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Abstract— This work proposes a fusion mechanism that 

overcomes the traditional limitations in vision-guided 
micromanipulation in plant cells. Despite the recent 
advancement in vision-guided micromanipulation, only a 
handful of research addressed the intrinsic issues related to 
micromanipulation in plant cells. Unlike single cell 
manipulation, the structural complexity of plant cells makes 
visual tracking extremely challenging. There is therefore a need 
to complement the visual tracking approach with trajectory 
data from the manipulator. Fusion of the two sources of data is 
done by combining the projected trajectory data to the image 
domain and template tracking data using a score-based 
weighted averaging approach. Similarity score reflecting the 
confidence of a particular localization result is used as the basis 
of the weighted average. As the projected trajectory data of the 
manipulator is not at all affected by the visual disturbances such 
as regional occlusion, fusing estimations from two sources leads 
to improved tracking performance. Experimental results 
suggest that fusion-based tracking mechanism maintains a 
mean error of 2.15 pixels whereas template tracking and 
projected trajectory data has a mean error of 2.49 and 2.61 
pixels, respectively. Path B of the square trajectory 
demonstrated a significant improvement with a mean error of 
1.11 pixels with 50% of the tracking ROI occluded by plant 
specimen. Under these conditions, both template tracking and 
projected trajectory data show similar performances with a 
mean error of 2.59 and 2.58 pixels, respectively. By addressing 
the limitations and unmet needs in the application of plant cell 
bio-manipulation, we hope to bridge the gap in the development 
of automatic vision-guided micromanipulation in plant cells.  

I. INTRODUCTION 

Advancement of cell manipulation techniques has been 
greatly accelerated by the development of automated 
micromanipulation systems which equip the users with 
unprecedented performance and ease of operation [1]. While 
existing robotic micromanipulation systems are readily 
capable of single cell manipulation, the technology is not fully 
leveraged for micromanipulation application in plant cells. 
Therefore, most plant cell manipulation procedures still rely 
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on manual control, thus the success rates highly depend on the 
operator’s experience. Accuracy and repeatability of the study 
is hardly guaranteed under demanding working conditions. 
Hence, there remains a gap in extending current 
state-of-the-art robotic micromanipulation development to 
work on plant cells.  

The unique structural properties of plant cells make 
micromanipulation task like microinjection a lot more 
challenging compared to the manipulation of single animal 
cell [2, 3]. Figure 1 depicts the images of the plant cell 
specimen and the tool in a common scene. As the tool interacts 
with the multiple layered array of plant cells, scene cluttering, 
and regional occlusion of tool tip make conventional visual 
tracking approach challenging, if not impossible. Difficulty in 
predicting such visual uncertainties further impose limitations 
on how cell manipulation is carried out. Development in 
vision-guided micromanipulation in plant cells is rarely 
explored because of these technical challenges. Nevertheless, 
bio-manipulation of plant cells has potentially important 
applications including the introduction of genetic material into 
plant cells to study plant transformation [4, 5].   

 
Figure 1.  Microscopic image of (a) plant cell array (b) with a microholder. 

To address the unmet needs, we proposed a fusion 
mechanism that combines trajectory and visual tracking data 
to overcome tracking failures in the complicated scene 
associated with multiple layers of plant cell arrays. The 
proposed fusion mechanism adjusts the influence of the 
trajectory data from the robotic task space based on a visual 
tracking score. The contribution is therefore a cooperative 
fusion method, which automatically adjusts the weightage of 
the trajectory data in event of poor confidence in visual 
tracking inferred from a low similarity score. Doing so 
overcomes the limitations of vision-guided 
micromanipulation for plant cells.   

In the next section, we will begin with a literature review 
to survey relevant state-of-the-art development and limitations 
of existing practices to identify the gaps. Details of our 
proposed method will be discussed in Section III followed by 
a description of the experimental setup for evaluation in 
Section IV. Finally, results and discussion will be presented in 
Section V before concluding the paper by stating the 
significance and potential development in the future.  
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II. LITERATURE REVIEW 

Existing vision-guided systems, including our previous 
work, for cell manipulation applications will be reviewed in 
this section. Emphasis of the discussion will be on the gap in 
existing systems to extend for plant cell manipulation. A 
relevant development [6] associated with plant cell 
manipulation applications will also be reviewed in this 
section.  

Development in vision-guided micromanipulation has 
contributed greatly towards the advancement of automated 
cell manipulation [7-9]. Vision-guided approach for 
micromanipulation involves integrating the vision and the 
control of the microscope and micromanipulator, respectively. 
This integration procedure between the vision sensing and 
motion actuation is achieved by system calibration [10-16], 
which essentially establishes the mapping function between 
the coordinates of the motion actuation task space and the 
image sensing domain [17, 18]. 

In our previous work, we developed a portable and 
easy-to-deploy framework [19] that leverage uncalibrated [20] 
vision-guided micromanipulation with self-initialization [21] 
to achieve a self-contained manipulation system. The 
advantage of the self-contained system is that no tedious 
calibration procedure is required before the study. This offers 
great ease of integration and operation to the user which is 
essential for most onsite cell manipulation procedures. 

Despite extensive research and development in 
vision-guided micromanipulation, including our previous 
work [20, 21], automated system for plant cell manipulation 
has not been substantially explored. There remains a gap in 
dealing with scene uncertainty and visual disturbances even 
for single cell procedures. Hence, we designed a method that 
identifies the appropriate tracking mode to adopt using prior 
knowledge of the scene. This is done based on the detected 
geometry and position of the cell specimen. The result is a 
self-reinitialization and -recovery method for uninterrupted 
visual tracking under tool-specimen interaction [22]. The 
recognition and localization steps of the cell are realized using 
previously developed cell detection method [23]. However, 
making use of known conditions to switch tracking mode, has 
limited the contribution towards automatic vision-guided 
micromanipulation. This calls for a more generalized 
workflow for fusion of multiple trackers.  

Some interesting studies carried out on plant cell 
manipulation can be found in the existing literature [6, 16]. 
Han et al. developed a vision-based technique for plant cell 
microinjection using an autofocusing algorithm [6]. The main 
contribution of this work is to align the microneedle tip and 
target cell on the same imaging plane. The proposed injection 
strategy is not executed with a vision feedback driven 
track-servo mechanism. Hence, problems associated with 
visual tracking of the microneedle are not extensively 
discussed. In [16], the authors adopt an explicit calibration 
approach to establish a relationship between world coordinate 
system and image coordinate system before using modified 
2D-to-2D SSD feature tracking method for small cell 
injection. Despite the development and interest shown in plant 
cell related applications, hardly any research addressed the 
challenges unique to visual track-servo in plant cell 

manipulation using an uncalibrated setup. Therefore, this 
work is motivated by the existing gaps and limitations 
identified in the current systems, including our previous work 
and the latent need to incorporate robust vision-guided control 
for plant cell manipulation. 

III. FUSION OF TRAJECTORY DATA AND VISUAL TRACKING 

A. Conceptual Overview 
The vision-guided manipulation for plant cells consists of 

1) Visual track-servo framework, 2) Homography-based 
mapping of task space to image domain and 3) Score-based 
weighted averaging to combine the two sources of data. In 
essence, the concept is to combine tool tip trajectory executed 
by the micromanipulator with the visually tracked path of the 
tip in the microscope image. 

A flowchart illustrating the workflow of the vision-guided 
manipulation is depicted in Figure 2. The fusion mechanism of 
the two data sources, namely, manipulator trajectory and 
tracked path of the tool in the image are combined by 
procedures demarcated by the dotted blue cluster. A projective 
homography is estimated using initial corresponding data 
between the trajectory and image coordinates. The estimated 
homography is then used to map the trajectory from the task 
space to the image domain. The projected trajectory is then 
combined with the tip path in image coordinates using a 
score-based weighted averaging approach.   

 
Figure 2.  Workflow of the fusion mechanism; xS and uS denote step input 

in robot task space and image coordinates in camera frame, respectively.   

1) Visual Tracking in Image Domain 
Vision-guided micromanipulation is carried out using a 

track-servo framework and the DFTS workflow algorithm 
designed previously in [19, 21]. As introduced in Section II, 
the framework uses a practical approach to achieve 3D 
manipulation through 2D microscopy and image-based 
technique to automate initialization for the tracking of the tool 
tip. The 3D manipulation is achieved by template-based 
tracking and score-based depth compensation method detailed 
in Section III-B. The latter uses similarity score of the 
template to maintain the tool tip in the focal plane during the 
manipulation. This vision-based control is a self-reliant 
approach that is based purely on images of the scene. Through 
visual tracking the path uS of the tip manipulation can be 
obtained. 

As the feedback is solely based on vision, any form of 
visual occlusion or scene disturbance will have detrimental 



  

influence on the vision-based control. There is a need to 
incorporate trajectory data from the manipulator to enhance 
tracking of the tool tip. However, it is impractical, if not 
impossible, to localize the tool tip based on the forward 
kinematics of the multi-body systems as the trajectory 
information from the manipulator is in the order of 
micrometers. Physical disturbances like micropipette 
deflection and vibration are easily amplified in the microscale 
level. Therefore, we explore the option of fusing trajectory 
information with our previously developed track-servo 
method. 

2) Mapping Trajectory to Image Domain 
To address the limitations in pure vision-based tracking 

during micromanipulation application in plant cells, we 
incorporate trajectory data from the manipulator by mapping 
them to the image domain. Instead of performing a 
robot-camera calibration and the forward kinematics of the 
manipulator system, we use a projective homography to map 
the trajectory to the image domain. Doing so works around the 
influence of large uncertainty associated with performing 
forward kinematics of the entire multibody system of the 
manipulator. 

The homography matrix projects a set of points to a 
particular plane. Since the micromanipulator is mounted 
rigidly with respect to the microscope camera, there exists a 
homography that project the planar trajectory to the image 
plane [24]. Our goal is hence to estimate a homography that 
best describes the relationship between the two planes using 
known point correspondences. This estimated homography 
can be used to map subsequent trajectory data to the same 
image plane during the process of vision-guided manipulation 
as explained in Section III-C. Projecting these data points to a 
common image plane where visual tracking is based on, 
allows comparison and data fusion for better estimates. 
However, physical disturbance from the environment can 
compromise the initial assumption about the existence of 
single homography, hence there is a need for fusion with 
visual information.     

3) Fusion of Tracking Data  
Finally, the template matching score discussed in the 

visual tracking section is used to infer the certainty of the 
template tracking data. The score acts as a weight that adjusts 
the linear combination of the two sources of estimation. When 
there is partial occlusion or visual disturbance in the vicinity of 
the tool tip, the score will fall leading to diminishing influence 
on the final estimate. The trajectory data on the other hand will 
receive higher weightage. This mechanism is therefore scene 
sensitive and naturally shift the weighting of estimation 
sources based on the quality of the visual tracking outcome. 
The result is an adaptively adjusted linear combination of the 
tracking sources.  

B. Visual Track-Servo Framework  
The visual track-servo framework developed in our 

previous work will be presented concisely to ensure a 
self-contained discussion.  Figure 3 gives a general overview 
of the framework configuration and the workflow. Interested 
readers may refer to our previous work on self-initializing and 
unified track-servo mechanism in the DFTS framework [21]. 

1) Template Match 
A region of interest surrounding the focused tool tip is 

registered as a template for visual tracking during the 
manipulation. For a given image frame during the operation, 
the template is compared against patches of neighborhood 
pixels. For a specific patch with center pixel (u,v), a score w is 
computed from the normalized cross-correlation of the 
template g with the associated patch f. The cross-correlation 
wcc(u,v) at image coordinates (u,v) of a template patch g(p,q) 
and the image f(p,q) is expressed as  
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for a P x Q patch and U x V image. To further account for the 
sensitivity of cross-correlation index due to intensity 
variation, (1) is re-expressed as the normalized 
cross-correlation coefficient 
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where ( )( ),G g p q g= −  and ( ) ( ), ,F f p u q v f u v= + + − . 

Notation g  and f  represent the mean intensity value in the 
template and the overlapping region, respectively.  

The tracked location of the tool tip is at the pixel 
coordinates associated with the maximum score. The 
template-based matching method is iteratively carried out over 
the sequence of images to localize the tool tip position and 
tracks its motion. However, this step only localizes the tip 
position in 2D image coordinates. As we do not require the 
micromanipulator to be planarly aligned with the image plane, 
there is a need to manipulate the motion in 3D space such that 
the trajectory is maintained within the focal plane. This 
requires motion in the z-axis which can be carried out using 
the method to be described in the next section. 

 
Figure 3.  General overview of the visual track-servo framework. 



  

2) Similarity-Score-Based Depth Compensation 
Our vision-guided control uses the similarity score to 

compensate the depth of the tip keeping it in focus. As the x- 
and y-axis manipulates the tip to its target, z-axis of the 
manipulator compensates for the deviation from focal plane 
concurrently. The aim is to maximize the similarity-score 
while actuating the manipulator joints. Doing so ensures that 
the tool tip is manipulated in the focal plane because the 
similarity between the template and a detected patch is 
maximum when the tip is in focus. Similar assumption 
regarding similarity score-maximizing has been used in 
existing systems [7, 8] to focus tool tip. These systems, 
however, do so before manipulating the tool tip i.e. the tip 
focusing is done as a separate step from visual servo. In a 
gradient ascending fashion, the z-position of the manipulator 
is adjusted online during manipulation such that the score is 
maintained at maximum. As shown in the pseudocode in 
Table I, the tool tip is adjusted in the z-direction by Δz such 
that change in Δw reduces to a specified tolerance tol.   

TABLE I.  PSEUDO- CODE FOR ADAPTIVE COMPENSATION 

Gradient Ascending Updating Algorithm 

1. initialize  
2.    Δz:= Δw:=tol;  
3.    w:= acompute_score(g,f); 
4. loop while Δw > tol 
5.    Δw:= w- compute_score(g,f); 
6.    Δz:= Δz* bsgn(Δw); 
7.    w:= compute_score(g,f); 
8. end loop 

a. compute_score() denotes a function that implements Equation 2   b. sgn() extracts the sign 

C. Homography-Based Projection of Trajectory Data  
Our proposed method estimates a projective homography 

H project  to map the trajectory of the micromanipulator in the 
task space to the image domain. This is based on the 
assumption that there exists a projective transformation which 
projects the planar trajectory data xSrobot from the task plane 
P x  to the image plane P u  such that the projected data uSrobot 
align with the visual tracked trajectory uScamera as illustrated in 
Figure 4.  

 
Figure 4.  Mapping of robot trajectory in task plane to image coordinates 

in camera frame.  

The objective is therefore to estimate the homography. 
This can be done by maximizing the inliers using the 
RANSAC algorithm for a projective transformation 
relationship. 

For N randomly selected samples, uScamera and xSrobot are 
removed if the algebraic distance  

     ( )( ) 2 2
projnorm , : ( ) ( )u x

camera robot i k u j k v∏ = − ⋅ − − ⋅Hs s     (3) 

is greater than the threshold τ. As the visual servo loop 
terminates when the error is less than + 3 pixels, τ is assigned 
to be 6 pixels in order to be comparable to the control 
precision. Notation П denotes the projection of xSrobot via an 
estimated 3 by 3 homography matrix Hproj [24, 25]. Variables 
i, j and k are the unnormalized image projection coordinates 
of the tool tip such that 
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x
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k k = H s .     (4) 

The value of N is updated dynamically based on the 
proportion of identified inliers, according to the original 
RANSAC algorithm [26, 27]. By iteratively updating the 
estimated projective matrix Hproj until the distance metric M 
of n points, 

  ( )projthreshold norm , : ,M Hs s
m m

u
camera robot

n
x τ  = ∏    ∑   (5) 

converges, an optimal homography producing the maximum 
number of inliers is obtained. Finally, the estimated Hproject is 
used to transform xSrobot to uSrobot for subsequent cooperative 
form of fusion as will be discussed in the next section.  

D. Template Match Score-Based Data Fusion  
The position of the tool tip is estimated using the weighted 

average of the visual tracking data in the image domain with 
the projected trajectory data. As the similarity score w 
measures how much, a neighbourhood of pixels matches a 
template of the tool tip, it can therefore be used to indicate the 
confidence of the visual tracking data point.  

The score of the template match is a good indication of 
how well a specific region of interest is likely to be the tracked 
object. However, unlike single cell microinjection, the 
background is not homogenous but cluttered and occluded by 
cells as the tool approaches and interacts with the specimen as 
seen in Figure 1. Our previous method of motion cue and 
block template-based tracking could not work well in such 
situations. Despite the advantage of a unified visual 
track-servo framework [20, 21] that can manipulate the tool in 
3D, the introduction of multiple layered arrays of plant cells 
undermines the accuracy of visual tracking. As it is non-trivial 
to detect the structural geometry of the specimen to perform, 
previous method of self-initialization and recovery tracking 
[22] is not suitable. Pure vision-based tracking has limitation 
in tool tracking with plant cell specimen in the scene. There is 
a need to fuse trajectory information from the robot coordinate 
system which is mapped to the image domain using the 
previously estimated projective homography.  

For a pair of corresponding estimates (uSrobot, uScamera), the 
normalized weighted average of the estimates is expressed as 

 ( )( )1s H s su x u
project robot cameraw w= − + , (6) 

where w is the similarity score derived in (2). The final 
estimate uS is subsequently used as the feedback for the 
track-servo mechanism in our plant cell micromanipulation 
application. This fusion of complementary data sources 
combines trajectory and visual information. The former and 



  

latter are robust individually against visual disturbances and 
mechanical uncertainties, respectively. Therefore, it is 
expected to minimize the influence from both kinds of 
uncertainties by combining them. Probabilistic fusion 
methods like Kalman Filter requires historical temporal data to 
make estimates which makes them slow in responding to 
unforeseen visual disturbances. The simplistic fusion method 
we proposed neither requires additional information nor 
makes assumptions based on previous data, thus provides 
robust visual tracking for micromanipulation.  

IV. EXPERIMENTAL SETUP 

Experiments were carried out using the portable 
micromanipulation platform developed in our previous work 
[19] as shown in Figure 5. This setup essentially demonstrates 
the feasibility of our long-term research goal of bringing 
vision-guided micromanipulation outside laboratory 
environment. Furthermore, it facilitates our proposed method 
for plant cell manipulation under more challenging working 
conditions. 

Microscopic imaging of the plant specimen is acquired at 
30 frames-per-second using a portable digital USB 
microscope (AM4515T8 Dino-Lite Edge Series, AnMo Corp., 
Taiwan) which has a 1.3 Megapixel CMOS color image 
sensor. It comes with a continuous magnification range of 
700x to 900x and built-in LED illumination source. For the 
experiments, a fixed magnification factor of 860x is used to 
acquire clear images of both plant cells and micro-holder. 
3-axis motorized Cartesian micro-stages (8MT173; Standa 
Ltd., Lithuania) are used for manipulation. Each micro-stage 
has a resolution of 1.25µm/step and a workspace of 20mm. A 
dedicated multi-axis controller (8SMC4; Standa Ltd., 
Lithuania) which interfaces to workstation computer through 
USB is used to control the actuation of micro-stages. The 
vision-guided micromanipulation is carried out at a speed of 
6.25µm/s. An aquatic plant named Elodea which contains two 
layers of cell arrays is used as the plant cell specimen for the 
feasibility test. Each cell of the specimen is approximately 
20-30µm wide and 60-130µm long.  

 
Figure 5.  Experimental system and setup. 

V. RESULTS AND DISCUSSION 

The experiments were designed to evaluate performance 
of fusion-based tracking mechanism on qualitative 
observations and quantitative evaluation. The objective of the 
experiments is to demonstrate the feasibility of the proposed 
method under the presence of plant cells with several practical 
scenarios including different levels of partial occlusion and 

non-occlusion of the ROI. The structural complexity of the 
plant cell array complicates the scene by creating partial 
occlusion of the tracking ROI. Therefore, this makes visual 
tracking more challenging where most of the conventional 
visual tracking methods would fail. The fusion-based tracking 
mechanism is compared against score-based template tracking 
and projected trajectory of the manipulator in the next two 
subsections. Details about video demonstration of the tracking 
workflow is also presented in the latter part of the discussion. 

A. Qualitative Observations  
Discrepancies in the localization results of different 

tracking methods can be identified through visual inspection 
of the tracked tool tip. Therefore, a detailed discussion is 
provided highlighting the reasons for differences in visual 
observations.  

 
Figure 6.  Similarity score profile of the base template along square 

trajectory; score drops from 0.6 to 0.3 along linear path B.  

A square trajectory consisting of 4 linear segments is 
executed with vision guided micromanipulation under the 
presence of plant cells. Figure 6 shows the similarity score 
profile of the base template depicting the variations as the tool 
tip moves along the square path. It can be observed that 
similarity score falls below 0.6 at the start of path B and 
further drops closer to 0.3 as the tool tip reaches the point of 
interaction with the specimen. This clearly illustrates the 
adverse effect on score-based template tracking as a result of 
partial occlusion of the tracking ROI. However, this approach 
is essential for our unified track-servo method [20] to perform 
3D servoing based only on 2D microscopic imaging 
information. Hence, the goal of the fusion-based method is not 
to completely outperform traditional template tracking but to 
leverage our previous work while overcoming the limitations 
of template tracking. 

 
Figure 7.  Superimposed microscope images during visual tracking.  



  

The problem of tool tip localization error which typically 
leads to tracking failure is demonstrated in Figure 7. It can be 
observed that score-based template tracking resulted in an 
incorrect localization of the tracked tool tip in the vicinity of 
the plant cells. This is due to relatively low similarity score 
inferred as low as 0.3, when tracking ROI is partially occluded 
by the specimen. Based on this observation, it suggests that 
similarity score is a good confidence measure to identify the 
failing tracker. Since micromanipulator trajectory is not 
affected by the scene uncertainties, it can be exploited to 
minimize the localization error. Fusion-based tracking 
mechanism continues to place a favourable weight on 
trajectory information under occlusion condition and make an 
accurate localization estimate as seen in Figure 7. 

The tracking performance of the tool tip under the 
presence of plant specimen is illustrated in Figure 8. Both 
template tracking and projected manipulator trajectory failed 
to demonstrate accurate localization in path B. Inaccuracy in 
template tracking in path B is expected because it is the closest 
path (out of the four segments) to the plant cell structure which 
introduces substantial amount of partial occlusion to the 
tracking ROI. It can also be seen that template tracking 
completely failed at the end of path B where tool comes to an 
interaction point with the specimen. Moreover, the innate 
uncertainty of the micromanipulator contributes to the 
tracking errors in the projected trajectory. However, 
fusion-based approach demonstrates its ability to overcome 
such limitations in template tracking and leverage trajectory 
information to estimate an accurate localization. This 
observation suggests that fusion-based method can effectively 
reduce the risk of tracking failures and improve the robustness 
of tracking under challenging scenes. Figure 8 further shows 
that tracking error of our proposed method is confined within 
that of original two sources of tracking data. Tracking 
performance for paths A, C and D, in which tracking ROI is 
not as badly affected as path B, will continue to perform better 
than the poorest performing tracker. 

 
Figure 8.  Tracking performance of the square trajectory; Error of path B is 

confined within that of orignal two sources of tracking data. 

B. Quantitative Evaluation 
In this subsection, a quantitative evaluation is presented by 

analyzing the tracking error along four straight line paths 
which forms a pre-specified square trajectory in the locality of 
plant cells as shown in Figure 9. The black square (in solid 

lines) represents the desired trajectory while color-coded data 
points denote the visually tracked tool tip in three tracking 
modes namely, template tracking, projected manipulator 
trajectory and fusion-based tracking. The four linear paths 
consist of 1137 frames in total are labelled as Path A (308 
frames), Path B (273 frames), Path C (265 frames) and Path D 
(291 frames). The perpendicular pixel distance between 
tracked data points and corresponding straight-line path 
(geometric error) is used to quantify the tracking error for each 
tracking method.  

 
Figure 9.  Overlay of images in square tracjectory in three tracking 

methods under the presence of plant specimen. 

Mean geometric error for all four segments of the 
trajectory with three tracking methods discussed earlier is 
reported in Figure 10. In general, fusion-based tracking 
performed better than both template tracking and projected 
manipulator trajectory by maintaining the lowest mean error 
of 2.15 pixels (=0.7525µm). Template tracking and projected 
manipulator trajectory has a mean error of 2.49 pixels 
(=0.8715µm) and 2.61 pixels (=0.9135µm) respectively. Each 
pixel represents 0.35µm by 0.35µm square in manipulator task 
space. The reported mean error is reasonable as the 
micromanipulator has a resolution of 1.25µm (=3.57 pixels) 
and vision-based control was executed with a tolerance of 3 
pixels. It should be noted that mean error of path B using 
template tracking and projected manipulator trajectory have 
similar performances with 2.59 pixels and 2.58 pixels, 
respectively. However, fusion-based approach succeeded in 
significantly reducing the mean error of path B to 1.11 pixels. 

 
Figure 10.  Geometric error of four linear segments; The weighted mean 

error of each tracking method is marked by color-coded straight line.  



  

C. Demonstration of the Tracking Workflow 
A video demonstration of the proposed fusion-based 

tracking workflow for plant cell manipulation application is 
presented in the attached media file. Firstly, the problem of 
visual tracking failure as a result of partial occlusion of the 
tracking ROI by cell specimen is illustrated. Secondly, the 
tracking performance of fusion mechanism is demonstrated by 
executing a desired square trajectory in the vicinity of plant 
cells.     

VI. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a fusion mechanism to combine 
two sources tracking data namely, template tracking and 
projected manipulator trajectory, using score-based weighted 
averaging. The main contribution of this work is to apply 
vision-guided micromanipulation in more challenging and 
fairly less explored area of plant cell applications by 
exploiting previously developed uncalibrated, self-initializing 
portable micromanipulation setup. Fusion-based tracking 
approach demonstrated the capability of overcoming 
limitations in traditional vision-based and calibration-based 
approaches and bringing the best of both worlds. By proposing 
scene adaptive fusion of vision and motion tracking, we hope 
to bridge the gap in extending vision-guided manipulation for 
plant cell studies. In general, it would allow cell biology 
research to be performed onsite rather than constraining the 
study to specific laboratory conditions. 

Our future work will focus on carrying out more 
application specific and realistic experiments in different 
types of plant cells with the presence of full occlusion. This 
includes but not limited to applications relating to transfer of 
genetic materials to/from plant cells. By doing so, we envision 
to realize our long-term research goal of extending 
vision-guided micromanipulation for plant cells beyond 
conventional laboratory environment thus positively 
impacting the way plant cell studies are being performed. 
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