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Abstract— To describe the stochastic behavior of biomolec-
ular systems, the Chemical Master Equation (CME) is widely
used. The CME gives a complete description of the evolution
of a system’s probability distribution. However, in general, the
CME’s dimension is very large or even infinite, so analytical
solutions may be difficult to write and analyze. To handle
this problem, based on the fact that biomolecular systems are
time-scale separable, we approximate the CME with another
CME that describes the dynamics of the slow species only.
In particular, we assume that the number of each molecular
species is bounded, although it may be very large. We thus write
Ordinary Differential Equations (ODEs) of the slow-species
counts’ marginal probability distribution and of the fast-species
counts’ first n conditional moments. Here, n is an arbitrary
(possibly small) number, which can be chosen to compromise
between approximation accuracy and the computational burden
associated with simulating or analyzing a high dimensional
system. Then we apply conditional moment closure and time-
scale separation to approximate the first n conditional moments
of the fast-species counts as functions of the slow-species counts.
By substituting these functions on the right-hand side of the
ODEs that describes the marginal probability distribution of
the slow-species counts, we can approximate the original CME
with a lower dimensional CME. We illustrate the application
of this method on an enzymatic and a protein binding reaction.

I. INTRODUCTION
To analyze and predict the behavior of biomolecular

systems, deterministic or stochastic approaches can be used
[1]. Deterministic models fail to capture the inherent ran-
domness of biomolecular systems, so stochastic approaches
are often necessary. The Chemical Master Equation (CME)
gives a complete description of the evolution of a system’s
probability distribution [2]. However, when the number of
molecular counts is large or unbounded, the dimension of
the CME is large or countably infinite. As a consequence,
analytical or computational solutions are difficult to obtain
in general.

When the dimension of the CME is infinite, one can, for
example, use the Finite State Projection (FSP) algorithm
[3] to truncate the system and find an upper bound to
the molecular count of each species, so that the truncated
finite dimensional system is arbitrarily close to the origi-
nal infinite dimensional CME. When the dimension of the
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CME is finite but very large, [4] [5] [6] approximated the
CME with another CME that describes the dynamics of the
slow species only, based on singular perturbation theory in
[7] and the fact that the biomolecular systems are usually
time-scale separable [2] [5]. To achieve this, the stationary
conditional probability distributions of the fast-species counts
are approximated as functions of the slow-species counts. It
was shown that the fast-species counts’ conditional distribu-
tions converge exponentially fast with their stationary value
as time-scale separation becomes more pronounced. This,
consequentially, helps with obtaining a CME solely for the
slow-species counts. However, the size of these stationary
distributions grow exponentially in the number of the fast-
species counts. Furthermore, as we will also show, the first
few conditional moments of the fast-species counts may
be sufficient, as opposed to the conditional distributions, to
obtain a CME for the slow species only, which is a good
approximation of the original CME. This is the approach
that we adopt in this paper.

In this paper, we assume that the number of each molecular
count is bounded and consider only first n conditional
moments of the fast-species counts. Here, n is an arbitrary
number that can be chosen by users from 1 to the bound on
the molecular count. For larger n, accuracy increases but the
computation burden also increases. Therefore, there is a trade
off between accuracy and computation. We quantitatively
derive the accuracy of the approximation as a function of
n and of the time-scale separation.

Specifically, first, based on the CME, we derive ODEs
for the marginal probability distribution of the slow-species
counts and for the first n conditional moments of the fast-
species counts. In this case, the ODEs are not closed; that
is the first n conditional moments depend on the higher-
order conditional moments. Therefore, we apply the robust
moment closure technique developed in [8] to approximate
the higher-order conditional moments as an affine function
of the first n conditional moments. Next, we apply singular
perturbation theory as in [7] and approximate the first n
conditional moments of the fast-species counts as functions
of the slow-species counts. Then, for the ODEs of the slow-
species counts’ marginal probability distribution, we substi-
tute the conditional moments of the fast-species counts as the
functions of the slow-species counts, hence obtaining another
CME for the slow species only. Finally, we solve a linear
program to ensure that the solution of the approximated CME
is a proper probability vector. To show the utility of this
method, we consider an enzymatic and a protein binding
reaction.
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II. PRELIMINARIES

The following notations are used throughout this paper:
R≥0 and Z≥0 are the set of nonnegative real numbers
and integers, respectively. For any positive integer n, Rn≥0

(Zn≥0) stands for the set of n-dimensional vectors with
each entry in R≥0 (Z≥0). Given an n-dimensional vector
Z = [z1, z2, . . . , zn]T and a nonnegative integer w, we define
Ψw(Z) to be the vector composed of entries of the form
z1
k1zk22 . . . zn

kn where ki ∈ Z≥0, for i = 1, 2, . . . , n, and∑n
i=1 ki = w. For example, when Z = [z1, z2, z3],

Ψ1(Z) = [z1, z2, z3]T ,
Ψ2(Z) = [z1

2, z1z2, z1z3, z2
2, z2z3, z3

2]T .

The l1 and l∞ norms of a vector Z = [z1, z2, . . . , zn]T

are defined as ‖Z‖1 =
∑n
i=1 |zi| and ‖Z‖∞ = maxi|zi|.

We omit the subscript ∞ and simply write ‖Z‖ for the l∞
norm. A vector P ∈ Rp≥0 is defined as a probability vector
when ‖P‖1 = 1. The l1 to l∞ induced norm of matrix M is
defined as ‖M‖l1−l∞ = maxi,j |mij |. The l∞ induced norm
of matrix M is defined as

‖M‖ = maxi
∑n
j=1 |mij |.

Given a matrix M = [mij ] ∈ Rm×n, by R[M ]i we mean
the ith row of M . That is,

R[M ]i =
[
mi1 mi2 . . . min

]
,

for i = 1, 2, . . . ,m.
The dynamics of chemical reaction networks can be de-

scribed by Markov processes. Each state of this Markov
process represents the accumulated molecule counts of the
species. When a chemical reaction fires, a transition from
one state to another state occurs and the molecule counts of
the species change. To be more specific, suppose there is a
reaction network with r number of species and K number
of reactions. Let si, for i = 1, 2, . . . , r, be the number of
each species and S = [s1, s2, . . . , sr]

T . Associated with
each reaction k ∈ 1, 2, . . . ,K, there is a corresponding
propensity function ak(S) and a stoichiometry vector γk [2].
The propensity function typically assumes that it does not
depend on time [2]. For any q ∈ Zr≥0, we assume that

d

dt
P (S(t) = q) =

K∑
k=1

[−ak(q)P (S(t) = q)

+ ak(q − γk)P (S(t) = q − γk)]

(1)

is satisfied. This equation is called the CME [9] [10].
Suppose that the set of reactions can be devided into two
subsets, fast and slow reactions. The distinction between
them is in their propensity functions. The propensity function
of a fast reaction is of order 1

ε of that of a slow reaction,
where ε is a positive number much smaller than 1 quantifying
the separation of time scales between the fast and slow
reactions. Let Kf and Ks be the number of the fast and
slow reactions, respectively, that satisfies Kf + Ks = K.
Furthermore, suppose that upon firing the fast reactions, the
species count of a proper subset of the set of all species
changes. Denote this proper subset by {Yj}mj=1. These are

referred to as the fast species. The rest of the species are
called the slow species and form the set {Xi}li=1, where
l = r −m. Then the CME can be written as

d

dt
P (X(t) = x, Y (t) = y)

=

Ks∑
k=1

[−ask(x; y)P (X(t) = x, Y (t) = y)

+ ask(x− γsx,k; y − γsy,k)P (X(t) = x− γsx,k, Y (t) = y − γsy,k)]

+

Kf∑
k=1

[−afk(x; y)P (X(t) = x, Y (t) = y)

+ afk(x; y − γfy,k)P (X(t) = x, Y (t) = y − γfy,k)]
(2)

for x ∈ Zl≥0 and y ∈ Zm≥0, where ask(x; y) and afk(x; y)
are propensity functions for the slow and fast reactions,
respectively, and γsx,k, γsy,k and γfy,k are corresponding
stoichiometry vectors [5]. Throughout this paper, we make
the following assumptions.

Assumption 2.1: There exist nonnegative integers xitot and
yjtot such that

0 ≤ xi ≤ xitot, 0 ≤ yj ≤ yjtot,
for i = 1, 2, . . . , l and for j = 1, 2, . . . ,m, where xi and yj
are number of Xi and Yj , respectively.

Assumption 2.2 ([10] [11]): The propensity functions are
polynomial in S. In addition, the order of each polynomial
is less than or equal to 2 .

Assumption 2.3: For the slow reactions, each propen-
sity function can be written as ask(x; y) = (θk,s0 (x) +
θk,s1 (x)Ψ1(Y )+θk,s2 (x)Ψ2(Y )), for k ∈ 1, 2, . . . ,Ks, where
θk,si (x), for i = 0, 1, 2 and given x, are matrices with
appropriate dimensions.

Assumption 2.4: For the fast reactions, each propen-
sity function can be written as afk(x; y) = 1

ε (θk,f0 (x) +

θk,f1 (x)Ψ1(Y )+θk,f2 (x)Ψ2(Y )), for k ∈ 1, 2, . . . ,Kf , where
θk,si (x), for i = 0, 1, 2 and given x, are matrices with
appropriate dimensions.
Assumption 2.1 states that there exists an upper bound on
the number of each species. This is a reasonable assumption
in a number of cases. For example, enzymatic reactions do
not involve creation and destruction of species, and therefore
they are characterized by a bounded total amount of enzymes
and substrates. In general, it is still reasonable to assume
that the number of fast species yj are bounded. In fact, in
the case of gene regulatory network models, for example,
these are often complexes formed by transcription factors
with DNA, which is available in a finite amount. In general,
the upper bounds may not exist for the slow species. In this
case, however, one can use the truncation method given in
[3]. Regarding Assumption 2.2, the fact that the propensity
functions are polynomial in S is standard and satisfied when
the species are well-mixed [10] [11]. The fact that the order
of each polynomial is at most two because reactions are
either uni-molecular or bi-molecular, which is also a standard
assumption since n-molecular reactions with n > 2 are
considered less probable [2]. Assumption 2.3 and 2.4 are
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based on Assumption 2.2 that each propensity function is
polynomial in X and Y with the order less than or equal to
2. The propensity functions of the fast reactions are order of
1
ε of the propensity functions of the slow reactions.

III. BASIC SETUP

The CME given in (1) with Assumptions 2.1 is a linear
system of ODEs with order p, where

p =
∏l
i=1(xitot + 1)

∏m
j=1(yjtot + 1).

We define

xtot =
∏l
i=1(xitot + 1), ytot =

∏m
j=1(yjtot + 1).

The order of the CME exponentially increases as the number
of the fast or slow species increases. Therefore, directly
solving the CME is a computationally challenging task. To
avoid this computational difficulty and obtain mathematical
descriptions suitable for analytical study, one can apply
singular perturbation theory [7] to approximate the CME
with another CME that describes the dynamics of the slow
species only. In this paper, we try to substitute first n
conditional moments of the fast-species counts as functions
of the slow-species counts to acheive the approximation. To
proceed, we have to define some notations. We define

Ωx = {x | x = [x1, x2, . . . , xl]
T , 0 ≤ xi ≤ xitot,

for i = 1, 2, . . . , l},
Ωy = {y | y = [y1, y2, . . . , ym]T , 0 ≤ yj ≤ yjtot,

for j = 1, 2, . . . ,m},

and X and Y are vectors of random variables taking values
in the sets Ωx and Ωy , respectively. Let {x̄i}|Ωx|i=1 be an
enumeration of Ωx. The marginal probability distribution of
the slow-species counts is defined as

PX(t) = [P (X = [0, 0, . . . , 0]T ), . . . , P (X = x̄i), . . .,
P (X = [x1

tot, . . . , x
l
tot]

T )]T .

For any w ∈ Z≥0, 1 ≤ n ≤ ytot and x ∈ Ωx, we define

µw(x, t)

= E[Ψw(Y )|X = x] =
∑
y∈Zm

Ψw(y)P (Y = y|X = x),

Yn(x, t) = [µ1(x, t)
T
, µ2(x, t)

T
, . . . , µn(x, t)

T
]T ,

(3)
where µw(x, t) and Yn(x, t) denote fast-species counts’ wth

and first n conditional moments, respectively. For i =
1, 2, . . . , n, let di be a matrix whose multiplication with
Yn(x, t) isolates µi(x, t), i.e.

µi(x, t) = diYn(x, t). (4)

Now we can derive ODEs for the marginal probability distri-
bution of the slow-species counts and for first n conditional
moments of the fast-species counts as in (5):

Proposition 3.1: For the CME in (2) with Assumptions

2.1 to 2.4, for 1 ≤ n ≤ ytot and x̄i ∈ Ωx, we can obtain

Σtrue :


d
dtP (X = x̄i) =

∑Ks
k=1(−E[ask(x̄i; y)|X = x̄i]P (X = x̄i)

+E[ask(x̄i − γsx,k; y)|X = x̄i − γsx,k]P (X = x̄i − γsx,k))

ε ddtYn(x, t) = C(x)Yn(x, t) + c1(x)
+c2µn+1(x, t) + εG(t).

(5)
Proof: ODEs of the slow-species counts’ marginal

probability distribution are derived in [5]. ODEs of the
fast-species counts’ conditional probability distribution are
derived in [5] as

ε
d

dt
P (Y = y|X = x) =

Kf∑
k=1

(−εafk(x; y)P (Y = y|X = x)

+ εafk(x; y − γfy,k)P (Y = y − γfy,k|X = x) + εG1(t)
(6)

where G1(t) is bounded. Therefore, from (6), we can derive

ε
d

dt
µw(x, t) =

∑
y∈Zm

Kf∑
k=1

[(Ψw(y + γfy,k)−Ψw(y))

εafk(x; y)P (Y = y|X = x)] + εG2(t)

=
∑
y∈Zm

Kf∑
k=1

[(Ψw(y + γfy,k)−Ψw(y))(θk,f0 (x)

+ θk,f1 (x)Ψ1(Y ) + θk,f2 Ψ2(Y ))] + εG2(t)

(7)

for 1 ≤ w ≤ n. Order of Ψw(y+γy,k)−Ψw(y) is w−1, so
order of the right-hand side of (7) returns at most (w+ 1)th

conditional moments. When we consider w from 1 to n, we
can obtain ODEs of the conditional moments of the fast-
species counts in Σtrue.

Given x̄i, conditional expectation of propensity function
ask(x̄i, y) can be expressed as

E[ask(x̄i; y)|X = x̄i] =
∑
y

ask(x̄i; y)P (Y = y|X = x̄i)

= θk,s0 (x̄i) + θk,s1 (x̄i)µ1(x̄i, t) + θk,s2 (x̄i)µ2(x̄i, t).
(8)

According to [3], we can write ODEs of the slow-species
counts’ marginal probability distribution in (5) as a single
linear expression:

d

dt
PX(t) = A(Y2(x, t))PX(t), (9)

where, for 1 ≤ i, j ≤ xtot,

A(Y2(x, t))ij :


−
∑Ks
k=1E[ask(x̄j ; y)|X = x̄j ] for i = j

E[ask(x̄j ; y)|X = x̄j ] for all j such that
x̄j = x̄i − γsx,k
0 Otherwise.

(10)
In Σtrue, when n = ytot, the dimension of Σtrue is

xtot + ytot, and it is closed. This is because µn+1(x, t) can
be represented as an affine function of Yn(x, t) [5]. However,
in general, when 1 ≤ n < ytot, the dynamics of the fast-
species counts’ conditional moments are not closed, because
µn+1(x, t) is not a function of Yn(x, t) anymore. Therefore,
a robust conditional moment closure method should be
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applied to approximate µn+1(x, t) as a function of Yn(x, t)
to close the dynamics. The next section introduces the robust
moment closure technique derived in [8] and we adapt it to
the conditional moment case.

IV. ROBUST CONDITIONAL MOMENT CLOSURE

We are applying Robust Moment Closure (RMC), which
was originally developed in [8], to the dynamics of condi-
tional moments. For any x ∈ Ωx, we define matrices Hn and
Vn such that

µn+1(x, t) = HnPY |X(x, t), Yn(x, t) = VnPY |X(x, t),

where

PY |X(x, t) = [P (Y = [0, 0, . . . , 0]T |X = x), . . . , P (Y =
[y1
tot, y

2
tot, . . . , y

m
tot]

T |X = x)]T

is a conditional probability distribution of the fast-species
counts. For example, when l = m = 1,

Hn =
[
0 1n+1 2n+1 . . . (y1

tot)
n+1
]
, (11)

Vn =


0 1 2 . . . y1

tot

0 12 22 . . . (y1
tot)

2

...
...

0 1n 2n . . . (y1
tot)

n

 . (12)

Our goal is to approximate µn+1(x, t) as a function of
Yn(x, t), denoted as

µn+1(x, t) ≈ φ(Yn(x, t)),

possibly a nonlinear function. According to [8], without a
priori information on the probability distribution, the optimal
function φ(Yn(x, t)) that minimizes worst case approxima-
tion error between µn+1(x, t) and φ(Yn(x, t)), which can be
written as

sup
PY |X(x,t)∈P

‖µn+1(x, t)− φ(Yn(x, t))‖, (13)

is an affine function of Yn(x, t), which is

φ(Yn(x, t)) = KYn(x, t) +K0.

In addition, K and K0 can be obtained by solving the linear
program

min
K0,K

γ

s.t. − γ1T ≤ R[Hn − (KVn +K01T )]i ≤ γ1T
(14)

for i = 1, 2, . . . ,m, where m is the number of rows in
Hn. Let the object value of the linear program in (14) be
ρn, which is a fixed constant that depends on n. Then the
approximation error between µn+1(x, t) and φ(Yn(x, t)),
which can be written as

‖µn+1(x, t)− φ(Yn(x, t))‖ =∥∥HnPY |X(x, t)− (KYn(x, t) +K0)
∥∥,

is bounded by ρn for all PY |X(x, t) ∈ P.

By substituting µn+1(x, t) in the right-hand side of Σtrue
with KYn(x, t) +K0, we obtain

Σclosed :


d
dt P̃X(t) = A(Ỹ ε2 (x, t))P̃X(t) = Ãε(t)P̃X(t)

ε ddt Ỹ
ε
n(x, t) = C(x)Ỹ εn(x, t) + c1(x)

+c2(KỸ εn(x, t) +K0) + εG(t).
(15)

Σclosed is closed and we define µ̃εi(x, t) = diỸ
ε
n(x, t).

Remark 4.1: According to the following Lemma 6.1, the
approximation error between µi(x, t) and µ̃εi(x, t) is bounded
if C(x) + c2K is a stable matrix, i.e., its eigenvalues have
a negative real part. Although the stability of C(x) + c2K
is not guaranteed via (14), we realized that in our examples
this matrix is indeed stable. However, to truly enforce the
stability, one can augment (14) with a linear matrix inequality
and carry out an iterative algorithm. This procedure is in the
Appendix. Here we assume that the iterative algorithm is
already conducted and C(x) + c2K is a stable matrix.

V. TIME-SCALE SEPARATION

We note that (15) is in standard singular perturbation form
[7]. As ε → 0, Ỹ εn(x, t) converges exponentially fast to
Ỹ 0
n (x,∞), where Ỹ 0

n (x,∞) satisfies

C(x)Ỹ 0
n (x,∞) + c1(x) + c2(KỸ 0

n (x,∞) +K0) = 0.
(16)

This is proved in Lemma 6.2. Let us define µ̃0
i (x,∞) =

diỸ
0
n (x,∞). When we substitute Ỹ ε2 (x, t) with Ỹ 0

2 (x,∞) in
the right-hand side of (15), we can obtain

Σreduced :
{

d
dt P̄X(t) = A(Ỹ 0

2 (x,∞))P̄X(t) = ĀP̄X(t),
(17)

where Σreduced describes the dynamics of the slow species
only. In Σreduced, P̄X(t) is a valid probability distribution
if and only if Ā is a Metzler matrix [12], which is not
guaranteed in general. Ā is a Metzler matrix if and only
if ãk,s(x), for k = 1, . . . ,Ks, which is defined as

ãk,s(x) = θk,s0 (x) + θk,s1 (x)µ̃0
1(x,∞) + θk,s2 (x)µ̃0

2(x,∞),
(18)

is non-negative for all x ∈ Ωx. We define a linear program

min
h1(x),h2(x)

∥∥h1(x)− µ̃0
1(x,∞)

∥∥+
∥∥h2(x)− µ̃0

2(x,∞)
∥∥

s.t. θk,s0 (x) + θk,s1 (x)h1(x) + θk,s2 (x)h2(x) ≥ 0
(19)

for k = 1, 2, . . . ,Ks. Let the object value of (19) be λx and
the optimal solutions be h1(x) = µ̂1(x) and h2(x) = µ̂2(x).
When we substitute µ̃0

1(x,∞) and µ̃0
2(x,∞) as µ̂1(x) and

µ̂2(x) in Σreduced, we obtain

Σfinal :
{

d
dt P̂X(t) = A(Ŷ2(x))P̂X(t) = ÂP̂X(t), (20)

where Ŷ2(x) = [µ̂1(x)T , µ̂2(x)T ]T . In Σfinal, P̂X(t) is a
valid probability distribution because Â is guaranteed to be
a Metzler matrix by (19). In addition,

∥∥µ̂1(x)− µ̃0
1(x,∞)

∥∥
and

∥∥µ̂2(x)− µ̃0
2(x,∞)

∥∥ are bounded by λx and Â is a
marginally stable matrix with one zero eigenvalue.

Remark 5.1: When n = ytot, both ρn and λx are 0. ρn is
0 because µn+1(x, t) can be represented as an affine function
of Yn(x, t) in this case. The proof of λx = 0 is in [5].

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 647 submitted to 2019 American Control Conference.
Received September 24, 2018.



Now we need to quantify the approximation errors.

VI. ERROR QUANTIFICATION

A. Conditional Moments of the Fast Species

The following lemmas are proved in the Appendix.
Lemma 6.1: Given T > t0 > 0 and x ∈ Ωx, the

approximation error between µi(x, t) and µ̃εi(x, t) satisfies
supt∈[t0,T ] ‖µi(x, t)− µ̃εi(x, t)‖ ≤∫ T

t0

∥∥di exp
{

1
ε (C(x) + c2K)(T − τ)

}∥∥dτ ρnε ‖c2‖ = ∆x
i,ε.

Lemma 6.2: Given T > t0 > 0 and x ∈ Ωx, the
approximation error between µ̃εi(x, t) and µ̃0

i (x,∞) satisfies
supt∈[t0,T ]

∥∥µ̃εi(x, t)− µ̃0
i (x,∞)

∥∥ ≤∫ T
t0

∥∥di exp
{

1
ε (C(x) + c2K)(T − τ)

}∥∥‖G(τ)‖dτ = O(ε).
Theorem 6.3: Given T > t0 > 0 and x ∈ Ωx, for

sufficiently small ε, the approximation error between µi(x, t)
and µ̂i(x) satisfies

supt∈[t0,T ] ‖µi(x, t)− µ̂i(x)‖ ≤ ∆x
i,ε + λx +O(ε),

for i = 1, 2. Furthermore, there exist ∆ε > 0 and ε∗ > 0
such that supt∈[t0,T ] ‖µi(x, t)− µ̂i(x)‖ ≤ ∆ε +O(ε) for all
x, ε ∈ (0, ε∗) and i = 1 or 2.

Proof: The first inequality of Theorem 6.3 can be
directly obtained by combining Lemmas 6.1 and 6.2, result
of (19) and triangular inequality. For the second inequality,
∆ε can be obtained by

∆ε = supi∈{1,2},x∈Ωx ∆x
i,ε + λx.

B. Marginal Probability of the Slow Species

We constructed P̂X(t) such that it is a valid probability
distribution, which implies that

∥∥∥P̂X(t)
∥∥∥

1
= 1 for all t.

Therefore, P̂X(t)(1), the first component of P̂X(t), can be
written as a linear combination of other components of P̂X(t)
as

P̂X(t)(1) = 1− (P̂X(t)(2) + . . .+ P̂X(t)(xtot)).

To remove this linearly-depenent relationship, we define

P̂X,new(t) = [P̂X(t)(2), P̂X(t)(3), . . . , P̂X(t)(xtot)]
T ,

and derive a new equation

d

dt
P̂X,new(t) = ÂnewP̂X,new(t) + ânew, (21)

from Σfinal. Here, ânew is second to xthtot elements of the
first column of Â, and for 1 ≤ j ≤ xtot − 1, jth column of
Ânew is second to xthtot elements of the (j + 1)th column of
Â minus ânew. This relationship can be written as

ânew = Â(2 : xtot, 1),
Ânew(:, j) = Â(2 : xtot, j + 1)− ânew.

Since we remove the linearly dependent relationship, eigen-
values of Ânew are exactly the same as those of Â except
the zero, so Ânew is a stable matrix. We can repeat the same
procedure for Σtrue in (9) and derive

d

dt
PX,new(t) = Anew(Y2(x, t))PX,new(t) + anew(Y2(x, t)).

(22)

Now, we regard (21) as the nominal system and (22) as the
perturbed system. Then we can rewrite the perturbed system
as
d

dt
PX,new(t) = (Ânew + ∆1(t))PX,new(t) + (ânew + ∆2(t)),

(23)
where

∆1(t) = Anew(Y2(x, t))− Ânew,
∆2(t) = anew(Y2(x, t))− ânew.

Lemma 6.4: For sufficiently small ε, there are two con-
stants k1 and k2 such that

‖∆1(t)‖l1−l∞ ≤ k1∆ε +O(ε), ‖∆2(t)‖ ≤ k2∆ε +O(ε).

Proof: ith component of ∆2(t) is θk,s1 (x̄1)(µ1(x̄1, t)−
µ̂1(x̄1)) + θk,s2 (x̄1)(µ2(x̄1, t) − µ̂2(x̄1)), which is bounded
by (

∥∥∥θk,s1 (x̄1)
∥∥∥+

∥∥∥θk,s2 (x̄1)
∥∥∥)∆ε + O(ε). Therefore,

k2 = supk(
∥∥∥θk,s1 (x̄1)

∥∥∥+
∥∥∥θk,s2 (x̄1)

∥∥∥).

With the same procedure, k1 can be obtained as

k1 = supk,j(
∥∥∥θk,s1 (x̄1)

∥∥∥+
∥∥∥θk,s2 (x̄1)

∥∥∥+
∥∥∥θk,s1 (x̄j+1)

∥∥∥+∥∥∥θk,s2 (x̄j+1)
∥∥∥).

Theorem 6.5: Given T > t0 > 0, the approximation error
between PX,new(t) and P̂X,new(t) satisfies

supt∈[t0,T ]

∥∥∥PX,new(t)− P̂X,new(t)
∥∥∥ ≤

(k1 + k2)
∫ T
t0

∥∥∥exp
{
Ânew(T − τ)

}∥∥∥dτ∆ε +O(ε).
The proof of Theorem 6.5 is in the Appendix.

Corollary 6.6: As ε goes to 0, the right-hand side of the
inequality in Theorem 6.5 goes to k∆0, where

k = (k1 + k2)
∫ T
t0

∥∥∥exp
{
Ânew(T − τ)

}∥∥∥dτ ,
∆0 = limε→0 ∆ε = supi∈{1,2},x∈Ωx(∆x

i,0 + λx) , and
∆x
i,0 = limε→0 ∆x

i,ε =∫∞
0
‖di exp{(C(x) + c2K)t}‖dtρn‖c2‖.

Proof: When we substitue T−τ
ε as t in Lemma 6.1,

limε→0 ∆x
i,ε =

∫∞
0
‖di exp{(C(x) + c2K)t}‖dtρn‖c2‖.

Remark 6.7: When n = ytot, as ε goes to 0, the right-
hand side of the inequality in Theorem 6.5 goes to 0. This
is because both ρn and λx go to 0 by Remark 5.1.

VII. ILLUSTRATIVE EXAMPLE

In this section, we show the utility of our method with an
enzymatic and a protein binding reaction.

A. Enzymatic Reaction

In this example, we consider an enzymatic reaction [2]:

E +X
a−⇀↽−
d
C

k−→ E +X∗. (24)

In (24), X , E, C, and X∗ are the substrate, the enzyme, the
binding complex, and the reaction product, respectively. In
addition, x, e, c, and x∗ are the numbers of corresponding
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species. We assume that the total numbers of the substrate
and enzyme are conserved, which means x+ c+ x∗ = xtot
and e + c = etot, for some positive constants xtot and
etot. Therefore, Assumption 2.1 is readily satisfied. In this
reaction, aetot and d are much larger than k, so we can define
ε = k

d and let aetot = d
2 . When we define X1 = X+C, and

consider S = [x1, c]
T , we can verify X1 is a slow species

and C is a fast species based on the following propensity
functions and corresponding stoichiometries,

af1 (x1; c) = 1
ε

k
2V etot

(etot − c)(x1 − c), γf1 = [0,+1]T ,
af2 (x1; c) = 1

εkc, γ
f
2 = [0,−1]T ,

as1(x1; c) = kc, γs1 = [−1,−1]T ,

where V is the volume. We can derive ODEs of the slow-
species counts’ marginal probability density function and the
fast-species counts’ first 2 conditional moments as below:
d

dt
P (X1 = x1) = −kµ1(x1, t)P (X1 = x1)

+ kµ1(x1 + 1, t)P (X1 = x1 + 1)

ε
d

dt
Y2(x1, t) =[
−k − k(etot+x1)

2V etot
k

2V etot

−k(etot+x1)
2V etot

+ kx1

V + k k
2V etot

− k(etot+x1)
V etot

− 2k

]
Y2(x1, t)

+

[
kx1

2V
kx1

2V

]
+

[
0
k

V etot

]
µ3(x1, t) + εG(t)

= C(x1)Y2(x1, t) + c1(x1) + c2µ3(x1, t) + εG(t).
(25)

We can check that (25) is in Σtrue form. To close the
dynamics, we let etot = 5[molecules] and solve the linear
program in (14) and obtain

µ3(x1, t) ≈ K32µ2(x1, t) +K31µ1(x1, t) +K30,
where K32 = 7.5, K31 = −14, K30 = 3.75 and ρ2 = 3.75.

This approximation makes (25) to Σclosed form. Then we let
ε = 0 and obtain

µ̃ε2(x1, t) ≈ K21µ̃
0
1(x1,∞) +K20,where

K20 = etx1+2K30

2(et+x1)−1−2K32+4etV
,

K21 = 2etx1−et−x1+2K31+2etV
2(et+x1)−1−2K32+4etV

,

µ̃ε1(x1, t) ≈ etx1+K20

et+x1−K21+2etV
= µ̃0

1(x1,∞).

When we substitute µ1(x1, t) as µ̃0
1(x1,∞) in (25), we

can obtain the CME that describes the dynamics of the
slow species only, which is in Σreduced form. When we
let k = 0.1[min−1], V = 1[m3], xtot = 100[molecule],
we can check that C(x1) + c2K is stable and propensity
functions defined in (18) are all non-negative for x1 =
0, . . . , xtot. Therefore, in this case, Σfinal is the same as
Σreduced, which implies that λx = 0. In addition, ∆0 in
Corollary 6.6 can be achieved at x1 = 5 and i = 1,∫∞

0
‖di exp{(C(x1) + c2K)t}‖dt = 0.85 and ‖c2‖ = 1

50 .
k1 and k2 in Corollary 6.6 are 0.2 and 0.1, respectively, and∥∥∥exp

{
Ânew(T − τ)

}∥∥∥ = 0.1 ∗ exp{−0.4(T − τ)}. Based
on these values, we can calculate the approximation error
bound for the slow-species counts’ marginal probability dis-
tribution in Corollary 6.6. We can repeat the same procedure

(a) Comparing P (X1 = 0) of Σtrue with ε = 0.1, 0.01,
0.001 and those of Σfinal with n = 1, 2, 3

(b) Extended view, comparing P (X1 = 0) of Σtrue with ε =
0.1, 0.01, 0.001 and those of Σfinal, with n = 2, with the error
bound obtained from Corollary 6.6.

Fig. 1: Comparing P(X1 = 0), for Σtrue and Σfinal. For
this simulation, ε = 0.1, 0.01, 0.001, n = 1, 2, 3, k =
0.1[min−1], V = 1[m3], xtot = 100[molecule], etot =
5[molecules] are used.

for n = 1 and n = 3 cases.
Fig. 1(a) compares P (X1 = 0) of Σtrue with ε =

0.1, 0.01, 0.001 and those of Σfinal with n = 1, 2, 3. The
simulation result shows that Σtrue and Σfinal are almost
the same when ε ≤ 0.01 and n = 2, 3. Fig. 1(b) shows as ε
goes to 0, P (X1 = 0) of Σtrue approaches those of Σfinal,
with n = 2, with the error bound obtained from Corollary
6.6.

B. Protein Binding Reaction

In this example, we consider a protein binding reaction
[2]:

∅ k−⇀↽−
δ
X,X + P

a−⇀↽−
d
C. (26)

In (26), X , P , and C are the protein, the promoter, and the
binding complex, respectively. In addition, x, p, and c are
the numbers of corresponding species. In this situation, the
total numbers of the promoter are conserved, which means
p + c = ptot for some positive constant ptot. Therefore, p
is a dependant variable and number of complex is bounded
by ptot. However, in general, the number of proteins is not
bounded, so we need to assume that it is bounded by a
positive constant xtot for Assumption 2.1. In this reaction,
aptot and d are much larger than δ and k, so we can define
ε = δ

d and let k = δ and aptot = d
2 . When we define

X1 = X+C, and consider S = [x1, c]
T , we can verify X1 is

a slow species, and C is a fast species based on the following
propensity functions and correspoinding stoichiometries,

af1 (x1; c) = 1
ε

δ
2V ptot

(x1 − c)(ptot − c), γf1 = [0,+1]T ,
af2 (x1; c) = 1

ε δc, γ
f
2 = [0,−1]T ,
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as1(x1; c) = δ, γs1 = [+1, 0]T ,
as2(x1; c) = δ(x1 − c), γs2 = [−1, 0]T ,

where V is the volume. We can derive ODEs of the slow-
species counts’ marginal probability density function and the
fast-species counts’ first 2 conditional moments as below:

d

dt
P (X1 = x1) = −δx1P (X1 = x1)

+ δ(x1 + 1)P (X1 = x1 + 1)− δµ1(x1 + 1, t)P (X1 = x1 + 1)

+ δµ1(x1, t)P (X1 = x1)− δP (X1 = x1) + δP (X1 = x1 − 1),

ε
d

dt
Y2(x1, t) =[
−δ − δ(x1+ptot)

2V ptot
δ

2V ptot

δ + δ(2δx1ptot−δx1−δptot)
2V Ptot

−2δ + δ−2δx1−2δptot
2V ptot

]
Y2(x1, t)

+

[
δx1

2V
δx1

2V

]
+

[
0
δ

V ptot

]
µ3(x1, t) + εG(t)

= C(x1)Y2(x1, t) + c1(x1) + c2µ3(x1, t) + εG(t).
(27)

We can check that (27) is in Σtrue form. To close the
dynamics, we let ptot = 10[molecules] and solve the linear
program in (14) and obtain

µ3(x1, t) ≈ K32µ2(x1, t) +K31µ1(x1, t) +K30,
where K32 = 15, K31 = −56, K30 = 30 and ρ2 = 30.

This approximation makes (27) to Σclosed form. Then we let
ε = 0 and obtain

µ̃ε2(x1, t) ≈ K21µ̃
0
1(x1,∞) +K20,where

K20 = ax1ptot+2aK30

2aptot+2ax1−2aK32−a+2dV ,

K21 = 2ax1ptot−aptot−ax1+2aK31+dV
2aptot+2ax1−2aK32−a+2dV ,

µ̃ε1(x1, t) ≈ aK20+ax1ptot
aptot+ax1−aK21+dV = µ̃0

1(x1,∞).

When we substitute µ1(x1, t) as µ̃0
1(x1,∞) in (27), we can

obtain the CME that describes the dynamics of the slow
species only, which is in Σreduced form. When we let δ =
0.4[min−1], V = 1[m3], xtot = 100[molecule], we can
check that C(x1) + c2K is stable and propensity functions
defined in (18) are all non-negative for x1 = 0, . . . , xtot.
Therefore, in this case, Σfinal is the same as Σreduced, which
implies that λx = 0. Fig. 2(a) compares P (X1 = 2) of Σtrue
with ε = 0.1, 0.01 and those of Σfinal with n = 1, 2, 3, 4
and Fig. 2(b) is the extended view of Fig. 2(a). Fig. 2(b)
shows that P (X1 = 2) of Σtrue with ε = 0.01 and those of
Σfinal with n = 4 are almost the same.

VIII. CONCLUSIONS

In this paper, we leveraged time-scale separation, which is
intrinsic to many biochemical reaction networks, to develop
a method to reduce the order of the CME. We derived
a reduced size CME that describes the dynamics of the
slow species only. Our approach provides exact error bounds
between the true and the reduced systems. This reduction,
with quantifiable error bounds, can help the analysis and
design of biochemical reaction systems. Our future goal is
to apply the FSP algorithm to extend this result to infinite
dimensional CME.

(a) Comparing P (X1 = 2) of Σtrue with ε = 0.1, 0.01 and those of
Σfinal with n = 1, 2, 3, 4

(b) Extended view of the above graph

Fig. 2: Comparing P (X1 = 2), for Σtrue and Σfinal. For this
simulation, ε = 0.1, 0.01, n = 1, 2, 3, 4, δ = 0.4[min−1],
V = 1[m3], xtot = 100[molecule], ptot = 10[molecules]
are used.

APPENDIX

A. Iterative algorithm in Remark 4.1

First we solve (14) and let K = K∗ be its optimal solution.
Then, we will find K(1) such that it is close to K∗ but also
makes C(x)+c2K(1) stable. To do this, we will find matrices
Z and P(1) such that K(1) = ZP−1

(1) where Z and P(1) can
be obtained by solving

minZ,P(1),α(1)
‖Z −K∗P(1)‖ ,

s.t. C(x)P(1) + c2Z + (C(x)P(1) + c2Z)T ≺ −α(1)I ,
P(1) � 0, α(1) > 0.

Then, at each iteration, given P(j) and α(j), we first find
K(j+1) by solving

minK0,K(j+1),γ γ

s.t. −γ1T ≤ R[Hn − (K(j+1)Vn +K01T )]i ≤ γ1T ,
[C(x)+c2K(j+1)]P(j) +PT(j)[C(x)+c2K(j+1)]

T ≺ − 1
α(j)

I,

for i = 1, 2, . . ., m. Then, given K(j+1), we find P(j+1) and
α(j+1) by solving

minP(j+1)
−α(j+1) s.t.

[C(x) + c2K(j+1)]P(j) + PT(j)[C(x) + c2K(j+1)]
T ≺

−α(j+1)I ,
P(j+1) � 0, α(j+1) > 0.

We continue until ‖K(j+1) −K(j)‖ converges.

B. Proof of Lemma 6.1

To quantify the errors, we first define

e1(x, t) = Yn(x, t)− Ỹ εn(x, t).
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Using (5) and (15), we can derive

ε
d

dt
e1(x, t) = (C(x) + c2K)e1(x, t)

+ c2(µn+1(x, t)− (KYn(x, t) +K0)), e1(x, t0) = 0.
(28)

By solving (28),

e1(x, t) =

∫ t

t0

exp

{
1

ε
(C(x) + c2K)(t− τ)

}
[
1

ε
c2(µn+1(x, τ)− (KYn(x, τ) +K0))]dτ.

(29)

Because of Eq (29), we can obtain

sup
t∈[t0,T ]

‖µi(x, t)− µ̃εi(x, t)‖ = sup
t∈[t0,T ]

‖die1(x, t)‖

≤ sup
t∈[t0,T ]

∫ t

t0

||di exp

{
1

ε
(C(x) + c2K)(t− τ)

}
[
1

ε
c2(µn+1(x, τ)− (KYn(x, τ) +K0))]||dτ

≤ sup
t∈[t0,T ]

∫ t

t0

[||di exp

{
1

ε
(C(x) + c2K)(t− τ)

}
||∥∥∥∥1

ε
c2(µn+1(x, τ)− (KYn(x, τ) +K0))

∥∥∥∥]dτ

≤
∫ T

t0

∥∥∥∥di exp

{
1

ε
(C(x) + c2K)(T − τ)

}∥∥∥∥dτ ρnε ‖c2‖
(30)

which is the same as Lemma 6.1.

C. Proof of Lemma 6.2

Next we define

e2(x, t) = Ỹ εn(x, t)− Ỹ 0
n (x,∞).

Using (15) and (17), we can derive

ε
d

dt
e2(x, t) = (C(x) + c2K)e2(x, t) + εG(t), e2(x, t0) = 0.

(31)
By solving (31), we can derive

e2(x, t) =

∫ t

t0

exp
1
ε (C(x)+c2K)(t−τ)G(τ)dτ. (32)

Because of (32), we can obtain

sup
t∈[t0,T ]

∥∥µ̃εi(x, t)− µ̃0
i (x,∞)

∥∥ = sup
t∈[t0,T ]

‖die2(x, t)‖

= sup
t∈[t0,T ]

∥∥∥∥∫ t

t0

di exp

{
1

ε
(C(x) + c2K)(t− τ)

}
G(τ)dτ

∥∥∥∥
≤ sup
t∈[t0,T ]

∫ t

t0

∥∥∥∥di exp

{
1

ε
(C(x) + c2K)(t− τ)

}∥∥∥∥‖G(τ)‖dτ

(33)
which is the same as Lemma 6.2.

D. Proof of Theorem 6.5
We define

e3(t) = PX,new(t)− P̂X,new(t).

Using (21) and (23), we can derive
d

dt
e3(t) = Ânewe3(t) + ∆1(t)PX,new(t) + ∆2(t)

= Ânewe3 + w(t), e3(t0) = 0
(34)

By solving (34), we can obtain

e3(t) =

∫ t

t0

exp
{
Ânew(t− τ)

}
w(τ)dτ. (35)

Here, norm of w(t) is bounded by

‖w(t)‖ = ‖∆1(t)PX,new(t) + ∆2(t)‖
≤ ‖∆1(t)PX,new(t)‖+ ‖∆2(t)‖
≤ ‖∆1(t)‖l1−l∞ + ‖∆2(t)‖ ≤ (k1 + k2)∆ε +O(ε).

(36)

Because of (35) and (36), we can derive

sup
t∈[t0,T ]

‖e3(t)‖ = sup
t∈[t0,T ]

∥∥∥∥∫ t

t0

exp
{
Ânew(t− τ)

}
w(τ)dτ

∥∥∥∥
≤ sup
t∈[t0,T ]

∫ t

t0

∥∥∥exp
{
Ânew(t− τ)

}
w(τ)

∥∥∥dτ
≤ sup
t∈[t0,T ]

∫ t

t0

∥∥∥exp
{
Ânew(t− τ)

}∥∥∥‖w(τ)‖dτ

≤ (k1 + k2) sup
t∈[t0,T ]

∫ t

t0

∥∥∥exp
{
Ânew(t− τ)

}∥∥∥dτ∆ε +O(ε)

(37)
which is the same as Theorem 6.5.
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