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Abstract
The two-way linear fixed effects regression (2FE) has become a default method for estimating causal effects

from panel data. Many applied researchers use the 2FE estimator to adjust for unobserved unit-specific

and time-specific confounders at the same time. Unfortunately, we demonstrate that the ability of the

2FE model to simultaneously adjust for these two types of unobserved confounders critically relies upon

the assumption of linear additive effects. Another common justification for the use of the 2FE estimator

is based on its equivalence to the difference-in-differences estimator under the simplest setting with two

groups and two time periods. We show that this equivalence does not hold under more general settings

commonlyencountered inapplied research. Instead,weprove that themulti-perioddifference-in-differences

estimator is equivalent to theweighted2FEestimatorwith someobservationshavingnegativeweights. These

analytical results imply that in contrast to the popular belief, the 2FE estimator does not represent a design-

based, nonparametric estimation strategy for causal inference. Instead, its validity fundamentally rests on

the modeling assumptions.

Keywords: difference-in-differences, longitudinal data, matching, unobserved confounding, weighted least

squares

1 Introduction

Many social scientists use the two-way fixed effects (2FE) regression, or linear regression with

unit and time fixed effects, as the default methodology for estimating causal effects from panel

data. Applied researchers o�en use the 2FE regression to adjust for unobserved unit-specific and

time-specific confounders at the same time. Unfortunately, we show that the 2FE’s ability to

simultaneously adjust for the two types of unobserved confounders critically hinges upon the

assumption of linear additive effects. Another common justification is based on the fact that the

2FE estimator is equivalent to the difference-in-differences estimator under the simplest setting

with two groups and two time periods (e.g., Bertrand, Duflo, and Mullainathan 2004; Angrist and

Pischke 2009). However, we show that this equivalence does not hold undermore general settings

frequently encountered in applied research. All together, we show that in contrast to the popular

belief, the 2FE estimator does not represent a design-based, nonparametric estimation strategy

for causal inference. Instead, its validity fundamentally rests on the modeling assumptions.

Our work builds on the growing literature about causal inference with panel data. In particular,

we extend the matching representation of one-way fixed effects regression estimator (Imai and

Kim 2019) to the 2FE estimator in order to understand the causal interpretation of these widely

used estimators within the nonparametric framework (see, e.g., Humphreys 2009; Aronow and

Samii 2015; Solon, Haider, and Wooldridge 2015, for related work on causal inference with cross-

sectional data). In addition, a number of scholars have recently considered causal interpretations

of the standard 2FE estimator (see, e.g., Borusyak and Jaravel 2017; Abraham and Sun 2018; Athey

and Imbens 2018; Chaisemartin and D’Haultfœuille 2018; Goodman-Bacon 2018). While many of
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these studies assume staggered adoption, our analysis extends to a more general case, in which

units cango in andout of the treatment condition at different points in time. Finally,we emphasize

that the goal of this paper is to shed new light on two common misunderstandings of the FE

estimator rather than to propose an alternative estimator.

2 The Two-way Fixed Effects Regression Estimator

Suppose that we have a panel data set of N units and T time periods. Although our results readily

extend to thecaseofunbalancedpanel, for the sakeofnotational simplicity,weassumeabalanced

panel data set. Let Xi t andYi t represent the binary treatment indicator and observed outcome

variables for unit i at time t, respectively. We consider the following two-way linear fixed effects

(2FE) regression model,

Yi t =αi +γt +βXi t +ǫi t (1)

for i = 1,2, . . . ,N and t = 1,2, . . . ,T where αi and γt are unit and time fixed effects, respectively.

The inclusion of unit and time fixed effects accounts for both unit-specific (but time-invariant)

and time-specific (but unit-invariant) unobserved confounders in a flexible manner. Specifically,

we can define unit and time fixed effects as αi = h(Ui ) and γt = f (Vt ), where Ui and Vt represent

these unit-specific and time-specific unobserved confounders that are common causes of the

outcome and treatment variables. In addition, h(·) and f (·) are arbitrary functions unknown to

researchers. Thus, although the interaction between these two types of unobserved confounders

is assumed to be absent, there is no functional-form restriction on h(·) and f (·). In other words,

since the treatment is binary, the model makes no restriction other than the additivity and

separability of the two types of unobserved confounders.

The least squares estimate of β can be computed efficiently by transforming the outcome and

treatment variables and then regressing the former on the latter. Formally, the estimator is given

by,

β̂ = argmin
β

N∑

i=1

T∑

t=1

[{(Yi t −Y )− (Y i −Y )− (Y t −Y )} −β {(Xi t −X )− (X i −X )− (X t −X )}]2 (2)

whereY i =
∑T

t=1Yi t /T and X i =
∑T

t=1Xi t /T are unit-specific means,Y t =
∑n

i=1Yi t /N and X t =∑n
i=1Xi t /N are time-specific means, andY =

∑N
i=1

∑T
t=1Yi t /NT and X =

∑N
i=1

∑T
t=1Xi t /NT are

overall means. Equation (2) shows how the 2FE estimator exploits the covariation in the outcome

and treatment variables. Specifically, the equation shows that least squares estimation is applied

a�er the within-unit and within-time variations are subtracted from the overall variation for both

outcome and treatment variables.

3 Adjustment for Unobserved Confounders

Many applied researchers justify the use of the 2FE estimator by its ability to simultaneously

adjust for unit-specific and time-specific unobserved confounders. We show below that such a

justification is unwarranted without critically relying on the functional-form assumption. Indeed,

by extending the matching framework of Imai and Kim (2019), we show that the simultaneous

adjustment for the two types of unobserved confounders cannot be done nonparametrically

under the 2FE framework.

3.1 The Matching Framework
To establish the impossibility of nonparametric adjustment for unit-specific and time-specific

unobserved confounders, it is useful to consider the 2FE estimator as a matching estimator
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(Imai and Kim 2019). An intuitive explanation of this result is as follows. Although one could

nonparametrically adjust for unit-specific (time-specific) unobserved confounders by matching a

treatedobservationwith control observationsof the sameunit (timeperiod), nootherobservation

shares the same unit and time indices. Thus, the 2FE estimator critically relies upon the linearity

assumption for its simultaneous adjustment for the two types of unobserved confounders. The

following proposition formalizes this argument.

PROPOSITION 1 (The Two-way Fixed Effects Regression Estimator as a Two-way Matching Esti-

mator). The two-way fixed effects estimator defined in Equation (2) is equivalent to the following

matching estimator,

β̂ =
1

K

[
1

NT

N∑

i=1

T∑

t=1

{
Xi t

(
Yi t − �Yi t (0)

)
+ (1−Xi t )

(
�Yi t (1)−Yi t

)}]

where for x = 0,1, the estimate of the potential outcome Yi t (x ) for unit i at time t under the

treatment statusXi t = x is given by,

�Yi t (x ) =
1

T −1

∑

t ′,t

Yi t ′ +
1

N −1

∑

i ′,i

Yi ′t −
1

(T −1)(N −1)

∑

i ′,i

∑

t ′,t

Yi ′t ′

K =
1

NT

N∑

i=1

T∑

t=1

{
Xi t

(∑
t ′,t (1−Xi t ′)

T −1
+

∑
i ′,i (1−Xi ′t )

N −1
−

∑
i ′,i

∑
t ′,t (1−Xi ′t ′)

(T −1)(N −1)

)

+ (1−Xi t )

(∑
t ′,t Xi t ′

T −1
+

∑
i ′,i Xi ′t

N −1
−

∑
i ′,i

∑
t ′,t Xi ′t ′

(T −1)(N −1)

)}
.

Proof is given in Online Supplementary Information. The proposition shows that the estimated

counterfactual outcome of a given observation, that is, �Yi t (1−Xi t ), is a function of three averages.

First, the average of all the other observations from the same unit, that is,
∑

t ′,tYi t ′/(T − 1), and

the average of all the other observations from the same time period, that is,
∑

i ′,iYi ′t /(N −1), are

added together. We call them thewithin-unitmatched setMi t and thewithin-timematched setNi t ,

respectively, and formally define them as,

Mi t = {(i ′, t ′) : i ′ = i , t ′ , t }, and Ni t = {(i ′, t ′) : i ′ , i , t ′ = t }. (3)

The 2FE estimator then adjusts for unit-specific and time-specific unobserved confounders by

using observations that share the same unit or time as those in Ni t andMi t , respectively, and

subtracting theirmean, that is,
∑

i ′,i

∑
t ′,tYi ′t ′/(T −1)(N −1), from this sum.We useAi t to denote

this group of observations and call it the adjustment set for observation (i , t ) with the following

definition,

Ai t = {(i ′, t ′) : i ′ , i , t ′ , t , (i , t ′) ∈Mi t , (i
′
, t ) ∈ Ni t }. (4)

By construction, the number of observations inAi t equals the product of the number of observa-

tions in the within-unit and within-timematched sets, that is, |Ai t | = |Mi t | · |Ni t |.

Panel (a) of Figure 1 presents an example of the binary treatmentmatrix with five units and four

timeperiods, that is,N = 5 andT = 4. In the figure, the red underlined 1 entry represents a treated

observation of interest, for which the counterfactual outcomeYi t (0) needs to be estimated using

other observations. This counterfactual quantity is estimated as the average of control observa-
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(a) Two-way fixed effects estimator
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(b) Two-way matching estimator

Figure 1. An Example of the Binary TreatmentMatrixwith FiveUnits and Four TimePeriods. Panels (a) and (b)
illustrate how observations (i, t) are used to estimate counterfactual outcomes for the two-way fixed effects
estimator (Proposition 1) and the adjusted matching estimator (Proposition 2), respectively. In the figures,
the red underlined 1 entry (4,3) represents the treated observation, for which the counterfactual outcome
Yi t (0) needs to be estimated. Circles indicate the set of matched observations—(4,1), (4,2), (4,4) in Panel (a)
and (4,1), (4,2) in Panel (b)—that are from the same unit, whereas squares indicate those—(1,3), (2,3), (3,3),
(5,3) in Panel (a) and (2,3), (5,3) in Panel (b)—from the same time period. Finally, triangles represent the set
of observations—(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (3,1), (3,2), (3,4), (5,1), (5,2), (5,4) in Panel (a) and (2,1), (2,2),
(5,1), (5,2) in Panel (b)—that are used tomake adjustment for unit and time effects. The shaded grey symbols
represent the “mismatches”with the same treatment status, which are prevalent in the two-way fixed effects
estimator. The matching estimator in Panel (b) is designed to eliminate the attenuation bias within unit and
time, although the adjustment set may still include mismatches (shaded triangles).

tions from the same unitMi t (circles in the figure), plus the average of control observations from

thesametimeperiodNi t (squares),minus theaverageofadjustmentobservations,Ai t (triangles).

Note that all of these three averages may include units with the same treatment status as the

observation whose counterfactual outcome is being estimated. We refer to these observations

as “mismatches” (shaded grey entries in the figure) because for the estimation of causal effects,

an observation must be matched with another observation with the opposite treatment status.

Therefore, mismatches imply the (partial) comparison of observations with the same treatment

status, which generally leads to an attenuation bias. The 2FE estimator adjusts for this bias via

the factor K, which is equal to the net proportion of proper matches between the observations

of opposite treatment status. For example, for a treated observation with Xi t = 1, we compute

the proportion of matched control observations in the within-unit matched set, that is,
∑

t ′,t

(1−Xi t ′)/(T −1), and the proportion ofmatched control observations in thewithin-timematched

set, that is,
∑

i ′,i (1−Xi ′t )/(N −1), and subtract from their sum the proportion of matched control

observations in the adjustment set, that is,
∑

i ′,i

∑
t ′,t (1−Xi ′t ′)/(T −1)(N −1).

3.2 The Impossibility of Nonparametric Adjustment
Given this result, it is natural to askwhetherwe can eliminate themismatches and the adjustment

set all together within the two-way fixed effects framework. We show below that this is generally

impossible. In particular, although we can construct a weighted 2FE estimator that has fewer

mismatches, this estimator in general still suffers from some mismatches and has an adjustment

set.

To develop a weighted 2FE estimator with fewer mismatches, we begin by matching each

observation only with other observations of the opposite treatment status to estimate the coun-

terfactual outcome. That is, we use the following within-unit matched setM∗
i t
, which consists of
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the observations within the same unit but with the opposite treatment status,

M∗
i t = {(i ′, t ′) : i ′ = i ,Xi ′t ′ = 1−Xi t }. (5)

Similarly, we restrict thewithin-timematched set so that its observations belong to the same time

period t but have the opposite treatment status,

N∗
i t = {(i ′, t ′) : t ′ = t ,Xi ′t ′ = 1−Xi t }. (6)

Then, using Equation (4), we can define the corresponding adjustment setA∗
i t
.

A∗
i t = {(i ′, t ′) : i ′ , i , t ′ , t , (i , t ′) ∈M∗

i t , (i
′
, t ) ∈ N∗

i t }. (7)

The next proposition establishes that this two-way matching estimator, which eliminates mis-

matches within-unit and within-time dimension, can be written as a weighted 2FE estimator.

PROPOSITION 2 (The Two-way Matching Estimator with Fewer Mismatches as a Weighted

Two-way Fixed Effects Regression Estimator). Assume that the treatment varies within each

unit as well as within each time period, that is, 0 <
∑T

t=1Xi t <T for each i and 0 <
∑N

i=1Xi t < N

for each t. Consider the followingmatching estimator,

β̂ ∗ =
1

∑N
i=1

∑T
t=1Di t

N∑

i=1

T∑

t=1

Di t

Ki t

{
Xi t

(
Yi t − �Yi t (0)

)
+ (1−Xi t )

(
�Yi t (1)−Yi t

)}

whereDi t = 1{|M∗
i t
| · |N∗

i t
| > 0}, and for x = 0,1,

�Yi t (x ) =
1

|M∗
i t
|

∑

(i ,t ′)∈M∗
i t

Yi t ′ +
1

|N∗
i t
|

∑

(i ′,t )∈N∗
i t

Yi ′t −
1

|A∗
i t
|

∑

(i ′,t ′)∈A∗
i t

Yi ′t ′

Ki t = 1+
ai t

|A∗
i t
|

and ai t = |{(i ′, t ′) ∈ A∗
i t
:Xi ′t ′ =Xi t }|. Then, thismatchingestimator is equivalent to the following

weighted two-way fixed effects estimator,

β̂ ∗ = argmin
β

N∑

i=1

T∑

t=1

Wi t {(Yi t −Y
∗

i −Y
∗

t +Y
∗
)−β (Xi t −X

∗

i −X
∗

t +X
∗
)}2

where the asterisks indicate weighted averages, that is, Y
∗

i =
∑T

t=1Wi tYi t /
∑T

t=1Wi t , Y
∗

t =∑N
i=1Wi tYi t /

∑N
i=1Wi t ,X

∗

i =
∑T

t=1Wi tXi t /
∑T

t=1Wi t ,X
∗

t =
∑N

i=1Wi tXi t /
∑N

i=1Wi t ,Y
∗
=

∑N
i=1

∑T
t=1Wi t

Yi t /
∑N

i=1

∑T
t=1Wi t ,X

∗
=

∑N
i=1

∑T
t=1Wi tXi t /

∑N
i=1

∑T
t=1Wi t , and

Wi t =

N∑

i ′=1

T∑

t ′=1

w i ′t ′

i t and w i ′t ′

i t =




Di ′t ′

Ki ′t ′
if (i , t ) = (i ′, t ′)

Di ′t ′

Ki ′t ′ · |M
∗
i ′t ′

|
if (i , t ) ∈ M∗

i ′t ′

Di ′t ′

Ki ′t ′ · |N
∗
i ′t ′

|
if (i , t ) ∈ N∗

i ′t ′

Di ′t ′ (2Xi t−1)(2Xi ′t ′−1)
Ki ′t ′ · |A

∗
i ′t ′

|
if (i , t ) ∈ A∗

i ′t ′

0 otherwise.
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Proof is given in Online Supplementary Information. Unlike Proposition 1, the adjustment is done

by deflating the estimated treatment effect for each treated observation (i , t ) by 1/Ki t . This is

because the attenuation bias from A∗
i t
(the “pooled” part) is subtracted from the sum of two

estimates fromM∗
i t
andN∗

i t
, inflating the estimated treatment effect for a given observation (i , t ).

In the example of Panel (b) of Figure 1, A∗
i t
contains two mismatches (shaded grey entries in

triangles), that is, ai t = 2, and hence the adjustment factor is Ki t = 3/2 = 1+2/4. Note that such

adjustment is not necessary (i.e., Ki t = 1) when there are no mismatches in the adjustment set,

that is, ai t = 0.

The algebraic equivalence result given in Proposition 2 clarifies the set of observations that are

used to estimate the counterfactual for each unit and how the adjustments due to mismatches

are reflected in the weighted two-way fixed effects estimator. Specifically, it shows that each

observation (i , t ) is weighted differently according to the number of times it serves as a control

unit. For example, if an observation (i , t ) has the treatment status opposite to another observation

within-unit (i ′, t ′), that is, (i , t ) ∈ M∗
i ′t ′
, then its overall weightWi t is increased by 1/|M

∗
i ′t ′

| along

with other observations in the within-unit matched set. This contribution to the weight is then

deflated by the adjustment factor Ki ′t ′ , correcting the attenuation bias due to mismatches (see

the formula for computingw i ′t ′

i t
in the proposition).

Unfortunately, we cannot eliminate mismatches in A∗
i t
without additional restrictions on the

matched sets,M∗
i t
andN∗

i t
(see Section 4.1). This point is illustrated by Panel (b) of Figure 1 where

the adjustment set A∗
i t
(triangles) still includes the observations of the same treatment status.

Therefore, even the weighted 2FE estimator, which has fewer mismatches than the standard

2FE estimator, suffers from some mismatches. The estimator also has an adjustment set whose

observations belong to neither the same unit nor the same time period as the observation

being matched with. This implies that it is impossible to simultaneously and nonparametrically

adjust for unit-specific and time-specific unobserved confounders under the two-way fixed effects

framework.

4 The Difference-in-Differences Design

Although it is generally impossible to eliminate all mismatches, in this section we show that we

can do so under the difference-in-differences (DiD) design. In contrast to a common belief among

applied researchers, we also show that under the general panel data settings, the DiD estimator

is not equivalent to the standard 2FE estimator. Instead, the multi-period DiD estimator is equal

to the weighted 2FE estimator with some observations having negative regression weights. This

implies that the equivalence between the 2FE estimator and the DiD estimator critically hinges on

the linearity assumption.

4.1 The Multi-period Difference-in-Differences Estimator
To establish the relations between the 2FE and DiD estimators, we begin by considering the

following parallel trend assumption,

ASSUMPTION 1 (Parallel Trend). For i = 1,2, . . . ,N and t = 2, . . . ,T ,

Å(Yi t (0)−Yi ,t−1(0) | Xi t = 1,Xi ,t−1 = 0) = Å(Yi t (0)−Yi ,t−1(0) | Xi t = Xi ,t−1 = 0).

We emphasize that this assumption may not be credible in some settings (see, e.g., Bilinski and

Hatfield 2018; Kahn-Lang and Lang 2019; Rambachan and Roth 2019). The goal of our analysis,

however, is to shed new light on a popular justification of the 2FE estimator as the DiD estimator

Kosuke Imai and In Song Kim ` Political Analysis 6
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1t = 4

t = 3

t = 2

t = 1

i = 1 i = 2 i = 3 i = 4 i = 5

0 1 1 0

1 0 1 1 0

0 0 1 0 0

1 1 1 0 1

T
im

e
P
e
r
io

d
s

Units

Figure 2. Illustration of how observations are used to estimate counterfactual outcomes for the DiD esti-
mator (Equation (12)). The red underlined 1 entry represents the treated observation (4,3), for which the
counterfactual outcomeYi t (0) needs to be estimated. Circle indicates the matched observation (4,2) within
the same unit,MDiD

i t
, whereas squares—(2,3) and (5,3)—indicate those from the same time period, NDiD

i t
.

Finally, triangles—(2,2) and (5,2)—represent the set of observations that are used to make adjustment for
unit and time effects, ADiD

i t
. Unlike the examples in Figure 1, ADiD

i t
only contains control observations and

hence nomismatches (i.e., shaded grey triangles) exist.

under the simplest setting.1 Under this parallel trend assumption, the estimand is the average

treatment effect for the treated (ATT),

τ = Å(Yi t (1)−Yi t (0) | Xi t = 1,Xi ,t−1 = 0). (8)

To formulate a multi-period DiD estimator under the 2FE estimator framework, we follow the

analytical strategy used in the previous section and define three sets of observations as illustrated

in Figure 2—thewithin-unitmatched set (represented by a circle), within-timematched set (repre-

sented by squares), and adjustment set (represented by triangles)—for a treated observation (4,3)

(represented by the red underlined 1 ). We next show that the DiD design eliminates mismatches

from these three sets.

Formally, the within-unit matched set contains the observation of the same unit from the

previous time period if it is under the control condition, and to be an empty set otherwise,

MDiD
i t = {(i ′, t ′) : i ′ = i , t ′ = t −1,Xi ′t ′ = 0}. (9)

Similarly, the within-time matched set is defined as a group of control observations in the same

time period whose prior observations are also under the control condition,

NDiD
i t = {(i ′, t ′) : i ′ , i , t ′ = t ,Xi ′t ′ = Xi ′,t ′−1 = 0}. (10)

Finally,wedefine theadjustment setADiD
i t
,whichcontains thecontrol observations in theprevious

period that share the same unit as those inNDiD
i t
,

ADiD
i t = {(i ′, t ′) : i ′ , i , t ′ = t −1,Xi ′t ′ = Xi ′t = 0}. (11)

Thus, the number of observations in this adjustment set is the same as that in NDiD
i t
. It is worth

noting that all three sets only contain control observations, thereby eliminating all mismatches.

1 For example, Bertrand et al. (2004) describe the linear regression model with two-way fixed effects as “a common
generalization of the most basic DiD setup (with two periods and two groups)” (p. 251).
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Using thesematched and adjustment sets, we can define themulti-period DiD estimator as the

average of two-time-period two-group DiD estimators applied whenever there is a change from

the control condition to the treatment condition,

τ̂ =
1

∑N
i=1

∑T
t=1Di t

N∑

i=1

T∑

t=1

Di t

(
Yi t − �Yi t (0)

)
(12)

whereDi1 = 0 for all i,Di t = Xi t ·1{|M
DiD
i t

| · |NDiD
i t

| > 0} for t > 1, and forDi t = 1, we define,

�Yi t (0) =Yi ,t−1+
1

|NDiD
i t

|

∑

(i ′,t )∈NDiD
i t

Yi ′t −
1

|ADiD
i t

|

∑

(i ′,t ′)∈ADiD
i t

Yi ′t ′ (13)

Thus, when the treatment status of a unit changes from the control condition at time t −1 to the

treatment condition at time t (and there exists at least one unit i ′whose treatment status does not

changeduring the same timeperiods, that is,Di t = 1), the counterfactual outcome for observation

(i , t ) is estimated as follows.We subtract fromYi t its ownobserved outcomeof the previous period

Yi ,t−1 as well as the average outcome difference between the same two time periods among the

other units whose treatment status remains unchanged as the control condition.

4.2 Equivalence to theWeightedTwo-wayFixedEffects EstimatorwithSomeNegative
Regression Weights
It is well known that the standard nonparametric DiD estimator is numerically equivalent to the

2FE estimator in the simplest setting, in which there are only two time periods and the treatment

is administered only to one group of units in the second time period. Unfortunately, we show

that this equivalence result does not generalize to the current multi-period DiD design, in which

the number of time periods may exceed two and different units may switch in and out of the

treatment conditionmultiple times andat different points in time.2 Instead, the following theorem

establishes that the general multi-period DiD estimator given in Equation (12) is equivalent to a

weighted two-way fixed effects regression estimator.

THEOREM 1 (Difference-in-DifferencesEstimatorasaWeightedTwo-wayFixedEffectsEstimator).

Assume that there is at least one treated and control unit, that is, 0 <
∑N

i=1

∑T
t=1Xi t < NT , and

that there is at least one unit withDi t = 1, that is, 0 <
∑N

i=1

∑T
t=1Di t . The difference-in-differences

estimator τ̂ , defined in Equation (12), is equivalent to the followingweighted two-way fixed effects

regression estimator,

τ̂ = β̂WFE2 = argmin
β

N∑

i=1

T∑

t=1

Wi t {(Yi t −Y
∗

i −Y
∗

t +Y
∗
)−β (Xi t −X

∗

i −X
∗

t +X
∗
)}2

where the asterisks indicate weighted averages, and the weights are given by,

Wi t =

N∑

i ′=1

T∑

t ′=1

Di ′t ′ ·w
i ′t ′

i t and w i ′t ′

i t =




1 if (i , t ) = (i ′, t ′)

1/|MDiD
i ′t ′

| if (i , t ) ∈ MDiD
i ′t ′

1/|NDiD
i ′t ′

| if (i , t ) ∈ NDiD
i ′t ′

(2Xi t −1)(2Xi ′t ′ −1)/|ADiD
i ′t ′

| if (i , t ) ∈ ADiD
i ′t ′

0 otherwise.

2 If the model in Equation (1) is assumed to be correct, then the 2FE estimator is consistent for τ under the multi-period DiD
design. That is, ifwe rewrite the2FEmodel specifiedusing thepotential outcomenotation, that is,Yi t (x )= αi +γt +βx +ǫi t ,
we have β = τ .
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Proof is in Appendix A. Theorem 1 shows that the DiD estimator can be obtained by calculating

the weighted linear two-way fixed effects regression estimator.

Theorem 1 has two important implications. First, in contrast to a common belief held among

applied researchers, the (unweighted) 2FE estimator is not in general equivalent to the multi-

period DiD estimator. Second, although the multi-period DiD estimator can be shown to be

equivalent to theweighted2FEestimator, somecontrol observationswill havenegative regression

weights. This occurs when they frequently enter into the adjustment set, ADiD
i ′t ′
, for multiple

treatedobservations (i.e., (2Xi t −1)(2Xi ′t ′−1)=−1). Since the regressionweights shouldgenerally

positive, the results of this section shows that the justification of the 2FE estimator as the DiD

estimator is not warranted unless the linearity assumption is imposed.

5 Concluding Remarks

In thispaper,westudy theuseof linear regressionmodelswithunit and time fixedeffects for causal

inferencewith panel data. Although thesemodels have been used extensively in applied research,

little hasbeenunderstoodabouthow thesemodels canbeused to identify causal effects.We show

that contrary to the common belief, the standard two-way fixed effects regression estimator does

not represent a design-based, nonparametric causal estimator. It is impossible to simultaneously

adjust for unobserved unit-specific and time-specific confounders. In addition, a general multi-

period difference-in-differences estimator is equivalent to the weighted two-way fixed effects

regression estimator, but some observations have invalid (i.e., negative) weights.

Given the problems of the standard two-way fixed effects regression estimator identified in this

paper, future research should develop design-based estimators for causal inference with panel

data. Recently, a number of researchers have extended the synthetical control method of Abadie,

Diamond, and Hainmueller (2010) to more general settings (e.g., Xu 2017; Ben-Michael, Feller,

and Rothstein 2019). In a separate paper, we have also generalized the multi-period difference-

in-differences estimator introduced in this paper and proposedmatching andweightingmethods

that are applicable to panel data (Imai, Kim, and Wang 2018). In that paper, we show how to

apply matching methods to time-series cross section data by explicitly comparing each treated

observation with a set of control observations that are matched based on certain criteria. An

advantageof suchamethod is the fact that it allows researchers toassess thequalityofmatchesby

examining the balance of confounders. Much research is needed to improve the existingmethods

for causal inferencewith panel data.Whilewe have focused on a binary treatment variable, causal

inference with general treatment regimes in panel data settings is of particular interest to many

researchers.

Appendix A.

Proof of Theorem 1. Theproof of this theorem followsdirectly fromProposition 2 as thewithin-

unit andwithin-timematched sets are subsets ofM∗
i t
andN∗

i t
. Specifically,MDiD

i t
consists of up

to one observation (i , t − 1) that is under the opposite treatment status, that is, {(i ′, t ′) : i ′ =

i , t ′ = t −1,Xi ′t ′ = 0}, whileNDiD
i t

is limited to the observations in the same time period whose

prior observation is also under the control condition.

β̂DiD =

∑N
i=1

∑T
t=1Wi t (Xi t −X

∗

i −X
∗

t +X
∗
)(Yi t −Y

∗

i −Y
∗

t +Y
∗
)

∑N
i=1

∑T
t=1Wi t (Xi t −X

∗

i −X
∗

t +X
∗
)2

=

1
2

∑N
i=1

∑T
t=1Wi t (2Xi t −1)(Yi t −Y

∗

i −Y
∗

t +Y
∗
)

1
4

∑N
i=1

∑T
t=1Wi t

=
1

∑N
i=1

∑T
t=1Di t

N∑

i=1

T∑

t=1

Wi t (2Xi t −1)(Yi t −Y
∗

i −Y
∗

t +Y
∗
)
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=
1

∑N
i=1

∑T
t=1Di t

N∑

i=1

T∑

t=1

Wi t (2Xi t −1)Yi t

=
1

∑N
i=1

∑T
t=1Di t

N∑

i=1

T∑

t=1

{(
N∑

i ′=1

T∑

t ′=1

w i ′t ′

i t

)
(2Xi t −1)Yi t

}

=
1

∑N
i=1

∑T
t=1Di t

N∑

i ′=1

T∑

t ′=1

{
Xi ′t ′

(
N∑

i=1

T∑

t=1

w i ′t ′

i t (2Xi t −1)Yi t

)
+ (1−Xi ′t ′)

(
N∑

i=1

T∑

t=1

w i ′t ′

i t (2Xi t −1)Yi t

)}

=
1

∑N
i=1

∑T
t=1Di t

N∑

i ′=1

T∑

t ′=1

Di ′t ′

{
Xi ′t ′

(
Yi ′t ′ −Yi ′,t ′−1−

∑
(i ,t ′)∈NDiD

i ′t ′
Yi t ′

#NDiD
i ′t ′

+

∑
(i ,t )∈ADiD

i ′t ′
Yi t

#ADiD
i ′t ′

)

+ (1−Xi ′t ′)

(
Yi ′,t ′−1+

∑
(i ,t ′)∈NDiD

i ′t ′
Yi t ′

#NDiD
i ′t ′

−

∑
(i ,t )∈ADiD

i ′t ′
Yi t

#ADiD
i ′t ′

−Yi ′t ′

)}

=
1

∑N
i=1

∑T
t=1Di t

N∑

i=1

T∑

t=1

Di t (�Yi t (1)− �Yi t (0)) = τ̂DiD

where the seventh equality follows from the fact that, given MDiD
i ′t ′

and NDiD
i ′t ′
, all the

units in ADiD
i ′t ′

are under the opposite treatment status (i.e., ai ′t ′ = 0), and thus Ki ′t ′ = 1

(see Proposition 2). �
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