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ABSTRACT  
 
Novel optical materials capable of advanced functionality in the infrared will enable optical designs that can offer light-
weight or small footprint solutions in both planar and bulk optical systems. UCF’s Glass Processing and Characterization 
Laboratory (GPCL) with our collaborators have been evaluating compositional design and processing protocols for both 
bulk and film strategies employing multi-component chalcogenide glasses (ChGs). These materials can be processed with 
broad compositional flexibility that allows tailoring of their transmission window, physical and optical properties, which 
allows them to be engineered for compatibility with other homogeneous amorphous or crystalline optical components. 
This paper reviews progress in forming ChG-based GRIN materials from diverse processing methodologies, including 
solution-derived ChG layers, poled ChGs with gradient compositional and surface reactivity behavior, nanocomposite bulk 
ChGs and glass ceramics, and meta-lens structures realized through multiphoton lithography (MPL).  
 
Keywords: chalcogenide glass, GRIN, multiphoton lithography, poled chalcogenide glass, optical nanocomposites, glass 
ceramics, integrated photonics 

1. INTRODUCTION 
Multi-component chalcogenide glass (ChG) compounds suitable for use in planar or bulk form have been prepared with 
the goal of creating advanced optical functionality beyond those of currently available materials. Recent advances have 
demonstrated the ability to compositionally tune not only optical properties (spectral window, coefficient of thermal 
expansion (CTE), refractive index, dispersion, dn/dT [1-6]) but also properties important to their bulk, planar or fiber 
optical fabrication (such as thermal and chemical stability [7-9], microhardness, toughness, post-molding relaxation 
behavior [10-12], compatibility with AR coating protocols [13]). Some of these attributes are especially important if the 
material is to be deployed in planar photonic systems where stability (to thermal decomposition, phase separation, 
scattering) can define suitability or limit the material’s use in an optical design. Over the past decade, CREOL’s Glass 
Processing and Characterization Laboratory (GPCL) team members and our collaborators, have made notable advances 
in developing new material systems, demonstrating they can be scaled up beyond the laboratory scale with commercial 
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partners [14], and most importantly, highlighting the flexibility in optical function enabled by the creation of low loss, 
manufacturing-process compatible compositions [15]. These compositions and their applications are presented and 
reviewed here, with the key aspects and suitability for diverse use environments, highlighted. Most specifically, examples 
whereby this process know-how has been applied to the creation of gradient refractive index (GRIN) applications in the 
infrared (IR) spectral window are discussed. We include for completeness of our review, reference to other advances in 
materials for IR GRIN.  High-level details related to composition, process methodology and optical performance flexibility 
along with fabrication limitations based are presented.  

2. IR GRIN MATERIALS 
Over the course of the last decade, advances in materials research resulting in gradients in refractive index (GRIN) as well 
as gradients in other physical properties, have been extended to the infrared. These materials are attractive in areas such 
as color- or aberration correction and offer possible advantages as compared to other diffractive or refractive optical 
approaches [16]. Strategies developed for visible materials (glasses and polymers) such as ion exchange and 
lamination/inter-diffusion [17-24] have been attempted in the infrared with varying levels of success. These technologies 
differ in their approaches and compatibility to large scale manufacturability and are at varying levels of progress towards 
commercialization. Clearly, the interest in developing next generation devices for commercial or defense applications will 
benefit from an ability to integrate optical function into smaller, more compact packages. This process, enhancing SWAP 
(size, weight and performance/power) is the goal towards making lighter weight, smaller footprint systems. Most activities 
to date are examining use of GRIN materials for passive (un-doped) applications such as lenses or windows that do not 
require high (laser) power transmission where it is known that ChGs (typically evaluated in fiber form) do not perform 
well due to modest laser damage resistance and high optical nonlinearities [25-31]. 

Development of promising candidate materials and technologies in the infrared have been limited, but have seen recent 
interest from funding agencies and programs (such as DARPA’s M-GRIN program) which ran from 2010-2016 [32]). 
However, many advances that resulted from this program remain at the laboratory-scale, or have advanced to prototype 
level in their production, still awaiting further investment for design-specific development. That said, such technologies 
are aggressively sought after, as legacy crystalline materials cannot easily be manipulated in the same way that glass and 
glass ceramic materials can, to offer tailorable/tunable optical properties. Following a short summary of the state of the 
art, we discuss some of the key attributes and possible limitations of ChG-based GRIN material investigated by our team. 
Highlighted are key areas where these materials could benefit with further improvements possible with additional 
development. 

Table 1 reviews the current state of the art for IR GRIN, and summarizes each technology’s suitability to bulk and/or 
planar applications. Not discussed here but contained in the references shown are specifics as to the gradient in refractive 
index and dispersion, over defined spectral ranges. As is known, precise design tools and characterization methodologies 
for GRIN materials in the infrared are a technical challenge as metrology tools for this spectral region have often not been 
optimized for such components [33,34]. Included are key attributes that define possible limitations or opportunities unique 
to the technologies. Here, data is reported based on published aspects/values of performance for comparison. 
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Table 1. Infrared gradient refractive index (GRIN) technologies, attributes and possible limitations or opportunities. 

Technology: 
B- Bulk or 
P-Planar 

Key material and manufacturability 
attributes Possible Limitations or Opportunities Reference 

B: 
Laminated/inter-
diffused 
chalcogenide 
glasses 

Multi-component/index materials are 
laminated and thermal inter-diffusion results 
in a composition and refractive index profile 
associated with chemical mixing of glass 
constituents; no hard interface results; axial 
index modifications to ∆n=+0.4 (as 
measured in the NIR) have been 
demonstrated. 

Arbitrary 3-D profiles may not be possible due 
to intrinsic shape of diffusion profiles; stacking 
(for axial GRIN) is much easier than rod-in-tube 
for radial GRIN designs; post-diffusion molding 
(slumping) could be used to further change the 
bulk optic’s shape and performance. 

[35-38] 

B: 
Thermally 
Poled-
diffractive or 
refractive optics 

Mobile ion-containing bulk glass is 
subjected to a thermal poling process 
(applied electric field and temperatures near 
Tg) to create a composition gradient between 
electrodes; electrode patterning imparts 
gradient to composition profile with 
arbitrary shape (grating, micro-lens, etc) 
without transmission degradation. Index 
changes (∆n) to +0.05 in ChG shown with 
long-lived (>1.5 year) stability. 

Index modification occurs within near-surface 
anode region (typically 5 - 10 µm) within the 
volume; difficult to realize 2π phase shift. 
 
Same mechanism (space charge formation with 
ion migration) leads to creation of a χ2 and  
measurable second harmonic generation (SHG) 
within the amorphous glass. 
 
Surfaces are flat (< 100 nm RMS roughening) 

[39,40] 

B and P: 
Thermally- 
induced 
(furnace or 
laser-induced) 
crystallization to 
form glass 
ceramics 

Glasses (wide composition space available) 
which can undergo spatially-controlled 
nucleation and growth result in formation of 
a high index, nanocrystalline phase within a 
low(er) index glassy matrix; Gradient in 
volume fraction of crystallite leads to an 
effective refractive index change related to 
the volume fraction of crystal and its identify 
(refractive index). Nanocomposite GRIN 
structures (radial and/or axial) can be formed 
within a (linear) thermal gradient, via 
spatially-defined nucleation and 
homogeneous (temperature) growth, or 
through homogeneous nucleation and 
spatially varying (laser-induced) growth. 

Initial material must be low loss (high optical 
homogeneity) to realize index modification 
beyond that of base material. 
 
Formation of a glass ceramic results in 
intermediate thermal/mechanical properties. 
Tailoring the crystal phase (and its index) as well 
as the volume fraction defines the magnitude of 
index change (∆n); observed ∆n is base 
composition dependent but ranges to ~ 0.2 in the 
MWIR/LWIR. 
 
2π phase shift possible with high index base 
glass and large (film or bulk layer) thickness.  
Thick films must be CTE matched to substrate to 
avoid delamination. 

[41-43] 

B and P:  
Laser-induced 
vitrification 
(LIV) 

Glasses which have undergone controlled 
crystallization (nanocrystalline phase 
formation) are subjected to direct laser 
writing (DLW) which under specific 
irradiation conditions, leads to re-
amorphization; return of localized regions to 
the glassy state leads to patterns of index 
variation. 

Laser writing parameters are material specific.  
 
Within bulk or near-surface re-amorphization is 
possible.  Correlation of loss levels to irradiation 
conditions have not to date been optimized for 
all materials studied; diffractive elements have 
been fabrication but efficiency has not been 
quantified. 

[42,44,45] 

P:  
Solution- 
derived (SD) 
printing 

ChG powder dissolved in amine solutions 
are ‘inks’ which can be ‘printed’ onto 
substrates via spin coating (for axial GRIN) 
or via electrospray (for arbitrary film profile 
GRIN). Index profile limited by parent glass 
index and ability to coat to desired thickness 

Intermediate ChG layers must be heat treated to 
remove IR absorbing solvent; adjacent layer 
must not be soluble in target layer solvent; 
solvent choice, heat treatment protocol and 
solution viscosity requires optimization for 
optical quality film formation; 

[46] 

P:   
Chemical Vapor 
Deposition 
(CVD) 

Layer-by-layer deposition process (with 
varying gas fractions) creates refractive 
index variation proportional to fraction of 
parent crystal phase in an IR transmissive 
multiphase polycrystalline material. 
Processing resulted in thick films (up to) t ~ 
4 mm thick with a ∆n ranging from 0.2 - 0.6 
(measured at λ = 0.647 µm). 

CVD co-deposition of ZnS and ZnSe to form a 
ZnSSe material with a near-linear axial gradient. 
Physical property variation observed, with 
hardness (related to grain size), intermediate 
between the two end-points. Transmission was 
inferior to parent crystalline end points (ZnS and 
ZnSe) but improved following hot isostatic press 
(HIP) processing. 

[18] 

P:  
Laser induced 
photo-
polymerization 

Photo-sensitive ChGs (select compositions) 
are exposed to near-bandgap light inducing 
modification to cross-linking within glass 
film network. This enables etch selectivity 
between exposed and unexposed regions. 

Limited to ChG compositions which possess 
bonds that can undergo spatially-selective cross-
linking (or de-polymerization) upon exposure 
enabling patterning which becomes etch 
selective. Post-exposure pattern fidelity stability 
is composition specific. 

[47-49] 
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Specific attributes of key technologies developed by GPCL team members and collaborators are discussed in more detail 
below. 

2.1 Bulk GRIN materials 

2.1.1 GRIN by thermal poling 

Thermal poling of glass is a technology that has been known since the early 1990’s [50-52]. The process involves the 
application of an electric field across a specimen held at high temperature whereby mobile ions in the glass, usually alkali 
ions, can migrate in directions related to the induced field lines through the glass volume. This migration leads to the 
establishment of not only a localized depletion of alkali species, but the freezing in of an induced space charge. The 
structural re-organization of the poled glass leads to the formation of a material that is not only chemically modified, but 
also modified in its linear and nonlinear optical properties. Whether this re-organization and the physical properties it 
imparts to the post-poled material is permanent or prone to relaxation, depends on how the now moved mobile cation can 
be ‘stabilized’ or locked in, to the now ‘modified’ glass structure. 

Thermal poling of ChG materials has been known since the late 1990’s as a means to induce optical property modification 
[53,54] but has suffered from short term stability due to the low glass transition temperatures of these glasses and the 
relaxation of the post-poled structure with time, when aged near room temperature. Recently, we have demonstrated the 
ability to engineer the parent glass’ network structure to enable long-lived post-poling induced index change with tailorable 
magnitude and gradient shape through a nanoimprinting process [55]. This result enables the use of surface-modified bulk 
chalcogenide glasses as well as a variety of oxide glasses [55-60] to realize induced second harmonic generation (SHG), 
linear refractive index changes, as well as modification to surface chemical reactivity.    

Poling induces changes in physical properties to the local glass network, as shown in a sample specification sheet compiled 
for one glass composition following a specific (singular) set of poling conditions [Fig. 1]. Not discussed here, is that these 
conditions can be varied to change the shape of the post-poled alkali ion compositional profile, as well as the gradient in 
physical properties that results from the poling properties. Key attributes for the modification correlate with a partial 
depletion of mobile alkali ions from the anode surface which can be quantified through secondary ion mass spectrometry 
(SIMS) analysis (as shown in Fig. 2a). Figure 2b illustrates the optical transmission of the material through the infrared. 
Most impressive is the fact that through compositional tuning of the parent glass believed to yield defective bonding 
configurations with a net negative charge, these species serve to stabilize the post-poling mobility of the Na+ thereby 
‘locking in’ the induced properties over time. This provides needed charge compensation to the network and allows the 
resulting compositional gradient to be stable. The gradient in composition translates to a refractive index gradient which 
varies with the magnitude of alkali ion doping level, but is long-lived upon aging at room temperature. The induced ∆n is 
stable over temperature excursions (-40 - +80°C). By patterning the electrode associated with the poling process (i.e., to 
form circles or lines), this compositional profile can be imparted with shapes (i.e., microlenses or gratings) that can imprint 
optical function into the glass surface. The magnitude and gradient shape of the refractive index profile can be changed 
with variation in the electrode pattern shape and size. Shown in Fig. 3a, is the measured refractive index stability (at λ = 
4.5 µm) in a sample poled with unpatterned, homogeneous ITO anode and cathode coatings. As can be seen, the stability 
imparted by the compositional tailoring of the glass matrix leads to formation of a robust, index gradient. This can be used 
to create spatially varying composition and index gradients as shown for the micro-lens array (MLA) depicted in Fig. 3b. 
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Figure 1. Sample specification sheet for ChG µ-GRIN3 GeSbS (3 mol% Na2S) glass summarizing characteristic material 
properties 
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(a)                                                                                          (b) 

Figure 2. (a) SIMS profile of the compositional variation induced by thermal poling. The signal decrease of Ge, Sb and S at t 
= 6.5 μm is due to charging of the sample during the measurement, but illustrates the near-surface depletion of Na after poling. 
(b) Transmission spectrum (not corrected for Fresnel loss); sample thickness = 1.04 mm, sample diameter = 10 mm (as shown 
in figure 1 above). 

 

 
 

(a)                                                                                          (b) 

Figure 3. (a) post-poling refractive index stability measured over 32 weeks. The observed stability has now been documented 
beyond 1.5 years with no degradation to the magnitude of the compositional and refractive index change (Δn), or the material’s 
surface quality. (b) Qualitative measurements of the Δn profile of a µ-lens array (MLA), using phase imaging (Phasics 
SID4BIO) on B-3_P glass. Target dimensions of the MLA’s pitch was ~ 17 µm. 

2.1.2 Nanocomposite (glass ceramics) via spatially controlled nucleation and growth 

As part of DARPA’s MGRIN program initiated in 2010 and introduced by the Penn State-led team in our first presentation 
made at SPIE in 2016 [61], we have demonstrated the ability to compositionally tailor multi-component chalcogenide 
glasses (ChGs) to create multiple glasses with varying refractive indices which are amenable to controlled nucleation and 
growth of high index crystals within a low index matrix to create optical nanocomposites. The DARPA funded effort has 
focused on optimization of a GeSe2 – As2Se3 – PbSe (GAP-Se) glass material for use in the mid-infrared (MIR).   

Creation of an effective index, approximated by the refractive indices (n) and volume fractions (V) of the glass and 
crystalline phases, respectively, as shown in equation 1: 

 

                                                                   n
eff

 ≈ (V
glass

)(n
glass

)
 
+ (V

crystal
)(n

crystal
)                                                         (1) 
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suggests that by simply controlling the volume fraction of the respective phase(s) in the monolithic solid, it’s refractive 
index can be modified, to realize an effective refractive index, neff. If the secondary (crystalline) phase(s) have a higher 
index than the initial parent glass phase, this results in an increase in index. Controlling the spatial distribution of the 
nanocrystalline particles as depicted in the illustration shown in Fig. 4a along with strict control of their size and absorption, 
one can create a low loss optical nanocomposite. Such control over the desired low loss crystalline phase requires 
knowledge of the crystal phase’s nucleation rate (I) and growth rate (U) behavior, as illustrated in Fig. 4b for a 20 mol% 
PbSe material. Knowledge of each glass’ I-U behavior, discussed in detail for small experimental melts [62] and as a 
function of melt size [43], is critical to selecting an optimal time and temperature to create the desired crystalline phase.   

 
 
 

(a)                                                                                                  (b) 
Figure 4. Chalcogenide glass (ChG) GRIN lens where a gradient index is created through the spatial control of high refractive 
index particles embedded in a lower refractive index glass matrix [61]. 

 
Varying the high index ingredient (in this case the Pb content) in the parent glass, in itself, leads to a modification in the 
base material’s index and dispersion behavior. Shown for the five (5) compositions depicted in the GeSe2–As2Se3–PbSe 
ternary phase diagram in Fig. 5a (top), unique glasses with defined dispersion [Fig. 5a (bottom)] can be realized prior to 
any further heat treatment (HT). This variation in starting glass composition, defines what possible crystal phases can be 
realized following heat treatment. Figure 5b shows the possible crystal phases which can form across the Pb-series, 
following a single, unoptimized HT schedule. As is shown in the legend, the key crystalline phases which form (the volume 
fractions of which are defined by the precise time and temperatures used in the HT step) can include PbSe, As2Se3, Se and 
other AsSe and GeAsSe phases. As predicted by equation 1, the constituents in the glass are converted with heat treatment 
to form these crystal phases, thus depleting the glass (and changing its refractive index and volume fraction in the 
composite). This formation of crystal phases in the glass matrix, gives rise to a modification in the material’s transmission 
as depicted in Fig. 5c (top) as well as its refractive index and dispersion (Fig. 5c, bottom). Shown here for a fixed 
composition and heat treatment protocol, these specific conditions are variable enabling the tailoring of the composite to 
fit specific optical design needs. 
 
Recent efforts have demonstrated the ability to engineer the index and dispersion behavior in bulk and thin film forms [63] 
of GAP-Se materials with precision, including the ability to not only use laser-induced nucleation and/or growth to 
spatially control the localized crystal phase formation [42], but also the ability to locally induce vitrification (or re-
amorphization) of previously formed glass ceramics, to create a drop in refractive index by converting previously formed 
nanocrystals, back towards its initial, glassy state [45]. Such flexibility in both compositional design and processing routes 
will enable a wide variety of materials which can be tailored to fit applications across the infrared. 
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(a)                                                                      (b)                                                                     (c) 

Figure 5. (a) compositional glass forming within the GeSe2 – As2Se3 – PbSe (GAP-Se) material system (top) and 
corresponding MWIR-LWIR dispersion of the corresponding (color coded) compositions [from 61]. (b) crystal phase 
evolution upon heat treatment for GAP-Se glasses with various PbSe content (mol%) [44,61] (c) transmission of parent glass 
(pink) and post-heat treated glass ceramic (blue) of nanocomposite after defined heat treatment protocol; sample thickness, t 
= 2 mm, not corrected for Fresnel loss (top); pre- and post-heat treatment dispersion of glass and glass ceramic for the same 
composition as determined by spectroscopic ellipsometry. 

 
2.2 Planar GRIN materials 

2.2.1 3D printing of solution-derived ChG glasses 

Spatial control and variation of physical properties in IR transparent glasses is a desirable attribute that not only is useful 
in bulk optics but also in thin films which are compatible with other on-chip materials and components. Efforts by our 
team and others over the past decade have shown that ChGs are soluble in a variety of amine-based solvents [64]. First 
demonstrated by teams lead by co-authors Richardson [65-67] and Hu [68,69] with Craig Arnold at Princeton [68,70-72], 
we showed that solution-derived ChG films could be processed with physical properties closely matching that of the parent 
bulk material. These efforts, largely focused on chipscale integration of ChGs for sensing applications, and formed the 
basis of further activities aimed at doping with nanoparticles or quantum dots whereby luminescent behavior could extend 
the optical functionality of the films [73,74]. To aid in the physical dispersion of such particles to create tailorable optical 
function without quenching, coating techniques were further optimized to develop an electrospray (ES) technique [75,76] 
whereby particles could be contained within aerosol droplets which upon evaporation of solvent during deposition, 
particles would not undergo the typical agglomeration realized in spin coating and other coating techniques. Once 
optimized, ES was shown to be suitable for depositing multiple composition of ChG and enabled the systematic creation 
of multi-layer films. By altering the thickness of each film, with knowledge of the ES spot film profile and resulting post-
heat treated film thickness, effective index gradient layers were created [46]. These direct print structures can be tailored 
for thickness, index and thus resulting effective index profile defined by the path of the three dimensional (3D) printing 
profile. Depicted in Fig. 6a are multiple solutions of various ChG compositions following dispersion in amine solvents. 
Figure 6b (top) illustrates the gradient film deposition profile of a bi-layer of GeSbS and AsS glasses (on Si) and the 
variation in effective index, neff, calculated based on the layer thickness and parent glass refractive indices, as deposited 
on a SiN resonator array. Such deposition requires an electrically conductive substrate (i.e., Si) but is amenable to plano 
and other shaped substrtes.  Additionally, the magnitude of the resulting index gradient is only defined by the film thickness 
and the excursion (∆n) between the candidate glasses used. 
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(a)                                                                                                   (b) 

Figure 6. (a) multiple solutions of various chalcogenide glass materials [77] dissolved in amine solvents. Bilayer design of a 
GeSbS and AsS gradient profile (top) and actual effective index profile (bottom) of the measured gradient layer, as a function 
of position across a SiN resonator array. [46] 

 

2.2.2 Photo-induced polymerization of ChG glasses  

Since the first efforts to write optical functionality into oxide glasses with lasers, glasses have been evaluated for their use 
as waveguides [78], 2D waveguide arrays [79], resonators, and other refractive or diffractive optical elements [80]. Such 
structures have been realized by laser-writing, usually using fs laser pulses or by lithographic processing of glassy layers 
deposited by a range of film deposition techniques. Planar thin films based on chalcogenide glasses have been long known 
to be photo-sensitive, as evidenced by their use in Xerographic processes [81] and as resists for lithographic applications 
[82]. This photosensitivity has been found to arise from defect ‘tail’ states associated with normal and abnormal (over or 
under-coordinated electron- or hole- containing) bonds within the chalcogen-containing amorphous semiconductor 
network. Extension of laser-writing approaches to non-oxide materials specifically to write on-chip optical structures and 
to understand the fundamental differences in properties between bulk and thin films [83,84] and the mechanisms of photo-
structural modification [85], was initiated by our team in conjunction with collaborators at Laval University, in the mid- 
to late 1990’s. Figure 7 illustrates the variation in as-formed structural units within glasses of As2S3 in bulk, thin film and 
fiber form, highlighting the presence of ‘abnormal’ bonds in ChG films, as quantified by Raman spectroscopy. Note 
especially the presence of homopolar As-As and S-S bonds which impart higher photosensitivity in as-deposited films or 
waveguides, as compared to bulk glass. 

Using the device fabrication and optical characterization tools from the Laval team in conjunction with the glass processing 
and characterization tools at UCF, we were able to quantify for the first time, variations in optical and physical properties 
as a result of forming processes and extension of bulk glasses to film form. As discussed in the literature, most as-deposited 
ChGs (bulk glass targets or crystalline alloy targets are typically amorphous following film deposition [88]), exhibit photo-
sensitivity, specifically the ability to change their optical properties (bandgap or refractive index) through the thermal or 
photonic modification of localized bonds. Modification of such materials with varying types of radiation, can lead to the 
creation of unique optical functionality, including enhanced nonlinearities. The photo-sensitivity of ChGs in laser-written 

As-S

Silicon substrate
Gb-Sb-S
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structures has been well studied (see the review contained in [89]) and the optical function and stability of gratings, 
waveguides have been shown to be a function of glass’ composition, the wavelength of light used to write the structure 
and the environment where post-formation aging takes place [90-96].   

 

 
Figure 7. MicroRaman spectra illustrating heteropoloar (As-S) and homopolar bonds (As-As and S-S) in As2S3 (λexc = 840nm) 
measured with 1.5 cm-1 spectral resolution. Highlighted in the circled areas are the higher concentration of homopolar (As-As 
and S-S) bonds found in films/waveguides (features in the 200-250 and 490 cm-1 region, respectively) as compared to bulk 
and fiber forms of the material. Theoretically, stoichiometric material should only possess heteropolar (As-S) bonds. These 
abnormal, homopolar bonds not present to the same extent in the bulk and fiber forms, and render films much more 
photosensitive [86,87]. 

Most studied by our team [97,98] and others is As2S3 whereby planar films can be doped or locally altered to realize 
gratings and waveguides. While responsive, these as-written structures and their optical property stability are sometimes 
short-lived, in that light-induced bond-reorganization may lead to localized crystallization or post-exposed modification 
which anneals out at room temperature due to the glass’ low glass transition temperature (Tg). Recent efforts have exploited 
the ease of glass network re-organization imparted by photo-induced bond modification, to realize structures which exhibit 
etch selectivity between bonds contained in the modified region, as compared to un-irradiated material. This processing 
has been employed to realize two- and three-dimensional structures with a wide range of optical functionality. Defined by 
our team as multi-photon lithography (MPL), we have carried out systematic dose dependent material modification studies 
to most recently realize meta-structures.   

Figure 8a illustrates the pillar pattern realized in a 2D array in As2S3 over a 250 x 250 µm region [49]. Similar irradiation 
conditions were used to realize gratings which could be tuned (Figs. 8b, 8c and 8d) to realize diffractive features which 
exhibited spectral-specific response [47]. These structures exhibit good optical functionality but suffer from limited 
stability due to the crystallization tendency of these ChGs films. Recently, we have shown that modifying the glass network 
with a constituent known to enhance cross-linking, Ge, the long-term stability can be enhanced. While still exhibiting etch 
selectivity (albeit, reduced as compared to the binary As-S glass films), the aging stability of such structures remain after 
times up to four years [99]. A post-aged array of a GeAsSe structure is shown after 4 years in Fig. 9a. By tailoring the   
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Fig. 11 (a) Optical images of the 250 pm x 250 arm nanostructured pillar array showing that the structure
diffracts light of different colors as the angle of incidence is changed. (b) Plot of the diffracted light
intensity versus wavelength for white light incident at varying angles.
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(e)                                                                                      (f) 

Figure 8. (a) top-down SEM image of the 250 µm x 250 µm nanostructured pillar array (As2S3) with a close-up image showing 
the tops of the individual structures (b) optical image of the incident, reflected and diffracted beams (c) diagram depicting the 
actual angle for the reflected and diffracted beams and the predicted angle for the diffracted beam (d) close up optical image 
of the actual refracted beam pattern (e) Optical images of a 250 µm x 250 µm nanostructured pillar array showing that the 
structure diffracts light of different colors as the angle of incidence is changed. (f) Plot of the diffracted light intensity versus 
wavelength of white light incident at varying angles [47]. 

 

composition (for stability) and filling fraction (of glass pillar material and free volume of air) of an area where such a 
pattern exists (Fig. 9b), a gradient effective index (here in the form of a metalens structure) can be realized. 
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(a)                                                                                                     (b) 

Figure 9. (a) Ge-containing As-Se film array pattern (Ge5(As40Se60)95) after t = 4 years of aging. Features show minor 
deterioration at their edges but retain their as-written lateral dimensions. (b) an As2S3 meta-lens created using multi-photon 
lithography (MPL), as discussed in [47]. 

3. CONCLUSIONS 
The recent history of efforts aimed at realizing gradients in refractive index (GRIN) across a range of infrared-transparent 
materials is reviewed. The ability to exploit material composition, photosensitivity, processing methodology and resulting 
optical function, specifically highlighting the trade-offs and scale-ability of solutions, has been presented. Four specific 
examples of strategies in bulk and thin film ChGs are discussed. The recent efforts by the IR community to evaluate 
alternate strategies to add optical functionality to elements suitable for use in this important region of the spectrum 
highlights the promising future of such approaches to reduce the size, weight and power (SWaP) requirements needed for 
next generation optical components and systems. 
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