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Implementing Regularized Predictive Control for Simultaneous Real-Time
Footstep and Ground Reaction Force Optimization

Gerardo Bledt1 and Sangbae Kim1

Abstract— This work presents a successful implementation of
a nonlinear optimization-based Regularized Predictive Control
(RPC) for legged locomotion on the MIT Cheetah 3 robot
platform. Footstep placements and ground reaction forces at
the contact feet are simultaneously solved for over a prediction
horizon in real-time. Often in academic literature not enough
attention is given to the implementation details that make the
theory work in practice and many times it is precisely these
details that end up being critical to the success or failure of
the theory in real world applications. Nonlinear optimization
for real-time legged locomotion control in particular is one of
the techniques that has shown promise, but falls short when
implemented on hardware systems subjected to computation
limits and undesirable local minima. We discuss various al-
gorithms and techniques developed to overcome some of the
challenges faced when implementing nonlinear optimization-
based controllers for dynamic legged locomotion.

I. INTRODUCTION

Research on legged robots has seen a recent growth
in interest due to advances demonstrating highly dynamic
locomotion and ability to traverse difficult and unstructured
terrains. This is in part because of developments resulting
in more sophisticated controllers capable of dealing with in-
creasingly difficult situations, as well as improved computing
and actuation methods capable of robustly executing these
controllers in the real world. Optimization-based controllers
for legged robots have been successful in balancing, loco-
motion, and disturbance rejection. However, they are still
lacking when attempting to solve more complex problems
due to convergence and timing difficulties.

Legged robots currently use a variety of optimization-
based locomotion controllers. The Atlas humanoid robot uses
optimization throughout its control architecture [1]. HyQ at
IIT uses a simple template model in a whole-body controller
for instantaneous optimization of ground reaction forces [2]
with heuristic planning to modify the desired inputs and deal
with the aspects of locomotion that do not directly contribute
to force controlled balance such as swing leg reflex [3].
ANYmal from ETH Zürich has implemented a hierarchical
whole-body controller to execute tasks in order of priority
for instantaneous force control of dynamic gaits [4], [5].

Instantaneous whole-body controllers have the limitation
of only being aware of the current state rather than having
knowledge about the gait and upcoming states meaning
that they cannot easily control gaits with flight or longer
periods of underactuation. For this reason, a heavy focus has
been placed on predictive controllers, with Model Predic-
tive Control (MPC) being the main framework of choice.
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Fig. 1: MIT Cheetah 3 Locomotion. The RPC optimization
finds ground reaction forces and footstep locations in real-
time for realizing dynamic legged locomotion.

MPC has been shown for many years to be theoretically
successful in simulation [6], [7], [8]. However, robust hard-
ware implementations are only recently beginning to show
good performance. A whole-body MPC implementation was
shown on the HRP-2 humanoid platform [9]. In this work,
the authors state many of their solutions to address the
difficulties in whole-body MPC, namely the computational
cost, undesirable local minima, and discontinuities in control.

MPC is commonly used as a higher level planner rather
than as the primary stabilizing controller. Many of these
techniques solve the optimization for a large number of
future footsteps and then another controller tracks the plan
online. Work by Winkler et al. generates footholds and CoM
trajectories for a certain look ahead period and then has a
separate controller track the motion in practice [10], [11].
These fast techniques for simultaneous foothold and CoM
planning have been shown on hardware, but are geared
towards planning for execution rather than real-time, coupled
reactive adaptation.

Real-time Nonlinear MPC (NMPC) techniques are gaining
popularity with the improvements in computing capabilities.
Quadcopters have shown success in fast implementations
of NMPC [12], [13]. In legged robots, the LOLA robot
uses real-time NMPC to adapt its footstep placements online
under disturbances [14]. Farshidian et al. demonstrate their
FastSLQ-MPC for generating a real-time whole-body nonlin-
ear MPC to create trotting gaits [15]. A real-time whole-body
NMPC implementation is shown on hardware in [16] where
the robot is able to stand and do slow trotting. However,
they note that computation and real-world limitations must
still be overcome to take full advantage of the nonlinear
optimization’s capabilities.



In this paper, the controller is designed for the MIT
Cheetah 3 robot platform pictured in Figure 1. Two separate
balance controllers have been implemented on the robot.
The first being a Quadratic Program (QP) based balance
controller that uses instantaneous ground reaction forces at
the contact points to regulate the CoM states [17]. The
second being a linear, convex MPC implementation which is
able to stabilize various dynamic gaits as described in [18].
Both assume fixed footstep locations. Previous work showed
promising results with a similar quadruped model using non-
linear optimization to pick both footsteps and ground reaction
forces in simulation [19]. This paper presents the Regularized
Predictive Control (RPC) hardware implementation as an
extension of that work relying on heuristic regularization
rather than a high-fidelity dynamics model.

A. Contribution

The contribution of this paper lies with the culmination of
various important research efforts into a functional hardware
implementation. As pointed out, the system integration of a
nonlinear optimization-based controller is non-trivial and as
such it is not yet widely used as the main real-time controller
in legged robots. This work is intended to present some of the
more critical details that led to the successful implementation
of the RPC framework for real-time control of a dynamic
quadruped. The hope is that other NMPC-style methods
can benefit and overcome the computation limitations that
currently plague real-time nonlinear optimization for control.
The results show the nonlinear predictive controller is able to
perform as adequately or better than the previous controllers
on the robot during the experiments. We believe that this is
a big step in showing that nonlinear predictive controllers
are approaching a point where they can be used robustly to
control dynamic legged robots.

The following sections are organized as follows. Section II
presents the nonlinear RPC optimization framework with the
cost function and constraints as written in the theory. Then
Section III presents a survey of the implementation details
that allow the theoretical controller to be implemented on
the hardware in real-time. Results are shown for various
experimental situations in Section IV. Finally, Section V
discusses brief conclusions of the work.

II. NONLINEAR RPC OPTIMIZATION FRAMEWORK

The RPC framework described here is an extension of
previous work by the authors in [19]. It was shown that
adding heuristic regularization directly into the optimization
allowed the controller to exploit the known dynamics of
the system resulting in faster computation time and better
conditioned cost spaces. However, that version was presented
purely in simulation where time could be stopped while the
optimization searched for a solution. This is not realistic on
the actual hardware and so while the theoretical controller
and optimization framework have not been modified signifi-
cantly, the implementation details are drastically different.

The control model uses massless leg and linear CoM
dynamics assumptions to simplify some of the nonlinearities

Fig. 2: RPC Optimization. Physically realistic constraints
are enforced for the simplified dynamics, footsteps locations,
and ground reaction forces.

and make the dynamics calculation along with the associ-
ated gradients simple to solve. This allows us to use the
dynamics as a rough feasibility constraint rather than a strict
dominating condition. The optimization framework with its
cost function and explicitly written constraints is posed as

min
x,u

N−1∑
k=0

(x̃TkQkx̃k︸ ︷︷ ︸
Dynamics

+ ũTkRkũk︸ ︷︷ ︸
Regularization

) + x̃TNQN x̃N︸ ︷︷ ︸
Terminal State

subject to Simplified Discrete Dynamics
xk+1 − (Akxk +Bkh(xk,uk) + dk) = 0

Foot Placed on Ground
ẑg(px,i, py,i)− pz,i = 0

Kinematic Leg Limits∥∥rref,i − rh,i∥∥− z0 tan(π6 ) ≤ 0

Foot Stationary During Stance
sφ,i,k+1sφ,i,k (pi,k+1 − pi,k) = 0

Positive Ground Force Normal
−f̂i · ∇Ĝ(p̂i) ≤ 0

Lateral Force Friction Pyramids
−µfz,i ≤ fx,i ≤ µfz,i
−µfz,i ≤ fy,i ≤ µfz,i

The robot states are the CoM position and Euler angles and
their derivatives, x =

[
pT ΘT ṗT Θ̇T

]T
. The inputs

are the foot positions relative to the CoM and their ground
reaction forces, u =

[
rT1 fT1 . . . rT4 fT4

]T
. Decision

variables for each timestep, k, include both the states and
inputs, χk =

[
xTk uTk

]T
. Scheduled gait phase for each

foot, sφ,i, foot position on the ground, pi, and estimated
ground height, ẑ(px,i, py,i), are used for the foot constraints.

The framework enforces the necessary constraints for
physical realizability characteristic of a point foot legged
system as depicted in Figure 2. For example the forces
are constrained so that the feet cannot pull on the ground.
However, we make the assumption that the feet will not slip
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Fig. 3: Simplified Control Framework. Simplified block
diagram showing the general flow of information throughout
the control framework. In theory, the RPC block is simply
the optimization with no modifications needed.

on the ground and write it as a constraint even though it
is possible for the feet to slip. We attempt to avert this by
adding the friction constraint to avoid large lateral forces.
Although many of the terrain conditions are explicitly written
in the constraints, it is worth noting that the hardware experi-
ments in this paper are conducted through blind locomotion,
meaning that the robot has no external perception of the
environment. Therefore, assumptions about the terrain are
made for the optimization constraints.

While regularization is often used in optimal control, this
method attempts to regularize to a time-varying, nonlinear
function composed of heuristics designed to closely approx-
imate the optimal solution in various operating situations.
When implemented on the hardware, the choice and design
of the heuristic regularization became much more important
than the actual dynamics model being optimized over. Solu-
tions perform well towards the beginning of the prediction
horizon, but breakdown towards the later parts of a long
horizon as the dynamics are not highly accurate to the
system. For this reason, it is desirable to constantly replan
as fast as possible.

III. IMPLEMENTATION DETAILS

The theory behind the controller has been shown in
simulation, but robotics requires engineering to actually
implement. While in Figure 3 the overall block diagram is
presented with a single block representing the theoretically
derived RPC, in practice it is not so simple to just run the
optimization assuming that it will be solved instantaneously.
Figure 4 extends on the theoretical derivation and shows the
algorithms and modifications designed to aide the optimiza-
tion overcome the real-time implementation challenges. This
section describes the blocks in the diagram and their function
in the control framework resulting in successful locomotion
on the hardware platform.

A lot of the success comes from managing the tradeoff
between accuracy and computation time, as well as prepro-
cessing the Nonlinear Program (NLP) inputs by exploiting
prior knowledge of the system. The MIT Cheetah 3 robot
is designed to be robust to inaccuracies in ground reaction
forces and has been shown to be adequately modeled for
control with massless legs. This affords the ability to use the
simple dynamics model in the optimization. A one time per
solution preprocessing calculation has powerful effects on
conditioning the problem’s initial guesses and cost landscape.

Regularized Predictive Control

RPC 
Optimization

Prediction 
Compensation

Adaptive 
Segmentation

Heuristic 
Models

Asynchronous 
Filter

Fig. 4: Modified RPC Implementation. The theoretical
RPC optimization is aided by various other algorithms to
overcome some of the limitations and difficulties that come
with real world implementation.

A. Direct Transcription

Various optimization methods are available for solving
optimal control problems. The choice of which has large
effects on the solution accuracy and speed with each having
their own benefits and drawbacks. For the controller we
decided to use direct transcription which uses piecewise
constant input and a piecewise linear state trajectories with
both the states and the inputs used as decision variables in
the optimization [20].

By posing the optimization as a direct transcription we
lose some of the accuracy we may gain using a more
sophisticated method, but also reduce the computation times.
The loss in accuracy is not critical since the model we
are using is an approximation rather than high-fidelity. As
such, tolerances and convergence conditions can be greatly
relaxed. It is not imperative to solve for a high degree of
optimality on a model that is already a large approximation.
We found that while the predicted robot states further along
the prediction horizon rarely match with the actual states at
that future time, the robot states generally trended towards
the predicted directions. However, since the controller is
constantly replanning, new inputs are modified to account for
the discrepancies arising from the coarseness and simplicity
of the optimization model dynamics.

With direct transcription the dynamics constraints are only
dependent on the current timestep and the next timestep. This
implicitly constrains the dynamics to be enforced throughout
the prediction rather than explicitly adhering to the dynamics
from the first to the last timestep. Similarly, even though
footsteps may extend over several timesteps, by only con-
straining adjacent stance positions the constraint does not
need to be explicitly written over all the relevant timesteps.
This removes a lot of redundancies and better conditions the
problem to be a series of small linear approximations linked
together to approximate the overall nonlinear function. Only
each small step needs to be constrained to be dynamically
feasible rather than the full, highly nonlinear function. This
results in more accurate dynamics between timesteps as the
linear dynamics hold more fidelity to the real nonlinear
dynamics over smaller time intervals.

Consequently, Figure 5 shows the sparsity matrices for the
Constraint Jacobian (5a) and the Hessian of the Lagrangian
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Fig. 5: Sparsity Patterns. Both the constraint Jacobian (a)
and Lagrangian Hessian (b) feature a highly sparse, repeated
structure throughout the matrix which contributes to the
flexibility and speed of the algorithm.

(5b) where the dark spots indicate the indices in the matrices
where the entries are possible to be non-zero. χ signifies
the decision variables in the optimization, ζ is the set
of constraints, while the subscripts denote the prediction
timestep number. In this example N = 4, but in practice
it can be chosen to be anything. By design, the matrices are
both sparse and although the size of the Constraint Jacobian
and Lagrangian Hessian grow proportional to N2, the non-
zero entries of each grows linearly as, O(N).

All parts of the equations and constraints that relate to con-
tact points are defined by the contact state boolean variable,
s = {0 = swing, 1 = contact}. This provides a simple
way to automatically adapt the active decision variables
for each contact mode without having to explicitly write a
different optimization for each combination of foot contacts.
This propagates through the prediction horizon and activates
or deactivates different contact modes in the gradients and
Hessians according to the gait schedule regardless of the
order or duration of each.

B. Adaptive Timing Segmentation

Since Legged locomotion is defined by the discrete
changes between contact and non-contact modes of each of
the legs, the optimization timestep segmentations must reflect
these modes. As the controller is run continuously rather than
at a scheduled time, the time step vector to be optimized over
cannot simply be prescribed. As such, an algorithm must be
developed to adaptively segment the time vector regardless
of the scheduled gait pattern.

The algorithm takes a nominal discretization timestep
sequence and attempts to calculate the closest set of timestep
segmentations while respecting the gait schedule. Discrete
scheduled contact switches must signify a new division
as the robot enters a new control mode. Since this often
happens irregularly, the algorithm chooses the number of
timesteps within the same contact mode and spaces them
out evenly. Algorithm 1 outlines this process. This allows
for an incredible amount of freedom in choosing gait pat-
terns and frequencies. Instead of constraining the predicted
timestep vector to be divided evenly, any gait schedule can

Algorithm 1: Adaptive Timestep Segmentation

1 nominal timestep: ∆tnominal;
2 scheduled contact to swing phase: φc→c̄ =

Tp−Tc̄

Tp
;

3 for k = 0 to NUM PREDICTIONS-1 do
4 number of feet in swing: Nc̄ = 0;
5 ∆tmax =∞
6 for f = 0 to NUM FEET-1 do
7 if φf,k < φc→c̄ then
8 foot in contact: sf,k = 1;
9 time until foot switches to swing:

∆tswitch = Tp(φc→c̄ − φf,k);
10 else
11 foot out of contact: sf,k = 0;
12 time until foot switches to contact:

∆tswitch = Tp(1− φf,k);
13 Nc̄++;

14 if ∆tswitch < ∆tmax then
15 ∆tmax = ∆tswitch;

16 choose the current segment duration: ∆t∗k;
17 if Nc̄ = NUM FEET then
18 ∆t∗k = ∆tmax;
19 flight phase = 1;

20 else if ∆tmax < ∆tnominal then
21 ∆t∗k = ∆tmax;
22 flight phase = 0;

23 else
24 nominally divide time till switch evenly:

∆t∗k = ∆tmax

round( ∆tmax
∆tnominal

)
;

25 flight phase = 0;

26 φf,k+1 = mod(φf,k +
∆t∗k
TP

, 1);

be optimized over without needing to make any change in
the controller.

The ambling gait in Figure 6a has 8 quick contact switches
over the full gait cycle and therefore the algorithm shortens
the overall prediction horizon. The trotting gait in Figure
6b has 2 contact switches over the nominal horizon, since
diagonal pairs of legs switch simultaneously and can be
captured more easily by the nominal prediction horizon. For
those more complex gaits, it is easy to simply increase the
number of prediction discretizations.

This algorithm is O(N), so it is straight-forward and com-
putationally inexpensive to add checks for various boolean
flags that get used in the calculations. For example, if a foot is
determined to be in contact, we can check if it was previously
in contact or not, which signifies a touchdown event. Keeping
track of touchdown events lets the optimization know if it
should use the heuristic reference footstep location or the
footstep location from the previous iteration during initial-
ization. The no foot slip constraints will be enforced either
way so it is not necessary to explicitly flag touchdown events,
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Fig. 6: Adaptive Timestep Segmentation. Top four bars
represent the upcoming gait scheduled contact sequences for
each of the feet. The bottom bars are the nominal timestep
segmentation and the adapted segmentation based on contact
mode switches where each segment gets lighter further along
the prediction horizon.

but initializing and regularizing with already correct footstep
logic decreases the number of iterations and complexity
needed to converge.

C. Prediction Delay Compensation

The optimization solve time is slower than the 1kHz main
control loop so there are often timing delays resulting in
discrepancies between the current state of the robot with its
associated scheduled contact mode and the returned optimal
solution. Forces and step locations are applied after a solution
is returned, so the initial optimization states at the beginning
and end of the solve time, dt∗, are equal, x−0 = x+

0 , but the
actual robot state may change, x̂(t) 6= x̂(t+dt∗) Therefore,
we must account for the fact that the robot is likely not in
the same state as when the optimization began and that legs
may have switched into a different contact state.

As such, the initial state given to the solver, x0 is not the
current instantaneous state of the robot, but rather a predicted
future state that the robot can be expected to be near when
a solution is returned as solved for by the linear dynamics
approximation

x0 = A(d̄t)x̂(t) +B(d̄t)h(x̂(t),u(t)) + d(d̄t) (1)

where u(t) is the current input from the last solution and
the dynamics are integrated forward using d̄t, the filtered
average optimization solve time.

Similarly, the phase of each foot will be different by the
time the optimization returns a value and therefore may also
be scheduled to be in a different contact state than it is
currently in. Each leg phase can be modified according to

d̄φ =
d̄t

TP
(2)

φk = mod(φ(t) + d̄φ, 1) (3)

where TP is the nominal gait period time and φ(t) is the
current phase of the foot. Again, this starts the prediction
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Fig. 7: Predictive Delay Compensation. Blue trajectory
shows the actual robot states, while the green and red
trajectories show the initial state at the beginning and end
of the optimization respectively.

with the contact mode that the robot will likely be in when
a solution is returned. If a foot is nearing the end of stance, it
is not a good idea to solve for forces assuming that the foot
will be in stance when the optimization converges. If there
is a mode change before the end, then whatever solution
was found is no longer possible to execute. Figure 7 shows
that the Root Mean Squared Error (RMSE) between the
current robot state, x(t), and initial optimization state when
a solution is returned, x+

0 , is lowered by using prediction.

D. Extracted Heuristic Models

In previous work it was demonstrated that the performance
of the controller could improve drastically simply by adding
improved heuristic regularization to the RPC. Particularly
since most NLP solvers are designed for smooth continuous
problems and legged locomotion is by definition a discrete
hybrid problem, the regularization heuristics help guide
and attract the solutions towards known operating regions.
Discontinuities can prevent the solution from converging or
finding local minima so the regularization warps the cost
space in a favorable way to find a solution quickly.

In the majority of situations, the heuristics for desired
CoM state, foot locations, and ground reaction forces provide
a ”good enough” solution for locomotion. By simply execut-
ing the heuristics, the robot should be able to remain upright
for at least a small amount of time. This gives the RPC
enough time to return a new solution without falling over.
The heuristics are embedded directly into the optimization
through the error term in the quadratic cost functions as

x̃ = Hx

(
x̂,xd

)
− xk (4)

ũ = Hu

(
x̂,xd

)
− uk (5)

This regulates the states and inputs towards the designed
heuristics rather than the simple user input commands, which
act as a higher level goal for the robot, but are modified with
the heuristics in order to better solve the optimization.

Designing these heuristics can be challenging and outside
the scope of this work. For the purposes of this paper, we
will assume that a set of heuristics, H, is pre-determined.
A heuristic extraction framework for determining simple,
physically meaningful models from data analysis as well as
expert design will be presented in future work. The results
of adding heuristic regularization models showed a roughly



∼ 2× improvement in maximum forward, lateral, and turning
velocities simply by exploiting the heuristics. No changes
were made to the control gains or the controller structure to
incite the performance boost.

E. Asynchronous Solution Filtering

The prediction delay compensation in Section III-C starts
the optimization acting on a future state and contact mode
based on the moving average of the optimization solution
time. However, this means that if the actual gait schedule
has a differing contact mode than the resulting RPC solution,
there must be a way to deal with this discrepancy. For
both the footstep and ground reaction forces of each leg,
the nominal values are given to be the extracted heuristics
discussed in Section III-D. As stated, the heuristics are
designed precisely for this purpose. Therefore in the event
that the optimization does not return a solution or cannot
converge before the contact mode changes, the robot simply
executes the heuristic and is able to temporarily get away
without a new optimization solution. This temporary control
action is designed for idealized conditions and will not
stabilize the robot indefinitely. However, it will provide a
”good enough” solution to avoid a fall.

This is especially important in gaits that have very distinct
contact modes, such as trotting. In a version of the trot
gait, the diagonal pairs of legs are picked up and put
down in an alternating pattern. Even with the prediction
delay compensation, it is not guaranteed that the predicted
phase and the scheduled phase signal the same contact state.
Therefore, without this heuristic there would be no force
command from the stance legs to keep the robot upright.
When the optimized solution contact mode and the scheduled
gait sequence return to a synchronized state, the results from
the RPC can be confidently used again.

F. Gain Tuning

With most controllers, the tuning of the gains is a critical
component to its success. To tune the gains, simple desired
setpoints were used as we automatically swept over the
individual gains for each state. Rough bounds of stability for
the gains were found that allowed the robot to automatically
tune itself without falling over in simulation by simply
finding the gains that produced the best tracking.

Figure 8 shows the two extreme bounds of tuning the yaw
behavior of the robot while trotting. While both are stable,
they produce very different results. The red lines are the
actual measured states of the robot and the multicolored lines
are the predicted states returned from the RPC. Low yaw rate
gain, Rψ̇ , produces a more natural and smooth sinusoidal
pattern when not forcing the yaw rate to go to zero as is the
case with the high gain. The tracking error for the states is
used as a metric for tuning, as is the predicted state error.
When the predicted states also have good tracking, then the
controller is better conditioned and results produce smoother,
less sporadic results.

The predicted state trajectory does not line up with the
actual state because the prediction model is based on simple
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Fig. 8: Intuitive Gain Tuning. Red lines indicate the actual
motion of the robot and the thin multicolored lines represent
the predicted states at each moment in time as the yaw rate
gain is swept from Rψ̇ = 1 in (8a) to Rψ̇ = 500 in (8b).

uncoupled linear dynamics while the actual robot is a highly
nonlinear hybrid system that must adhere to its natural
physics regardless of how much the controller fights it. This
will be addressed in related work. However, for the purposes
of tuning the gains, it is enough to attempt to track as closely
to a simple setpoint as possible.

IV. RESULTS

The RPC was implemented successfully on the MIT
Cheetah 3 robot platform. The optimization is solved using
the freely available IPOPT NLP solver [21] interfaced in
C++. It runs on a separate thread, but on the same ADL
embedded Quad core PC with a 2nd Gen Core i7 CPU
as the main control loop described in [17]. As mentioned
throughout the paper, the RPC runs asynchronously to the
main control loop. Therefore while the control loop runs
at a fixed 1kHz, the RPC solution time varies based on
computing power available.

We note that the stability of the robot improves as solve
frequency increases, with good stability over 40Hz, decent
stability 20 − 40Hz, and unstable under 20Hz. Since gen-
erally the heuristic-based initial guess is designed to provide
an adequate solution to at least remain stable, we can limit
the maximum solve time to be 50ms which corresponds to
the lowest stable frequency and rely on the heuristics if a
solution was not found. In practice the solver generally runs
at 60 − 80Hz on the robot during steady state locomotion
and around 40− 60Hz during worst-case large disturbances
as the optimization must search further from the heuristic
regularization for better solutions.
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Fig. 9: Ground Reaction Forces. Optimized ground reaction
forces during a trotting gait. Forces are smoothly filtered even
though the RPC returns discrete constant forces at a lower
frequency than the control loop.

The xyz ground reaction forces resulting from the RPC
are shown in Figure 9. The gait schedule contact sequence
for the trotting gait is also depicted for the six footsteps.
Each diagonal pair of legs is capable of stabilizing the robot
while trotting in place. A discrete jump in the forces can be
seen at the beginning of each new contact mode, signifying
the switch from the short period of heuristic force calculation
to the RPC solution.

In addition to selecting the ground reaction forces at the
contact points, future footsteps are also chosen. The benefit
of simultaneously optimizing for both is that footsteps are
chosen in the same context as future stabilizing forces. Figure
10 shows two example predicted footstep optimization results
during 1.4ms forward locomotion using the robot with a
trotting gait. The figure depicts a 2D projection in the XY
plane of the (x, y) coordinates for the CoM, predicted CoM,
contact feet, and predicted footstep locations. In Figure 10a,
the front left (blue) and back right (green) feet are on the
ground while the next footstep locations for the front right
and back left feet are solved for. The prediction horizon is
long enough such that the next footsteps for the front left
and back right feet are also already being solved for before
they have entered their swing phase.

The robot was able to closely track the desired velocities
during the experiment both forwards and backwards. The
body’s orientation throughout is modulated close to level
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Fig. 10: Predicted Footstep Locations. Solid colored dots
represent the current contact foot locations while the colored
circles signify the predicted footstep locations. The solid cir-
cle inside of the predicted footsteps corresponds to the future
time segment of touchdown, where the darker the circle, the
closer to the current time. CoM predicted trajectory is shown
in the middle with decreasingly dark dots over time.
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Fig. 11: Velocity Tracking. The robot was given forward
and backwards velocity commands in the x direction and
was able to closely track the desired values while keeping
its body orientation close to flat.

with minor fluctuations, never exceeding more than 5◦ which
usually occurs during the sharp velocity changes. However,
it returns flat when the robot is in steady state. Figure 11
shows the robot’s ability to track commanded translational
velocities. The maximum commanded velocity is 1.4ms dur-
ing trotting. Turning rate commands were also sent to the
robot as seen in Figure 12. Maximum turning rate given was
2 rads with a mean orientation error in roll of 0.47◦ and 0.48◦

in pitch throughout.

V. CONCLUSION

This paper showed a real-time implementation of a non-
linear optimization based Regularized Predictive Controller
on the MIT Cheetah 3 quadruped robot. While optimization-
based controllers for legged robots have been explored in
many related works, it is common for the performance to
be affected by non-convergence and computation time prob-
lems. The real contribution of this paper is to describe the
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Fig. 12: Turn Rate Tracking. The robot was given a turning
rate command which it was able to track with little error over
the duration of the test.

implementation details that mitigate some of these problems
that are typical of nonlinear optimization controllers. With
the presented work, we were able to show results of the
controller successfully controlling the robot through dynamic
locomotion in real-time.

Using the custom realistic dynamics simulation environ-
ment on a more powerful desktop processor, the optimization
ran at approximately 120− 150Hz, sometimes reaching up
to 200Hz. With a more powerful CPU in the robot, we could
exceed this solution frequency and improve performance
while relying less on some of the compensation techniques
described throughout this paper. However, with the current
hardware setup, the robot still performs well.

Future work will continue to develop the controller and
heuristics to improve both the optimization solution time
and the stable operating regions. Work is also underway
to integrate perception with the controllers. The controller
should be able to operate in most situations blindly, while
being able to improve performance through the integration
of perception information.
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[21] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Math. Program., vol. 106, pp. 25–57, Mar. 2006.

View publication statsView publication stats

https://www.researchgate.net/publication/337275178

