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ABSTRACT

Wave diffraction due to a rectangular domain of finite
depth and width containing two fluids of constant but different
densities connected to two channels of constant but different
depths is considered. The implied scattering problem is
modeled subject to the usual assumptions of linearized water-
wave theory. The analysis is restricted to monochromatic plane
progressive surface waves normally incident on the inhomo-
geneous domain. This results in a linear two-dimensional
boundary-value problem for the velocity-potential. The scat-
tering problem is formulated in terms of complementary varia-
tional integrals of Schwinger's type; symmetry relations
between the complex amplitudes of the scattered potential are
developed; and numerical calculations for the complex reflec-
tion and transmission coefficients are presented for a range
of the physical variables. The analysis shows that sediment
pockets can exhibit resonant behavior due to the combined
effects of density stratification and pocket geometry. This
offers a plausible explanation for offshore pipeline migration
during storms.
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1.0 INTRODUCTION

The physical oceanographer and the ocean engineer share a
common interest in the effects of bottom topography upon the
propagation of water waves. While the oceanographer might con-
sider the scattering properties of a sea mount, the ocean engi-
neer will consider the scattering of plane progressive waves by
a submerged petroleum storage tank. After making similar geo-
metric idealizations, the mathematical analyses are virtually
equivalent. The essential difference is one of scale where the
oceanographer might include Coriolis effects while the engineer
might include real fluid effects. Recently, oceanographers
have developed mathematical descriptions which include the
effect of density stratification within the oceanic water column.
Ocean engineers have shown little interest in density stratifi-
cation presumably because the loads implied by internal gravity
waves have little influence on the design of offshore facilities.
Yet, there is reason to believe that at least one form of
density stratification, namely, the strong density contrast
exhibited by sediment pockets, should be examined for its
effect on the design of offshore facilities. Here, again, the
difference between oceanographer and ocean engineer is one of
scale.

The geological evolution of a sediment pocket requires the
presence of fine-grained muds and depressions which allow these
muds to localize. The obvious example is a submerged beach zone
near a river delta. In this case, inactive erosion cuts caused

by the distributory system of the delta or deformations in the



beach plain act to localize transported sediments. Many of the
world's more prolific offshore petroleum reservoirs are located
beneath such an environment. Off the Gulf Coast of the United
States near the Mississippi Delta, the bottom topography exhibits
elongated troughs of from a few hundred to several thousand

feet in width partially filled with up to thirty feet of uncon-
solidated sediments whose specific gravity ranges from 1.3 to
1.6. During major storms when low frequency components dominate
the sea spectrum, offshore pipelines crossing such areas are
known to experience significant migration which, in some cases,
has led to pipeline rupture (Krieg, 1966). In this thesis,

we investigate the excitation of "internal gravity waves" at

the water-sediment interface by propagating surface waves. Our
results quantify the resonant behavior which can develop within
the sediment pocket due to the combined effects of stratifica-
tion and sediment pocket geometry. Thus we establish a reasonable
mechanism capable of transmitting large unsteady loads to any
structure within the sediment pocket. We do not pretend that
this is the only physical process which influences pipeline
migration, only that this is a rather clear example where the
consequences of density stratification are of engineering
importance.

The propagation of water waves in fluids of variable depth
has been studied for three distinct physical idealizations--
finite obstacles, finite step changes in depth, and beach prob-
lems where the depth tends to zero. While qualitative proper-

ties of water-wave scattering in homogeneous fluids, such as



symmetry relations and bounds for special geometries were
established in a theoretical treatment by Kriesel (1949),
explicit calculations have been performed only in limiting cases.
For homogeneous fluids, the known solutions range from the
exact solution for the scattering properties of a thin vertical
barrier in waters of infinite depth by Ursell (1947) to the ex-
tensive numerical investigations of the scattering properties
of rectangular obstacles in waters of finite depth by Mei and
Black (1969). For inhomogeneous fluids, the known solutions
range from studies of internal wave propagation in fluids of
weakly variable depth by Keller and Mow (1969) to investiga-
tions of the diffraction of internal waves by a sem.-infinite
barrier by Manton et al. (1970). In spite of the differences
in problem statement, all of these investigations demonstrate
the common difficulty of solving the implied integral equa-
tions once the problem has been formulated. . This has led many
authors to investigate analytical approximation techniques.

Bartholomuesz (1958) applied a long wave approximation in
his detailed study of step-shelf scattering. Newman (1965a)
was able to demonstrate the oscillatory nature of scattering
for long symmetrical obstacles by coupling back-to-back step
shelves. Mei (1967) constructed approximate solutions for bot-
tom obstacles assuming small depth variations. Wunsch (1969)
employed a similar argument in his analysis of beach problems.
Miles (1967) has shown that Schwinger's variational method may
be used to construct approximate solutions for finite step

changes in depth in a manner analogous to electromagnetic wave



guide problems. Each of these approximate solutions demonstrates
important qualitative features of water-wave scattering. Each,
in turn, has its limitations. Long wave approximations and
special geometric configurations often do not yield results

valid for the broad ranges of physical dimension or physical
environment which the engineer must analyze. While Schwinger's
method is slightly more general, it can be difficult to apply

to nonrectangular geometries. Finally, the investigator must
make a compromise between the geometry which he would like to
study and the geometry which is amenable to solution.

In this thesis, we have elected to employ Schwinger's varia-
tional method to construct approximate solutions. A rectangular
geometric idealization is physically plausible and allows the
consideration of asymmetric as well as symmetric geometries.

The accuracy for step shelf problems has .been established by
Miles (1967) by comparing his results to Newman's (1965b) more
accurate numerical solution. The method has been previously
applied to inhomogeneous fluid systems by Kelly (1969) in his
study of the transmission of deep-sea internal waves into shal-
lower waters. In addition, Miles (1971) has shown that Schwinger's
method can be used to form complementary variational principles
which imply upper and lower bound approximations to the true
solution for the scattering properties of a circular dock in
waters of finite depth. While Miles' bounding argument appears
to be useful for only a special class of problems, we have

been able to show that the complementary variational principles

developed for this asymmetric, inhomogeneous problem yield



roughly identical estimates of the far field even when extremely
crude approximations to the near field are assumed. However,
without the bounding argument, we are faced with the possibility
that our estimates are invalid for some combinations of the
physical variables.

The idealized model discussed in this thesis is shown in
Figure 1. The implied scattering problem will be modeled sub-
ject to the usual assumptions of linearized water-wave theory.
The two-fluid system is assumed to be ideal, the motion irrota-
tional, and the wave amplitudes small compared to both the wave
length and the water depth. The analysis is restricted to mono-
chromatic plane progressive waves normally incident on the
sediment pocket. This results in a linear two-dimensional
boundary-valﬁe problem for the velocity potential. The scatter-
ing probleﬁ is formulated in terms of complementary variational
integrals of Schwinger's type, symmetry relations between the
complex amplitudes of the scattered potential are developed,
and numerical calculations for the complex reflection and trans-
mission coefficients are presented for a range of the physical
variables.

2.0 THE BOUNDARY-VALUE PROBLEM

Let (x,y) be Cartesian coordinates with the plane y=0 being
the undisturbed free surface and y positive downwards. The
plane x = 0 bisects a rectangular domain of depth, d and half-
width, &, in which are contained two fluids with constant, but
different densities Py for 0 < y < ha and Py for ha <y < d.

This rectangular domain is connected to two channels of con-
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stant, but different depths, hl and h2. Thus, as shown in

Figure 1, the fluid domain is defined by four regions:

Region 1 0<y<hl,—°°<x< -4
Region A 0<y<h, , |x|< 2
Region B h<y<d , [x]< 2
Region 2 0<y<h2,52,<x< +o0

Assuming plane progressive waves incident on the inhomogeneous
domain from either or both infinities and linearized theory
throughout the fluid domain, the velocity vector will be ex-
pressed by

“t g6 (x,y)}

Vv = Re{e™t
where ¢ (x,y) is the velocity-potential scalar. This potential
function must satisfy Laplace's Equation throughout the fluid
domain, subject to the boundary conditions on the free surface,

at the interface between the two fluids, and along the rigid

bottom as follows (cf. Wehausen and Laitone, 1960) :

Ko +¢ﬂ =0 on © yz0 , IxI<0 (2
(“(K¢a *¢‘3‘=Q5(K¢:¢b} on y=h, , ixi¢l (2.
¢.3= on y=h, , "< a0 (2,
¢sz¢b3 on 3: ha ’ ixt< (2.

¢53=0 on 3=d ) Ix1<® (2.
¢b,‘5=o on Yshy s Ae <o (2,
¢M=o on h‘uj;. h,, x=-2 (2.
4)&&:0 on h:‘j‘hal =4 (2.

b

bx =© on h<yed mi= 0 o

.1)

2)

3)

4)
3)
6)

7)

8)
9)
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where K=w2/g and the subscripts (1,2,a,b) denote the respective
regions. In addition to these boundary conditions, we must re-
quire that both the horizontal velocity and the potential be
continuous at the boundary between Region 1 and Region A as
well as at the boundary between Region A and Region 2. The
need for these additional constraints results from the mathe-
matical convenience of solving for the potential in each of

the four regions prior to requiring flow continuity throughout

the fluid domain. These "matching" conditions are

¢o.x = ¢mx oM X = (-I\”,Q,ottj< hm (2.10)

¢ = ¢.,. (2.11)

a

where the subscript, m, denotes either the Region 1 or the
Region 2 when m assumes the notational value 1 or 2 respectively.
Finally, as plane progressive waves are to be allowed at both
infinities, we choose a radiation condition such that |x|=e
@m(x,y) is of the form of two plane progressive waves propaga-
ting in opposite directions.

As 1is common in water-wave problems, one assumes a separable
solution for the potential where the x dependence must be com-
posed of the complete set of functions (sinh kx, cosh kx) while
the y dependence must be composed of the complete set (sinh ky,
cosh ky). Applying the boundary conditions to the separable
solution to Laplace's Equation, the form of the potential valid

for |[x|<% is

- Phx

o0 Px
¢r (x,,)) = Z (Gnt " e Dh‘ )Yl'h“j) (2.12)
n=0



16

£.(¥). Second, the potentials at x = +% will be assumed to be
known functions, gm(y) over the interval (0,d). The Fourier
coefficients of @r and @m will be expressed in terms of gm(y).

Then, the horizontal velocities, @ and Qéx will be matched

mx
over the interval (O,hm) subject to the boundary conditions on
the rigid walls, (2.7) through (2.9). This will yield a set of
simultaneous integral equations in gm(y). If exact solution

of either set of integral equations was expedient, the afore-
mentioned steps would correspond to redundant, yet equally
valid, means of obtaining a unique solution to the boundary-
value problem. However, as noted earlier, exact solutions to
the integral equations common to water-wave problems are not
tractable in general. It is from this seemingly redundant pair
that Miles (1971) is able to construct complementary varia-
tional principles via Schwinger's method. We shall see that
the first step, a velocity formulation, will yield for a special
class of problems an upper bound approximation to the true
solution to the scattering problem. We shall see that the
second step, a potential formulation, will yield for a special
class of problems a lower bound approximation to the true solu-~
tion to the scattering problem. Even though we are unable to
show that this bounding argument is valid for the problem at
héﬁa, we shall demonstrate that the complementary features of
the two approaches are helpful in interpreting the physics of
scattering and provide a practical vehicle for performing
numerical calculations.

We shall begin with the velocity formaticn and show its
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development in some detail. We proceed as described by specify-

ing that

m
¢, = #m(..)) on x = ()4 o<j‘hm (3.1)
b, < Im(..,) on x= (1Y , c<3<<| (3.2)

Combining (3.1) and the boundary conditions (2.7) through (2.9),

we form the Fourier coefficients of ® et

kmh [(Slm+ S2tmson) AWOI’\~ (81M+ 8"" S°“\) BM" ] " fa g ‘tm(‘J‘YMﬂ‘j) dj

m
(3.3)
Combining (3.2) and the boundary conditions (2.7) through (2.9),

we form the Fourier coefficients of @rx:

h,
Pn (Cn(:Pngl Dn"?"n) } 2;‘ Cr g"c;l‘?\(\m"j) JD =+ o g‘p, “))Yd\\‘j) d:’
(3.4a)
] Hoy by
Pn _D -B\ ): -
R (G R Lo Y, iy e«g Py dy
(3.4b)

As might be expected, (3.4a) and (3.4b) are simultaneous in
fm(y), which allows us to express the behavior of the inhomo-
geneous domain entirely in terms of the velocities, fm(y), with-
out loss of information. Finally, matching the potentials at

x = +%, we obtain the simultaneous integral equations
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[ <]
2 (s + SamSon) Amn + (5, +86,.5..) By, ) Yo 4 =

” o 2
o Z [ Z Hsmn S-g(v)}:h(-az) dvz] -Yar%(_‘jl (3.5)

nzo * 3=
where s

sSmn

6 - [5%c§m+ 5 cosh 2p8) - 8_( + S‘MwshZPhi]c.schZPnl

The coefficient Kemn is trigonometric for the imaginary values
(po,pl) and otherwise hyperbolic. The resulting expressions
for the potential for all x and y in terms of fm(y) and the

incident potentials from infinity by virtue of (3.1) are:

co hz
¢r<x,3) : (az (p,snh 2p, 2y [cosh Pa (X4 X fLopY,, opdy -

n=o0

k,
- cosh p, (xX-2) g -P.hz) Yan(vz)dq }Ym (4 (3.6)

Kyno [X - 1 ")
+ mo(j) +

mo

Kk Ix- 0™
¢ (xy) = [AMQ JHmolx= 1) illv

o0 hm
n - .'km“ -\ m£.
+ D Qaz [g«cmhl)\{mhz) Arz] Ko Y el

n=y o

(3.7)
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Now we have formed two coupled integral equations, (2.3),
in terms of £,(¥) and the unknown scattered potential amplitudes
(BlO’AZO)' To decouple (3.5), we recognize that the horizontal
velocity, fm(y), is the linear sum of the normalized velocity
contributions associated with the incident potentials from +=.
In other words, we are free to invoke the linear independence
of (Am0+Bm0) and (Amo—Bmo) implied by (3.5) and (3.1). We
shall choose to expand fm(y) in terms of(Am0+Bm0) because this
leads to a more conventional formulation and allows us to retain
the scattered potential amplitudes explicitly which will aid

in physical interpretation. Formally introducing the expansion

for fm(Y) ’
2
43,,,(3) = Z (A, + B.,) W s €9) (3.8)
S=\

into (3.1) we obtain the linear scattering equations

2
K mo (Amo - Bro) - Z (Mg + 550) Sms (3.9)
5z

where Sms denotes the scattering element in terms of the normal-

ized velocity contribution, u__(y).

ms

Sms = @ g “ms(‘))\/mo (3) dj (3.10)

mn

Sms are the scattering elements which form the scattering matrix,
S. If a unique solution to the linear inhomogeneous scattering
equations (3.9) exists, the determinate of S must not vanish by

virtue of Cramer's rule. For the moment, we shall assume that
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S is non-singular.

Expanding, in turn, (3.5) with the substitution of (3.8)
and invoking the linear independence of (Am0+Bm0), we obtain
the following set of four decoupled integral equations which

are entirely independent of the parameter set (AmO'BmO)‘

° 2
TN [X ﬁ?"'g%s‘*v\ﬁm‘d*z Yanty +
= S=¢ )

5

+ Cunz82m)(1-35,) Sum.,.“z’Y.,.,,“P dn Ymn“))] (3.12)

kmn 1]

(o] 2
0 : Q“z‘ { Z -'2%'3—‘2 g usm(?)\ﬁ“("pd’l Y"“j) ¥ (3.13)
h-o |

Sz S

+ (slm'gim)(losﬂ!l gu‘sm("p\{nnh})d?vmhtj)]

K mn m
Multiplying (3.12) and (3.13) by paums(y) and then integrating
over the region of validity (O,hm), a set of four simultaneous

equations for Sms in terms of the normalized velocities, u__(y)

ms
are recovered.

For m=s

[ Sn (VN (\J) Ymo (5) du]z

mm
2

.Zo {’—'if,“i'!‘ [i usm(‘j)Yah(n‘ J.j] v (308, 00-8) [S“m‘u".i#)“%r

kmn

(3.14)
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For m#s

S usmc\z)\(obpdwz gums(j’\{no(j)d:’

S m

ms

o
Ham ] Y opY yy dnd
Z ELLY g ( [uss(’l) umvn(j) L}sm"pumstj)] s U an Y 47 3
h=o Ph Sm
(3.15)
Recalling that Kemn 1S simply the negctive of Kosn’ & reciprocity
relation similar to that derived by Miles (1967) is obtained.

S = =S (3.16)

12 21
At the same time, we may conclude that Sms is pure real since
the decoupled integral equations (3.12) and (3.13) are pure real,
and hence the true solution, ums(y) must also be real. Applica-
tion of these general properties will be deferred until we con-
sider the relationships between the scattered potentials and
the complementary variational principles.

Having constructed the scattering element forms for (3.12)
and (3.13), we may apply the tests which determine the validity
of Schwinger's variational procedure for our problem. To apply
the method, we must establish two properties:

- the scattering elements, S__, must be stationary with

ms
respect to first order variations of the true solution
to the integral equations (3.12) and (3.13).
- the scattering elements, Sms’ must be invariant to a
scale transformation of ums(y).
The variational property is concerned with approximation to the

true y-dependence of the horizontal velocity at x = +&. To
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verify this property for our problem, substitute the approxima-
tion

ur () = u (y) + eg  (y)
into (3.14) and (3.15). After some algebra, one recovers the
approximation to the scattering element,

Sﬁs = Sms + O(ez)
which demonstrates the accuracy to 0(e2). The invariance prop-
erty is concerned with the magnitude of the chosen approxima-
tion, uﬁs(y) with respect to the true solution. This is veri-
fied for our problem by substituting Cums(y) into (3.14) and
(3.15). Again after some algebra, Sﬁs is shown to be invariant
and implies that the net energy flux through x=+{ is zero.
Thus, the applicability of Schwinger's approximation method
is established for the velocity formulation.

The potential formulation proceeds analogously. We assume

that the potential on |x|=% is a known function

b, o
Byt

Gmly)  om x= O, o<j4d
(3.17)

3,"(3) on  x = CVYQ O“j{hm

Combining (3.17) with the matching conditions, (2.10) and (2.11),
and applying the boundary conditions, (2.7) through (2.9), the

resulting set of integral equations simultaneous in qm(y) is:

for 0 < y < hm

oD
Z K {(s,m»,smsm) Amn = ( 8z BinSon) B.,.,‘]Ym g

Z‘ Pn [Z Qsmn 2 v gssﬁp W 4‘7] (lj)

5:\ (3.18&)
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0 = 'ZDPH [ S;Z”‘ismn ?rgﬂsi"p\/m l\z) d?]Yan(j’ (3.18b)

for ha <y <d

0 { i g 35(‘7;\/ (-7) 4'7] Y (j)
B (3.18c)

where by virtue of the orthogonality of Ymn(y) and the radiation

condition

(Sun+5;w;sm;>AWnn + (fsa“+i%m§$n)l5"“,= Qagjhfj;!;:j3dj

(3.19)

The complication of the internal sum over r=(a,b) as defined by
(2.14) is due to the stratification within |x|<&. However,
aside from the cumbersome sum over r, the kernels of (3.5) and
(3.18) differ.only through the inversion of the wave modes, Py
and kmn‘ To form the scattering elements associated with
(3.18), we invoke the linear independence implied by (3.18) and
(3.19). Again, we are free to expand gm(y) in terms of any
linear combinations of (AlO’BZO)' We choose to expand gm(y)

in a manner complementary to the velocity formulation,

2
Gmiy = Z JLA,-B ]vms ¢y (3.20)
S=\

so that the linear scattering equations

4

[A,+B,,.] = Z ke [Ag- Bool S, (3.21)

Sz
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may be formed from (3.19) upon the substitution of (3.20) where
Sﬁs denotes the scattering element in terms of the normalized

potential v_ (y):

ms

S":s = g Vina 9 Yoo () dy (3.22)
m

By comparing (3.20) and (3.9), we are able to draw the conclu-
sion that the scattering matrix Sﬁs cerived from the potential
formulation is simply the inverse of the scattering matrix Sms
derived from the velocity formulation. Since Sms is assumed
to be non-singular, its inverse may be constructed. This shows
that a solution to the scattering problem may be derived from
either the velocity formulation or the potential formulation.
But, of practical importance, we have established a convenient
vehicle for comparing approximate solutions to our problem.

To derive the inverse scattering matrix S;i(y), (3.20)
is substituted into (3.18) and the linear independence of
kmO(AmO—BmO) is invoked to decouple the integral equations.

The decoupled integral equations are independent of the para-

meter set (AmO’BmO)'

- 2
Y.M"‘j) = ZIPH z ¥ srn Z Ov S Vsm“l)yvn(‘l‘ drlYa i !)) + (__51.;‘5'..) ﬂ-§h\ km-n. oo

S=4 v v

hm
. ...L me"z’\{gn“z‘ dn le.j) ] (3.23a)

=0

oo 2
° =L [rz %smnzv e Yy ol + (555,208

bon
" Ky S Voms ('vl\}{““('v)) A\z\(.,m()') ]

(3.23b)
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‘isnge«g" Y “?“3‘2\/.15 (j) (3.24)

2: Y tnd (O

Srnn ers 7 ? o,bn

Y J (3.25)
This resulting set of uncoupled integral equations is multi-
plied by prvms(y), integrated over the region of validity,

and summed. Thus, the inverse scattering elements are con-
structed as follows:

for m=s

2

5" e [S,.VMM“JMM‘J“‘!Y

L

for m#s (3.26)

(3.27)

5.4 Q: § aPY tj)%g 5,,‘(5)Y (9)dy

{ZVQ,S,V snc‘st ‘Td}]* (5:3 )04 )k 5 B‘%ﬁ;\)m; ‘5}2

ms3 -
hzo Vv v’

As in the velocity formulation, we can conclude that (3.26) and

(3.27) are stationary with respect to first order variations

of v (y) about the true solution to (3.18), are invariant to

scale transformations of Vi (y), yield the reciprocity relation
-l -1
S12 = ~S21

-1

and confirm that (Sms s

of Schwinger's variational procedure for constructing approxi-

vt T oty St -

(y)) are real. Thus, the applicability
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mate solutions from the potential formulation is verified.
4,0 SYMMETRY RELATIONS BETWEEN THE SCATTERED POTENTIALS

To establish the theoretical symmetry relations, actual
solution of the implied scattering problem is not necessary.
Therefore, we may make completely general statements from the
properties of either Sms or S;i. We choose to use the velocity
formulation. With the definition of Sms’ the reflection and
transmission coefficients may be constructed by solving the
simultaneous linear scattering equations (3.9), for the unknown
scattered amplitudes (BlO'AZO) in terms of the incident poten-

tials (AIO’BZO)  the propagating wave modes k mo’ and the scat-

tering elements Sms‘ We obtain

B,o = ..AJ_‘.' [(kz_e;' S}_!-l“‘"" S") - Suzszt] -2 Bzo kzosm
(km‘l' S“ )( k.zo" SZZ) + S,ﬁSQ. (4.1)

A, = ZAwkeSy + By [(k..+ S (Koot S5, - S,;_s._zj
( klo + Su)( ku‘ Szz )+ SzSa (4.2)

Defining the complex reflection and transmission coefficients

from (4.1) and (4.2) such that

~ -2k 4 - = (Kt k20) 8 =
R = §|o$__..°_ ’ T = "-2°¢—A—-—“'—"" ’ B2o .
A

™ 10 @.3)
- (kg ko) + 2k, X

T+= Bioa , R = Azgc. = , A,,‘-EO.
B0 B (4.4)

zo

we can develop symmetry relations. Recalling the properties
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of Sns following the discussion of (3.15), we make use of the

reciprocity relation for m#s and the proof that Sms is real.

We recover the results

IRl = IR7I (4-3)

- &
[R*1® « Lkl |T*° IRT|%+ J_'S_EO_‘;, |71 =1 (4.6)

Tkl | kol
Ik, T = Tk W1 T7) (4.7)
arg(TH) = ave (T7) = ave (T) (4.8)
ave (R*) + awg(R‘) = 2aq(T) + (4.9)

For example, to demonstrate the relation between the transmis-
sion phase shifts (4.8), we divide Tt by T with the incident
amplitudes (AIO'BZO) assumed to be of the same magnitude and
phase, invoke the reciprocity relation between (821,812), and
find that the result is pure real. Therefore, the transmission

phase shifts must be the same:

TV L _laeSe. = ke = WKz o Ko
T~ Kio Sa1 Kio LK, K,

These relations between the amplitudes of the scattered poten-
tial are identical to those previously derived in studies of the
scattering properties of rigid geometries in homogeneous fluid
domains. Except for slight notational differences, the symmetry
relations (4.5) through (4.7) are shown in Kriesel (1949) and
Wehausen and Laitone (1960) while (4.8) and (4.9) are given by

Newman (1965a, 1965b). As the far-field behavior of the scat-
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tered potential obeys the same symmetry relations exhibited by
a rigid body, we are able to conclude that the inhomogeneous
domain could be replaced by an equivalent rigid body peculiar
to each frequency parameter, K. At the same time, since both
Sms and ums(y) are real, we are able to conclude that the phase
of the horizontal velocity fm(y) must be independent of y.

This phase constancy has been proven for an open-bottomed cir-
cular cylinder in waters of finite depth and for a ci¥cular
dock in waters of finite depth by Garrett (1970,1971).

The convenient derivation of the scattering symmetry rela-
tions from a single formulation is of more than pedagogic value.
We may conclude that any domain whose Green's function is real
will obey the scattering properties shown by (4.5) through (4.9).
5.0 RELATIONS BETWEEN THE COMPLEMENTARY VARIATIONAL PRINCIPLES

Miles (1971) was able to prove that the complementary
variational integrals peculiar to the scattering problem posed
by a circular dock in waters of finite depth could be used to
calculate upper and lower bound approximations to the true
scattering coefficient. To prove this, Miles observed that the
kernels of the integral equations formed via the velocity ap-
proach and the kernels of the integral equations formed via the
potential approach were real, positive, and symmetric. This
meant that the associated variational integrals were positive
definite. Upon applying Bessel's inequality, Miles was able to
conclude that any assumed trial function describing either the
velocity or the potential over his matching boundary would
yield an upper bound estimate to the true scattering coeffici-

ent. Using our notation, we express this as

*
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* 2
ms i + & (5.1)
Sms

w

I
<

where €y is the unprescribed error associated with the assumed

description of the velocity on the matching boundary and

+ -t 2
gig? = i+ 'ar (5.2)
Swas

where ep is the unprescribed error associated with the assumed
description of the potential on the matching boundary. Invert-
ing the scattering element particular to the potential formula-
tion so that it may be compared directly to the scattering
element particular to the velocity formulation, we find that

(5.2) is
i

8
i+ £p

.
S ms

S m

(5.3)

7]

Comparing (5.1) and (5.3), we see that the complementary varia-
tional forms yield upper and lower bound estimates to the true
scattering element. Admittedly, the magnitudes of €y and ep are
unknown. However, the practical value of the bounding argument
may be established numerically. In Miles (1971), detailed cal~
culations show that the upper and /er bounds differ by at
most a few percent.

To apply this bounding argument to our problem, we must
refer to the kernels of the integral equations peculiar to the
velocity formulation (3.12, 3.13) and to the kernels of the
integral equations peculiar to the potential formulation (3.23,

3.24, 3.25). By inspection, we observe that the kernels are

real and symmetric, but indefinite. The kernels are indefinite
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because they both contain the coefficient « which represents

smn
the coupling between the two matching boundaries. For n=0,1,
Ksmpn 1S @ trigonometric function in p,%. In particular, when

pnz is an integer multiple of T, is singular. Therefore,

“smn
the variational integrals associated with both formulations are
indefinite. Therefore, the sign of Sﬁs or its inverse cannot

be established in general. This appears to preclude the bound-
ing argument for our problem since approximate forms of the
potential or the velocity will not approach the true solution

to the scattering matrix monotonically. In Miles (1971), the
floating dock pierces the free surface. This eliminates the
imaginary eigenvalue in the domain of the obstacle and, as a
result, his Kemn is always positive. In our problem, the

domain of the obstacle contains two imaginary eigenvalues corre-
sponding to a propagating mode, due to the depth of the basin,
and to another propagating mode, due to the stratification with-
in the basin. Even without the complication of stratification,
the.propagating surface mode would remain and the associated
variational forms would be indefinite. Therefore, we conclude
that the bounding argument is applicable only when the domain

of the obstacle contains no imaginary eigenvalues. This forces
us to abandon the bounding argument.

Having lost the attractive feature of a bounding argument,
we shall investigate the implications of the singular behavior
when pnz for n=0,1 is an integer multiple of m. To do this,
we must consider the validity of our assumption that S is

non-singular. Suppose that uﬁs(y) and ums(y) are two distinct
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solutions of (3.12, 3.13). Multiplying the integral equations
through by u* (v) , integrating over the region of validity
(O,h ), invoking the symmetry of the kernels, and our hypo-
theses that u* (y) is a solution to the integral equations, we
find that S* is equivalent to S. Therefore, S is unique and
non-singular except when the integer multiple of T occurs. This
proves that the two complementary approaches are equivalent.
When S is singular, §fl is undefined. This means that a solu-
tion via the velocity approach would not agree with a solution
via the potential approach. For clarity, we shall show the
above procedure for the scattering element Sll' The integral

equations are:
)

h
Su“ ) &, ) do + S “u0p § Gy dy

Yioty>

h
0 = - Sun (‘P q'(‘l'j) d-? g Lz (’2\ CT':"'I\j)J3
where G'Gl' and G2 represent a compact notation for the kernels
of (3.12) and (3.13). Multiplying by u;q(¥) and u,,(y), the

scattering elements are:

h b
5"= ( (:P (‘j)tlj g{ "u‘j’ (‘vz) C‘\'. (\1,\)) d‘lz J'j +
h.u:‘ tj) S Y‘u:(j) u“l'bz) (t, "!l,\s) dvdj-l»

st (
° by ° heh,
0 =- ﬂ Uy u,,hl) Gty 4’7‘3 ﬂ Uai () 0,,¢9) & ("1'3\ 4733

u"uj') u:hl) G (‘7‘3)&7&3
b,

T U ftj) Uy (‘-(7.33 C‘?dj

ot—-—ﬂsoh-—'—ﬁ

Combining these after substituting for the cross terms, we

establish:
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S.
R *
e s = 5'05

ms

Having established the uniqueness of S, we shall consider if
ums(y) is the unique solution to (3.12, 3.13). Assuming that

two distinct solutions exist, we consider the integrals

(A = 5,,{u:~u.. ;0:‘ Duk z - “(uf—u..)(u:-u") CT" * w
) ;“(u:‘“n\(“ :‘Um) G y

* 0= -‘“(U:'Uzl)(u:’uu\ G + Sg(u:“_uz')(u:-uz‘) (;" /

#*

¥* 3
A= S5 -1 {g{u“u“ G, -“ uuuz'qz] 4
¥
A = €%| - S,
based on the difference between the two solutions. If the

kernels of S were definite, A would always be greater than or

equal to zero. A, by virtue of (5.4), would vanish if and only

(y). This would prove the uniqueness of u__(y).

if uﬁs(y) m

Uns
Even if the kernels of S were semi-definite, A would obey the
same properties except at an infinite set of discrete values.
This would allow a bounding argument. As the kernels in our
problem are indefinite, the sign of A cannot be established in
general. Therefore, we cannot prove the uniqueness of our
solution or apply the associated bounding argument.

Considering the application of complementary variational

principles to water-wave scattering problems in general, we
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conclude that it is sufficient for the Green's function to be
real, symmetric, and indefinite to prove the uniqueness of

the scattering matrix. This covers a broad range of scattering
problems. To apply the bounding argument and the proof of
uniqueness, it is sufficient for the Green's function to be
real, symmetric, and semi-definite. Examples for which this
complete argument appear possible include obstacles of infini-
tesimal width or a single step change in depth for stratified
as well as homogeneous fluid domains and arbitrary obstacles
piercing the free surface in homogeneous domains. Physically,
these are cases where there is no interference between the waves
at the ends of the obstacle.

6.0 NUMERICAL APPLICATION OF THE COMPLEMENTARY VARIATIONAL
PRINCIPLES

The numerical value of the complementary forms is useful
even though we have been forced to abandon the bounding argu-
ment. Since either formulation is theoretically identical to
the other, we may compare the numerical results yielded by the
complementary formulations. If there is a significant differ-
ence between the theoretically identical scattering matrices, the
variational integrals are sensitive to the assumed trial func-
tions describing the velocity and the potential at x=+2. 1If
the complementary estimates are in tolerable agreement, the
variational integrals are insensitive to the assumed trial func-
tions. Here we must draw the distinction between mathematical
description and physical description. Without the bounding
argument, we are forced to admit that our estimates are pos-

sibly invalid for at least some combination of the physical vari-
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ables. Until more detailed experimental or numerical analyses
are available for comparison, a more definitive statement is
untenable. In particular, solutions near the resonant modes
of the basin require careful study.

Having verified the applicability of Schwinger's varia-
tional argument to our problem, we shall assume that the hori-
zontal velocity and the potential at x=+% may be described by
simple functions. The variational argument assures us that an
O(e) error in our assumed trial function contributes no more
than an 0(€2) error to our estimate of the scattering matrix.
We shall choose the trial functions uﬁs(y) and vﬁs(y) with the

orthogonality statements (2.19) and (2.14) in mind. These are:

% W

W s (aj) = CmstO“j\ on x= )Y R ’043< km
(6.1)

o

1]

L
Vs ) = D, Yoo (o x - 'o<j<h°‘

DMSYM (tj) on x= 1Y ,5‘4344
(6.2)
Physically, we are assuming that the velocity distribution on
the matching boundary (6.1) may be adequately described by the
velocity contribution associated with a constant multiple of
the far-field potential propagating modes, kmO' At high fre-
quencies, we expect the body to have little effect on the inci-
dent potentia} so, for at least part of the range of interest,

this trial function is physically plausible. This approximation

is often referred to as the Borne approximation in the litera-
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ture of acoustics and electromagnetics. Miles (1967) used a
similar trial function in this study of step-shelf scattering
and showed good numerical agreement with the more accurate numer-
ical results obtained by Newman (1965b). In (6.2), we are assum-
ing that the potential at the matching boundary may be adequately
described by the potential contribution associated with the prop-
agating mode related to the depth of the basin, Py While there
are no precedents for this choice, it allows us to consider the
effects of the stratification separately from the effects of
“depth. At high frequencies, we will expect that these two solu-
tions are in good agreement. At low frequencies, the differ-
ence between them will be due solely to the presence of strati-
fication. We shall clarify this momentarily. Referring to the
actual forms of the assumed trial functions (2.20) and (2.15,
2.16) , we remark that these are quite different physical descrip-
tions. The numerical test must be the final judge.

Formally introducing (6.1) and (6.2) into the variational
integrals, we find that both (3.14, 3.15) and (3.26, 3.27)
consist of a common integral form. For the velocity formula-

tion, this is:

hm Y2
h s .
S‘.Co‘ts’\(-.‘j‘ dy s (M) —por {?Ma&wmspnhm }
m .
° F,'f- Kmo L Pasm Ph"‘a + KcosPn"‘a
(6.3)
For the potential formulation, the corresponding form is:
iy n syt S po by + K e85 pob
SY(\Y()AS:U\ ALY —p FeSMpo m el
mn ' a0ty LUNEC DA I o
° Kmn L Po3 pohg + KCOsr,h‘
(6.4)
In the special case where pn=kmn’ both (6.3) and (6.4) reduce to

™
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g}{no(j)vml‘l\dlj: (-I\h )/len ° " [ "- hm‘i\(F}'\'Kz) ]
° 5 psmph, + Keosph,

We can see that the largest contribution occurs when both Py
and kmn are imaginary as the difference of their squares appears
in the denominator of (6.3, 6.4). However, when kmn=pn' the
integral remains non-singular even though the contribution can
be quite large. This means that the only singular terms in S
are associated with the normal modes on the basin, pn£=nn for
n=0,1. The physical difference implied by our choice is con=-
firmed by comparing these two integrals. In the velocity case
(6.1) for n=0,1, we include both the imaginary wave modes of
the basin. This will possibly give two large contributions.

In the potential form (6.2) for n=0, we include only one imagi-
nary wave mode. Therefore, any differences between the results
are solely attributable to the presence of the propagating mode
due to stratification within the basin.

In actual calculations for the scattering elements, the
integrals (6.3, 6.4) appear as products in an infinite series
over all the possible wave modes. A truncated series of some
twenty-five terms has proven to be more than adequate numeri-
cally. While the variational integrals are simple to evaluate,
the solution of the exact eigenvalue relations (2.13, 2.18)
for the roots (pn'kmn) is troublesome. It is difficult to
insure that one is not missing roots during an iterative solu-
tion technique. We have found that either Halley's method or

Mueller's method, Traub (1962) offer a reasonable compromise
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between the order of convergence and the likelihood of missing
roots. We caution that neither iterative method is foolproof.
7.0 RESULTS AND CONCLUSIONS

In our problem, the number of physical variables is pro-
hibitive with respect to a definitive treatment of sensitivity
to each parameter., We shall restrict ourselves to an analysis
of two separate problems. The first of these considers a set
of variables of interest to the ocean engineer. This particu-
lar set emphasizes the small geometrical contrast and large
density contrast peculiar to a sediment pocket. The second
set of variables addresses the large geometric contrast and
minute density contrast of interest to the oceanographer.
Physically, the oceanographer's problem might correspond to a
fjord. These and variations which we have chosen to investi-
gate are shown in Figures 2 and 3 respectively. By comparing
these extrema, the reader should be able to draw his own con-
clusions concerning the utility of the approximate solution
method developed in this thesis. We have chosen to plot only
the reflection coefficient magnitude as it is the poorest nume-
rically. The "velocity" solution is shown in a solid line
while the "potential" solution is shown in a dashed line. The
reflection coefficient magnitudes ara shown as a function of
the nondimensional frequency parameter, Khl' The value for
Khl=0 was established by taking the long-wave limit to our
integral forms. For the symmetric case, |R| tends to zero.
In other words, the basin disappears as the incident wave length

tends to infinity. For the asymmetric case, |R| tends to the
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reflection coefficient of a step shelf of height, hl-hz’ This

is given by Lamb (1932).

Yo
le‘ - 1 - (bhl/51|) ; h.)’yiz

e (he/m™

We shall comment on the simplest configuration first--a
symmetric basin in a homogeneous domain. Figures 4 and 5 show
the results for the engineer's problem and the oceanographer's

problem respectively. The most striking feature of these two

. The sharp zeroes

graphs is the oscillatory behavior of |R
correspond to incident frequencies at which the basin is trans-
parent to the incident potential. These occur when pol=nﬂ and
correspond physically to the resonant modes of the basin. This
same type of oscillatory behavior has been treated analyti-

cally by Newman (1965a) and numerically by Mei and Black (1969)
for a symmetric rectangular obstacle resting on the bottom. As

in our problem, the sharp zeroes are connected with the excitation
of standing waves over the obstacle. The only difference be-
tween the oceanographer's problem and the ocean engineer's

problem is the periodicity of |R| which increases as the depth

of the basin increases. In Fiocures 6 and 7 we add the complica-
tion of asymmetry in the geometric idealizations. Here the

most striking feature is the elimination of the sharp zeroes
associated with the symmetric basin. In the terminology of
electrical engineering, the fluctuating AC behavior of the sym-

metric basin is imposed on the steadily decreasing DC behavior
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of a finite step shelf. At low frequencies, K2 small, the

step shelf dominates. At high frequencies, K& large, the
symmetric obstacle dominates. This suggests that the solution
to our linear boundary-value problem should behave approximately
like the sum of the two problems taken separately--a symmetric
obstacle and a geometrical contrast of the step shelf.

Rather than repeat a similar development for the varia-
tions of geometry for the inhomogeneous complication, we simply
state that the same behavior is observed. We shall focus our
attention on the symmetric, inhomogeneous problem. Figures 8
and 9 show the results for engineer and oceanographer respec-
tively. Considering the first graph, we note that the sediment
pocket is assumed to have a depth of thirty feet and a mean
specific gravity of 1.3. Recalling the discussion of the phy-
sics implied in our choice of trial function, the "velocity"
solution should differ only because of the influence of the
stratification within the basin. The low frequency periodicity
is due to the excitation of standing waves of frequency p0£=nﬂ.
Thus, the behavior due to stratification is physically impor-
tant only for low frequency excitation. We expect this since,
at high frequencies, the incident potential will die off expo-
nentially with depth. These standing waves will be highly
oscillatory and provide a plausible forcing mechanism for pipe-
line migration. The important thing to remember is that this
resonant behavior can occur at physically realistic values of K2.
For this particular case, the incident wave length is on the

order of 1200 feet. This wave length is not uncommon during
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major storms. This confirms our hypothesis that pipeline migra-
tion is at least partially attributable to resonant behavior in
sediment pockets due to storm wave excitation. For the oceano-
grapher's problem, we consider a depth of 150 feet of dense
water and a density contrast of 1.03. We readily see that there
is virtually no effect on the propagating surface mode. This
has been theorized by Phillips (1966) and proven experimentally
by Wunsch (1969). It is possible to excite resonant behavior

at extremely low frequencies on the tidal range. This has been
theorized by Rattray (1960). Figures 10 and 11 show the asym-
metric cases, but require no further discussion.

In concluding, we shall comment on the mathematical and on
the practical aspects of this thesis. Dealing with the engi-
neering applications first, we have established a plausible
mechanism for initiating pipeline migration. We have noticed
that sediment pockets can be significant reflectors. This could
still be true in a more realistic geometrical model--even though
we expect a smoothing due to viscosity and the continuous spec-
trum of eigenvalues which nature provides. This might be useful
in optimizing offshore platform locations and, in a true ex-
treme, developing a novel breakwater. This reflection cﬁarac—
teristic could explain why shrimp fishermen in the Gulf of
Mexico anchor over silty areas during unexpected storms. From
the mathematical viewpoint, we remark that the complementary
solution technique has led to an informative analysis--numeri-
cally, physically and analytically. We have shown under what

conditions complementary variational integrals of Schwinger's
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type imply upper and lower bound approximate solutions. We have
shown that the necessary and sufficient conditions for estab-
lishing a bounding argument are closely coupled to the proof of
uniqueness. We have demonstrated that the physics of the prob-
lem must be satisfied in the choice of trial functions for varia-
tional arguments. Finally, we must emphasize that the close
numerical agreement between our complementary formulations may

be misleading. Without the bounding argument, experimental or
numerical studies are necessary to definitively verify our

solution.
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