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ABSTRACT

This thesis shows the application of two particular
approaches of system identification tc the maneuvering trials of a
surface ship. The model reference contouring and the extended
Kalman filtering are used to identify the hydrodynamic coefficients
of the Mariner class Hull form.

The mathematical model representing the ship dynamics is
first developed. The concept of parametric identifiability is presented
and the techniques which will be used are described. The scheme
adopted to conduct the identification studies is then presented. The
computation steps for the implementation of the identification
approaches to the mathematical model are detailed.

The results of the identification procedure are analyzed.
They give a good idea about the identifiability of the hydrodynamic
coefficients, particularly the linear coefficients. The use of
simpler models is shown to produce better results. The coneclusions
of the studies express some general rules about the application
techniques, specially extended Kalman filtering to the maneuvering
studies.
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CHAPTER 1

1. INTRODUCTION

The studies in this thesis are concerned with the
application of system identification techniques to the maneuvering
trials of a surface ship. The primary objective is the identification
of the motion parameters, but it is expected that the work may also
provide some information about the use of the identification techniques.
The first Chapter presents an introduction to the problem of system
identification. The application of the approach specifically in
the area of ship design and control is described. This Chapter
presents also an outline of the whole thesis detailing the several

steps in which the work was divided.

l.1. Introduction to System Identification

When considering control and simulation studies of ship
dynamics with the use of a mathematical model, an important aspect
is the establishment of the proper form of the equations as well
as the appropriate numerical values of the various parameters in
these equations. The precise knowledge of these coefficients is
of significative importance for the naval architect to predict the
behavior of a given ocean vehicle. This information is also

necessary in the development of the vehicle control system.
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At the present time, the main method of determining the
various hydrodynamic force and moment coefficients (hydrodynamic
coefficients) in a desired model for a particular type of marine
craft is by means of captive model tests in a towing tank.com-
plemented by the mathematical analysis of the experimental data
in order to provide the required coefficients. Considering the
computational and data reduction equipment required as ancillary
elements of the measuring devices as well as the time and expense
required to obtain the desired parameter values by these means,
other methods that may reduce the effort required for determination
of the hydrodynamic coefficients then become more attractive.

There is a general approach that can be applied to find
the hydrodynamic coefficients. This approach which is used to
determine the values of tﬁe various parameters in the mathematical
model of a dynamic system hasﬂbeen developed recently as part of
modern control theory. This procedure is known as system
identification which in the present case is a means of determining
the numerical value of the parameters that enter into the state
equations of the mathematical model that represents the vehicle
dynamics. These values are considered to be the appropriate values
representing the vehicle dynamics when they are obtained from a

number of different trajectories of the vehicle motions.
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In a broader sense, system identification is closely
related with modeling in the extent they are concerned with the
determination of the model structure. In the strict sense, that
system identification is being considered in the work, the model
structure is assumed known and the problem is to find the value of
the parameters. In this condition, it is also known as parametric
identification.

Basically, the parametric identification approach consists
in obtaining responses of a vehicle by measuring the trajectories
following different types of disturbances. With the formulated
mathematical model values for the unknown parameters are then sought
so that the solutions to the dynamic equations give a best fit to
the data, where the best is, in general, defined by minimizing the
mean square error between the solution of the equations using
these coefficients and the actual data record itself. This
approach can be applied to data from both full scale trajectory
observations, like in the work of Goodman, et. al. [12] and model

scale trajectory observations, as it was done by Reis [7].

In the studies of this thesis, a mathematically simulated
ocean vehicle (the Mariner class ship ) with a fixed and known set

of parameter is used to generate a noisy vehicle input-output data.
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The same deterministic model structure , but with different or
unknown parameters is then used in the identification procedures in
attempts to determine the original or "true" set of parameters used
in the data generation. In this form, parametric identification
was applied by Hayes [2] and Goodman([12]. The application of the
techniques is cencerned not only in identifying the true values

of the parameters, but also in determining their identifiability.

l.2. Thesis Outline

This thesis is related to the use of parametric
identification techniques to determine the motion parameters for
the horizontal maneuvers of a surface ship. According to the
problem formulation the application of the systems identification
approach requires the use of a mathematical model representing the
vehicle under study. 1In the particular case of the present work
a stochastic model with the same structure, taken as the system,
is used to simulate the maneuvering trials. Specific methods
of parametric identification will be applied to the mathematical
model in order to determine the true value of the various parameters.
A scheme to investigate the identifiability characteristics of the
various coefficients should be designed. In the next chapters each

aspect of the identification problem will be treated.
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Chapter 2 is concerned with the development of the

mathematical representation of the vehicle. The equations

of motion for the horizontal maneuver of a surface ship are
derived and put in the form of state equations. This form

is very convenient because it permits to use all the techniques
of the modern control theory. Two types of uncertainty
representing process and measurement noise are added to the model.
Some constraints are imposed on the noise characteristics. The
stochastic model thus obtained will be used to simulate the ship
maneuvers, generating the input-output data which is utilized to
identify the parameters. A linear version of the complete
mathematical model is derived to be used in the identification
studies. The hydrodynamic coefficientsattached to the model
belong to the Mariner class hull form, and are given in the
literature,

In Chapter 3 a more detailed formulation of the
parametric identification problem is given, and some of the
available approaches of system identification are listed.

Two technigues, the model reference and the extended

Kalman filtering which will be utilized in their work are
described. All the steps necessary to the implementation of
these approaches are detailed. Finally the concept of

identifiability of a parameter is presented.

15



Chapter 4 described the procedure selected to conduct
the identification studies. The scheme designed divides the work
in three parts. The first part is a preliminary investigation
of the relative importance of some hydrodynamic coefficients.
Parameters of negligible influence on the system behavior are
eliminated from the model. The second part consists in the ident-
ification of the linear coefficients. The linear model derived
in Chapter 2 is utilized in this phase. Finally, using the complete
model the nonlinear coefficients are analysed. The computation
steps for application of the techniques for both models are
described.

The results of the identification studies are presented
in Chapter 5. A large amount of information is obtained from
the analysis of these results. Chapter 6 presents the general
conclusions of the thesis. These conclusions concern not only
to the identifiability of the various parameters analysed, but
also to the scheme used in this study and to the techniques of
parametric identification employed. Complementing the text a
series of appendices is included. The first appendix presents the
hydrodynamic coefficients for the Mariner class hull form. All
the other apprendices are used to present listing of the computer

programs.
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CHAPTER 2

2, DEFINITION OF THE MODEL

The techniques of system identification will be applied
to the maneuvering trials of a ship. The ultimate objective of
this Chapter is to obtain the state equations for the mathematical
model that will be used in the identification process. The
equations of motion for a general ocean vehicle are presented at
the beginning but the equations are developed specifically for
the horizontal maneuvering of a surface ship. The equations are
then put in the form of state space equations which is appropriate
to the analysis to be carried out. Up to this point a deterministic
model for the ship motion has been considered. However, due to the
fact that neither theoretical nor experimental analysis can com-
pletely determine the structure of the vehicle equations or of the
measurement function, two forms of uncertainty or noise are
introducted - process and measurement noise. In both cases the
uncertainties are modeled as stochastic Processes added to
the deterministic model, and the mathematical model for the

identification studies is defined.

2.1 Equations of Motion

In order to simulate the overall motion of an ocean

vehicle we need to develop the correspondent mathematical model.
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The model for a dynamic system consists of two parts: equation
structure and initial conditions. For an ocean vehicle, the
equation structure for overall motion usually consists of sets

of differential equations and the initial conditions represent

the values of the variable in the differential equations at a
beginning time of interest to the observer. Once the equation
structure is known and the initial conditions are fixed, the system
can be simulated by solving equations in some way for a specified
input.

The equation structure for a general ocean vehicle is
presented in several works in the literature, particularly in
references [1] and [3]. Therefore, the development of equation
structure in this thesis does not go into deep details. There are
two basic types of dynamic structure to be developed for the
mathematical model of an ocean vehicle: the rigid body structure
and the hydrodynamic structure. The rigid body structure is
derived from the application of Newton's law. The hydrodynamic
structure is a collection of terms that represent the properties
of the vehicle, properties of its motion and properties of the fluid
through which the vehicle is moving.,

The equations of motion are, therefore, developed from

the following equation [2].

Rigid Body Structure = Hydrodynamic Structure (2.1)

18



N=Lir+ 0,-L)pg + m [x(v +ra—pw) =
yc,(tk—%w - rv)

In this thesis only horizontal manuevers of surface
ship will be considered. Thus, not all of the above equations
will be taken into account. If it is assumed that motion in the
horizontal plane does not excite any rolling only the equations
for X, ¥ and N must be considered. This assumption is not
always valid, specifically for tight manuevers when a coupling
with roll, motion is verified. This is due to the deck-keel
assymetries. In the present case, however, there is no major
concern to the point because the choice of the model does not
affect the identification studies. Besides the literature does
not present any reference to the value of the coefficients
necessary to develop the coupling model. Therefore, only equations
2.4, 2.5, and 2.9 will be carried throughout this thesis. Some
simplification can be introduced into those equations once the
motion is reduced to the horizontal plane: p = g =w= 0.
Furthermore, with the origin of the coordinates system taken in
the longitudinal plane of symmetry, YG = 0 in practicallr all the

cases.

The rigid body structure for the mathematical model can

be represented then by the following equations:

20



2,11, Rigid Body Structure

The overall motion of an ocean vehicle modeled as a
rigid body motion must satisfy Newton's law expressed by equations

2.2 and 2.3 for a system of coordinates with origin in the center

of gravity.

d

3¢ (Momentum) = F (2.2)
d

It (Angular Momentum) = M (2.3)

Each one of the above vector equations produces three
scalar equations. The six degree of freedom rigid body equations
as derived by Abkowitz [1] for a system of axes fixed in the ship,

with origin not necessarily at the center of gravity, but which are

the principal axes of inertia, are:

X= m[&+qrw—rv-—Xc,(q2+rz)+y@([>q—ff)+ (2.4)
ZG(PY"'(;)]
Y= mlVvaru—pw =y (F+p?) + 2, (qr —p) + (2.5)
Xs(gp+r)]
(2.6)

Z=m[w+py —qu = z2(pt+¢) + x,(rp—4) +
G(rq-ﬁ)]

K=1ILp +(I;=Iyar +m[ y (W +py—qu) -
z,(V + ru—pw)] (2.7)
M=1I,a+ (0~ L)rp + m[ze(a+qw—rv) -

X(,(W +PV —qu)] (2.8)

19
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X = m|ld— rv—xr? (2.10)

Y o= m VTt orU Tt xeF (2.11)

-

N = Lr+ mx(+ru) (2.12)

2.1 «2. Hydrodynamic Structure

The overall motion of an ocean vehicle through a fluid
results in and from forces and moments that are functionsof the
properties of the body, motion, and fluid [1]. This is represented
by the hydrodynamic structure of the mathematical model as shown

by the following equation:

Hydrodynamic Structure = F (body, motion, fluid) (2.13)

The hydrodynamic structure for the purpose of this thesis
will be considered as one only function of all the variables involved
in the problem. Once the vehicle is specified and for a motion in a
given fluid the hydrodynamic structure becomes a function only of the

body motion:

Hydrodynamic Structure =

{(501y012:f757%737\/,w’P’?’r\:uyv’W,qu,yrl"ggg,g‘,'n, ,./) (2.14)
orientalion molion parameTerS conTrol surface
ParameTers Par‘dmeTeFS
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It is possible to break the hydrodynamic structure
into hydrodynamic forces and effector forces as it was done
by Hayes [2]. This procedure is somehow arbitrary. However, as
it will be seen later, there is a coupling between the state
variables and the effector variable which would be lost with the

fractioning of the hydrodynamic structure.

For the purposes of this thesis, the control surface
parameter will resume to the rudder deflection. It will be assumed
that the only important forces and moments acting on the ship are
produced by the rudder deflection &, and that the forces and moments
produced on the ship as a result of é and g are negligible. It
is also assumed that there is no dependency on the orientation

parameters, which is always true when the ship does not operate in

restricted water.

The hydrodynamic structure is represented by the following

set of equations:
X = X(Ut,\/,w,p,q,r,Q,V,W,P,q,fﬂ,a) (2.15)

4

Y(M,v,w,p,q,r,t’x,\'/,\;/,lb,q,fﬂ,é) (2.16)
Z = Z(u,v,w,P,qr,r,&,\'/,w,P,c‘%,{A,(S) (2.17)
K = K(u,V,W,P,g,r,&,\'/,\l/,P,q,'r,é) (2.18)

22



(2.19)

M — M(u’vi\'\/’P’%?r7(:&?\}’\;171:)74’%78)
N = N(L&,V,w,p,q{,r,q,\'/,v'd,}'o,c'%,(—,é) (2.20)

If horizontal motion is considered,the equations are

reduced to

X = X(uyv,r,a,v,.8) (2.21)
Y = Y(M,V,r,ll,\'/,r",é) (2.22)

N =N(u,v,r,Q,(/,ﬁ,5) (2.23)

2.2 State Space Representation for Ocean Vehicles

The state space representation of a dynamic system is
very convenient because in this form the wealth of the powerful,
organized, and practical results from modern control theory can be
applied to the understanding of the system.

The state of the system as defined ip reference (4) is
the minimum set of number xl(to), x2(to)°°~xn(to), which is com-—
bination with the input to the system u(t) for t > to, is

sufficient to determine the behavior of the system for all time t >to.
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is through the vectors.

X, (1)
X, (1)

i)

(2.24)

u(t) =

Fu,(T)
Uy (1)

el 1),

state equations is called a state determined dynamic sys+em.

The usual representation for state variables and inputs

(2.25)

A dynamic system which can be represented by states and

The

order of the system is referred as the number of states necessary

to determine the system.
n first order differential or difference equations.

equations can be time dependent as (2.26) or time independent as

(2.26a)

I

I

The state equations consist usually of

= /ﬁzlzﬁa EL)

24
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(2.26)
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Usually a measurement function is defined to express the

observed output of the dynamic system.

z(t) = h(ﬁ,ﬂ (2.27)

or

z(t) = h(X) (2.27a)

For a general ocean vehicle six are the state variables,
or the primary state variables - the vehicle velocities for the
mathematical model used in this thesis three states define the
system - the linear velocities u and v, and the angular velocity r

that is

x!(T) Q(T)
f_(ﬂ = | x(1)| = |v(1) (2.28)
X3(1) r(1)

The control vector is reduced to a scalar

w(t) = §(1) (2.29)

The state space representation of the hydrodynamic

strucutre for the mathematical model is

25



zhidr = >_<hidr (i,i,ﬁ) (2.30)

2.3 Taylor Series Expansion of the Hydrodynamic Structure

In order to take advantage of the state space
representation for ocean vehicle it is necessary to define
explicity the hydrodynamic structure in terms of the state
variables, their time derivatives, and the control vector.

There is one method that can be generally applied
to specify the hydrodynamic strucutre of an ocean vehicle.

It is by expanding (2.30) in a Taylor series about the nominal
values of the state X s the state time derivative éo and the
control vector Hb' It is necessary afterwards to specify by
some means the coefficients of the Taylor series. Once the
structure is established the results of theoretical or experi=-

mental investigations can be used to determine those coefficients.

The Taylor series expansion of (2.30) about x , %X ,
-0 -o

§ is given by

. S 0 Xnar | Ax.
de, = —>gh1dr (-’50’-)30’80) + ; OX¢ ) +
(&093°’5°)

26



Li S _&Amdr AXe AXj [ Y i&d Ax: Ax
— A &
“ TR O (Xo» Ko 82) ZZ“ ok o
3 3
> X A __Alu.d.r
O Lnde AX AX; A AS
Z’Jﬂ X OX; LT Z: T

3 2 .
Zil-_huk AX A3 4 Lza_;)g—(-zh;drﬁéz +

L@iiz B Xnar A% A¥ A¥y 4 172 S P hude AXAK A%, 4

Groyel k=1 Sxaxéx uj.n(dxéx a)(r.

3 32 3 3 3
L5755 Ol A% AX Oy ZZE;&:&AX A% Ak 4
Z L=t j=0 Kl aXéaXJaXR 2 L2yt Rt
| S50 0% Xuudr Ax, Ax AS L L SRR
L H J AX AX A%
zéjg;axbaxdaa 7 Z?axgaxpa 89+

L5 3 0% Xuigr Ay A & o
L5 50 S M b a8y L Z?X—ggrm 2% +

(2.31)

S %X A NS L Q% R A 4
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Terms up to the third order were considered in the
expansion. All the derivatives are evaluated at the nominal point
although the notation was omitted after the first terms.

For the mathematical model used in this thesis, the

nominal point as given by

Ue O
X, =10 X = | O . 0,=0 (2.32)
O O

Since all the variables have nominal values equal zero, except for u,
the change in value for all these variables can be written in the

form

A (variable) = variable (2.33)

In almost all the computational work of this thesis,

the notation u will be equivalent to Au.

The notation for the hydrodynamic derivatives presented
by Abkowitz [1] will be used. The equation (2.31) gives three
scalar equations. The longitudinal force is taken as an example

to illustrate the notation to be used.
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K= Xot XqAU + XV 4+ X1 4+ XU + XV + XpF +
A .
Xsd + -Zl:xw(m&) + X AUV + Ky DUE + Ko Au o+

Xug AUV + Xgr AUT + X 3 DU S+ L% GNEF X, vt

Xea VU + Xy VY X Ve 4 % syl 4 BRI
(2.34)

Considering only terms up to the third degree more than 50 terms
appear in the x equation. It would be a very difficult task to
evaluate each coefficient and the numerical solution of the
differential equations in a digital computer would be almost
impossible. Fortunately, many of the coefficients in the Tayloxr
expansion can be proved by theoretical considerations to be zero

while others are sufficiently small to be neglected.

2.4. Hydrodynamic Coefficients

The hydrodynamic .ucture of the mathematical model was
expanded in Taylor series. The large number of hydrodynamic co-
efficients can be greatly reduced if a detailed analysis of the
physical problem is carried out. The conclusions presented in

references (1),(3), and (7) are reproduced below.
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Ae

Symmetry considerations demonstrate that the X
equation should be an even function of the para-
meters, v, r, 5, i, §. Similarly the Y and N
equations are odd functions of the same parameters.
Consequently, odd terms in v, r, %, é, § are
eliminated from the x-equation and even terms in
the same parameters are eliminated from the Y and N
equations. In the same way odcd terms in Au, ﬁ

are eliminated from the Y and N equations.,

As another consequence of body symmetry, %1, %nﬂ
Yuuu, Yﬁ and the corresponding derivatives in the
moment equation, Nu' Nuu' Nuuu’ Nﬁ are all zero,

The nature of acceleration forces eliminate other
terms. According to Abkowitz no second or higher
order acceleration terms can be expected., This is
based on the assumption that there is no significant
interaction between viscous and inertia properties of
the fluid and that acceleration forces calculated from
potential theory give only linear terms, when applied
to submerged bodies.

All terms representing cross-coupling between
acceleration and velocity parameters are zero or
negligible small. This is supported by Abkowitz
based on reasons similar to those just given and

verified experimentally.
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If all these simplifications are applied, one ends up

with the following equations for the hydrodynamic structure:

X= Xo + Xy Au + — xuq(Aw qub\(Aqf-’— V\/V +

5 X1 +>«555 +Xu‘l+—-qu\I?‘l§M+iXYNT’AU{+
7 XU B BU X VP KPS R 3 VB Kyp VIAUF

z
Avdg VSAU + Xps, 08 OU.
(2.35)
Z
= Vet YVt g yVVVV I Yo VP + \/VBSV%
2
XM Vou JZ Tvuy VAUL LR/ +‘é‘>’rrrr3 +‘~ Yeuy FVoF

7 Vras 8"+ Yy rdu + 7 Traa AU+ 5 8 +_G Yoss &t

N'=No + NV + LN V7 + 2 N ur2 + Ny v +
Ny VAU + 7 Ny v 808 + Ner - N 120 LN e v
5 Npgyrst+ NmrAuH NrNrAc& + Na 8 +-L Nygy 5+
-~N3W8v + 7 Ny, 8¥%+ Ny SAu + 5 Ny 3D+
era vrd + N\‘/V - N«?’A (2.37)
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2.5. State Equations and Measurement Function for the Mathematical
Model.

The rigid body structure and the hydrodynamic structure
were developed for the mathematical model. If the resultant
expressions (2,10), (2.11), (2.12) and (2.35), (2.36), (2.37) are
introduced in equation (2.1) the state equations can be derived.

This substitution leads to the following equations:

(m=-xo)u =L(u,v,rd) (2.38)
(YYl—Y\-,>\./ +(mx(‘7—>/?>? = Pz, (Q,V,r,%) (2.39)
(% =N )V =+ (IL‘N\")\}:& (w,v,r,8) (2.40)
where %(q,v,r,B},%{u,v7r,8>Jand £ luyv, )
dre glvern bj
f,(q V,r 3) = XuDuy +—~XNAq + -»waq +1 > Xy AT
<1er+ mx )r +—x3382+— Yoyu VAU —-xm\qu+
7 Xssud DU+ (Kyrr NVE + %5 U + Kyrg VP AUE
X VEAU T Kegy rOAY

‘{)Z(UK,V,P,5>: Yo YV +,IQ’ VVVV3+—L\/\,H,\/\"7‘+
*Z\:X’%V%Z—s_ XMVAM + quw\VAU\ +6’ h'\UOr—f—
'(\;er —“\/rver + L ygsr% +>/m Y‘A\A*
—ZE NARVATTOR VS +E7’m Vg SV 7_ Vs pre S E2F
Yo SAUT JZYSMBAU\& T Yops VOO
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Qs(u v,r,8) = N, +Nyv TNV —'ZN\,‘,,\J\'Z+

V88\/% NooV B+ 2 N I+ (N, = )+
LN 7 F 5Ny 03 ymr?a ty e Aut

=z ,mem« Y8 G s 87 L Y BV

e ST Y DALy BAUE Y urd

M—

The equations (2.38) to (2.40) can be further modified

to give the state equations:

- -  / uvrS)/m—xa)
& (1 ~Ni )+ 4, (W,v,r,3) = (m Xe = Vi) A (u,v,r,3)
v | =|(m % (IZ‘N;J‘(W\XC,* \'/)(mxe-“Yf) (2.41)
r (M=) A (v, 1, 8) = (% -Ny) £, Cu,v, v, 8)
| (=) (1= Ng) = (mxe ~No) (mxe — )

In order to complement the structure of the state space

formulation, a measurement function will be defined. It is assumed

that all the state variables are observable according to the criterion
of modern control theory [4]. The measurement function adopted
for the mathematical model is a linear time invariant one
I O O U
z = 0O | © v
(2.42)
o O | r
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Two comments must be made about the state equations
obtained for the mathematical model. The functions /,’ <(k ) \/, Y', B),
{(Q;V,V,B) , and 7/3 ("(,\/,r, B> centain cross-coupling terms
between the state variables and the control variable. These co-
efficients, some of which may be significant would not have
appeared if the hydrodynamic structure had been broken into
hydrodynamic forces and effector forces.

The hydrodynamic coefficients in the state equations
(2.41) are in the dimensional form. These coefficients are given
in the literature usually in the non-dimensional form. Most of
these coefficients are obtained from model tests and to be
applied to the prototype it is better to use them as non-dimensional
parameters. If they are used the variables in the state equations
must be redefined. However, for the purposes of the thesis the

dimensional form is more convenient and will be employed throughout.

2.6 Mathematical Model with Uncertain Structure

The state equations and the measurement function developed
for the mathematical model are deterministic. Nevertheless, in any
practical case both the dynamic process and the measurement process
are disturbed by noise. It is necessary, in consequence, to in-

corporate these uncertainties in the mathematical model.
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The process noise, represented by the vector w and
the measurement noise, represented by the vector Vv are added
to the state space formulations of the dynamic system. A very
strong assumption is made that the noise processes are coupled

linearly into the dynamic of the system. In these conditions,

the stochastic model for a generic dynamic system is characterized

by the following equations

z

]
»
I~

A)+ZD\I

For the mathematical model used in this thesis the

resultant equations are:

o F/(u,v,r,%)/(m—xq)

G (T NG A Uvnd) =% YD) A a1, 3)
V| = (= y)(T,=Ne) — (mx,—~ Ne) (X .= ¥i)
2 (i =Y) A v, 1,8) = (e = Ng) A& (u.V,r,9)
(=) (1 mN) = (mxe=Ng) (m e =¥ |
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Z = X + V¥

where the matrices D and G are taken as identity matrices.

For the purposes of the identification studies the
noise vectors Eh and Xh will be assumed to be uncorrelated,

discrete, zero mean, Gaussian - white noise processes. They are

described by the following equations:

W= Elw] -9 =E[y]-0-

5
it
|<|

3

Elwwa+t)] = Q.30t); QrQst
for discrele Wi,

E LG +1)] =Re3(T) 3 Ra R, 81

for discreTe Yy,
Elwyt] = [o]

The equations (2.45) to (2.50) define completely the

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

stochastic model which will be used in the identification studies,
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2.7 Linear Model for the Ship Maneuvéring

The mathematical model developed to describe the dynamics
of the ocean is-highly non linear. It is, however, of certain
interest for the objective of the present work to use a simpler
model in the identification studies. For some types of meneuvers
the linear model is perfectly appropriate and will be employed for
a first analysis of the hydrodynamic coefficients.

The linear state equations can be derived from the general
model developed in the previous sections. If only the linear terms
are picked up in the equations (2.10) to (2.12) and (2.35) to

(2.37) the linear equations obtained are

(m — XC\)C& = Xo T XaADAW (2.51)

(=Y )V + (MX=Y)E = Yo+ YV (Y —mu)r + Y, § 2052

(mxc, - N(,>V + (1?_ - \\\f)'r = No + N“\) + (NV‘W\X&U@)I’ (2.53)
+ Ny 3

It is noticed that even for the linear case there is a
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coupling between the Y and N equations, but what is important is

that the first equation is completely decoupled from the others.

For the identification studies the first equation will be omitted

in the linear model and the state equations are reducted to:

Ny,

~(mxg= YNy (T~ No)y, - w) (e et~ migu) |

/

(m o ) Wt (n— YV)N Aaxe \'/Xyr“mUO) (m — Y\'}>(NY— mxc.%)

/

(12 - Mr)‘/a

A

— (“ﬂxc.“Y;)Na

—

/

~(mxe ~Ng)ys + (m=y, )N,

S +

d
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(1, No)y — Gmx = NN,
7

(mx, *N\-/)'yo +(m — VI N,

7 |

(2.54)

= ‘:(IZ_N?)G\W —'\YV) - (m Xe ‘"NVB Q\’Y\X(’~>/?\)j| (2.55)



An important simplification is brought by the linear
assumption, the state variables are decoupled from the control
variable. There appears also constant terms in the state
equations which express the possibility of existing non zero force
and moments of the nominal or equilibrium state. This is
particularly true for single screw ships where even for zero

rudder deflection there are some efforts applied to the ship.

2.8 Hydrodynamic Coefficients for the Mathematical Model.

The mathematical model for the identification studies
is almost complete. At this point one needs only to select a
ship whose hydrodynamic coefficients will be used in the

identification procedure.

There is not available in the literature much data
about the hyrodynamic derivatives for exisitng ships. One of the
few cases that is well documented is the Mariner class ship. There
are some sources (5), (6), (13) which present the complete set of
the hydrodynamic coefficients for this ship. In the Appendix 1
the coefficients are presented first in the non-dimensional form
as given in the literature and next in the dimensional form. The

details of dimensionalizationare also covered in this appendix.
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The Chapter described the whole development of the
mathematical model for the horizontal maneuvering of a surface
ship. This model will be employed later in the identification
studies. In the next chapter the methods of identification are
outlined and in Chapter 4 the procedure adopted to identify the

parameters of the mathematical method is decribed.
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CHAPTER 3

3. TECHNIQUES OF SYSTEM IDENTIFICATION

The previous chapter was dedicated to the development
of a mathematical model for the horizontal maneuver of a surface
ship. The model was obtained and its structure is characterized
by the presence of the hydrodynamic coefficienks. These co-
efficients are the parameters to be studied in the identification
process. In this chapter, the concept of parametric identification
is first presented and some of the techniques for system
identification are listed. The next sections are used to present
and discuss the equations for the problem of parametric
identification using model reference contour and extended Kalman
filtering techniques. And finally the criteria of identifiability

of parameters is presented.

3.1 Definition of System Identification

This section starts with the presentation of the basic
definitions of system identification. The basic foundation
underlining system identification as a means of representing the
system dynamics has the same degree of validity as any method of
dynamic analysis (12). It may be applied indistinctly to any type

of system, either deterministic or stochastic.
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Parametric identification is the determination of a
set of parameters or coefficients of a dynamic system mathematical
model of known structure using measurement of the actual system's
behavior with the ultimate aim of having the model be the mathematical
equivalent of the system.

The dynamic system behavior may be determined from a full-
scale trial with the prototype, from a model test run, or alternately
from a computer simulation of the actual vehicle. This last approach
will be used in the present work.

The main interest of system identification in the thesis
is related for stochastic systems. The general nonlinear stochastic
parametric identification problem is defined [2] by the following

formulation,
Given

i) state equation
% =20 x,4,p,w,1)
where p is The parameter vecior (ne x1) (3.1)

wiTh P=3(P) ; E(To) = 7, (2.2)

ii)measurement function

Z = h(l&,w,p,\_/,ﬂ (3.3)

iii)cost functional

o = Q(é,ém> . c>2 0O (3.4)

’
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where C is a scalar cost functional representing a measure of
closeness between the systemoutput Zand the mathematical model

outputgm; known structure C > 0,
Using

P_(t)l E(t)l il gy E' i(tO); EO, C

Find

p(t) to minimize C

The problem is very complex and has no completely general
solution. Any solution technique to be applied to this kind of
problem must in general be tailored to the positive semi-definite
cost functional and to be specific types of structural nonlinearities.

The problem of identification of the ocean vehicle
described by the mathematical model derived in Chapter 2 is con-
siderably less complex. The following assumptions are applied to
the general problem:

i) Model structure and measurement structure are
invariant
ii) Model and measurement noises are linear and
enter the system directly
iii) The structure of the measurement function h is
simply the vehicle states X with linear measure~

ment noise.
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iv) The cost functional is a weighted integral of the

square of the difference between model and the

system.

v) The parameters are not states, but are constants

to be evaluated.

With these assumptions, the formulation of the parametric

identification problem for the ocean vehicle is presented below:

Given

i) state equation

x = Ax,d,p) +w

where ;'3=O

ii) measurement equation

Z2=x+y

iii) cost functional

¢ = [z 2R (2-2u) o
TO

where
c= c(Uu,p) ; ¢>0
Ry — we‘xthmj malrix
Using

E(t)’ _z__(t)l £l i(to) g_(tO), to, C
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Find

P to minimize C.

3.2. Parametric Identification Techniques

Most of the available techniques of parameter identification
have been developed for linear dynamic systems [11l]. Some of those
techniques, assuming linearized equations of motion to be a valid
description of the behavior of an ocean vehicle may eventually be
applied to determine the ship motion parameters.

There are other approaches that have already been applied
for non linear models and specifically for identification of ocean
vehicles. Two of these techniques will be used in this thesis. The
model reference and the extended Kalman filtering approaches. These

approaches were used by Hayes [2] and Reis [7].

The model reference technique assumes a mathematical
model [*] for the system and comparing the output of both model and
system to the same input, searches for the strucure of the model
which minimizes a function of the errors between the two outputs.

The Kalman filtering technique essentially converts the
identification problem into an estimation problem. The parameters
are taken as states in an "augmented" state space. Anextension of the
Kalman filter for nonlinear systems is then used to estimate the

states.

* This mathematical model should not be confused with the mathematical
model developed in Chapter 2, which is the "true" representation of
the system itself.
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Two other approaches were used by Goodman et al. [12]

for the identification of ocean wehicle barameters -~ an iterative
method and a sequential method.

The first method applies primarily to deterministic systems
and is essentially a generalization of a Newtonian iteration pro-
cedure. The differential equations of motion of the vehicle whether
it as linear or nonlinear, are used together with additional variables
that represent the unknown coefficients in these equations. The
coefficients themselves are the actual variables that are sought
in this system identification procedure, and different techniques
are used within the course of the analysis. Solutions are necessary
for all the variables starting with estimated initial conditions,
where the variables include the state variables of the system as

well as the coefficients themselves. Errors between the calculated

state variables and the actual measured trajectory data itself are
determined , and the modification of the unknown coefficients are
obtained in this procedure. These new values are inserted again,
solutions obtained, modified coefficient values found, and these
are inserted again with the method repeated, i.e. and iterative pro-
cedure.

The other method is designed specifically for stochastic
systems and is based on modern control theory - maximum Principle,

two-point boundary value problem, invariant imbedding and sequential
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estimation. The basic technique is applied to problems that are
generally nonlinear., Using continuous time histories of the observed
output measurements the task is then to obtain optimal estimates of
the state variables and also various parameters, by a procedure that
is based in minimizing an integral of the sum of weighted square of
residual errors. The errors are the difference between the observed
data and the actual desired system outputs (i.e. eliminating the
measurement noise), and also the difference between the nominal
trajectory of the system and the assumed form of the equation
representation (i.e. eliminating the noisy input excitation and
achieving a proper representation of the basic system dynamics). In
this case the unknown parameters are also added as additional variables

in the complete dynamic representation.

These two approaches were appiied with satisfactory results
for identification of ocean vehicle parameters using data generated
on a computer as well as from full scale tests [12]. Although
recognizing the merits of these techniques it was decided to limit
the identification studies in this thesis to the approaches that are

described in the next sections - model reference and Kalman filtering.

3.3. Model Reference Identification

The model reference identification is a general procedure

that runs the model with the same inputs as to the system, for a large
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Step 4 Calculate a new value of p by some decision
and the modification algorithm
Step 5 Branch to Step 2 and continue until complete

or untilC(p) is minimum.

The sketch of the approach is very clear and does not
require additional explanation. The process can be implemented in
a mn-line identification but the off-line process is more realistic

for the ocean vehicle identification applications.

Some considerations should be made about the application
of the technique. %The values and ranges of p must be specified to

avoid unstable or perhaps singular solutions.

Structural errors make the results of the identification
process meaningless with very large values forC{p) even for the
optimum p (p*). This would happen also if the level of noise is
considerably high.

The process of decision defined in step 4 could be some
kind of gradient algorithm. Nevertheless in this thesis the process
of variation of the parameter values will simply cover a specified

range with constant increment (systematic search).

One of the practical limitations of the model reference

approach is that it permits the identification of a maximum of two

parameters at once. It is because a pictorial representation of the
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output is necessary for the purposes of identification. Actually the
optimum p and the minimum value of C{p) do not provide sufficient
information about the identifiability of the parameters. A picture

of the function within the range specified for the parameters is by

far a better information to the understanding of the system
identifiability. Conditioned to produce a picture of the cost function
the model reference approach is limited to identify one parameter -
cost function curve or two parameters - cost function contouring - at

once.

In some cases it may be desirable or necessary to greatly
accentuate the minimum value of C(p*). This can be accomplished by
contouring the natural logarithm log2 ¢(p) vs. p. This procedure will
be used in this thesis.

Sometimes it may become convenient in order to provide
a better visualization of the identification results to plot slices
of the cost function along each parameter. This procedure will be

also adopted in the present work.

3.4 Extended Kalman Filtering

Kalman filtering is essentially a linear technique with

a firm theoretical foundation developed to estimate the state of a

linear dynamic system subject to a noisy process. This technique
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when applied to the identification of a nonlinear system loses its

theoretical foundation but in some cases works extremely well,

There is a large amount of information about Kalman filter
in the literature. The analytical.formulation of Kalman filter for the
state estimation of linear system is presented in texts of modern
control theory as Bryson-Ho [10], Sage [13], etc. The details of
application of Kalman filter to nonlinear systems may be found on the
mentioned references but is very well described by Brock [8].
Finally the steps of utilization of Kalman filtering for identification
purposes are presented by Hayes [2], Reis [7], étc. It is not
necessary, therefore, %0 present a detailed description of this technique.

Only the basic ideas will be presented in this section.

It was previously mentioned that the Kalman filtering
approach converts the identification problem into a state estimation
problem., All the parameters that we want to ideptify must be state
variables. There is, in consequence, an augmentation of the state

space according the following scheme:

a Ix
= |— .8
X lEI (3.8)
where

X is a nS * 1 vector

P is a By * 1 vector

5? the augmented state vecotr (ns+np)*1
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(In the following, x will be used with the meaning of

| %

Then, given
W X =F0X,1) + ew (3.9)

where
£= e 3—3:9 (“P 1) (3.10)

(ii) z = H}i + Di (3.11)

where [} 7_D as well as G are Taken as idenTiT malrices
of order ng

(iii) Cost Functional

1—
4 0~
d =/ (g._ '—Zm) Rn (;—imsd‘f (3.12)
TO
uSing é.(T) > .£ k4 L(TO) ? TO 2 C’
find XCT) To minimize <
There is no general solution to this problem, particularly

due to the nonlinear characteristic of the dynamic system{ It is,

however, possible to find a general solution for the linear system.
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The Kalman filtering is an approach that provide a
solution for the estimation problem of a linear system. The basic
technique for linear systems require rigid assumptions about the
form of v and w and knowledge of the numerical characteristics of
these noises. Specifiecally, yaland !h are assuemd to be zerc mean
uncorrelated white noise processes as defined in Chapter 2, with
assumed or known process noise covariance Q and measurement noise R.

In these conditions the Kalman filter can be proved to be the

optimum estimator of the given linear system,

The linear Kalman filter is also valid for nonlinear systems
as long as it can be shown that the errors in the estimate of the
state variables can be approximated by a linear system., The
theoretical considerations about the extension of Kalman filter to
nonlinear system is presented by Brock [8].

The computational steps of the extended Kalman filtering
technique applied to the mathematical model of the ocean vehicle is
described in the sequence.

Step 1 Collect or generate noisy data 2z and inputs u

=/ (x,1) + W (3.1

I

z= H?_(_ + VvV (solved discretly for zj)

53



Step 2 Propagate the estimate state x to tn

X = -f-Q(-’T) (3.14)
E N

X ¥y

Step 3 Propagate the error covariance matrix E to tn

m:

FE + EFT+ Q (3.15)

mo
I

where

Q=FE |:_\':’h \./‘!hT:l (3.16)
E= El:g CT:] ; (3.17)

ég = state estimate error; carat " denotes estimate.

F o= 5_1%(%_’7) (3.18)
X

£ . .
Step 4 Calculate the Kalman filter gain matrix k at tn

K = EH'(HEH" + RY" (3.19)

where
R = E'.l:y,\ \_/,,T:I (3.20)

t
Step 5 Update E to E' at tn

E'=FE - KHE (3.21)
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~

Step 6 Set x' and E' as initial conditions for
propagation equations at tn and return to Step 2.
The sequence is repeated until the end of the process.

The Kalman filtering approach produces as outputs not only

the estimate of the states but also the estimate of the error covariance.

The meaning of these values will be discussed in the next section.

3.5 Identifiability of Parametexs

The identification techniques described in the two last
sections will be applied to the mathematical model developed in
Chapter 2. The only concern in this study is the identification of

p. It is assumed that the model structure is sufficiently accurate.

In this thesis the parameters for the mathematical model
of the Mariner class ship are studied for their identifiability

characteristics by using a known set of parameters and a computer

simulation with added noises to generate the data for use in the
model reference and Kalman filtering techniques. The identifiability
studies will be concerned with finding the original set of parameters
used in the vehicle simulation rather than with the single problem of

minimizingC(p) as defined in section l.

Some general concepts of identifiability that will be

employed in the next chapters are presented here.
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A parameter pi belonging to the vector p will be termed
identifiable if one or more values of p{ may be found fromsimulated
data. The identifiability of p; will refer to the ease with which one
or more values of p; may be found in the model reference contours and
to the accuracy with which it may be determined by extended Kalman
filtering. Specialcare should be taken about the value obtained
for the parameters, even if they produce trajectories that match the
measured values quite well. Sometimes a parameter that h. < only a
small influence on the particular motion data being analyzed is
sought by the system identification technique. 1In that case very
little information related to that parameter is contained in the
data, and the value determined by the procedure is spurious and

could sometimes contaminate other parameter values.

The choice of the input is also of some importance; it
may have a major effect on how well the system identification can
be performed. It is generally very difficult to determine which is
the best input to be used in a identification study. The best
input is certainly function of the structure and the true value of

the parameters [14].

The basic considerations applied by the system modeler
to the model reference contours are judgments with regard to the
slopes, shapes, and minimum values around the known or true values

of the parameters used to generate the data.
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The analysis of the cost function contour, and the other
additional plots (slices of the function along one parameter) may
lead to some kind of conclusions. The most significant are that
both parameters are identifiable, or that one is identifiable but
the other is not, or that both parameters are unidentifiable. Most
of the information obtained from model reference identification are

qualitative.

Extended Kalman filtering results in the "augmented" state
trajectories x(t)and their error covariance E(t). In the case of
unidentifiable parameters, the parametric states in x(t) may not
converge to steady state values or may become unstable., In some
cases the states may reach steady-state values which are biased
away from the true value of parameters; and at the same time, the
corresponding covariances E(t) may be very small, saying that the
filter has a high degree of confidence in an erroneous value of a
parameter. This may be due to the relative unimportance of the co-

efficient, as it was already pointed out.

The identifiability of the parameter p is judged by how
closely the random variable p = N(pg Eg, where f denotes final
estimate, corresponds to the known value of p* used in the vehicle

simulation. The identification of p is highly dependent upon the
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initial values N(PO,EO) used in the Kalman filter and some qualitative
judgments of identifiability may be based on how much closer N(Pf, gs) is

to the true value than N(PO,EO) was prior to the Kalman filtering.

Model reference contouring requires a great deal more
computation work than does extended Kalman filtering, but actually
provides more information. The Kalman filtering is expected to be a
more efficient technique for system identification since it uses the

noise characteristic in its estimation of the parameters.

The chapter has presented the basic concepts of parametric
identification, and some of the techniques used to handle this problem.,
Two approaches were described at the level of details necessary to
understand the computational steps and analyse the identification

results. In the next chapter the procedure used to identify the

parameters of the mathematical model of the Mariner class ship is
described. Finally in Chapter 5 the results of the identification

studies are presented.
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CHAPTER 4

IDENTIFICATION OF HYDRODYNAMIC COEFFICIENTS FOR THE MARINER CLASS SHIP

The mathematical model for the horizontal maneuvering of a
surface ship was derived in Chapter 2. The complete nonlinear model
was developed and a linear version was considered. Both models will
be employed in the identification studies. In Chapter 3, the concept
of parametric identification was presented. Two approaches of system
identification were described and the computation steps for their
application were listed. The idea of identifiability of parameters
in the sense it will be used in this thesis was defined. The present
Chapter describes the procedure employed in the identification process.
All the analytical and computation details involved in each phase of

the identification studies are discussed.

4,1. Phases of the Identification Process

The hydrodynamic coefficients inserted in the mathematical
model belong to the Mariner class ship. The number of coefficients
given in the literature for the ship (see Appendix I) is about 30. It
must be understood that not all the coefficients have the same
importance. This is particularly true for some specific maneuvers.

It is necessary, therefore, to design a procedure to identify the

coefficients.
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It would be possible to carry the identification studies
with all the coefficients, but the scheme exhibits a series of
drawbacks:

l. Some parameters may be neyligible in a relative

sense for every type of maneuver. If these para-
meters are included in the study, no information
related to themselves will be obtained, and at the
same time the identification of the other coefficients
may be degraded.

2. Parameters are, in general, only identifiable if they
are in some sense excited by the vehicle effector or
are in some manner coupled into the vehicle equations
of motion for a specific manuever. Thus, the sea
trial manuevers must be designed to excite specific
parameters of interest and the model structure must
be selected specifically for the pertinent input and
parameters being utilized in order to have any chance
of identifying the true parameters from noisy data.

As more knowledge is gained about parameter identifiability,

more sophisticated models are employed [2].

The points above mentioned suggest that some coefficients may
be omitted in the identification study, while different models may be
chosen to identify the other parameters. 1In this case, appropriate
inputs should be selected for each model. The scheme adopted breaks

the identification studies of this thesis into three parts:
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1. Preliminary analysis -- the influence of some coefficients
that are apparently negligible is investigated. If a
particular coefficient shows very little effect on the
mathematical model trajectory for different kinds of
manuever, it is eliminated from further identification
study.

2. Identification of linear parameters -- as it was previously
mentioned some types of ship manuever can be described
perfectly well by the linear model. It was then decided
to use this simpler model to identify the linear co-
efficients., These coefficients may eventually be studied
later with the nonlinear model.

3. Identification of nonlinear parameters - the linear
coefficients have already been studied. In this phase
the identification will be primarily conducted for the
nonlinear parameters. In order to check the procedure
adopted, some of the linear coefficients are studied with

this model.

4.2, Preliminary Analysis

The cocefficients of minor importance will not be included
in the mathematical models to be used in the identification studies
since they can produce spurious information, contaminating the

identification of other parameters. The process chosen to
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eliminate the negligible coefficients is by simulating full-scale

ship manuevers with the deterministic models developed in

Chapter 2.

As the first step, all the coefficients that are suspected
to be negligible in a relative sense are separated. This was done
partially by an analysis of their values (see Appendix I) and also
by following references presented in the literature [3,5]. A
group of 8 parameters was selected for the phase of comparative

studies.

Y
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The importance of these coefficients is verified for two
completely different types of manuever; one in which the linear
model is expected to be valid, and another where the nonlinearities

are likely to be significantly important. These manuevers are:

1. Step deflection of the rudder, simulating a

turning circle with large radius - linear manuever

sA

—S
P

time
rudder deflection {°¢ = > degrees
{6c = 10 degrees
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2. A zig-zag like manuever with a large rudder deflection

exciting a tight ship manuever

S A
8¢
T/2 T
Time
-86
rudder deflection {Gc = 25 degrees
{Gc = 30 degrees

The period of all runs was limited to 180 seconds. It
was assumed that this period is sufficiently large to permit an
analysis of the ship trajectory. In all the cases, the time lag
for rudder deflection is neglected. It is believed that this set
of manuevers is sufficient to explore all the dynamic behavior of

the ship.

For each kind of manuever, a group of trials was run,
firstly with mathematical model including all the coefficients.
A standard trajectory is then obtained. Next some of the coefficients
under study were omitted and the resultant trajectory is compared
with the standard trajectory. The analysis of these trajectories
determines whether the coefficients should be neglected or not in

the final model.
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The computer program used in the preliminary analysis is
shown in Appendix 2. The equations of motion (see deterministic
model - Chapter 2) was solved using the subroutine DYSYS (Dynamical
System Simulation) developed by Department of Mechanical Engineering.
This program solves the differential equations using Runge-Kutta

method of fourth order.

The results of the preliminary analysis are shown in

Chapter 5.

4,3. Identification Studies

The identification studies are divided into two parts:
the first with the linear mathematical model and the second with
the nonlinear model. Both models will not include the coefficients

considered of negligible importance by the preliminary analysis.

It was primarily intended to use the two identification
approaches simultaneously with each model. Most of the information
obtained with one technique could be used to help the understanding
of the results got with the other approach. It was not possible,
however, to work in parallel with the two approaches. Some
computation problems involved with application of extended Kalman
filtering delayed the work. On the other hand, the model reference
identification was working nicely, so it was decided to first complete
the studies with the approach. Something was probably lost with the

procedure, but even so the scheme produced good overall results.
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One point is common to the two approaches is the level
of noise to be used to generate the trial data. It was decided
to adopt with slight changes, the same criteria employed by
Hayes [2] and others. The amount of noise En and Yn are expressed
as percentage values.-- %W, and %V. The process noise percentage
%Ei, where Wi is one element of the vector En means that the
standard deviation (GWi = /523 of Wi.is that percentage of the
maximum value of the correspondent elements of the vector é
evaluated by equation (4.1) for a given input. The measurement
noise percentage %Vi is one element of the vector Xr' means that
the standard deviation (GVi = VE;') of Vi is that percentage of

maximum value of the correspondent element in vector x ¢btained by

integrating equation (4.1), for a given input.

X =L(x,u,1) (4.1)

These are convenient definitions for simulation studies,
but they are quite arbitrary and must be interpreted properly for
a given maneuver. If é'or X is at small values for most of the
manuever and then assumes its maximum value only for a short period
during the mamuver, then the associated w or v noise has a much
greater effect upon the overall system uncertainty that it does if

X or x is at or near its maximum values for most of the mgneuver

65



It was intended to use the same kind of input with both
techniques. The linear model was actually run with the same input,
but for the nonlinear model, different inputs were used with each
approach. It is believed that the proper input specification is
more critical to the extended Kalman filtering than to the model
reference contour. For the later method, a large step deflection of
the rudder was utilized. For the Kalman filtering a zig-zag like

maneuver was believed to give better results.

Actually, different types of input should be used for a
more complete investigation. However, the computation time required
specially for model reference identification did not permit a more
extensive analysis. Nevertheless, the types of manéuver employed
seem to excite reasonably well the system dynamics, and the results

are relatively good.

The identification study consists basically in the g@lution
of the state equations for different conditions. It is understood
that the numerical method employed to solve the equations might have
some influence upon the results of the identification. This is
particularly true for the Kalman filtering when besides the state
equation there is error covariance matrix equation to be solved.

It was intended to use the same numerical method with both approaches.
However, the difficulties found with the computer implementation of

Kalman filtering forced some modifications in the original scheme.
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The second order Runge Kutta method was used with the model reference
technique while a more precise numerical process, the fourth order
Runge-Kutta method was employed with Kalman filtering. It is not
unlikely that the same results could be obtained by Kalman filtering

identification using the other method of integration.

The points discussed above constitute generalities that
apply to the two identification approaches. The particularities of
each technique, as well as the scheme of their application for the

two models are presented in the next sections.

4.4, Identification of Linear Parameters

The first part of the identification study will be concerned
with the linear model for horizontal manuever of a surface ship. The
identifiability of the linear coefficients of the Mariner class ship

will be investigated.

The first step in the identification process is to define
in which conditions is the linear model expected to represent well
the ship maneuver. It is generally accepted that for small maneuvers
that do not involve large changes in velocities or accelerations the
linear version of the mathematical model is a good representation of
the ship behavior.(*) 1In this condition, it was felt that few types
cf input (rudder deflection) would be appropriate to excite only the
linear dynamics of the system. Actually for the linear model there

is not much choice. Although some variant could be used, the input

* provided the ship is dynamically stable
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employed for the identification of the linear parameters is a

step rudder deflection shown below

8 Gc = 5 degrees

-
—

time

The details of application of each technique are presented

in the sequence.

4,4,1., Model Reference Identification

The model reference technique was described in Chapter 3
and the mathematical models were derived in Chapter 2. The state
equations for the model as well as the basic scheme for the
identif‘cation are repeated here. The sequence of steps is dis-
cussed below and is self-explanatory. The notation used for the
hydrodynamic coefficients is the same that appears in the computer

programs, and is presented in Appendix I.
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Step 1

Generate the sea trial data

<, { A@N+AMr+AB)3+A() Colv
+ |~ (AGDA@) - AGIAGONAGL) +AGDr *AGYSHAGS) | w,| @29

where W, = N(O,w‘.’); W, - maximum value of Vv for the same manuever
with the deterministic model.
W, = N(O ,wi_); L maximum value of £ for the same manuever

with the deterministic model.

ZV \/ V|
+ D (4.3.)
Zyp T vy

where v, = N(O ,vv); v, ~ maximum value of v for the same manuever
with the deterministic model.
v2 = N(O,vr); v.- maximum value of r for the same manuever

with the deterministic model.

Store Zv at discrete time

b
r
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Step 2

Select parameters to be identified, PAl, PAZ with

respective indexes. LPl, LP2g
Define range of variation for each parameter and

incremental value.

Set A(Lg})= minimum value of PAl

A(LP2)= minimum value of PA2

Step 3

Solve the equations for the deterministic model with the

estimated values of parameters LPl and LP2.

| 1 ACVHA(T)r+AB)S+AWQ)
¢ —ABAQD —AB)AO) Al ?JV“‘A(B)HA(H)B*AOS) A

Z iy 3 Vi
- (8.5)
Z pnr Fm

Store va at discrete times

Z
mr

Step 4

Evaluate the cost funtion or performance index

¢ = 103 [i [(Zv"imv>z + (z, _Zmr)j:l (4.6)

Store C
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Step 5

Step 6

Different

were used

Change the value of parameters

A(LP2) = A(LP2) + increment 2
return to step 3.
When A(Lg;) > maximum value of PA2, increment parameters

PAl.

A(LPl) = A(LPl) + increment 1
return to step 3.

When A(LPl) > maximum value of PAl go to step 6.

Plot the cost function contour, and additional outgyts.

This scheme was used to identify all the linear coefficients.
values of G and D, representing different degrees of noise
in the identification process.

The computer programs for identification of linear

coefficients using model reference contour are listed in Appendix 4

with all the subkoutines necessary. The subroutines plot and contour

used in this thesisrepresentslight.modified versions of the programs

developed

by Hayes [2].

The results of the identification studies are presented

in Chapter 6.
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4.4.2 Extended Kalman Filtering

Unlike the model reference technique the application
of Kalman filtering approach for identification of the hydro-
dynamic coefficients presented a series of difficulties most of
them related to computer implementation. It was understood that
due to the relative complex formulation of Kalman filtering much
care would be required in tailoring the computer program. The
pecularities of the error covariance matrix, of the gain matrix
K, and the heterogeneous composition of the state vector predicted
eventual troubles. And it did happen. All the details of

application of the technique are discussed here.

The first decision to make is about the number of
parameters to be identified simulataneously. As an initial idea
it would be theoretically possible to identify all the parameters at
once, it is just a question of state augmentation. It is, however,
quite unlikely that the method works, with a large number of
parameters, specially if some of these parameters are of relatively
little importance. The filter will probably reproduce the
trajectory quite well but the accuracy in the parameters
identification would be small. As it was reported by Goodman [12]
more accurate values for unknown coefficients can be predicted
for a simple system than for a system with large number of

coefficients.
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It was decided by these reasons to test the technique
by identifying two parameters at once. The results of this test
were satisfactory and suggested that a larger number of parameters

could be identified simultaneously and for the later runs the

number of coefficients was set as four.

The seguence of computation steps is outlined below.
Some of the computation problems related to the implementation of
the method are next described. The notation utlizied here is the

same used in the computer programs.

Step 1 (Same as in the model reference identification)

Generate the sea trial data.

y | Ale)v+ACT)r AR +A(9) ol
| ~ (A(AG) - AGIA®) | AGD+AR)HAAN9) Wp| @

= + D (4.8)

Step 2 Select parameters to be identified PAl, PA2, PA3
PA4 with respective indexes LP1l, LP2, LP3, LP4.

Definte initial estimates for the states, VST, RST,
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and the parameters, PST1l, PST2, PST3, PST4.
Define initial covariances for the states VCV,

VCR and the parameters, PCV1, PCV2, PCV3, PCV4.

Step 3 Set the initial estimate for the "augmented"

state vector

VST
RST
PST
P3T2
PST3 (4.9)
P3T4]

Set the initial value for the error covariance

|><>
Q
f

matrix

ey
RCY

PeVe
E ° pavz
© pdv3 (4.10)

PQV‘E

{

Step 4 Propagate the state estimate

(6] [ A(6)v+AT)r+ AR)S*A®E)
& ARNA(3)r +A(4)S+A(S)
PAL|_ { O
vz  (AUDAE) —AUOAL)) O (4.11)
PA3 O
PA4 .. © _
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Step 5 Propagate the error covariance matrix
2tep >

E-FE+EF +Q

= 6£(§l\1,1‘l
where 2>2$

A (64 AT +A(®)3+A(9) |
1 AGD A+ ANDSAGS)
O

" A®AL)

R
I

\
| =

—A(0)AG) 0
o

O

BRI Yhehs Hfsvha i
40 bt sk ohedn k3 of. oo
@

0OQO0

(4.12)

(4.13)

(4.14)



Q@) ( ]
2 = T
W o | QW= E [ww]
O ’ = T
O O Q(Z) E l:wlw’-] (4.16)
s O.-
Step 6 Calculate the Kalman filter gain
K = EHT(HEHT + RY" 14.17)
_ where _
R@)
W o R1) = E [v v7]
o ’ P\,(Z) =g [Vz VzT:I (4.18)
O o
L ©
Step 7 Update the state estimate
§<I = §( - K(Zn ‘“é—m)
wiTh = al Time Ty (4.19)
Step 8 Update the error covariance estimate
E'= E - KHE (4.20)
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Step 9 Store values of state and error covariance

estimates.

Step 10 Set x' and E' as initial conditions, for
propagation equations and return to Step 3.
The sequence is repeated until the end of the
process.
Different values of D and G were used in the identification
process representing different degrees of noise.
Based on the results and comments of Hayes [2] the values of
the Q and R matrices used with the Kalman filter were changed, for
the same amount of noise in the trial data. It corresponds to in-
forming the filter that there is more noise than.. the one actually

experienced, and has the objective of tuning the filter.

A second and a third pass of trial data through the filter
were sometimes employed in order to improve the accuracy of the

identification process.

Although requiring less computation time than model
reference approach the relatively long program necessary to
implement Kalman filtering made it impossible to write a single
computer program due to the core limitation of the computer unit
used. The program was broken into 3 parts to adjust to the computer

capacity.
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The problem of core limitation brought also other
problems. It was felt after some trials that the specific
characteristics of the Kalman filter equations required the
utilization of double precision variables to improve the accuracy
of the results. But the limitations on core capacity did not

permit this alternative.

The option left was to divide all the coefficients in
the equations of motion by the term
CR = (A(4) . A(11) - A(10) . A(5))

The coefficients are then given by:

Aln) = A(n)/CR (4.21)

At the same time the error covariances, PCVi were divided by CR2.

The new program produced better results as it is shown in
Chapter 5. The only disadvantage of this procedure is that the mass

and inertia parameters could not be identified.

The computer  programs with all the subroutines used for
extended Kalman filtering identification are shown in Appendix 5.
The subroutines are specialily tailored for the identification of 4
parameters, but little change is required to handle a larger number

of parameters.
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4.5 1Identification of the Non~linear Parameters

The linear parameter with exception of the coefficients
in x equation, were identified using the linear model. The use
of the complete mathematical model for the horizontal maneuver of
the Mariner class vessel is primarily concerned with the identification
of the nonlinear coefficients. Nevertheless, some of the linear
parameters already identified will be studied again to investigate

eventual difference in identifiability.

In order to identify nonlinear coefficients the input,
rudder deflection law, is selected to produce large maneuvers. The
inputs used with the two approaches are different but both cause very

tight nonlinear maneuvers.

4,5.1. Model Reference - Identification

The same procedure described in 4.4.1. was used to identify
the nonlinear coefficients. Essentially there is modification only

in the state and measurement equations.

The input employed is a step rudder deflection at 35
degrees. The equations to be inserted in the model reference

identification scheme defined in 4.4.1 are:
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- _ P _ o
e -A—(‘ic)— W,
V = A(]-D'Fu; A(S)fr + G | W
#l LAk Ao, .
" (4.22)
fo= AR+ AR +A(T)UE +AGB)va AN

A(20)8*+A(2N)vr + A22)y8

(4. 23)

£, = AlD+A@OV+AT)r+ A(B)S + A(26) 8>+
AR rv* + A(28)8v?

(4 .24)

Po= A(S) + Al2)y + Al3)r + AU4)3 + A O)S+
AB2)rvc+ ABB8v* (4. 25)
P = A4)-AUD — AULO)-A(S) (. 26)
o o v,
== |Vt D% (4. 27)
Rl ] | Vs
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The elements of the noise vectors are defined in the
same way as in 4.4.1. The correspondent equations for the
deterministic model as derived from (4.2.2) and (4.2.7). The

cost function is given by:

¢ = o KZ [(ZUL“ZW\ )Z'*' (2y— Zm ~)2+ (4.28)
il : .
(Zr""zmr> ]J

The computer programs for identification of the hon-
linear parameters using model reference approach are listed in

appendix 6. The results are presented in the next chapter.

4.5.2 Extended Kalman Filtering

The same basic procedure described in section 4.4.2
are used to identify the nonlinear equations. The equations for
the mathematical model used to generate the sea trial data are

shown in section 4.5.1.

The input applied to the system is a zig-zag like law

for the rudder deflection

(deasré.es) i
3

100 200

“Time (sec)
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The computer programs used for identification of the non-
linear parameters using extended Kalman filter approach are listed

in Appendix 7. The results are presented in the next chapter.

This chapter presented the general procedure utilized
in the identification studies of this thesis. The several phases
in which the study was divided are described in a wealth of details
that help to understand the computer programs employed with the
identification approaches. The results of the identification
studies are presented and analyzed in the next chapter. The
Chapter 6 presents general conclusions about the identification

study and recommendations for future work.
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CHAPTER 5

RESULTS OF THE IDENTIFICATION STUDIES

The previous chapters of this thesis were arranged in a
logical sequence and prepared the basis for the understanding of the
parametric identification results. 1In Chapter 2, the problem of
horizontal maneuvering for a surface ship was modelled. A stochastic
mathematical model was developed including process and measurement
noises. A linear version of this model was derived to be used in the
identification studies. 1In Chapter 3, the concept of parametric
identification as it is considered in the present work is introduced, and
the approaches for system identification were described. In Chapter 4
it was shown how the identification techniques are applied to the
mathematical models. The whole procedure used in the identification
studies is described. The details for computer implementation are
discussed and some of the difficulties found are analyzed. This
chapter will present all the results obtained in the identification
procedure. These results are discussed under the criteria of
parametric identifiability presented in Chapter 3. The chapter is
divided into 5 sections, the first of which is reserved for the
results of the preliminary analysis. All the other sections are

concerned with identification itself.

5.1. Results of the Preliminary Analysis

As it was explained in Chapter 4 the preliminary analysis
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has the objective of determining which of the known hydrodynamic
coefficients for the Mariner class ship can be neglected in the
final model. The analysis consists in comparing the sea trial data,

generated by ship maneuvering simulation.

The coefficients which importance was tested are

1/6 X o (B4) 1R 5 (29),1/6.Y _ (B4), 1/2 Y (. (B10), ¥ (BO), 1/6 N__ (C4)
1/2 N_<(C9) and N_(C10).

The ship maneuvers were simulated using the mathematical
model. In order to investigate the importance of the different
coefficients several runs were conducted in which some of the
coefficients were omitted in the mathematical model. The analysis
of the generated ship trajectories led to the following conclusions,
which are applied in the conditions given below

a- small maneuvexs, corresponding to small rudder

deflection (step deflection was used).

1. The coefficients B4, B10, C4, Cl0 can be
neglected.

2, Eventually, A4 and perhaps A9 might be neglected.

3. The coefficients B@ and CO present too large an

influence to be neglected.
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b- tight manuevers, corresponding to large rudder

deflections(zig-zag like maneuvers were simulated).

l. With some minor error B4, B10, C4 and Cl0 can
be neglected. It is, however, clear that for this
condition, the influence of the mentioned para-
meters is larger than for small maneuvers.

2. The other four coefficients cannot be disregarded.

As a consequence of this analysis, the coefficients B4, B10,
C4, and Cl0 were eliminated from the mathematical models used in the

identification studies.

5.2, Model Reference Identification of Linear Parameters

All the coefficients of the linear model with the exception
of Y (A19) and No (Al5) were studied in the identification process.
o
A large number of runs were conducted and the principal results are

presented in figures and tables.,

The length of all the sea trial in 188 seconds, and for the
kind of input selected for the linear model, this period is sufficiently
long to ensure that the system reaches steady state.

Figure 5.1 shows the sea trial data for the noiseless
process, Curve 1 is for the sway velocity, v, (ft/sec) and curve 2
is for the yaw velocity r (degree/sec). The data from these curves

is used by the model reference approach to identify the parameters.
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process.
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The two first parameters to be studied are (Iz-Ni)

(A(11)) and N_. (A(14)). The contours for the zero noise sea trial

§
are presented in Figures 5.2, and 5.3. In Figure 5.2. the x-range
corresponds to the range of the parameter PAl and the y-range
corresponds to the range of the parameter PA2., The detailed values

of PAl and PA2 are printed along the edges of the contour with x
running vertically and y, horizontally in Figure 5.3. The horizontal
values of PA2 are set such the last number in the exponential cor-
responds to the numerical value for that * location on the axis., At the
top of the contour, the left,center and right values of PA2* are

given with greater accuracy than the axis values. The z-domain

values correspond to the minimum and maximum values of C(p) over the
contour. The contours in Fig. 5.3. run from the minimum or l-value

to the maximum or M-value in linear increments DZ. The z-domain
descriptions in Figure 5.2. correspond to the 21 numbers and letters

1 through M used in the contour,

The reader can see from Figure 5.3. that the minimum point
of C(p) corresponds to values of PAl = PAl* and PA2 = PA2%, as it
would be exptected from a noiseless process. The use of a logarithmic
cost function served to greatly remark the optimum point. It is
noticed that all the other contour points have a much higher value
for c(p). In Figure 5.2, it may be seen that C(p*) ==22,18 which
in a linear scale corresponds practieally to zero. It may be seen

also that the maximum value of the cost function, Cmax(p) is 3.322,
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