):

Hypothesis 1 (Max-Weight k-Clique Hypothesis). In the word-RAM model with O(log n) bit words, there

is no O(nk−ε) time algorithm for ε > 0 that can find a k-Clique of maximum weight in a given n-node

graph with edge weights in {−nck, . . . , nck} for large enough constant c.

The fastest known algorithm for d-Dimensional Maximum Subarray runs in n2d−1−o(1) time which is

much higher than the Backurs et al. [6] conditional lower bound. A natural question is thus, is there a faster

algorithm for d > 2, or can the conditional lower bounds be improved?

Our first hardness result is an improvement of the lower bound of Backurs et al., showing that Kadane’s

algorithm for d-Dimensional Maximum Subarray is conditionally tight:

Theorem 1.3. Under the Max-Weight k-Clique Hypothesis, in the word-RAM model with O(log n) bit

words, the d-Dimensional Maximum Subarray problem requires n2d−1−o(1) time.

We were able to show that the 2D Maximum Subarray problem can be solved faster when the matrix

entries are bounded. One might wonder whether such an improvement is possible for d > 2 as well? The

simple reduction from d-Dimensional Maximum Subarray to 2-Dimensional Maximum Subarray, unfortu-

nately blows up the entries, and one cannot use the subcubic algorithm that we developed in a straightforward

way. While an improvement is still possible for larger d, we show under a popular hardness assumption that

at best one would be able to save a factor of n1+o(1) over the runtime of Kadane’s algorithm.

The hardness assumption we use is the ℓ-Uniform Hyperclique assumption used in prior works (see e.g.

[18, 1]):

Hypothesis 2 (ℓ-Uniform k-Hyperclique Hypothesis). Let k > ℓ ≥ 3 be integers. In the word-RAM model

with O(log n) bit words, there is no O(nk−ε) time algorithm for ε > 0 that can find a hyperclique on k
nodes in a given n-node ℓ-uniform hypergraph.

The hypothesis is very believable for a variety of reasons. It is known (see [18]) that the natural extension

of the techniques used to solve k-clique (in graphs) will not solve k-hyperclique in ℓ-uniform hypergraphs

faster than nk. Moreover, there are known reductions from notoriously difficult problems such as Exact

7

Weight k-Clique (a problem harder than Max Weight k-Clique) [1], Max ℓ-SAT and even harder Constrained

Satisfaction Problems (CSPs) [27, 18] to k-hyperclique in ℓ-uniform hypergraphs so that if the hypothesis

is false, then all of these problems have surprisingly improved algorithms.

We prove:

Theorem 1.4. Fix any d ≥ 3. Under the 3-Uniform (2d − 2)-Hyperclique Hypothesis, in the word-RAM

model with O(log n) bit words, the d-Dimensional Maximum Subarray problem on matrices with entries in

{−2O(d), . . . , 2O(d)} requires n2d−2−o(1) time.

That is, for any constant d, solving the problem in matrices with entries bounded by a constant is

n2d−2−o(1)-hard.

2 Preliminaries

We use Õ(f(n)) to denote f(n)polylog n. For a matrix X, we denote by X(i) the ith column of X.

The Min-Plus or (min,+)-product of two n × n matrices A and B is the n × n matrix C = A ⋆ B
with C[i, j] = mink{A[i, k] + B[k, j]}. The All-Pairs Shortest Paths problem (APSP) is given a graph

G = (V,E) with integer edge weights w(·), determine for all u, v ∈ V , the shortest path distance d(u, v)
from u to v.

We let ω be the exponent of square matrix multiplication, i.e. the smallest real number such that n × n
matrices can be multiplied in nω+o(1) time. It is known that 2 ≤ ω < 2.373 [16, 24].

It is known [4] that for any M ≥ 1, the Min-Plus product of two n × n matrices with entries in

{−M, . . . ,M} ∪ {∞} can be computed in time Õ(Mnω).
Our algorithm will use the following efficient data structure for half-space query in R

d for constant d.

Theorem 2.1 ([19]). For any constant d ≥ 2, there exists a data structure that supports

• Given a set P of n points in R
d, preprocess them in Õ(n) time;

• Given a halfspace λ = {x ∈ R
d|vTx ≤ b}, test whether |P ∩ λ| > 0 in Õ(n1−1/⌊d/2⌋) time.

• Given a halfspace λ = {x ∈ R
d|vTx ≤ b}, report all points in P ∩ λ in Õ(n1−1/⌊d/2⌋ + k) time,

where k = |P ∩ λ|.

3 Improvement over Min-Plus Product with One Bounded-Entry Matrix

We slightly improve on the dependence on the entry size for computing the Min-Plus product of an

arbitrary matrix and one matrix with small entries (absolute value smaller than some M ≥ 1). Previously,

the best algorithm for this runs in Õ(Mn(3+ω)/2) time.

Proof of Theorem 1.2. Let Ĉ be an n×n matrix, the output of our algorithm. Initialize all entries in Ĉ to∞.

Let ∆ to be a small polynomial in n that will be determined later. We sort each column j of B, and arrange

the elements in each column into buckets of size ∆, based on the order of the elements. Specifically, the

smallest ∆ elements in column j will be in the first bucket in column j, and the second smallest ∆ elements

will be in the second bucket, etc. We use Pj,ℓ to denote the set of row indices k such that Bk,j is in the

ℓ-th bucket of column j. Let the smallest entry in the ℓ-th bucket be Sj,ℓ and let the largest entry in the ℓ-th
bucket be Lj,ℓ.

8

Next, for every bucket index ℓ ∈ [n/∆], create a matrix Bℓ. For the j-th column, if Lj,ℓ − Sj,ℓ > 2M
(large bucket), we set Bℓ

k,j to ∞ for every k; otherwise Lj,ℓ − Sj,ℓ ≤ 2M (small bucket), and we set

Bℓ
k,j := Bk,j − Sj,ℓ −M for every k ∈ Pj,ℓ, and set Bℓ

k,j to ∞ for every k 6∈ Pj,ℓ. Notice that when

Lj,ℓ−Sj,ℓ ≤ 2M , Bℓ
k,j = Bk,j−Sj,ℓ−M ∈ [−M,M] for any k ∈ Pj,ℓ. Thus, we can compute Cℓ = A⋆Bℓ

in Õ(Mnω) time since entries of both A and Bℓ are in {−M, . . . ,M} ∪ {∞}. We use Cℓ
i,j + Sj,ℓ +M to

update Ĉi,j . Since for every k ∈ Pj,ℓ when Pj,ℓ is a small bucket, Ai,k + Bℓ
k,j + Sj,ℓ +M = Ai,k + Bk,j,

we are essentially using Ai,k + Bk,j to update Ĉi,j for every k ∈ Pj,ℓ, if Pj,ℓ is a small bucket. Thus, after

this part of the algorithm, Ĉi,j = mink∈SB(j){Ai,k + Bk,j}, where SB(j) is the union of indices in small

buckets in column j. This step takes Õ(Mnω+1/∆) time since we compute O(n/∆) instances of Min-Plus

product of two matrices whose entries are in {−M, . . . ,M} ∪ {∞}.
Thus, for each pair (i, j), we only need to calculate mink 6∈SB(j){Ai,k +Bk,j}. In order to compute this,

we first need to find the set of large buckets that contain an index k where Ai,k < ∞. Formally, for each

i, j, we want to find

{ℓ : Pj,ℓ is a “large” bucket, and there exists k ∈ Pj,ℓ such that Ai,k <∞}.

We can do this in n/∆ iterations. In each iteration ℓ, we create a {0,∞}-matrix Ā such that Āi,k = 0 if and

only if Ai,k < ∞. We also create a {0,∞}-matrix B̄ℓ such that B̄ℓ
k,j = 0 if and only if Bk,j belongs to the

ℓ-th bucket in column j. The result C̄ℓ = Ā ⋆ B̄ℓ can be computed in O(nω) time. If C̄ℓ
i,j = 0, then bucket

Pj,ℓ contains an index k such that Ai,k < ∞. This step takes Õ(nω+1/∆) time since we compute O(n/∆)
instances of Min-Plus product with entries in {0,∞}.

Naively, for each pair (i, j), we want to enumerate indices in all large buckets Pj,ℓ that contains an

index k where Ai,k < ∞. However, it is not necessary. Consider three large buckets ℓ1 < ℓ2 < ℓ3 (the

order here means the entries in bucket ℓ1 are smallest, and the entries in bucket ℓ3 are largest). Pick any

k1 ∈ Pj,ℓ1 , k3 ∈ Pj,ℓ3 such that Ai,k1 < ∞ and Ai,k3 < ∞. Note that Ai,k1 + Bk1,j ≤ M + Lj,ℓ1. Since

buckets are ordered, the largest entry in bucket Pj,ℓ1 is at most the smallest entry in bucket Pj,ℓ2 . Thus,

Ai,k1 + Bk1j ≤ M + Sj,ℓ2. Similarly, Ai,k3 + Bk3,j ≥ −M + Sj,ℓ3 ≥ −M + Lj,ℓ2 . Since Pj,ℓ2 is a large

bucket, Lj,ℓ2 − Sj,ℓ2 > 2M , which leads to Ai,k1 + Bk1,j < Ai,k3 + Bk3,j . It means that if we have two

buckets Pj,ℓ1 and Pj,ℓ2 that each contains an index k where Ai,k <∞, all buckets that are larger than them

won’t give a better candidate k. Therefore, for each (i, j), we only need to enumerate the first two large

buckets that contain indices k where Ai,k <∞. Thus, it takes Õ(n2∆) time to cover large buckets.

In total, the running time of the algorithm is Õ(Mn1+ω/∆ + n2∆). Setting ∆ =
√
Mn(ω−1)/2 gives

the claimed Õ(
√
Mn(3+ω)/2) time. �

4 Main Algorithm

Let ∆ be a positive integer that is a small polynomial in n. Assume for simplicity that n is a multiple of

∆. Then we can partition [n] into n/∆ groups by setting I(i′) = {i : i′ −∆ < i ≤ i′} for any i′ divisible

by ∆. For any i′, j′ that are multiples of ∆, we can group all entries Ai,j where i ∈ I(i′), j ∈ I(j′) into a

sub-matrix of size ∆ ×∆, thus partitioning A into sub-matrices of size ∆ ×∆. We can similarly partition

B into sub-matrices of size ∆×∆.

In Theorem 4.1 below we will show that if each of the ∆ ×∆ sub-matrices of B are close in ℓ∞ norm

to an O(1)-rank matrix, then we can compute A ⋆ B in truly sub-cubic time. In other words, we need the

blocks of B to have constant nε-approximate rank for small ε > 0.

9

Theorem 4.1. Let A,B be two given n × n matrices whose entries are polylog n bit integers. Let W be

a nonnegative integer and let d ≥ 1 be an integer with d = O(1). Suppose that for all k′, j′ multiples

of ∆, we can find two d by ∆ integer matrices Xk′,j′ and Yk′,j′ , such that for any (k, j) ∈ I(k′) × I(j′),
∣

∣Bk,j −Xk′,j′(k)
TYk′,j′(j)

∣

∣ ≤W . Then, for any integer ρ ≥ 1, there exists a

Õ(n3 ·∆−1/⌊(d+1)/2⌋ + ρ
√
Wn(3+ω)/2 + n3/ρ)

time algorithm that computes A ⋆ B.

To obtain Theorem 1.1 from Theorem 4.1, we set ρ to ⌈n(3−ω)/4W−1/4⌉ when W ≤ n3−ω; otherwise

we can run the trivial cubic time algorithm for Min-Plus product.

The algorithm starts with the framework behind the Bringmann et al. algorithm [9] that computes

the (min,+)-product of two matrices with bounded differences. However, each of the three steps in the

framework requires a completely different approach due to the less structured nature of matrix B. The

resulting algorithm is a strong generalization of the algorithm of [9].

In the rest of this section, we will use C = A ⋆ B to denote the desired (min,+)-product, and use Ĉ
as the output of our algorithm. The algorithm contains three phases. In the first phase, we will compute a

matrix C̃ , such that every entry of C̃ is an additive approximation of the corresponding entry in the desired

output C . In the second phase, we will compute Ĉ by calculating the (min,+)-product of some small weight

matrices generated by A,B and C̃ using fast matrix multiplication. In the third phase, we will correct all

entries of Ĉ by efficiently enumerating all Aik +Bkj that can possibly improve Ĉij .

4.1 Phase 1: Approximated Min-Plus Product

For each triple (i′, k′, j′) such that all i′, k′, j′ are multiples of ∆, if we can compute an additive approx-

imation C̃i′,k′,j′ of the (min,+)-product AI(i′),I(k′) ⋆ BI(k′),I(j′), then we can, in O(n3/∆) time, compute

C̃i,j = mink′:∆|k′ C̃
i′,k′,j′

i,j where i ∈ I(i′), j ∈ I(j′). We will use the geometric data structure from Theo-

rem 2.1 to approximate AI(i′),I(k′) ⋆ BI(k′),I(j′).

Lemma 4.1. There exists a Õ(∆3−1/⌊(d+1)/2⌋) time algorithm that computes a W -additive approximation

C̃i′,k′,j′ of AI(i′),I(k′) ⋆ BI(k′),I(j′), for any i′, k′, j′ multiples of ∆.

Proof. By the structure of B, for any (k, j) ∈ I(k′)× I(j′), we have

∣

∣Bk,j −Xk′,j′(k)
TYk′,j′(j)

∣

∣ ≤W.

Therefore, if we can accurately compute

C̃i′,k′,j′

i,j = min
k∈I(k′)

{

Ai,k +Xk′,j′(k)
TYk′,j′(j)

}

,

we immediately get a W -additive approximation of AI(i′),I(k′) ⋆ BI(k′),I(j′).

Create a set of (d+ 1)-dimensional points

Pi =

{(

Ai,k

Xk′,j′(k)

)

: k ∈ I(k′)

}

,

and use the data structure in Theorem 2.1 to pre-process this set. Each set has size O(∆), and there are

|I(i′)| = ∆ such sets, so the total pre-processing time is Õ(∆2). For any j ∈ I(j′), we create a (d + 1)-

dimensional vector vj =

(

1
Yk′,j′(j)

)

. We observe that

10

Ai,k +Xk′,j′(k)
TYk′,j′(j) = vTj

(

Ai,k

Xk′,j′(k)

)

,

so C̃i′,k′,j′

i,j = minx∈Pi v
T
j x. In order to compute minx∈Pi v

T
j x for every pair (i, j), we use the emptiness

query of the geometric data structure. We want to find the minimum value of b, so that there exists a point

x ∈ Pi where vTj x ≤ b. This is equivalent to testing whether the half-space λ = {x ∈ R
d+1|vTj x ≤ b}

intersects Pi. Therefore, we can use binary search on the minimum value of b, which will be equal to

C̃i′,k′,j′

i,j .

Each emptiness query takes Õ(∆1−1/⌊(d+1)/2⌋) time, and we need to query O(log(|A|∞ + |B|∞)) time

for each pair (i, j) ∈ I(i′)× I(j′), so in total it takes Õ(∆3−1/⌊(d+1)/2⌋) time to compute C̃i′,k′,j′. �

Lemma 4.2. There exists a Õ(n3·∆−1/⌊(d+1)/2⌋) time algorithm that computes a W -additive approximation

C̃ of A ⋆ B.

Proof. For every triple (i′, k′, j′) where i′, k′, j′ are multiples of ∆, we compute C̃i′,k′,j′ using the algorithm

in Lemma 4.1. Since there are O((n/∆)3) such triples, it takes Õ(n3 · ∆−1/⌊(d+1)/2⌋) time in total. Then

we compute C̃ using C̃i,j = mink′:∆|k′ C̃
i′,k′,j′

i,j in O(n3 ·∆−1) time. �

4.2 Phase 2: Create Estimate Matrix Ĉ by Random Sampling

This phase of the algorithm consists of 10ρ ln n rounds. For each round r, we sample jr ∈ [n] uniformly

at random. Define Ar to be an n × n matrix where Ar
i,k := Ai,k + Bk,jr − C̃i,jr , and define Br such

that Br
k,j := Bk,j − Bk,jr . If we compute Cr = Ar ⋆ Br, we can infer C = A ⋆ B via the relation

Ci,j = Cr
i,j + C̃i,jr . However, it is not always possible to compute Cr efficiently, since the weights of Ar

and Br can be arbitrarily large. Therefore, we need to set the large entries in Ar to be∞ in order to compute

Ar ⋆Br efficiently. Specifically, we will set an entry of Ar to∞ if its absolute value is more than 3W . Then

we can compute Cr = Ar ⋆ Br in Õ(
√
Wn(3+ω)/2) time by Theorem 1.2.

This phase deviates from the approach of Bringmann et al. Bringmann et al. set the large entries of both

Ar and Br to∞. If we were to do that, we wouldn’t be able to complete Phase 3 – there doesn’t seem to be

enough to finish the (min,+)-product computation in truly subcubic time. By only setting the large entries

of Ar to∞ and letting Br keep all its entries, we offload enough work onto Phase 2, so that now Phase 3

can also be done in truly subcubic time.

Since there are ρ rounds, the total time complexity of this phase is Õ(ρ
√
Wn(3+ω)/2). Intuitively, fix any

i, j ∈ [n], if Ar
i,k is not set to∞, then Cr

i,j ≤
(

Ai,k +Bk,jr − C̃i,jr

)

+(Bk,j −Bk,jr) = Ai,k+Bk,j−C̃i,jr .

Thus, if we take Ĉi,j to be minr

{

Cr
i,j + C̃i,jr

}

, then Ĉi,j ≤ Ai,k + Bk,j as long as Ar
i,k < ∞ for at least

one r. We will formalize this intuition and show that we only need to enumerate a sub-cubic number of

(i, k, j) triples in order to correct all entries in Ĉ after 10ρ ln n rounds.

Definition 4.1. We call a triple (i, k, j)

• strongly relevant if Ai,k +Bk,j = Ci,j;

• weakly relevant if |Ai,k +Bk,j − C̃i,j| ≤ 3W ;

• uncovered if for all 1 ≤ r ≤ 10ρ ln n, |Ar
i,k| > 3W .

11

Since whether a triple (i, k, j) is uncovered only depends on (i, k), we will also call a pair (i, k) un-

covered if for all 1 ≤ r ≤ 10ρ ln n, |Ar
i,k| > 3W . A triple (pair) that is not uncovered will be called

covered.

If a triple (i, k, j) is not strongly relevant, then even if Ar
i,k = ∞ for every round r, it doesn’t affect

whether Ĉi,j = Ci,j . If a triple (i, k, j) is covered, then there exists a round r such that Ar
i,k is not set to

∞. In this case, Ĉi,j ≤ Cr
i,j + C̃i,jr ≤ Ai,k + Bk,j . Since only strongly relevant triples matter, and our

algorithm already updates the answer for every covered triples, so we need to update Ĉ using triples that are

both strongly relevant and uncovered. Specifically, if we can enumerate all strongly relevant and uncovered

triples (i, k, j), and update Ĉi,j using Ai,k +Bk,j , we can correct all entries in Ĉ .

However, it is hard to only enumerate strongly relevant and uncovered triples without enumerating some

additional triples. Thus we allow the algorithm to enumerate some of the weakly relevant and uncovered

triples, in addition to strongly relevant and uncovered triples. In this way, we can cover all strongly relevant

and uncovered triples, while keeping the total number of triples small. Note that since C̃ is a W -additive

approximation of C , a strongly relevant triple is always weakly relevant, so we care about the total number

of weakly relevant and uncovered triples. The next lemma shows that the number of such triples is truly

sub-cubic.

Lemma 4.3. With high probability, the number of weakly relevant and uncovered triples is at most n3/ρ.

Proof. We say a pair (i, k) is bad if the number of weakly relevant triples (i, k, j) is greater than n/ρ.

Fix any bad (i, k). For a random j ∈ [n], the probability that (i, k, j) is weakly relevant is at least 1/ρ.

Since we have 10ρ ln n randomly sampled jr , the probability that at least one jr forms a weakly relevant

triple (i, k, jr) is at least 1 − (1− 1/ρ)10ρ lnn ≥ 1 − 1/n10. Suppose (i, k, jr) is weakly relevant, then

|Ar
i,k| = |Ai,k + Bk,jr − C̃i,jr | ≤ 3W . Thus, Ar

i,k will not be set to ∞ in round r, so (i, k) is covered.

By taking a union bound over all bad (i, k), we conclude that with probability at least 1 − 1/n8, all triples

(i, k, j) will be covered when (i, k) is bad. It means that with high probability, these bad (i, k) pairs don’t

contribute any weakly relevant and uncovered triples.

For a pair (i, k) that is not bad, the number of j such that (i, k, j) is weakly relevant is at most n/ρ,

by definition of a bad pair. Thus, these (i, k) pairs contribute at most n3/ρ weakly relevant and uncovered

pairs. �

4.3 Phase 3: Enumerate Strongly Relevant and Uncovered Triples

It remains to show how to quickly iterate through strongly relevant, uncovered triples. Fix i′, k′, j′

multiples of ∆, we will show how to efficiently enumerate strongly relevant, uncovered triples in I(i′) ×
I(k′) × I(j′). We consider the set Si′,k′,j′ ⊆ I(i′) × I(j′) × I(k′), consisting of triples (i, j, k) such that

Ai,k+Xk′,j′(k)
TYk′,j′(j) ≤ 2W+C̃i,j . The following lemma shows that it is sufficient to enumerate triples

in this set.

Lemma 4.4. The set Si′,k′,j′ contains all strongly relevant triples in I(i′) × I(j′) × I(k′), and it contains

only weakly relevant triples.

Proof. Let (i, k, j) be any strongly relevant triple. Then

Ai,k +Xk′,j′(k)
TYk′,j′(j)− C̃i,j

=Ai,k +Bk,j − Ci,j +
(

Xk′,j′(k)
TYk′,j′(j) −Bk,j

)

+
(

Ci,j − C̃i,j

)

≤2W,

12

so (i, k, j) ∈ Si′,k′,j′.

In order to prove the second claim, we need to show

∣

∣

∣
Ai,k +Bk,j − C̃i,j

∣

∣

∣
≤ 3W for every triple

(i, j, k) ∈ Si′,k′,j′. Since C̃ is a W -additive approximation of C , Ai,k + Bk,j − C̃i,j ≥ −W holds for

every triple (i, k, j). Since (i, k, j) ∈ Si′,k′,j′ , we have Ai,k +Xk′,j′(k)
TYk′,j′(j) ≤ 2W + C̃i,j , or equiva-

lently:

Ai,k +Bk,j − C̃i,j ≤ 2W + (Bk,j −Xk′,j′(k)
TYk′,j′(j)).

Since Bk,j differs at most W from Xk′,j′(k)
TYk′,j′(j), we have Ai,k +Bk,j − C̃i,j ≤ 3W . �

By Lemma 4.4, it suffices to enumerate uncovered triples in Si′,k′,j′. For each i ∈ I(i′), create a set of

(d+ 1)-dimensional points

Qi =

{(

Ai,k

Xk′,j′(k)

)

: k ∈ I(k′) ∧ (i, k) is uncovered

}

,

and pre-process these points using the data structure in Theorem 2.1. For each (i, j) ∈ I(i′) × I(j′), we

create the following half-space:

λi,j =

{

x ∈ R
d+1|

(

1
Yk′,j′(j)

)T

x ≤ 2W + C̃i,j

}

.

Then Qi ∩ λi,j contains the set of k ∈ I(k′) such that (i, k, j) ∈ Si′,j′,k′ and (i, k) is uncovered. Therefore,

we can use the data structure in Theorem 2.1 to list the set of k in Õ(∆1−1/⌊(d+1)/2⌋ + |Qi ∩ λ|) time. Note

that the total number of listed points is bounded by the number of weakly-relevant, uncovered triples, so the

summation of the second term over all i′, k′, j′, i, j is Õ(n3/ρ). The summation of the first term over all

i′, k′, j′, i, j is Õ(n3 ·∆−1/⌊(d+1)/2⌋).

5 Application I: Geometric APSP

In this section, we study an algorithm for APSP where the edge weights of the input graph can be

approximated by a low dimensional geometric function.

Let W be an integer, d ≥ 1 be a constant integer and let δ ∈ (0, 1] be a constant. Let us define (as in

the introduction) a (W,d, δ)-geometrically weighted clustered graph, (W,d, δ)-GWC for short as follows.

G = (V,E) is (W,d, δ)-GWC if

• V is partitioned into t = n1−δ subsets V1, V2, . . . , Vt of size O(nδ),

• for every i, j ∈ {1, . . . , t}, each v ∈ Vi is assigned a d-dimensional integer vector pi,j(v), and each

u ∈ Vj is assigned a d-dimensional integer vector qi,j(u), and

• for v ∈ Vi, u ∈ Vj , |w(v, u) − pi,j(v)T qi,j(u)| ≤W. In other words, the edge weights in Vi × Vj are

determined by a matrix whose W -approximate rank is at most d,

• the absolute value of any edge weight is at most O(nc) for some constant c.

The last bullet is only needed so that SSSP in such graphs can be performed in truly subcubic time even

if there are negative edge weights, e.g. as in Goldberg [17].

The following is a direct corollary of Theorem 1.1:

13

Corollary 5.1. For any integer matrix A and B the generalized adjacency matrix of a (W,d, δ)-GWC graph,

we can compute C = A ⋆ B in Õ(n3−δ/⌊(d+1)/2⌋ + n(9+ω)/4 ·W 1/4) time.

Using Corollary 5.1, we can compute the shortest distance between two vertices among all paths with

a small length. Using a standard technique in APSP algorithms, we can compute shortest paths among the

long paths by randomly sampling vertices.

Theorem 5.1. We can compute APSP for a (W,d, δ)-GWC graph in

• Õ(W 1/8n(21+ω)/8) time whenever W > n3−ω−4δ/⌊(d+1)/2⌋ , and

• Õ(n3−δ/(2⌊(d+1)/2⌋)) time if W ≤ n3−ω−4δ/⌊(d+1)/2⌋ .

Proof. Let B be the generalized adjacency matrix, and let ℓ be a parameter to be fixed later. For each i ≤ ℓ,
we can compute B(i) by iterating the product B(i) ← A ⋆ B for A = B(i−1). By Corollary 5.1, this step

will take Õ(ℓ · n3−δ/⌊(d+1)/2⌋ + ℓ · n(9+ω)/4 ·W 1/4) time.

We can randomly sample Θ̃(n/ℓ) vertices S, and perform Dijkstra’s algorithm to and from these vertices

in S (after the usual Johnson’s preprocessing to get rid of any negative weights, and using say Goldberg’s

SSSP algorithm which works in truly subcubic time since the edge weights are assumed to be polynomial

in n). With high probability, S hits a shortest path between every two vertices that have a shortest path

containing at least ℓ vertices. We can perform this step in Θ̃(n3/ℓ) time.

The first step gives the shortest path between two vertices that uses at most ℓ vertices, and the second

step gives the shortest path that uses more than ℓ vertices. Thus, by taking the smaller one over these two,

we can correctly compute the APSP.

The total time complexity is Õ(ℓ · n3−δ/⌊(d+1)/2⌋ + ℓ · n(9+ω)/4 ·W 1/4 + n3/ℓ).
If W > n3−ω−4δ/⌊(d+1)/2⌋ , then n(9+ω)/4 ·W 1/4 > n3−δ/⌊(d+1)/2⌋, so the running time is

Õ(ℓ · n(9+ω)/4 ·W 1/4 + n3/ℓ).

We can set ℓ to be n(3−ω)/8/W 1/8, balancing the two terms of the runtime and thus minimizing it at

Õ(W 1/8n(21+ω)/8).
Otherwise, if W ≤ n3−ω−4δ/⌊(d+1)/2⌋ , then n(9+ω)/4 ·W 1/4 ≤ n3−δ/⌊(d+1)/2⌋, so the running time is

Õ(ℓ · n3−δ/⌊(d+1)/2⌋ + n3/ℓ).

Then it makes sense to set ℓ = nδ/(2⌊(d+1)/2⌋) , minimizing the runtime to Õ(n3−δ/(2⌊(d+1)/2⌋)).
�

6 Application II: Batch Range Mode

In this section, as an application of our Main Algorithm, we give an O(n1.5−ε) time algorithm for the

Batch Range Mode query problem for some ε > 0. In a high level, there are two steps in the algorithm.

First we use the Main Algorithm to obtain a truly subcubic time (min,+)-product for particularly structured

matrices; then we show how to reduce range mode to this kind of structured (min,+)-product.

Lemma 6.1. Let A,B be two n× n integer matrices, where matrix B meets

1) Each row of B is non-increasing;

14

2) The difference between the sum of elements in the j-th column, and the sum of elements in the (j+1)-th
column is at most m, for any j.

When m = Ω(n(ω−1)/2), there exists a Õ(n(14+ω)/6 · m1/6) time algorithm that computes A ⋆ B, which

is truly sub-cubic as long as m = O(n4−ω−ε) for some ε > 0. When m = O(n(ω−1)/2), there exists a

Õ(n(9+ω)/4) time algorithm.

Proof. Let ∆, γ ≥ 1 be small polynomials in n to be fixed later. Fix j′ a multiple of ∆. Since
∑n

k=1Bk,j −
∑n

k=1Bk,j+1 ≤ m for any j ∈ I(j′), we have

n
∑

k=1

Bk,j′−∆+1 −
n
∑

k=1

Bk,j′ ≤ ∆m.

By averaging, there are at most ∆m/γ indices k ∈ [n] such that Bk,j′−∆+1 − Bk,j′ ≥ γ. For each k such

that Bk,j′−∆+1 − Bk,j′ ≥ γ, and for each j ∈ I(j′), we set Bk,j as M , for some large enough integer M

(larger than all entries in B). We call the matrix B̂ after we do this transformation for every j′. Note that B̂
differs with B in at most nm∆/γ entries.

Notice that B̂ has the following nice property: for each j′, k′ multiples of ∆,

∣

∣

∣
B̂j,k − B̂j′,k

∣

∣

∣
≤ γ for any

j ∈ I(j′), k ∈ I(k′). Consider a set of 1-dimensional vectors Xk′,j′(k) = [B̂j′,k], and Yk′,j′(j) = [1], then
∣

∣

∣
B̂j,k −Xk′,j′(k)

TYk′,j′(k)
∣

∣

∣
≤ γ. Therefore, we can apply Theorem 1.1 using d = 1. This gives a

Õ(n3/∆+ n(9+ω)/4 · γ1/4)

time algorithm to compute Ĉ = A ⋆ B̂.

We can recover C = A ⋆ B from Ĉ . Since B and B̂ differ in at most nm∆/γ entries, and B̂ is larger

on these entries, we can enumerate Ai,k +Bk,j to update Ci,j , where Bk,j differs from B̂k,j. This will take

O(n2m∆/γ) time.

The total complexity is Õ(n3/∆+ n(9+ω)/4 · γ1/4 + n2m∆/γ).
When m = Ω(n(ω−1)/2), we can balance by setting ∆ = n(4−ω)/6m−1/6, and γ = n(1−ω)/3m2/3. This

gives a Õ(n(14+ω)/6 ·m1/6) time algorithm.

When m = O(n(ω−1)/2), we can balance by setting ∆ = n(3−ω)/4, and γ = 1 to get a Õ(n(9+ω)/4)
time algorithm. �

Theorem 6.1. Given a sequence a1, a2, . . . , an, and n ranges [l1, r1], [l2, r2], . . . , [ln, rn], there exists a

Õ(n(27+2ω)/(19+ω)) time algorithm that computes the frequency of the most frequent element for each range

[li, ri]. Using ω ≤ 2.373, this algorithm runs in Õ(n1.4854) time.

Proof. Without loss of generality, we assume li ≤ n/2 < ri. Otherwise, we can use a divide-and-conquer

approach to first compute the queries that satisfy li ≤ n/2 < ri, then recurse on the two halves [1, n/2] and

(n/2, n] to compute answers. Since the proposed time complexity is Ω(n1+ε) for some ε > 0, the total time

complexity does not change by the Master Theorem.

Let T be a parameter of the algorithm that controls the block size as well as a threshold frequency for

frequent elements and infrequent elements. We handle elements that appear at most T times (infrequent

elements), and elements that appear more than T times (frequent elements) differently.

Fix some infrequent elements x. For any aj = ak = x where j ≤ k, we create an interval [j, k], whose

weight is the number of occurrence of x in the range [j, k]. Since x occurs at most T times, the number of

15

of such intervals is at most O(Tn). To query the largest frequency in a range [li, ri], it is equivalent to ask

the largest weight of intervals that are contained in the interval [li, ri]. This problem can be solved by, for

instance, using a persistent balanced search tree, in Õ(Tn) preprocess time and Õ(1) query time.

Now consider the “frequent” elements in the array that occur more than T times. There are at most n/T
distinct frequent elements in the array. For each of these elements x, we create a balanced binary search tree

Bx, whose elements are the set of occurrences {i : ai = x}, augmented with the size of the subtree rooted

at each node. We split the whole sequence a1, . . . , an into consecutive blocks of size O(T), so that n/2 is

the right boundary of one block and the left boundary of the next block.

For a range [li, ri], let Ss, Ss+1, . . . , St be the maximum set of blocks in this range, then the range

mode of [li, ri] is either the range mode of the subinterval Ss, Ss+1, . . . , St, or some elements in [li, ri] \
{Ss, Ss+1, . . . , St}.

Suppose that the range mode of [li, ri] is not the range mode of Ss, Ss+1, . . . , St. Then, we have a

candidate list of O(T) numbers (those to the left and right of Ss, Ss+1, . . . , St in [li, ri]) that can possibly

be the range mode of the interval [li, ri]. For each of these numbers x, we can query its occurrence in the

range [li, ri] by querying the number of elements between [li, ri] in Bx which takes O(log n) time due to

the augmentation.

Therefore, it takes Õ(T) overhead to compute the range mode of [li, ri] once we know the range mode

of Ss, Ss+1, . . . , St. Thus, we can focus on the sub-problem of computing the range mode of the subinterval

Ss, Ss+1, . . . , St, where Ss is to the left of n/2, and St is to the right of n/2 and some pair of blocks

Si∗, Si∗+1 end and start (respectively) at n/2. Call these last two the middle blocks.

We create two matrices A and B. The columns of A and rows of B are indexed by the heavy elements

in a1, . . . , an. The rows of A and columns of B are indexed by j such that Sj is one of the blocks of size T
that we partitioned a1, . . . , an into. Hence both A and B are O(n/T) by O(n/T) matrices.

More concretely, for each Ss to the left of n/2, we create a row s in matrix A, where As,k is the negated

number of occurrences of element k in the subinterval Ss, . . . , Si∗ (recall that Si∗ ends at n/2); for each

St to the right of n/2, we create column t in matrix B where Bk,t is the negated number of occurrences

of element k in the subinterval Si∗+1, . . . , St (recall that Si∗+1 starts at n/2 + 1). Therefore, the negated

Min-Plus product entry −(A ⋆ B)s,t will be the range mode in the full subinterval Ss, Ss+1, . . . , St.

Note that A,B are O(n/T) by O(n/T) matrices, each row of B is monotonically non-increasing, and

the difference between the i-th column and (i + 1)-th column is at most T . Therefore, we can apply

Lemma 6.1 to multiply A ⋆ B in Õ((n/T)(14+ω)/6T 1/6) time when T = Ω((n/T)(ω−1)/2).
Therefore, the overall running time of the algorithm is Õ((n/T)(14+ω)/6T 1/6 + nT). By setting T =

n(8+ω)/(19+ω), we get a Õ(n(27+2ω)/(19+ω)) time algorithm. �

7 Application III: Maximum Subarray with Bounded Entries

In [22], Tamaki and Tokuyama reduced 2D maximum subarray problem to (min,+)-product of two

matrices A, B, using a divide-and-conquer approach. In this reduction, if the absolute values of the entries

of the input array are bounded by M , then the matrix A has the property that

∀i, j, |Ai+1,j+1 −Ai,j+1 −Ai+1,j +Ai,j| ≤M.

The same property holds for B as well. If we can compute (min,+)-product of matrices with this property

in sub-cubic time, then we can solve the maximum subarray problem with bounded entry in sub-cubic time

as well.

Motivated by this application, we define the following notion of finite difference operator.

16

Definition 7.1. The finite difference operator D acts on a matrix such that

(DA)i,j = Ai+1,j+1 −Ai,j+1 −Ai+1,j +Ai,j.

Using this definition, we can rephrase the property of matrices related with the maximum subarray

problem as |(DA)i,j | ≤M .

In the rest of this section, we will show how to compute A⋆B in sub-cubic time when
∣

∣(DtB)i,j
∣

∣ ≤M
for some constant t. The following lemma shows that matrices with bounded entries after the operator Dt

can be approximated with a low rank matrix.

Lemma 7.1. For an arbitrary matrix B where |(DtB)i,j| ≤ M , there exist 2n integer vectors of (2t)-
dimension X(1),X(2), . . . ,X(n) and Y (1), Y (2), . . . , Y (n), such that

∣

∣Bi,j −X(i)TY (j)
∣

∣ = O(Mn2t).

Proof. We prove this by induction on t. When t = 0, the claim is trivially true.

When t > 0, assume the claim is true for t − 1. Let A = DB. Since Dt−1A = DtB, by induction,

there exists (2t − 2)-dimension vectors P (i), Q(j) such that
∣

∣Ai,j − P (i)TQ(j)
∣

∣ = O(Mn2t−2). Define

Ei,j = Ai,j − P (i)TQ(j) to be the error term, whose absolute value is bounded by O(Mn2t−2). Since

A = DB,

Bi,j =

(

i−1
∑

a=1

j−1
∑

b=1

Aa,b

)

−B1,1 +Bi,1 +B1,j

=

(

i−1
∑

a=1

j−1
∑

b=1

(

P (a)TQ(b) + Ea,b

)

)

−B1,1 +Bi,1 +B1,j

=

(

i−1
∑

a=1

P (a)

)T (j−1
∑

b=1

Q(b)

)

−B1,1 +Bi,1 +B1,j +

(

i−1
∑

a=1

j−1
∑

b=1

Ea,b

)

=

1
−B1,1 +Bi,1
∑i−1

a=1 P (a)

T

B1,j

1
∑j−1

b=1 Q(b)

+

(

i−1
∑

a=1

j−1
∑

b=1

Ea,b

)

Therefore, if we set

X(i) :=

1
−B1,1 +Bi,1
∑i−1

a=1 P (a)

 , and Y (j) :=

B1,j

1
∑i−1

a=1 Q(a)

 ,

we will have

∣

∣Bi,j −X(i)T Y (j)
∣

∣ =

∣

∣

∣

∣

∣

i−1
∑

a=1

j−1
∑

b=1

Ea,b

∣

∣

∣

∣

∣

= O(Mn2t),

which completes the induction. �

Theorem 7.1. For two integer matrices A and B, if |(DtB)i,j| ≤ M for some constant t ≥ 1, then there

exists an algorithm that computes A ⋆ B in Õ(n
3− 3−ω

2t2+4M1/(2t2+4)) time.

17

Proof. Let ∆ be a small polynomial in n. For any ∆ × ∆ sub-matrix of B, the t-th discrete difference is

also bounded by M . Therefore, by Lemma 7.1, for each i′, j′ multiples of ∆, there exist 2t-dimensional

vectors Xi′,j′(i), Yi′,j′(j) such that Xi′,j′(i)
TYi′,j′(j) is an O(M∆2t)-additive approximation of Bi,j . In

other word, every ∆ ×∆ sub-matrices of B has an O(M∆2t)-approximate rank at most 2t. Therefore, we

can apply Theorem 1.1 to get an algorithm that computes A ⋆ B in time

Õ(n3 ·∆−1/⌊(2t+1)/2⌋ + n(9+ω)/4 · (M∆2t)1/4).

By setting ∆ =
(

n(3−ω)/2 ·M−1/2
)

t
t2+2 , we get a Õ(n

3− 3−ω
2t2+4M1/(2t2+4)) time algorithm. �

Corollary 7.1. Given an n × n array A, where the absolute value of each entry is bounded by M . There

exists an algorithm that finds the maximum subarray of A in Õ(n
15+ω

6 M1/6) time. Use ω < 2.373, this

gives an Õ(n2.8955M1/6) time algorithm, which is truly subcubic when M = o(n0.627).

Proof. We can use Tamaki and Tokuyama’s reduction in [22], and apply Theorem 7.1 using t = 1 to

immediately get this result. �

7.1 Tight Lower Bound for d-Dimensional Maximum Subarray

In this section, we show the conditional lower bound for the d-Dimensional Maximum Subarray prob-

lem, where the entries of the input array can have arbitrary real values. Backurs et al. [6] showed an

nd+⌊d/2⌋−o(1) conditional lower bound for d-Dimensional Maximum Subarray, based on the hardness of

the Max-Weight (d + ⌊d/2⌋)-Clique problem. Their lower bound is only tight for d = 2, since Kadane’s

algorithm for d-Dimensional Maximum Subarray runs in O(n2d−1) time.

We show an n2d−1−o(1) conditional lower bound for the d-Dimensional Maximum Subarray problem,

based on the hardness of the Max-Weight (2d− 1)-Clique problem. In our reduction, we will introduce two

intermediate problems defined as following.

Definition 7.2 (Two-sided d-Uniform Hypergraph). A complete hyperedge-weighted d-uniform hypergraph

whose vertex set is partitioned into 2d sets U1, U2, . . . , Ud, V1, V2, . . . , Vd, each with n vertices is two-sided

if any d-hyperedge (w1, . . . , wd) not in the form of w1 ∈ U1 ∪ V1, w2 ∈ U2 ∪ V2, . . . , wd ∈ Ud ∪ Vd, has

zero weight.

Definition 7.3 (Two-sided d-Uniform Max-Weight Hyperclique). Given a two-sided d-uniform hypergraph,

find one vertex from each vertex set, so that the sum of hyperedge weights between these vertices is maxi-

mized.

Definition 7.4 (Central d-Dimensional Array). A d-dimensional array A with side length 2n+1 is called a

central array if the index set of it is {−n,−n+ 1, . . . , n− 1, n}d.

Definition 7.5 (Central Maximum Subarray Sum). Given a central d-dimensional array A, find

max
i∈[n]d
δ∈[2n]d

−n≤i−δ<0

∑

j∈{0,1}d
A[i− δ ⊙ j],

where ⊙ denotes the componentwise product of two vectors.

18

Central Maximum Subarray Sum asks to find a subarray whose 2d corners are in each of the 2d quadrants,

such that the sum of values on its corners is maximized. Backurs et al. [6] showed an O(nd) time reduction

from the Central Maximum Subarray Sum problem to the Maximum Subarray problem in d-dimension.

Thus, any (higher than nd) lower bound for the Central Maximum Subarray Sum problem would imply

the same lower bound for the Maximum Subarray problem. In the rest of this section, we will first show

a reduction from Max-Weight (2d − 1)-Clique problem to Two-sided d-Uniform Max-Weight Hyperclique

problem, and then show a reduction from the Two-sided d-Uniform Max-Weight Hyperclique problem to

the Central Maximum Subarray Sum problem. If the well-known Max-Weight (2d− 1)-Clique Hypothesis

is true, the Central Maximum Subarray Sum problem would have an n2d−1−o(1) lower bound, and thus the

Maximum Subarray problem would share the n2d−1−o(1) lower bound due to Backurs et al.’s reduction.

Lemma 7.2. If there exists an O(n2d−1−ǫ) time algorithm (for ǫ > 0) for the Two-sided d-Uniform Max-

Weight Hyperclique problem, then there exists an O(n2d−1−ǫ) time algorithm for Max-Weight (2d − 1)-
Clique problem.

Proof. Let G = (V1 ∪ V2 ∪ · · · ∪ V2d−1, E) be a (2d − 1)-partite graph. We will construct a Two-sided

d-Uniform Hypergraph G′ = (U1 ∪ U2 ∪ · · · ∪ U2d, E
′) such that the maximum (2d − 1)-clique weight of

G is equal to the maximum (2d)-hyperclique weight of G′. For simplicity, assume n is a power of 2, and

we will index the vertices in each vertex set from 0.

The first 2d − 1 vertex sets of G′ are copies of the vertex sets of G. Specifically, Ui is a copy of Vi for

any i ≤ 2d − 1. U2d, however, encodes something different. Assume we pick vi ∈ Vi to be the si-th vertex

in Vi, then intuitively, U2d encodes sd+1⊕sd+2⊕· · ·⊕s2d−1, where⊕ is the bitwise exclusive-or operation.

We initialize all hyperedge weights of G′ to 0, and increase these weights incrementally by considering

edges of G one by one.

For any 1 ≤ i < j ≤ 2d − 1, pick an edge (vi, vj) ∈ Vi × Vj , with weight w(vi, vj). Let ui, uj be the

copies of vi, vj in the hypergraph G′. First consider the case when j 6= i+d. This is the case when there exist

arbitrarily weighted hyperedges that contain both ui and uj . Let S := {k ∈ [d] : k 6≡ i (mod d) and k 6≡ j
(mod d)}. We enumerate every nd−2 combinations of vertices u′k ∈ Uk for k ∈ S, and add w(vi, vj) to the

hyperedge between the d vertices ui, uj and u′k where k ∈ S.

The case when j = i+d is more interesting, since all hyperedges in G′ that contain both ui and uj must

have zero weight, because of the definition of Two-sided d-Uniform Hypergraph. However, we can encode

w(vi, vj) via the extra vertex set U2d. Let uj be the sj-th vertex in Uj . We enumerate all nd−2 combinations

of indices s′d+1, s
′
d+2, . . . , s

′
j−1, s

′
j+1, . . . , s

′
2d, such that s′d+1⊕s′d+2⊕· · ·⊕s′j−1⊕sj⊕s′j+1⊕· · ·⊕s′2d−1 =

s′2d. Let the s′k-th vertex in Uk be u′k for any k ∈ {d+1, d+2, . . . , j − 1, j +1, . . . , 2d}. We add w(vi, vj)
to the hyperedge that consists of ui and u′k for every k ∈ {d+ 1, d+ 2, . . . , j − 1, j + 1, . . . , 2d}.

Finally, enumerate all combinations of sd+1, sd+2, . . . , s2d such that sd+1⊕sd+2⊕· · · s2d−1 6= s2d. Let

uk be the sk-th vertex in Uk, for every d+ 1 ≤ k ≤ 2d. We set the weight of the hyperedge that consists of

ud+1, ud+2, . . . , u2d to −M ′ for some large enough M ′. If all edge weights in G are numbers in [−M,M],
we can set M ′ to be 100d10M .

The construction of G′ takes O(nd) time, since for each edge (vi, vj) in G, we enumerate O(nd−2)
hyperedges. It remains to show that the maximum weight of (2d− 1)-cliques in G is equal to the maximum

(2d)-hyperclique weight of G′.
Pick any 2d indices s1, s2, . . . , s2d. Let ui be the si-th vertex in Ui. If sd+1⊕ sd+2⊕· · ·⊕ s2d−1 6= s2d,

then there will be a −M ′ weight on the hyperedge (ud+1, ud+2, . . . , u2d), so the weight of the hyperclique

u1, u2, . . . , u2d can never be maximum. Therefore, we are forced to pick s2d = sd+1 ⊕ sd+2 ⊕ · · · ⊕
s2d−1. In this case, the weight of the hyperclique (u1, u2, . . . , u2d) is equal to the weight of the clique

19

(v1, v2, . . . , v2d−1), where vi is a copy of ui for each i < 2d. Thus, if we invoke the O(n2d−1−ǫ) algorithm

for the Two-sided d-Uniform Max-Weight Hyperclique problem on G′, we get the Max-Weight (2d − 1)-
Clique on G. �

Lemma 7.3. If there exists an O(n2d−1−ǫ) time algorithm for the d-Dimensional Central Maximum Subar-

ray Sum problem, then there exists an O(n2d−1−ǫ) time algorithm for the Two-sided d-Uniform Max-Weight

Hyperclique problem.

Proof. Take any Two-sided d-Uniform Hypergraph G = (V1∪V2 · · ·Vd∪U1∪U2 · · ·∪Ud, E), we index the

vertices in Vi and Ui from 1. We will construct a d-Dimensional Central Array A based on G such that the

central maximum subarray sum of A is equal to the maximum 2d-hyperclique of G. If any entry of vector

i ∈ {−n, . . . , n}d is 0, we set A[i] to be 0, since they are not relevant to the central maximum subarray sum

of A. For any other index i, we choose d vertices w1, w2, . . . , wd from the graph G based on i. If ir > 0 for

some r, we choose wr to be the ir-th vertex in Vr; otherwise, we choose wr to be the (−ir)-th vertex in Ur.

We set A[r] to be the weight of the hyperedge connecting w1, w2, . . . , wd.

Pick any 2d vertices v1 ∈ V1, v2 ∈ V2, . . . , vd ∈ Vd, u1 ∈ U1, u2 ∈ U2 . . . , ud ∈ Ud. Define two

d-dimensional vectors ~v and ~u, such that ~vi is the index of vi in Vi, and ~ui is the index of ui in Vi. For any

j ∈ {0, 1}d, let i be a d-dimensional vector such that ir = ~vr if jr = 0, and ir = −~ur if jr = 1. Also,

let W be a set of d vertices
⋃

1≤r≤d{if jr = 0 then vr else ur}. The entry A[i] is exactly the weight of the

hyperedge between vertices in W . Thus, the sum of all corners of the subarray whose two opposite corners

are ~v and −~u is equal to the weight of the hyperclique (v1, v2, . . . , vd, u1, u2, . . . ud).
Conversely, for any subarray of A whose 2d corners are in different quadrants, there exists a hyperclique

in G whose 2d vertices are from different vertex sets, by a similar argument.

Thus, the central maximum subarray sum of A is equal to the max-weight 2d-hyperclique of G, so we

can invoke the O(n2d−1−ǫ) algorithm of d-Dimensional Central Maximum Subarray Sum problem to output

the max-weight 2d-hyperclique of G. �

Lemma 7.2, Lemma 7.3, together with the reduction from Central Maximum Subarray Sum to Maximum

Subarray [6] imply Theorem 1.3.

7.2 Lower Bound for Maximum Subarray with Bounded Weight

In Section 7.1, we showed a tight conditional lower bound for d-Dimensional Maximum Subarray with

real valued weights. In Section 4, we also showed an algorithm that is better than this conditional lower

bound, for 2D Maximum Subarray with bounded integer weights. A natural question arises: Can we prove

some conditional lower bound for d-Dimensional Maximum Subarray when the numbers in the array are

bounded integers?

In this section, we answer this question positively by proving Theorem 1.4. We notice that the reduction

from Two-sided d-Uniform Max-Weight Hyperclique problem to Central Maximum Subarray Sum (Lemma

7.3), and the reduction from Central Maximum Subarray Sum to Maximum Subarray (presented in [6])

only increase the largest absolute value of weights by a constant factor. Therefore, we only need to show

a conditional lower bound for Two-sided d-Uniform Max-Weight Hyperclique when the weights of the

hyperedges are bounded integers. Therefore, Theorem 1.4 follows from the following lemma.

Lemma 7.4. If there exists an O(n2d−2−ǫ) algorithm (for ǫ > 0) for the Two-sided d-Uniform Max-Weight

Hyperclique problem where the hyperedges have bounded integer weights, then there exists an O(n2d−2−ǫ)
algorithm for the 3-Uniform (2d− 2)-Hyperclique problem.

20

Proof. The proof has a similar spirit as the proof to Lemma 7.2. For simplicity, we denote a 3-Uniform

Hypergraph G as (V1 ∪V2∪ . . .∪Vd−1∪U1∪U2∪ · · · ∪Ud−1, E). Note that even though the vertex sets of

G are not partitioned to two parts naturally, we used Vi for one half and Ui for the other half. Also assume

n is a power of 2 for simplicity.

Create a two-sided d-uniform hypergraph G′ = (V ′
1 ∪ V ′

2 ∪ · · · ∪ V ′
d ∪ U ′

1 ∪ U ′
2 ∪ · · · ∪ U ′

d, E
′), where

V ′
i is a copy of Vi for any i ≤ d− 1, and U ′

i is a copy of Ui for any i ≤ d− 1. If we pick the si-th vertex v′i
from V ′

i , then V ′
d encodes the information s1⊕s2⊕· · ·⊕sd−1. Similarly, if we pick the ti-th vertex u′i from

U ′
i , then U ′

d encodes the information t1 ⊕ t2 ⊕ · · · ⊕ td−1. We call Vi and Ui corresponding vertex sets; we

also call V ′
i and U ′

i corresponding vertex sets. For any vertex set S, we use S[k] to denote the k-th vertex in

S, indexed from 0. We initialize all edge weights of G′ to 0.

Every 3-hyperedge (a, b, c) ∈ E will increase the weight of some hyperedges in G′ by 1. First assume

no two vertices in {a, b, c} are from a pair of corresponding vertex sets. Let a′, b′, c′ be a, b, c’s copies in

G′, respectively. Take any hyperedege e′ in G′ that contains {a′, b′, c′} and d − 3 other vertices from the

first half of the vertex sets, so that every pair of corresponding vertex sets contains exactly one vertex. We

increment the weight of any such hyperedge e′ by 1.

If two vertices in {a, b, c} are from a pair of corresponding vertex sets, then without loss of general-

ity, we can assume a ∈ Vi, b ∈ Ui. When c ∈ Vj for some j 6= i, we increment all hyperedges con-

sisting of vertices V ′
1 [s1], . . . , V

′
i−1[si−1], U

′
i [ti], V

′
i+1[si+1], . . . , V

′
d [sd], where Ui[ti] = b, Vj [sj] = c and

Vi

[

⊕

1≤k≤d,k 6=i sk

]

= a. It is symmetric when c ∈ Uj for some j 6= i: we increment all hyperedges

consisting of vertices U ′
1[t1], . . . , U

′
i−1[ti−1], V

′
i [si], U

′
i+1[ti+1], . . . , U

′
d[td], where Vi[si] = a, Uj[tj] = c

and Ui

[

⊕

1≤k≤d,k 6=i tk

]

= b.

Finally, for any s1, s2, . . . , sd such that s1 ⊕ s2 ⊕ · · · ⊕ sd−1 6= sd, we set the weight of the edge

consisting of V ′
1 [s1], V

′
2 [s2], . . . , V

′
d [sd] to be −M for M = 100d10. Symmetrically, for any t1, t2, . . . , td

such that t1 ⊕ t2 ⊕ · · · ⊕ td−1 6= td, we set the weight of the edge consisting of U ′
1[t1], U

′
2[t2], . . . , U

′
d[td] to

be −M .

The maximum absolute value of hyperedge weight of G′ is M , which is a constant when d is a constant.

By construction, G has a (2d − 2)-hyperclique if and only if the max-weight hyperclique of G′ has weight
(2d−2

3

)

. Thus, we can solve 3-Uniform (2d − 2)-Hyperclique by invoking the assumed algorithm for the

Two-sided d-Uniform Max-Weight Hyperclique problem.

�

References

[1] Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences of falsifying

SETH and the orthogonal vectors conjecture. In Proceedings of the 50th Annual ACM SIGACT Sympo-

sium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 253–266,

2018.

[2] Pankaj K. Agarwal and Jirı́ Matousek. On range searching with semialgebraic sets. Discrete & Com-

putational Geometry, 11(4):393–418, 1994.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between sets of

items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on

Management of Data, Washington, DC, USA, May 26-28, 1993., pages 207–216, 1993.

21

[4] Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path problem. J.

Comput. Syst. Sci., 54(2):255–262, 1997.

[5] Noga Alon, Troy Lee, Adi Shraibman, and Santosh Vempala. The approximate rank of a matrix and its

algorithmic applications: Approximate rank. In Proceedings of the Forty-fifth Annual ACM Symposium

on Theory of Computing, STOC 2013, pages 675–684, 2013.

[6] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for maximum weight

rectangles. In 43rd International Colloquium on Automata, Languages, and Programming, ICALP

2016, July 11-15, 2016, Rome, Italy, pages 81:1–81:13, 2016.

[7] Jon Bentley. Programming pearls: Perspective on performance. Commun. ACM, 27(11):1087–1092,

November 1984.

[8] Jon Louis Bentley. Algorithm design techniques. Commun. ACM, 27(9):865–871, 1984.

[9] Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams. Truly sub-cubic

algorithms for language edit distance and rna-folding via fast bounded-difference min-plus product. In

IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,

Hyatt Regency, New Brunswick, New Jersey, USA, pages 375–384, 2016.

[10] Timothy M Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM Journal on

Computing, 39(5):2075–2089, 2010.

[11] Timothy M Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T Wilkinson.

Linear-space data structures for range mode query in arrays. Theory of Computing Systems, 55(4):719–

741, 2014.

[12] Michael J Fischer and Albert R Meyer. Boolean matrix multiplication and transitive closure. In 12th

Annual Symposium on Switching and Automata Theory, SWAT 1971, pages 129–131. IEEE, 1971.

[13] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Constructing effi-

cient decision trees by using optimized numeric association rules. In Proceedings of 22th International

Conference on Very Large Data Bases, VLDB 1996, September 3-6, 1996, Mumbai (Bombay), India,

pages 146–155, 1996.

[14] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Data mining using

two-dimensional optimized accociation rules: Scheme, algorithms, and visualization. In Proceedings

of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec,

Canada, June 4-6, 1996., pages 13–23, 1996.

[15] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Data mining with

optimized two-dimensional association rules. ACM Trans. Database Syst., 26(2):179–213, 2001.

[16] François Le Gall. Powers of tensors and fast matrix multiplication. In International Symposium on

Symbolic and Algebraic Computation, ISSAC 2014, Kobe, Japan, July 23-25, 2014, pages 296–303,

2014.

[17] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J. Comput., 24(3):494–

504, 1995.

22

[18] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for shortest

cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1236–1252,

2018.

[19] Jiri Matousek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186, 1992.

[20] Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights. In

40th Annual Symposium on Foundations of Computer Science, FOCS 1999, 17-18 October, 1999, New

York, NY, USA, pages 605–615, 1999.

[21] Tadao Takaoka. Efficient algorithms for the maximum subarray problem by distance matrix multipli-

cation. Electr. Notes Theor. Comput. Sci., 61:191–200, 2002.

[22] Hisao Tamaki and Takeshi Tokuyama. Algorithms for the maxium subarray problem based on matrix

multiplication. In SODA, volume 1998, pages 446–452, 1998.

[23] Virginia Vassilevska and Ryan Williams. Finding a maximum weight triangle in n3−∆ time, with

applications. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,

pages 225–231. ACM, 2006.

[24] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proceed-

ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,

May 19 - 22, 2012, pages 887–898, 2012.

[25] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In

Proceedings of the International Congress of Mathematicians, page to appear, 2018.

[26] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path, matrix,

and triangle problems. J. ACM, 65(5):27:1–27:38, 2018.

[27] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor.

Comput. Sci., 348(2-3):357–365, 2005.

[28] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the forty-sixth

annual ACM symposium on Theory of computing, pages 664–673. ACM, 2014.

[29] Kunikazu Yoda, Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Computing optimized rectilinear regions for association rules. In Proceedings of the Third Interna-

tional Conference on Knowledge Discovery and Data Mining KDD 1997, Newport Beach, California,

USA, August 14-17, 1997, pages 96–103, 1997.

[30] Raphael Yuster. Efficient algorithms on sets of permutations, dominance, and real-weighted APSP.

In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009,

New York, NY, USA, January 4-6, 2009, pages 950–957, 2009.

[31] Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM,

49(3):289–317, 2002.

23

A Derandomization of the Main Algorithm

The only randomness used by the algorithm is to sample random jr ∈ [n] in Phase 2. In order to remove

this randomness, we need to first define the following notion of approximately relevant triples.

Definition A.1. A triple (i, k, j), where k ∈ I(k′), j ∈ I(j′) for some k′, j′ divisible by ∆, is called

approximately relevant if

∣

∣

∣
Ai,k +Xk′,j′(k)

TYk′,j′(j)− C̃i,j

∣

∣

∣
≤ 4W .

Approximately relevant triples are strongly related to weakly relevant triples by the following lemma.

Lemma A.1. Any weakly relevant triple (i, k, j) is also approximately relevant.

Proof. Consider

∣

∣

∣

(

Ai,k +Xk′,j′(k)
TYk′,j′(j)− C̃i,j

)

−
(

Ai,k +Bk,j − C̃i,j

)
∣

∣

∣

=
∣

∣Xk′,j′(k)
TYk′,j′(j)−Bk,j

∣

∣ ≤W

Therefore, by the simple inequality ||a| − |b|| ≤ |a− b|, we know that

∣

∣

∣

∣

∣

∣
Ai,k +Xk′,j′(k)

TYk′,j′(j)− C̃i,j

∣

∣

∣
−
∣

∣

∣
Ai,k +Bk,j − C̃i,j

∣

∣

∣

∣

∣

∣
≤W.

For any weakly relevant triple (i, k, j),
∣

∣

∣
Ai,k +Bk,j − C̃i,j

∣

∣

∣
≤ 3W by definition. Since the difference

between it and

∣

∣

∣
Ai,k +Xk′,j′(k)

TYk′,j′(j) − C̃i,j

∣

∣

∣
is bounded by W , the latter cannot exceed 4W , which

means (i, k, j) is approximately relevant. �

Therefore, in order to cover approximately relevant triples, when computing Ar ⋆ Br, we need to keep

all entries of Ar that have absolute value at most 5W , but it won’t change time complexity.

After we sample some jr , if the number of uncovered, approximately relevant triples is O(n3/ρ), then by

Lemma A.1, the number of uncovered, weakly relevant triples is O(n3/ρ) as well. In the rest of this section,

we show how to deterministically choose the set of jr , so that the number of uncovered, approximately

relevant triples is O(n3/ρ) after computing Ar ⋆ Br for all jr.

We first notice that a triple (i, k, j) is approximately relevant if and only if Ai,k +Xk′,j′(k)
TYk′,j′(j)−

C̃i,j ≤ 4W , since this quantity can never be smaller than −4W . Fix i′, k′, j′, i ∈ I(i′). For every j ∈ I(j′),

we add the point

[

−C̃i,j

Yk′,j′(j)

]

to the geometric data structure. This takes Õ(n3/∆) time. Then for each

k ∈ I(k′), we use the geometric data structure to list points in the half-space

[

−Ai,k

Xk′,j′(k)

]T

x ≤ 4W . It will

take Õ(n3 · ∆−1/⌊(d+1)/2⌋) + O(total number of points listed). For each (i, k) pair, if we stop listing j as

soon as we get n/ρ values of j, the total number of points listed would be O(n3/ρ).
Finally, for the (i, k) pairs that have less than n/ρ values of j listed, we ignore these pairs . For every

other pair (i, k), we have a set S(i, k) that contains n/ρ values of j such that (i, k, j) is approximately

relevant. We need to find a set of jr that intersects with each of these S(i, k) sets. By the standard greedy

algorithm for hitting set/set cover, we can choose Õ(ρ) different jr in Õ(n3/ρ) time, so that each S(i, k)
contains at least one jr we choose.

The other parts of the algorithm proceed similarly, and it will have the same running time as the ran-

domized version.

24

B Limitation of the Reduction Path for Constant Weight Maximum Subar-

ray

Our conditional lower bound in Section 7.2 first reduces a hardness problem to the Central Maximum

Subarray Sum problem, and then to the Maximum Subarray problem. Backurs et al. [6] use a similar

strategy in their reduction. Vassilevska W. and Williams [26] also have an intermediate problem in their

reduction from Negative Triangle to 2D Maximum Subarray. This intermediate problem, similar to the

Central Maximum Subarray Sum problem, also weights a subarray based on the values on the corner of the

subarray.

The Central Maximum Subarray Sum problem, though nicely fits in all these previous reductions to

Maximum Subarray, has a major limitation as the intermidiate problem: if the weights of the array are

bounded integers, then there exists an Õ(n2d−4+ω) time algorithm that solves the Central Maximum Sub-

array Sum problem. It means that, in order to prove an lower bound larger than n2d−4+ω for Maximum

Subarray, we need to find some other alternative intermediate problem.

Claim 1. Given a d-Dimensional Central Array A, such that all entries of A are integers bounded by some

constant, there exists a Õ(n2d−4+ω) time algorithm that computes Central Maximum Subarray Sum of A.

Proof Sketch. When d > 2, we can exhaustively enumerate all possible values of the first d− 2 dimensions,

and weights of the remaining 2D problem can be at most 2d−2 times larger than the original weights. When

d is a constant, the resulting 2D problem also has entries bounded by a constant. Therefore, it is sufficient

to show an Õ(nω) algorithm for the 2D case.

The 2D case is similar to Tamaki et al.’s algorithm for 2D Maximum Subarray [22]. Using Min-Plus

product for matrices with bounded integer weights, we can compute in Õ(nω) time, for every x1 < 0 < x2,

1) dx1,x2 = max
y1<0
{Ax1,y1 +Ax2,y1} , 2) ux1,x2 = max

y2>0
{Ax1,y2 +Ax2,y2} .

Then the central maximum subarray sum of A is maxx1<0<x2 (dx1,x2 + ux1,x2). �

25

	1 Introduction
	1.1 Our results
	1.1.1 New Subcubic Min-Plus Products.
	1.1.2 Applications.

	2 Preliminaries
	3 Improvement over Min-Plus Product with One Bounded-Entry Matrix
	4 Main Algorithm
	4.1 Phase 1: Approximated Min-Plus Product
	4.2 Phase 2: Create Estimate Matrix by Random Sampling
	4.3 Phase 3: Enumerate Strongly Relevant and Uncovered Triples

	5 Application I: Geometric APSP
	6 Application II: Batch Range Mode
	7 Application III: Maximum Subarray with Bounded Entries
	7.1 Tight Lower Bound for d-Dimensional Maximum Subarray
	7.2 Lower Bound for Maximum Subarray with Bounded Weight

	A Derandomization of the Main Algorithm
	B Limitation of the Reduction Path for Constant Weight Maximum Subarray

