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Multimodal Semantic SLAM with Probabilistic Data Association

Kevin Doherty, Dehann Fourie, and John Leonard

Abstract— The recent success of object detection systems
motivates object-based representations for robot navigation;
i.e. semantic simultaneous localization and mapping (SLAM).
The semantic SLAM problem can be decomposed into a
discrete inference problem: determining object class labels and
measurement-landmark correspondences (the data association
problem), and a continuous inference problem: obtaining the
set of robot poses and object locations in the environment. A
solution to the semantic SLAM problem necessarily addresses
this joint inference, but under ambiguous data associations this
is in general a non-Gaussian inference problem, while the ma-
jority of previous work focuses on Gaussian inference. Previous
solutions to data association either produce solutions between
potential hypotheses or maintain multiple explicit hypotheses
for each association. We propose a solution that represents
hypotheses as multiple modes of an equivalent non-Gaussian
sensor model. We then solve the resulting non-Gaussian in-
ference problem using nonparametric belief propagation. We
validate our approach in a simulated hallway environment
under a variety of sensor noise characteristics, as well as using
real data from the KITTI dataset, demonstrating improved
robustness to perceptual aliasing and odometry uncertainty.

I. INTRODUCTION

As object detectors continue to improve, there has been
growing interest in their use in conjunction with a suite
of inertial and geometric sensors to improve robot naviga-
tion, allowing autonomous robots to build more accurate,
descriptive maps [1], [2]. However, the addition of discrete
categorical sensor measurements from an object detector
with continuous sensing modalities poses a challenge in
simultaneous localization and mapping (SLAM), where tra-
ditional methods assume that all measurement likelihoods
are Gaussian. Addressing the combined discrete-continuous
problem is necessary for any semantic SLAM system that
incorporates discrete object categories. This paper presents a
novel solution to the problem of jointly inferring landmark
positions and classes, robot poses, and data associations.

In this work, we explore the representation of uncertainty
due to data association and landmark class ambiguity in
the semantic SLAM problem. We are specifically concerned
with full posterior inference of all robot poses and land-
marks, relaxing the Gaussian assumption of typical SLAM
frameworks, and incorporating discrete measurements from
an object detector as probabilistic data associations, which
introduce multiple modes in otherwise Gaussian measure-
ment models. We aim to approximate the non-Gaussian
posterior, explicitly marginalizing out discrete variables. To
perform non-Gaussian inference, we make use of multimodal
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Fig. 1: Multiple modes arise from data association ambiguity
between two landmarks (1 and 2), in which p(dkt = 1) >
p(dkt = 2). Top: Ambiguity in an object detection results
from occlusion and objects in close proximity. Bottom-left:
Associations represented as a non-Gaussian sensor model.
Bottom-right: Ambiguous measurements are incorporated
into a factor graph as multimodal semantic factors (green).

incremental smoothing and mapping (mm-iSAM) [3] which
performs nonparametric belief propagation [4].

The key insight of our approach is that measurement mod-
els, even those well-represented by Gaussian approximations,
under data association and landmark class ambiguity can
be represented by a non-Gaussian measurement model, as
shown in Figure 1. Our primary contributions are as follows:

1) We provide a nonparametric belief propagation solu-
tion to full posterior inference for the semantic SLAM
problem with ambiguous data associations.

2) We describe multimodal semantic factors, which allow
us to incorporate uncertainty in data association and
semantics as non-Gaussian factors in a factor graph
and solve the continuous optimization over poses and
landmarks using mm-iSAM.

3) We experimentally validate our approach in a sim-
ulated navigation task, as well as with the KITTI
dataset, demonstrating robustness to data association
and landmark class ambiguity.

The remainder of this paper proceeds as follows. In Sec-
tion II, we review related efforts towards the problems of data
association, non-Gaussian SLAM, and semantic SLAM. We
describe the semantic SLAM and data association problems
and introduce our approach in Section III. We give back-
ground on mm-iSAM and the proposed multimodal semantic
factors in Section IV. Finally, experimental results validating
our approach in a simulated environment and on real data



from the KITTI dataset are provided in Section V.

II. RELATED WORK

A. Data Association and Non-Gaussian SLAM

Early work on probabilistic data association (PDA) as a
representation for ambiguous hypotheses stems from target-
tracking literature, where it was incorporated into the “prob-
abilistic data association filter” [5]. Similar filtering-based
approaches to multi-hypothesis tracking (MHT) originated
around the same time [6], later adapted to the SLAM problem
[7], [8]. These approaches seek to explicitly represent several
plausible hypotheses and over time “prune” those which
become unlikely. In general these works focus on solutions
to problems with linear (or approximately linear) dynamics
and Gaussian noise models.

In the SLAM literature, FastSLAM [9] represents multiple
hypotheses using a particle filter-based algorithm in which
data association probabilities are computed separately for
each particle representing a candidate robot state. Concep-
tually, FastSLAM is similar to our approach, but maintains
separate parametric solutions each using extended Kalman
filters (EKFs). In contrast, our approach directly approx-
imates the non-Gaussian solution to the SLAM problem
under ambiguous association. A similar approach focusing
on filtering-based SLAM is the sum of Gaussians method
described by Durrant-Whyte et al. [10]. The multimodal
iSAM framework we leverage in this work can be viewed as
a smoothing analogue to the sum of Gaussians approach.

A number of works in robust SLAM address the problem
of SLAM with non-Gaussian noise. Sunderhauf et al. [11]
introduce discrete switching variables which are estimated
on the back-end to determine whether loop closure proposals
from the front-end are accepted. We instead marginalize over
all discrete variables and focus on functional approximation
of the resulting non-Gaussian distribution. Pfingsthorn and
Birk [12] proposed a maximum-likelihood optimization for
multimodal distributions with a similar measurement repre-
sentation to ours and the sum of Gaussians filter. The max-
mixtures approach of Olson and Agarwal [13] side-steps the
complexity typically associated with multi-hypothesis SLAM
by selecting the most likely component of a mixture of
Gaussians at all points in the measurement domain, rather
than maintaining a potentially large number of individual
parametric solutions. These works focus on the behavior
of their respective approaches in the context of maximum
likelihood, while our primary concern is to infer the full
posterior distribution over poses and landmarks.

B. Semantic SLAM

The ability of semantic measurements obtained from an
object detector to aid in data association when there is
ambiguity in purely geometric features links the problems
of semantic SLAM and data association. The majority of
works in semantic SLAM thus far have considered questions
of geometric representation and make use of variants on
maximum-likelihood data association [14], [15], [16], [17],
[18]; in this work, we instead opt for a simple geometric

representation and focus on representing the multimodalities
induced in the posterior by ambiguous data associations and
unknown landmark classes. Bowman et al. [19] recently
showed that the discrete problems of landmark class infer-
ence and data association could be combined and provided
an expectation-maximization (EM) solution which replaces
the marginalization over data associations in the PDA method
with a geometric mean, preserving the Gaussian assumption.
The EM formulation provably converges at least to a local
optimum when iterated, but for computational reasons, it
is undesirable to recompute the combinatorial number of
plausible data associations for previous poses. We also proac-
tively compute data association probabilities, but marginalize
out data associations and perform nonparametric inference in
the factor graph, retaining the plausible modes.

III. SEMANTIC SLAM WITH AMBIGUOUS DATA
ASSOCIATIONS

In the following sections, we give an overview of the
semantic SLAM and data association problems and intro-
duce our solution for posterior inference in the joint data
association and semantic SLAM problem.

A. Semantic SLAM with Known Data Associations

In its general form, the problem of semantic SLAM is
the estimation of the most probable set of robot poses
X , {xt}Tt=1 and landmark positions and semantic classes
L , {(lp, lc)j}Mj=1 given a set of sensor measurements Z ,
{Zt}Tt=1 made at each robot pose. We have xt ∈ SE(2) in
the two-dimensional case, and xt ∈ SE(3) in 3D. Similarly,
we take lp ∈ R2 in 2D and R3 in 3D. The landmark class
lc is assumed to come from a finite set of discrete, known,
class labels: C = {1, 2, . . . , C}.

Landmarks and poses in the SLAM problem are generally
inferred using a maximum-likelihood approach, i.e.

X̂ML, L̂ML = argmax
X ,L

p(Z | X ,L). (1)

In our case, we aim to infer the posterior over latent variables
X and L: p(X ,L | Z). Once we have obtained the posterior,
we can obtain maximum a posteriori (MAP) estimates for
any of the variables as

X̂MAP , L̂MAP = argmax
X ,L

p(X ,L | Z). (2)

In this work, we will assume Zt consists of a set of inertial
measurements and object measurements, denoted Ut and Yt,
respectively. We assume object measurements consist of a
geometric component, e.g. range and bearing, as well as a
semantic component; such information can be easily obtained
using, for example, a stereo camera in conjunction with an
object detector, which we discuss further in Sections IV-B
and V.

B. Probabilistic Data Association

When correspondences between measurements and land-
marks are not known a priori, they must also be inferred.
Let dkt denote a data association for measurement k taken



at pose xt, such that dkt = j signifies that measurement zkt
corresponds to landmark lj . Let D , {Dt}Tt=1 denote the
set of all associations of measurements to landmarks. One of
the most common solutions to the data association problem
is maximum-likelihood estimation. That is, given an initial
estimate of poses and landmarks X (0) and L(0), respectively,
maximum-likelihood data association performs the following
optimization:

D̂ = argmax
D

p(D | X (0),L(0),Z) (3)

X̂ML, L̂ML = argmax
X ,L

p(Z | X ,L, D̂). (4)

Maximum-likelihood data associations are computed and
fixed, then the SLAM solution is optimized assuming the
fixed set of data associations. This method is typically
performed in a proactive fashion, after each state update, for
example using the Hungarian algorithm [20] or joint compat-
ibility branch and bound [21] to simultaneously compute an
optimal assignment of all measurements zkt , k = 1, . . . ,Kt

observed at a pose xt to landmarks. While very efficient and
easy to implement, this method can be brittle.

An alternative solution is to consider probabilistic data
associations. If we had access to the probability of each data
association, we could marginalize out data associations when
computing the solution to the SLAM problem,

X̂ML, L̂ML = argmax
X ,L

ED [p(Z | X ,L,D)] . (5)

The approximate marginal distribution represented by this
expectation over data association hypotheses—even when
the individual measurement likelihoods are well-represented
by Gaussian distributions—is almost always multimodal
in practice. Consequently, maximum likelihood estimation
finds a suboptimal solution somewhere between plausible
modes. Other solutions maintain a potentially exponential
set of Gaussian solutions that branch with each set of new
hypotheses. Work in the latter area has primarily focused on
methods to prune the space of plausible hypotheses (e.g. [8],
[22], and more recently [23]).

A recent solution making use of expectation-maximization
iterates between computing the data association probabilities
and the conditional log-likelihood [19]:

X̂ (i+1)
ML , L̂(i+1)

ML =

argmax
X ,L

ED
[
log p(Z | X ,L,D) | X (i)

ML,L
(i)
ML,Z

]
. (6)

This effectively replaces the sum of Gaussians in the
marginal with a geometric mean, preserving the Gaussian
assumption, and iterating in this fashion provides guaranteed
convergence; we refer to this method as Gaussian PDA. This
approach solves for point estimates of poses and landmarks
at each iteration effectively using weighted maximum likeli-
hood estimation [24], where weights are determined by esti-
mated data association probabilities. In practice, recomputing
data association probabilities for all previous measurements

is a computational burden, so typically data association
probabilities are computed once proactively (i.e. after each
keyframe), resulting in solutions somewhere between the
modes induced by the plausible association hypotheses. For
posterior inference, we would like to consider the distribution
over possible poses and landmarks at every time step and
account for possible multimodalities.

To solve the problem of semantic SLAM with ambiguous
data associations, we consider an alternative representation
in which we first marginalize out poses and landmarks to
compute data association probabilities, then marginalize out
data associations to obtain a distribution over poses and
landmarks. That is, letting Θ , {X ,L}, given a previous es-
timate of the distribution over landmarks and poses p̂(i)(Θ),
we compute the marginal probability for each set of data
associations:

p̂(i+1)(D) = ηD

∫
p(Z | D,Θ)p̂(i)(Θ)dΘ, (7)

where ηD is a normalizing constant, then update the
estimate of the posterior over poses and landmarks:

p̂(i+1)(Θ) = ED∼p̂(i+1)(D) [p(Θ | Z,D)] (8)

∝ p̂(i)(Θ)
∑
D
p(Z | Θ,D)p̂(i+1)(D). (9)

We proactively compute data association probabilities
when measurements are received and consider a single
iteration of this approach, which relieves the computational
challenge of recomputing the set of data association probabil-
ities for all previous measurements after every observation.

IV. MULTIMODAL SEMANTIC SLAM

We have thus far introduced a solution to posterior infer-
ence for semantic SLAM relying on alternating computation
of marginals over data associations and robot poses and
landmarks. In this section, we describe nonparametric belief
propagation, which we use to obtain the approximate (non-
Gaussian) marginals in our solution. We then show how data
association and landmark class ambiguity can be represented
as multimodal semantic factors that we incorporate into a fac-
tor graph and solve using nonparametric belief propagation.

A. Multimodal iSAM

We use multimodal iSAM [3] to compute the posterior
over poses and landmarks given a factor graph. In the factor
graph representation of the SLAM problem, we can compute
the posterior over poses and landmarks as follows:

p(X ,L | Z) ∝
∏
ϕ

ϕ(X ,L,Z)
∏
ψ

ψ(X ,L), (10)

where ϕ denotes a measurement factor and ψ denotes a
prior factor. Here, the factor graph is an undirected graphical
model where poses and landmarks are latent variables linked
by measurement factors and priors. The marginal distribution
over each variable can be obtained using belief propagation,



a solution which yields a convenient analytical form when
all of the variables are Gaussian.

To accommodate non-Gaussian variables in the factor
graph, multimodal iSAM makes use of nonparametric belief
propagation [4]. Nonparametric belief propagation approx-
imates the belief over all continuous state variables absent
the assumption of Gaussianity using a combination of Gibbs
sampling and kernel density estimation. That is, for a random
variable X , we approximate the marginal over X as

p̂(X) =

N∑
n=1

w[n]N
(
x[n],Σ[n]

)
, (11)

where N is a multivariate Gaussian kernel, each kernel is
centered at a sample x[n], w[n] is the weight associated with
the n-th kernel, and Σ[n] is the associated Gaussian kernel
bandwidth, determined using leave-one-out cross-validation.
The weights w[n] are chosen uniformly such that the resulting
sum is a valid probability density function.

A beneficial aspect of the functional approximation of
marginals is that we no longer need to explicitly represent
the potentially many modes in the posterior. This implicit
representation decouples the complexity of inference from
the number of hypotheses, as the computation involved in
the approximation of the marginals depends only on a fixed
number of samples. The result is that modes with very low
probability are unlikely to be represented in the approximate
marginal density. However, we do not explicitly prune these
modes, and since they still exist in the factor graph, modes
which later become more probable can be recovered.

B. Multimodal Semantic Factors

To incorporate semantic measurements into the factor
graph, we use multimodal semantic factors, which introduce
constraints between a pose and potentially many landmarks.
We assume a factorized semantic measurement model p(ykt |
xt, lj) = p(yk,ct | lcj)p(y

k,r
t | xt, lj)p(yk,bt | xt, lj) consisting

of the class estimate yk,ct from an object detector, the
estimated range to the object yk,rt , and the estimated bearing
to the object yk,rt . The distribution p(yk,ct | lcj) correspond
to the confusion matrix for the classifier, learned offline,
while p(yk,rt | xt, lj) and p(yk,bt | xt, lj) are each assumed
Gaussian with means yk,rt and yk,bt and variances σ2,k,r

t

and σ2,k,b
t , respectively. The latter terms can be obtained

by considering the range and bearing to the set of 3D
points estimated by a stereo vision system which project into
the bounding box for the object detection corresponding to
measurement ykt .

At each time step t, we update the factor graph solution
according to (10), which provides marginals for all poses
x1:t and known landmarks. Given the semantic measurement
model, we compute the probability of an association as
the total posterior probability of all associations at time t
of measurement k to landmark j given the measurements.
Specifically, let Dt denote the set of all possible associations
of measurements at time t to known landmarks. Similarly,
define D

{
dkt = j

}
, {Dt ∈ Dt | dkt = j}, the set of all

possible data associations at time t in which measurement
k is associated to landmark j. Assuming a uniform prior on
data associations, we have:

p̂(dkt = j) = ηD
∑

Dt∈D{dkt =j}

∏
k

p(ykt | Dt), (12)

where ηD is the total probability of the set D. We compute
the likelihood of each measurement ykt given its association
dkt by marginalizing out the pose estimate at xt and the
landmark position and class1:

p(ykt | Dt) =

∫∫
p(ykt | xt, ldkt , d

k
t )p̂(xt)p̂(ldkt )dxtdldkt

≈
N∑
n=1

∫
p(ykt | x

[n]
t , ldkt , d

k
t )p̂(x

[n]
t )p̂(ldkt )dldkt , (13)

where we have replaced the integral over the pose distribu-
tion by a sampled approximation. For data association com-
putation, we adopt a maximum likelihood sensor model to
simplify the integral over the landmark position. We find this
works well, empirically, when the sensor model is Gaussian,
but non-Gaussian sensor models can be accommodated by
making a sample-based approximation, for example.

Given p̂(dkt = j) for all landmarks lj in a set J ⊆ L of
candidate landmarks, a multimodal semantic factor links a
pose xt and each candidate in J :

ϕkt (X ,L,Z) =
∑
lj∈J

p(ykt | xt, lj , dkt = j)p̂(dkt = j), (14)

which for a Gaussian measurement model is a weighted sum
of Gaussians.

Finally, MAP estimates for each landmark class, assuming
a uniform prior, can be computed as in [19]:

lcj = argmax
c

∏
t

∑
Dt

p(Dt, lcj = c | Z), (15)

which are obtained by maximizing over the measurement
likelihoods found using Equation 13 with respect to the
landmark classes, rather than marginalizing them out, and
instead marginalizing out data associations.

V. EXPERIMENTAL RESULTS

Experiments with mm-iSAM were implemented in the
Julia programming language using the Caesar.jl library2.
We demonstrate the proposed approach both in simulation,
with a hallway environment, and using real data from the
KITTI dataset [25], [26]. All experiments were run offline
using 10 cores of a 2.2 GHz i7 CPU and factor graph
computation time was roughly identical across the three
methods (approximately 1 minute for simulated data and

1The integral with respect to ldkt
is a combined discrete summation over

the possible landmark classes in C and integral over the domain of landmark
positions, e.g. R2 in the 2-dimensional case.

2https://github.com/JuliaRobotics/Caesar.jl

https://github.com/JuliaRobotics/Caesar.jl
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Fig. 2: (a-c): Comparison of trajectories estimated using each approach in a simulated hallway environment. Ground-truth
trajectories are shown as dashed black lines. Ground-truth landmarks are shown as circles and colored by semantic class.
Landmark position estimates from each method are shown as rings and colored similarly by class. (d) Comparison of
translation error on simulated navigation tasks under five odometry noise models, Λt, with best fit line for each method.

3 minutes for the KITTI dataset). In both tests, we com-
pared our method, multimodal semantic SLAM (MMSS)
with maximum-likelihood (ML) data association and Gaus-
sian probabilistic data (Gaussian PDA). The ML method
selects the maximum-likelihood association considering all
measurements in a keyframe. We implement the Gaussian
PDA method using Gaussian factors with variance inversely
weighted by data association probabilities3.

In practice, new landmarks are determined using a thresh-
old on their likelihood given each known landmark (similar
to a Mahalanobis distance threshold in the Gaussian case)
and we compute data association probabilities for each can-
didate landmark within a conservative range of the estimated
pose at time t (this determines the set J in Equation 14).

A. Simulated Data

Our simulated navigation experiments consist of a two-
dimensional hallway environment with landmarks of two
classes. The robot in this simulation makes noisy measure-
ments to each landmark within its limited field of view (120◦

up to 3.5 m), and each range measurement has an associated
distribution over class probabilities. We model semantic
measurements as samples from a categorical model having a
confusion matrix with 90% accuracy for all landmark classes.
Range and bearing measurements were corrupted with zero-
mean Gaussian noise with variance 0.01. We also simulate an
odometry model corrupted by Gaussian noise with diagonal
covariance Λt, which we vary in our experiments.

In Figures 2a-c, trajectories and landmark estimates from
each method are compared qualitatively for a simulated run
with Λt = diag(0.01; 0.01; 0.001). In this example, we find
that ML data association fails in the presence of substantial
perceptual aliasing. Both Gaussian PDA and our method
are more robust to errors in data association, but we find
that ours is the only method that accurately closes the loop

3Our implementation of the Gaussian PDA method uses the approximate
marginal likelihood of each observation to compute data association prob-
abilities, rather than a point estimate of poses and landmarks; thus, it can
be viewed as an extension of the EM formulation in [19] from maximum-
likelihood estimation to MAP estimation.

Fig. 3: Object detections from MobileNet-SSD on KITTI
sequence 5.

after executing the full trajectory. In Figure 2d, we show
the average trajectory error for the three methods, plotted
against tr(Λt). Error for our approach increases the least
as the odometry becomes more noisy, suggesting improved
robustness to odometry uncertainty.

B. Real Data

We evaluated the three approaches for a navigation using
a stereo camera with data from KITTI odometry sequence
5 [25]. Odometry is provided by VISO2 stereo odometry
[27], and probabilistic data associations with objects provide
loop closures. We sample keyframes at 1 Hz and objects are
detected in the left camera image using the MobileNet-SSD
neural network [28] (with the single-shot detector (SSD) and
MobileNets proposed respectively in [29] and [30]) trained
on the PASCAL Visual Object Categories (VOC) dataset
[31]. We accept measurements for which the neural network
reports a confidence greater than 0.8. Examples of bounding
box measurements from the object detector are shown in
Figure 3. Semantic measurements are produced in the KITTI
dataset by detections of cars and are represented by the
average range and bearing to all 3D points that project into
the detection bounding box. We assume that the stereo pair
has fixed height and is constrained in pitch and roll, so the
resulting estimation procedure is carried out with respect to
the vehicle translation along the ground plane and yaw.

Figure 4 shows estimated trajectories and landmark po-
sitions for each method on KITTI sequence 5, and cor-
responding average translation and rotation errors can be
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Fig. 4: Comparison of trajectories (lines) and landmark position estimates (points) for each method applied to KITTI sequence
5. Ground truth trajectory is plotted as a black dashed line. The contour plot for the pose marked with a purple cross in (c)
is shown in Figure 5.

Method Avg. Trans. Error (m) Avg. Rot. Error (rad)
ML 20.427 0.0810

GPDA 8.814 0.0446
MMSS (Ours) 5.718 0.0255

TABLE I: Comparison of translation and rotation error on
KITTI sequence 5 for the different methods tested.
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Fig. 5: Contour plot for the marginal distribution of the
marked pose in Figure 4c. Multimodality is induced by
odometry uncertainty and data association ambiguity.

found in Table I. As a result of perceptual aliasing due to
long rows of parked cars, maximum-likelihood associations
cause a number of incorrect loop closures that are hard to
recover from. Gaussian PDA makes “soft” measurements
in these cases, and produces a much better solution. By
representing the full posterior, however, our method obtains
a more accurate solution, recovering from the uncertainty in
growth in the largest loop. We additionally mark a pose near
this loop closure in Figure 4c and display the contour plot
of its distribution in Figure 5, which shows that odometry
uncertainty coupled with data association ambiguity results
in a non-Gaussian posterior. A supplemental video provides
visualization of the object detections and estimated vehicle
trajectory using our approach on the KITTI dataset4.

4https://youtu.be/9hEonD8KDrs

VI. CONCLUSION AND FUTURE WORK

We have proposed a solution to semantic SLAM with
unknown data associations that implicitly represents multiple
association hypotheses as a multimodal sensor model. This
formulation leads to a non-Gaussian SLAM problem, which
we solve using mm-iSAM [3]. We validated our approach on
a simulated navigation task under variety of odometry noise
characteristics, as well as on data from the KITTI dataset.
In addition to representing non-Gaussian belief over poses
and landmarks, our multimodal semantic SLAM approach
showed improved robustness to odometry noise and percep-
tual aliasing as compared with other methods.

Though our method represents uncertain associations, like
many previous efforts, we rely on hard decisions about
whether or not to add landmarks. Representing this uncer-
tainty is an important step toward more tightly coupling the
data association and SLAM problems, but computation of
association probabilities may become expensive. Dirichlet
process priors on associations, as in [32] provide one avenue
for future work, while the approximate matrix permanent
methods of [33] may help address computational complexity.

Our approach also enables semantic SLAM with non-
traditional sensing modalities. By choosing a representation
that does not make assumptions about the measurement
distribution, we are able to deal with ambiguous data as-
sociations that arise from non-Gaussian sensor models, for
example in the case of multiple returns by a sonar.

Finally, we assumed a simple geometric model and fo-
cused on comparison of data association methods. Another
area for future work is the application of our approach using
novel geometric representations, e.g. quadrics [14], [18].
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