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Abstract

Dynamic interferometry enables snapshot recovery of
phase images by using polarization phase shifting. How-
ever, the phase estimate is susceptible to influence from
sources of ambient light having uncontrolled polarization.
We present a novel method, dynamic heterodyne interferom-
etry (DHI), as a means to mitigate phase bias from ambient
light sources, while retaining dynamic potential.

1. Introduction

Interferometry depends on the phase difference between
wavefronts propagating in two paths (arms). To estimate
the phase difference using intensity measurements, a wide
range of techniques exists. A prevalent principle is phase
shift interferometry [13, 34], which relies on multiple inter-
ferograms. Each interferogram uses a different and known
phase shift between the two arms of the interferometer. At
least three interferograms are required. Without loss of
generality, this paper considers the four phase trick, which
relies on four interferograms at quarter wavelength phase
shifts [8]. However, sequential capture of multiple interfer-
ograms limits the acquisition speed of phase shift interfer-
ometry.

Parallelizing the interferogram creation can improve the
speed of acquisition. This is realized by using polarized
interferograms, in an approach termed dynamic interferom-
etry [10, 34, 40]. Unfortunately, dynamic interferometry is
susceptible to bias from partially polarized ambient light.
We claim that such ambient disturbances can be reduced
by using heterodyne interferometry, where temporal corre-
lations occur at different phase shifts [13, 44]. In this pa-
per, we study incorporation of heterodyne principles into
the framework of dynamic interferometry. Hence, we re-
fer to this hybrid approach as dynamic heterodyne interfer-
ometry (DHI). In our proposed formulation, each arm of

Table 1: Comparing the proposed approach with the
closest related methods in interferometry.

Phase Shift
Interferometry

[13, 34]

Dynamic
Interferometry

[10, 34, 40]

Dyn. Het.
Interferometry

(Proposed)

Acquisition a

Time 4 Measurements Single Shot Single Shot

Ambient
Light Resistant Not Resistant Resistant

Rapidb

Mechanical
Disturbance

Not Resistant Not Resistant Not Resistant

a Single shot measurement relatively more robust to vibrations.
b Interferometry is not robust to macroscopic mechanical disturbance.

a heterodyne interferometer has opposite circular polariza-
tions. A linear polarization analyzer, placed in front of a
photodetector, shifts the phase between reference and sam-
ple wavefronts, and therefore induces a temporal phase shift
in the beat signal. The phase is extracted after temporally
correlating the beat signal with a known reference.

Table 1 summarizes the scope of DHI. For a feasibility
study, DHI is experimentally demonstrated here using com-
mercially available imaging hardware, including a video
camera having a polarization mosaic. The mosaic allows
the camera to acquire four linear polarization states in a sin-
gle shot. In future work, high-speed analog lock-in cam-
eras (like the Helicam C3 [1]) could be modified at the de-
vice level to achieve polarization multiplexing. Fabrication
of this new device would equip DHI with snapshot perfor-
mance.

Relation to prior art: The phase shifting properties of
opposing circularly polarized beams have been previously
described and demonstrated [19, 27]. Since then, various
polarization phase shifting techniques have been proposed
in different interferometric settings, such as homodyne in-
terferometry [10, 40], phase unwrapping [46], fringe pro-
jection imaging [41] and shearography [25, 35]. Our goals
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Figure 1: Schematic of a wide-field implementation of dynamic heterodyne interferometry. The imaging sensor is a
polarimetric camera with a patterned mosaic of linear polarization analyzers placed over the sensor. Such a camera allows
four analyzer angles to be sampled in a single image frame. Since the polarimetric camera is limited to video framerates of 30
Hz, two acousto-optic modulators are used to provide a 1 Hz frequency beat note. To emulate a lock-in camera, one pixel on
the camera sensor is used as the correlating reference in post-processing. An object is placed in one arm of the interferometer
(sample arm), while the other arm is a reference.

are similar (to recover the phase), but we study the scenar-
ios in which time-correlation improves the performance of
polarimetric phase shifting. The relatively recent availabil-
ity of snapshot correlation cameras and snapshot polarimet-
ric cameras motivates our study. Correlation cameras per-
form on-chip correlation at high (KHz or MHz) frequen-
cies [2, 12, 28, 38]. Polarimetric cameras multiplex mul-
tiple linear polarizer rotations in a single image acquisi-
tion [3, 4, 9, 11, 15, 17, 26, 39, 45]. Our work benefits
from connections to recent works in computational photog-
raphy, dealing with wave optics [6, 14, 16, 21, 29, 30, 47],
polarization [22, 23, 32, 43], and time of flight imag-
ing [7, 18, 20, 24, 37, 48]. As just one such example, com-
putational self-calibration [42] can remove angular incon-
sistencies between sampled polarimetric data. This could
benefit DHI in the future.

2. Dynamic Heterodyne Interferometry
Consider the wide-field setup illustrated in Figure 1.

Acousto-optic modulators AOM1 and AOM2 create a tem-
poral beat signal. Let Ω1 and Ω2 be the frequency shift
created by AOM1 and AOM2, respectively. It will be as-
sumed that the context hereafter is heterodyne interferome-
try, where Ω1 6= Ω2.

To establish notation, let us first ignore polarization ef-
fects for the moment. In such case, the fields in each arm
would be written as

E1(x, t) = A1(x) exp
{
j
[
(ω + Ω1)t+ φ1(x)

]}
E2(x, t) = A2(x) exp

{
j
[
(ω + Ω2)t+ φ2(x)

]}
,

(1)

where j =
√
−1 and E1(x, t) and E2(x, t) represent elec-

tric fields in coordinates of space x and time t. Variables

A1(x) and A2(x) represent spatially varying amplitudes,
φ1(x) and φ2(x) represent spatially varying phases, and ω
represents the optical frequency. When the two fields inter-
fere, a photodetector observes a temporal beat signal with
frequency ∆Ω and phase ∆φ(x), where

∆Ω = Ω1 − Ω2 and ∆φ(x) = φ1(x)− φ2(x). (2)

Equations (1) and (2) underpin heterodyne interferome-
try [13, 33], where the goal is to estimate ∆φ(x).

Now, we consider polarization effects. The field in each
arm passes through a circular polarizer with opposite hand-
edness (cf. elements CW-CP and CCW-CP in Figure 1).1 The
fields in the interferometer are expressed by the following
Jones vectors:

E1(x, t) = A1(x) exp
{
j
[
(ω + Ω1)t+ φ1(x)

]}(1
j

)
E2(x, t) = A2(x) exp

{
j
[
(ω + Ω2)t+ φ2(x)

]}(
1
−j

)
.

(3)

As shown in Figure 1, a polarization mosaic patterned by
four linear polarization analyzers is placed on the camera
sensor. It is assumed that the mosaic is sufficiently dense,
such that the four linear polarization analyzers effectively
map to the same resolvable spatial location x. This is a
sensor array in use in dynamic interferometry [10]. We now

1Slight ellipticity may occur in the circular polarization state of each
beam, after any circular polarizer. This occurs if the circular polarizer is
not matched to the acousto-optic shifted frequencies ω + Ω1 and ω + Ω2.
In our experiments, the frequency shift is miniscule with respect to the
optical frequency, i.e., Ω1/ω ≈ Ω2/ω ≈ 10−8. We thus find the error
due to ellipticity to be negligible.



Table 2: Comparison of the equations associated with interferometry techniques.

Heterodyne I(x, t) = A1(x)A2(x) cos[∆Ωt+ ∆φ(x)] +A2
1(x)/2 +A2

2(x)/2

Dynamic I(x, α) = A1(x)A2(x) cos[∆φ(x) + 2α] +A2
1(x)/2 +A2

2(x)/2

Dynamic Heterodyne I(x, t, α) = A1(x)A2(x) cos[∆Ωt+ ∆φ(x) + 2α] +A2
1(x)/2 +A2

2(x)/2

derive how one particular orientation of a linear polarization
analyzer, denoted by the variable α, affects the interference
pattern. The fields passing through a linear polarization an-
alyzer are written as a Jones product:

E′1(x, t) = JαE1(x, t)

E′2(x, t) = JαE2(x, t),
(4)

where E′1(x, t) and E′2(x, t) denote the fields after the ana-
lyzer and Jα is the Jones matrix for the linear polarization
analyzer, where

Jα =

(
cos2 α cosα sinα

sinα cosα sin2 α

)
. (5)

Substituting Equations (3) and (5) into Equation (4) yields

E′1(x, t)

= A1(x) exp
{
j
[
(ω + Ω1)t+ φ1(x) + α

]}(
cosα
sinα

)
E′2(x, t)

= A2(x) exp
{
j
[
(ω + Ω2)t+ φ2(x)− α

]}(cosα
sinα

)
.

(6)

Note that now the polarization analyzer angle α corresponds
both to a phase shift of the optical wave and a rotation of the
Jones vector.

Time-averaging of a quantity f(t) is written in bracket
notation as

〈
f(t)

〉
=

1

T

∫ t+T/2

t−T/2
f(t′) dt′, (7)

where T is the photosensor integration time. The image
intensity at the camera sensor is a time-average of the su-
perimposed fields, such that

I(x, t, α) =
〈∣∣∣E′1(x, t) + E′2(x, t)

∣∣∣2〉. (8)

Since T is much larger than the optical period, but much
smaller than the period of the beat signal, it follows that

I(x, t, α) = A1(x)A2(x) cos
[
∆Ωt+ ∆φ(x) + 2α

]
+
A2

1(x)

2
+
A2

2(x)

2
.

(9)

The details of this derivation can be found in Appendix A.
Now, it is possible to correlate electronically the inten-

sity signal with a known reference at the beat frequency,

R(t) = cos(∆Ωt). (10)

The correlation for analyzer angle α is then

c(x, α) = lim
T ′→∞

1

T ′

∫ T ′/2

−T ′/2

I(x, t, α)R(t) dt

=
1

2
A1(x)A2(x) cos

[
2α+ ∆φ(x)

]
,

(11)

where T ′ is the electronic correlation time. A distinction
can be made between the electronic correlation time T ′ and
the photosensor integration time T of Equation (7). While
the electronic correlation time is much longer than the pe-
riod of the beating signal, the photosensor integration time
is much shorter, such that

T ′ � 2π

∆Ω
� T � 2π

ω
. (12)

Now, let us use the term correlogram to refer to c(x, α), the
correlation at polarization analyzer angle α. Suppose we
have K = 4 correlograms collected at angles 0, π4 ,

π
2 ,

3π
4 of

a linear polarization analyzer. A technique analogous to the
four phase trick in dynamic interferometry can be used in
the context of correlation as

∆φ̂(x) = arctan

[
c(x, α = 3π

4 )− c(x, α = π
4 )

c(x, α = 0)− c(x, α = π
2 )

]
. (13)

Equations (3) to (13) describe the principle of DHI.
Suppose that to obtain dynamic performance, the data

must be acquired within a few milliseconds per phase map
snapshot. The “dynamic” nature of DHI is limited by the
largest time quantity in Equation (12). This is T ′, which
cannot be smaller than the period of the beat signal. By
using a beat signal having a short period, T ′ can be small
enough to measure dynamic objects.

3. Addressing Phase Bias from Ambient Light
Dynamic interferometry is affected by ambient phase

bias, analytically derived and simulated in Section 3.1. In
contrast, DHI is resistant to this bias, as we show in Sec-
tion 3.2.



(a) Phase bias increases with ambient
 polarized "strength" κ(x) (Equation 16)

(b) Phase bias depends on the angle
of ambient light polarization

(c) Phase bias depends on true phase

Figure 2: Ambient phase bias is an undesirable artifact of state-of-the-art techniques [10, 34, 40]. The y-axis for all
plots is the difference between the expected, interferometric phase and the measured phase under biased conditions, i.e.,
∆φ(x)−∆φambient(x). The angle θ(x) is fixed at 3π/4 in (a), and κ(x) is fixed at 0.2 in (b) and (c).

3.1. Dynamic interferometry under ambient light

In this subsection, we show that the phase recovered
from traditional dynamic interferometry is influenced by
ambient, partially polarized light. Define Γ(x) as the in-
tensity, ρ(x) as the degree of polarization, and θ(x) as the
angle of linear polarization of ambient light. The intensity
of ambient light is written as

Iambient(x, α) = Γ(x)
[
1− ρ(x)

]
+ Γ(x)ρ(x) cos2

[
θ(x)− α

]
.

(14)

Assume that ambient light is incoherent, with respect to the
interferometer laser. Using Equations (9) and (14), the over-
all intensity in the presence of ambient light is thus

Ĩ(x, α) = I(x, α) + Iambient(x, α)

= A1(x)A2(x) cos
[
∆φ(x) + 2α

]
+
A2

1(x)

2
+
A2

2(x)

2
+ Γ(x)

[
1− ρ(x)

]
+ Γ(x)ρ(x) cos2

[
θ(x)− α

]
,

(15)

where Ĩ(x, α) denotes the intensity in the presence of ambi-
ent light. To characterize the relative strength of polarized,
ambient light, we define a quantity κ, such that

κ(x) =
Γ(x)ρ(x)

A1(x)A2(x)
. (16)

Then, the biased phase estimate from dynamic interferome-
try is written as

∆φ̂ambient(x) = arctan

[
Ĩ(x, α = 3π

4 )− Ĩ(x, α = π
4 )

Ĩ(x, α = 0)− Ĩ(x, α = π
2 )

]

= arctan

[
sin[∆φ(x)]− κ(x) sin[2θ(x)]

cos[∆φ(x)] + κ(x) cos[2θ(x)]

]
.

(17)

Define the error functional due to bias as

ε
[
x, κ(x)

]
= ∆φ̂ambient(x)−∆φ̂(x). (18)

The error depends on the relative strength of polarized, am-
bient light, as plotted in Figure 2. In an extreme case, when
κ(x) is large,

lim
κ(x)→∞

ε
[
x, κ(x)

]
= −2θ(x)−∆φ(x). (19)

To understand the bias at other regimes of κ(x), we sub-
stitute Equations (13) and (17) into (18); then compute a
first-order expansion about κ(x) = 0 to obtain

ε
[
x, κ(x)

]
≈ κ(x)

∂∆φ̂ambient
[
x, κ(x)

]
∂κ(x)

∣∣∣∣
κ(x)=0

= κ(x) sin[−∆φ(x)− 2θ(x)].

(20)

In regimes where κ(x) → 0, it can be seen that
ε
[
x, κ(x)

]
→ 0. When κ(x) is non-zero and finite, the first-

order error is determined by three parameters: κ(x), θ(x),
and ∆φ(x). When ∆φ(x) = −2θ(x), the bias is zero. The
bias varies sinusoidally with 2θ(x) otherwise. The plots in
Figure 2a-c substantiate this analysis.



3.2. DHI’s robustness to ambient light

In this subsection, we show that DHI is resistant to ambi-
ent phase bias. Intuitively, ambient light does not have sig-
nificant energy at the heterodyne frequency. To show this
analytically, Equation (15) is parametrized in the context of
time as

Ĩ(x, t, α) = A1(x)A2(x) cos
[
∆Ωt+ ∆φ(x) + 2α

]
+
A2

1(x)

2
+
A2

2(x)

2
+ Γ(x, t)

[
1− ρ(x, t)

]
+ Γ(x, t)ρ(x, t) cos2

[
θ(x, t)− α

]
,

(21)

For clarity of derivation, we will assume that the ambi-
ent term is steady-state, or DC, with respect to the electronic
correlation time. For the moment, consider an idealized cor-
relogram in the presence of ambient light as

c̃(x, α) = lim
T ′→∞

1

T ′

∫ T ′/2

−T ′/2

Ĩ(x, t, α)R(t) dt

= c(x, α) + lim
T ′→∞

1

T ′

∫ T ′/2

−T ′/2

Iambient(x, α)R(t) dt.

(22)

Equation (22) assumes that the correlation time T ′ is
taken to an infinite limit. This simplification is mathemati-
cally convenient, but may need to be reconsidered when the
correlation time is short and the ambient intensity is high.
In this case, we rewrite the last line of Equation (22) as

c̃(x, α) = c(x, α) +
1

T ′

∫ T ′/2

−T ′/2

Iambient(x, α)R(t) dt,

(23)

where we have removed the limit notation from the ambi-
ent term only (since we are studying ambient bias effects).
Now, let R(t) take the form given in Equation (10). Then it
follows that

c̃(x, α) = c(x, α) +
Iambient(x, α)

T ′

∫ T ′/2

−T ′/2

cos(∆Ωt) dt,

(24)

which allows the effect of ambient light on the correlation
to be lower bounded as

|c̃(x, α)− c(x, α)| ≤ 2Iambient(x, α)

∆ΩT ′
. (25)

We will provide the derivation assuming that the ambient
bias is positive. Then, the biased estimate in the context of

correlation is

∆φ̂ambient(x) = arctan

[
c̃(x, α = 3π/4)− c̃(x, α = π/4)

c̃(x, α = 0)− c̃(x, α = π/2)

]

= arctan

[
sin[∆φ(x)]− κ(x) sin[2θ(x)] 2

∆ΩT ′

cos[∆φ(x)] + κ(x) cos[2θ(x)] 2
∆ΩT ′

]
.

(26)

In analogy to Section 3.1, we can use a first-order expan-
sion to express the bias as

ε
[
x, κ(x)

]
≈ 2

∆ΩT ′
κ(x) sin

[
−∆φ(x)− 2θ(x)

]
. (27)

Compared to Equation (20), the bias is attenuated by 2
∆ΩT ′ .

From Equation (12) it can be seen that

2

∆ΩT ′
� 1. (28)

Hence dynamic heterodyne interferometry is more resis-
tant to partially polarized ambient light, than traditional dy-
namic interferometry.

Concrete example: The resonant frequency of an Isomet
1205C-2 acousto-optic modulator is 80 MHz. The Stanford
SR850 lock-in amplifier has an adjustable correlation time,
with a midrange value of 3 milliseconds. Then the bias at-
tenuation is

2

∆ΩT ′
=

2

(2π × 80× 106 Hz)(3× 10−3 sec)

= 1.33× 10−6.

(29)

Regarding shot noise: The performance of DHI in shot
noise conditions parallels that of heterodyne interferome-
try. Analysis of shot noise in heterodyne interferometers
has been previously studied by Niebauer et al. [36] where it
is concluded that heterodyne interferometers (like DHI) are
in general slightly more sensitive to shot noise. The insights
from [36] frame our simulation in Figure 3, where photon
noise is modeled as a Poisson process.

4. Assessment and Results
Simulations and an experimental prototype validate the

analytical derivations.

Simulation using a computer graphics renderer: A
scene of a screw thread is generated using a computer
graphics rendering program. A photographic rendering of
the synthetic scene is shown in the upper-left of Figure 3.
We simulate the forward measurements of both dynamic
heterodyne interferometry and dynamic interferometry at
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Figure 3: The proposed technique is more resistant to
ambient bias than prior art [10] (simulated result). The
rendered scene, screw pitch with 150nm depth, is captured
with a reflection-mode interferometer. Ambient light is as-
sumed to have partial linear polarization, where the polar-
ization angle is θ(x) = 0.

varying levels of ambient, partially polarized light. The
simulation model assumes a shot-noise limited scenario. As
the ambient strength κ(x) increases, the error increases in
a 3D reconstruction derived by traditional dynamic interfer-
ometry. In comparison, DHI can capture an accurate depth
image with increasing strength of polarized ambient light.
The plot shows the mean squared error between the true
and recovered depths. Note that our simulation accounts
for non-stationary shot noise [36]. Hence, in the presence
of zero ambient light, DHI performs slightly worse than tra-
ditional dynamic interferometry.

Experimental implementation: Hereafter, we consider
experimental results. To illustrate feasibility, we demon-
strate wide-field DHI by operating a polarimetric camera
in video mode. The schematic used for the experiments

is illustrated in Figure 1 with a photograph of the imple-
mentation shown in Figure 4. The polarimetric camera we
used is the PolarCam from 4D technologies and has a pixe-
lated polarization mosaic to sample four linear polarization
states in one snapshot [3]. A dual-channel RF signal gen-
erator drives the acousto-optic modulators at frequencies of
Ω1 = 80MHz and Ω2 = 80MHz + 1Hz, based on two de-
sign principles: (1) Ω1 and Ω2 must operate near the AOM
resonance frequency (specified at 80 MHz); and (2) the beat
note ∆Ω must be within the framerate of the polarimetric
video camera. Choosing frequencies that violate condition
(1) would result in low modulation depth. Since we use a
video camera, the electronic correlation time that was cho-
sen was T ′ = 6 seconds, while the photosensor integration
time was T = 0.5 milliseconds. Appendix B describes the
mechanics of obtaining correlograms from this polarimetric
video camera. Beam expanders in each arm widen the beam
to 25.4 mm. A measurement is taken by placing an object
into one of the arms of the interferometer. The values of
constants used to generate experimental data are contained
in Table 3.

Table 3: Experimental constants for Figs. 6 and 7.

Description Unit Experimental Value
ω Optical Frequency Hz 4.74 · 1014

Ω1 AOM1 Frequency MHz 80
Ω2 AOM2 Frequency MHz 80.000001
∆Ω Beat Frequency Hz 1
α Analyzer Angle radian 0, π/4, π/2, 3π/4
T ′ Correlation Time s 6
T Integration Time ms 0.5

Experimental validation of the forward model: We aim
to validate that according to Equation (9), a rotation of the
linear polarization analyzer by an angle of α shifts the phase
between reference and sample wavefronts by 2α. This
wavefront shift is predicted to manifest as a temporal phase
delay in the measured, temporal beat signal. We validate
this principle by rotating a linear polarizer in front of a pho-
todiode. Figure 5 shows the plot of the linear polarizer angle
versus observed phase shift in the measured beat note. The
experimental result is consistent with our analytical predic-
tion.

Space-time-polarization fringe: The interferometer
generates a spatial fringe pattern. Since we introduce a
beat note, the fringe pattern is also time-varying. Video
captured by the PolarCam exhibits polarization-dependent
phase shifting in time. Hence, the fringe is space, time,
and polarization dependent. A video of this unique fringe
pattern, in ideal conditions without ambient light bias, can
be found at [5].
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Figure 5: Experimental evaluation is consistent with the-
oretical prediction. The unwrapped phase shift imparted
by the linear polarization analyzer in Equation (9) is consis-
tent with experimental data.

Glass slide scene: We use the same benchmark experi-
mental scene as in previous interferometric work [38]. The
scene is a glass slide that covers half of the beam. To
demonstrate an advantage of DHI, we performed a compar-
ison with a re-implementation of standard dynamic interfer-
ometry (analogous to the setup in [10]). The interferome-
ter is placed in uncontrolled, ambient lighting conditions,
which we impose by using an off-the-shelf flashlight. The
sample object is a 1.37mm thick glass slide, which again, is
a well-known interferometric test scene [38]. As illustrated
in Figure 6, the bias from ambient light corrupts the phase
measurement from dynamic interferometry. In comparison,
the phase measurement from DHI is no different in ambient
and controlled conditions.

Water drop scene: We repeat the experiment from the
preceding paragraph, now using a water drop placed on a
microscope slide. As illustrated in Figure 7b, the ground

truth phase image consists of pathlength variations that oc-
cur at a high spatial frequency. The proposed technique of
DHI is able to recover an approximation of the ground truth
(Figure 7c). While the additional shot noise from ambi-
ent light introduces some noise to the DHI reconstruction,
the high-frequency variations in pathlength are preserved.
However, as shown in Figure 7d, the previous technique
of [10] is not able to recover high-frequency variations in
pathlength; instead, the phase image is overwhelmed by
low-frequency bias due to ambient light.

5. Discussion and Conclusion
In summary, DHI is shown to be resistant to phase bias.

Experimental results substantiate the applicability of our
analytical derivations.

The proof-of-concept we have demonstrated was only
for the purpose of testing feasibility and making compar-
isons with traditional dynamic interferometry. It is not an
ideal, industrial implementation. The use of a video framer-
ate imager limits the time-correlation to low-frequency sig-
nals. For the results in this paper we used a beat tone of
1 Hertz. Therefore, each cycle has a period of 1 second,
which means that acquiring the correlograms takes on the
order of seconds. Another limitation of low-frequencies is
the difficulty of generating stable, low-frequency beat notes
with modulation hardware. The acousto-optic modulators
resonate at 80 MHz. Since the frequency difference be-
tween the two modulators is 1 Hertz, the beat frequency
requires a stability in frequency of less than one part per
million.

As a fusion technique, DHI is susceptible to the joint lim-
itations of polarimetric and heteordyne approaches. This
includes the additional complexity, tradeoff of spatial res-
olution for time resolution, as well as classic heterodyne
challenges like frequency drift and spurious resonance in
peripheral electronics. Pertaining to this latter point, we
adopted techniques like EMI shielding of cables (to avoid



1.5

1

0.5
0

-0.5

-1
-1.5

Controlled

Uncontrolled (Ambient Light) Uncontrolled (Ambient Light)

(a) Ambient Light is Introduced (b) Ground Truth

(c) Proposed (d) Reimplementation of [10]

Ambient Light (c),(d)

Polarimetric
Camera

Figure 6: The proposed technique is more resistant to
ambient bias than prior art [10] (experimental result).
(a) Ambient bias is introduced by turning on a consumer
flashlight in the optical laboratory (with unknown polar-
ization). (b) The target phase image is obtained without
the ambient flashlight. (c) The proposed approach closely
approximates the target surface. (d) The traditional ap-
proach [10] is unsuccessful.

noise at the heterodyne frequency) and adoption of resonant
frequency modulation of the AOMs.

To obtain snapshot performance comparable to dynamic
interferometry, we would need a specialized device: a po-
larimetric correlation camera. An ordinary correlation cam-
era is designed to correlate an optical signal at KHz or MHz
frequencies with an on-chip electronic reference. The pho-
tonic mixer device is one such example [2]. In the context
of DHI, correlation cameras increase the allowable beat fre-
quency (∆Ω) to KHz or MHz ranges. Hence, from Equa-
tion (12), the correlation time (T ′) can be on the order of
a millisecond. While correlation cameras are available off-
the-shelf, none of the current devices spatially sample dif-
ferent polarization states. Hence, it would be necessary to
fabricate a new device to realize the full benefits of DHI.
Figure 8 illustrates a potential design architecture for DHI.

Potential alternatives: We have recasted heterodyne in-
terferometry into a polarimetric context to spur dynamic
performance. However, alternate strategies for dynamic
performance could be considered in future work. For in-
stance, it should be possible to add a phase-shifting spa-
tial light modulator (SLM) to a heterodyne interferometer.
This hypothetical technique can be seen as an extension
of [31]. It is anticipated that alignment challenges would
occur when the SLM pixel size is unmatched to the camera
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Controlled

Uncontrolled (Ambient Light) Uncontrolled (Ambient Light)

(a) Waterdrop on Slide (b) Ground Truth
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Figure 7: Comparisons on a more complex scene (exper-
imental result) (a) A water droplet on the glass slide intro-
duces phase shift due to its curvature and refractive index.
(b) The target phase image is obtained without the ambient
flashlight. (c) The proposed approach approximates the tar-
get phase image. (d) The traditional approach [10] fails to
recover the water drop’s phase.

(as is usually the case). A brute force engineering strategy
could opt for short exposures and a mirror capable of rapid
translation. In the context of alternatives, we believe that
the use of polarization represents one of the simplest exper-
imental methods of realizing DHI.

Conclusion: We hope that the results of this investiga-
tion motivate: (1) future device-level fabrication of a mul-
tipolar PMD camera, shown in Figure 8, that operates in
high-frequency; (2) new pathways for field interferometry;
and (3) further mathematical unity of polarization and time-
resolved phenomena.
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Appendix A: Deriving the Image Intensity
Here, we derive the intermediate steps to obtain Equa-

tion (9). The derivation is algebraic, but we offer it here
for convenience. By expanding Equation (4), the two fields
after the linear polarization analyzer are written in the form
of

E′1(x, t) = A1(x) exp
{
j
[
(ω + Ω1)t+ φ1(x)

]}
×
(

cos2 α cosα sinα
sinα cosα sin2 α

)(
1
j

)
= A1(x) exp

{
j
[
(ω + Ω1)t+ φ1(x) + α

]}
×
(

cosα
sinα

)
E′2(x, t) = A2(x) exp

{
j
[
(ω + Ω2)t+ φ2(x)

]}
×
(

cos2 α cosα sinα
sinα cosα sin2 α

)(
1
−j

)
= A2(x) exp

{
j
[
(ω + Ω2)t+ φ2(x)− α

]}
×
(

cosα
sinα

)
.

(30)



Simplification in Equation (30) was achieved through Eu-
ler’s formula. Let <{·} denote the real part of the electric
field. The intensity can now be expressed as

I(x, t, α) =

〈[
E′1(x, t) + E′2(x, t)

][
E′∗1 (x, t) + E′∗2 (x, t)

]〉
=
〈
E′1(x, t)E′∗1 (x, t)

〉
+
〈
E′2(x, t)E′∗2 (x, t)

〉
+ 2

〈
<
{
E′1(x, t)E′∗2 (x, t)

}〉
=
A2

1(x)

2
+
A2

2(x)

2
+ 2<

{〈
E′1(x, t)E′∗2 (x, t)

〉}
.

(31)

The rightmost term can be simplified using Equation (12),
i.e., T � 2π

∆Ω . Therefore, the complex exponential corre-
sponding to the heterodyne signal, i.e., exp[∆Ωt+∆φ(x)+
2α], is approximately constant during the time average. The
intensity can now be simplified to

I(x, t, α) =
A2

1(x)

2
+
A2

2(x)

2

+ 2<
{
A1(x)A2(x)

2
exp

[
∆Ωt+ ∆φ(x) + 2α

]}
=
A2

1(x)

2
+
A2

2(x)

2
+A1(x)A2(x) cos

[
∆Ωt+ ∆φ(x) + 2α

]
,

(32)

which completes the derivation of Equation (9).

Appendix B: Generating Correlograms
We now describe the conversion of polarimetric video

streams to correlograms. Although a variety of polarimetric
video cameras can be used, we concern ourselves here with
a sensing approach like the PolarCam from 4D Technolo-
gies [3]. The readout from this camera is a parallel stream
of four videos, corresponding to {I(x, t, α1), I(x, t, α2),
I(x, t, α3), I(x, t, α4)}.

To obtain the interferometric phase, we must first de-
fine a reference signal (cf. Equation (10)). To avoid syn-
chronization issues, our reference signal is the beat signal
measured at a “reference pixel” on the same camera. This
reference pixel is fixed for the experiment and corresponds
to spatial location xr. Following from Equation (10), po-
larization does not factor into the reference signal. How-

ever, since this camera does not have a polarization ag-
nostic channel, we must still choose a polarization chan-
nel in defining the reference signal. As such we define
R(t) , I(xr, t, α1), where α1 was chosen without loss of
generality.

With the reference signal defined, we can now process
the phase from the i-th “input pixel”, at spatial coordinate,
xi. The correlogram of the k-th polarization angle is

c(xi, αk) = lim
T ′→∞

1

T ′

∫ T ′/2

−T ′/2

I(xi, t, αk)I(xr, t, α1) dt.

(33)

Denoteϕ(xi) = ∆φ(xi)−∆φ(xr) as the relative phase dif-
ference observed between the input and reference pixels. In
the specific case where {α1, . . . , α4} are π/4 radians apart,
a four phase trick can be used to estimate ϕ̂(xi) in a manner
analogous to Equation (13).

The method discussed in this appendix is one possible
approach to obtain the correlograms. One can also use a
correlation camera which can operate at KHz or MHz band-
widths (cf. Section 5 and Figure 8).

Appendix C: Reproducibility

To allow others to reproduce our DHI implementation,
we provide the list of parts used.

Description Qty. Model Manufacturer
Snapshot polarimetric camera 1 PolarCam 4D Technologies
Acousto-optic modulator 2 1205C-2 ISOMET
1” CW circ. polarizer, 633nm 1 CP1L633 Thorlab
1” CCW circ. polarizer, 633nm 1 CP1R633 Thorlab
Non-polarizing beam splitter 2 BS013 Thorlab
Aluminum mirror 4 PF10-03-F01 Thorlab
1” plano-convex lens, f=25.4mm 2 LA1951 Thorlab
1” plano-convex lens, f=750mm 2 LA1978 Thorlab
HeNe laser, 632.8nm, 20mW 1 HNS-20P-633 Meredith Instruments
Signal generator 1 DG4162 RIGOL Technologies
RF amplifier 2 ZHL-3A+ Mini-Circuits
DC power supply 2 TP3005T Tekpower
Right-angle mirror mount 4 KCB1 Thorlab
Kinematic mount 4 KM100PM Thorlab
Clamping arm 4 PM4 Thorlab
1” adjustable lens tube 2 SM1V10 Thorlab
1” lens tube 2 SM1L05 Thorlab
Cage assembly rod, length=24” 6 ER24 Thorlab
Cage assembly rod, length=8” 6 ER8 Thorlab
Cage assembly rod, length=2” 3 ER2 Thorlab




