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Abstract

Imaging through fog has important applications in in-
dustries such as self-driving cars, augmented driving, air-
planes, helicopters, drones and trains. Here we show that
time profiles of light reflected from fog have a distribution
(Gamma) that is different from light reflected from objects
occluded by fog (Gaussian). This helps to distinguish be-
tween background photons reflected from the fog and signal
photons reflected from the occluded object. Based on this
observation, we recover reflectance and depth of a scene
obstructed by dense, dynamic, and heterogeneous fog. For
practical use cases, the imaging system is designed in op-
tical reflection mode with minimal footprint and is based
on LIDAR hardware. Specifically, we use a single photon
avalanche diode (SPAD) camera that time-tags individual
detected photons. A probabilistic computational framework
is developed to estimate the fog properties from the mea-
surement itself, without prior knowledge. Other solutions
are based on radar that suffers from poor resolution (due
to the long wavelength), or on time gating that suffers from
low signal-to-noise ratio. The suggested technique is exper-
imentally evaluated in a wide range of fog densities created
in a fog chamber. It demonstrates recovering objects 57cm
away from the camera when the visibility is 37cm. In that
case it recovers depth with a resolution of 5cm and scene
reflectance with an improvement of 4dB in PSNR and 3.4×
reconstruction quality in SSIM over time gating techniques.

1. Introduction
The ability to see through dense fog is exciting for pho-

tography and essential for safer transportation systems. Ex-
amples include self-driving cars that can operate in chal-
lenging weather; augmenting a driver with a heads-up-
display to alert of occluded objects and read road signs;
providing a clear flight path for drones, airplanes, and heli-
copters at low-level flight; and allowing trains to maintain
speed in foggy weather.

Here, we show that the time profiles of light scattered
from fog and occluded objects have different distributions
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Figure 1. Seeing through dense, dynamic, and heterogeneous fog.
a) A concept sketch of LIDAR sensing system in heads-up-display
to show reflectance modulated by depth of objects obscured by
fog. Other techniques or EM wavelengths return geometry but
not (near) visible light reflectance. Imaging pipeline: b) A SPAD
camera captures time-resolved single photon counts. c) A prob-
abilistic framework is used to estimate the properties of the back
reflection from the fog. d) The back reflection is subtracted from
the measurement to recover the signal and is processed to produce
the target e) reflectance and f) depth map.



(Gamma and Gaussian respectively). A probabilistic frame-
work is used to evaluate the fog properties from the mea-
surement itself, and separate between photons reflected
from the fog and those reflected from the object. The sug-
gested system relies on time-resolved sensing, similar to the
technologies used in LIDAR. Our solution is based on a sin-
gle photon avalanche diode (SPAD) camera that detects and
time-tags photons as they arrive at different pixels on the
sensor. Since the system is based on time-resolved sensing,
it is capable of recovering the occluded scene reflectance
and depth maps.

The main industry solution for imaging through fog is
based on radio waves, e.g. in 94GHz [2] where fog is trans-
parent. There are several challenges in using radar for imag-
ing, including: 1) resolution – due to the long wavelength
it is hard or even impossible to classify objects, and the use
cases are limited to detection; and 2) optical contrast – at
such long wavelengths it is only possible to measure bulk
properties of materials [1], and impossible for example to
identify road lane marks and read road signs. Techniques
for long range and large field of view imaging through vol-
umetric scattering in the visible range are usually limited to
time gating, which requires long integration times and prior
knowledge of the scene depth map. Furthermore, time gat-
ing and many other techniques to image through scattering
media, such as phase conjugation and acousto-optics, reject
scattered photons during the measurement process. Because
these methods reject a substantial amount of the optical sig-
nal, they operate at a low signal-to-noise ratio (SNR).

Instead of rejecting the scattered photons during the
measurement process, we measure both scattered and un-
scattered photons and computationally use all of the optical
signal to reject the fog. The motivation for our approach
is the fact that the scattered photons hold substantial infor-
mation about the target and the scattering medium, and that
information is useful for improving imaging capabilities.

1.1. Main Contributions

The main contributions of this paper are:

1. A time-domain technique for seeing through fog,
demonstrating the ability to recover the scene image
and depth.

2. An experimental demonstration of the technique in
dense, dynamic, and heterogeneous fog conditions in a
fog chamber (as opposed to milky water or other phan-
toms) for a wide range of fog densities (visibilities) and
static scenes.

3. A probabilistic method to estimate pixel-wise fog pa-
rameters from the measurement itself without any cal-
ibration or prior knowledge.

2. Related Works
Computer vision has been tackling imaging through scat-

tering along different axes. Significant efforts have recently
been dedicated to discrete scattering events such as look-
ing around corners and single scatter diffusers [43, 15,
20, 42, 33, 7, 31, 22, 5]. Other examples include vision
through the atmosphere [30, 29], seeing through translu-
cent objects [10], underwater imaging [36], 3D reconstruc-
tion [40], color recovery [38], and controlling light trans-
port [13]. Structured light in scattering media was demon-
strated [28] by spatially decoupling the back reflectance and
signal. Here we achieve this with a per-pixel time profile.

In the context of volumetric scattering, significant effort
has been dedicated to improving contrast in haze [9]. These
cases handle very few scattering events, and it is common to
model the scattering with a single scatter event [38]. Some
techniques to overcome such atmospheric scattering include
polarization [34, 41], patch base recurrence [3], haze line
estimation [4], and lightfield imaging [39]. Data driven
techniques for dehazing have been explored [6] along with
rendering techniques [26, 35]. While most work is dedi-
cated to reflectance recovery, some recover depth of objects
through scattering media [16, 14, 19, 39].

Works that explicitly handle the case of dense scattering
materials similar to the one discussed here include depth
sensing [16, 14, 20], cloud tomography [17, 24, 25], scatter-
ing parameters estimation for computer graphics [11, 12],
and structured light [28]. Our goal is different since we aim
to perform both reflectance and depth recovery of a scene
occluded by highly scattering media. We demonstrate our
recovery technique in a fog chamber that generates dense,
dynamic, and heterogeneous fog. In our demonstration, the
camera and illumination are adjacent to the fog chamber to
further emulate realistic imaging scenarios.

Other techniques for large scale imaging through dense
fog include time gating [8, 23] (a recent survey on transient
imaging is provided in [18]). These methods work when
the object is far away (less coupling with the back reflection
from the fog), but are limited by signal-to-noise ratio which
requires long integration times and a stationary scene. An-
other limitation of time gating is the need to manually select
the time-gate bin or to rely on prior depth map knowledge.
The suggested method uses the scattered photons to esti-
mate the fog properties and computationally reject it from
the measurement. Thus, it works at higher SNR and does
not depend on prior knowledge of the scene or scatterer.

In this work we use single photon counts along with a
probabilistic model to reject the fog. The use of probabilis-
tic frameworks for imaging through scattering media has
been previously suggested in [32]; however it was limited
to transmission mode which is fundamentally different than
the reflection problem discussed here (in transmission mode
there is no need to handle back reflection). Other examples



of using probabilistic models for imaging with a few pho-
tons [21, 37] did not consider imaging through scattering
media.

3. Parametric Model for Imaging Through Fog
Consider a pulsed light source emitting photons into a

foggy scene. Adjacent to the light source is a time-resolved
camera. Each pixel in the camera time-tags individual pho-
tons as they arrive to the sensor. Each pixel in a measure-
ment frame holds the arrival time of the first detected photon
during the frame acquisition time. A measured photon can
be classified as:

• Background photon – a photon that did not interact
with the target, thus it only holds information about
the fog. Due to the scattering dynamics, background
photons arrive at different times.

• Signal photon – a photon that interacted with the tar-
get, thus it holds information about target reflectivity
and depth.

• Dark counts (noise) – these false detections are uni-
formly distributed in time.

The dark count rate in our detector is below 30Hz which is
an order of magnitude less than the background and signal
counts in our measurements, thus we neglect it from our
model.

The parametric model described below is pixel-wise (see
further discussion in Sec. 7). First, we model the back-
ground photons. It is common to model scattering with
diffusion theory. In this case, the distance a photon prop-
agates between consecutive scattering events is exponen-
tially distributed with a mean of 1/λ, where λ is known
as the mean free path, the mean distance a photon prop-
agates between scattering events. Equivalently the time
between scattering events is also exponentially distributed
τi ∼ EXP (µs), where 1/µs is the mean time between
scattering events. We note that since the scattering events
are independent, so are the different times τi. A de-
tected photon undergoes multiple scattering events such that
the detection time is T =

∑k
i=1 τi. The sum of indepen-

dent exponential random variables is Gamma distributed
T ∼ GAMMA(k, µs), where k and µs are the shape and
rate parameters. Thus, we can model the probability of mea-
suring a background photon at time t, denoted as fT (t|B),
with the parameters k and µs encoding the physical proper-
ties of the fog (see further analysis on k in the Discussion):

fT (t|B) =
µk
s

Γ(k)
t(k−1) exp {−µst} (1)

where Γ(k) is the Gamma function. Figure 2 shows time-
resolved measurements at different concentrations of fog

0 1 2 3
Time [ns]

0

100

200

300

400

C
ou

nt
s

OT = 1.4

0 1 2 3
Time [ns]

0

100

200

300

400

C
ou

nt
s

OT = 1.6

Histogram
Gamma fit

0 1 2 3
Time [ns]

0

100

200

300

400

500

C
ou

nt
s

OT = 1.9

0 1 2 3
Time [ns]

0

100

200

300

400

500

C
ou

nt
s

OT = 2.3

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time [ns]

0

0.1

0.2

0.3

0.4

0.5

0.6
Gamma Distribution Fit

OT = 1.2
OT = 1.4
OT = 1.6
OT = 1.9
OT = 2.3
OT = 3.0

a)

b)

Figure 2. Back reflection model. a) Experimental time-resolved
measured histograms along with fitted Gamma distributions. The
panels correspond to different optical thicknesses (OT) of fog. The
plots show that a Gamma distribution captures well the dynam-
ics of time-resolved scattering in fog, especially at high densities.
b) Fitted Gamma distributions for a wide range of fog densities.
The plots show that different fog densities result in different time
profiles.

and the corresponding Gamma distribution fits. We mea-
sure fog densities with optical thickness (OT) where OT=0
is clear visibility.

Next we model the time of arrival of photons that inter-
acted with the target as a Gamma distributed random vari-
able, given that the photon interacted with the target (with
similar arguments to the background model). In practice we
find that we can use a Gaussian model for this distribution.
This can be justified since in this case the number of scat-
tering events is large, and when the shape parameter, k, of a
Gamma distribution is large it resembles a Gaussian distri-
bution. The distribution mean, µ, corresponds to the depth
of the object, and the variance, σ2, encodes the scattering
these photons undergo, such that the probability of measur-
ing a signal photon at time t is:

fT (t|S) =
1√

2πσ2
exp

{
−
(
t− µ
σ

)2
}

(2)

Finally, the models are combined with the law of total
probability. The overall probability of detecting a photon at
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Figure 3. Rejecting back reflection and signal recovery. The left
column shows the recovered KDE and Gamma distributions (from
the raw photon counts), the estimated signals by subtracting the
two, and the estimated target distributions. The right column
shows the histogram generated by the raw photon counts and the
fitted model by Eq. 5 including the SNR between the two. Rows
show different cases of fog concentrations, optical thicknesses of
OT = 1.4, 1.6, 1.9, 2.3 for panels a-d respectively. The target in
panels a+b is at a depth that corresponds to 3.02ns, and the target
in panels c+d is at 2.58ns. Note that in all cases there are substan-
tially more background photons than signal photons.

time t is:

fT (t) = fT (t|S)P (S) + fT (t|B)P (B) (3)

We define P (B) = b, and P (S) = r. Here b and r in-
clude the optical losses of the system (such as absorption
and detector efficiency). The ratio between b and r captures
the probability of measuring a background vs. signal pho-
ton. The target reflectivity is captured by r.

4. Imaging Through Dense Fog
Given the pixel-wise time-resolved photon counts, our

goal is to decouple the back reflectance and the signal. The
estimation pipeline is demonstrated in Fig. 1 and is com-

posed of four steps: 1) time profile estimation, 2) back-
ground distribution estimation, 3) signal estimation, and
4) target recovery. Fig. 3 shows the estimation results for
different levels of fog and for targets at different depths.

4.1. Time Profile Estimation

The individual photon detection events are mapped to the
distribution fT (t) using a kernel density estimator (KDE)
denoted by f̂T (t). KDE has several advantages as opposed
to a traditional histogram, primarily since there is no need
to specify a bin size, and it performs well in cases of a few
sampling points such as here.

4.2. Background Estimation

The background is governing the signal in the cases dis-
cussed here. Thus, the raw photon counts are used to es-
timate the parameters in fT (t|B). As mentioned above,
the physical model describing the background leads to a
Gamma distribution. The distribution parameters are esti-
mated using maximum likelihood. The estimated distribu-
tion is denoted by f̂T (t|B). Since the majority of the pho-
tons are background photons, we use all measured photons
in this step and effectively treat the signal photons as noise.

4.3. Signal Estimation

With the probability functions for the total time pro-
file and background, it is possible to subtract the two
curves and isolate a proxy to the probability distribution
of the signal fT (t|S) ∼ fT (t)− fT (t|B). To that end we
fit f̂T (t)− f̂T (t|B) to a Gaussian that estimates the sig-
nal f̂T (t|S).

4.4. Scene Reconstruction

With the background and signal estimated distributions,
the parameters r and b are estimated by solving:[
r̂, b̂
]

= arg min
[r,b]

∑
t

(
rf̂T (t|S) + bf̂T (t|B)− f̂T (t)

)2
(4)

This is where edge cases in which there is no fog or no target
are accounted for – the solution will be b→ 0 or r → 0
accordingly.

So far, all estimators were probability functions.
These are mapped to actual photon counts N(t),
the number of photons measured at time bin t,
by computing a normalization factor α̂ such that∑
t
N(t) = α̂

∑
t

[
r̂f̂T (t|S) + b̂f̂T (t|B)

]
. This step is nec-

essary for consistent results across pixels that receive a dif-
ferent number of photons. The final estimated model is:

N̂(t) = α̂
[
r̂f̂T (t|S) + b̂f̂T (t|B)

]
(5)



Figure. 3 shows the different estimations in different
cases of fog and targets. It also provides the SNR between
the estimated model and the measured histogram. The sup-
plement provides further examples.

Lastly, the target parameters are extracted:
Reflectance Estimation: The reflectance value per

pixel is captured by α̂r̂f̂T (t|S). We find that using the peak
of this function provides good reflectance recovery. An-
other option uses α̂r̂ which proved noisier in practice. The
estimated depth is then used to account for depth dependent
signal attenuation (see below).

Depth Estimation: The target depth is encoded in
the early part of the Gaussian distribution (corresponds to
ballistic photons). In practice, the estimated Gaussian vari-
ances in our experiments are in the order of 1− 2 time bins.
This is due to both scattering and measurement jitter. We
found that using µ̂ from the Gaussian estimation is a robust
estimate of the target depth. Since a Gaussian distribution is
fitted regardless to whether there is an object in the pixel or
not, we use the reflectance estimation as a confidence map
to reject pixels where no target exists.

4.5. Implementation Details

For numerical stability in parameter estimation, the pho-
tons arrival times are provided in picoseconds. The KDE
estimator uses a standard Gaussian kernel with a bandwidth
of 80ps. Negative values in the subtraction of the measured
time profile and background are set to zero. To further im-
prove the reconstruction quality of the reflectance map we
multiply it by µ (to amplify points that are further away)
and threshold it to 0.2 of the peak. The threshold used as a
confidence map for the depth estimation is 0.2 of the final
reflectance map.

The computation time to recover the reflectance and
depth per pixel is 0.03sec using an unoptimized Matlab
code on a 3rd generation i7 desktop.

5. Experimental Setup
The experimental setup is shown in Fig. 4. The detec-

tor is a PhotonForce PF32 SPAD camera that is composed
of 32× 32 pixels. Each pixel is single photon sensitive and
time-tags measured photons with a nominal time resolution
of 56ps. The camera exposure time is set to 100µs (the
PF32 measures the arrival time of the first detected photon
per-pixel per-exposure). Each reconstruction is composed
of 20,000 frames. We can produce a new reconstruction
every 100µs, while using a sliding window with a history
of 2sec (see further analysis in the Discussion). For illu-
mination, a SuperK pulsed super-continuum laser is spec-
trally filtered to a narrow band around 580nm (the camera
is equipped with a similar filter to reject background). The
laser repetition rate is 80MHz with a pulse duration of 5ps

a)

b)
SPAD

LaserFlashlight

Fog Generator

Target

Regular Camera 

Power Meter

Figure 4. Experimental setup photograph. a) The fog chamber
with a mannequin inside. This photograph was taken with minimal
fog density and shows the SPAD, pulsed laser, traditional cam-
era, and flashlight. Illumination and measurement are performed
through a glass window on the chamber. A power meter is placed
inside the fog chamber to quantify the optical thickness. The fog
generator is composed of an ultrasonic transducer in water and a
fan placed on the far side of the chamber (not visible). b) Example
of the fog generator inside a small open aquarium. In this case the
fan is off which results in a low concentration.

with an average laser’s optical power of 0.15W. The laser
is diffused before entering the chamber and it flood illumi-
nates the scene (without fog). The camera and laser are
positioned in a reflection mode.

To evaluate and compare our method we placed a regular
monochromatic camera (Point Grey Chameleon) along with
an independent CW flashlight at a wavelength of 850nm.
The flashlight average optical power is 1W and the camera
quantum efficiency at this wavelength is 15%. The different
wavelengths were chosen to make sure that the two imag-
ing systems can operate simultaneously without affecting
one another. Spectral filters are placed on the SPAD and
regular cameras to ensure that each camera measures con-
tributions only from its dedicated light source. The flash-
light floodlit the tank and was positioned such that it did
not illuminate the target directly to reduce the glare from
the fog. The camera integration time is 100ms. In all of
the reported results, the background lights are turned off so
that both imaging systems equally benefit from a directional
illumination source.

The cameras and illumination sources are placed ad-
jacent to the fog chamber. The chamber dimensions are
0.5 × 0.5 × 1m3. To generate fog, a powerful ultrasonic
transducer is placed in water along with a fan (similar to
a cold mist humidifier). The fog generator is placed at the
far side of the fog chamber. This configuration is capable



of producing dense fog with visibility of a few centimeters
into the chamber. A supplemental video taken with the reg-
ular camera shows the chamber as it is being filled with fog.
To quantitatively evaluate the level of the fog, the far side of
the chamber also holds an optical power meter to measure
the optical thickness of the fog. Optical thickness at time t
is calculated by− log (Pt/P0), where P0 is the power mea-
sured when there is no fog, and Pt is the power at time t.

6. Experimental Results
The experimental system described above was used to

evaluate the suggested approach. Several targets are placed
in the fog chamber. The fog generator is turned on, and a
continuous capture of SPAD frames is performed until the
fog density in the chamber saturates (roughly 15 minutes).

To evaluate the results we compare our reflectance recon-
struction to the measurement taken with the regular camera.
Note that the different wavelength used for the regular cam-
era undergoes less scattering which results in a sharper im-
age, especially in low fog densities. Because of the differ-
ent perspective and acquisition properties, we use the reg-
ular camera only for qualitative comparison. The second
comparison is to photon counting from the SPAD camera.
In this mode the camera simply accumulates individual de-
tected photon events. The third comparison is to time gat-
ing. In this mode the time bin was selected manually to
the first time bin that holds information about the target.
We compute peak SNR (PSNR) and structural similarity
(SSIM, ranges in [0, 1], higher is better) to quantitatively
compare our reflectance recovery method to photon count-
ing and time gating (the chosen ground truth is taken from
a photon counting measurement without fog). Similarly,
the regular camera results are compared (with SSIM and
PSNR) to a regular photo taken without fog (not shown).

Figure 5 shows results for two sets of targets at differ-
ent fog densities. The first target is composed of a set of
‘E’ shapes (3 × 5cm2) at different orientations and depths
(equal spacings in the range of 37-57cm from the camera).
As can be seen from the results, our method is able to reject
the significant backscatter that governs the regular camera
and photon counting results. In comparison to time gating
we note that time gating is much noisier, requires one to
manually select the correct time bin, and recovers only one
depth. The suggested method outperforms these techniques
in both SSIM and PSNR, and degrades much slower with
increasing fog levels. Furthermore, the method accurately
recovers the depth of the different targets up to an optical
thickness of 2.1, after which it loses the far target while still
recovering the closer ones. The average depth reconstruc-
tion error (for all pixels, depths, and optical thicknesses up
to 2.1) is 0.08 ± 0.3cm. The second result in Fig. 5 is of a
mannequin (∼ 20cm tall) placed at the depth of 35cm. This
result further demonstrates the above conclusions. The sup-

plemental videos show additional results over time as fog
fills the chamber.

7. Discussion
7.1. Limitations

The key limitations of the suggested approach are listed
below; the remaining discussion section further analyzes
these limitations and suggests future work to alleviate them:

1. Our approach is pixel-wise and neglects the spatial na-
ture of scattering. While this is enough to reject the
background from the measurement, it is not able to
spatially deblur the signal. Spatial blurring will be
more prominent in large scale scenes and high reso-
lution sensors.

2. The demonstrated results are captured with acquisition
times of 2sec (with a mean of 2,440 photons per ac-
quisition). While this is enough for dynamic fog with
a stationary scene, it is not enough for dynamic scenes.

7.2. Sensitivity to Sensor Spatial Resolution

The sensor used here is composed of only 32 × 32
pixels. SPAD cameras with mega-pixel spatial resolution
and nanosecond time resolution have already been demon-
strated [27]. Such sensors with higher pixel count would
be beneficial in utilizing spatial scene priors to denoise and
smooth the result. Furthermore, a higher resolution sensor
would also be useful as part of an imaging framework that
accounts for the complete space-time scattering profile sim-
ilar to the one suggested in [32]. This would potentially
sharpen the results further.

7.3. Sensitivity to Sensor Time Resolution

The suggested imaging method is based on the notion
that background and signal photons have different statistics
in time. This allows one to distinguish between them and
reject the back reflectance from the fog. As the detector
time resolution reduces, this ability diminishes. The rele-
vant time scales to consider are the standard deviation of the
background Gamma distribution and Gaussian target distri-
bution. The sensor time resolution should be smaller than
both. Another aspect of time resolution is its mapping to
depth resolution and accuracy, which is potentially stricter
in real world situations.

7.4. How Many Photons are Needed

In our reconstructions we used 20,000 frames. The ac-
tual number of measured photons varies as a function of the
scene and fog density (brighter target and denser fog result
in more photons). Fig. 6a shows the number of measured
photons from pixels that correspond to targets at different
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Figure 5. Results for imaging through fog. Different columns show cases of different levels of fog for a set of ‘E’ shapes at different
orientations and a mannequin. Rows show different reconstructions including: a) Image taken with a regular camera (the longer wavelength
used for this measurement undergoes less scattering, which results in less challenging imaging conditions). b) Result with SPAD camera
photon counting mode. c) Result of time gating using the SPAD camera, where the time gate was selected manually to the first time bin
with meaningful information. d) Reflectance reconstruction with the suggested technique. e) Depth reconstruction with the suggested
technique. SSIM and PSNR metrics provide quantitative comparisons. The top row shows the ground truth reflectance and depth. This
ground truth is based on the photon counting measurement without fog.

depths and a background pixel at different levels of fog.
As predicted, when fog is added, the number of captured
photons from targets reduces, whereas background photon
counts increase, such that the number of photon counts from
all pixels converge to similar values. At an optical thickness
of 2, the number of photon counts from the further targets
matches the number of background photon counts. We also
note that for far targets, initially the number of photons is
reduced and then, as more fog is added, it starts to rise and
they behave more like background pixels.

The data for Fig. 6a is based on 10,000 frames and
100 million pulses which correspond to a mean acquisi-
tion efficiency of 2.5% at an optical thickness of 2.1. This
number is a result of the small lens used in our experiment,
low photo-sensitive fill factor in the SPAD camera (order of
1%), laser power, and laser repetition rate. Future hardware
improvements along these axes may improve the measure-
ment efficiency and reduce the acquisition time.

To further explore the dependency on the number of
measured photons (directly related to acquisition time) we
reconstructed the ‘E’s dataset using different numbers of
measured frames; Fig. 6b,c shows the result. We note that
for low fog densities it is possible to use less frames and re-
cover with similar accuracy. However, as the concentration
increases it is less likely to measure photons from the far
targets and more photons are needed. Since part of the al-
gorithm is estimating the properties of the fog, it is possible
to adapt the acquisition time to work as fast as possible for
a given level of fog. We leave this to a future work.

Another alternative is to use more photon efficient al-
gorithms. We note that the model in Eq. 3 includes six
parameters. To make the estimation process more robust,
our pipeline decouples the estimation of these parameters
to four steps based on the physical nature of the problem.
In a future work, we plan to develop an expectation maxi-
mization algorithm to estimate these six parameters directly
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Figure 6. Effect of the number of measured photons on reconstruction quality. a) Number of measured photons as a function of optical
thickness for targets at different depths between 42 to 62cm and a background region. b) Reconstruction quality (SSIM and PSNR) for a
different number of frames, evaluated on the ‘E’s dataset. c) Several example reconstructions using a different number of frames (rows)
and at different fog concentrations (columns). As the fog becomes denser, more photons are required to accurately recover the far objects.

from the photon counts along with the distribution to which
each photon belongs to. This approach would potentially
be more photon efficient. A maximum likelihood approach
was used in [21] to reject background from signal with a
few single photon measurements when the statistics of the
background and signal were known a priori (this is simi-
lar to estimating r in our case with a priori knowledge of
background and signal statistics).

7.5. Sources for Model Miss Match

Several aspects were neglected from our model:
Noise: As mentioned before, the dark counts in

our experiments are negligible compared to the signal. Fu-
ture work aiming at more photon efficient acquisition would
have to take dark counts into account.

Absorption: The model essentially treats absorp-
tion as any other optical loss in the system. Since the model
only takes into account measured photons, it is invariant to
the number of actual photons sent to scene. Thus, absorp-
tion and other losses are irrelevant to the reconstruction pro-
cedure and would only affect the total acquisition time.

Gamma distribution: The model developed in
section 3 assumes that k, the number of scattering events
before detection, is a constant parameter similar to µs. In
practice k is a random variable that is realized per pho-
ton detection. A more accurate approach would model the

background as fT (t|B) =
∞∫

k=1

fG(k, µs)fK(k)dk where

fG(k, µs) is a Gamma distribution and fK(k) would model
the probability of a photon undergoing k scattering events
before detection. In practice, we find that our simpler model
is able to capture the time-resolved scattering accurately
enough, especially in dense fog, as can be seen in Fig. 2.

7.6. Scaling to Real World Use Cases

Several aspects of the problem have to be taken into ac-
count when considering real world applications of the sug-
gested approach:

Scene scale: Consider a specific concentration of
fog in our chamber. When the chamber volume increases,
the fog concentration reduces. Thus, the number of scatter-
ing events remains the same while the mean free path in-



creases. However, as the distance between scattering events
increases, the spatial nature of scattering would become
more significant. That would require detectors with higher
spatial resolution and the consideration of the space-time
scattering profile discussed above.

Time resolution: While the required spatial reso-
lution for larger scale scenes is higher, the demand for time
resolution decreases. As mentioned above, the required
time resolution is a function of the scattering distribution
standard deviation which would become larger. Thus the
main constraint on time resolution would come from the re-
quirement for accurate depth resolution.

Use of existing hardware: The development of LI-
DAR systems for self-driving cars is an ongoing process.
Some of these systems are based on pulsed illumination
with time gating for depth mapping and are usually based
on raster scanning. This is very similar to a single pixel in
the hardware used here.

8. Conclusions
The presented approach provides a computational imag-

ing probabilistic framework for seeing through dense, dy-
namic, and heterogeneous fog. The technique provides
an image and a depth map of an occluded scene and was
demonstrated on a wide range of optical thicknesses, where
the scattering mean free path is much smaller than the scene
dimensions. The hardware requirements of the suggested
system are similar to LIDAR, making it suitable for various
imaging applications.
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