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ABSTRACT

In a recent paper [1], we introduced the concept of “Unlimited Sampling”. This unique approach circumvents the clipping or
saturation problem in conventional analog-to-digital converters (ADCs) by considering a radically different ADC architecture which
resets the input voltage before saturation. Such ADCs, also known as Self-Reset ADCs (SR-ADCs), allow for sensing modulo samples.
In analogy to Shannon’s sampling theorem, the unlimited sampling theorem proves that a bandlimited signal can be recovered from
modulo samples provided that a certain sampling density criterion, that is independent of the ADC threshold, is satisfied. In this way,
our result allows for perfect recovery of a bandlimited function whose amplitude exceeds the ADC threshold by orders of magnitude.
By capitalizing on this result, in this paper, we consider the inverse problem of recovering a sparse signal from its low-pass filtered
version. This problem frequently arises in several areas of science and engineering and in context of signal processing, it is studied in
several flavors, namely, sparse or FRI sampling, super-resolution and sparse deconvolution. By considering the SR-ADC architecture,
we develop a sampling theory for modulo sampling of low-pass filtered spikes. Our main result consists of a new sparse sampling
theorem and an algorithm which stably recovers a K–sparse signal from low-pass, modulo samples. We validate our results using
numerical experiments.

1. INTRODUCTION

1.1. Sampling and Recovery of Sparse Signals in Theory

Recovering spikes from low-pass filtered measurements is a problem that finds applications in several fields of science and engineering.
Concretely speaking, consider the model:

g (t) =

K−1∑
k=0

ckψ (t− tk) ≡ (sK ∗ ψ) (t) (1)

where ψ is a bandlimited function and sK is a continuous time, K–sparse, τ -periodic signal,

sK (t) =
∑
m∈Z

K−1∑
k=0

ckδ (t− tk −mτ), tk+1 > tk. (2)

With ψ known and given sampled measurements yn = y (nT ) , n = 0, . . . , N − 1, where T > 0 is the sampling rate, one is
typically interested in recovering sK (t) from discrete set of N measurements {gn}N−1

n=0 . In the recent years, this problem has been
widely studied under the theme of (a) sparse deconvolution [2], (b) sparse or FRI sampling [3,4] and (c) super-resolution [5]. While
this problem has a known history with roots tracing back to seismic imaging [6,7], recent developments allow for recovery of sparse
signals with support {tk}K−1

k=0 ∈ [0, τ) at arbitrary points on the real line rather than restricted to a predescribed grid. Hence this
leads to so-called “off-the-grid” recovery approaches [8].

The sparse signal recovery problem is closely tied to the topic of Shannon’s sampling theory [9]. In analogy to the sampling of
bandlimited signals where by the signal is pre-filtered with an anti-aliasing or low-pass filter, the measurements gn can be written as,

gn =

∫
sK (t)ψ (t− nT ) dt︸ ︷︷ ︸

Projection

≡ (sK ∗ ψ) (t)|t=nT︸ ︷︷ ︸
Pre-filtering and Sampling

, (3)
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Fig. 1: Two practical scenarios for amplitude limited sampling. (a) Ultra-wide band signal undergoes saturation. (b) Data from ultrasonic sensor reveals that the
dominant reflection is clipped or saturated as it exceeds the maximum recordable voltage of the ADC. In this case, exact calibration of ψ is not possible.

Algorithm 1: Sparse Sampling and Reconstruction [3, 4]

Data: K, {gn}N−1
n=0 , N ≥ 2K + 1 and kernel ψn = ψ (nT ).

Result: Estimate of sK in form of
{
c̃k, t̃k

}K−1

k=0
.

1) Compute the (discrete) Fourier transform of gn and ψ (nT ), that is, ĝm = ĝ (mω0) and ψ̂m = ψ̂ (mω0), respectively where
ω0 = 2π/τ .

2) Deconvolve to obtain ŝm = ĝm/ψ̂m, |m| ⩽M where M ≥ K is the bandwidth of ψ.
3) Use spectral estimation to estimate {ck, tk}K−1

k=0 from data ŝm.

which is equivalent to low-pass projections of sK onto subspace of bandlimited function VBL = span
{
ψ (t− nT )

}N−1

n=0
and where

ψ (t) = ψ (−t). A natural question then is: When is the mapping between the sparse signal sK (t) and samples {gn}N−1
n=0 , one-to-

one? It was shown by Li and Speed (cf. Thm 3.2, [2]) and Vetterli, Blu and co-workers (cf. Thm 1, [3], [4]) thatN ≥ 2K+1 gurantees
exact recovery of sK (t) from gn provided that the support or the locations tk ∈ [0, τ) are distinct. The recovery procedure [3] then
relies on Fourier domain extrapolation which is outlined in Algorithm 1.

The ability to sample and reconstruct sparse signals has found many applications including radio-astronomy [10], channel esti-
mation [11], optical tomography [12], ultrasound imaging [13] and more recently, time-of-flight imaging [14, 15]. In view of (1),
typically, bandlimitedness is defined in the Fourier domain; however, there are advantages of considering other unitary transforms.
To this end, the recovery procedure has also been studied for the case of spherical harmonics [16,17], the Gabor transform [18] and
generalizations of the Fourier transform [19,20].

1.2. Sampling and Recovery of Sparse Signals in Practice

In recovering sparse signals from low-pass projections, one fundamental assumption that is made in theory is that the dynamic range
of the sensor or the analog to digital converter (ADC) is infinite. To the best of our knowledge, such assumptions appear in all
previous works on the problem [2, 3, 5, 10–15].

In practice, however, ADCs are finite dynamic range devices and whenever a signal crosses the threshold (or the maximum
recordable voltage), the measurements are saturated or clipped. Clipping of a bandlimited signal results in discontinuities which
manifest as aliasing due to high frequency distortion in the Fourier domain [21]. In view of this, a number of numerical methods
have been proposed in the literature [22–25], however, the exact link to sampling theory of bandlimited or sparse signals remains
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Fig. 2: Transfer function of conventional ADC compared with self-reset ADC. For conventional ADCs, whenever |fIn| > λ, ADC saturates to λ and this results
in clipping. In contrast, whenever |fIn| > λ, the self-reset ADC folds fIn such that fOut is always in the range [−λ, λ]. In this way, the self-reset configuration
circumvents clipping but introduces discontinuities.
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Fig. 3: Unlimited sampling of sparse signals withK = 2. We plot low-pass filtered data g, the folded function Mλ (g) as well as modulo samples yn in (5).

largely unclear.
This problem is of specific practical relevance in the context of calibration, namely, the knowledge of the unknown kernel ψ is

critical for accurate recovery of sK in sparse sampling models such as (1). In almost all of the applications, the kernel ψ is obtained
in a calibration phase [15].

During this phase, the received amplitudes are typically larger than during the following sensing phase, as shown via experimental
measurements in context of ultra-wide band sensing in Fig. 1(a) and ultra-sonic non-destructive testing in Fig. 1(b). Consequently,
either saturation limits the exact calibration of ψ and the sparse sampling model (1) is invalid, or one has to work with a very high
dynamic range, which will impact the measurement resolution as well as the penetration depth of ψ (cf. [15, 26, 27]. In view of
model (1), some application areas where this problem frequently arises includes ground penetrating radar [26] (cf. pg. 149, Fig. 5.2),
seismic imaging [27], ultra-wideband sensing [28] and ultrasound imaging [29]. Not surprisingly, most of these solutions rely on:

1) ADC level corrections [28, 29], or,
2) De-clipping followed by deconvolution [27, 30].

It is clear from literature that existing approaches decouple acquisition (hardware) from recovery algorithm (software). The downside
being, hardware-only approaches [28,29] are limited by computation that can be handled by hardware and algorithm-only approaches
solve a sequential problem of de-clipping followed by spike recovery. For the latter, the quality of reconstruction depends on the
effectivity of the de-clipping algorithm and is less attractive in practice because the ψ may still be unknown.

1.3. Our Contribution

Our work is based on the recently introduced theory of “Unlimited Sampling” [1] which exploits a co-design between acquisition
and recovery algorithm. On the acquisition front, we use self-reset ADCs (SR-ADCs) [31,32] which are based on a radically different
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Fig. 4: ADC architecture for Unlimited Sampling.

approach than the conventional ADCs in that whenever the input signal crosses a preset voltage threshold λ, the recorded voltage is
reset (cf. Fig. 2). In this way, SR-ADCs allow for capturing voltages far beyond the saturation limit. The SR-ADCs rely on a folding
architecture which is based on a memoryless, non-linear mapping [1],

Mλ : t 7→ 2λ

([[
t

2λ
+

1

2

]]
− 1

2

)
, (4)

where [[t]] def
= t− ⌊t⌋ defines the fractional part of t. The mapping in (4) ensures that amplitudes are folded in the range of Mλ, that

is, [−λ, λ]. By using SR-ADCs, we circumvent the problem of ADC level corrections [28, 29] or clipping. However, it remains to
recover sK from the SR-ADC based samples.

Consequently, the contributions of this paper are two fold:

1) We take a first step towards formalization of a sampling theorem for sparse signals which leads to a sufficient condition for prefect
recovery of K–sparse signals from SR-ADC samples.

2) Our sampling theorem is complemented by a constructive algorithm which describes a linear and stable recovery procedure.

2. UNLIMITED SAMPLING OF BANDLIMITED SIGNALS

Here, we briefly review the basic principles at the core of unlimited sampling theory introduced in [1]. In view of the SR-ADC
architecture discussed in [31, 32], we will use the setup in Fig. 4 for obtaining modulo samples. Here, a finite energy signal (not-
necessarily bandlimited) is pre-filtered with a bandlimited kernel ψ. Let ψ̂ (ω) =

∫
ψ (t) e−ȷωtdt define the Fourier Transform of

ψ. We say ψ is Ω–bandlimited or,

ψ ∈ BΩ ⇔ ψ̂ (ω) = 1[−Ω,Ω] (ω) ψ̂ (ω) and ψ ∈ L2

where 1X (t) is the indicator function on set X . Here, the pre-filtering operation, that is y = f ∗ψ, ensures that y ∈ BΩ. Due to the
SR-ADC architecture, the filtered signal g undergoes amplitude folding defined by (4) and results in z = Mλ (g). The non-linearly
folded signal z is then sampled via impulse modulation and results in modulo samples,

yn
def
= z (nT ) = Mλ (g (nT )) , n ∈ Z (5)

where T > 0 is the sampling rate. The question of recovering g (t) ∈ Bπ from modulo samples yn, n ∈ Z is discussed in our
companion paper [1] and the main result takes form of the following theorem:

Theorem 1 (Unlimited Sampling Theorem [1]). Let g (t) ∈ Bπ and yn = Mλ (g (t))|t=nT , n ∈ Z in (5) be the modulo samples of
g (t) with sampling rate T . Then, a sufficient condition for recovery of g (t) from the {yn}n up to additive multiples of 2λ is,

0 < Tπe ≤ 1/2. (6)

The fundamental difference between recovery of sparse signal in (2) with respect to the bandlimited case discussed in [1] is that
we will working with finite number of samples. Of course we expect that N will be larger than 2K + 1 but the number of samples
should still be finite. Consequently, in working with sparse signals, there is a trade-off between sampling rate T and number of
modulo samples N . While T dictates the recovery conditions for unfolding gn, N defines the critical number of samples required
for estimation of sK from gn.



3. UNLIMITED SAMPLING OF SPARSE SIGNALS

Let ψ ∈ Bπ be a given low-pass filter and sK be defined in (2). Furthermore, let {yn}N−1
n=0 in (5) be the modulo samples of g defined

in (1). The purpose of this section is to study the perfect reconstruction condition which gurantees recovery of continuous-time
sparse signal sK from modulo samples yn.

Our basic strategy for recovering sK from yn can be summarized as,

yn
Unfolding−−−−−→ gn

Sparse Recovery−−−−−−−−−→ sK (t) .

This approach relies on extracting unfolded, contiguous sample sequence gn of size 2K + 1 from which sK (t) is estimated using
high-resolution frequency estimation [2–4]. To see this, we split the problem into two parts which are discussed subsequently.

3.1. Localized Reconstruction from Unlimited Sampling

Given g ∈ Bπ and yn, n ∈ Z in (5), the problem of recovering gn, n ∈ Z was discussed in [1]. In this work, in contrast to [1],
it suffices to recover a subset of gn with size N = 2K + 1 rather than the full sequence, but we only have finitely many modulo
samples at our disposal. This fundamentally different setup requires a new approach which we will develop in this paper. The first
step towards that goal is the same as in [1]. Namely the following lemma, which summarizes Lemma 1 and Proposition 2 of [1],
shows that higher order differences ∆L, i.e., repeated applications of the first-order difference defined by (∆v)n = vn+1 − vn, of
the modulo samples yn allow for the reconstruction of the higher order differences of the original signal¹.

Lemma 1. For g ∈ Bπ , set gn = g (nT ) , T ∈ R+ and assume that some bound βg ≥ ∥g∥∞ is available. Furthermore, assume that
Tπe ≤ 1

2 and choose

L =
⌈

logλ−log βg

log(Tπe)

⌉
.

Then the sequence yn = Mλ (gn) of modulo samples satisfies

∆Lgn = Mλ

(
∆Lgn

)
= Mλ

(
∆Lyn

)
. (7)

Consequently, finding an L-th order finite differences of the sequence gn just requires the corresponding L-th order finite dif-
ferences of the sequence yn of modulo samples, which in turn can be constructed from L+1 subsequent samples of yn. Due to the
overlap in the samples used, finding some number R of subsequent L-th order finite differences of the sequence gn requires L+R
subsequent samples of yn.

It remains to reconstruct the sequence gn from its L-th order finite differences. As in [1], we invert each of the repeated finite
difference operators sequentially, and the difficulty is that in each step, the inverse is only defined up to an additive constant. Given
that the modulo samples are available, this ambiguity consists of even integer multiples of λ, and the right constants can be derived
from boundedness properties of bandlimited functions (cf. [1]).

More precisely, note that g ∈ Bπ can be uniquely decomposed as g = Mλ (g) + εg where εg is a simple function, εg (t) =
2λ

∑
ℓ∈Z

eℓ1Dℓ
(t), eℓ ∈ Z. With yn = Mλ (g (nT )) given, knowing εg is equivalent to the knowledge of gn. Due to highly

structured form of εg , there is a strong restriction on the range of the same. Namely, we may enforce the amplitude restriction that
∆ℓ−1εg ∈ 2λZ when applying the anti-difference operation defined by, S : (ai)

∞
i=1 7→ (

∑i
i′=1 ai′)

∞
i=1. We obtain that

(∆ℓ−1εg)n = (S∆ℓεg)n + κ(ℓ)an, an = 2λ . κ(ℓ) ∈ Z. (8)

Since constants are in the kernel of ∆, this cannot be resolved any further for ℓ = 1, we can only estimate εg up to multiple of 2λZ.
For ℓ > 1, however, we can apply S again and estimate the unknown κ(ℓ), ℓ = 1, . . . , L. We obtain

(∆ℓ−2εg)n = (S2∆ℓεg)n + κ(ℓ) (Sa)n + κ(ℓ−1)an. (9)

and, given that (Sa)n is growing linearly, all but one choice of κ(ℓ) will yield a sequence that violates the supremum bound entailed
by the prior knowledge of βg . As shown in [1], a sufficient number of subsequent samples of ∆ℓy to distinguish the feasible choice of
κ(ℓ) from the infeasible ones is 6βg

λ , and hence the required number of subsequent samples of g is bounded by 6βg

λ +L+1 ≤ 7
βg

λ +1

to reconstruct one value of g and 7
βg

λ +N ′ to reconstruct N ′ subsequent values (cf. discussion after Lemma 1).

¹A similar observation has been made in the phase-unwrapping literature where the well known Itoh’s condition [33] requires ||∆y||∞ < λ. However, this
approach is highly restrictive for it works only with L = 1 and by inverting the discrete difference without exploiting any signal structure.



Theorem 2 (Local Reconstruction Theorem). Let g (t) ∈ Bπ with ∥g∥∞ ≤ βg and yn = Mλ (g (t))|t=nT , n = 0, . . . , N − 1 in
(5) be the modulo samples of y (t) with sampling rate T . Then a sufficient condition for recovery ofN ′ contiguous samples of g from the yn
(up to additive multiples of 2λ) is that

T ≤ 1
2πe and N ≥ N ′ + 7

βg

λ . (10)

3.2. A Sufficiency Condition for Recovering Sparse Signals

To apply this theorem to the case of sparse sampling, recall that the number of subsequent samples required for reconstruction is
2K + 1, which should hence also be our choice for N ′. Also note that using Young’s inequality, one can bound

∥g∥∞ = ∥sK ∗ ψ∥∞ ≤ ∥ψ∥∞∥sK∥TV, (11)

where the ∥ · ∥TV denotes the total variation of a measure, which, for spike trains, corresponds to the ℓ1-norm of the coefficient
sequence ck in (2). Thus we obtain the following main result.

Theorem 3 (Unlimited sampling of sparse signals). Let g = sK ∗ψ for a known low-pass filter ψ ∈ Bπ and sK in (2) be the unknown
K-sparse signal to be recovered, and assume one has access to an a priori bound βg ≥ ∥ψ∥∞∥sK∥TV. Let yn = Mλ (g (t))|t=nT , n =
0, . . . , N − 1 in (5) be the modulo samples of y (t) with sampling rate T . Then a sufficient condition for recovery of sK from the yn (up
to additive multiples of 2λ) is that

T ≤ 1

2πe
and N ≥ 2K + 1 + 7

βg

λ . (12)

Provided that this sufficiency condition is satisfied, and assuming that βg is known, by choosing L prescribed by Lemma 1,
Algorithm 2 recovers the sparse signal sK (t) from modulo samples {yn}N−1

n=0 .
In contrast to [1] where the sampling bound is independent of SR-ADC threshold λ, in case of sparse sampling note that

N ∝ λ−1. Since we are dealing with finite number of samples, this result is intuitive and we do expect that the number of samples
required for sparse recovery will depend on both the sparsity level K and the dynamic range βg/λ of the signal g = sK ∗ ψ.

3.3. Numerical Demonstration

We set up a numerical example where we setK = 3 and τ = 10 to define sK (t) using {ck, tk} chosen arbitrarily. This immediately
gives, βg = 3.2511. We then acquire low-pass filtered measurements using ψ (t) = sinc (t) which is clearly π–bandlimited or
ψ ∈ Bπ . With λ = 1/4 and modulo sampling rate T = 1/ (2πe) − 1/100, we acquire modulo samples yn using (5). By using
result of Lemma 1, we obtain L = 3. Furthermore, in view of (12), we must have at least N = 99 modulo samples for recovery of
2K + 1 contiguous values of unfolded gn. We plot the sparse signal, its low-pass filtered version and the resultant modulo samples
in Fig. 5 (a). By using the localized recovery method developed in Algorithm 2, we estimate unfolded samples g̃n which is exactly the
same as gn (upto machine precision) and this is shown in in Fig. 5 (b). In this computation, we assume the knowledge of constant
offset since g̃n may only be estimated upto a constant ambiguity of 2λZ. The mean squared error between ground truth gn and its
estimate g̃n is noted to be 5.0401e−34. By choosing any contiguous set of size 2K +1 of theN = 99 samples of g̃n, we can use the
approach developed in [3] to estimate sK .

4. CONCLUSION

In this paper, we considered the problem of recovery of sparse signals from low-pass filtered measurements which are sampled using
self-reset or folding ADCs [1, 31, 32]. This novel ADC architecture maps low-pass filtered samples into modulo samples and hence
circumvents any clipping or saturation. Since modulo operation is a non-linear mapping, in this paper we developed a strategy for
local reconstruction of bandlimited signals from modulo samples. This result allows us to combine previously known methods for
sparse signal recovery that were introduced in [3]. Our key result describes a perfect recovery condition for estimating a K–sparse
signal from a finite number of modulo measurements. We provide a sampling bound for both the sampling rate as well as the number
of samples needed for estimation of a K–sparse signal. Our work raises some interesting questions for future. For example, we note
that the number of modulo samples depends on sparsity (K) and the dynamic range of the signal (βg/λ). Through numerical
experiments we empirically observed that our bound can be further sharpened. Furthermore, spike trains are a particular class of
parametric signals. In future, we hope to develop results for a wider class of parametric signals.



Algorithm 2: Sparse Recovery from Modulo Folded Samples

Data: Sparsity level K, L ∈ N, modulo samples {yn}N−1
n=0 in (5), the low-pass filter ψn and βg ≥ ∥ψ∥∞∥sK∥TV.

Result: Estimate of sK in form of
{
c̃k, t̃k

}K−1

k=0
.

1) Compute y = (∆Ly)n.
2) Compute εg = Mλ(y)− y. Set s(1) = εg .
3) for ℓ = 1 : L− 1 and J = 6βg/λ,

Compute κ(ℓ) =
⌊
νℓ
1−νℓ

J+1

8βg
+ 1

2

⌋
with νℓn =

(
S2∆ℓεg

)
n
.

s(ℓ+1) = Ss(ℓ) − 2λκ(ℓ).

end
4) g̃n = Ss(L), n = 0, . . . , N − 1 and N ≥ 2K + 1.

5) Use g̃n and ψn in Algorithm 1 to estimate
{
c̃k, t̃k

}K−1

k=0
.
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Fig. 5: Sparse signal recovery via local reconstruction of modulo samples with βg = 3.2511 and λ = 0.25. (a) We plot K–sparse signal sK (t) with K = 3 and
τ = 10, the low-pass filtered signal g = sK ∗ ψ where ψ (t) = sinc (t) as well as modulo samples yn = Mλ (gn) with T = 0.0485. Note that ψ ∈ Bπ . (b)
Using Algorithm 2, we estimate unfolded samples g̃n from N = 99 modulo samples of yn. For this purpose L = 3. The reconstruction is observed to be exact
(upto machine precision). Given 2K + 1 of g̃n, the spikes are estimated using Algorithm 1.
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