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Abstract: Time-sensitive parcel deliveries—shipments requested for delivery in a day or less—are
an increasingly important aspect of urban logistics. It is challenging to deal with these deliveries
from a carrier perspective. These require additional planning constraints, preventing the efficient
consolidation of deliveries that is possible when demand is well known in advance. Furthermore,
such time-sensitive deliveries are requested to a wider spatial scope than retail centers, including
homes and offices. Therefore, an increase in such deliveries is considered to exacerbate negative
externalities, such as congestion and emissions. One of the solutions is to leverage spare capacity in
passenger transport modes. This concept is often denominated as cargo hitching. While there are
various system designs, it is crucial that such a solution does not deteriorate the quality of service of
passenger trips. This research aims to evaluate the use of mobility-on-demand (MOD) services that
perform same-day parcel deliveries. To test the MOD-based solutions, we utilize a high-resolution
agent- and activity-based simulation platform of passenger and freight flows. E-commerce demand
carrier data collected in Singapore are used to characterize simulated parcel delivery demand. We
explore operational scenarios that aim to minimize the adverse effects of fulfilling deliveries with
MOD service vehicles on passenger flows. Adverse effects are measured in fulfillment, wait, and
travel times. A case study on Singapore indicates that the MOD services have potential to fulfill
a considerable amount of parcel deliveries and decrease freight vehicle traffic and total vehicle
kilometers travelled without compromising the quality of MOD for passenger travel. Insights into
the operational performance of the cargo-hitching service are also provided.

Keywords: same-day delivery; agent-based simulation; city logistics; urban freight; mobility-on-
demand

1. Introduction

The rapid growth of e-commerce deliveries over the last decade is bringing about
changes to the freight transportation sector. E-commerce retail sales in the U.S. represented
4% of the total retail sales in 2010, rising to 11.8% in 2020 [1] and the rate of e-commerce
adoption increased during the COVID-19 pandemic [2] with a potential lasting effect. An
increase in e-commerce-derived shipments leads to the “fragmentation” of shipments, since
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these shipments are smaller and spatially/temporally more spread out than conventional
business-to-business (B2B) shipments [3]. Moreover, express services for e-commerce
deliveries [4] and high return rates contribute to process inefficiencies and can lead to
greater negative externalities, such as congestion and higher emissions. For example,
in Germany, 77% of shoppers have returned products and one third of all distributors
have average return rates of over 20%, partially due to incentives such as “free-of-charge”
returns [3].

Transportation modes that serve trips performed by individuals often have spare
capacity, which can be used for freight. This concept is referred to by various terms,
including cargo hitching [5,6], combined people-and-freight systems [7], and short-haul
integration [8]. Examples of cargo hitching include using the spare capacity of public trans-
portation, such as rail and bus, for replenishing the inventories of retail stores and using
taxis or mobility-on-demand services to transport freight/parcels [8]. Crowd logistics or
crowd sourcing is another a type of cargo-hitching scheme. Its crux is the use of occasional
carriers with spare capacity to perform some task (e.g., freight pickups/deliveries), or in
other words, it involves outsourcing tasks originally performed by a company to a large
pool of individuals [7].

Cargo hitching offers a potential solution to deal with increased parcel delivery
demand. In long-haul transportation, the joint use of passenger and freight modes is
common, such as with airplanes and ferries. On the other hand, there are still limited
examples of cargo hitching in urban environments. Van Duin et al. [9] discussed a series
of urban cargo hitching initiatives across Europe and in India. The authors highlight the
promising benefits of cargo hitching, while they also point out the uncertainty about its
long-term viability due to a lack of an understanding regarding viable business models.
Recent real-world applications of cargo hitching came to the spotlight during the COVID-19
pandemic, where mobility-on-demand (MOD) services, provided both by transportation
network companies (such as Uber, Lyft, Grab, etc.) and conventional taxis, were used to
increase the capacity of logistics services to support grocery deliveries [10,11]. It is plausible
that the MOD system is comparatively better suited to handling time-sensitive deliveries
than conventional freight vehicle delivery tours. However, several questions, such as “how
much freight can be moved by the MOD system with cargo hitching?” and “what are the
potential impacts of cargo hitching on the level of service for passengers?” remain to be
answered in the context of the viability concerns raised by Van Duin et al. [9]. The critical
challenge for cargo hitching is that it should not cause the quality of passenger services
(travel and waiting times) to deteriorate [8]. Furthermore, the acceptance of a delivery task
is subject to specific factors relevant to the transporting and receiving parties [12–15]. The
case can be made for a specific type of shipment, such as parcels, which are typically small,
lightweight, and can be carried without special equipment. We use the term “parcel” to
refer to shipments suitable for cargo-hitching services and focus on such shipments.

In this paper, we aim to partially address these questions by studying the application
of cargo hitching to MOD vehicles using detailed microsimulation models of passenger and
freight demand and network congestion/supply, exploring how operational assumptions
and constraints, i.e., how shipments are assigned to MOD trips, influences passenger travel
and dedicated freight-vehicle flows. We use the term MOD hereafter to refer to services
provided for using single- and shared-ride taxi services.

This paper contributes to the existing literature on cargo hitching in the following
respects:

(1) By applying an agent-based simulation framework to systematically investigate the
impacts of cargo hitching from the perspective of passengers, carriers, and planners.

(2) By performing extensive simulations to understand how different assignment strate-
gies of freight demand to MOD vehicles impacts the flow of freight and passengers.

The simulation framework includes the detailed modelling of MOD services on the
demand/supply sides, explicitly capturing demand–supply interactions. Simulations
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are performed using a city-wide model of Singapore, yielding insights for both carriers,
shippers, MOD operators, and planners.

2. Literature Review

This literature review focuses on the application of cargo hitching to taxis and MOD
services, although there are other application domains for cargo hitching, such as appli-
cations involving users of public transport [16–19] or private cars [13,20]. Moreover, we
focus on business-to-consumer flows, despite the existence of research on reverse freight
flows, such as returned parcels [21]. Our focus on the application of pairing parcels and
MOD is due to the rise in e-commerce, MOD, and express shipping services (e.g., Grab
Express, Uber Connect, GoSend, and DiDi Delivery).

Li et al. [22] introduced a new class of models, termed the share-a-ride problem (SARP),
which extends the classical dial-a-ride problem (DARP) formulation to the case where
people and parcels are transported by a fleet of taxis with passenger priority. Solution
algorithms are proposed for two cases, the first where passengers and parcels are considered
simultaneously, and the second where freight is inserted into pre-computed passenger
travel routes. The authors use synthetic freight data in a San Francisco case study, and their
results highlight the influence of the spatial distributions of requests on fleet performance
(and thus profitability), with sharing strategies being fitted for denser urban areas. Nguyen
et al. [23] demonstrated the benefits of sharing by applying two matching algorithms for
deploying taxis serving passengers and parcels with the objective of finding valid service
options that achieve maximum profit. The authors considered a static case where all
demand is known in advance under a direct-demand-serving strategy and a shared-ride
strategy. The study shows that, even when a match rate is small (about 8%) in a shared-ride
strategy, there are some savings compared to the direct-demand service across a range
of indicators, such as cost, travel distance, and the number of taxis required to move
parcels. However, no comparison with the case in which freight is served by conventional
vehicles is provided. Chen et al. [24] presented a method to explore the potential for
chained taxi trips to move parcels, with stopovers at package interchange stations, which
are 24-h convenience stores. Their case study used synthetic freight demand in Hangzhou,
China. Taxis were assigned exclusively to parcel movements during off-peak hours and
before passenger pickup and after passenger drop-off. Furthermore, the authors mentioned
that incentives were required for taxi drivers to participate in the initiative, which might
limit the practical feasibility of this proposed solution. Najafabadi and Allahviranloo [25]
developed an algorithm to match taxis and delivery requests in a real-time dynamic setting,
aiming to minimize distance travelled, transportation cost, and the number of vehicles
used. They used parcel delivery demand estimated based on a household travel survey.
Benefits were identified for some scenarios; however, in these scenarios, passenger travel
times increased by 8% to 13% but have inversely proportional cost savings due to the
sharing setting.

In summary, there are several gaps in existing studies in the context of a systematic
evaluation of cargo hitching. First, they do not explicitly compare the performance of the
cargo-hitching service against the case where e-commerce demand is served by dedicated
freight vehicles. This is crucial in order to understand the broader impacts on network con-
gestion, emissions, and the environment. Moreover, such a comparison requires demand
and supply models that replicate the spatial-temporal characteristics of passenger and
freight demand. Parcels are typically transported in multi-stop delivery tours rather than
in dedicated trips, which can influence the relative performance of freight vehicles. Second,
existing studies do not realistically model network congestion, nor do they examine the
impacts on network performance. The latter can be explored from the perspective of
the transportation planner or the passengers, both of which are important aspects of the
cargo-hitching service that warrant investigation.

We attempt to address these gaps by carrying out a systematic evaluation of cargo
hitching, using detailed agent- and activity-based models of passenger and freight demand
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and supply that realistically represent passenger and freight flows. We consider a set
of realistic scenarios regarding the assignment of parcels to the MOD vehicles, such as
only using MOD vehicles when the freight demand does not compete directly with the
passenger demand, or sharing a ride but picking up the parcel before the passenger and
dropping it off after the passenger alighted. These could be viewed as additional constraints
(in addition to passenger priority) employed to ensure that passenger service does not
significantly deteriorate.

3. Simulation Framework

The evaluation of the network-wide impacts of cargo hitching requires a high-fidelity
simulation framework that models freight and passenger demand, supply, and their
interactions. We use an agent- and activity-based simulation platform called SimMobility,
which integrates disaggregated behavioral models at multiple time scales in a consistent
and coherent manner, and simulates both urban freight and passenger travel and activity
patterns [26,27]. The overall framework of the SimMobility platform is shown in Figure 1a,
which consists of freight and passenger simulators organized into three models: long-term,
mid-term, and short-term models.

The long-term model captures land use and economic activity as they are related
to a set of longer-term decisions (residential choice, workplace choice), which are more
stable in time [28,29]. Households and individuals are considered as well as businesses
(i.e., commodity flows [30]), including the overnight parking choices of freight vehicles [31].

The mid-term model simulates passenger and freight mobility patterns for an average
day through three components: the pre-day, within-day, and supply components (see
Figure 1b). On the passenger side, the pre-day component simulates individual activities
and travel patterns using an activity-based demand model. The activity and travel plans
are then executed in the within-day and supply components. The within-day component
simulates departure time and route-choice decisions, as well the response of travelers
to information and other events, following which the supply component simulates their
movement on a multimodal network using a mesoscopic traffic simulator. The supply
component also includes explicit models of fleet operators, termed controllers. On the
freight side, the pre-day component simulates logistics planning decisions that generate
the vehicle tours of carriers, whereas the within-day component simulates freight vehicle
operations, such as route choice and pickup/delivery parking choice [32]. The detailed
tours and movements of the freight vehicles, together with the passenger movements, are
then simulated on the network using the mesoscopic traffic simulator at the supply level.
The details of the mid-term model are available in Lu et al. [33]. The mid-term model was
also used in past studies [34–36]. We describe the part of the model relevant to this research
in Section 3.

Finally, the short-term model is a traffic micro-simulator, simulating network perfor-
mance at a granularity of milliseconds through behavioral models of vehicle movement. It
also models traffic control and management systems, as well as communication networks.
Azevedo et al. [37] provide the details of the model.

In this paper, we primarily use the mid-term model, whose components are described
in more detail next.
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3.1. Mid-Term Pre-Day Component

As noted previously, the pre-day module generates transportation demand for pas-
senger and freight in the form of detailed activity schedules. On the passenger side, the
pre-day model is an activity-based model system that uses the day-activity schedule ap-
proach [38]. The activity-based model system is formulated as a hierarchical series of logit
and nested-logit discrete choice models organized into three levels: the day-pattern level,
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the tour level, and the intermediate stop level. Bottom-level decisions are conditional on
top-level decisions, and the levels are related through logsums (expected maximum utility).
The day-pattern level predicts the occurrence of tours, which are anchored around primary
activities and intermediate stops (i.e., secondary activities) of various purposes (including
work, education, shopping, and other). The tour level then predicts the details of each
tour generated at the day-pattern level, specifying tour characteristics, such as the start
time and end time of the primary activity, activity location, and travel mode. Following
this, the stop level generates the intermediate stops for each tour and specifies the details
of each intermediate stop (including location, duration, and mode). The various levels in
conjunction determine a detailed travel and activity pattern or schedule for everyone in
the population [39].

A similar type of schedule is constructed for each freight vehicle, with activities
consisting of pickups, deliveries, and/or overnight parking. On the freight side, the
pre-day component handles the conversion of shipment demand to vehicle tours. It is a
system of models that simulates shipping requirement definition, time-window selection,
carrier selection, and vehicle operation planning. These models take as inputs a list of
commodity contracts (i.e., selling and purchasing policies), which include the information
concerning the commodity type, shipper–receiver pairs, delivery frequency and weight,
and provides a shipment list to be handled in an average day. Carrier selection is modeled
using a multinomial logit model that considers the travel distance from the supplier and
the carrier. Further, a distinction is made between carriers that deal with parcel and non-
parcel shipments. Vehicle operation planning is performed at the carrier level, assigning
shipments to vehicles, and forming tours. The output—vehicle operation plans (VOPs)—
include details such as planned stop locations, arrival and departure times, and stop
purposes (overnight parking, pickup, or delivery). These plans, outlining vehicle tours,
are used as the inputs for a mesoscopic traffic simulation. Note that the pre-day models
were initially designed to deal with B2B shipments, whereas, for this paper, we simulate
scenarios that also consider business-to-consumer (B2C) shipments. The generation of B2C
shipments is described in Sections 4.1 and 4.2. When no cargo-hitching service is in place,
the B2C shipments are added to the B2B demand pool, which is assumed to be exclusively
transported by businesses defined as parcel carriers. In contrast, when a cargo-hitching
service is operating, the B2C shipments are handled by the MOD service to the maximum
extent possible, and otherwise by parcel carriers.

3.2. Mid-Term Within-Day and Supply Components

The pre-day component described previously generates activity schedules for both
passenger and freight, which are translated into actions in the within-day and supply
components using a plan–action approach [40]. Specifically, on the passenger side, the
within-day component includes models of departure time choice, route choice, and mode
shift/re-scheduling models in response to real-time information. On the freight side, the
within-day component includes models of route choice and pickup/delivery parking
choice. Following this, the supply module simulates the trajectories of passengers and
freight vehicles on an integrated multi-modal network. The supply component includes
a mesoscopic traffic simulator, which models traffic dynamics using a combination of
macroscopic speed–density relationships and a deterministic queuing model, and together
capture spill-back effects and the dynamics of congestion propagation and dissipation
on the network [34]. The mesoscopic traffic simulator is integrated with controllers that
replicate the operation fleet managers (bus, train, and mobility on-demand services).

The controller for MOD, termed the smart mobility service controller (SMS controller)
simulates all relevant aspects of the operations of an on-demand service (including process-
ing requests, assigning vehicles to requests, dispatching, routing, and rebalancing). More
specifically, passengers send ride requests in the form of an origin and destination. The
SMS controller processes these requests periodically during the simulation and performs
vehicle assignments for the individual requests online (i.e., customer demand is not known
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a priori). For the matching of requests to vehicles, an insertion heuristic is used, which
maintains a schedule for each vehicle and attempts to insert incoming requests into the
existing schedules of nearby vehicles within a pre-specified search radius equal to 5 km,
to ensure that waiting times and travel times of all passengers are within pre-defined
thresholds (15 min for maximum wait/travel times). More details of the matching heuristic
may be found in [39,41,42]. Minor modifications are made to the matching heuristic to
model the cargo-hitching service. We defer this discussion to Section 4.2, where additional
assumptions underlying the cargo-hitching service and the various scenarios are described.
Finally, additional actions of the controller include rebalancing idle vehicles (i.e., to zones
of higher demand) or directing these vehicles to suitable parking or holding locations.

3.3. Demand–Supply Interactions

The interactions between demand and supply are explicitly considered through two
iterative learning mechanisms, day-to-day and within-day learning, which involve per-
forming several iterations (or runs) of the pre-day, within-day, and supply simulations
to achieve consistency (or equilibrium) between demand and supply, measured by the
travel time and waiting time discrepancies (expected vs. realized), which must lie within a
pre-specified tolerance level. A simple method of successive averaging of the travel time
and waiting times is used in the iterative process to achieve consistency.

4. Experimental Design

This section details the SimMobility application to the city-state of Singapore, the
simulation setup, the scenarios, and the metrics used to quantify system changes.

4.1. Application to Singapore

The simulations of cargo hitching are performed by applying SimMobility to a future
scenario of Singapore in 2030. The synthetic population of Singapore for 2030 (6.7 million
individuals) was generated using a Bayesian approach [43] based on socio-economic data,
land-use data, and relevant control totals (see [29] for details on the population synthesis).
The pre-day demand model for 2030 relies on a calibrated, activity-based model system
for the year 2012 (that matches observed tour/stop generation rates, activity shares, and
modes closely) estimated using household travel survey data [33,39]. This model was
enhanced with the MOD modes by assuming a similar utility specification of taxis and
by calibrating relevant alternative specific constants and scale parameters of the mode
and mode–destination choice models against aggregate data on the usage of single-ride
and shared-ride MOD modes [42]. The calibration and validation also included matching
simulated outputs to observed screen-line counts, public transit smart card data, and
network travel times (for more details on the model calibration, the reader is referred to
Oh et al. [39]). The freight model is calibrated against 2012 screen-line traffic count data,
applied to the predicted presence of business establishments in 2030, considering land-use
plans and employment growth as well as available vehicle fleets. The road and transit
networks of the year 2030 in Singapore consist of 1169 zones, 6375 nodes, 15,128 links,
730 bus lines covering 4813 bus stops, and 26 MRT (rail) lines over 186 stations. The road
network is shown in Figure 2. The generation of the parcel demand is described later in
Section 4.1.2.
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4.1.1. Passenger Demand and Supply

Table 1 summarizes the passenger demand by mode for 24 h, as reflected in the
simulation. Accordingly, the total number of passenger trips is 8,991,057 for various
activities such as work, education, shopping, and ‘other’. Of these, 21% are private vehicle
trips by car and taxi, while public transit trips make up 48.5% by bus and/or MRT. Note
that passengers have access to the MRT station by foot, bus, or MOD. Regarding the on-
demand services, the passenger demand for MOD is composed of 576,786 trips over the
24-h period (a mode share of 6.4%). The temporal distribution of MOD demand is shown
in Figure 3. It shows a typical commuting pattern with demand surges in the morning and
afternoon peak periods. Requests for shared rides represent 27% of total MOD requests. For
details of the mode choice models, we refer the readers to Oh et al. [39]. The average travel
times and distances for MOD single and shared rides are 13 min/12 km and 17 min/15 km,
respectively.

Table 1. 2030 passenger demand by mode in the 24-h simulation.

Mode Number of Trips Mode Share (%)

Private vehicle trips
Car/carpool 1,686,226 18.75

Taxi 194,616 2.16

Public transit
Bus 2,187,407 24.33

MRT 2,173,895 24.17

Mobility-on-demand
(MOD)

Single 419,129
6.40

Shared 157,657

Other (i.e., walking, private shuttle) 2,172,127 24.16

Total 8,991,057 100.00
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4.1.2. B2B and B2C Shipments

The SimMobility version used for this experiment simulates B2B shipments. Our
models have been calibrated against traffic counts. For the purposes of this paper, we have
generated a set of same-day parcel deliveries (B2C shipments) which are added to our base
demand composed of B2B movements. A maximum of 67,000 same-day parcel deliveries
were generated. They are equivalent to 34% of total present-day daily e-commerce delivery
demand [44], 12% of the total MOD requests, and 43% of the total shared MOD requests
in the simulation setting. This demand was defined using preliminary simulations which
determined that 67 K is the maximum B2C demand that can be satisfied (the fleet of MOD
vehicles is fixed) under the cargo-hitching scenarios we considered. Leftover demand,
which occurs for one scenario, is assumed to be handled by conventional freight vehicles,
since it is assumed that all the B2C demand is to be served in the same day. Moreover, we
note that this experiment does not explicitly model other types of B2C deliveries, such as
ready-to-eat food deliveries. We acknowledge that these would add to the total demand
but nonetheless remain constant across scenarios.

Parcel demand is obtained by randomly sampling delivery requests from e-commerce
delivery records of an anonymous large parcel delivery carrier in Singapore. Data were
collected for the year of 2019, with the sample covering around 1 month of delivery records.
Packages ranged in size, with a maximum of up to 50 cm3 boxes. Sampling took place
for the spatial (i.e., origin, destination) and temporal (i.e., delivery time) attributes of the
shipments, while the generated parcel demand was validated to be representative and em-
pirically reasonable with regards to the spatial and temporal distribution of demand. The
information about the delivery time-windows is lacking in the records. Thus, we assume
that the realized delivery time is the request time. The assumed temporal distribution of
parcel requests to the MOD vehicles is shown in Figure 4.

An illustration of the resulting freight vehicle trips handling the predicted B2B and
B2C same-day shipments without cargo hitching, is shown in Figure 5. The total number
of trips is 1.18 million.
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4.2. Scenarios

Here, we define the cargo-hitching scenarios that involve the MOD fleet that serves
passenger and same-day parcel deliveries, and which vary according to the operational
configurations of the MOD service. In all scenarios, the MOD fleet size is assumed to be
equal to 22,680. The fleet size is set to ensure a high request satisfaction rate for passenger
requests, high vehicle utilization during the peak period, and reasonable waiting times,
based on preliminary simulations with varying fleet sizes. Specifically, 96% of the total
passenger MOD demand (described in Section 4.1.1) is served, with 48% of requests being
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served in 5 min or less and 85% of requests served within 10 min, and with around 70–80%
of vehicles utilized during the peak period.

For a comparison with the existing MOD fleet size, the number of private hire vehicles
in Singapore in 2019 is 45,000 [45]. These vehicles are not operating 24 h a day or during
the same period, but with drivers only working for a few hours a day. In our scenarios,
vehicles are assumed available 24 h a day. Thus, our fleet size assumption is a plausible
representation of present-day fleets. The following settings are made for simplifying the
simulations of the MOD fleet:

• While passenger mode choices consider modal costs explicitly, the vehicle assignment
process, to either a passenger or a parcel, does not consider delivery/ride fees. In
other words, real-time effects of spatial demand and supply imbalances on ride prices
(i.e., dynamic pricing or surge pricing) are not modeled.

• The assignment follows an online approach (i.e., real time), and demand is not known
to the SMS controller prior (described in Section 3.2); thus, the controller does not repo-
sition vehicles considering expected or anticipated demand. Vehicles are initialized at
the parking locations distributed across the network.

• The SMS controller handles both non-shared and shared ride requests, and the choice
of a single or shared ride (made by the individual user) is determined by the demand
models. Each ride request is assumed to be for a single passenger.

• A maximum waiting time threshold is 10 min for requests by passengers (the waiting
time constraint within the insertion heuristic is described earlier in Section 3.2). The
requests that remain in the booking system for longer than this threshold default to
“failed” and these passengers are assumed to use public transit.

• A parcel takes the space equivalent to that of a passenger seat.

The operational scenarios are defined as follows:

• Baseline (Base): The SMS controller only serves passenger trip requests for single/
shared-ride services. All parcels are handled by conventional freight vehicles.

• Shared (SHR): Parcel delivery requests to the SMS controller are considered for shared
rides but a passenger must already have been assigned to the vehicle for a parcel
request to be accepted. Additional requests up to the fulfilment of vehicle capacity
can be accepted at any point of the ride subject to the constraints associated with
the waiting time of the new passenger and the detour to the passenger(s) in the
vehicle (tolerated delay) and those already scheduled for pickup (waiting time and
tolerated delay).

• Shared and idle (SHR+IDL): This is a variant of SHR where, if no match to a shareable
passenger ride can be found and idle MOD vehicles are able to accept the parcel
delivery request, they will carry the parcel. In more detail, for an assignment cycle
(set to 10 s), the SMS controller will review pending requests, and if parcel delivery
requests cannot be assigned to a shared ride (subject to criteria listed in SHR), and any
vehicle has not been assigned any request for 1 min or more, those vehicles are eligible
to serve the parcel delivery request subject to its distance to the parcel origin. The
maximum distance a vehicle will travel to serve a request is subject to the acceptable
waiting time specified for parcel delivery requests, and a random vehicle is selected if
there are more than one available under this threshold.

• Shared and restricted idle (SHR+RIDL): This is a variant of SHR+IDL aiming to
minimize the impact of idle vehicle assignments on passenger rides. For this, parcel
delivery services using idle vehicles (i.e., without any passenger) are limited to non-
peak periods (i.e., the periods except for the morning (7:00 a.m.–10:00 a.m.) and
evening (4:00 p.m.–9:00 p.m.) peaks). Furthermore, for passengers not to experience
any stopover for parcel pickup or delivery, parcels are only picked up before the first
passenger ride and dropped off after the last passenger for that ride bundle.
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4.3. Metrics

The following metrics are used to evaluate the relevant impacts on the mobility system,
considering the perspectives of multiple agents:

• MOD passengers: requests served, travel time, and waiting time from the request for
a ride.

• Shippers: requests (parcels) served and waiting time from the request to pick up.
• Carriers: freight vehicle drivers’ total driving time (vehicle hour traveled, or VHT)

and vehicle kilometers traveled (VKT).
• MOD operator: total demand served, VKT, vehicle utilization (% in time).
• Network performance: VHT, VKT, and travel time index, defined as the ratio of

simulated travel time to free-flow travel time.

5. Results

In this section we summarize the simulation results for each scenario. The displayed
results are averages of outputs from three simulations in each scenario to account for the
simulator stochasticity. First, looking at the MOD passengers in shared rides (Table 2),
which are used for cargo hitching, there is a small decrease in passenger requests served
(between 1% and 2%), with the higher decrease in the SHR+IDL scenario where the
assignment of parcels to idle vehicles is unrestricted. Travel times, which consider the
flows of all other vehicle types (both passenger and freight vehicles) in the network, change
little in the peak period (2% to 3%), but can increase by up to 2 min in the midday period,
which is expected, considering the additional freight parcel deliveries being fulfilled.
Waiting times have small increases in the order of seconds (1% to 4%).

Table 2. Metrics for MOD Shared-Ride Passengers.

Metric Baseline SHR SHR+IDL SHR+RIDL

Requests served (thousands) 152 151
(−1%)

149
(−2%)

151
(−1%)

Avg. peak travel time (minutes) 22.5 22.9
(+2%)

23.0
(+2%)

23.3
(+3%)

Avg. midday travel time
(minutes) 13.4 14.4

(+7%)
15.0

(+10%)
15.5

(+14%)

Avg. peak wait time (minutes) 5.5 5.7
(+4%)

5.8
(+4%)

5.8
(+4%)

Avg. midday wait time
(minutes) 4.6 4.7

(+1%)
4.7

(+1%)
4.8

(+2%)

Figures 6 and 7 illustrate the vehicle status and utilization over time and the statistics
concerning the relation between requests and their fulfilment, respectively. In Figure 6,
we can see that the use of idle vehicles (SHR+IDL and SHR+RIDL) leads to a decrease in
the number of vehicles parked during the period between the passenger demand in the
morning and evening peaks. Moreover, in Figure 6, we can see how the restrictions to the
assignment of idle vehicles to freight during the peak period leads to a decrease in the
fulfilment of freight during this period. However, the cyan line (“Drive with freight”) is
not completely eliminated due to vehicles already handling demand and circulating in the
network, and due to the status of the vehicle being changed to “Drive with freight” once
all passengers in a shared ride have left the vehicle. This helps to achieve a more efficient
fleet usage (green line, “Parked”). In Figure 7, the use of idle vehicles between the peaks
for moving freight is seen for all scenarios except the baseline scenario. This is possible
due to the complementarity between the demand profiles. Lastly, in Figure 7, the gap
between demand and supply for SHR can be seen in the gap between the cyan (“Request
for freight”) to purple (“Pick up freight”) lines. Using the idle vehicles in SHR+IDL and
SHR+RIDL leads to a nearly complete match, except during the evening peak, which is
compensated post peak, particularly for the SHR+RIDL scenario.
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The number of additional requests handled by the MOD service is shown in Table 3,
which illustrates the metrics for shippers and carriers. The baseline scenario shows “not
applicable” for shippers, given that the MOD service is used to assist shippers with
deliveries. The SHR scenario only allows for handling a comparatively smaller number
of freight deliveries—34 K instead of 67 K for SHR+IDL and SHR+RIDL. Waiting times
for pickups vary between scenarios. Larger waiting times are seen for the morning and
midday periods in the SHR scenario, since a match with a shared ride needs to take place.
However, in SHR+IDL and SHR+RIDL, waiting times in the morning peak and midday
periods decrease substantially. In the evening peak period, for SHR+IDL, if no sharing
match can be found at the time of the request, the matching algorithm defaults to looking
for an idle vehicle. However, demand for passenger transport is high in the evening peak,
and compared to the SHR scenario, SHR+IDL is dealing with twice the number of requests.
Thus, on average, the time taken to serve each request increases. This can also be observed
in Figure 6, where it is visible that all vehicles are busy during the evening peak, and in
Figure 7, where, as the evening peak ends, there is a peak in the number of freight requests
being served due to a backlog. For SHR+RIDL, the peak periods are restricted for passenger
trips, and thus the waiting times for parcel deliveries increases even more since it does not
allow using any potential vehicle that has not been assigned a request right away. Note
that the passengers’ waiting times remained within the reasonable boundary across the
scenarios as shown in Table 2. Additionally, as expected, the driving time and distance
traveled by the carriers decreased by between 3% and 6% due to the offloaded demand to
the MOD service.
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Table 3. Metrics for Shippers and Carriers.

Agent Metric Baseline SHR SHR+IDL SHR+RIDL

Shippers

Requests served (total, thousands) NA 93.4 17.3 14.5
Avg. morning peak wait time (minutes) NA 94.3 27.5 23.6

Avg. midday wait time (minutes) NA 23.8 55.7 109.4
Avg. evening peak wait time (minutes) NA 93.4 17.3 14.5

Carriers
VHT (thousands) 376 360

(−4%)
357

(−5%)
355

(−6%)

VKT (millions) 19.0 18.4
(−3%)

18.2
(−4%)

18.1
(−5%)

Note: NA—Not Applicable.

For the MOD operator (Table 4), results show that leveraging the extra capacity of
vehicles allows serving up to 11% more additional requests (summing passenger and
freight requests). However, this is inefficient, illustrated by the respective increase in
distance travelled (17%). Still, this is not surprising, as a freight vehicle tour can handle
comparatively more parcels, and we assumed one parcel would take up the equivalent of a
passenger seat. Still, the potential for performing parcel deliveries as a means to reduce the
discrepancy in vehicle usage between peaks and the midday period is evident. Increases in
midday vehicle utilization are due to the additional demand being handled, reaching up to
81% from the baseline case.
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Table 4. Metrics for MOD operator.

Metric Baseline SHR SHR+IDL SHR+RIDL

Total demand served
(thousands) 560 592

(+5%)
624

(+10%)
626

(+11%)

VKT (millions) 1.9 2
(+5%)

2.3
(+17%)

2.3
(+17%)

Avg. vehicle utilization during
peak hours 77% 80%

(+4%)
87%

(+13%)
83%

(+8%)
Avg. vehicle utilization during

the midday 42% 53%
(+26%)

76%
(+81%)

76%
(+81%)

With regards to network performance (Table 5), the shift of parcel delivery demand
to MOD vehicles results in a small reduction in total VKT by MOD and freight vehicles,
which leads to modest improvements in congestion levels. The average travel time index
(distance-weighted TTI) remains around 1.5 over 24 h. It increases significantly during the
peak periods up to around 2.6 to 2.7, but with negligible change relative to the baseline.
The main reason for a small VKT saving is hypothesized to be related to some of the
underlying assumptions of the analysis. For example, a maximum of four parcels can be
matched with a vehicle as it is assumed that a parcel takes up the space of a passenger.
Given all other constraints, this results in the reduction in the VKT by freight vehicles
being counteracted by the increase in the VKT of MOD vehicles. We expect that when
not carrying passengers, the MOD vehicles could be assigned more parcels to reduce
the efficiency gap between these and the conventional freight vehicles that can carry
more parcels. Moreover, the assumption about freight carriers knowing all demand in
advance, works to their advantage in these results. It can be argued that the service is
useful in instances of “immediate deliveries” that do not allow for efficient consolidation
in freight vehicles.

Table 5. Network Performance.

Metric Baseline SHR SHR+IDL SHR+RIDL

MOD+Freight VHT
(thousands) 525 520

(−1%)
534

(+2%)
532

(+1%)

MOD+Freight VKT (millions) 27 26.5
(−2%)

26.6
(−2%)

26.5
(−2%)

Weighted TTI (24 h) 1.52 1.51 1.51 1.50
Weighted TTI (Peak) 2.72 2.64 2.67 2.65

6. Conclusions

In this paper, we apply an agent-based simulation framework to systematically in-
vestigate the impacts of cargo hitching when applied to MOD services. We considered
the perspective of passengers, shippers, carriers, and planners, while exploring a few
illustrative operational strategies, named shared (SHR), shared and idle (SHR+IDL), and
shared and restricted idle (SHR+RIDL). Results were distinct according to each strategy,
and an argument can be made towards the use of “idle” vehicles in addition to shared rides,
given adequate limits. Further, the results provided insights into the order of magnitude of
parcel movements that can be absorbed by an MOD system, as well as the impacts on the
quality of service for passengers and fleet usage. Overall, there are potential gains to be
made by delivering parcels using MOD vehicles, with minimal impact to passenger travel
and while reducing freight vehicle VHT and VKT, subject to operational settings. Despite a
small decrease in passenger rides, there is a net increase in the number of requests handled
by the MOD operator. This could be beneficial for drivers’ revenue, since there are more
service requests during a day. However, this is the case due to the demand profiles being
complementary to each other. This may or may not hold under future activity patterns of
e-commerce and telework adoption.
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The operational strategies, and hence the assignment method, were designed so that
the impact on the passenger service level was minimal, and results indicated that those
methods could fulfill this goal. However, our assumption regarding a parcel taking up a
passenger seat could have contributed to this. Had we assumed that more parcels could
be assigned to a vehicle, this could have led to higher impacts on the quality of service
for the passenger. Still, it should be noted that the assumed fleet size is equivalent to, or
smaller than, current MOD fleets in the study area. Thus, our estimates are considered
conservative in terms of vehicle availability for performing parcel deliveries. Moreover, as
previously mentioned, during idle periods, when passengers are less likely to be matched
with parcels, these vehicles could be assigned more than four parcels. This would further
add to reducing the efficiency gap that led to a minimal saving in network-level VKT.
Lastly, the experiment assumed that when the parcels are assigned to carriers, adequate
time is given to plan for efficient tours, as they know all demand in advance. This might
not hold, as same-day demand comes throughout the day, which in this case provides
support for the arguments that speak in favor of the cargo-hitching service, although failed
assignments (and deliveries) would need adequate processes to be handled, such as by
dispatching a dedicated vehicle.

There are several improvements that we envision for future research. Regarding
simulation realism, we ought to first enhance the B2C freight demand scenario with
dedicated e-commerce demand models accounting for all B2C parcel demand, inclusive of
non-same day deliveries. The assumed total of parcel demand assigned to MOD vehicles is
expected to have different influences on the simulation results according to the operational
scenario. For shared rides, increased demand could have higher impacts on passenger
service levels. For cases using idle vehicles, we aim to quantify how varying the parcel-
carrying ability of the MOD vehicles can impact the savings of conventional freight VKT.
This is something we put forward to explore in the future. Regarding the analysis of
operational scenarios, there is potential to explore more sophisticated settings, such as
having a defined time to search for sharing matches and only then defaulting to using
idle vehicles, or allowing single rides to also move freight parcels if these are picked up
before the passenger and dropped off following the drop-off of the passenger. Lastly, the
application of the cargo-hitching concept to other modes, such as bus and metro, or even
upcoming alternatives, such as automated mobility-on-demand, could be worth exploring.
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