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ABSTRACT

Clinical applicability of electroencephalography (EEG) is well es-
tablished, however the use of EEG as a choice for constructing
brain computer interfaces to develop communication platforms is
relatively recent. To provide more natural means of communication,
there is an increasing focus on bringing together speech and EEG
signal processing. Quantifying the way our brain processes speech
is one way of approaching the problem of speech recognition using
brain waves. This paper analyses the feasibility of recognizing sylla-
ble level units by studying the temporal structure of speech reflected
in the EEG signals. The slowly varying component of the delta
band EEG(0.3-3Hz) is present in all other EEG frequency bands.
Analysis shows that removing the delta trend in EEG signals results
in signals that reveals syllable like structure. Using a 25 syllable
framework, classification of EEG data obtained from 13 subjects
yields promising results, underscoring the potential of revealing
speech related temporal structure in EEG.

Index Terms— Speech, EEG, syllable, Multitaper, delta

1. INTRODUCTION

Inspired by the idea that machines can be controlled by one’s
thoughts, various brain computer interfaces (BCI) have been de-
veloped to interpret cognitive activity [1, 2]. Given the concurrent
advances in neuroscience and engineering, BCI principles are being
implemented notably to provide controls to the motor and speech
impaired users [3, 4]. Albeit the popularity that BCIs have gained,
there exist cognitive challenges in operating these systems [5, 6].
Moreover, using motor movements or auditory/visually evoked
potentials to control the BCI devices restricts the semantic event
classification to be binary in most cases. In order to exploit the
multi-class scope and to facilitate ease of use of these interfaces, we
need to design a better communication protocol at the user’s end.
Therefore designing a natural speech-like communication medium
using BCIs could prove to be highly effective.

Over the years, researchers have aimed to understand how hu-
man linguistic and cognitive abilities are interwoven in the produc-
tion and perception of intelligible speech [7,8]. The human auditory
system is intricately designed to perform acoustic analysis, includ-
ing the extraction of meaningful units that facilitate its interpretation.
Numerous studies suggest examining the mechanisms of speech pro-
cessing in order to enable speech reconstruction from brain signals.
However, due to the challenges and limitations of obtaining inva-
sive brain recordings of cognitive processes, such neural studies of
human speech processing still remains ambitious. A step towards
understanding speech processing in the brain is to focus on some ba-
sic units that constitute temporal structuring in speech. Syllables and

phonemes have long been used for analyzing audio in many speech
processing applications and provide a basic operational processing
unit [9–11]. In this paper, we propose a novel protocol of using an
iterative segmentation algorithm coupled with a two level dynamic
programming classifier, to study the temporal structure of EEG at
the syllable level in order to establish that distinguishable syllable
like entities are indeed present in the EEG signal.

The rest of the paper is organized as follows. Section 2 discusses
the motivation behind considering this problem statement. Section
3 details the EEG data-collection process and the pre-processing ap-
proaches followed. Section 4 highlights the proposed methods for
feature extraction, analyzes the influence of removal of the delta
trend in EEG and discusses the syllable classification protocol imple-
mented in this paper. Section 5 outlines the result analysis followed
by the conclusions in Section 6.

2. MOTIVATION AND RELATED WORK

Previous studies of speech envelope reconstruction from EEG in-
dicate the existence of speech signatures in EEG [12–14]. Of the
many frequency bands present in EEG, the delta band, constituting
frequencies in the range 0.3Hz-3Hz, is seen to capture the syllabic
rhythm of spoken speech.

Most of the previous works in the Speech-EEG domain have
focused on phrase-level, vowel-level and imagined speech classifi-
cation tasks. In [15], two syllables /ba/ and /ku/ are classified as a
part of imagined speech experiments with an accuracy of 61%. [16]
deals with the imagination of five vowels and their subsequent pair-
wise classification whereas [17] achieves a single trial classification
of vowels /a/ and /u/. [18] aims to perform a two-way classification
of imagined speech phonemes. Further [19] proposes a model to
recognize two imagined words- ”yes” and ”no”. A majority of these
experiments regardless of phoneme, vowel, syllable or word formats
focus on a binary classification problem. Unlike these approaches,
in this work we attempt to perform classification across 25 classes of
syllables from co-speech EEG signals. Here, co-speech refers to the
EEG signals recorded while the subject is listening to speech audio.

A closely related work in [20] intends to classify 50 phrases of
speech EEG signals with a classification accuracy of 5% . However,
the proposed method differs from the above in the band-based fea-
ture extraction and classification module and is shown to outperform
the same with respect to accuracy and robustness.

The algorithm proposed in this paper is validated on EEG data
obtained from 13 subjects performing a speech audio listening task
over multiple sessions. The average classification accuracy of the
proposed methodology in all cases is significantly above chance
level - 37.12%, which suggests that EEG signals carry important
information about auditory speech signals.
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Fig. 1: Data collection timeline description

3. EEG DATA ACQUISITION

Experiments were performed to collect EEG data in an acoustically
isolated an-echoic chamber. The healthy volunteer subjects were
seated in a comfortable position and directed to keep their eyes
closed and minimize other voluntary movements throughout the
experiment. Although this is unnatural, the objective was to set up
controls with minimal interference due to artifacts in the EEG sig-
nals. A 128 channel net was used and the sampling rate for obtaining
EEG data was set at 250 Hz.

3.1. Database collection and description

Data for this experiment were collected from 13 subjects with 5 sub-
jects offering 2 sessions each amounting to a total of 18 sessions.
The experiment begins with a baseline resting state of 1 minute fol-
lowed by an instruction cue which requests the subject to pay careful
attention to the spoken audio. Then a block of 5 sa1 and 5 sa2 sen-
tences from the standard TIMIT database are played in a random
order. These sentences were recorded by Indian English speaking
volunteers (1 female and 4 males) to ensure that the subjects do not
have difficulty in speech cognition due to dialectal effects. The sylla-
bles that make up these utterances are listed in Figure 1. Further, the
instruction cue and the block are repeated 4 more times before the
experiment concludes with an end baseline resting state of 1 minute.
The instruction cues and the speech audio were communicated to
the subject via speakers placed at a distance of approximately 4 feet
facing the subject. The timeline of the experiment is represented
pictorially in Figure 1.

3.2. Pre-processing

After obtaining the EEG data, we band-pass the signal between 0.3
Hz and 60 Hz to retain the frequencies that contain relevant infor-
mation and also apply a notch at 50 Hz to discard AC interference.
Analysis is carried out using different frequency bands separately
by band pass filtering each band, namely, delta(0.3-3Hz), theta(3-
8Hz), alpha(8-13Hz), beta(13-30Hz) and gamma(30-50Hz). Data is
then segmented with the help of markers set to discriminate sa1-sa2
sentences. These segments are considered as independent trials for
training/classification.

4. PROPOSED METHOD

4.1. Feature Extraction

As the literature suggests, the parietal [21] and the temporal [22]
lobes are responsible for language understanding, interpreting
sounds and speech perception. Hence, out of the 128 channels,
36 channels corresponding to the temporal and parietal regions were
considered. Two types of features were considered for analysis.
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Fig. 2: Short Term Energy band analysis

4.1.1. Short Term Energy (STE)

Analogous to the speech stimulus, EEG signals can be considered
as a non-stationary time-varying excitation. Akin to multiple speech
processing approaches [23,24], we revert to short term processing of
the EEG signal assuming it is stationary in a finite temporal block.
The STE is calculated as given in Equation 1, where ”w” is the ham-
ming window function of length 125 samples and ”x” is the input
EEG signal.

Em =
∑
n

[x(n)w(m− n)]2 (1)

A graphical analysis of the delta band STE, reveals signatures analo-
gous to syllable rhythm/rate. Also noticeable is the delta band dom-
inance in other frequency bands, especially beta. Hence when we
subtract the delta band from the beta band, the spectral structure is
evident. The characteristic of delta band and its influence on other
bands is shown in Figure 2.

4.1.2. Multi-taper spectrogram

The multi-taper (MT) spectrogram is used for visualization purpose
to validate the approach of removing delta band influence from beta
band in EEG signals. The multi-taper method as introduced in [25],
provides multiple independent estimates from the same sample by
multiplying the signal with pairwise orthogonal data taper windows.
The final spectrum is obtained by averaging over all the statistically
independent tapered spectra. In our experiment we set the parame-
ters of the tapers as follows: time-bandwidth product is 5, the num-
ber of tapers used is 9, the moving window length was set to 150
samples with 1 sample shift.

In agreement with the STE scenario, the MT spectrogram of the
beta−delta band signal brings to light syllable like spectral structures
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Speech Spectrogram
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Fig. 3: (a) Raw EEG signal’s MT spectrogram is plotted with an ex-
panded inset. (b) After subtracting the delta band from the beta band
MT spectrogram is plotted. (c) The corresponding speech spectro-
gram is plotted

as shown in Figure 3(b). The raw-EEG signal’s MT spectrogram can
be visualized as a noisy version of the beta−delta band EEG signal’s
MT spectrogram. Silence gaps similar to that of speech are seen
while comparing Figures 3(b) and 3(c), albeit with some delays.

4.2. Proposed Protocol for Syllable Classification

A dynamic time warping (DTW) based cross-word reference tem-
plate (CWRT) matching approach was adopted to perform an itera-
tive segmentation algorithm to obtain syllable level templates and to
classify the test EEG signals into the 25 syllable classes.

4.2.1. Segment boundary initialization from speech

Let Gt be a single feature-extracted train EEG signal with 1 ≤
t ≤ T , where T total training examples are available. Post feature-
extraction, the initial level of segmentation is performed on Gt us-
ing the syllabic boundary information that is obtained by the man-
ual alignment of the speech waveform. Unlike speech, where we
can clearly identify silence regions, EEG does not guarantee one-
to-one correspondence between speech silence and brain signal si-
lence. Hence, the beginning and ending silence part of the speech
waveform is considered to be some distinct non-speech segments
for EEG. These classes are named with the prefix ”ns” referring to
non-speech in Figure 1. The initial boundaries so obtained are then
adjusted iteratively as described in section 4.2.2.

Algorithm 1 Iterative CWRT matching for segmentation
Input: Dinit , Train EEG signals Gt, t ∈ T
Output: Best Reference Templates (BRT).

1: procedure OBTAIN N BRTS ( N syl classes)
2: Initialize Use CWRT on Dinit to obtain N MBTs
3: ref-temp-concat : Concatenate MBT based on ground truth

transcription
4: for each i in #iter do
5: for each t in T do
6: warp-path = dtw(ref-temp-concat, Gt)
7: for each n in N do
8: Segment Gt based on warp path
9: Dnew(t,n) = new segment

10: end for
11: end for
12: Use CWRT on Dnew to obtain new MBT
13: ref-temp-concat : Concatenate new MBT
14: end for
15: BRT = mean along columns of Dnew

16: end procedure

4.2.2. Iterative Template-level Segmentation

The initial boundary segmentation as described in section 4.2.1
yields Dinit as described below. Assume T training instances are
available with N syllable classes each for sa1. Then Dinit(t, n) ={
kt
n | n = 1 to N & t = 1 toT

}
, where k is a variable length

template. Hence, every syllable is represented by T varying length
templates. Due to computational constraints, efficient ways of
choosing the best templates for each class proves to be advanta-
geous. For this purpose, Crossword-reference template (CWRT)
algorithm as described in [26] is implemented. Out of the T ex-
tracted templates from the training set, a base-reference template
(BRT) per class is chosen such that it’s length is closest to the av-
erage length of all the extracted templates of that class. Now, the
other templates are time aligned by DTW such that their lengths
match the base-template length. These time-aligned templates are
further averaged to obtain the mean-base-template (MBT) for that
particular class as depicted in Figure 4. The CWRT algorithm is
implemented iteratively as described in Algorithm 1 for both sa1
and sa2 sentences.

4.2.3. 2-Level Dynamic Programming (2LDP)

Given the test signal, Ts and the final MBT references Rn of N syl-
lable classes where 1 ≤ n ≤ N , a 2LDP as discusssed in [27]
is implemented to determine the sequence of reference templates
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Table 1: Protocol sanity check results (%avg accuracy)

Reference sa1 sa1 sa2 sa2 sa1 sa2
Test sa1 sa2 sa2 sa1 rest rest
Avg Acc % 42.51 2.01 48.15 1.27 1.24 1.37

and their boundaries. A range of end frames En for each refer-
ence template Rn is determined in accordance with its length Ln

as b + Ln
2
≤ e ≤ b + 2Ln, where b is the beginning frame and

e ∈ En is the end frame in Ts. The following steps are followed to
procure an M̄ matrix of scores.

M̂(Rn, b, e) = dtw-distance-measure(Rn, Ts(b : e))

M̃(b, e) = min
1≤n≤N

[M̂(Rn, b, e)]: retain best template match

P̃ (b, e) = argmin
1≤n≤N

[M̂(Rn, b, e)]: retain best path index

M̄(e) = min
1≤b<e

[M̃(b, e) + M̄(b− 1)]: recursive accumulation

Keeping M̄ as evidence of template match, backtracking of path
using P̃ is done to obtain the output classification labels. Once the
classification labels are obtained, we perform median filtering based
smoothing to remove ambiguous classification errors. A grid size of
3× 1 was used for filtering.

5. RESULT ANALYSIS

5.1. Protocol sanity check

Since the classification accuracy is significantly above chance-level,
we perform further analysis to investigate the integrity of the results.
The following experiments are carried out to verify if the results are
coherent and the resulting accuracies are recorded in Table 1.

• Cross-sentence verification: Test sa2 sentence is classified
using templates from sa1 sentence.

• Cross-session templates: Test instances from Subject A’s
session a are compared against the references templates from
Subject A’s session b. This yielded an average accuracy of
31.45%.

• Cross-subject templates: Test instances from Subject A are
compared against the references templates from Subject B.
This yielded an average accuracy of 29.12%.

• Rest state verification: Test is taken from the baseline rest
state and compared with sa1/sa2 sentence templates.

When sa1 and sa2 sentences are compared in the cross-sentence
verification case, their confusion matrix reveals that the syllable /y/
from the word ”oily” gets classified as the syllable /y/ from the
word ”greasy” frequently. This contributes to the scant accuracy
achieved.

5.2. Performance Observations

The following are a few notable observations derived from the
above set of experiments. The initial segmentation taken from
speech alignments outperformed the conventional flatstart segmen-
tation. CWRT method of choosing the best templates proved to be
useful and reduced the computation cost substantially. While ana-
lyzing frequency band structures, the delta band signals and the beta
minus delta signals show syllabic structure and hence provide better

Table 2: Performance of the proposed method for different bands of
EEG signal with tuned parameters (avg accuracy% )

Delta Beta-delta Beta Gamma
2LDP 36.21 37.12 34.77 34.15

classification as outlined in Table 2. The MT approach used for
visualization shows the beta minus delta band MTSP closely resem-
bles the speech spectrogram. Choosing the channels in the temporal
and parietal regions gave the best performance. The results of the
sanity check experiments show that cross-session templates perform
better classification than cross-subject templates. This is in accor-
dance with the fact that some subject information is embedded in the
EEG signals [28]. Also, using templates across subjects reduces the
accuracy as in the cases of DTW based isolated word recognition
problems in speech domain. The initial and final non-speech seg-
ments are often cross-classified, and median filtering helps alleviate
these spikes in the output.

5.3. Speech-syllable analysis

For comparison purpose, the input speech stimuli to the subject
was considered for analysis. An approach identical to the proposed
protocol was employed to perform syllable-level classification in
the above mentioned speech signals. Three notable differences in
achieving segment classification between speech and EEG in this
case are as follows:

1. Since the speech signals were used just as stimuli for the ex-
periment, only one recording per sentence- per speaker was
obtained. Hence the train and test instances for syllable clas-
sification were taken from different speakers (inter-speaker
case).

2. Since accurate ground truth segment boundaries were avail-
able for the speech signals, the iterative segmentation was not
performed.

3. Mel-frequency cepstral coefficients (MFCC) are known to
best represent speech features. Hence along with STE, MFCC
features were also considered for evaluation.

The average syllable classification accuracy for the speech stimuli
is seen to be 29.18%. This is comparable to the cross-subject tem-
plate results (29.12%) reported for EEG in section 5.1. This clearly
confirms that the EEG signal does contain syllable signatures.

6. CONCLUSION

This paper proposes a novel method to analyze temporal syllable
structure in co-speech EEG signals and further attempts to perform
syllable level classification. Careful analysis of the frequency bands
of the EEG signals suggest that the delta band signatures are present
in other frequency bands. Removing the presence of these signatures
from beta band signals result in magnifying the syllabic content of
EEG signals. The proposed protocol for classification employs a
common word reference template based iterative segmentation cou-
pled with two level dynamic programming algorithm and achieves
a superior accuracy (37.12% for intra-subject and 29.12% for inter-
subject) than chance level (4%) across 13 subjects. The sanity check
experiments verify the robustness of the results. The speech signals
were also considered for syllable classification under a similar pro-
tocol proceeding and the results are closely similar to the EEG case.
In conclusion, this paper provides proof of existence of speech sig-
natures in co-speech EEG signals.
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[8] Stephanie Martin, José del R Millán, Robert T Knight, and
Brian N Pasley, “The use of intracranial recordings to decode
human language: challenges and opportunities,” Brain and
language, 2016.
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