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Dynamic Incentives in Wait List Mechanisms†

By Nikhil Agarwal, Itai Ashlagi, Paulo Somaini, and Daniel Waldinger*

Many scarce public resources are allocated 
through a wait list. A particularly salient exam-
ple is the kidney wait list in the United States, 
which now has almost 100,000 patients waiting 
for a lifesaving transplant.

While the design of such systems has gar-
nered significant research attention, most the-
oretical results yield answers that depend on 
the primitives of the market (compare Su and 
Zenios 2004; Leshno 2017; Bloch and Cantala 
2017). Moreover, the state of the art empirical 
methods used to prospectively evaluate wait list 
designs do not incorporate the dynamic incen-
tives that are central to the theoretical litera-
ture. Perhaps the most prominent example of an 
empirically guided redesign is the 2014 reform 
of the deceased donor kidney allocation system. 
The kidney committee used the Kidney-Pancreas 
Simulated Acceptance Module (KPSAM) to pre-
dict the transplants that would result from vari-
ous organ allocation rules. KPSAM allowed the 
committee to experiment with the priority sys-
tem, evaluate outcomes and make an informed 
decision. However, this decision tool simplifies 
patient acceptance behavior by assuming that it 
is invariant to priority rules and therefore ignores 
patients’ dynamic incentives.

This article uses a combination of theo-
retical and empirical arguments to show that 
 considering dynamic incentives is important 

for evaluating wait list mechanisms. We present 
examples to illustrate the interaction between 
dynamic incentives, preferences, and wait list 
design (Section II) as well as evidence consistent 
with agent choices being influenced by dynamic 
incentives (Section III). These results motivate 
methodological and empirical work studying 
dynamic assignment systems more broadly.

I. Background

In the United States, kidneys from deceased 
donors are allocated through a wait list. Each 
organ is offered to patients according to an 
 organ-specific priority rule. Patients may accept 
or decline an offer, with no penalty for refus-
ing. Each organ is assigned to the highest pri-
ority biologically compatible agent that accepts 
the organ. These assignments must take place 
quickly because it is difficult to maintain a kid-
ney’s viability after the donor has deceased.

A new priority system for allocating kidneys 
was adopted on December 4, 2014. Prior to the 
reform, organs were offered first to patients that 
had a rare perfect immunological match, then to 
patients within the local area of the donor, next 
to patients in the broader geographical region, 
and finally to patients nationwide. Within each 
group, patients were ordered according to points 
awarded based on patient and donor character-
istics with ties broken by how long the patient 
had waited. Points were awarded to patients 
that had highly sensitive immune systems, that 
were pediatric, and that were immunologically 
 well-matched to the donor.

The reform aimed to alleviate the inefficiency, 
organ waste, and inequity that resulted, in part, 
from a growing wait list that emphasized wait-
ing time (see Israni et al. 2014). Despite the 
long wait list, about 20 percent of medically 
viable kidneys are discarded each year. Reports 
by the kidney committee suggest that the goal 
of the reform was to allocate organs to patients 
that would benefit most from them, to reduce 
waste, and to avoid hurting any specific group of 
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patients.1 The new system prioritizes patients in 
the top quintile of predicted  post-transplant sur-
vival probability for kidneys in the lowest quintile 
of estimated risks of  post-transplant organ failure. 
It also increased national organ sharing for patients 
that have the most sensitive immune systems.

II. Dynamic Mechanism Design

We now show that it is important to consider 
dynamic incentives when designing a wait list 
mechanism because design  trade-offs depend on 
the preferences of agents.

A. A Model of Decisions on a Wait List

We consider a model similar to the one 
described in Bloch and Cantala (2017). There are  
n ≥ k  agents waiting for an object, where  k  is a 
positive constant. Each day, an object arrives and 
can be offered to  l < k  agents. Offers are made 
sequentially, according to a predefined priority 
order. Each object must be assigned immediately 
and is wasted if none of the top  l  agents accepts. 
Each agent makes an  accept-reject decision. She 
is assigned the object if she accepts it, and is then 
removed from the wait list. Agents that reject the 
object remain on the wait list, and may accept 
a future offer. We assume that waiting incurs a 
 per-period cost of  c .

An optimal decision rule recommends accep-
tance if and only if the value of receiving an 
assignment is higher than the value of waiting 
for a future offer. Specifically, let  α  be the value 
of an object to an agent,  s ∈ S  denote the agent’s 
position on the wait list, and let   F  s    be the cumu-
lative distribution function of the value of objects 
offered to an agent in position  s . This equilibrium 
distribution,   F  s    , depends on the strategies of other 
agents on the wait list. We suppress this depen-
dence from the notation and focus on the optimal 
decision of each agent. This optimal decision can 
be written as

(1)   a   ∗  = 1 { α > V(s; M )}, 
where  V(s; M  )  is the expected net present value 
of continuing to wait, and  M  denotes the mech-
anism in use.

1 We obtained the reports of the committee from the 
Communications Office at the United Network for Organ 
Sharing (UNOS). 

The acceptance thresholds depend on the 
agent’s position  s  and the mechanism  M  because 
these quantities influence the value of waiting. 
Agarwal et al. (2018) show how to estimate the 
values of various object attributes in a similar 
dynamic choice model using data on  accept-reject 
decisions and knowledge of the mechanism. They 
apply their methods to data on decisions from the 
deceased donor kidney wait list.

This approach is in contrast to the one taken 
in KPSAM, which assumes that acceptance 
behavior is invariant to the mechanism, that is   
a   ∗  = 1 { α > V}  , where  V  does not depend on  M  
or on  s . It is easy to see that the simpler model is 
likely to yield incorrect predictions if the mech-
anism influences the value of waiting.

B. Preferences and Design

We now compare the first come first served 
(FCFS) mechanism, which orders patients based 
on how long they have waited, with a lottery 
mechanism (LM). We assume that LM randomly 
orders the  k  agents that have waited the longest 
(see Leshno 2017 for a similar mechanism). 
We present results for two different preference 
models. In both models, values are drawn from 
the cumulative distribution function  F . The first, 
which we call vertical preferences, assumes 
that the value of each object is common across 
agents. The second, which we call horizontal 
 preferences, assumes that agents’ values for a 
given object are drawn independently. For sim-
plicity, we assume that  F  has support only on the 
unit interval  [0, 1]  and focus on the case when  
l = 2  , so that the object is wasted if the top two 
agents decline it. 

1. Vertical Preferences.—FCFS: In equilib-
rium, the agent in position  i ∈ {1, 2}  will accept 
the object if and only if the value of the object 
exceeds a cutoff   α i   . The value of waiting for the 
agent in position  1  solves

  V(1)  =  ∫  α 1  
  

1
    x dF + F( α 1  ) V(1) − c. 

Because this agent must be indifferent between 
accepting an object with value   α 1    and continu-
ing,  V(1) =  α 1   . Therefore,   α 1    solves

(2)   ∫  α 1  
  

1
    (x −  α 1   ) dF = c. 
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Similarly, the value of waiting for the agent in 
the second position solves

   V(2) = (1 − F(  α 1   )) V(1)

 +   ∫  α 2  
  

 α 1  
   x dF + F( α 2  ) V(2)  − c. 

Using the expression  V(i)  =  α i    and equation 
(2), we have that   α 2    solves

(3)   ∫  α 2  
  

1
    (x −  α 2   ) dF = 2c. 

The fraction of objects wasted in this model is  
F(  α 2   )  , and the expected value of each assigned 
object is  E [ α | α >  α 2   ] . 

LM: Observe that all agents use the same 
cutoff in equilibrium,   α LM   . Because values are 
perfectly correlated, an agent accepts the object 
only if she was (randomly) chosen to be at the 
top of the list. Therefore, the expected waiting 
time before the next offer is  k  and the threshold   
α LM    solves

(4)   ∫  α LM    
1
    (x −  α LM   ) dF = kc. 

Comparison: Observe that   ∫ 
α
  
1
   (x − α) dF  is 

decreasing in  α . Therefore, waste is lower in 
the lottery mechanism because   α 2   ≥  α LM    for 
all  k > 2 . However, the value conditional on 
assignment is higher under FCFS. A social plan-
ner that accounts for waiting costs and the value 
of assignments may prefer lowering waste if the 
waiting list is long enough or if  c  is high enough. 
Indeed, an agent’s refusal in FCFS can impose a 
negative externality on agents lower on the list 
because a rejected object is of lower quality and 
waiting time increases.

2. Horizontal Preferences.—FCFS: The cut-
off for the agent in the first position,   α 1    , is iden-
tical to the vertical case. The value of waiting for 
the agent in the second position is given by

  V(2)  = (1 − F( α 1   )) V(1) 

 + F( α 1  ) [ ∫  α 2  
  

1
    x dF + F( α 2   ) V(2)]  − c. 

The cutoff   α 2    now solves

(5)  F( α 1  )  ∫  α 2  
  

1
    (x −  α 2   ) dF 

   + (1 − F( α 1  )) ( α 1   −  α 2   )  = c. 

LM: The value of waiting for the top  k  agents 
solves

  V =    1 _ 
k
   (1 + F(α)) [ ∫ 

α
  
1
   x dF + F(α) V] 

 +  [1 −   1 _ 
k
   (1 + F(α))]  V − c. 

The first term represents the case when an agent 
receives an offer, and the second term represents 
the remaining case. Setting  V =  α LM    , the cutoff   
α LM    solves

(6)  (1 + F(α))  ∫ 
α
  
1
   (x − α ) dF = kc. 

A comparison of equations (4) and (6) shows 
that each agent is more selective if preferences 
are horizontal. However, waste might be lower 
because one of many agents may accept the 
object.

Comparison: Again, it can be shown that   
α LM   ≤  α 2   ≤  α 1    if  k > 2 . However, an agent 
rejecting an offer does not indicate that the 
object is undesirable. Therefore, agents at the 
top of the list can exert a positive externality on 
other agents by rejecting offers.

C. A Numerical Example

Table 1 presents a numerical example with  
α ∼ U [ 0, 1]  ,  c = 1/6 , and  k = 3 . Under the 
chosen parameters, the LM results in the same 
waste and match value conditional on assign-
ment (MV) irrespective of whether preferences 
are vertical or horizontal. Moving from LM to 
FCFS results in a higher match value and higher 
waste. However, waste increases less and match 
value increases more under horizontal prefer-
ences than under vertical preferences. Indeed, 
the unconditional expected value obtained from 
each object (EV) is higher in FCFS than in LM 
if preferences are horizontal, but the reverse is 
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true if preferences are vertical. If preferences are 
vertical, FCFS is dominated by LM. 

Higher waste can outweigh the matching 
benefits of FCFS if preferences are horizon-
tal. Due to the increase in waste when moving 
from LM to FCFS, the expected wait between 
assignments increases from 1 to 1/(1–0.13) 
≈ 1.15. The social costs of waiting therefore 
increase by n × c × 0.15. Therefore, FCFS 
outperforms LM if n ≤ 4, but not otherwise.2 
Taken together, these results show that a social 
planner’s decision between these two mech-
anisms ultimately depend upon the nature of 
primitives.

The result that FCFS may better match agents 
to more preferred objects is not specific to this 
example. Arnosti and Shi (2017) also find that 
FCFS produces higher match value than LM. 
Indeed, Bloch and Cantala (2017) show that 
FCFS yields better match value than any mech-
anism that gives agents that have waited longer 
weakly higher priority. However, this result 
depends on the nature of primitives as shown 
in Leshno (2017), who studies a model with 
agents that have preferences for a specific type 
of object. He shows that it may be optimal to run 
a lottery among agents at the “top positions” to 
influence selectivity and reduce misallocation. 
Similarly, using a model with stochastic arrivals 
and vertical preferences, Su and Zenios (2004) 
show that a last come first served mechanism 
reduces waste and improves social welfare rela-
tive to FCFS if preferences are vertical.

2 The variable n is the expected equilibrium queue length, 
which is bounded if agents depart exogenously without an 
assignment. The increased waste could result in an endoge-
nously longer queue.

These examples assume that the planner does 
not have information about how much different 
agents value various object types. It is easy to 
construct examples in which the optimal mech-
anism prioritizes agents based on observed 
 predictors of value. Similarly, mechanisms that 
prioritize agents based on predictable differ-
ences in waiting costs can improve welfare.

III. Evidence on Dynamic Incentives

A testable implication of the model is that 
agents with a low option value of waiting are 
more likely to accept an offer of a given qual-
ity. This is in contrast to static choice models 
such as the one used in KPSAM. We now pres-
ent descriptive evidence consistent with this 
hypothesis.

A. Data

This study uses data from the Organ 
Procurement and Transplantation Network 
(OPTN). The OPTN data system includes data 
on all donors, wait-listed candidates, and trans-
plant recipients in the United States submit-
ted by the members of the Organ Procurement 
and Transplantation Network (OPTN). The 
Health Resources and Services Administration 
(HRSA), US Department of Health and Human 
Services provides oversight to the activities of 
the OPTN contractor. The primary dataset on 
the wait list, the Potential Transplant Recipient 
(PTR) dataset, contains the offers made and 
patient decisions. This dataset is drawn from the 
backbone system used to coordinate offers and 
decisions.

We restrict attention to data on the kidney 
wait list and to acceptance decisions between 
January 1, 2010 and December 31, 2013 by 
all patients registered in Donor Service Areas 
(DSAs) that used the standard allocation rules. 
Except in cases of a perfect tissue-type match, 
allocation takes place based on geography, with 
DSAs constituting the smallest unit. Our analy-
sis covers 37 out of the 58 DSAs in the United 
States. Together, these DSAs account for 59 per-
cent of the patient population.

Table 2 describes the data, which include 
offers from 17,811 donors to 105,536 patients. 
The total number of offers is close to 17 mil-
lion, but most of these offers are screened out 
by pre-set acceptance criteria set by patients (we 

Table 1—FCFS versus Lottery

Cutoffs Waste MV EV

Vertical
 FCFS (0.42, 0.18) 0.18 0.59 0.48
 LM 0 0 0.5 0.5

Horizontal
 FCFS (0.42, 0.309) 0.13 0.69 0.60
 LM 0 0 0.5 0.5

Note: The cutoffs for FCFS are described as the pair 
(  α 1   ,   α 2   ), while LM has only one cutoff.
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 simulate the mechanism in order to recover all 
offers, whether they were screened out or not). 
While most accepted offers result in a transplant, 
some do not because a final immunological test 
can fail. In these cases, the organ is assigned to 
the next highest priority patient that accepted it 
and passes the test. We treat all acceptances as 
 indicative of the value of assignment exceeding 
the value of waiting.

Surprisingly, less than 0.2 percent of all 
offers are accepted by patients, but the total 
number of transplants indicate that the organs 
from most donors are transplanted. As Agarwal 
et al. (2018) discuss, this low acceptance rate is 
a result of relatively undesirable organs being 
offered to several thousand patients. Indeed, 
the acceptance rate amongst the top 10 offers is 
18.1 percent, and still higher at the very top of 
the list.

B. Empirical Strategy and Results

The ideal empirical strategy would compare 
patients that have the same characteristics, 
but face different option values for exogenous 
reasons. One strategy would be to use varia-
tion induced by differences in priority while 
holding all patient characteristics constant. 
Unfortunately, we are not aware of any such 
sources of variation in the kidney wait list.

Instead, we use biological compatibility to 
study how variation in offer rates and option 
values affects acceptance decisions. A patient 
that is likely to be biologically incompatible 
with a large number of donors should have 
a lower option value of waiting. If dynamic 
incentives are important, we would expect 
patients with sensitive immune systems to be 

less  selective. The main concern with this strat-
egy is that immune sensitization also influences 
the value from a transplant. Sensitized patients 
are less likely to be healthy, and to benefit from 
a transplant relative to remaining on dialysis 
(see Naji et al. 2017). This fact would most 
likely negatively bias the estimated relationship 
between acceptance rates and patient immune 
sensitivity. We use the standard measure of 
patient sensitivity, Calculated Panel Reactive 
Antibodies (CPRA). CPRA is the percent-
age of donors from a representative pool with 
whom a patient is expected to be tissue-type  
incompatible.

Under our hypotheses, one should expect 
CPRA to be negatively correlated with expected 
offer rates and positively correlated with accep-
tance rates. Figure 1, panel A, shows that offer 
rates decline with CPRA, despite the fact that 
patients above a CPRA of 80 percent receive 
higher priority. Figure 1, panel B, shows an 
increasing acceptance rate in CPRA, particularly 
for high CPRA patients. The main confounding 
factors are that the priority system and other 
patient and donor characteristics can affect the 
value of a transplant. While this concern cannot 
be fully addressed, one can assess the extent to 
which this relationship is robust to the inclusion 
of a rich set of covariates.

Table 3 presents estimates from a linear 
probability model of acceptance as a function 
of CPRA, controlling for a variety of patient, 
donor, and match-specific characteristics. 
Column 1 controls only for an indicator of 
whether the patient is completely unsensitized. 
The coefficient on CPRA is positive and sta-
tistically significant. Column 2 controls for all 
patient-specific indicators of priority types. This 
reduces the estimated effects of CPRA because 
the CPRA thresholds of 20 percent and 80 per-
cent are cutoffs in the priority system. Columns 
3 and 4 add controls for additional patient and 
donor characteristics. The CPRA coefficient 
estimates are a little lower, but still positive and 
statistically significant. Column 5 controls more 
flexibly for interactions between CPRA and 
indicators of  tissue-type similarity because high 
CPRA patients with sensitive immune systems 
may differentially prefer kidneys that their bod-
ies are less likely to reject. These interactions 
barely affect the CPRA coefficient estimate. 
These results are consistent with dynamic incen-
tives influencing acceptance decisions.

Table 2—Summary Statistics

  Observations

Donation service areas (DSAs) 37
Transplant centers 144
Donors 17,811
Patients 105,536
Offers 16,981,773
Offers that met screening criteria 3,593,988
Acceptances 31,385
Acceptances resulting in transplant 22,154

Notes: Some acceptances do not result in a transplant due to 
a final biological test called a crossmatch. A positive cross-
match indicates that the patient would reject the organ.



MAY 2018346 AEA PAPERS AND PROCEEDINGS

REFERENCES

Agarwal, Nikhil, Itai Ashlagi, Michael Rees, Paulo 
Somaini, and Daniel Waldinger. 2018. “An 
Empirical Framework for Sequential Assign-
ment: The Allocation of Deceased Donor Kid-
neys.” Unpublished.

Arnosti, Nick, and Peng Shi. 2017. “How (Not) 
to Allocate Affordable Housing.” Unpublished.

Bloch, Francis, and David Cantala. 2017. 
“Dynamic Assignment of Objects to Queuing 
Agents.” American Economic Journal: Micro-
economics 9 (1): 88–122.

Israni, A. K., N. Salkowski, S. Gustafson, J. J. Sny-
der, J. J. Friedewald, R. N. Formica, X. Wang,  
et al. 2014. “New National Allocation Pol-
icy for Deceased Donor Kidneys in the 
United States and Possible Effect on Patient 

0

20

40

60

80

100

N
um

be
r 

of
 o

ffe
rs

 p
er

 p
at

ie
nt

0 20 40 60 80 100

Immune sensitization (CPRA in %)

Offers per patient, by sensitization

Panel A. Offer rate

0

0.5

1

1.5

2

2.5

O
ffe

r 
ac

ce
pt

an
ce

 r
at

e 
(p

er
ce

nt
)

0 20 40 60 80 100

Immune sensitization (CPRA in %)

Acceptance rate by patient sensitization

Panel B. Acceptance rate

Figure 1. Offer and Acceptance Rate by CPRA

Table 3—Evidence on Response to Dynamic Incentives

Dependent variable: offer accepted

  (1) (2) (3) (4) (5)

Calculated panel reactive antibodies (CPRA) 0.0141 0.00466 0.00382 0.00239 0.00232
(0.000389) (0.000271) (0.000262) (0.000215) (0.000214)

Variables affecting priority X X X X

Patient characteristics X X X

Donor and match characteristics X X

Interaction between CPRA and # HLA mismatches         X

Observations 16,981,773 16,981,773 16,981,773 16,981,773 16,981,773

 R2 0.002 0.005 0.007 0.234 0.234

Notes: CPRA is measured on a [0,1] scale at the time of the offer. Column 1 controls for a CPRA = 0 indicator. Column 2 adds 
indicators for CPRA ≥ 0.2, CPRA ≥ 0.8, and age < 18, as well as waiting time indicators and linear controls for  1–3,  3–5, 
and >5 years. Column 3 adds other patient characteristics. Column 4 adds donor and match characteristics. Column 5 adds 
interactions between CPRA and # HLA mismatches. Patient characteristics are indicators for age  18–35,  35–50, and  50–65; 
indicators for blood type, diabetes, and the patient’s transplant center; and linear controls and indicators for dialysis time  1–3, 
 3–5,  5–10, and >10 years. Donor characteristics are linear age; linear creatinine clearance with indicators for 0. 6–1.8 and 
>1.8; and indicators for diabetes, cardiac death (DCD), and expanded criteria donor (ECD). Match characteristics are linear in  
# HLA mismatches; indicators for zero HLA mismatch, 0 and 1 DR mismatch, identical blood type, offer year, and local donor; 
linear controls for (+) and (−) age difference; and interactions between local and  zero-HLA mismatch, local and donor age, 
donor over 40 and pediatric patient, donor over 55 and patient age  18–35, and donor over 60 and patient age  35–50 and over 
50. Standard errors, clustered by donor, are in parentheses.

https://pubs.aeaweb.org/action/showLinks?doi=10.1257%2Fpandp.20181079&system=10.1257%2Fmic.20150183&citationId=p_3


VOL. 108 347WAIT LIST MECHANISMS

 Outcomes.” Journal of the American Society of 
Nephrology 25 (8): 1842–48.

Leshno, Jacob D. 2017. “Dynamic Matching in 
Overloaded Waiting Lists.” Unpublished.

Naji, M., A. D. Stanton, O. Ekwenna, G. Mitro, 
M. Rees, and J. Ortiz. 2017. “Alemtuzumab 
Equalizes Short Term Outcomes in High Risk 
PRA Patients: Long Term Outcomes Suffer.” 

Journal of Clinical Experimental Transplanta-
tion 2 (2).

Su, Xuanming, and Stefanos Zenios. 2004. 
“Patient Choice in Kidney Allocation: The 
Role of the Queueing Discipline.” Manufac-
turing and  Service Operations Management 6 
(4): 280–301.


	Dynamic Incentives in Wait List Mechanisms
	I. Background
	II. Dynamic Mechanism Design
	A. A Model of Decisions on a Wait List
	B. Preferences and Design
	C. A Numerical Example

	III. Evidence on Dynamic Incentives
	A. Data
	B. Empirical Strategy and Results

	REFERENCES




