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Abstract—We present the first BLS12-381 elliptic curve pairing
crypto-processor for Internet-of-Things (IoT) security applica-
tions. Efficient finite field arithmetic and algorithm-architecture
co-optimizations together enable two orders of magnitude energy
savings. We implement several countermeasures against timing
and power side-channel attacks. Our crypto-processor is pro-
grammable to provide the flexibility to accelerate various elliptic
curve and pairing-based protocols such as signature aggregation
and functional encryption.

Index Terms—Elliptic Curve Cryptography (ECC), Pairing-
Based Cryptography (PBC), cryptographic accelerator, hardware
security, low-power, side-channel, Internet of Things (IoT).

I. INTRODUCTION

Elliptic curves are used as the de facto standard for tra-
ditional public key cryptography such as key establishment,
digital signatures, authenticated key exchange and public key
encryption [1]. Pairing-based cryptography (PBC), a variant of
elliptic curve cryptography (ECC), uses bilinear maps between
elliptic curves and finite fields to enable novel applications
beyond traditional key exchange and signatures [2]. Fig. 1
shows two such applications – (a) signature aggregation, where
arbitrarily large number of signatures are compressed into
one to resolve communication bottleneck in mesh networks
such as blockchain [3], and (b) functional encryption, which
allows computing on encrypted data with a function embedded
in the decryption key. In particular, pairing-based function-
hiding inner product encryption [4] allows computing the inner
product of two encrypted vectors. This can be used for simple
privacy-preserving data classification tasks, thus enabling a
new paradigm in the field of secure computation.

Only special pairing-friendly elliptic curves can be used
for pairing-based cryptographic protocols. The security of
commonly used BN-254 and BN-256 pairing-friendly curves
(based on 254b and 256b prime fields respectively) has been
compromised by recent advances in cryptanalysis [5]. The
BLS12-381 pairing-friendly elliptic curve, based on a 381b
prime field, has been recently proposed and is part of ongoing
standardization led by the Internet Engineering Task Force
(IETF) [5]. Along with strong security, the new curve also has
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Fig. 1. Two important applications of pairing-based cryptography.

higher computational complexity, thus making it challenging
to implement on low-power embedded devices. While previous
work [6]–[8] implement hardware for 254b and 256b BN
curves, efficient hardware accelerators for BLS12-381 are
largely unexplored. In this work, we present a low-power
BLS12-381 elliptic curve pairing crypto-processor, and this
is the first ASIC implementation supporting the BLS12-381
curve (extended version of [9]). Our design enables two orders
of magnitude energy savings through efficient hardware accel-
eration, implements countermeasures against timing and power
side-channel attacks, and provides flexibility to implement
various ECC and PBC protocols for IoT applications.

II. BLS12-381 HARDWARE IMPLEMENTATION

The pairing computation is a bilinear map e : G1 × G2 →
GT , where G1, G2 are elliptic curve groups and GT is a
finite field group. This map satisfies the bilinear property
e(aP, bQ) = e(P,Q)ab, where P ∈ G1, Q ∈ G2, a, b ∈ Z∗q , q
being the group order (a prime). This is the bilinear property
which enables novel pairing-based cryptographic protocols.
For BLS12-381, the groups G1 and G2 are based on elliptic
curves E(Fp) : y

2 = x3+4 and E′(Fp2) : y2 = x3+4 (1+α)
respectively and GT is based on the extension field F∗p12 ,
where p is a 381-bit prime and the order q of each group
is a 255-bit prime [5].

A. Finite Field Arithmetic

Software profiling indicates that big integer prime field
arithmetic, especially modular multiplication, accounts for
more than 90% of PBC computation cost. For BLS12-381,
we need arithmetic over the 381-bit prime field Fp (base field)
and the 255-bit prime field Fq (scalar field).

Our modular adder-subtractor design, shown in Fig. 2,
consists of a pair of cascaded 381b adder-subtractors. The
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Fig. 2. Design of modular adder-subtractor for Fp and Fq .

Fig. 3. (a) Area and energy consumption (measured at 0.66 V) of CIOS
Montgomery product in hardware with different word sizes, (b) Architecture
of our CIOS Montgomery multiplier with 64-bit words.

modulus can be selected between p and q using a multiplexer.
The most significant 126 bits of the data-path are gated
when operating over Fq instead of Fp. Modular reduction is
performed using conditional subtraction / addition in the same
cycle to avoid timing side-channel leakage.

Montgomery modular multiplication is standard for such
large prime fields. Previous work on pairing accelerators use
either high-performance parallel pipelined multipliers with
large area overhead [7], [8] or compact serial multipliers
with low energy-efficiency [6]. To balance area and energy-
efficiency, we implement Montgomery modular multiplication
using the coarsely integrated operand scanning (CIOS) ap-
proach [10]. Instead of computing multiplication and reduction
separately, CIOS performs both operations together in an
interleaved manner. Each input is split into s words of size w
bits. The core CIOS loop requires s(2s+1) and 2(2s2+2s+1)
multiplications and additions respectively, all with w-bit word
size. The final output needs to be adjusted from modulo 2p to
modulo p using a conditional subtraction, which is performed
in constant time using our single-cycle modular adder.

In order to identify the ideal word size for our application,
we have profiled CIOS hardware architectures with word size
w ∈ {16, 24, 32, 48, 64, 96} (with s = d 384/w e). Their area
and energy consumption are compared in Fig. 3a. Clearly, the
energy consumption saturates at 64b word size, with 50% and
25% lower energy than conventional 16b and 32b architectures
respectively. Therefore, we implement CIOS Montgomery
multiplication in hardware with w = 64 (⇒ s = 6), as shown
in Fig. 3b. We split zero-padded inputs into six 64b words and
operate on them iteratively using a 64b × 64b multiplier and a
128b + 64b + 64b adder, both utilizing carry-save structures
for shorter critical path delay.

We implement modular inversion using exponentiation fol-
lowing Fermat’s theorem [1], and inversion in Fp and Fq

require 608 and 417 modular multiplications (including squar-
ings) respectively.

Unlike traditional ECC, pairing computation also requires
arithmetic over extensions of the field Fp. For BLS12-381,
these are Fp2 = Fp[α]/(α

2 + 1), Fp6 = Fp2 [β]/(β3 − 1− α)
and Fp12 = Fp6 [γ]/(γ2−β) [5]. This construction of the form
Fp → Fp2 → Fp6 → Fp12 is known as towered arithmetic.
Extension field arithmetic over Fp2/Fp, Fp6/Fp2 and Fp12/Fp6

involves manipulation of polynomials with coefficients in Fp.
We speed up multiplications, squarings and inversions in these
extension fields by extensively using Karatsuba-style divide-
and-conquer techniques [2], which provides 35% reduction in
pairing energy consumption [11].

B. Elliptic Curve and Pairing Computations

We use homogeneous projective coordinates for all elliptic
curve point operations. To prevent side-channel vulnerabili-
ties, we employ optimized exception-free point doubling and
complete point addition formulas based on [12]. This ensures
that the implementation is constant-time and avoids any data-
dependent conditional executions.

Elliptic curve scalar multiplication (ECSM) is imple-
mented using the double-and-add-always algorithm to pre-
vent timing side-channel leakage [13]. Our implementation of
constant-time ECSM with a 255b scalar requires 4, 847M1 +
14, 025A1 + I1 (where I1 ≡ 608M1) for G1 and 4, 337M2 +
510S2 + 10, 200A2 + I2 (where I2 ≡ 4M1 + 2A1 + I1) for
G2, where A1 (resp. A2), M1 (resp. M2) and I1 (resp. I2)
denote additions / subtractions, multiplications / squarings and
inversions respectively in Fp (resp. Fp2 ). ECSM performance
can be improved by using standard pre-computation techniques
(memory-time trade-offs) such as windowing, comb, etc [1].

The two main components of pairing computation are Miller
Loop (ML) and Final Exponentiation (FE) [2]. The Miller
Loop consists of a series of line computations based on binary
representation of the curve parameter u. For our implemen-
tation of BLS12-381, their computation costs, in terms of
equivalent number of Fp multiplications, are 7, 050M1 and
8, 339M1 respectively. The overall pairing involves 15, 389
Fp multiplications and requires ≈3.4M cycles.

Many practical pairing-based protocols require evaluating
the product of several pairings, also known as multi-pairing:
n∏

j=1

e(Pj , Qj) = e(P1, Q1)× e(P2, Q2)× · · · × e(Pn, Qn)

We share ML and FE computations across multiple pairing
instances to speed up multi-pairing, which is especially useful
in aggregate signature verification [3]. Sharing only the FE
operation provides 2× improvement, while sharing both ML
and FE provides another 30% energy savings [11].

Function-hiding inner product encryption [4] requires scalar
multiplications on G2. The corresponding twist curve E′

supports the skew Frobenius map [14], which allows efficient
computation of φ̂(P ) = pP ∀P ∈ E′(Fp2). To speed up the
encryption step, we split the 255-bit scalar k < q into two
128-bit parts as k = k1 + k2u

2 where p ≡ u (mod q) and
compute kP = k1P + k2 (u

2P ) = k1P + k2 φ̂(φ̂(P )) using
multi-exponentiation [1]. This leads to 1.8× energy savings in
inner product encryption per vector element [11].
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Fig. 4. Top-level architecture of our BLS12-381 pairing crypto-processor.

Fig. 5. Simulated waveforms showing memory clock gating in pairing crypto-
processor during a snapshot of the final exponentiation computation.

Pairing-based signatures also require mapping random Fp

elements to points on elliptic curves, known as the hash-to-
curve operation [3]. Our implementation of hash-to-G1 re-
quires 1,897 Fp multiplications. Since our modular arithmetic
unit can be configured for the 255-bit prime q, we also support
ECC using Jubjub, a twisted Edwards curve over Fq [5]. Our
constant-time Jubjub ECSM requires 4,755 Fq multiplications.

III. PAIRING CRYPTO-PROCESSOR ARCHITECTURE

The top-level architecture of our pairing crypto-processor is
shown in Fig. 4, where the arithmetic unit is integrated with a
15.375 KB data memory, a 1 KB instruction memory and an
instruction decoder. It can be programmed using 32b custom
instructions to perform different modular arithmetic, elliptic
curve and pairing computations.

The crypto-processor data memory is hierarchical with three
levels. First, the modular arithmetic unit is coupled with a
small 8 × 384-bit register file M0 implemented using flip-
flops for efficiency. M0 is used for all Fp and Fp2 arithmetic
computations. At the next level, a 64 × 384-bit SRAM M1 is
used to store all temporary variables required for Fp6 , Fp12 ,
G1, G2 and GT arithmetic computations. Finally, a 256 ×
384-bit SRAM M2 is used to store protocol-level inputs and
outputs. While simple ECSM and pairing computations require
only few of these 256 memory locations in M2, having a large
top-level memory is useful to support efficient multi-pairings
and hash-to-curve maps. Each memory module is dynamically
clock gated based on the function under execution, providing
up to 20% power savings. Fig. 5 shows simulated waveforms
for memory clock gating during final exponentiation computa-
tion. The modular arithmetic unit is operational continuously,
while the memories are accessed only when data movement
is required.

The pairing computation requires several constants in Mont-
gomery domain, which are stored in a 22 × 384-bit lookup
table (LUT). The Fp and Fp2 functions are handled by the
modular arithmetic unit. Optimized micro-code for Fp6 , Fp12 ,

Fig. 6. Chip architecture with pairing core and RISC-V micro-processor.

Fig. 7. Measurement setup and chip micrograph.

G1, G2 and GT arithmetic functions (which require Fp and
Fp2 arithmetic) are stored in another 768 × 24-bit LUT. To
save area, these LUTs are realized entirely using digital logic.
Combined area of these two LUTs is only 6k-gate, which is
53k-gate and 34k-gate smaller than SRAM-based and ROM-
based implementations respectively.

IV. SYSTEM DESIGN AND MEASUREMENT RESULTS

A. Chip Architecture and Test Setup

As shown in Fig. 6, the pairing crypto-processor is inte-
grated (through a memory-mapped interface) with a low-power
RISC-V micro-processor supporting the RV32IM instruction
set, with 1-cycle multiplier, 32-cycle divider, 32 KB instruction
memory and 64 KB data memory [15]. The RISC-V is also
coupled with accelerators for AES-128/256 and SHA2-256
[16]. Reading from and writing to accelerators through the
memory-mapped interface require 3 cycles and 2 cycles re-
spectively. The RISC-V, AES, SHA and pairing cores all have
dedicated clock gates independently configurable for power
savings. The RISC-V core can be clock-gated using wait-for-
interrupt instruction, and it is woken up by dedicated interrupts
from the cryptographic accelerators. The accelerators can
be accessed through software using simple load and store
instructions, without any changes to the compilation toolchain.
The RISC-V processor is used for scheduling cryptographic
workloads as well as for processing their inputs and outputs.

Our test chip (Fig. 7) was fabricated in the TSMC 40nm
low-power process. Our pairing crypto-processor consists of
112k logic gates and 16 KB SRAM, with a total area of 0.2
mm2 (logic and memory combined). The RISC-V (including



4

Fig. 8. Program compilation and integration with RISC-V software flow.

Fig. 9. Comparison with previous work on pairing hardware accelerators.

interrupt controller and peripherals), AES and SHA cores
occupy 52k, 12k and 23k logic gates respectively. Our test
chip supports supply voltage scaling from 0.66 V to 1.1 V,
and its maximum operating frequency (for both RISC-V
and accelerators) at 0.66 V and 1.1 V are 16 MHz and
90 MHz respectively. Fig. 7 shows our measurement setup.
An FPGA is used to transfer instructions / programs from
a host computer to the instruction memory of our test chip.
The crypto-processor programs are translated into appropriate
format using a Python script, which is then integrated together
with RISC-V software.

Fig. 7 shows our measurement setup with the test chip
housed in a QFN64 socket on a custom board, an Opal Kelly
XEM7001 FPGA interfaces with the chip, and a Keithley
2602A source meter is used to supply power. The FPGA is
used to transfer instructions / programs from a host computer
to the instruction memory of our test chip. All elliptic curve
and pairing-based cryptography programs are written using
custom instructions and compiled with a Python script, which
is then integrated together with the RISC-V software (Fig. 8).

Fig. 9 compares our design with previous work on pairing
hardware accelerators. We are the first to demonstrate the
higher security BLS12-381 curve in hardware. Our design is an
order of magnitude more energy-efficient than the embedded-
scale accelerator in [6]. Compared to the high-performance
accelerators in [7], [8], our design is an order of magnitude
smaller with significantly lower power consumption. We also
achieve the lowest area-energy product compared to previous
designs, implement side-channel countermeasures for stronger
security, and have the flexibility to accelerate signature ag-
gregation, functional encryption and other PBC protocols in
hardware.

Fig. 10. Pairing-based cryptography protocol implementation benchmarks.

B. Protocol Implementation Results

To measure the efficiency of our design as well as to
demonstrate its flexibility in supporting various security ap-
plications, we have implemented and profiled several BLS12-
381 pairing-based cryptography protocols on our test chip, as
detailed in Fig. 10. Our hardware-accelerated implementations
are 130-140× more energy-efficient compared to software.
All measurement results are reported at 16 MHz and 0.66 V,
the operating condition providing lowest energy consumption.
Effect of voltage-frequency scaling is shown in Fig. 11.

C. Side-Channel Countermeasures

As countermeasures against timing and simple power anal-
ysis (SPA) side-channel attacks [13], we use complete point
addition formulas [12] and double-and-add-always technique
[17] in our ECSM and pairing implementations. All results
discussed earlier are from constant-time implementations with
these countermeasures. To prevent stronger differential power
analysis (DPA) attacks, we employ following countermea-
sures:
• randomized projective coordinates [18], [19], where el-

liptic curve points (X : Y : Z) are transformed into the
form (λX : λY : λZ) with non-zero random λ ∈ Fp

• ECSM with random scalar splitting [17], where secret
scalar k ∈ Fq is split into two parts r and k − r with
random r ∈ Fq , computed as kP = rP + (k − r)P

• pairing with random exponents and bilinear property
[19], computed as e(aP, bQ) = e(P,Q)ab = e(P,Q) with
random a ∈ Fq and b = a−1 mod q

The first technique is practically free, requiring only a few
Fp multiplications. The second technique can be significantly
simplified by using multi-exponentiation [1], where 2P is
pre-computed and both scalars r and k − r are processed
simultaneously to share point doublings and merge point
additions. The third technique is quite expensive, requiring
one G1 ECSM, one G2 ECSM and one Fq inversion. We
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Fig. 11. Measurement of voltage-frequency scaling of our test chip.

Fig. 12. Side-channel leakage test with SPA and DPA countermeasures.

also require generation of random elements in Fp or Fq ,
performed by using our SHA2-256 accelerator as a cryp-
tographically secure pseudo-random number generator. Fig.
12 shows measured power side-channel leakage assessment
results (based on standard non-specific fixed vs. random t-
test [20]) over 0.5M traces for our hardware implementation
with all countermeasures. Here, |t-value| < 4.5 indicates, with
very high confidence, that there is no evidence of first-order
side-channel leakage. We have also performed difference-of-
means test to verify that there is no significant observable
information leakage through power consumption for any bit
in ECSM secret scalar being 0 versus 1. For ECSM, the DPA
countermeasures have only 10% performance and energy over-
heads. However, DPA countermeasures lead to 2.3× additional
overhead for pairing. We note that all these countermeasures
can be implemented without any changes to our hardware, by
utilizing the programmability of our crypto-processor.

V. CONCLUSION

In this work, we have presented a low-power programmable
crypto-processor to accelerate ECC and PBC using the re-
cently proposed BLS12-381 pairing-friendly elliptic curve.
Using optimized algorithms and low-power area-efficient ar-
chitectures, we demonstrate practical hardware-accelerated
pairings which enable novel cryptographic protocols to secure
resource-constrained IoT devices.
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