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Abstract

A new method is developed for the solution of the steady, two-
dimensional Euler equations for transonic flows. The discrete steady-
state equations are derived in conservative finite-volume form on an
intrinsic streamline grid, and are solved using Newton's method. Direct
solution of the linear system of Newton equations is shown to be more
efficient than iterative solution. Test cases include duct, cascade,
and isolated airfoil flows, and demonstrate the speed and robustness of
the method. The accuracy of the solutions is verified by comparison
against values obtained analytically, experimentally and by other

numerical methods.
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1. INTRODUCTION

This thesis presents a new algorithm for solving the steady-state
two-dimensional transonic flow through ducts, and over cascades and
isolated airfoils. The full flow field is governed by the Navier-Stokes
equations, but the assumption is made that the viscous and heat conduc-
tion effects are small and can be neglected. Under this approximation
the Navier-Stokes equations reduce to the Euler equations which describe
inviscid, rotational flow, and in integral form also give the correct
Ranxine-Hugoniot shock relations. A further approximation which was
made by researchers in the past, is the approximation that the flow is
isentropic and irrotational, in which case the flow is governed by the
potential equation, a scalar equation, which can be solved much more
easily and economically. 1In subsonic flow, the flow is indeed isentro-
pic and irrotational, but in transonic flow shocks produce both entropy
and vorticity, and Salas et al [24] have shown that neglecting their
effect can lead to serious errors. Hence in this study the potential

approximation is not made, and instead the Euler equations are used.

This study is concerned solely with steady state solutions. At
present most methods for the numerical calculation of steady state,
transonic solutions to the Euler equations are time-marching methods, a
finite difference approximation to the unsteady Euler equations. The
advantage of this approach is that it is conceptually straightforward
and avoids the principal difficulty with the steady state transonic
equations. In supersonic regions the steady state equations are hyper-
bolic with four different characteristics. In subsonic flow two of
these characteristics become imagirary, or in other words become a
coupled elliptic system. Hyperbolic and elliptic equations in general
require different numerical solution methods. Space marching methods
are used for hyperbolic equations but cannot be used for elliptic equa-
tions, and relaxation methods are used for elliptic equations but cannot

be used for hyperbolic equations. The unsteady Euler equations, how-
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ever, are hyperbolic in time, both in supersonic and subsonic regions,
and so the time marching methods avoid this difficulty. The principal
disadvantage of these methods is that the convergence rate to the steady
state solution is limited by the relatively slow propagation of pressure
waves throughout the flow domain and their reflecvion at the boundaries
of the computational domain. Without the use of acceleration methods
several hundred iterations are required. Current methods overcome this
problem through a variety of acceleration methods such as using variable
time steps, in which the local time step is the maxinum possible for
numerical stablity, implicit operators, which increase the stability
bound and so allow larger time steps, and multigrid, in which several
levels of grid coarseness are employed and larger time steps can be used
on the coarser grids. Despite all these advances over one hundred

iterations are still required in a typical transonic calculation.

The alternative approach is to solve the steady state equations
directly using some iterative method which bears no relation to the
physical time marching process. The problem, as mentioned before, is
the mixed hyperbolic/elliptic nature of the transonic equations. This
problem was first overcome for the transonic potential equation by
Murman and Cole [21] who introduced a form of numerical viscosity in the
supersonic region which allows a relaxation method to be used in the
supersonic region. When formulated conservatively as an upwinded den-
sity, this allows the capture of shocks without any loss of mass flux
across the shock, although momentum is not conserved due to the limita-
tions of the potential approximation that the flow is isentropic and
irrotational. One way of interpreting the relaxation procedure is that
it is an application of Newton's method (also called the Newton-Raphson
method) to a system of nonlinear equations. The unknowns are the values
of the potential at a set of points. The nonlinear equations are the
discrete mass equations, which state that the total mass flux into and
out of each computational cell is zero. Newton's method is to linearize

the nonlinear equations ahout the current approximate solution, and then
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solve the linearized system to obtain a better approximate solution.
The linear Newton equations are usually solved using SLOR (Successive

Line Over-Relaxation) accelerated by multigrid.

This same approach has been applied to the Euler and Navier-Stokes
equations by Childs and Pulliam (7], and Jespersen {(18]). Childs and
Pulliam solve the linear Newton equations using the factored implicit
algorithm of Beam and Warming (4] accelerated by multigrid, and Jesper-
sen uses Gauss-Seidel with multigrid. Their conclusions were mixed; the
Newton procedure worked, but did not have any advantages, either in
accuracy, capabilities or speed, over traditional time-marching methods,
which are much simpler to program. An intermediate approach, lying
between timemarching and full Newton methods, is the method of Mulder
and Van Leer [20], in which a Backward Euler time integration scheme is
used to solve the unsteady Euler equations. For small values of At, the
time step, this behaves like a time-marching method. In the limit At-w,
it becomes Newton's method. Again the implicit system of equations is
solved using SOR and SLOR with a multigrid accelerator. In applications
they use a small At initially while there are large changes in the flow
field and the shock position is not established, and then increase At to
obtain a rapid final convergence to the steady state soilution. Their
results demonstrate that good computational efficiency can be achieved.
The approach in this thesis, developed independently from Childs and
Pulliam, and Jespersen, also uses Newton's method. Bnth direct and
iterative methods for solving the Newton equations are developed and it
is found that the direct method is more efficient than the iterative
method for grids of reasonable size. This is in contrast to the work of
Childs and Pulliam, Jespersen and Van Leer and Mulder for whom a direct
solution would be much more expensive, because their formulation of the
discrete equations has four variables per computational cell compared to
the two variables per cell required by the present method due to its

unique formulation of the discrete steady-state Euler equations.
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Most finite difference discretizations of thc steady state Euler
equations use conservative fluxes on a fixed grid of computational
cells. The grid points and computational cells have fixed positions set
initially by the user, and the discrete mass, momentum and energy equa-
tions are a discrete approximation to the integral form of the Euler
equations applied to each computational cell. The reason this approach
is called conservative is that the flux of mass, for example, out of ore
cell is exactly equal to the flux of mass into the neighboring cell, and
so on a glopal view all of the internal flux cancel, and hence the mass
flux across the inlet boundary is exactly equal to the mass flux across
the outlet boundary. Thus mass is "cunserved'; tiere is no "production"
of mass inside the domain. The advantage of the conservative approach
is that it guarantees the correct treatment of shocks. In exactly the
samme way that the Rankine-Hugoniot shock jump relations can be obtained
from the Euler equations written in integral form [19], the conservative
form guarantees that the flux of mass, momentum and stagnation enthalpy
on either side of the shock are the same and so the flow on the two
sides of the shock must satisfy the Rankine-Hugoniot relations. An
alternative discretization of the steady state Euler equations is that
used by streamline curvature methods [22]. In this case one set of grid
lines corresponds to streamlines and so the grid is not fixed but deter-
mined as part of the solution. Instead of using a conservative flux
formulation the finite difference equations are a discrete approximation
to the normal and tangential momentum equations in differential form,
together with the conditions that the mass flux amd stagnation enthalpy
are constant along each streamtube. These equations are solved by a
relaxation procedure. The streamline curvature method remans popular
in industry for calculating subsonic flows in turbomachinery, but when
applied to transonic flow cases two problems arise. The first is that
the relaxation method may not be stable in the supersonic region because
of the change in the type of the steady state equations. The second is
that even iIf the steady state solution is obtained, it may have large

errors because the non-conservative formulation means that shocks are
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not correctly calculated.

The discretization used in this thesis combines the conservative
formulation of finite volume schemes with the intrinsic streamline grid
of streamline curvature methods. The discrete steady-state equations
are an approximation to the integral form of the Euler equations, app-
lied to quadrilateral cells which are defined such that there is no mass
flux across two of the four sides. The only contribution to the steady-
state equations from the streamline faces comes from the pressure con-
tribution to the momentum equations. The mass and energy equations for
each cell are particularly simple since mass flux and stagnation enthal-
py are conserved along each streamtube. Since one set of grid lines is
defined to be streamlines, the grid 1s not known a priori, but must be
determined as part of the solution. Although it might appear that this
increases the number of unknown variables in the problem, in fact the
linear Newton equations can be manipulated to reduce to just two equa-
tions and two unknowns per computational cell, which is fewer than for
normal finite volume formulations and so is much more efficiently solved
by the direct solution method used for the Newton equations. An addi-
tional, very important, advantage of this formulation is that it is as
simple to specify the pressure on the surface of an airfoil and deter-
mine the shape of the airfoil, as it is to specify the position of the
shape of the airfoil and determine the pressure distribution. The
former problem is called the inverse problem and its solution for trans-
onic flow is extremely difficult, but this method with the streamline
grid determined as part of the solution and the robust Newton grocedure
is ideally suited for it. The application of this method to the inverse
problem is not discussed in this thesis, but is presented in the Ph.D.
thesis of a colleague, Mark Drela [11]. His thesis also presents a
method for incorporating a coupled boundary layer analysis, using an
integral boundary layer method. The power and simplicity of the Newton
solution procedure is demonstrated by the fact that the boundary layer

equations and the coupling relations between the boundary layer and the
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outer inviscid flow can simply be treated as additional equations and

included in the Newton iterative procedure.

The historical roots of the steady-state discrete equations lie in
previous work by Wornom [28-30]) and Giles [13]|. In reference (28]
Wornom solved the steady Euler equation for quasi-one-dimensional flow
using a box fermulation. One particularly interesting feature of this
work is that for subsonic flow no artificial dissipation of any sort is
needed, and only physical boundary conditions are required, as opposed
to most time-marching schemes in which some form of extrapolation is
required at boundaries in addition to the physical boundary conditions.
In the case of transonic flow Wornom introduces artificial compressi-
bility in order to maintain a well-posed problem. This involves repla-
cing the density in the mass equation by a weighted average of the den-
sities at a given node and the its upstream neighbor, and was first used
by Eberle [12], and Hafez et al. [16] for the full potential equation.
Wornom then extended his method to two-dimensional supersonic flow on a
fixed grid [29], using special shock and sonic point operators instead
of artificial compressibility. Independently, Giles (13] used a box
method to solve the unsteady Euler equations for quasi-one-dimensional
transonic flow. Special conservative treatment of the sonic and shock
cells, incorporating shock fitting, was used to obtain a method which
had no artificial dissipation, and no non-physical boundary conditions.
For subsonic steady flow the discrete equations were identical to those
used by Wornom [28]). One conclusion of this work was that the use of
artificial compressiblity, instead of the special treatment of shocks
and sonic cells, was preferable for reasons of robustness and simpli-

city.

The work which is presented in this thesis represents the natural
extension of the box method to two-dimensional flow. In particular the
discrete equations for a streamtube with a straight centerline in the

two-dimensional case reduce exactly to the equations for the quasi-one-
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dimensional case¢. Some intermediate work and preliminary results of the
current research were preserted in three research papers. The first
paper [9] contains a solution method for supersonic flow, with applica-
tions to both a duct flow for verification purposes, and a free super-
sonic jet problem to demonstrate the inverse capability of specifying
the pressure on the surface streamline instead of the position of the
surface streamline. The solution is obtained using Newton's method
applied in a space-marching way, very similar to the Keller Box method
for solving finite difference boundary layer equations [6]). The paper
also presents preliminary results for subsonic and transonic flow,
solved by a line-relaxation method instead of the Newton method. The
second paper [10)] introduces the Newton solution procedure for transonic
flow and the incorporation of the coupled integral boundary layer anal-
ysis. The final paper [14)] presents the solution of the inverse problem

for transonic flow, again using the Newton solution procedure.

Chapter 2 of this thesis derives the discrete steady-state Euler
equations and the corresponding boundary conditions. Chapter 3 dis-
cusses the introduction of artificial compressibility into the mass
equation in supersonic regions. An analysis of first order artificial
compressibility shows that there is a minimum amount required for the
problem to be well-posed, and that twice this level produces sharp
shocks. Also a second order accurate correction is defined, and numer-
ical test cases demonstrate it produces smaller stagnation density
errors. Chapter 4 introduces the Newton procedure and shows the manner
in which the discrete nonlinear equations are linearized, including both
the Euler equations and the boundary conditions. Chapters 5, 6 and 7
discuss different ways of solving the linear set of Newton equations.
Chapter 5 presents a direct solution method which uses a modified block-
tridiagonal algorithm. Chapter 6 shows the modifications to both the
boundary conditions and the solution procedure required for cases in
which the flow is choked. Chapter 7 discusses the relative advantages

of direct and iterative solution methods, and then presents an iterative
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method for solvirg the Newton equations for subsonic flow. This uses a
preconditioning which effectively decouples the convective entropy equa-
tion from the elliptic pressure equation. Chapter 8 introduces the con-
cept of global variables and constraints which are important in giving
the overall method a great amount of flexibility. The global variables
can be variables such as inlet and outlet flow angle, for casades, or
angle of attack and circulation, for isolated airfoils. The correspond-
ing global constraints can be specified lift and a Kutta condition,
which specifies that there is no jump in pressure across the trailing
edge of the airfoil. The global variables could also represent a change
in the pitch, for a cascade, or a change in the freestream Mach number,
for an airfoil, allowing one to examine the linear sensitivity of the
solution to different global parameters. To obtain the same information
with a time-marching method would require a series of calculations with
slightly different global parameters, which would be much more expen-
sive. Chapter 9 presents a number of test cases to demonstrate the
robustness of the Newton method and the accuracy of the solutions ob-
tained. The calculated results are compared to values obtained theo-
retically, experimentally, or by other numerical methods. Chapter 10

discusses the results and draws some final conclusions.
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2. STEADY STATE EQUATICNS

In this chapter the discrete steady state Euler equations are
derived, together with the boundary conditions required for a two-
dimensional duct problem. The first section shows how the discrete
Euler equations for a single computational cell are derived from the
integral form of the Euler equations. The second section discusses the
inlet, outlet and solid wall boundary conditions necessary for a duct
problem. The third section shows that an additional relation is
required to achieve consistency, and to match the number of equations
and unknown variabhles. Finally the fourth section discusses different

approaches to solving this set of steady-state equations.

2.1 Euler Equations

The starting point for the derivation of the discrete Euler equa-
tions is the integral form of the steady state, two dimensional Euler
equations. For a closed curve C with outward normal n the integral

equations are (19]

Mass equation <§ pa-ﬁ ds = 0 (2.1)
C
-> > > -»>
Momentum equation § p(gq*n)q + pn ds = 0 (2.2)
C
- =+
Energy equation #oq-n ht ds =0 (2.3)
C

The discrete finite-volume Euler equations are a discrete approxi-
mation to these equations, in which the curve C is the boundary of an
area usually referred to as a conservation cell. This approach is
standard in computational fluid dynamics, but a unique feature of this
implementation is that the cells are defined such that one pair of

opposing faces are streamlines of the flow and so there is no mass flux
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across them. Hence the only contribution to the above integrals from
these two faces is the pressure term in equation (2.2). This means that
the density and velocity need only be defined on the other two faces,
and also the direction of the velocity must somehow be related to the
local gecmetry to be consistent with the statement that two of the faces
are streamlines. A further consequence is that unlike most numerical
methods the grid geometry is not known a priori and must be determined

as part of the solution.

A typical conservation cell is shown in Figure 2.1. The geometry
variables (x,y) are located at the grid nodes marked X. The nodes
marked as °* are defined to be at the midpoints of the lines connecting
the grid nodes. The upper and lower bent faces of the cell are the
streamline faces across which there is no mass flux. Figure 2.1 shows
the node numbering convention used when discussing the discrete Euler
equations for a particular cell, and is the same as that used in the

program.

Four vectors which need to be defined are the vectors along the
faces of the cell, which are illustrated in Figure 2.2. For the bent

streamline faces the vectors are the vector sum of the two parts.

= Ligrexty - Lixmex- = Lioriory o Logmiu-

Ay = 3(x{7x3) = 50axg) L AL = S(yiryy) - (YY) (2.4a,b)
B = S(XI+xY) - (X3+XD) A = S(yieyd) - S(¥5ev) (2.4c,d)
x2 27273 272773 ’ y2  2'%2' 13 2112713 ’
B™ = [i(x‘+x‘)- x-] + [x5- l(x‘+x")| = l(x‘—x‘) (2.4e)

X 2'737 2 2 27 22 2'737 '
B- = [R(yI+yD)- vl + [¥3- S(yIryD) ] = (yI-v7) (2.4f)
y 2'137 1) 2 2 27120 AREIRS!

B = [l(X*'fx*)- X + [x3- l(x*+x“)] = l(x"—x*) (2.49)
x 2'%37 %) 2 27 2V 2'737 )

BY = [S(yfey)- yil + [yi- =(yi+yh)) = Liyteyh) (2.4h)
y 2'137 1) 2 20 202 h 211371
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Figure 2.1: Location of grid nodes and cell geometry.
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Figure 2.2: Definition of vectors Kl' 32 , B, B*.
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Figure 2.3: Location of flow variables.
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-
An additional two vectors which it is convenient to define are S,

. >_ -b* -+ . . .
which is the average of B~ and B', and N, which is the average of A

1
d R
an 2.

s. = L(B-+B*) s = i(p-+B*) (2.5a,b)
X 2 X X ! y 27y 'y e
N. = S(A_ +A_.) N o= 2(a A ) (2.5¢,d)
X 27x1 "x2 ' y 27yl y2 T

; « (vt ut + .t + .+ = U=y (v™ U=\ (v -
Since the nodes (x),y)),(x5,¥5),(x3,¥3) and (X7,¥]).(%5.v5), (x5, v¥3)
are defined to be streamlines, the local velocity direction must be

related to them. This is accomplished by defining the unit flow vector

~

s1 to be tangent to the line joining the average of nodes 1% ard 1~ to

the average of nodes 2" and 27. The unit flow vector 52 is defined

similarly. Both are shown in Figure 2.3, and their definitions are

given below.

= (2= +xtYV /D = (x—+3t = (vu=eut) /9 = (u=sut .
S = (X57x3)/2 (x7*+x7)/2 o1 (v5%y3)/2 = (y7+y])/2 (2.6a,b)
_ 2 2 .1/2 ~ _ - B _

s, = (sxl+syl) , I sxl/sl , sYl Syl/sl (2.6¢c-e)

= (wv=+wTV/9) = (wvawt = (v—+utV/9 - (vu—sut
Seo = (x3+x3)/2 (x2+x2)/2 r Syo (y3+y3)/2 (Y5+Y5)/2 (2.7a,b)

2 2 .1/2 - -

2 = (sx2+sy2) . Sy2 <2/ %2 . sy2 = syz/s2 (2.7c-e)

S

The velocity at the midpoint of the left face of the conservation

cell is thus defined to have direction ;1 and magnitude q, so that

51 = qlgl' The final geometric quantities to be defined are the normal

areas An and An2' which are the vector dot products of the unit

1
velocity vectors and the normal area vectors of the faces. Since Kl and

KZ are defined along the faces, not normal to them, the actual

definitions of An and An are

1 2

Anp = leAyl-sylel

[s.xA,| (2.8a,b)

-~ b
= ISIXAl' . A - 2 2

n2 sx2Ay2-Sy2Ax2
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where the operator | | is defined to mean taking the scalar component ip
the third (out of plane) dimension, and will only be applied to vectors
having only a component in the third dimension. It is important to note
that the scalar value given by | | may be positive or negative, depend-
ing on the direction of the vector. The operator | | does not return the
absolute value and so is an unconventional operator, but one that is

very convenient in this application.

The flow variables p, density, q, speed, and p, pressure are lo-
cated at the midpoints of the faces which are not streamlines, as shown
in Figure 2.3, and another pressure variable, denoted differently by II
for clarity, is located on the streamline faces where, as previously

noted, no other flow variables are required.

The discrete mass equation is simply a statement that the mass flux

along a streamtube is a constant.

m=p (2.9)

191801 7 Pa%A,

-

With due regard to the directions of the vectors KI,A2,§‘ and §+,

the discrete approximations to the x and y-components of the integral

form of the momentum equation (2.2) are,

2 2 ) eor e
P131Rn1Sx1 T Pa%PnaSke T PiAyy T PR, v By - IR
= 2 - 2 - +t.n- i + -_ - +_ -
P19 8015x1 T P2%RnaSke T (BTN ¢ (IT-NIT)S o+ S(IT+07-p, =P, ) (B -B, ")
C o (2.10)

plqlAnlsyl quZAn25y2 plel * p2Ax2 i Bx + Bx

2 2
P19 Rn18y1 7 Pa%Ans8,)

]

- - - +_n- - _]_' + -_ - +_ -
(P =P,IN, - (I*-N7)S_ - S(N*+1"-p -p,)(BI-B ~)

=0 (2.11)
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The step from the first line to the second line in these two
equations is acnievecd using the definitions of $ and N, and the identity
B*-B-= R -R

2 71

The energy equation reduces to the statement that the stagnation
enthalpy is constant along a streamtube, although of course the value of
the stagnation enthalpy, like the value of the mass flux, may vary from
one streamtube to another.

h =

X B, L 2y Pyl
t Y-1p ¥ 9 2 9, (2.12)

1
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2.4: Indexing for duct geometry.
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2.2 Duct boundary conditions

This section presents the boundary conditions necessary for the
solution of a two-dimensional duct problem. As illustrated in Figure
2.4, there are I grid nodes in the streamwise dircction, and J grid
nodes in the normal direction. Thus there are J-1 streamtubes, and each

streamtube has I-2 conservation cells.

The solid wall boundary conditions are very simple. The position
of the grid nodes is specified. No other boundary conditions are re-
quired, in contrast to almost all other Euler mechods which require
pressure extrapolation, or other special treatment, at solid walls. 1In
addition it is just as simple to specify either a displacement thickness
which allows the calculation of coupled viscous-inviscid flows, or the
wall pressure which allows the solution of the inverse flow problem in
which one determines the geometry which produces a specified desired
pressure distribution. These two developments are the subject of the

Mark Drela's Ph.D. thesis [11].

There are three flow quantities specified at the inlet. The first
two are the mass flux and stagnation enthalpy of each streamtube.
These remain constant along each streamtube, and are treated as such in
the discrete Euler equations in the last chapter. The third quantity
is the inlet stagnation density, which is defined as,

y-1 ,2.1//y-1)

= - = - 2 '1/’(Y'1)
P = P (1 + 5= M) P (1-q,/2h ) (2.13)

where the subscript 1 denotes the variables at the inlet face.

An important thing to note with this set of inlet boundary con-
ditions is that it is only well-posed if the flow is not choked. 'f the
flow is choked the total mass flow is determined unique.y by the inlet
stagnation enthalpy and density and duct geometry. For example, the

choked mass flow for a quasi-1-D converging/diverging duct is given by
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YZTI)I/H-L) 2(Y-1))1/2 o (h )

1/2 =
y+1 tht A

m= (2.14)

where A" is the area of the sonic throat. The correct boundary con-
ditions for choked flow are discussecd in Chapter 6, along with the nec-
essary modifications to the solution procedure. The reason they are not
discussed earlier is that the solution procedure becomes significantly
harder to understand, ard also is approximately four times as expensive
computationally. Thus it is preferable to use the above unchoked bound-

ary conditions wherever possible.

The discrete Euler equations also require boundary conditions for
the position of the grid nodes at the inlet and outlet planes. In all
the cases to e presented in this thesis the inlet flow is uniform and
so the inlet nodes are spaced according to the fractional mass flow in

each streamtube. Thus,

)mj/m (2.15)

Y1,917¥1,3 T Y,0 total

Since the inlet area, BRINL and the streamtube mass fluxes are

Y
1,J
all specified, this implies for the duct problem that the inlet node

positions are fixed.

At the outlet the same approach cannot be used because the flow is
no longer uniform due to entropy production at shocks. Instead the
boundary condition is that the streamtube area at the Ith streamwise

station is the same as the area at the I-1th station.

- Yy - - = .
Y, 507,50 7 oy, 307,50 7 0 (2.16)
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2.3 Auxiliary pressure relation

At this point it is instructive to count the number of variables
and the number of equations. Including all of the boundary nodes, there
are IJ grid nodes. Each grid node has both x and y variables, but for
the duct problem the nodes are constrained to move along lines x=constant
so there is really only 1 unknown per grid node, giving a total of IJ
grid point variables. In more general geometries such as cascades and
airfoils the grid nodes are constrained to move in a direction approx-
imately normal to the local streamline. In addition there are three
unknown variables, p,q,p, at each of the (I-1)(J-1) normal streamtube
faces, and one unknown variable, I, at each of the (I-2)J streamline

faces, giving a total of S5IJ-31-5J+3 unknown variables.

Counting the equations now, there are two momentum equations for
each of the (I-2)(J-1) conservation cells, and there are two equations,
the mass equation and the stagnation enthalpy equation, at each of the
(I-1)(J-1) normal streamtube faces. In addition there are 2I solid wall
boundary conditions, J-1 inlet stagnation density conditions, and 2(J-2)
inlet and outlet grid node equations, giving a total cf 4IJ-2I-3J+1
equations. Thus IJ-I-2J+2 = (I-2)(J-1) additional equations are re-
quired to make the numer of equations equal to the number of unknown
variables. This is exactly one additional equation per computational
cell.

The origin of the additional equation comes from the realization
that as yet nothing constrains the average value of [I. For two-
dimensional uniform flow in a constant area duct the discrete Euler
equations are perfectly satisfied by a solution in which the p variables
are equal to one constant value and the Il are equal to a different
constant value. This is because the momentum equations essentially are

concerned with pressure differences. The x-momentum equation for
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uniform p,q gives pl-p2=0 and the y-momentum equation gives MI7-[1*=0. The

average p value is constrained through the mass and stagnation enthalpy

equations, but there is nothing which constrains the average [ value,
and in this example it can take any value. For consistency the average
local value of I must be approximately equal to the average local value
of p with the equality becoming exact in the limit that Ax,Ay-+0. Thus,
bearing in mind that exactly one equation for each computational cell is
required to match the number of unknowns and equations, this is achieved
most simply by the following equation, which will be referred to as the

auxiliary pressure relation.

- +=
= + 1 p1 + p2 (2.17)

- + -
= + 1 pl + p2 + 2PC (2.18)

where PC is a function which approaches zero in the limit Ax,Ay+0. The

reason this more general form is sometimes required is that the discrete

equations including (2.17) are satisfied by a solution which has uniform
density, velocity and pressure, and & grid which has a '"sawtooth'" oscil-
lation in both the streamwise and normal directions, as shown in Figure
2.5. Usually this does not appear in a direct solution because it is
inhibited by the far-field and solid-body boundaries, but it sometimes
can be seen in regions in which there is a strong local streamline cur-
vature, and also it causes problems in the iterative solution procedure
to be given in Chapter 7. Considering the particular conservation cell
shown in Figure 2.6, the physical reason why the 'sawtooth" solution
should not be valid is that the cross-sectional area AC at the middle of

the cell is greater than the average of the areas Al and A2 at the two

ends, and for subsonic flow this means that the average of 0% and NI~

should be greater than the average of Py and P, by an amount Pc which
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Figure 2.6: Cross-sectional areas for pressure correction.
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can be determined by assuming an isentropic expansion. By the same
reasoning the II values on the neighboring streamtube need to be reduced
due to the pinching of that conservation cell, and it is the resultant
mismatch in the I values on either side of the steamline which prevents

the "sawtooth" solution from being valid.

This discussion suggests that PC should be defined by

- & -z - w2 1-M2) (a -k
fc " @ s.ht=const(AC 2(A AN = g YM/(LMT) (R m5(A) *Ay)) (2.19)

This definition, however, has Pc+w as M+l which is undesirable. In
practice it was found that no pressure correction was needed in super-
sonic regions, so it was decided to bring Pc smoothly to zero at M=1.

Also the area terms are replaced by an expression based on streamline

segments which is equivalent for an approximately uniform grid. The
third modification is that an arbitrary multiplicative constant k is
introduced. It was found in numerical test cases that a value for k
of 0.05-0.2 was sufficient to prevent the sawtooth mode from appearing.

Thus the final chosen form for Pc is

|$7xs2| - |$txs?
kp yMi(r-u?y 2 1 2 . M
pc= 2 |SxN| (2.20)
2
0 . M
where
1 2 1,2 2
p = 2(pl+pz) ' M™ = 2(M1+M2) (2.21a,b)
and
t ot % t ot 1 t _ r ot £t ot 2 .22a-d
Six T ¥Ry 0 8y T YTV, ’ Sox T ¥37TXy v Sy, T Y37, (2.22a-d)

For smooth flows with smooth grids Pc=0(Ax2,Ay‘), which satisfies
the condition that Pc+0 as Ax,Ay»0 and preserves global second order

accuracy.
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2.4 Possible solution methods

This chapter has presented the steady state equations obtained from
the particular choice of discretization of the Euler equations, and
their associated boundary conditions. The next question is how to solve
this system of nonlinear equations. There are two general classes of

iterative solution methods for a system of nonlinear equations.

The first class uses Newton's method applied to the entire non-
linear system of equations. Each one of the nonlinear equations is
linearized about the current approximate solution to obtain a linear
system of N equations in N unknowns, the corrections needed to produce a
better approximate solution. N here is the total number of equations,
and variables, which is very large, so the question then is how to solve
this system of equations. Jespersen (i8], who has tried this general
approach for the Euler equations with a different form of discretiza-
tion, considered the system to be too large to be solved efficiently by
direct methods, and so uses a method which he labels "Newton-Multigrid,"
in which he solves the linear Newton equations by a iterative Gauss-
Seidel method accelerated using multigrid, a technique first developed

by Brandt [5] for solving elliptic equations.

The second class of methods iterates directly on the nonlinear
equations. At each step of each iteration, all of the variables are
held fixed except for those at a particular grid node (point Gauss-
Seidel), or a particular line (line Gauss-Seidel). The nonlinear equa-
tions which correspond *o this point or line are linearized to obtain a
relatively small system of linear equations, which are solved to get the
corrections for those variables. This iterative procedure converges
slowly usually, so Jespersen [18] accelerates it using the nonlinear
full multigrid algorithm developed by Brandt {S}. Jespersen labels this
method "Multigrid-Newton" since it uses the nonlinear multigrid algo-

rithm with a Newton method at each node as the local relaxation method.
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In this thesis the first approach is followed for several reasons.
Firstly, the Newton method is conceptually very straightforward. Provi-
ded the initial trial solution is not "too far" from the true solution,
the method always converges and asymptotically the convergence is quad-
ratic. Secondly, the Newton method allows the introduction of global
variables and global constraints. As will be discussed in Chapter 8,
these are special variables, such as circulation, and special equations,
such as the Kutta condition at the trailing edge, which in some sense
have a global span or influence. In the Newton method they are treated
simply as additional variables and equations, although in the program-
ming implementation they are handled separately. It is not clear how

thay would be included under the second class of methods.
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3. ARTIFICIAL COMPRESSIBILITY

3.1 Introductory discussion

The concept of artificial compressibility was first introduced by
Eberle [12], Harten (17] and Hafez et al. [16] for the solution of the
full potential equation in transonic regimes. Following the normaliza-
tion adopted by Hafez, the full potential equation for steady two-
dimensional flow is
=D+ 5D =0 (3.1)

where, due to the isentropic assumption, p is given by

1/(y-1 - 2 2 1/(y-1
o = 2T 2302, aef,, /OCD

=(x 3y (3.2)

The conservative discretization of (3.1) on a cartesian grid, as

shown in Figure 3.1, is

2
(piry, 30051, 57 @ 3) 7 Ping,y (94,3700, 50 1/0x
2 _
PPy, a3 (0 ge1T 05,50 TPy a1 (05 570y g /Ay =0 (3.3)
where
P = il'( e . L) etc (3.4)
ivd, 3 721 Ti+1,3 71,3 ’ : )
B 2 1/(y-1) y-1 .2 2 1/(y-1)
Ol'j = (Mooci,j) = [1 - 5 Mw(qi’j-l) ] (3.5)
Q.= e e a/28x1% ¢ (o, . -0, . )/28y)° (3.6)
i3 iv1,3 %i-1,3 i,3+1 71,31 '

This set of equations is satisfactory for the subsonic regions of
the flow field which are elliptic, but in the supersonic regions of the

flow field, which are hyperbolic, equation (3.3) needs to be modified.
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Figure 3.1: Location of grid nodes and variables for Potential

equation.
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As described in [16], the modified equation is

0 - 2
[pi+§,j(°i+1,] mi,j) Pi 1,3 (Gi,j ¢i-1,j)l/Ax
- - -
TP e 0y T 0,y T Py (05370 g N /e 2 0 (3.7)
where
p = 2o 0. L) etc (3.8)
Pist, 3 720 Pie1,97P4,5 . etc. :
and
o =, .- T
i, i 7 Pi,374i,3%% 3 (3.9)
%g is an approximation to the streamwise derivative of p, evaluated

on the upstream side of the node (i,j), so that 51 3 1s a weighted aver-

’

age of the values of p at (i,j) and the adjacent upstream nodes. u,

i,]
is a function of the local Mach number.
u = max(0 1-M72) = max (0 1-c? /q2 ) (3.10)
i,] ! i,3° ! i,3" 71,3

This choice of definition for u appears to have been based on

numerical experience rather than a numerical stability analysis.

Artificial compressibility has also been used by Wornom [28] in
solving the quasi-one-dimensional Euler equations. The steady state

version of his discrete equations is

(paA), - (pah), , =0 (3.11)

2 2 1 _
(PA+pq A), - (PA+pq A), , - 5(p;*pP, | )(A;-A; 1) =0 (3.12)

where A is the cross-sectional area of the streamtube, and p is
determined by assuming uniform stagnation enthalpy.

_x-l - L2
Py = y oi(ht 39;) (3.13)

Wornom defined a, which he called a retarded density, as
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Py =Py ui(pi-pi_l) (3.14)

with

2,2
ui = max(O,l-Mc/Mi ) (3.15)

_1

2
Mc is a reference Mach number taken to be slightly less than unity
L Again no explanation is given
for the choice of formula for u, and the results presented demonstrate a

and M, , is the average of M., and M,
1'2 1 1-

certain amount of smearing of shocks, indicating that possibly too much
dissipation is being added by the artificial compressibility.

The discretization of the steady two-dimensional Euler equations,
presented in the last chapter, can be viewed as a natural extension of
Wornom's one-dimensional equations. In particular the discretization
applied to a single streamtube with a straight centerline reduces to
Wornom's equations for a quasi-one-dimensional streamtube. Hence it
was decided to follow Wornom's approach in introducing artificial

compressibility into the mass equation (2.9).
L L VLS P (2.9)

The modified mass equation is

m= PRy T eTA, (3.16)
where
Py = Py - uz(oz-ol) (3.17)

Rather than using Wornom's definition for u, however, an analysis
was performed to determine the optimum amount of artificial compress-
ibility required to produce a well-posed discrete problem, with sharp
shocks and a minimum of undesirable stagnation pressure errors in the

smooth supersonic region.
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3.2 One-dimensional analysis

The one-dimensional analysis considers linearized perturbations
about uniform flow in a constant area duct. To gain insight it is
helpful to first analyze the analytic Euler equations with a term in the

mass equation corresponding to the artificial compressibility.

(p - uAx %ﬁ q = const = m (3.18)
2

pq + p = const = P (3.19)

J p Ll 2 =

-1 p + > q const ht (3.20)

Now each variable is expressed as a sum of steady uniform part,

denoted with an overbar, and a unsteady perturhation.
p = B(1+p') . p = B(l+p") , q=g+¢cq (3.2la-c)

When these are substituted into equations (3.18)-(3.20), and second

order terms are neglected, the resultant linearized equations are

]
(p'- uax gﬁ) M+q =0 (3.22)
2 ' )
YM'p + 2YMq +p =0 (3.23)
1 1 ] (]
—p(p'-p') + Mg’ =0 (3.24)

where M is the Mach number of the steady flow. Eliminating p' and q'
using all three equations yields a first order differential equation

for p'.

oalcv
X |o

(M2-1) o' - qu(Y+1)M2 =0 (3.25)

This equation has an exponential solution.

2
o' « exp(kx) , k=-—=1 (3.26)

pAX(y+1)M°
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Figure 3.2: Mach number distributions illustrating
analytic "boundary layer" behavior.
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The most important feature of k is that it changes sign when M
passes through M=1. When M<1, k<O, which means that for subsonic flow
the linear perturbation produces a 'boundary layer" type phenomenon at
the inlet boundary, with an exponential solution decaying to zero away
from the inlet. When M>1, k>0, which means that for supersonic flow
there is a "boundary layer" phenomenon at the outlet boundary. Of
particular interest is what happens when there is a shock. In this
case the linear perturbation approach is not valid in the shock itself,
but it remains valid on either side of the shock. On the supersonic
side k>0, and on the subsonic side k<0. Hence on both sides the per-
turbation from uniform flow decays exponentially away from the shock.

Figure 3.2 illustrates all of these features.

This analysis of the modified differential equations is important
for interpreting the analysis of the discrete equations, which is
performed next, because the behavior of the discrete solution must be
qualitatively the same as the behavior of the analytic solution for the
discrete problem to be well-posed. Thus the discrete solution should
also exhibit the exponential decay away from the shock on both sides
and the "boundary layer" type behavior at subsonic inlets and supersonic

outlets.

The discrete equations for a straight, uniform area streamtube

reduce to
P9, * P, = p q2 + p, = const = P (3.28)
272 2 171 1
P p
—_Y ...2 l 2 = —Y— -—l —_ 2 = =
y-1 5, + qa, ¥-1 5, + q, const ht (3.29)

The corresponding linearized perturbation equations, obtained by

the same procedure used for the analytic equations, are
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t (]
(o, - H(Py=p )] M+ q, =0 (3.30)

2

1 1
YM p2 + 2YM q2 + p2 =0 (3.31)
Lp'o!) +Mq =0 3.32)
y-1(P27%; % (3.
When q' and p' are 2liminated using all three equations the
resultant first order difference equation for p' is
1 '
(“crit' u) Py *UPy = 0 (3.33)
where
2
M -1
b= (3.34)
crit (Y*l)MZ
Equation (3.33) has an exponential-type solution
3 u -
R , 2 = — 3.35
& Yo (3.39)

crit

Numerical well-posedness requires that the exponential behavior is
qualitatively the same as in the analytic case. For M<1l, k<0, and the
corresponding behavior for the discrete problem is [z|<1, which is auto-

matically satisfied for u20 since for M<1, u 0.

crit<
For M>1, k>0, and the corresponding behavior for the discrete

problem is |z|>l. In this case however [z| can be greater than or less

than unity, depending on the value of u.

a) U > ucrit => 1<z<=

For this range of values of u, the solution is well-posed and
there is a smooth exponential decay away from shocks on the supersonic

side.

[

b) wu H > 5 M => =~w<z<~1

D .
crit crit

In this range |z| is still greater than unity so the problem is
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well-posed, but now because z is negative there is an oscillatory

exponential decay away from the shock.

c) % ucrit >u >0 => =1<2<0
In this range, there is insufficient artificial compressibility
because |z|<l. In actual computations with this level of artificial
compressibility the iterative Newton procedure fails because the
Jacobian 9R/3U (defined at the beginning of chapter 4) becomes very

nearly singular.

The sharpest possible shocks correspond to z=0 for M<1l, and z=tw

for M>1, so in one sense the optimal choice for p is p=max(0,u ).

crit
However another consideration is the amount of stagnation pressure
error produced in the smooth supersonic region by the artificial

compressibility, and since it is proportional to u it suggests that u

should be chosen to be closer to ucrit/z in smooth flow regions. In
actual computations it is found to be preferable to introduce artificial

compressibility at high subsonic speeds to prevent the Jacobian 3R/3U
from becoming nearly singular, and so the robust definition of u which

is used is

M<Mcrit’ =0
2 2 (3.36)
-Mcrit
MM .., W=
crit con (Y*I)Mz
where M_ . is slightly less than 1.0 and u lies between 0.5 and 1.0.
crit con

Typical values used are Mcrit=0'95 and Meon = 0.9.

To verify the predictions of the analysis, a quasi-one dimensional
version of the code was developed by considering only one variable area
streamtube with a straight centerline. This code was applied to a
Laval nozzle problem with subsonic inlet and outlet, and a choked

throat at x=0.5. Fiqures 3.3 to 3.5 present results from three calcula-
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tions with the same boundary conditions and the same Mcrit=0'9' Each

figure displays the compressibility u, the Mach number M, and the frac-
tional change in stagnation pressure. The plots of p also have lines
/2 for reference purposes. The three cases

indicating pcr' and u

it crit
differ in the values of “con which are used. The first case uses

pcon=l.5. Figure 3.3 shows that there the shock is rather smeared and

there is an erroneous increase in stagnation pressure in the supersonic

region. In the second case ucon=l.0, and Figure 3.4 shows that the

shock is much sharper,and the stagnation pressure errors are smaller, as

predicted. 1In the final case ucon=0.5, and so u is only slightly above

the predicted stability threshold. Both the Mach number and stagnation
pressure plots show oscillations which decay slowly upstream away from
the shock, as predicted by the analysis. The overall level of
stagnation pressure error in the supersonic region is slightly less

than for u =1.0. When u was further reduced to 0.45 the iterative
con con

Newton procedure failed and no solution could be obtained. Thus these
cases verify the essential points of the analysis, that the stability

threshold is u=pu /2, ’.aat the sharpest shocks are obtained by p=u

crit crit
and the minimum stagnation pressure errors are obtained by choosing p to
be slightly greater than ucrit/2'
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Figure 3.3: Results for 1-D streamtube, with ucon=1.5
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Figure 3.4: Results for 1-D streamtube, with ucon=l.0
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3.3 Second order corrections

The artificial compressibility in the mass equation produces a
first order error, because “he modified density differs from the true
density by approximately uAs(dp/ds), where dp/3s is the streamwise
derivative of the density and As is the streamwise distance between two
nodes. To correct for this a correction term can be added to the

modified density.

Py =Py - “2("2"’1) + uc?_(ol-oo) (3.37)

When uc2=0, this definition for ; is exactly the same as (3.17),

2

but when He,=H the modified density 5 is approximately equal to

2’ 2

2

pz-u(As)2 %gg and so the truncation error is reduced to being second

order. This has the effect in actual calculations of greatly reducing

the magnitude of the stagnation pressure errors introduced in the smooth
supersonic region. To determine the well-posedness of the new modified

mass equation, the analysis of Section 3.2 has to be repeated.

The model analytic mass equation is now

) 2 3?
(P = (u-ue)Aax 5% - Mebx 3;§) q = const = m (3.38)

where uc is assumed to be less than u.

1] ]
After linearizing and eliminating q and p , the resultant second
]

order differential equation for p |is

2 . ]
- 3 2 .
M-1 p'- (M-ug)Ax 90 _ UCAXZ é_g =0 (3.39)
2 ax ax
(y+1)M

This equation has two solutions of the form p'x exp(kx) where

2 1/2
duc(M2-1)
kax = = 2(uwg) T3 [ (wewe)? ¢ ———- (3.40)
(Y+1)M
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For M<1, either the two values of k are real and negative, or they
are a complex conjugate pair of which the real part is negative. In
both cases the result is a combination of two "boundary layer'" phenomena
at subsonic inlets and on the subsonic side of shocks. For M>1, both
roots are real, one is positive and the other is negative, so there is
"boundary layer" phenomenon at supersonic inlets and outlets, and on

the supersonic side of shocks.

The discrete modified mass equation is
(e, - ulpy=p)) +uclp-py)] q, = const =m (3.41)

After linearizing and eliminating q and p , the resultant second
1

order difference equation for p is

(Mopie™ ) 05 * (urn ) 0, = U .py =0 (3.42)
where Merit is again as defined in equation (3.34).

This equation has two solutions of the form p'x zJ where

2 1/2
- + -
(u*uc) - [(u+uc) *au (u_ e ul
z = 3 _— (3.43)
ucrit W

For M<1 it can be shown that, provided 0<uc<u, the two roots zl

and z., may both be real, or may form a complex conjugate pair, but in

2
either case they both have magnitude less than unity, and so the quali-

tative behavior is the same as for the analytic solution.

For M>1 it can be shown that both roots are real, and one root, zl,
has magnitude less than unity, while the other root, 250 depends on the

values of u and M
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a ., < => 1 <z

) uch.t H 2

b) u < pcrit< 2(ufuc) => 22 < -1
c) 2(u+pc) < ucrit => -1 < 22 <0

Thus for the discrete behavior to be qualitatively the same as the

analytic behavior, which requires |zll<1 and |22|>1, the artificial

compressibility must satisfy 2(u+uc)>ucr. , and the sharpest shocks are

it
again obtained by u=ucrit'
In applications it has been found to be desirable to set uc=0 close
to shocks, so an algorithm is used which sets H U in the smooth
supersonic region and then smoothly reduces Mo to zero just before the

shock. Full details can be obtained from the program listing. To

illustrate the effect of the second order corrections the three test
cases presented in the last section were recalculated with the second

order corrections. Figures 3.6-3.8 show u, Mo the Mach number M and
the fractional change in the stagnation pressure. It can be seen that

the stagnation pressure errors in the smooth supersonic region have
been almost totally eliminated. The oscillations on the supersonic

side of the shock for the case ucon=0.5 are more evident, and the
sharpest shock is still obtained by choosing pcon=1.0, although the

solution correspording to pcon=1.5 is not much worse.
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Figure 3.6: Results for 1-D streamtube, with ucon=1.5

and second order density corrections.
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Figure 3.7: Results for 1-D streamtube, with ucon=1.0

and second order density corrections.
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4. NEWTON LINEARIZATION

The Newton method for solving the nonlinear scalar equation

R(U) = 0 (4.1)

is to linearize the function R about the current approximate solution "

to obtain

n
rR(UMY) = r(u"wsu™) = rUT) + (%%) su” (4.2)

and then setting this equal to zero determines the correction &U.

n _ n,, drR D

U = - R(U )/(du) (4.3)
The same approach can be used to solve a system of N nonlinear

equations with N variables. The difference is that equation (4.2) is

now a vector equation and g% becomes an NxN matrix. Thus dun is deter-

mined by solving the linearized equation

n
R(U™) + (%%) su™ =0 (4.4)

where the ith component of the vector R(Un) is the ith function Ry eval-

uated at the current approximate solution Un, and the (i,j)Ch element of
3R N . aRi
(55) is gﬁ;,

to a variation in Uj' the jth component of U, evaluated again at the

the partial derivative (or sensitivity) of Rj with respect

; . n
current approximate solution U .

In the application here, the vector cf functions R includes all of
the discrete Euler equations and the appropriate boundary conditions.
Section 4.1 describes the process of linearizing the discrete Euler
equations about the current approximate solution to obtain the appro-
Priate rows of the linearized equation system (4.4). Section 4.2 dis-
cusses the linearization of the duct boundary conditions. Section 4.3
presents the modifications neccesary due to artificial compressibility.

Section 4.4 presents the initialization procedure for the Newton method
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and finally Section 4.5 discusses some issues involved in the updating

of the solution using the corrections calculated by the Newton method.
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4.1 Euler equations

To minimize the computational cost of solving equation (4.4) it is
desirable to use the smallest possible number of independent variables,
and so the equations are formulated with only the density, p, and grid

node positions, x,y, as independent variables.

In this section it will first be shown how the other variables at a
given iteration level n can be derived from the known values of p,x and
y. It is then shown that there are still two steady-state equations per
computational cell which have not been exactly satisfied. It is the res-
iduals corresponding to these two equations which drive the corrections
8p, the change in the density, and én, the displacement of the node
normal to the local streamline. Next, the two equations are linearized
with respect to variations in both the independent variables, p,x,y, and
the dependent variables, p,[l,q and various geometric variables. Lastly,
the variations in each of the dependent variables are expressed as
linear functions of the variations in the independent variables to

obtain the final form of the linearized equations.

At the beginning of iteration n, pn,xn,yn are known, together with

the mass flux and stagnation enthalpy in each streamtube, which are
invariant throughout the iterative process. For each streamtube all the
geometric quantities are evaluated using equations (2.4-2.8). Each q is

then determined from the mass equation

A (2.9)

m = 09%02

which implies

n= m
9 n,n : (4.5)
p2 n2

Next pg is calculated from the energy equation
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n
.Y By 1
h 2+ 2 q (2.12)

n _y-1 n _ 1 n2
Py = Y P2 (hy- 359, ) - (4.6)
The auxiliary pressure relation
- +
=+ v = p1 + 92 + ZPC (2.18)

gives the sum of N~ and M*, the pressures on the streamline faces.

The difference between them is obtained by taking a linear combination
of the x and y momentum equations (2.10,2.11). Using the auxiliary

pressure relation, (2.18), the momentum equations are

2 L2 ) fp-y =

plqlAnlsxl pquAnZsz + (p1 pZ)Ny + (M7= )SY + PC(BY By) (0] (4.7)
2p s - 2y s . - (p,-p,)N_ - (I*-0")s_ - P (B'-B7) =0 (4.8)

P19 % yl P2%%: y2 Py7Py %% X c' X X )

Taking N, times (4.7) + NY times (4.8), and dividing by |§x§| gives

the equation which is termed the normal momentum equation

2 2 . - _
P19,9; - Py9,9, - " + 7 + P g, 0 (4.9)
where
A N-s A _Nes
1 71 20 T2
9, = e , g, = “l%rfz“’ (4.10a,b)
| SxN| | SxN |
and
4
_|Bx(B*-B-)| _ |A1xAy| .
93 - > > - -+ > (4.10c)
| SxN| [ SxN|

From (4.9), the definition of PC equation (2.19), and the auxiliary

pressure relation, the values of NI and * are calculated, completing

the calculation of all the variables at iteration level n.
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There are two respects in which these variables do not satisfy the
steady state equations. The first is that only one linear combination
of the momentum equations, the normal momentum equation, has been satis-
fied. A seccnd combination which gives the streamwise momentum equation
has not been satisfied. Also the value of [I” on the face of a cell in
the jth streamtube is not neccessarily equal to the value of NI on the
same face of the cell in the j-lth streamtube, as illustrated in Figure
4.1. In the the final steady state solution both of these conditions
must be satisfied, and so it is these errors which are the forcing terms

which drive the changes in the density and grid node positions.
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Next the linearized equations have to be determined, expressed in
terms of changes in the density and grid node positions. The first
ejuation is obtained by linearizing equations (4.7) and (4.8) and taking
Sy times the former plus SY times the latter, divided by |§xﬁ|. This
will be referred to as the streamwise momentum equation since it is a
vector dot product of a streamwise vector and the linearized momentum

equation.

. plqlAnl - 7

2 2
ajf) dpy * 20 f) dq) + (o, q F\ /A ) SR, X §+8s)
P,q,A
2 . 2 2°2"n2 2
ayf, 8P, - 20,4,f, 89, - (pya,E,5/A ) OBy, B | S+8s,
P."P, . 2 AR B
+ i +2 | Sx8N| + |Sx6$| +8p, - 6p, + £8P+ P, lSX(éE *°B )|
| SxN| leN| | SxN|
- - (p.q%F. - p.q°f. +p -p, *+PE_ ) (4.11)
Pyt T Pty TP TPy T RS :
where
A 3es A 3Ss
cs ‘S
f = _nl—_l , f = L—g (4.12a'b)
1 > - 2 > >
| SxN| | SxN|
and
-+ »>_
£ = ISX(B."B )l = lB +l (4.12c)
3 - > > > )
| SxN| | SxN|

The term underlined by dots is extremely small since PC=O(Ax2) and

so this term is neglected.
The second equation, which will be called the linearized normal

momentum equation, is N times the linearized x-momentum equation (4.7)

plus NY times the llnearlzed y-momentum equation (4.8) divided by |SxN|
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2
PLaA L, L .
1t

2 2
qi9; e * 20,4,9; 6q) + (pyq,9,/R ) SA , * ——= 8s)
| SxN|
2
0.q°A A
2 2 2R o
- 9,9, 8p, - 20,459, 84, - (P,d,9,/R ) SR, el
| SxN|
p.-p +_q- - - E S N
- L2 |Sxsl| - -f [SxéS! + &0* - 60 + g 6P + P |Nx(6B7-8B") |
> > > > 3 ¢ c > -»
| SxN| | SxN| | SxN|
= - (p.q%, - p,a2g, +0* - 0" + P g.) (4.13)
199~ P99, 93 :

9, 9, and g, were previously defined in equations (4.l10a-c). The
term underlined by dots is again neglected since PC=0(Ax2). Because of
of equation (4.9), which was used to calculate MI” and N*, the right

hand side of equation (4.13) is zero.

Ultimately both of these linearized momentum equations need to be
expressed solely in terms of variations in density and grid node posi-
tion. To eliminate the &I terms in equation (4.13) two relations are

used. The first is the linearized auxiliary pressure relation

- + —
SII™ + 807 = épl + 692 + 26Pc (4.14)

which means that either one of the &I can be eliminated leaving only the
other one to be eliminated. The second relation is that in the con-
verged steady state solution the N* of a cell in the j—lth streamtube
must be identical to the NI of a cell in the jth streamtube as was

illustrated in Figure 4.1. The linearized statement of this is

+ + = n- -
nj-l + énj_l nj_l + dnj_l (4.15)

which may be rewritten as
ént . - &M = - (T . - 07) . 4.16
j-1 j ( j-1 3) ( )

Using this relation to eliminate the 8% of the j—lth streamtube

cell and the 8M7 of the jth streamtube cell, one gets a combined normal
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momentum equation covering the two cells (see Figure 4.1) and containing

no 8I1 terms.

2
p.q,A -
2 2 198
[:qlgl 8o, + 2p,q,9) 8a; * (19 /A ) 8A )+ ————— N-bs,
| SxN|
2
b, q5A R
2 2 2P -
- 939, 8Py T 20,9,9, 84, T (Pyd59,/A ) 8A, v —=== Neds,
| SxN|
p.-P . .-
.12 |§x6N| Jo-n |§x6§| - ép - 8p. - (2-g,)6P ] +
bt * > 1 2 3 c .
| SxN| | SxN| j-1

2
p.4q.A -
1°1 nl ﬁ-

2 2
| SxN|
2
0. d5A
2 2 22 n2 » .°
- 9,9, 80, -~ 20,459, 8ay - (P,d,9,/A ;) 8A, v == Neds,
| SxN|
p,-P +_n- -
- i *2 |§x6§| - H» E |§x68| + ép, + dp, + (2+g4) 8P ]
| SxN| [ SxN| j
= -2(0* - 3 4.17
( 3-1 J) ( )

Equations (4.11) and (4.17) are the linearized equations to be
solved, but there is still the matter of eliminating the &P _, 8p and éq

terms. The 8p terms are eliminated using the enthalpy equation.

h = Y- q° (2.12)

t y-1

o |v
+
N

Thus, by differentiating

ap ap
dp = (32) 8q + (77) 8p (4.18a)
39" p=const 4 dp g=const
where
EE) =B (4.18b)
(ap g=const P :
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op Y-1
(= = - — pq
99 p=const Y

The 8q terms are eliminated using the mass equation
m = oqAn

which when linearized gives

9q aq
dq = (=) §p + (=) 7
P A=const 0A p=const N
where
)a)  _ g
30 'A=const p
(aj) = - S
CLY p=const Ap

Similarly the 6Pc term can be eliminated by differentiating

defining equation, (2.20). The resulting expressions are rather

complicated and can be obtained from the program listing.

Also the geometric variations have to be expressed in terms

primitive grid node movements. Each node moves a distance 6n in

-~

(4.18c)

(2.9)

(4.19a)

(4.19b)

(4.19c)

its

of the

a

direction n specified to be approximately normal to the streamline.

Thus one gets the variational relations

R VUV PR DU P
§S 2Gnlnl 26n1n1 + 26n n3 + 26n3n3

- -- +7 4 .- e PR ¥ e
8N 26n1n1+ 26n1n1 6n2n2 + 6n2n2 26n3n3 + 26n3n3
dsl =3 ésl S (sl Gsl) s s slx(éslxsl)

1 1 1

from which, for example, one gets
> > - - l - ~_ - _ l >~ + l > ~_ - l z "4 -
| Sxés| 2|an1| §n] 2|an1| éni + 51Sxn3| én3 + 3|Sxn]| énJ
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(4.23)



1}

- -~

A s

LR s )(635xs | + |s, xR | = |s,x (6R - L3
s, 11 1% 1797 1 1 \ 1
A A A A
nl - nl, . 4 nl - nl -
(3;1 ) dnl + (351 ) 0nl + (3;5 ) 6n2 + (55; ) 6n2 (4.24a)
|s xﬁ‘|(-l+A1.S3) (4.24b)
171 2 251
X -s
M = 4.24
IsyxnilC 5+ 2s] ) (4.24c)
A s
~ - 1 1%
- = - 4.24d
lsxnl6= 3 - =5 ( )
R..s
~ - 1 171 \
|slxn£|( 5" 25 ) (4.24e)
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4.2 Duct boundary conditions

The linearized form of the solid wall boundary condition is simply

dn, = éni =0 (4.25)
since the grid nodes are fixed on the lower and upper sides of the duct.

The linearized form of the inlet stagnation density condition

- 2 - _
Py = Py (1 ql/th) B (pt)specified (2.13)
is
P q.p
t 1"t
— 8p., + dq, = (p.) e -p (4.26)
1 2 1 T ecified t
P (Y-1)(h_-q}/2) sP

The linear variation 8q is expressed in terms of variations in the
density and grid node positions using the linearized mass equation and

geometric de. initions, as done in the last section.

The linearized form of the inlet condition

Y1, 5e17Y1,57 Y1,V 1) ™ Potal (2.15)
is simply

8y, 301700 ,57 0 (4.27)
since the inlet area y -y, , and the mass fluxes are all constants.

The linearized form of the outlet condition

(Yr,5e17Y1,5) 7 oy, 3417 Y11, = O (2.16)
is simply
(np yq78np ) = Onp g 00,30 20 (4.28)
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4.3 Artificial compressibility

When the local flow is supersonic, or close to supersonic, arti-
ficial compressibility appears in the mass equation, as explained in

Chapter 3. This modifies the linearization in Section 4.1 in two ways.

The first difficulty arises in calculating q" using the modified mass

equation.

m = %R (3-10)
where

Py = Py - “2("2"’1) + “02("1"’0) (3.37)

and u and M, are as defined in chapter 3.

The problem with using equation (3.16) to calculate a, is that My

and hence 5 are functions of q,- This problem is overcome by calcu-

R 4 -
n } the value of u2 at level n-1.

2'
lating a temporary value q, using M,

* n n_ n-1 n_n n-1 n n
qz m / Anz[pz pz (pz ol) + pCZ (pl po)' (4'29)

®
This value of a, is then used to calculate ug, which in turn is

used to calculate q;.

n _ n n_ n n_n n-1 _
q2 =m / An2[02 u2(p2 pl) + uC2 (pl po)l (4'30)

Note that u. is held fixed at its value derived at the end of iter-

ation level n-1.

The second change is in the linearized mass equation. Differen-

tiating (3.16) and (3.37) gives
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9,

8q, = - ;; [ (17,080, (Uythcy) P, = Hey8pp= (0,70 )8, * () =0)buc, |
) A (4.31)
A n2 ’
n2

Three approximations are now made. The first two are that 6p0 and

éuCZ are both zero. The third approximation is that 6u7 is expressed in

terms of variations in density, by assuming that velocity changes are
isentropic. This is necessary since My is actually a function of a, and

9. not Py ¢nd Py Thus 6u2 is approximately given by

ou. /9 du./9d
2 aq.,\op 2 aq . \dp 1
2 2/ isen 1 1/isen

With these three approximations, 6q2 is given by

aq aq aq
= (22 i _2
8q, (apz) 8p, * (ap ) 8p, # (aAZ) 8A (4.33a)
where
3q q 3q
532 = - =2 ((1=uy)=(p,- pl)aq ap2 ] (4.33b)
2 Py 2\'"2/isen
aq q 9q,
372 = = =2 [(M,*He,)=(p,=p ) ( ) ] (4.33¢c)
C B
9p, o, 2 T¢2 2 N1 op isen
and
oq q
2 - _ 22
9A A : (4.34)
n n2
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4.4 Initialization of Newton Solution

The Newton iterative procedure has to be supplied with an initial,
approximate solution. If this initial quess is very poor then it could
affect the robustness of the method. 1In particular it is important for
this problem to have a reasonably good initial position for the stream-
lines. This is achieved by using an elliptic grid generator which pro-
duces a grid, one set of whose grid lines correspond to streamlines of
incompressible flow. The method was first developed by Thompson [26].

A transformed set of coordinates (£,n) is defined by the equations

£ -0 (4.35a)

+
XX EYY

-~ + =0 4.35b
L (4.35b)

After changing coordinate systems these two equations become

a X - 28 x + X =0 4,36
g T 2P Xgy Y X, (4.36a)
Qa -2 + =0 4.36b
YgE 8 Yﬁn Y Ynn ( )
where,
2 2 2 2
=X+ . = + ' = : 4.37a-
* xﬂ Yﬂ B xgxn ngn Y x& ' Y& ( a-c)

The line £=0 is chosen to correspond to the physical inlet boundary
and the line £=1 corresponds to the outlet boundary. The line n=0 cor-
responds to the lower duct wall, or in the case of a cascade the suction
surface of the blade together with the stagnation streamline whose posi-
tion is guessed to be a straight line of the correct. angle coming from
the leading and trailing edges of the blade. Similarly the line n=1
corresponds to the upper duct wall, or the pressure surface in the case
of a cascade. TL.~ computational grid is defined to be uniformly spaced
in the g direction, and in the n direction the spacing is proportional

to the mass flux in each streamtube.

gi,j = i (4.38a)
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(4.38b)
k=1 total

The (x,y) coordinates of the grid boundaries are specified, and
then equations (4.36a,b) are solved by a standard SLOR relaxation proce-
dure to obtain the coordinates of the interior nodes. Because of the
choice of the Laplace equation, (4.35b), to define n, the n=const lines
are streamlines of the correspoding incompressible flow, and so the grid
produced is an excellent approximation to the grid corresponding to the

compressible flow solution.

The initialization of the densities is much less important, and all
the calculations presented in this thesis were obtained by initializing
all densities to be equal to the value corresponding to a Mach number of
0.5. This was an arbitrary choice, but it was found that alternative
initializations made a difference of no more than one or two in the

total number of Newton iterations.
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4.5 Updating of Newton Solution

For most Newton iterations the solution 1s updated by simply

adding the calculated changes in density and node position.

. n+l _ n :
opi,j = °1,j + OQi'j (4.39a)
Al e (). Lén. . (4.39b)
i,3 i,] x'i,3° 1,3
ntl _ n -
Yi,j = Yi,j + <ny)i,j6ni,j (4.39¢c)

For some iterations however equation (4.3%9a) would produce some
densities that would be negative and would cause the Newton procedure
to fail. To prevent this from happening an under-relaxation factor 1s

employed and equations (4.3%9a-c) are modified to become

n+l _ n
épi,j = pi,j +r épi,j (4.40a)
Nl e (n). .én. | (4.40b)
l:] l'] X l'] l']
n+l n ~
. . =Y., . +r(n). .6n, . 4.40c
Yig T Y, T T )50 (4-40¢)

where r is chosen to be either 1 or the value which produces a maximum
density change of factor 2, if this value is less than 1. Chapler 9,
which lists iteration histories for all the calculated test cases, also
lists the value of r whenever it is not 1. It will be seen that this
clamp is usually only needed in the first iteration and during the
formation and movement of a strong shock. Other methods of clamping,
such as making r a local quantity instead of a global quantity, are also
possible but have not been investigated since the current clamping

procedure works very well.

In cases with blunt leading edges, the clamp r is also used to
prevent the position of the stagnation point node changing by more than

half the node spacing. 1In addition to this, whenever the stagnation
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node moves half the node spacing, or whenever the total movement over a
number of iterations is this large, an adjustment algorithm is employed
which adjusts the position of the nodes by moving them along their
streamline in order to maintain a smooth distribution of nodes along
each streamline. The iteration histories in Chapter 9 also indicate
when this streamwise adjustment algorithm is used. Typically it is only
used once or twice during the earlier Newton iterations when the changes

are largest.
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Figure 5.1: Global indexing system for unknown variables.

Figure 5.2: Indexing system for a particular pair of cells.
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5. DIRECT METHOD

The simplest approach to solving the linear system of Newton
equations is to solve the system directly. This chapter shows that the
equations can be assembled into a block tridiagonal form in which the
variables correponding to each block are all of the density and node
changes at one particular streamwise station. Due to artificial compre-
ssibility there is an additional fourth diagonal of blocks in the super-
sonic region, and so the solution procedure is slightly modified from a

conventional block tri-diagonal algorithm (1,8].

5.1 Assembling the linearized equations

As indicated schematically in Figure 5.1 the unknowns are éni'. for
1€igT , 1£3j<J, and dpi,j for 14igI-1 , 1£j&J-1 . Figure 5.2 shows the
indexing system for a particular pair of conservation cells. Thus for
each i, that is for each streamwise station, there are 2J-1 unknowns.
The modified block tridiagonal form into which the linearized equations

are assembled is

r_:---- ----- : ey o - - -
A Py R
By i By i Gy P, R
P23 1By Ryt Gy D3 B3

P 2re1i Broni Araai Cron Pr-1 R-1
f ZI g BI : A[ ; DI RI

(5.1)

Each of the matrices Z,B,A,C is square and has dimension 2J-1, the

number of unknowns at each streamwise station. Likewise each vector D
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and R has length 2J-1. The matrix Di contains all of the unknown linear
perturbations at the ith streamwise station, arranged in the following

order:

The matrices Zi'Bi'Ai’Ci’ for all values of i except 1 and I, have

the same banded structure, shown in Figure 5.3 with a reminder above

each column of the variable in D which corresponds to it. A cross, "x,"
in the matrix means that there is a non-zero entry. A circle, "o,"
means the entry is zero if there is no artificial compressibility. A
blank means the entry is always zero. Rows 1 and J are the solid wall
boundary conditions, (4.25). Rows 2 to J-1 are the linearized normal
momentum equation (4.17) for j going from 2 to J-1. Finally rows J+1 to
2J-1 are the linearized streamwise momentum equation, (4.11) for j going
from 1 to J-1. Note that the Z matrix is entirely zero if there is no

artificial compressibility.
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Figure 5.3: Structure of matrices Zi'Bi'Ai and Ci'

76



Figure 5.4 shows A1 and Cl the matrices in the first block row.
kows 1 and J are the solid wall boundary condition, rows 2 to J-1 are
the inlet conditions, (4.27), and rows Jii1 to 2J-1 are the streamwise
momentum equations for the first column of conservation cells.

Figure 5.5 shows ZI'B[ and AI the matrices in the last block row.
Remember that there are no §p variables at i=I1 so the last J-1 variables
in the subvector DI are dummy variables. As a consequence rows J+1 to
2J-1 simply correspond to setting these dummy variables equal to zero.
Rows 1 and J are again the solid wall conditions, and rows 2 to J-1 are

the outlet conditions, (4.28).
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n n
1,1+J ,1+J-1 2,1+J 2,1+J-1
X
X X X . X X X X X
X X X . X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X .
X X K_J X X . _J
C
Al 1
Figure 5.4: Structure of matrices Al and Cl'
énI-l,I*J apI-l,l»J-l an,l*J dummy var.
B . ] % ]
X X X . X X X X X
X X X . X X X X X
X X X . X X X X X
X X X . X X X X X
X X X . X X X X X
X
X
b
. X
X
X
X
- _ _ <
A
BI I
Figure 5.5: Structure of matrices BI and AI'
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5.2 Block tridiagonal solution

The solution of this set of modified block tridiagonal equations
is straightforward using a modification of well-established methods

(1,8]. At the block level the algorithm is

Forward sweep

i=1tol B. eliminate Zi

Al =A -B.C. , R.'=R! -B'R'" eliminate B'
i i 1 1-1 i i i i-1 1
N 1=1 e =1 _ .

C. = A, C. , R, =A, "R, normalize row
i i i i i i

Backward sweep

i=1tol D

|
x

[
(@]
w)

i i iYi+l
The above algorithm assumes that all matrices which have not

otherwise been defined, such as C_ ,CO,Z ,B.,2 CI' are zero.

1 1712

Two things are done to improve the computational efficiency. The

-1C and A'-lR'l

inverses of A are never explicitly calculated. Instead A'
are calculated directly by Gaussian elimination, taking full advantage
of the limited remaining sparseness in A' (see the program listing for
details). Secondly, in calculating all matrix products such as 2101—2'
full advantage is taken of any sparseness in either matrix.
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6. MODIFIED DIRECT METHOD FOR CHOKED FLOW

6.1 Boundary conditions

The boundary conditions presented in Section 2.2 need to be modi-
fied for choked transonic flow. For a single streamtube a well-posed
choice of boundary conditions is to specify thc mass flow ard stag-
nation enthalpy, which remain constant along the streamtube, and the
static pressure at the outlet. For the two-dimensional problem with
coupled streamtubes, the choice of boundary conditions is to specify ,as
usual, the mass flux and stagnation enthalpy in each streamtube, and in
addition specify the difference in inlet stagnation densities between
neighboring streamtubes, and the mass-averaged outlet stagnation den-

sity. This choice was based on two observations.

Firstly, the Crocco theorem [19,25] states that for steady flow

Vs + @ = Yh (6.1)

which means that specifying the normal gradient of stagnation density

and enthalpy at the inlet, which in turn gives the normal gradient of
entropy, is equivalent to specifying the inlet vorticity, %. Since vor-

ticity is convected downstream by the flow, it clearly needs to be spec-
ified at the inlet, so the choice of boundary conditions satisfies this
requirement. In all of the test cases the inlet flow is assumed to be

irrotational and have uniform stagnation enthalpy, so the normal gradi-

ent of stagnatinn density is set equal to zero.

Secondly, the small perturbation potential equation for linearized

irrotational perturbations to uniform flow is

2 3% . 3%¢ _ 2 2
85?+3F-0 ’ B—lMoo° (6.2)

To investigate the effect of outlet boundary conditions for a duct
problem, consider the solution of (6.2) on the domain 0<y<w, x<0, with

the boundary conditions
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30

= a¢ = = -00 :
5§(x,0) = ay(x,n) =0 , ¢(0,y) f(y) , ¢ bounded as x+ (6.3)

The solution can be written as a sum of Fourier modes,

o(x,y) = Z Fo cos(ny)exp|npx| (6.4)
n=0
where
m
is £ ( d =0
T y) dy , n=
0
F o = (6.5)
m
% S f(y)cos(ny) dy , >0
0

The important point is that in the limit x»+-«, ¢-»F_ , which is the

0
average value of ¢ at x=0. The effects of all the other Fourier modes,
corresponding to n>0, decay exponentially away from the downstream boun-
dary. Thus far upstream of the outlet boundary the flow only "sees" the
average of the values specified at the outlet boundary. This suggests
specifying the average stagnation density at the outflow boundary, since
the average stagnation density is no longer specified at the inlet

boundary.

A very similar analysis is valid for turbomachinery cascades, and
demonstrates that for such flow problems the far-field boundaries need
be as little as one chord length upstream and downstream from the cas-
cade, because of the exponential decay in the far-field. This contra:.ts
with the 1/r decay in the farfield of isolated airfoils, which requires
that the far-field boundary be placed much further away in order to

obtain accurate solutions.

Having justified the choice of boundary conditions, the numerical
implementation of these conditions will now be described. The modifica-

tion to the inlet boundary condition is achieved very simply. The old
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boundary condition is specified inlet stagnation density, and the linea-
rized form of this is equation (4.26). The new condition is a specified
difference, usually zero, in the stagnation density of neighboring

streamtubes. The linearized form of this is obtained by simply subtrac-

ting (4.26) for streamtube j from (4.26) for streamtube j+1.

p q,0 p q,p
li'o_‘ié"l+ lt2 6“1] '|:EE6"1+ lt2 6"‘1]
1 (Y'l)(ht‘ql/z) i+l 1 (Y'l)(ht'ql/z) j

= (Aot)

- (ey) -(ot)jl (6.6)

specified j+l
The outlet condition is specified mass-averaged stagnation density
which, when linearized, is

J-l m. J—l m

Pt . Pt
3759 |ée q 4q - - E: 3753
Z [D ¥ ] Ptspec. m (6.7)
I-1,7

m 2
7 Trot (y-1)(h -q7/2) j=1 tot

Note that the overall number of boundary condition equations has
not altered, since the J equations specifying the inlet stagnation
densities have been replaced by J-1 equations Like (6.6) specifying the
difference in inlet stagnation density between neighboring pairs of
streamtubes, and one equation (6.7) at the outlet. This "shift" of one
equation from the inlet boundary conditions to the outlet boundary
conditions requires that the block tridiagonal solution procedure be

altered as explained in the next section.
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6.2 Solution procedure

The modified block tridiagonal form into which the linearized equations

are assembled is

i TR
P it Q iR 2 "2
BERRCRRCRR-RACE 3 ¥
P2 Pread R G | Do f1-1
P2y P Bp P AL _J D R

i a3 e e 201 I T N |

(6.8)

The vectors D are exactly the same as defined in Section 5.1, and
the matrices Z,B,A,C are only slightly different from the matrices
I'BI and AI are exactly the same, and for i
- : : . th
from 2 to I-1 the only difference is that the R I of Z;.Bi.A,
and Ci ,which corresponds to the streamwise momentum equation for the

defined in Section 5.1. 2

; th i i ; th
Jshift streamtube, is shifted up by one block to become the J+]shift
row of By /Ay 1 Ishift

chosen to correspond to the streamtube with the largest mass flow. The

,Ci_land B, - as indicated in Figure 6.1. is

t .
Shift I-l'BI-l’AI-land CI-l now becomes the outlet static

pressure equation (6.7). This leaves only the first block row. Rows

J+j h row of 2

1 to J are unchanged, and row J+jShift is the row which has been shifted

up from the i=2 blocks. This leaves rows J+1 to ijshift_l which are

equation (6.6) for j from 1 to j 1, and rows +1 to 2J-1

shift” I*ghife

which are equation (6.6) for j from jshift to J.
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The block solution method outlined in Section 5.2 needs to be

slightly modified because of the new E matrices.

Forward sweep

i=1ltol B, =B - 2C , AL =A, -ZE. R, =R, - 2R "'
i 1 171i-2 1 i 171-2 i i 1 i-2
Al'=al -Blc!'. , ¢c' =c. -B'E , R.'=R! -BR'"!
i i -1 i i i-1 i i 1i-1
cll- All"lcl ' Er -AT'-IE ’ Rrvu_ Anu-l e
i i i i i i i i i

Backward sweep

i=Itol D. =R ''-¢c!'D, , -E'D

i i i i+l 171+2
Since E has only two non-zero entries, E has only two full columns

and so, with some careful programning, this algorithm involves very
little ~additional computational work compared to the procedure for un-
choked transonic flows outlined in the last chapter. Full details can

be obtained from the program listing.
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7.ITERATIVE METHOD FOR SUBSONIC FLOW

Chapters 5 and 6 presented direct methods for solving the linear
s 'stem of Newton equations. The alternative approach is an iterative
method in which the calculated solution converges towards the exact
solution, and becomes equal to it, to within machine accuracy, after an
unknown number of iterations. This is the approach which has been fol-
lowed by Jespersen [18), Childs and Pulliam {7] and Mulder and Van Leer
{20].

The reason that iterative methods are employed, despite the great
increase in programming complexity, is that they offer large potential
savings in computational costs for large problems. The direc- methods
in Chapters 5 and 6 invert O(I) matrices, each of which is 0(J) in size.
This requires a total of O(J’I) operations to solve each set of Newton
equations. Iterative methods by contrast require only O(JI) per itera-
tion, and provided the number of iterations needed to solve the Newton
equations to machine accuracy is independent of I and J then the total
computational cost is 0O(JI). Thus for sufficiently large J, iterative

methods will be more efficient than the direct method.

There are three points one can criticize in the above line of
reasoning which justifies the use of iterative methods. The first is
the assumption that an iterative method can be constructed. For each
new application a considerable amount of effort may need to be spent to
devise an efficient iterative method, whereas the direct solution method
can be applied to any system of equations. The second is the assumption
that the number of iterations to solve the Newton equations is indepen-
dent of I and J. For elliptic problems, such as the classical Poisson
equation, iterative methods such as Gauss-Seidel require O(max(I2?,J?))
iterations, while optimized SOR (Successive OverRelaxation) requires
O(max(I,J)) iterations. To obtain an iterative method which is truly
independent of I and J one must use a multigrid method. Multigrid was

pioneered by Brandt [5] and has been successfully applied to a range of
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problems, including the transonic full potential equation. The diffi-
culty with multigrid methods is that they can become very complex,
involving a considerable amount of development effort, especially if the
computational domain 1is not very simple. The final point is the value
of J at which the iterative methods become more efficient than the
direct method. If the direct method requires aJ’I operations, and the
iterative method requires bJI operations, then the two are equal when
J=V/(b/a). If b>>a then this value may be so large that for grids of
practical interest, giving excellent accuracy, the direct method is more

efficient than the iterative method.

In order to examine these issues this chapter presents an iterative
method for solving the Newton equations for subsonic flow. A precondi-
tioning of the Newton equations is employed to effectively separate the
convective entropy equation from the elliptic pressure equation, so that
suitable iterative methods can be applied to each half of the problem.
This works well for subsonic flows but does not work for transonic flows
because of the strong coupling between the entropy and pressure equa-
tions. However the subsonic test cases are sufficient to demonstrate
that the iterative procedure is not any faster than the direct procedure
for practical grids with good resolution. Thus no additional work has

been performed on extending the method to handle transonic flow.
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7.1 Preconditioning

Preconditioning of a system of linear equations, Ax=b, in general

means converting the equations into a different, but equivalent, system
of equations, A'x'=b', where x'=Cx, b'=Bb and A'=BAC-1. The purpose of
preconditioning for iterative solution procedures is to obtain a matrix
A' which has certain desirable features, such as having very small off-

diagonal elements. Such features accelerate the rate of convergence of

the approximate solution towards the true solution.

The difficuity with preconditioning is that there is no general
theory to guide the choice of B and C for a particular problem. This is
especially true for the current problem being considered, since the
linearized steady-state Euier equations implicitly contain two types of
behavior. Firstly, there is the convection downstream of entropy, or
vorticity (the two are equivalent for isoenergetic flow), which is a
hyperbolic equation. Secondly, there is the two-dimensional pressure
equation, which is elliptic for subsonic flow and hyperbolic for super-
sonic flow. It would be desirable to precondition the system so that
these two different parts are clearly separated, and so iterative

methods, suitable to each half, could be applied separately.
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To find the correct form of precciiditioning, it is helpful to
perform a small perturbation analysis of linearized perturbations about
a two-dimensional uniform flow with a reqular sheared grid, as shown in
Figure 7.1. 1In this case the streamwise momentum equation (4.11)

reduces to

2 2
2 eq - g2 °q
q épl + 2pq6ql * 5 éAl + épl q 6p2 + 2pq6q2 + Ay 6A2 + 692 . (7.1)
The enthalpy equation (2.12) gives
§p, = - -l pq 8q. + p 6p i=1,2 (7.2)
i Y i i ! ! :

and the mass equation for subsonic flow (2.9) gives

:..g -l j=
6q; 2 80, - g 6A, ,i=l,2 . (7.3)

When these are substituted into (7.1), the resultant equation after

some simplification is

2 M 2
éAl = 692 - —= = 6A (7.4)

M 0
2 A 2

o]
§p, - — &
1 1-M2 A 1-M

The significance of this equation is that the isentropic variation

of density due to area changes is,

2
dp M p
(<8 = - £ (7.5)
dA s=const 1-M2 A
so that by writing
ap ap
§p = (= SA + (7o) ds (7.6)
dA " s=const 3 A=const
equation (7.4) becomes simply
651 = 652 . (7.7)

which is a statement that entropy is convected along the streamtube.

This analysis suggests the following preconditioning. Define the

variable 6p as the variation in density due to a change in entropy.
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M- P
Sp, = —— =1 6p. + op
1 1-M2 Al 1 1
2 oA dA oA dA
M° P 1, - - 1 -
= — a0+ OnT + =2 dnT + ——, OnJ + -—_ onj + 4p (7.8)
1-M2 Al anl 1 anl 1 3n2 2 any 2 1

When this equation is substituted into all of the Newton equations,
a system of equations for én and &P is obtained, which has the property
that for uniform flows the streamwise momentum equations contains only
8P terms, and more generally for non-uniform flows the coefficients of
the dn terms are extremely small. Note that ornice 4n and 6P have been

calculated §p is obtained from equation (7.8).
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7.2 Solution procedure

With the preconditioning the Newton equations may be expressed

symbolically in two halves.

A 6p+A én=4d (7.9a)
pp pn P

A dp+A én=4d (7.9b)
np nn n

The first half (7.9a) corresponds to the streamwise momentum
equation, with the preconditioning ensuring that Apn is very small.
The second half, (7.9b), corresponds to the normal momentum equation,
with both Anp and Ann being in general of the same magnitude. For the
purposes of choosing an iterative solution technique, the interesting
feature is that Aop is a discrete convective operator with no entries
above the main diagonal, which means that if én were known then 4p could
be calculated immediately. Ann however is a discrete elliptic operator

which requires some form of classic elliptic relaxation procedure.

The iterative algorithm which is therefore employed has two parts:

a) First assume &n is fixed, and solve equation (7.9a) to obtain a new

value for 4p,

b) Then assume 8p is fixed and perform several cycles of an SLOR

(Successive Line Over-Relaxation) procedure to obtain an approximate

solution for én.
This algorithm is then repeated iteratively until §p and én con-

verge to the true solution. More complete details can be obtained from
the program listing. The ccnvergence rate is dominated by the relaxa-
tion procedure in part b), which can be slow for large problems. One
way of improving it would be to use multigrid acceleration, which was
first proposed by Brandt [S5], and has been used by Jespersen and Childs
{7]), Pulliam [23] and Mulder and Leer [20]. However this would still
not increase the speed sufficiently to change the conclusion drawn in

the next chapter that iterative methods are not faster than direct
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methods, for two-dimensional problems with sufficient grid resolution to
obtain good solutions. For this reason also, little effort was made to
extend this algorithm to handle transonic flows, in which the entropy
and pressure equations do not uncouple, due to the presence of shocks

and artificial compressibility.
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8. GLOBAL VARIABLES AND EQUATIONS

8.1 Concept and Solution Procedure

For the duct problem considered so far each variat ie and equation
is local in the sense that each variable is associated with a particular
node and each equation involves only variables in a localized region of
the flow. 1In other flow problems there are sometimes a few global
variables which appear in many equations and a few global equations
which involve variables at many nodes. In the case of the duct problem
an example would be allowing the total mass flux to vary in order to
achieve a specified average inlet Mach number. The total mass flux
would be a global variakble because through the linearized mass equation
the change in the mass would enter into every one of the momentum equa-
tions. The equation specifying the inlet Mach number would be a global
equation because it involves the inlet variables of all of the stream-
tubes. With this additional variable and equation the linearized

equation set (5.1) becomes,

F - - - — =
: Al § C1 i X Dl Rl
g B2 ; A2 g C2 § X 02 R2
P23 1By Ay Gy X D3 Ry
' X = (8.1)
X
X
; ZI g BI § AI : X DI RI
B X X X X X X X ] omtotal i &“ .

In this equation the total mass variable and the inlet Mach number
equation are really just an add.itional Newton variable and equation. It
is just their span, in terms of how many equations and variables they

involve, which makes them different from the other variables and equa-
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tions. This difference becomes important only when solving the linear
system of equations (8.1), since the algorithm detailed in Section 5.2
now needs modification. The simplest way to solve (8.1) is to rearrange

the equations into the following form.

ey - - - -1 -
: A1 : Cl : D1 R1 R1
................ 1 2
: B2 A2 : C2 02 R2 R2
PR S SRR 1 P
Z3 83 : A3 C3 03 R3 R3
= ' émtotal (8.2)
.......... I 1 2
ZI BI : AI DI RI RI
P PO S HE B | L
and
1
D2
( x X X X X X X X)) . = R (8.3)
D m
I
_dmtotal_
Equation (8.2) is solved to obtain an equation of the form
~ ] — 1 — 2 7
D, D} | Dy
1 2
D, ) D,
1 2
Dy Dy Dy
= dmtotal (8.4)
1 2
DI DI
- - - .
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This is accomplished by essentially the same algorithm explained



in Section 5.2.

Forward sweep

1i=1¢tol
1 1 ] LN )
B! =B, - 2.C. , R =grl-zg! . R® =g%? -z R
i i 171=-2 i i i1-2 1 i i7i-2
f f " 1 LA ] 1t ] [ )
A' =a. -B!C! , rY = RrY - R ., RY =Rr? - BR
i i i7i-1 i i ii-1 i i I i-1
- L A ] - Tt LI A . - "
c' = (a'ylc . RN = (ahy IR . RS = (') 'R?
i i i i i i i i i
Backward sweep
e LN I | '
i=1Itol ol = g} "'- ¢'pt , p° = g% - ¢'p?
i i i7i+l i i ii+l

Once equation (8.4) is obtained, it is substituted into equation

(8.3) to eliminate tne D vectors and obtain a simple scalar equation of

the form
a émtotal = b (8.5)
from which ém is calculated. With dm now known equation (8.4)

total total
gives the final value of the D vectors and the density and node

positions are updated.

The above example had only one global variable and equation. In
general there may be more than one global variable, with the corres-
ponding number of global equations. If there are M global variables
then an equation of similar form to (8.2) will be solved by the same

method to obtain an equation like (8.4).

-~ 9 1. - 2 - 3 — M+1-
D, Dy D) Dy Dy
1 2 3 M+ 1
D, D; D2 ) D)
. = + 61 + 62 + ...t AM (8.6)
1 2 3 M+1
| Pr ] P | P1 | | P1 | P
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When this is substituted into the M linearized global equations a
1,02.. OM
are calculated. Then equation (8.6) above gives the final linearized

system of M equations is obtained from which the M unknowns, §

correct.ions with which to update the density and grid node positions.

97



8.2 Cascade Boundary Conditions

In this thesis only duct geometries have been considered until this
moment. The solution of flow over turbomachinery cascades or isolated
airfoils requires several changes to the boundary conditions presented
in Section 2.2. Full details are presented in the Ph.D. thesis of M.
Drela {11] but for completeness the bcundary conditions for the cascade
problem are also presented here. They illustrate the use of global uu-
knowns and equations, and the role of the Kutta condition in determining

the circulation around each blade.

The first change to the boundary conditions is the periodicity
conditions which are imposed across the stagnation streamline, upstream

and downstream of the blade. The two conditions are

xi,J = xi,l , Yi,J = Yi,l + Pitch (8.8a,b)
+ - -
ni,J "1,1 (8.9)

The first condition states that the J".'h streamline is identical to

the first streamline except that it is displaced by the pitch (the blade
-to-blade distance) in the y-direction. The second condition is that
the pressures match across the stagnation streamline, which is identical
to the matching conditions across all of the other streamlines. Thus
away from the blades the stagnation streamlines are treated exactly the
same as any other streamline. When linearized equations (8.8a,b) reduce
to a statement that the én for the two streamlines are equal, and the
linearization of (8.9) produces an equation analogous to (4.16) which is
then incorporated into an n-momentum equation spanning across the stag-

nation streamline.

These conditions are applied to all of the grid nodes on the stag-
nation streamline which do not lie on the blades. They are also applied
to the leading edge stagnation point for blades with blunt leading edges

with the modification that n, the direction in which the grid node is
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constrained to move, is directed along the surface of the blade, instead

of normal to the streamline as it is usually defined.

The inlet and outlet boundary conditions are identical to those in

Sect.ions 2.2 and 4.2 with the exception that én and 4én the move-

1,1 I,1’
ment of the nodes at the ends of the stagnation streamline, are no
longer set equal to zero, but are instead sat equal to two global

variables én. and 4n

c . .
inlet out let orresponding to these two varaiables

there need to be two glokal equations. The first is usually chosen to

he a specified inlet flow angle (defined in a mass-averaged sense) but
can alternatively be chosen to he a specified lift on each blade ele-
ment, or any other suitable condition. The second is chosen to be the
Kutta condition which states that the pressures on the two sides of the
trailing edge should be equal. This condition is based on experimental
evidence that this is the condition that determines the circulation
around airfoils for attached flows. Normally this condition is not
applied in numerical Euler calculations performed using time-marching
methods. It is believed that the numerical viscosity which is used in
such methods mimics, in some fashion, the physical viscous mechanisms
which produce the Kutta condition. In the present method there is no
such mechanism and so the Kutta cordition must be explicitly enforced.
In this regard the present method is identical to Potential methods and
to the method of Wu [31] for solving the Euler equations, in which there
is no artificial viscosity and the circulation is determined by applying

the Kutta condition.

In the present method the Kutta condition is applied by requiring

n* = [I7
lt:.e.’J lt.e.

1 (8.10)

When linearized, this is incorporated into an n-momentum equation,

as usual, and it is this equation which is used as the global equation.

One advantageous consequence of the solution procedure involving
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global variables and global equations is that one obtains the linear

sensitivity of the flow field to variations in the global parameters.
For example, in the above case the solution vectors D? and Di obtained

during the numerical procedure represent the change in the flow field

due to unit changes in 4n, and 4n Through the global equa-

inlet outlet’

tions, én. and én can in turn be related to the change in the
inlet outlet

inlet flow angle a, Hence one can find the linear variation of the

inlet’

entire flow field due to variations in a. .
inlet

obtain %gl, the variation in the lift coefficient with respect to the

inlet flow angle, or other important quantities of engineering interest.

In particular one can

The boundary conditions for the flow over an isolated airfoil are
handled in a very similar manner. The far-field in represented as the
combination of a flow at an angle of attack together with the far-field
of a compressible vortex. The values of the angle of attack and the
vortex strength are the two global variables, and the two global equa-
tions are the Kutta condition together with either specifed angle of
attack (which results in a trivial identity equation) or specified lift
(which is a useful option when comparing to experimental results in
which it is better to match the lift than the angle of attack due to
uncertainties associated with wind tunnel wall corrections). The full

details are available in [1l1].
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9. RESULTS

The primary aim of the test cases is to prove that the algorithm
which has been developed works. This requires showing both that the
Newton iterative procedure converges to the solution of the discretized
equations, and that this discrete solution is an accurate approximation
to the solution of the analytic equations. The first part is achieved
by presenting iteration histories, which usually consist of the maximum
and r.m.s. (root mean square) values of the changes 6p and én at each
Newton iteration. The second part is more difficult since a simple
closed form solution to the analytic equations can not usually be ob-
tained. In this chapter four different approaches are used. In one case
a closed form solution is known for an incompressible cascade flow con-
structed by a conformal transformation, and a comparison with the numer-
ical solution can be made by using a inlet Mach number sufficiently low
to avoid compressibility effects. In a second case a comparison is made
with quasi-one-dimensional analytic theory for a choked Laval nozzle.

In a third case comparison is made with experimental results for a
subsonic turbine cascade. In two other cases the numerical solution is
compared to numerical solutions obtained by completely different numer-
ical method. Finally, in some other subsonic cases, the stagnation
density changes are used as an indication of numerical errors, since the
analytic solution for subsonic, inviscid flow has uniform stagnation
density, assuming it is uniform at the inlet. This test is particularly
useful for determining the order of convergence, which is the rate at
which the numerical truncation errors, due to the finite grid size
AX,Ay, go to zero as Ax,Ay are reduced to zero. Another accuracy issue
is the stagnation density errors produced by the artificial compressi-
bility in the smooth supersonic region of transonic flows, and the

effectiveness of the second order corrections in reducing these errors.

A second purpose of these tests is to demonstrate the solution of

the Newton equations using each of the three solution methods, the
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direct method, the modified direct method for choked flows, and the
iterative method for subsonic flows, and compare their relative

efficiencies.

A third objective is to demonstrate the flexibility offered by the
Newton approach through the use of global variables and global const-
raints. For example, instead of specifying the angle of attack for an
airfoil problem, as one does for normal time-marching Euler methods, one
can allow the angle of attack to be a global variable and prescribe the
lift as a global constraint. Also it is possible to very efficiently
calculate a number of solutions corresponding to different values of a
particular parameter. For example, one might wish to calculate the Cl-a
curve, relating the lift coefficient tc the angle of attack, for an air-
foil for some given freestream Mach number, or alternatively, one might

wish to calculate the C_.-M curve relating the inviscid drag coefficient

d
(due to shocks) to the freestream Mach number for a given value of Cl'
The Cl-a curve is important in aircraft stability analysis, while the

Cd-M curve is important for determining the total inviscid drag for an

aircraft as a function of the cruise Mach number.
Table 9.1 presents a list of the test cases, with a summary of the

test geometry, flow conditions, basis for determining accuaracy, and

principal purposes of the test.
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Table 9.1: Summary of test cases

Flow Accuracy Point of
Geometry Conditions Criterion Interest
duct with subsonic stagnation density order of
sin?(mx) errors convergence
bump
duct with subsonic stagnation density order of
elliptic errors convergence
bump
Gostelow subsonic analytic solution accuracy,
cascade iterative solver
T7 turbine subsonic experimental results grid with high shear
Garabedian transonic numerical hodograph accuracy, artificial
cascade soliution compressibility
NACA 0012 transonic numerical test data strong normal shocks
2-D Laval choked Quasi-1-D Laval modified direct
nozzle transonic nozzle theory solver for choked
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9.1 Duct with sin?(mx) bump

The test geometry for this case is,

Inlet x=-1.0
Outlet x= 2.0

0.5 x<0 , x>1
Upper wall y=
0.5-0.1sin?(mx)  0<x<1

)0. x<0 , x>1
Lower wall y=
| 0.1sin?(mx) 0<x<1

Figure 9.la shows the geometry with a 61x11 grid, corresponding to

a converged solution. The flow conditions are,

1. m =0.1 , y=1.4

htzl/(Y-l) ’ ptinlet= ’ tot

which gives an inlet Mach number of approximately 0.20, and a maximum
Mach number of approximately 0.40. Figures 9.1b and 9.1lc show contours

of Mach number and stagnation density changes, respectively.

The purpose of this case is to investigate the order of accuracy of
the discretization of the Euler equations for a subsonic flow with no
ctagnation points. The accuracy can be gauged from the stagnation
density charges since they are zero for the analytic solution because
the flow is inviscid and subsonic, and hence isentropic and isenthalpic.
There are several points to note about the stagnation density errors.
The overall level of error is vey small, with the maximum being approx-
imately 2.5e-4, and mostly the errors are positive, representing &n
increase in stagnation density. For this symmetric geometry the errors
are also symmetric, which is to be expected since, with the exception
of the inlet/outlet boundary conditions, the discrete equations are
symmetric and do not know the direction of the flow for subsonic flow.
For transonic flow this is no longer the case because the direction of

the flow is linked to the direction of the density upwinding due to the
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artificial compressibility. Finally, the maximum errors are in the
region of the strongest flow curvature, which is a typical feature of
this discretization applied to subsonic flows, and in general means
that the maximum stagnation errors are generated in the neighbornood ot

leading edge stagnation points where the flow is strongly curved.

Table 9.2 lists the 'average' stagnation density errors for grids
of different sizes. The 'average' error is defined by a weighted root-
mean-square average.

1/2

2
m.[(p -p Vo 17/ m, (9.1)
?—;t 37 %i,j tinlet tinlet 123 ]

m
i

The mass flux weighting ensures that narrow streamtubes with small
mass fluxes do not contribute as much to the overall average as thicker

streamtubes with larger mass fluxes.

Table 9.2: Stagnation density errors for sin?(mx) bump

: J

31 : 1.10e-4 l.1le-4 l.1le-4
I 61 : 3.1lle-5 3.15e-5 3.15e-5

121 : 8.0%9e-6 8.15e-6 8.13e-6

Table 9.2 shows that the error E is approximately independent of J,

and proportional to 1-2' so the discretization of the Euler equations is

second order accurate for subsonic flows with no stagnation points.

blso of interest in this example is the rate at which the Newton

iteration converges to the steady-state discrete solution. Table 9.3
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presents the root-mean-square changes in the density and node positions
at each iteration of the cases using the 31x11 and 121x31 grids. It can
be seen that after three iterations the solution has already converged
to machine accuracy, thus verifying the extremely fast quadratic conver-
gence feature of the Newton iterative procedure. Also it is clear that
the number of iterations is approximately independent of the size of the
grid, which is to be expected since for a linear problem the solution

would be obtained in one iteration independent of the grid size.

These calculations were performed on a Perkin-Elmer 3242 computer.
The CPU time per iteration was approximately 3 secs. for the 31x11 grid

and 2.2 mins. for the 121x31 grid.

Table 9.3: Newton iteration histories

Iteration : 31x11 121x31
number  : sp/p én dp/p én
1 ; 1.0le-1 2.06e-4 1.01le-1 4.36e-4
2 ; 2.47e-4 2.83e-5 2.54e-4 6.02e-5
3 : 4.99e-7 4.49%e-6 5.02e-7 2.02e-6
4 : 4.35e-7 2.83e-6 4.3%-7 2.6le-6
5 : 4.8le-7 2.19%e-6 4.24e-7 2.75e-6
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Figure 9.1c: Stagnation density contours with increments
of 0.00004.
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Figure 9.1b: Mach number contours with increments of 0.02.
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Figure 9.la: Duct and grid geometry for test case 1:
duct with sin?(mx) bump.
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9.2 Duct with elliptic bump

The test geometry for this case is,

Inlet =-1.0
Outlet x= 2.0

0.5 x<0 , x>1
Upper wall y= §0.5-0.1[1-(x-0.5)2]1/2 0<x«1

0. x<0 , x>1

Lower wall =
Y 30.1[1-(x-o.5)2]1/2

0<x<1

Figure 9.2a shows the geometry with a 61x11 grid, corresponding to
a converged solution. The flow conditions are,

h =1/(y-1) , 1. m___=0.1, y=1.4

P = .

tinlet tot

which gives an inlet Mach number of approximately 0.20, and a maximum
Mach number of approximately 0.70. Figures 9.2b and 9.2c show contours

of Mach number and stagnation density changes, respectively.

The purpose of this case is to examine the problems associated
with a stagnation point. If the mass flux in each streamtube is the
same, as in the example just presented, the streamtube at the stagnation
point becomes very large, as can be seen more clearly in Figure 9.3. To
quantify the errors resulting from this lack of grid resolution at the
stagnation point, Table 9.4 lists the average stagnation density errors

for grids of different sizes, with the average errors defined as before.
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Figure 9.2c: Stagnation density contours with increments
of 0.001.
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Figure 9.2b: Mach nu.ber contours with increments of 0.065.
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Figure 9.2a: Duct and grid geometry for test case 2:
duct with elliptic bump.
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Figure 9.3: Close-up of grid near stagnation point on
elliptic bump.

Figure 9.4: Streamlines in a stagnation point flow.
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Table 9.4: Stagnation density errors for elliptic bump

J

31 ¢ 2.64e-3 2.84e-3  2.94e-3
I 61 : 8.52e-4 8.3%e-4 8.35e-4

121 : 2.90e-4 2.55e-4 2.41e-4

Table 9.4 shows that, compared to the sin?(mx) bump case in the
last section, the error is still much more strongly dependent on I than
J, but now a weak dependence on J is apparent for I=121, and also the
rate of convergence, keeping I/J fixed, is now less than second order,
although still more than first order. Thus the stagnation point has
caused some deterioration in the order of convergence, at least when

maintaining equal mass fluxes in each streamtube.

To improve this situation it is clearly desirable to use stream-
tubes with varying mass fluxes, so that the streamtubes near the stag-
nation point have less mass flux and so give better resolucion of the

flecw in the neighborhood of the stagnation point.

The stream-function for the incompressible flow in a stagnation
corner, as shown in Figure 9.4, is given by [2],
Y(x,y) = Bxy , B=constant (9.2)

Now suppose that one chooses a set of streamlines that cross the line
%=y (the line of maximum separation between streamlines) at equal in-
tervals As, that is the j'h streamline passes through (jas/v2,3As/vV2).

The mass flux in the corresponding set of streamtubes is given by,
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Y(jas/V2,jAs/V2) - ¥((j-1)as/V2,(j-1)As/V?2)

3
1]

1 . 2 1 . 2
5 B(Jas) - 5 B((J-1)as)

2,. 1
BAs (3-5) (9.3)

This suggests that to obtain uniform resolution in the neighborhood
of the stagnation point one should choose the mass fluxes to be linear
in the index of the streamtube. Thus the case of the duct with the

elliptic bump was redone with the mass fluxes defined by,

mj = B min(j,J-3) (9.4)

with B chosen to match the total mass flux.
J-1

B=m_ / :E: min(3,Jd-3) (9.5)
j=1

Figure 9.5a shows the modified 31x11 grid for a converged solution,
and Figures 9.5b and 9.5c show the Mach number and stagnation density
error contours. Figure 9.6 shows a close-up of the stagnation point
region, from which it is clear that there is now much better resolution.
Table 9.5 lists the average stagnation density errors. The results are
now much more similar to the results for the sin?(mwx) bump, in that

there is little dependence on J, and the error is approximately
proportional to 1-2. Thus, with careful treatment of stagnation points,

global second order accuracy can be maintained for subsonic flows.
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Figure 9.5c: Stagnation density contours with increments
of 0.001.
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Figure 9.5b: Mach number contours with increments of 0.05.
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Figure 9.5a: Duct and grid geometry for test case 2:
duct with elliptic bump using modified grid.
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Figure 9.6: Close-up of grid near stagnation point on
elliptic bump with modified grid.
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Table 9.5: Stagnation density errors for elliptic bump; modiLied grid

J

- - - - - - - - - - —n - > -~ - =

31 ¢ 2.95e-3 3.15e-3 3.18e-3
I 61 : 8.32e-4 8.47e-4 8.62e-4

121 ¢ 2.45e-4 2.18e-4 2.16e-4

Table 9.6 presents the Newton iteration histories for two of the
solutions with the modified mass fluxes. The Newton procedure again
converges to machine accuracy in three iterations, independent of the
size of the grid. The CPU tine per iteration was approximately 3 secs.
for the 31x11 grid, and 2.2 mins. for the 121x31 grid.

Table 9.6: Newton iteration histories; modified grid

Iteration : 31x11 121x31
number : Sp/p én Sp/p dn
1 ; 9.45e-2 1.60e-3 9.49e-2 4.96e-4
2 : 7.30e-4 2.44e-4 5.30e-4 7.1lle-5
3 ; 2.17e-5 4.92e-6 2.13e-6 5.1lle-6
4 : 6.28e-7 1.47e-6 1.46e-6 3.79%e-6
5 ; 7.20e-7 2.06e-6 1.51e-6 2.10e-6

115



9.3 Incompressible Gostelow cascade

This test case is a closed-form analytic solution of incompressible
flow past a cascade, which was derived by Gostelow using a conformal
transformation method [15]). This is thus an excellent test case for
comparison purposes provided the compressible solution is obtained for
an inlet Mach number which is sufficiently low to avoid compressibility
effects. Figure 9.7a shows the geometry, with a converged 122x23 grid.
Figures 9.7b and 9.7c show the corresponding contours of Mach number and
stagnation density errors. The maximum Mach number is approximately
0.1, so that the compressibility is negligible. Figure 9.8 shows the
excellent agreement between the calculated surface pressure coefficient
distribution and Gostelow's tabulated results. The inlet flow angle was
specified to be the same as that used by Gostelow, 53.5° relative to the
axial direction, but the outlet flow angle was determined through the
Kutta condition applied at the trailing edge, and so is a particularly
sensitive measure of the accuracy of the method. The calculated value
is 30.06° compared to Gostelow's exact value of 30.025%°. To achieve
this level of agreement required good resolution both at the leading
edge, as shown in Figure 9.9a, where there are large gradients in the
flow quantities, and at the trailing edge, as shown in Figure 9.9b,

where there is an analytic square-root singularity in the pressure.
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Figure 9.7a: Airfoil and grid geometry for Gostelow cascade.
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Figure 9.7b: Mach number contours for Gostelow cascade
with increments of 0.005.
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Figure 9.7c: Stagnation density contours for Gostelow
cascade with increments of 0.00001.
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Figure 9.8: Comparison of calculated and theoretical surface

pressure coefficients for Gostelow cascade.
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Figure 9.9a: Close-up of the grid near the leading edge
stagnation point of the Gohstelow cascade.



Table 9.7 lists the root-mean-square variation in density and node
position at each iteration of the Newton procedure. It can be seen that
after six iterations the solution is converged to machine accuracy. At
the very first iteration an under-relaxation factor of 0.39 had to be
employed to prevent an excessive change in the location of the leading
edge stagnation point. Also after iterations 1, 2 and 4 the grid nodes
had to be adjusted in the streamwise direction to maintain a ‘good’

grid. Both of these procedures were discussed in section 4.5.

Table 9.7: Newton iteration history for Gostelow cascade
using direct solver for Newton equations

Iteration :
number  : 8p/p én Comments
1 ; 1.28e-1 6.64e-3 S, RLX=0.39
2 z 7.47e-2  3.95e-3 S
3 ; 4.38e-5 1.19%e-3
4 ; 6.17e-6  5.33e-5 S
5 ; 1.65e-5 3.52e-5
6 : 3.54e-6 6.8le-5
7 ; 1.19e-6 5.30e-5
8 ; 5.60e-7 2.49%e-5
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Several calculations were performed with different positions of the
inlet and outlet boundaries to determine the effects on the solution.
Table 9.8 lists the results with the distances of the inlet boundary
from the leading edge, and the outlet boundary from the trailing edge,
non-dimensionalized by the axial chord length. These results show that
the solution is relatively insensitive to the position of the inlet and
outlet boundaries, due to the exponential decay of disturbaces in the
streamwise direction, which was shown in section 6.1. The results also
show that the solution is more sensitive to the position of the inlet
boundary than the outlet boundary, which is consistent with the Mach
number contours shown in Figure 9.7b which show stronger disturbances

propagating upstream than downstream.

Table 9.8: Effects of position of inlet/outlet boundaries

Inlet Outlet : Outlet flow angle
Gostelow ; 30.025°

1.2 1.0 30.06°

1.2 0.5 30.07°

0.6 1.0 30.08°

0.6 0.5 ; 30.08°

¢« oo
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This case is also used to test the effectiveness of the iterative
solver for solving the Newton equations. At each Newton iteration the
Newton equations are approximately solved using twenty relaxation iter-
ations, with each relaxation iteration applying the procedure described
in Section 7.2. Table 9.9 lists the Newton iteration history. t can
be seen that initially the residuals decay rapidly as in Table 9.7 which
gives the iteration history for the direct method, but that after five
iterations the residuals decay rather slowly with machine accuracy being
reached in eleven iterations, compared to the five iterations required
by the direct method. The total CPU time required is also greater than
for the direct method since each Newton iteration using the iterative
solver took approximately 1.7 mins., compared to 1.2 mins. for each
iteration using the direct solution method. The total CPU time for the
iterative method is independent of the choice of the number of relaxa-
tion iterations per Newton iteration, because the limiting feature is
the rate-of-convergence of the linear relaxation process, not the
quadratic Newton procedure. Thus decreasing the number of relaxation
iterations per Newton iteration will increase the number of Newton
iterations while keeping fixed the total number of realaxation itera-

tions and the total CPU time.
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Table 9.9: Newton iteration history for Gostelow cascade
using iterative solver for Newton equations

Iteration :
number : Sp/p dn Comments
1 : 1.28e-1 6.64e-2 S, RLX=0.92

2 ; 9.14e-3 3.20e-2
3 ; 3.10e-5 3.6le-3
4 ; 1.28e-5 8.25e-4 S
5 z 1.19e-5 5.6le-4
6 ; 6.65e-6  3.65e-4
7 ; 4.60e-6 2.54e-4
8 : 3.33e-6 1.82e-4
9 ; 1.89%e-6 1.10e-4
10 : 1.51e-6 8.93e-5
11 ; 1.18e-6 6.49%e-5
12 ; 6.03e-7 4.71le-5
13 ; 6.90e-7 3.48e-5
14 ; 4.85e-7 2.48e-5

15 : 8.16e-7 4.3%3e~-5
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9.4 T7 turbine cascade

The T7 turbine cascade is a subsonic linear cascade designed by
Rolls-Royce, for which there are experimental surface pressure measure-
ments [27]. This case is presented here to test the robustness of the
algorithm. 1In particular, the inflow angle is approximately 50°, and
the outflow angle is approximately -70°, so the grid is badly sheared in
most of the flow domain, as can been seen in Figure 9.10a, which shows a
fully converged 117x21 grid. Sheared grids cause difficulties for time-
marching Euler methods, requiring more restrictive time-step limitations
and more numerical smoothing. Table 9.10 presents the Newton iteration
history for this ca.?2, showing that the Newton procedure appears unaffe-
cted by the high grid shearing. After six iterations the solution has
converged to machine accuracy. An under-relaxation factor of 0.88 was
required on the first iteration, and streamwise node adjustments were
performed after the first three Newton iterations. The CPU time per

iteration was 1.1 mins.

Figures 9.10b and 9.10c show contours of the Mach number and the
stagnation density. Figure 9.11 presents a close-up of the grid ¢t the
leading edge stagnation point, showing that good resolution is obtained
by varying the mass flux in each streamtube, with the stagnation stream-
tubes having the least mass flux. Finally, Figure 9.12 shows a compar-
ison between the calculated surface Mach numbers and those measured
experimentally. The agreement is good except towards the trailing edge.
In [10] it is shown that the inclusion of viscous effects through a
coupled integral boundary layer analysis improves the agreement in this

region.
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Figure 9.10a: Airfoil and grid geometry for T7 turbine cascade.

127



Figure 9.10b: Mach number contours for T7 turbine cascade
with increments of 0.0S5. '

128



Figure 9.10c: Stagnation density contours for T7 turbine
cascade with increments of 0.001.
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Figure 9.12: Comparison of calculated and experimental surface
Mach numbers for T7 turbine cascade.
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Table 9.10: Newton iteration history for T7 turbine cascade

Iteration :
number : Sp/p én Comments
1 i 9.62e-2 1.06e-1 S, RLX=0.88
2 ; 1.79e-2 1.92e-2 S
3 ; 8.96e-4 4.20e-3 S
4 ; 5.16e-4 2.06e-4
5 ; 3.95e-5 7.1lze-6
6 ; 9.79%e-6 1.22e-6
7 ; 5.53e-6 6.44e-7
8 i 8.29e-6  9.90e-7
9 : 1.08e-5 1.51e-6

10 ¢ 8.79%e-6 1.91e-6

This case is also used to demonstrate the flexibility of the Newton
approach. Figure 9.13 shows the variation of the lift coefficient as
the inlet flow angle is varied, with the total mass flow and stagnation
enthalpy and density being held fixed. Since the upstream velocity and
static density are not constant, the lift is non-dimensionalized with
respect to the axial chord length, the inlet stagnation density and the
inlet stagnation speed of sound. Each of the calculated points on the
curve were obtained using only three Newton iterations, using the solu-
tion from the previous point as the initial solution. Also for compar-
ison the dotted straight line through the design point has the slope
predicted by the design point calculation using the glctal linear sensi-
tivities, as discussed at the end of Section 8.2. The agreement is

excellent, showing the utility of the linear sensitivities.
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Figure 9.13: Variation of lift with inflow angle
for T7 turbine cascade.
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9.5 Garabedian compressor cascade

This test case is a supercritical compressor cascade designed by
Garabedian using a numerical hodograph method [3], which is considered
to be an accurate calculation, against which other numerical methods can
be compared. The geometry is shown in Figure 9.14a with a converged
78x23 grid. An interesting feature of the geometry is that Garabedian
included the displacement thickness due to a boundary layer in his calc-
ulations so the the trailing edge of the airfoil is not closed, and this
gap is held fixed in the wake. This was treated in the current formu-
lation by setting the prescribed wake thickness in the initial grid,
which is then maintained throughout the calculation, while the wake
position is free to move as usual under the condition that the pressures

on the two sides of the wake are equal.

One point of interest in this case is the effect of the artificial
compressibility, and the second order corrections. Figures 9.14b and
9.14c show the contours of Mach number and stagnation density for a
solution obtained with only first order artificial compressibility with

M =1.0 and M2 ..=0.7. Figure 9.15 presents a comparison between the
con crit

calculated surface Mach numbers, and those given by Garabedian [3].

The agreement is very good except in the supersonic zone, where slight
numerical errors and the formation of a very weak shock produce stagna-
tion density changes of the order of 1% which are convected downstream,
as can be seen in Figure 9.14c. Figures 9.16a,b,c show the grid, and
contours of Mach number and stagnation density changes, for a solution
obtained with second order artificial compressibility corrections, as
detailed in Section 3.5. The stagnation density changes have been
greatly reduced, and the agreement with Garabedian's surface Mach number
distribution, shown in Figure 9.17, is much better. The only slight
differences are at the points at which the sonic line joins the surface,
near which the hodograph method has some difficulty, so that the dis-

agreement is as likely due to the hodograph method as it is due to the
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present method.

Figure 9.18 shows a close-up of the grid and Mach number contours
at the leading edge. Despite the good grid resolution, the Mach number
changes by up to 0.07 between streamwise stations due to the very rapid
flow expansion on the suction surface side of the leading edge, but this
is better than the resolution achieved by Garabedian, and *'e~ second

order accuracy keeps the stagnation density errors small.

The increase in accuracy using the second order density corrections
for the artificial compressibility, is achieved at the cost of rate of
convergence of the Newton iteration procedure. Tables 9.11 and 9.12
show the iteration histories for the two cases. The case with first
order artificial compressibility converges to machine accuracy in six
iterations, while the one with the second order corrections requires an
additional nine iterations, during which the residuals decay by a factor
of approximately 0.5 at each iteration. This non-quadratic terminal
convergence rate is due to the approximations in the Newton lineariza-
tion introduced in Section 4.3, in particular the neglect of changes in

Py and M The removal of these approximations would require modifi-
cations to the direct solution method for the Newton equations which

would greatly increase the computational cost of each Newton iteration,
and so would not produce any overall savings in the computational cost
of the solution. The CPU time per iteration in these calculations was

50 secs.
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Figure 9.14a: Airfoil and grid geometry for Garabedian cascade,

using first order artificial compresgibility.
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Figure 9.14b: Mach number contours for Garabedian cascade,

using first order artificial compressibility
with increments of 0.1.
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Figure 9.14c: Stagnation density contours for Garabedian cascade,
using first order artificiel compressibility
with increments of 0.005.
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Figure 9.15: Comparison of calculated and hodograph surface Mach
numbers for Garabedian cascade, using first order
artificial compressibility.
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Figure 9.16a: Airfoil and grid geometry for Garabedian cascade,

using second order artificial compressibility.
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Figure 9.16b: Mach number contours for Garabedian cascade,

using second order artificial compressibility
with increments of 0.1.
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Figure 9.16c: Stagnation density contours for Garabedian cascade,
using second order artificial compressibility
with increments of 0.005.
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Figure 9.17: Comparison of calculated and hodograph surface Mach
numbers for Garabedian cascade, using second order
artificial compressibility.
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Table 9.11: Newton iteration history for Garabedian cascade
with first order artificial compressibility

Iteration :
number : dp/p dn Comments

1 : 1.09e-1 7.43e-3 S, RLX=0.52
2 ; 7.02e-2 5.06e-3 S

3 : 1.22e-2 3.08e-3

4 ; 1.46e-3 7.1Se-5

5 ; 4.49%e-5 2.44e-6

6 ; 1.26e-5 5.18e-7

7 ; 2.95e-6 8.47e-7

8 : 2.60e-6 7.79%e-7

9 : 2.36e-6 4.65e-7

10 : 4.97e-6 8.94e-7
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Table 9.12: Newton iteration history for Garabedian cascade
with second order artificial compressibility

Iteration :
number : Sp/p &n Comments

1 : 1.09e-1 7.43e-3 S, RLX=0.52
2 ¢ 7.02e-2 5.06e-3 S
3 ¢ 1.25e-2 3.23e-3 t
4 i 7.37e-3 8.17e-4 ¢ Supersonic
: : region
5 : 5.78e-3 4.03e-4 : settling
: : down
6 : 3.36e-3 1.30e-4
7 : l1l.41le-3 4.57e-5 ¥
8 : 7.93e-4 3.13e-5 t
9 : 4.26e-4 1.49%e-5
10 : 2.25e-4 8.11le-6 : Steady
: : convergence
11 : 1.10e-4 2.80e-6 : with
: : spectral
12 : 5.57e-5 1.99e-6 : radius
: : =0.5
13 1 2.56e-5 5.00e~7
14 : 1.1%e-% 5.17e-7
15 : 7.52e-6 6.04e-7 ¥
16 : 3.99e-6 8.92e-7
17 1 3.24e-6 6.42e-7
18 : 4.86e-6 5.8%e-7
19 1 3.22e-~6 6.12e-7

20 : 3.18e-6 6.18e-7
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9.6 NACA 0012 airfoil

This test case is one of a series of cases proposed by the AGARD
Fluid Dynamics Panel, Working Group 07 to formulate a set of benchmark
solutions, against which new computational methods can be judged for
accuracy [32). The case which is analyzed here is AGARDO2, the tran-
sonic flow past a NACA 0012 airfoil, with a freestream Mach number of
0.85 and an angle of attack of 1°. Table 9.13, taken from reference
{23], lists lift, drag and moment coefficients of solutions submitted to
the Working Group by various contributors. The table also lists the
type of grid used, the grid size, and the distance (in chords) of the
outer boundary from the airfoil. Unfortunately the results give no
clear consensus on the correct solution to the problem, but further
developments in the next year or two will hopefully resolve much of the
discrepancy between the different solutions. The latest results of
Pulliam, listed as #10 in Table 9.13, are probably the most accurate,
given the fine grid resolution and the quality of the solutions display-

ed in reference [23].

Table 9.13: Solutions of AGARDO2

Sol. # type mesh size O.B. Dist. . CyL Cp Chag
1 C 193 x 29 10/14/10 0.3405 0.0464 -0.0951
2 C 188 x 24 4/6/7 0.3436 0.0541 -0.1093
3 (0] 158 x 23 16 0.3637 0.0556 -0.1209
L] C 249 x 67 48/96/96 0.3889 0.0590 -0.1378
6 (0] 192 x 39 50 0.3472 0.0557 -0.1167
8 0 128 » 28 5 0.3300 0.0528 -0.1040
9 @) 320 x 64 25 0.3584 0.0580 -0.1228
10 C 560 x 65 24/48/48 0.3938 0.0604 -0.1393
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Figure 9.19a shows the airfoil geometry with the converged 113x32
grid, which extends two chord lengths upstream and downstream, and ten
chords in the normal direction. Normal grid lines have been clustered
in the region of the shocks on the pressure and suction surfaces.
Figures 9.19b and 9.19c show contours of Mach anumber and stagnation
density, and Figure 9.20 shows the surface pressure coefficient. The

calculated lift, drag and moment coefficients are,

C,=0.39%0 , C_.=0.0610 , C =-0.1400
1 d m

which agree very well with Pulliam's results which are,

C,=0.3938 , C.,=0.0604 , C =-0.1393
1 d m

Tre quality of the agreement with Pulliam may be slightly fortui-
tous. An estimate of the numerical error in calculating the lift and
moment coefficients can be obtained by considering the uncertainty in
the position of the shock on the suction surface. The error in the
shock position will be at least of the order of the grid spacing, which
is 1% of the chord length, and the jump in the pressure coefficient
across the shock is approximately 1.0, producing an error estimate of
0.01 for the lift coefficient, and 0.005 for the moment coefficient.
Thus the agreement with Pulliam's results is probably better than could

be expected.

Table 9.14 lists the iteration history, showing that convergence
is achieved in twenty-one iterations. Most of the time is spent in the
suction surface shock moving to the correct location. The CPU time per

iteration was 3.5 mins.
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Figure 9.19b: Mach number contours for NACA 0012 airfoil, with
increments of 0.1.
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Figure 9.19c: Stagnation density contours for NACA 0012 airfoil,
with increments of 0.005.
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Figure 9.20: Surface pressure coefficients for NACA 0012 airfoil,
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Table 9.14: Newton iteration history for NACA 0012 airfoil
Iteration :
number Sp/p dn Comments
1 1.68e-1 3.17e-2 S, RLX=0.75
2 9.60e-2 7.78e-3 S
3 9.84e-2 7.02e-3 RLX=0.49 ¢
4 1l.16e-1 6.72e-3 RLX=0.28 : Shock
5 1.37e-1 6.0le-3  RLX=0.20
6 1.65e-1 5.98e-3 RLX=0.14 : forming
7 1.88e-1  6.32e-3  RLX=0.13
8 1.77e-1 4.98e-3 RLX=0.13 : and moving
9 2.10e-1 6.08e-3 RLX=0.10
10 1.52e-1 4.18e-3 RLX=0.15 : downstream
11 1.32e-1 3.83e-3  RLX=0.19
12 1.0le-1  3.87e-3 RLX=0.23 : to correct
13 7.17e-2  4.05e-3  RLX=0.34
14 5.71le-2 3.25e-3 RLX=0.46 : position
15 4.32e-2 2.15e-3  RLX=0.53
16 2.%4e-2 1.27e-3 RLX=0.76 +
17 1.88e-2 2.67e-4
18 1.04e-2 3.24e-4
19 2.89%e-3 1.58e-4
20 3.35e-4 1.92e-5
21 5.57e-5 8.84e-6
22 1.97e-5 7.76e-6
23 1.33e-5 4.26e-6
24 4.74e-5 5.08e-6
25 2.74e-5 2.66e-6
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9.7 Two-Dimensional Laval nozzle

The purpose of this test case is to demonstrate the modified direct

solver for choked transonic flows. The test geometry is,

Inlet x=-0.1
Outlet x= 1.1

0.2 x<0 , x>1
Upper wall y=

0.2-0.05sin?(mwx)  0<x<1

x<0 , x>1

Lower wall y=

0.05sin?(mx) 0<x<1

Figure 9.21a shows the geometry with a converged 61x11

grid. The flow conditions are,

ht=1/(y-1) , mtot=0.065 , y=1.4

with an average outlet stagnation density of 1.0. Using quasi-one-
dimensional Laval nozzle theory the throat area is 0.1, and so the
stagnation density at the throat, and hence everywhere upstream of the
shock, must be 1.123. Since the average outlet stagnation density is
1.0 this implies that the shock area is 0.126, implying that the shock
is at x=0.67, and the fractional change in the outlet stagnation density

is 0.110.

Figures 9.21b and 9.21c show contours of the Mach numbers and the
stagnation density (normalized by the inlet stagnation density). The
dotted lines indicate the analytic position of the shock determined
above. Figure 9.22a and 9.22b show the fractional change in stagnation
density and the Mach number distribution along one of the center stream-
tubes. The results are in good agreement with the quasi-one-dimensional
analysis. Table 9.15 lists the Newton iteration history. The CPU time

per iteration was 15 secs.
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Figure 9.21c: Stagnation density contours for 2-D Laval nozzle
flow, with increments of 0.01.
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Figure 9.21b: Mach number contours for 2-D Laval nozzle flow,
with increments of 0.1.
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Figure 9.2la: Duct and grid geometry for 2-D Laval nozzle flow.
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Figure 9.22a: Stagnation density changes on center streamtubes

of 2-D Laval nozzle flow.
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Figure 9.22b: Mach number distribution on center streamtubes
of 2-D Laval nozzle flow.
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Table 9.15: Newton iteration history for Laval nozzle

Iteration :

dp/p dn Comments
number
1 : 1l.36e-1 9.80e-5
2 i l.o6de-1 2.68e-4 RLX=0.52

3 ; 1.76e-1 2.00e-4 RLX=0.35
4 ; 1.68e-1 3.39%e-4 RLX=0.37
S ; 1.26e-1 3.24e-4 RLX=0.43
6 ; 8.57e-2 3.6le-4 RLX=0.61
7 i 5.20e-2 2.26e-4
8 ; 2.46e-2 3.78e-4
9 ; 2.39%e-3 1.88e-4
10 i 2.91e-4 8.16e-6
11 ; 3.45e-5 6.36e-7
12 ; 5.35e-6 3.07e-7

13 : 3.31le-6 3.51e-7
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10. CONCLUSIONS

10.1 Discretization of Euler Equations

This thesis has presented a novel method of discretizing the steady
state transonic Euler equations. The approach used is to apply the
integral form of the Euler equations to a four-sided finite volume cell,
two sides of which are defined to be streamlines of the flow. This
intrinsic grid formulation is different from most current methods for
solving the transonic Euler equations, in that it requires the position
of the grid nodes to be determined during the calculation procedure.
Intrinsic grids have been used with a class of streamline curvature
methods, but these methods do not have a conservative formulation
because they are based on the differential form of the Euler equations,
and so cannot correctly calculate transonic solutions with shocks. The
present method however, since it is based on the integral form of the
Euler equations, ensures the correct Rankine-Hugoniot shock jump rela-
tions, and so will converge to the analytic solution in the limit of

infinite grid resolution.

A feature of the thesis is the analysis of the artificial compress-
ibility, which is added to the mass equation to ensure a well-posed
solution in the supersonic region. The analysis of linearized pertur-
bations of uniform one-dimensional flow reveals both a minimum level of
artificial compressibility required for well-posedness, and an optimum
level which ensures sharp shocks. Numerical experiments verify this
analysis for a quasi-one-dimensional test case. In addition, a new
method of density corrections to obtain second order accuracy is
presented and analyzed, and numerical tests demonstrate the resultant

decrease in stagnation density errors.

Since the discretization of the Euler equations is new, it has been
validated by a series of test cases. The first case, the flow over a

sin?(mx) bump in a duct, verified the second order accuracy of the
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discretization for smooth subsonic flow, meaning thac the numerical
errors are proportional to Ax’, where Ax is the grid spacing. The
second test case is the subsonic flow over an elliptic bump in a duct.
One potential problem with an intrinsic grid is a lack of grid resolu-
tion at stagnation points, and this test case shows that if one uses
streamtubes with equal mass flux there is a loss of accuracy due to the
stagnation points, but that if one varies the distribution of the total
mass flux between the streamtubes, one can regain the full second order
accuracy Sfor subsonic flow. All subsequent calculations of cascade and
isolated airfoil flow achieved good grid resolution at leading edge
stagnation points by using streamtubes with small mass fluxes. The
third test case was incompressible flow over a cascade designed using a
conformal transformation method. Excellent agreement with the analytic
solution was obtained, verifying the incompressible limit of the discre-
tization and the Kutta condition employed to determine the circulation
around each airfoil. The fourth test case was subsonic flow over a
turbine cascade with 120° turning in flow direction, which tested the
ablility of the method to handle grids with extreme shearing. Good
agreement was achieved with experimental results. The fifth case was a
transonic supercritical cascade designed using a numerical hodograph
method. Numerical calculations with the present method demonstraved
good agreement using the first order artificial compressibility, and
even better agreement using the second order density corrections. The
sixth test case is transonic flow over a NACA 0012 isolated airfoil,
producing shocks on both the suction and the pressure surfaces. The
computed lift, drag and moment coefficients are in very good agreement
with the most accurate results in the literature. Finally, the seventh
case is choked, transonic flow through a twodimensional Laval nozzle,
which verifies the boundary condition formulation for choked flow, and

the correct Rankine-Hugoniot shock jump relations.
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10.2 Newton Solution Method

A second principal conclusion of this thesis is that Newton's
method can be very efficient for solving a large system of nonlinear
equations. To a large extent this conclusion is independent of the
choice of the particular discretization of the Euler equations employed
here, although the current discretization does have the advantage that
the resultant linearized system can be reduced to having only two varia-
bles per grid node, and so the total number of unknowns is smaller than
would be the case for other possible discretizations. The main advan-
tage of Newton's method is that it converges quadratically to the solu-
tion of the nonlinear equations, once the approximate solution is close
to the true solution. The iteration histories for the subsonic test
cases showed convergence to machine accuracy in three to five itera-
tions. The transonic solutions with first order artificial compressi-
bility took longer, with a period of up to ten iterations during which
the shock established itself and moved to the correct position, followed
by five iterations of near-quadratic convergence to the solution. These
additional iterations required for the shock movement are due to the
strong inherent nonlinearities associated with a shock, but it is impor-
tant to note that the algorithm handles this shock movement robustly,
aided by the under-relaxation clamp which prevents excessively large
changes in either the densities or the position of the leading edge
stagnation point. The calculations with the second order density corre-
ctions took up to 10 iterations more than the calculations with only the
first order artificial compressibility, because of approximations made
in the linearization of the nonlinear equations which prevented quad-
ratic convergence and instead led to a terminal convergence in which the

residuals decreased by factor 0.5 per iteration.

Another advantage of Newton's method is that it is a very simple,
straightforward procedure, at least in principle, and so can be applied

to a wide range of problems, for which time-marching or other approaches
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may be inappropriate or very inefficient. In practice one must be very
careful in performing the linearization and in programming the method,
and the final program is more complicated than a time-marching algorithm
applied to a simple logically rectangular computational grid. On a more
positive note, debugging of the program is eased by the ability to check
the linearization of different parts of the equation set independently,
and the quadratic terminal convergence rate makes it clear when a part
of the program is working correctly, and when it is not. Also, apart
from the artificial compressibility required to ensure well-posedness in
the supersonic region, no numerical smoothing is required, unlike in
time-marching methods in which the choice and implementation of numer-

ical smoothing can critically the stability and accuracy of the method.

An important question to address is whether it is more erficient to
solve the linear system of Newton equations by a direct method, or by an
iterative method. It can be argued, as in Chapter 7, that for a suffi-
ciently large system of equations an iterative solution method will be
more efficient than a direct method based upon a block tri-diagonal
algorithm. However, for the test case #4, the incompressible flow past
the Gostelow cascade, the total CPU time for the iterative method was
18.7 mins. compared to 7.2 mins. for the direct method. These times
were for a grid of 122x23. Now if there is no modification to the iter-
ative procedure then the number of iterations required by the iterative
solver increases proportional to max(I%,J?), and the work per iteration
scales as IJ, so the total CPU time scales as max(I*J,IJ%®). Since the
CPU cost of the direct method scales as IJ® this implies that the direct
method will always be more efficient than the iterative method. If,
however, one could accelerate the iterative procedure using a multigrid
algorithm, then, as discussed in Chapter 7, the number of iterations
would remain fixed as I and J increase. Following this assumption with
the numbers above as a baseline, the direct method and the iterative
method with multigrid would be equal for a grid in which J=32. This

size of grid is more than is necessary to obtain very good results for
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cascades and subsonic isolated airfoi. flows. A grid of 113x32 was
needed for the transonic NACA 0012 isolated airfoil case in order to
place the far-field boundary 10 chords away in the normal direction, but
in this case a new iterative algorithm would be necessary for the trans-
onic flow and it is unlikely to be as efficient as the subsonic algor-
ithm which was constructed to take advantage of the natural separation
of the convective entropy equation from the elliptic pressure equation.
Another issue which affects this question is the suitability of the
algorithm for vector programming. In the direct method almost all of
the CPU time is spent in inverting and multiplying matrices whose size
is 0(J), and this can very easily be programmed to be done in vector
mode on a pipeline machine such as CRAY 1 or a CYBER 205, or on an array
processor such as the Floating Point Systems FPS 120B, which is attached
to the Perkin-Elmer 3242 on which the current calculations were per-
formed. Using the FPS 120B would decrease the quoted CPU times for the
cases in this thesis by approximately a factor of ten. The iterative
method could also be vectorized, but with multigrid could require a
substantial programming effort, and a full factor ten improvement in
speed is unlikely. For these reasons the direct method is considerea to

be the best method for solving the Newton equations.
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10.3 Versatility of Approach

Another important feature of the Newton approach is the inherent
versatility of the method. One aspect of this is the global unknowns
and global constraints discussed in Chapter 8. In the test cases pre-
sented in the Chapter 9, the global unknowns were degrees of freedom in
the specification of the far-field boundaries, the normal movement of
the inlet and outlet planes for the cascade cases, and the far-field
angle of attack and circulation for the isolated airfoil case. The
corresponding global constraints were specified inlet flow angle and the
trailing edge Kutta condition for the cascade cases', and specified angle
of attack and trailing edge Kutta condition for the isolated airfoil
case. Time-marching methods can calculate solutions under these condi-
tions, but consider now another useful capability, the ability to spec-
ify the lift coefficient of the airfoil instead of the angle of attack.
This ability is very useful for comparison with experimental wind tunnel
data because the presence of the wind tunnel walls causes an effective
change in the angle of attack, which can be estimated only approxima-
tely. Thus it is preferable to compare results with a numerical calcul-
ation which matches the lift coefficient rather than the corrected angle
of attack. To do this with a time-marching method requires a series of
calculations at different angles of attack to determine the angle of
attack which gives the required lift coetficient. With the Newton
method one simply changes the global constraint from specified angle of
attack to specifed lift coefficient, and the Newton procedure automati-
cally solves the new problem. Another example of a useful capability
is to be able to vary the gap/chord ratio in a cascade to achieve the
same flow turning with a different specified amount of loading on each
individual blade. This could be accomplished in the current method by
introducing a stretching factor in the blade-to-blade direction as an
additional global unknown, with the specifed lift coefficient for the
blade being an additional global constraint. This option would require

substantial additional programming since each of the Euler equations

164



for all of the cells would have to be linearized with respect to
variations in this new global unknown, but this could be done in a
straightforward manner and would provide a capability which could only
be achieved using a time-marching by a costly series of calculations

for different gap/chord ratios.

This discussion would not be complete without reference to the
Ph.D. thesis research of Mark Drela, who has extended the method in this
thesis to solve two extremely important, and difficult, classes of
problem. Tie first problem is the solution of strongly coupled viscous/
inviscid inte.actions, in which the viscous boundary layer solution is
calculated using an integral boundary layer method. The details are
available in reference [11], but an important point for the current
discussion is that the boundary layer equations, and the relations which
couple the boundary layer soltuion to the outer inviscid solution, are
simply treated as additional nonlinear equations, and the Newton
procedure is then applied to the entire set of equations. This use of
the conceptual simplicity of Newton's procedure leads to a method which
is robust and more efficient than current methods for coupling time-
marching algorithms for the Euler equations to finite difference bound-
ary layer calculations, using strong interaction coupling laws. This
also supports the opinion that the direct method is the preferable
method for solving the Newton equations, since it is very unclear how
one would iteratively solve the resultant set of Newton equations, and
even if it were possible it would lose the essential simplicity of the
Newton approach. The second class of problems which is solved by Drela
is the inverse airfoil problem. The usual analysis problem is to
determine the flow and surface pressure distribution for an airfoil of
given geometry. The inverse airfoil problem is to determine the flow
and the airfoil geometry which corresponds to a specified surface
pressure distribution. Again the details are complicated and are
presented in reference {11]), but there are two points to be noted here.

The first is that the ablility to handle a changing airfoil geometry is
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inherent in the intrinsic coordinate system which is used for the
discretization of the Euler equations. The second is that extensive
use is required uf global unknowns and constraints to satisfy a number
of compatibility requirements, which are handled easily by the Newton

procedure, but could not be treated by time-marching methods.
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Appendix: Program Listing

This program listing is included primarily as an archival record
of the program used to obtain the results presented in Chapter 9. This
will not be the final version of the program, which is still under
development. 1In addition rhe program includes all of the routines used
currently by M. Drela to solve flow problems with a coupled integral
boundary layer analysis and with inverse or mixed boundary conditions,
as detailed in [11]. These are toc tightly bound into the program
structure to be easily removed, so it was decided to present the entire

program that was used.
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ISET is the program which initializes everything, the grid, the
density distribution, the bounuary layer variables etc.

PROGRAM ISET
$INCLUDE STATE.INC
$INCLUDE ISET.INC
c

PIE

GAM

4.0*ATAN(1.0)
1.4

CIRC
ALFA =
REYN =
INITBL
ICOUNT = O
MSF = 0.98
MUCON = 1.0

[ eNeNel

XCENT = 0.
YCENT = 0.
BETSQ = 1

GM1 = GAM -
GPl = GAM +

HINL

= 1.0/GM1
RSTOUT = 1

G

.0

TRF = 0.875 ; turbulent temperature recovery factor
HVIS = 0.35*HINL ; Sutherland's constant

WRITE(S5,*) 'Set up for BL coupling ? N'
READ(S5,1000) ANS

1000 FORMAT(Al)
COUPLE = (ANS.EQ.'Y')

c
IF(COUPLE) THEN
5 WRITE(S5,*) 'Enter approximate chord Reynolds number:'
READ(S, * ,ERR=5) REC
ENDIF
C
C
C---- Read in blade coordinates and grid distribution arrays
CALL READIN
C
C---- Normalize and spline blade
CALL NORMIT
CALL SPLNIT
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C---- Set up nodes on grid outline and in the interior
CALL OUTLIN
DO 10 I=1, II
CALL NORLIN(I)
10 CONTINUE

Cc
C---- Store outer airfoil boundary
IF(JJJ.NE.O) THEN
C
DO 203 =1, JJ
YINL(J) = Y(1,J)
YOUT(J) = Y(II,J)
20 CONTINUE
C
DO 30 I =1, II
YTOP(I) = Y(I,JJJ)
YBOT(I) = Y(I,JJJ+1)
30 CONTINUE
C
ENDIF
C
C---- Reset blade coordinates to match grid nodes and re-spline
CALL RESPLI
Cc
C---- Fix up entire grid
WRITE(S,*) ' '
WRITE(S,*) 'Generating grid ...'
CALL ELLIP(IX,JX,II,J3J3,33J3,X,Y,YPOS,XPOS)
C
C---- Initialize state vector
DO 50 J=1, JJ-1
MFRACT(J) = YPOS(J+1) - YPOS(J)
50 CONTINUE
c
DO 60 J=1, JJ-1
H(J) = HINL
RSTINL(J) = RSTOUT
60 CONTINUE
(o1
DO 70 J=1, JJ
DO 701 I=1, II
R(I,J) = RSTOUT
PI(I,J) = 0.98*HINL*RSTOUT*GM1/GAM
MU(I,J) = O.
MUC(I,J) = O.
701  CONTINUE
70 CONTINUE
c
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DO 80 J=1, JJ-1
IF(J.NE.JJJ) CALL QCALC(J)
80 CONTINUE

C---- initialize BL parameters assuming no coupling
DO 90 I=1, II
THET(I,1)
THET(I,2)
DISP(I,1)
DISP(I,2)
TAU(I,1) = 0.
TAU(I,2) = O.
90 CONTINUE

4

0
0.
0.
0

IF(COUPLE) THEN

CALL BLINIT

CALL OFFSET

WRITE(S,*) ' '

WRITE(S,*) 'Adjusting grid ...'

CALL ELLIP(IX,JX,II1,JJ3,JJJ,X,Y,YPOS, XPOS)
ENDIF

C---- Write everything to disk
CALL OUTPUT

STOP
END ; ISET

SUBROUTINE READIN
$INCLUDE STATE.INC
$INCLUDE ISET.INC

C
C---- Read in blade data and find leading edge index
CCC OPEN(UNIT=3,FILE="'BLADE.DAT',6STATUS='0OLD"')
WRITE(S,*) ' '
WRITE(S5,*) 'Reading in BLADE.xxx ...'
READ(3,*) SPINL, SPOUT, CHINL, CHOUT, CHWID
C
IBLE = O
RERD(3,*) XB(1l), YB(1)
XMIN = XB(1)
XMAX = XB(1)
YMIN = YB(1)

DO 10 IB = 2, 12345
READ(3,*,END=11) XB(IB),YB(IB)
IF(XB(IB).EQ.XB(IB-1) .AND. YB(IB).EQ.YB(IB-1)) IBLE = IB-1
IF(IB.GT.IBX) STOP 'ISET: IIB > IBX'
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XMAX = AMAX1(XMAX,XB(IB))
IF(XMIN.GT.XB(IB)) THEN

XMIN = XB(IB)
YMIN = YB(IB)
ENDIF

10 CONTINUE
11 IIB = IB -1
ccc CLOSE(UNIT=3)

C---- Read in grid distribution arrays
C OPEN(UNIT=4,FILE='SPOS.DAT',STATUS="'OLD"')

WRITE(S,*) 'Reading in SPOS.xxx ...'
DO 20 K=1, 12345
READ(4,*) SINL(K)
IF(SINL(K).EQ.999.) GO TO 21
20 CONTINUE
21 NINL = K-1

DO 30 K=1, 12345
READ(4,*) SOUT(K)
IF(SOUT(K).EQ.999.) GO TO 31
30 CONTINUE
31 NOUT = K-1

DO 40 K=1, 12345
READ(4,*) SG(K,1)
IF(SG(K,1).EQ.999.) GO TO 41
40 CONTINUE
41 NGS = K-1

DO 50 K=1, 12345
READ(4,*) SG(K,2)
IF(SG(K,2).EQ.999.) GO TO 51

50 CONTINUE
51 NGP = K-1

J3J = 0
DO 60 K=1, 12345
RFAD(4,*) YPOS(K)
IF(YPOS(K).EQ.YPOS(K-1)) JJJ = K-1
IF(YPOS(K).EQ.999.) GO TO 61
60 CONTINUE
61 JJ = K-1

PITCH = O.
IF(JJJ.EQ.0) PITCH=CHWID

CCC  CLOSE(UNIT=4)
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C-=-=--

WRITE(S,*) ' '
IF(IBLE.EQ.0) WRITE(S,*) 'Blunt leading edge'
IF(IBLE.GT.0) WRITE(5,*) 'Sharp leading edge'

Check for compatibility

NBLD = MINO(NGS, NGP)

ND = NGS-NGP

IF(ND.NE.O) WRITE(S,*) 'Incompatible blade distribution arrays'
IF(ND.GT.0) WRITE(S5,*) 'Suction surface array reduced by ', ND
IF(ND.LT.0) WRITE(S,*) 'Pressure surface array reduced by ',-ND

RETURN
END ; READIN

SUBROUTINE NORMIT

$INCLUDE STATE.INC
$INCLUDE ISET.INC

C
C-m--

71

72

73

75

Cme==-

Normalize grid distribution arrays
DO 71 K=2, NINL

SINL(K) = (SINL(K)-SINL(1l)) / (SINL(NINL)-SINL(1))
DO 72 K=2, NOUT

SOUT(K) = (SOUT(K)-SOUT(2)) / (SOUT(NOUT)-SOUT(1))
DO 73 K=2, NBLD

SG(K,1) = (SG(K,1)-SG(1,1)) / (SG(NBLD,1)-SG(1,1))

SG(K,2) = (SG(K,2)-SG(1,2)) / (SG(NBLD,2)-5G(1,2))
DO 75 K=2, JJ

YPOS(K) (YPOS(K)-YPOS(1)) / (YPOS(JJ)-YPOS(1))
SINL(1)
SOUT(1)
SG(1,1)
SG(1,2)
YPOS(1)

Wononowon
[eNeNeoNeoNoNN]

II = NINL + NBLD + NOUT - 2
ILE = NINL
ITE II-NOUT+1

IF(II.GT.IX) STOP 'IX is too small'
IF(JJ.GT.JX) STOP 'JX is too small'
IF(IIB.GT.IBX) STOP 'IBX is too small'

Normalize blade and calculate surface arc length array

SB(1) = 0.
DO 80 IB = 1, IIB
XB(IB) = (XB(IB)-XMIN) / (XMAX-XMIN)
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YB(IB) = (YB(IB)-YMIN) / (XMAX-XMIN)
IF(IB.EQ.1) GOTO 80
SB(IB) = SB(IB-1) +
& SQRT( (XB(IB)-XB(IB-1))**2 + (YB(IB)-YB(IB-1))**2 )
80 CONTINUE
PITCH = PITCH/ (XMAX-XMIN)

RETURN
END ; NORMIT

SUBROUTINE SPLNIT
$INCLUDE STATE.INC
$INCLUDE ISES.INC
C
C---- Spline blade surface(s)
IF(IBLE.EQ.0) THEN
CALL SPLINE(XB,XPB,SB,IIB)
CALL SPLINE(YB,YPB,SB,IIB)
ELSE
CALL SPLINE(XB,XPB,SB,IBLE)
CALL SPLINE(YB,YPB,SB,IBLE)
IP = IBLE+1
CALL SPLINE(XB(IP),XPB(IP),SB(IP),IIB-IBLE)
CALL SPLINE(YB(IP),YPB(IP),SB(IP),IIB-IBLE)
ENDIF

C---- Find leading edge position SBLE
IF(IBLE.EQ.0) THEN
DO 82 1IB=2, IIB
DP1 = XPB(IB-1) + SPINL*YPB(IB-1)
DP2 = XPB(IB) + SPINL*YPB(IB)
IF(DP1.LT.0.0 .AND. DP2.GE.0.0) GO TO 83
82  CONTINUE
STOP 'Leading edge not found'
83 DSB = SB(IB) - SB(IB-1)
SBLE = SB(IB-1) + DSB*DP1/(DP1-DP2)
XLE = SEVAL(SBLE,XB,XPB,SB,IIB)
YLE = SEVAL(SBLE,YB,YPB,SB,IIB)
ELSE
¥LE = XB(IBLE)
YLE = YB(IBLE)
SBLE = SB(IBLE)
ENDIF
SBLOLD = SBLE

RETURN
END ; SPLNIT
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SUBROUTINE OUTLIN

+INCLUDE STATE.INC
SINCLUDE ISET.INC

C

C---- Super-marvy manually-triggered, slope calculating feature (!)

C
C-=--

1000

Cmmm-

90

IF(SPINL.EQ.999. .AND. IBLE.EQ.O)

& STOP 'Must specify inlet slope with blunt leading edge'

IF(SPINL.EQ.999.)

& SPINL = 0.5*((YB(IBLE)-YB(IBLE-1)) / (XB(IBLE)-XB(IBLE-1))
& + (YB(IBLE)-YB(IBLE+1)) / (XB(IBLE)-XB(IBLE+l)) )

IF(SPOUT.EQ.999.)
& SPOUT = 0.5*((YB(2 )-YB(1

)) / (XB(2

)-XB(1

))

& + (YB(IIB)-YB(IIB+1)) / (XB(LIB)-XB(IIB+1)) )

check if TE is open

DXTE = XB(1l)-XB(IIB)

DYTE = YB(1)-YB(IIB)

DSTE = SQRT(DXTE**2+DYTE**2)
FLAP = .FALSE.
IF(DSTE.GT.1.E-4) THEN
WRITE(S5,*) ' '

WRITE(S5,*) 'Trailing edge is open.

READ(S5,1000) ANS
FORMAT (A1)

FLAP = (ANS.NE.'N"')
ENDIF

WRITE(S5,*) ' '
WRITE(5,*) 'II
WRITE(S,*) 'NINL
WRITE(5,*) ' '

', 11, ! JJ
' ,NINL,' NBLD

Include floating flap ?

',Jd

. JJJ

' ,NBLD, ' NOUT

WRITE(S5,*) 'SPINL = ',SPINL,' SPOUT =

WKITE(5,*) ' '

Set inlet stagnation streamline
DO 90 K=1, NINL

X1 = XLE + CHINL * (SINL(K) - 1.0)

Yl = YLE + (X1-XLE) * SPINL
X(K,1) = X1
Y(K,1) = Y1
X(K,JJ) = X1
Y(K,JJ) = V1 + PITCH
CONTINUE
DYINL = (X(1,1)-XLE)*SPINL

KTE
XTE1l

2
XB(1)
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92

Cmmm-
94

YTE1 = YB(1)
XTE2 = XB(IIB)
YTE2 = YB(IIB)

IF(FLAP) THEN

XTE1l = 0.5*(XB(1)+XB(IIB))
YTE1l = 0.5*%(YB(1)+YB(IIB))

XTE2 = XTEl

YTE2 = YTE1l

SE = 4.00

TEP1 =

Al = 1.5 + SE*TEP1
Bl =-1.0 - SE*TEP1
TEP2 =

A2 = 1.5 + SE*TEP2
B2 =-1.0 - SE*TEP2

DO 92 KTE=2, NOUT
I = II-NOUT+KTE

; trailing edge flap length to gap ratio

Z = SOUT(KTE)*CHOUT*SQRT(1.0+SPOUT**2)
IF(Z.GT.SE*DSTE) GO TO 94

ZB

1.0 - 2/(SE*DSTE)

T1 = (Al + B1*ZB)*ZB**2

T2 =
X(I,1) = XTEl +
Y(I,1) = YTEl +
X(I,JJ) = XTE2 +
Y(I,JJ) = YTE2 +
CONTINUE
ENDIF

(A2 + B2*ZB)*ZB**2

CHOUT*SOUT(KTE)
CHOUT*SOUT(KTE ) *SPOUT
CHOUT*SOUT(KTE)

CHOUT*SOUT (KTE ) *SPOUT

Set outlet stagnation streamline

DO 95 K=KTE, NOUT
I = II-NOUT+K
X(I,1)
Y(I,1)
X(I,JJ)
Y(I,3J)

CONTINUE

0o

Blade surface lengths

SS = SBLE
SP = SB(IIB)-SBLE

XTE1 + CHOUT*SOUT(K)
YTE1 + CHOUT*SOUT(K)*SPOUT
XTE2 + CHOUT*SOUT(K)
YTE2 + CHOUT*SOUT(K)*SPOUT + PITCH

Set points on blade suction surface

IBLEN = IBLE

IF(IBLE.EQ.0) IBLEN =

DO 100 K=1, NBLD
I NINL + K - 1
S

IIB

SBLE - SS*SG(K,1)
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(YPB(1) - SPOUT*XPB(1l)) / (XPB(1l) + SPOUT*YPB(1))
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T1*DXTE
T1*DYTE
T2*DXTE
T2*DYTE + PITCH



X(I,1)
Y(I,1)
100 CONTINUE
C
C---- Set points on blade pressure surface
IBLEN = IIB-IBLE
IST = IBLE+1
IF(IBLE.EQ.0) IBLEN = IIB
IF(IBLE.EQ.O) IST =
DO 110 K=1, NBLD
I = NINL + K -1
S = SBLE + SP*SG(K,2)
X(I,JJ) SEVAL(S,XB(IST),XPB(IST),SB(IST),IBLEN)
Y(I,3J) SEVAL(S,YB(IST),YPB(IST),SB(IST),IBLEN) + PITCH
110 CONTINUE
C
C---- set up normal line mettrics
SLEN = CHINL*SQRT(1.0+SPINL**2) + CHOUT*SQRT(1.0+SPQUT**2)
& + 0.5*SB(IIB)
DXAVG = SLEN/FLOAT(II-1)
XPOS(1) 0.0
DO 400 I=2, II
DS = SQRT((X(I,1)-X(I-1,1))**2 + (Y(I,1)~Y(I~-1,1))**2)
DXI = SQRT(SQRT(DXAVG**3*DS))
XPOS(I) = XPOS(I-1) + DXI
400 CONTINUE

SEVAL(S,XB,XPB,SB, IBLEN)
SEVAL(S,YB,YPB,SB, IBLEN)

—

I

Cc
RETURN
END ; OUTLIN

SUBROUTINE RESPLI
$INCLUDE STATE.INC
$INCLUDE ISET.INC
C
C---- Recalculate blade spline data from grid
I = II-NOUT+1
IB =1
XB(IB) X(I,l)
YB(IB) = Y(I,1)
SB(1IB) 0.0
DO 142 I=II-NOUT, NINL, -1
IB = IB+1
XB(IB) = X(I,b1)
YB(1IB) Y(I,1)
SB(IB) SB(IB-1)
SQRT((XB(IB)-XB(IB-1))**2 + (YB(IB)-YB(IB-1))**2)

&
142 CONTINUE

+
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IF(IBLE.NE.Q) THEN
IBLE = IB
IB = IB+1
XB(IB)
YB(IB)
SB(IB)
ENDIF
DO 144 I=NINL+1, II-NOUT+1
IB = IB+1
XB(IB)
YB(IB)
SB(IB)

XB(IB-1)
YB(IB-1)
SB(IB-1)

[}

X(I,JJ)
Y(1,JJ) - PITCH

SB(IB-1)

SQRT( (XB(IB)-XB(IB-1))**2 + (YB(IB)-YB(IB-1))**2)

&
144 CONTINUE
IIB = IB

+

C
C---- Spline blade surface(s)
IF(IBLE.EQ.O) THEN
CALL SPLINE(XB,XPB,SB,I1B)
CALL SPLINE(YB,YPB,SB,IIB)
ELSE
CALL SPLINE(XB,XPB,SB,IBLE)
CALL SPLINE(YB,YPB,SB,IBLE)
IP = IBLE+1
CALL SPLINE(XB(IP),XPB(IP),SB(IP),IIB-IBLE)
CALL SPLINE(YB(IP),YPB(IP),SB(IP),IIB-IBLE)
ENDIF
SBLE = SB(NBLD)

RETURN
END ; RESPLI

SUBROUTINE NORLIN(IO)
$INCLUDE STATE.INC
$INCLUDE ISET.INC

o
I =10

Cc
IF(JJJ.NE.Q) THEN ; Airfoil case
Yl = Y(1,1) + CHWID*YPOS(JJJ)
Y2 = Y(II,1) + CHWID*YPOS(JJJ)

Cc
X(I,JJJ) = -CHINL + (1.+CHINL+CHOUT)*FLOAT(I-1)/FLOAT(II-1)
¥(I,J3J) = Y1 + (Y2-Y1)*FLOAT(I-1)/FLOAT(II-1)
X(I,J3J3+1) = X(I,J33J)
Y(I,J3J+1) = Y(I,J3J) - CHWID
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XLO = X(I,1)
YLO = Y(I,1)
DELX = (X(I,JJJ)-X(I,1)) / YPOS(JJJ)
DELY = (Y(I,JJJ)-Y(I,1)) / YPOS(JJJ)
DO 10 J =2, JJJ-1
X(I,J) = XLO + DELX*YPOS(J)
Y(I,J) = YLO + DELY*YPOS(J)
10 CONTINUE

C
XLO = X(I,JJJ+1)
YLO = Y(I,JJ3J+1)
DELX = (X(I,JJ)-X(I,J3JJ+1)) / (YPOS(JJ)-YPOS(JJJ+1))
DELY = (Y(I,JJ)-Y(I,JJJ+1)) / (YPOS(JJ)-YPOS(JJJ+1))
DO 20 J = JJJ+2, JJ
X(I,J) = XLO + DELX*(YPOS(J)-YPOS(JJJ+1))
Y(I,J) = YLO + DELY*(YPOS(J)-YPOS(JJJ+1))
20 CONTINUE
C
ELSE ; Cascade case
DO 30 J =2, JJ-1
X(I,J) = X(I,1) + YPOS(J)*(X(I,JJ)-X(I,1))
Y(I,J) = Y(I,1) + YPOS(J)*(Y(I,JJ)-Y(I,h1l))
30 CONTINUE
ENDIF
C
RETURN

END ; NORLIN

SU3BROUTINE BLINIT
$INCLUDE STATE.INC
$INCLUDE ISET.INC

C

C---- get leading edge angle and Betal
SB1 = SBLE - 0.001
SB2 = SBLE + 0.001

DX1 = -DEVAL(SB1,XB,XPB,SB,IIB)
DYl = -DEVAL(SB1,YB,YPB,SB,IIB)

DX2 DEVAL(SB2,XB,XPB,SB, IIB)

DY2 DEVAL(SB2,YB,YPB,SB,IIB)

COST = (DX1*DX2+DY1*DY2)/SQRT( (DX1**2+DY1**2}%(DX2**2+DY2**2))
THETA = ATAN2{(1.0-COST**2), COST)

BULE = THETA / (2.0*PIE - THETA)
BULE = AMIN1(1.0,BULE)

BULE = AMAX1(0.0,BULE)

BDLE = 0.5*%(1.0 - BULE)
WRITE(S,*) ' '
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WRITE(S,*) 'Leading edge x/u du/dx = ', BULE

C
C---- calculate blade arc l-ngth arrays
XI(ILE,1) = O.
XI(ILE,2) = O.
DO 10 IO=ILE+1l, II
IM = I0-1
XI(I0,1) = XI(IM,1)
& + SQRT((X(IO, 1)-X(IM, 1))**2 + (Y(IO, 1)-Y(IM, 1))**2)
XI(10,2) = XI(IM,2)
& + SQRT((X(IO,JIV=X(IM,JJ))**2 + (Y(IO,JJ)-Y(IM,JJ))**2)
10 CONTINUE
C
C---- Calculate Theta and Dstar distributions using
C a clamped Thwaites' momentum thickness integral

BUMIN = -0.18

CALL TDCALC(1)

CALL TDCALC(2)

DSTE = DISP(ITE,l1) + DISP(ITE,2)

WRITE(S,*) ' '

WRITE(5,*) 'Estimated total Dstar/chord at TE is ',DSTE

WRITE(S,*) 'Is this reasonable ? Y!'

READ(5,1000) ANS

1000 FORMAT(A1l)
IF(ANS.EQ.'N') THEN
WRITE(S5,*) ' '
48 WRITE(S5,*) 'Okay then, enter a reasonable TE Dstar/chord: '

READ(S5,*,ERR=48) DSINP

WRITE(S,*) ' '

DO 50 ITRY=1, 10
DDSDB = 0.5*HH*(DTSQDB(1)/THET(ITE,1) + DTSQDB(2)/THET(ITE,2))
BUMIN BUMIN + (DSINP - DSTE)/DDSDB
BUMIN = AMAX1(BUMIN,-.199)
CALL TDCALC(1)
CALL TDCALC(2)
DSTE = DISP(ITE,l1) + DISP(ITE,2)
WRITE(S,*) 'BUmin, Dstar/chord = ', BUMIN, DSTE
IF(ABS(1.0-DSTE/DSINP) .LT. 1.0E-3) GO TO 5%

50 CONTINUE

ENDIF

(o

55 IF(IBLE.EQ.0) THEN

THET(ILE,l) = O.5*(THET(ILE+l1,1) + THET(ILE+1,2))
DISP(ILE,1) = O.5*%(DISP(ILE+1,1) + DISP(ILE+1,2))
THET(ILE,2) = THET(ILE,1l)
DISP(ILE,2) = DISP(ILE,1)
ENDIF

o
RETURN
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END ; BLINIT

SUBROUTINE TDCALC(ISINP)
$INCLUDE STATE.INC
$INCLUDE ISET.INC

Cc
IS = ISINP
HH = 2.4
HEXIT = 1.1
C
J=1
TF(IS.EQ.2) J = JJ-1
C---- Set edge velocity array
DO 10 I=ILE+1, II-1
UEDG(I,IS) = 0.5*(Q(I-1,J) + Q(I,J))
10 CONTINUE
UEDG(II,IS) = UEDG(II-1,IS)
C
C---- Set Ue gradient parameter between lst and 2nd stations past LE
BNEXT = ALOG( UEDG(ILE+2,IS)/UEDG(ILE+1,IS) )
& / ALOG( XI(ILE+2,IS)/ XI(ILE+1,IS) )
C
C---- Set initial Ue gradient parameter and constant
BU = (BULE + 2.0*BNEXT) / 3.0
UCON = UEDG(ILE+1,IS) / XI(ILE+1,IS)**BU
Cc
C---- Set initial momentum thickness
TSQ = 0.45/(REC*UCON*(5.0*BU+1.0)) * XI(ILE+1,IS)**BU
THET(ILE+1,IS) = SQRT(TSQ)
DISP(ILE+1,IS) = HH*THET(ILE+1,IS)
C
C---~- Integrate Theta integral downstream

DTSQDB(IS) = 0.0
DO 30 I=ILE+2, ITE
XLOG = ALOG( XI(I,IS)/XI(I-1,IS) )
BU = ALOG( UEDG(I,IS)/UEDG(I-1,IS) ) / XLOG
BU = AMAX1(BU, BUMIN)
FBM = 5.0%*BU + 1.0
XEXP = (XI(I,IS)/XI(I-1,IS))**FBM
UINT = (XEXP*XI(I,IS) - XI(I-1,IS)) * UEDG(I-1,IS)**5 / FBM
DIDB = 0.0
IF(BU.EQ.BUMIN) DIDB = -5.0*UINT/FBM
& + 5.0*XLOG*XEXP*XI(I,IS)*UEDG(I~1,IS)**5 / FBM

TSQ = TSQ + 0.45*UINT/(REC*UEDG(I,IS)**6)
DTSQDB(IS) = DTSQDB(IS) + 0.45*DIDB/(REC*UEDG(I,IS)**6)
THET(I,IS) = SQRT(TSQ)
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DISP(I,IS) = HH*THET(I,IS)
30 CONTINUE
Cc
DO 35 I=ITE+1, II
THET(I,IS) = THET(ITE,IS)
DISP(I,IS) = (HH + (HEXIT-HH)*FLOAT(I-ITE)/FLOAT(II-ITE))
& * THET(I,IS)
35 CONTINUE
C

RETURN
END ; TDCALC

SUBROUTINE OFFSET
$INCLUDE STATE.INC
$INCLUDE ISET.INC

REAL XOLD(2), YOLD(2)

c
C---- LE Dstar
DISP(ILE,1) = 0.5 * (DISP(ILE+1,1) + DISP(ILE+1,2))
IF(IBLE.NE.O) DISP(ILE,l1) = 0.0
DISP(ILE,2) = DISP(ILE,1l)
C
C---- save TE-1 coordinates for grid disp.acement from wake
XOLD(1) = X(ITE-1,1)
YOLD(1l) = Y(ITE-1,1)
XOLD(2) = X(ITE-1,JJ)
YOLD(2) = Y(ITE-1,JJ)
c
C---- set grid edge Dstar away along normal from blade surface

DO 10 IG=1, NBLD-1
IO = ILE + G - 1
SS = SBLE * (1.0 - SG(IG,1))
XBLD = SEVAL(SS,XB,XPB,SB,IIB)

YBLD = SEVAL(SS,YB,YPB,SB,IIB)
DY = -DEVAL(SS,XB,XPB,SB,IIB)
DX = DEVAL(SS,YB,YPB,SB,IIB)

X(I0,1 ) = XBLD + DISP(IO,1) * DX/SQRT(DX*DX + DY*DY)
Y(I10,1 ) = YBLD + DISP(IO,1) * DY/SQRT(DX*DX + DY*DY)
10 CONTINUE
DO 20 IG=1, NBLD-1
I0 = ILE + IG - 1
SP = SBLE + (SB(IIB) - SBLE) * SG(IG,2)
XBLD = SEVAL(SP,XB,XPB,SB,IIB)
YBLD = SEVAL(SP,YB,YPB,SB,IIB) + PITCH
DY -DEVAL(SP,XB,XPB,SB,IIB)
DX DEVAL(SP,YB,YPB,SB,I1IB)
X(I0,JJ) = XBLD + DISP(IO,2) * DX/SQRT(DX*DX + DY*DY)

184



Y¥(10,JJ) = YBLD + DISP(IO,2) * DY/SQRT(DX*DX + DY*DY)
20 CONTINUE

c
C---- set grid edge Dstar away along wake
J =1
DIR = 1.0
DO 30 Is=1, 2
DO 310 IO=ITE, II
IM = IO-1
IP = I0+1
IF(IO0.EQ.II) IP = II
DY = X(IP,J) - XOLD(IS)
DX = -Y(IP,J) + YOLD(IS)
XOLD(IS) = X(IO,J)
YOLD(IS) = Y(I10,J)
X(I10,J) = XOLD(IS) + DIR*DISP(IO,IS)*DX/SQRT(DX*DX+DY*DY)
Y(IO,J) = YOLD(IS) + DIR*DISP(IO,IS)*DY/SQRT(DX*DX+DY*DY)
310 CONTINUE
J = JJ
DIR = -1.0
30 CONTINUE
C
SWAK = CHOUT*SQRT(1.0 + SPOUT**2)
C
C---- fix up exit streamline positions
CALL NORLIN(II)
C

RETURN
END ; OFFSET

SUBROUTINE QCALC(J)
$INCLUDE STATE.INC
$INCLUDE ISET.INC

C
JOo = J
JP = JO + 1
c
AINL = 0.0
C
C---- Sweep along streamtube
DO 5 I0 =1, II-1
C
IP = IO+1
C
DX = 0.5*(X(IP,JP)+X(IP,JO) - X(IO,JP)-X(IO,JO))
DY = 0.5*(Y(IP,JP)+Y(IP,JO) - Y(I0,JP)-Y(10,J0))

DS2INV = 1.0 / SQRT(DX*DX + DY*DY)
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CCC

Si2 = DX*DSZ2INV

SY2 = DY*DS2INV

AX2 = O0.5*%(X(IP,JP)+X(I0,JP) - X(IP,J0)-X(I10,JO))
AY2 = 0.5*(Y(IP,JP)+Y(IO,JP) - Y(IP,JO)-Y(IO,JO))
AN2 = S5X2*AY2 - SY2*AX2

IF(IO.EQ.1) AINL = AN2

R2 = R(I0,JO)
Q2 = AINL / (AN2*R2)
Q(I0,J0) = Q2

CONTINUE

RETURN
END ; QCALC

SUBROUTINE ELLIP(IMAX,JMAX,II,JJ,JJJ,X,Y,YPOS,6XPOS)
DIMENSION X(IMAX,JMAX),Y(IMAX,JMAX),bYPOS(JMAX),b XPOS(IMAX)
DIMENSION C(200),D(2,200)

CHARACTER*1 ANS

ITMAX = 50
DSET1 = 1.0E-1
DSET2 = 5.0E-3

DSET3 = 2.0E-4

RLX1 = 1.30 ; DMAX > DSETI
RLX2 = 1.50 ; DSET1 > DMAX > DSET2
RLX3 = 1.60 ; DSET2 > DMAX > DSET3
STOP ; DSET3 > DMAX

RLX = RLX1

DO 1 ITER = 1, ITMAX

DMAX = 0.

DO 5 JOo=2, JJ-1
JM = JO-1
JP = JO+1

IF(JO.EQ.JJJ) THEN
DO 2 I0=2, II-1
X(I0,J0) = X(I0,JM)
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CONTINUE

GO TO
ELSE IF

5
(JO.EQ.JJJ+1) THEN

DO 3 I0=2, II-1

X(10,J0) = X(IO,JP)
CONTINUE
GO TO 5
ENDIF
DO 6 I0=2, II-1
IM = I0-1
IP = I0+1
XMM = X(IM,JM)
XOM = X(IO,JM)
XPM = X(IP,JM)
XMO = X(IM,JO)
X00 = X(I0,JO)
XPO = X(IP,JO)
XMP = X(TM,JP)
XOP = X(I0,JP)
XPP = X(IP,JP)
YMM = Y(IM,JM)
YOM = Y(IO,JM)
YPM = Y(IP,JM)
YMO = Y(IM,JO)
YOO = Y(I0,JO)
YPO = Y(IP,JO)
YMP = Y(IM,JP)
YOP = Y(I0,JP)
YPP = Y(IP,JP)
DXIM = XPOS(IO)-XPOS(IM)
DXIP = XPOS(IP)-XPOS(IO)
DXIAV = 0.5*(DXIM+DXIP)
DETM = YPOS(JO)-YPOS(JM)
DETP = YPOS(JP)-YPOS(JO)
DETAV = 0.5*(DETM+DETP)
DXDET = ( XOP - XOM ) / DETAV
DYDET = ( YOP - YOM ) / DETAV
DXDXI = ( XPO - XMO ) / DXIAV
DYDXI = ( YPO - YMO ) / DXIAV
ALF = DXDET**2 + DYDET**2
BET = DXDET*DXDXI + DYDET*DYDXI
GAM = DXDXI**2 + DYDXI**2

187



8

g}

D(1,I1D)
D(2,1I)

CXIM = 1.0 / (DXIM*DXIAV)

CXIP = 1.0 / (DXIP*DXIAV)

CETM = 1.0 / (DETM*DETAV)

CETP = 1.0 / (DETP*DETAV)

B = -ALF*CXIM

A = ALF*(CXIM+CXIP) + GAM*(CETM+CETP)
C(I0) = ~ALF*CXIP

IF(I0.EQ.2) B = 0

D(1,I0) = ALF*((XMO-X00)*CXIM + (XPO-X00)*CXIP)
- 2.0*BET*(XPP-XMP-XPM+XMM) / (4.0*DXIAV*DETAV)
+ GAM*( (XOM-XO0O0)*CETM + (XOP-XOO0)*CETP)

D(2,I0) = ALF*((YMO-YOO)*CXIM + (YPO-YOO)*CXIP)

2.0*BET*(YPP-YMP-YPM+YMM) / (4.0*DXIAV*DETAV)
GAM* ( (YOM-YOO)*CETM + (YOP-YOO)*CETP)

+

AINV = 1.0/(A - B*C(IM))

C(IO) = C(IO) * AINV

D(1,10) = ( D(1,I0) - B*D(1,IM) ) * AINV
D(2,I0) ( D(2,I0) - B*D(2,IM) ) * AINV

CONTINUE

0.
0.

]

IFIN = II-1
DO 8 IBACK=2, IFIN

IO = II-IBACK+1

1P = I0+1
D( 1,I0) = D( 1,I0) - C(IO)*D(1,IP)
D( 2,I0) = D( 2,I0) - C(IO)*D(2,IP)
X(I0,J0) = X(I0,JO) + R.X*D(1,IO)
Y(I0,JO) = Y(IO,JO) + RLX*D(2,IO)
AD1 = ABS(D(1,I0))
AD2 = ABS(D(2,I0))
DMAX = AMAX1(DMAX,AD1,AD2)
CONTINUE
CONTINUE

WRITE(S5,*) 'Dmax = ', DMAX, RLX

RLX = RLX1

IF(DMAX.LT.DSET1) RLX = RLX2
IF(DMAX.LT.DSET2) RLX = RLX3
IF(DMAX.LT.DSET3) RETURN
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1 CONTINUE

RETURN
END ; ELLIP
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ISES is the main program which solves the Euler equations for
transonic flow over cascades or isolated airfoils, with or without
a coupled integral boundary layer analysis, and with either direct,
inverse or mixed boundary conditions.

PROGRAM ISES
$INCLUDE STATE.INC
$INCLUDE ISES.INC
C

CHARACTER*1 ANS
C

CALL INIT
(o CALL SMOVE
Cccc

CALL DISSIP
ccc

10 WRITE(S,*) ' '
WRITE(S5,*) 'Enter number of iterations'
READ(6,*) INEWT
IF(INEWT.EQ.O0) GOTO 90

WRITE(S5,*) 'MSF = ' ,MSF,' MUCON = ',LMUCON
WRITE(S5,*) 'Change dissipation ? N'
READ(6,1000) ANS
IF(ANS.EQ.'Y') THEN
12 WRITE(S5,*) 'Enter new MSF, MUCON: '
READ(6,* ,ERR=12) MSF,MUCON
ENDIF

DO 40 ITER=ICOUNT+1, ICOUNT+ABS(INEWT)

CALL NCALC

CALL SETUP

CALL SETBC

CALL SOLVE

CALL UPDATE

CALL DEKINK

CALL DISSIP
IF(LSMOVE) CALL SMOVE

40 CONTINUE
ICOUNT = ICOUNT+ABS(INEWT)

IF(INEWT.GT.0) GOTO 10

90 DO 95 J=1, JJ-1
CALL PICALC(J)
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95 CONTINUE
CALL LCALC
CALL OUTPUT
c
1000 FORMAT(Al)
STOP
END ; ISES

SUBROUTINE INIT
$INCLUDE STATE.INC
$INCLUDE ISES.INC

REAL XTR1(2),XTR2(2)

C
CALL INPUT
C

GM1 = GAM - 1.0

GPl1 = GAM + 1.0

GCON = GM1 / GAM

MPPCON = 9.0

(o}

DO 14 L=1, NGLX
KGVAR(L) = 0
KGCON(L) = 0

14 CONTINUE
(o}
C---~ read in ISES.xxx

LDESI = .FALSE.

LMIXI = .FALSE.

READ(2,*,END=151) KGVAR
151 READ(2,*,END=152) KGCON
152 DO 156 L=1, NGLX
IF(KGVAR(L).EQ.6) LDESI = .TRUE.
IF(KGVAR(L).EQ.9) LMIXI = .TRUE.
IF(KGVAR(L).EQ.O0 .OR. KGCON(L).EQ.0) GO TO 159
156 CONTINUE
STOP 'Too many global variables, increase NGLX'
159 NGLOB = L-1
NRHS = L

READ(2,*) MASSIN, LIFTIN, SINLIN, SOUTIN, ALFAIN
READ(2,*) ISMOM, PCWT

READ(2,*) REYNIN,XTR1(1),XTR2(1),XTR1(2),XTR2(2)
READ(2,*) BULE

LCASC
LAIRF

JJJ .EQ. O
.NOT. LCASC
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C-==-

201

202

203

204

LVISC = REYNIN .NE. 0.0
LANAL = NOT.LDESI
WRITE(S,*) ' °

IF(LCASC) WRITE(S,*) 'CASCADE option'

IF(LAIRF) WRITE(S,*) 'AIRFOIL option'

IF(LANAL) WRITE(S,*) 'ANALYSIS mode'

IF(LDESI) WRITE(S,*) 'DESIGN mode'

IF(LMIXI) WRITE(S,*) ' ... with freewall segment'
IF(LVISC) WRITE(S,*) 'Boundary Layer coupling included'

WRITE(S,*) 'Changing mass from ',MASS, ' to ',LMASSIN

MASS = MASSIN

IF(LVISC) WRITE(S,*) 'Changing Re from ',REYN,' to ',REYNIN
REYN = REYNIN

LNINL =
LNOUT =
LCIRC
LALFA
LSBLE
LPDFO
LPDF1
LPDFL =
LPDX0 =
LPDX1

oo
COO0OO0ODO0OO0OO0ODOO0OO0O

Assign righthand side column numbers to global iterates

WRITE(S,*) ' '
WRITE(S,*) 'Active global variables ...'

DO 20 L=1, NGLOB
GOTO (201,202,203,204,205,206,207,208,209,210), KGVAR(L)

WRITE(S,*) 'Illegal variable code:', KGVAR(L)
STOP

LNINL = L + 1

WRITE(S,*) ' 1 DNINL inlet plane position'
GO TO 20

LNOUT = L + 1

WRITE(S,*) ' 2 DNOUT outlet plane position'
GO TO 20

LCIRC = L + 1

WRITE(S5,*) ' 3 DCIRC far-field vortex strength’
GO TO 20

LALFA = L + 1

WRITE(S,*) ' 4 DALFA angle of attack'
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GO TO 20
205 LSBLE = L + 1
WRITE(S,*) ' 5 DSBLE LE stagnation point'
GO TO 20
206 LPDFO = L + 1
WRITE(S5,*) ' 6 DPDF0 zeroth moment prescribed Pi DOF'
GO TO 20
207 LPDF1 = L + 1
WRITE(S,») ' 7 DPDF1l first moment prescribed Pi DOF'
GO Tn 20
208 LPDFL = L + 1
WRITE(S5,*) ' 8 DPDFL lift-setting prescribed Pi DOF'
GO TO 20
209 LPDXO = L + 1
WRITE(S5,*) ' 9 DPDX0O zeroth mixed inverse prescribed Pi DOF'
GO TO 20
210 LPDX1 =L + 1
WRITE(S5,*) '10 DPDX1 first mixed inverse prescribed Pi DOF'
20 CONTINUE

WRITE(S,*) ' !
WRITE(5,*) 'Active global constraints ...'

DO 30 L=1, NGLOB
GOTO (301,302,303,304,305,306,307,308,309,310,311,312), KGCON(L)

WRITE(S,*) 'Illegal constraint code:', KGCON(L)
STOP

301 WRITE(5,*) ' 1 Drive inlet slope from ',6SPINL,' to ',6SINLIN

GO TO 30
302 WRITE(S,*) ' 2 Drive outlet slope from ',SPOUT,' to ',6SOUTIN
GO TO 30
303 WRITE(S5,*) ' 3 Set "E Kutta condition'
GO TO 30
304 WRITE(S5,*) ' 4 Set TE Kutta condition'
GO TO 30
305 WRITE(S5,*) ' S Drive alpha from ',ALFA,' to ',LALFAIN
GO TO 30
306 WRITE(S5,*) ' 6 Drive lift from ',LIFT,' to ',LIFTIN
GO TO 30
307 WRITE(S,*) ' 7 Drive LE gap to zero'
GO TO 30
308 WRITE(S,*) ' 8 Drive TE gap to zero'
GO TO 30
309 WRITE(S,*) ' 9 Fix LE point'
GO TO 30
310 WRITE(S5,*) '10 Fix TE point'
GO TO 30
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311  WRITE(S,*) 'll Fix left endpoint of freewall segment'
GO TO 30
312 WRITE(S,*) '12 Fix right endpoint of freewall segment'
C
30 CONTINUE
C
DO 40 J=1, JJ-1
M(J) = MASS * MFRACT(J)
40 CONTINUE

ILE
ITE

NINL
II-NOUT+1

C---- set up stagnation streamline BC type array
DO 50 I=1, ILE-1
NBCTYP(I) =1 ; periodic
50 CONTINUE

DO 51 I=ITE+1l, II
NBCTYP(I) = 1 ; periodic
IF(LVISC) NBCTYP(I) = 5 ; wake
51 CONTINUE

DO 52 I=ILE, ITE
TF(LANAL) NBCTYP(I) = ; bardwall
IF(LDESI) NBCTYP(I) ; freewall
IF(LANAL.AND.LVISC) NBCTYP(I) = 4 ; boundary layer
52 CONTINUE
IF(LANAL) NBCTYP(ILE) = 2

] 1
w N
~

IF(LMIXI) THEN

IX0 = 0
IX1 =0
DO 54 ISs=1, 2
DO 541 I=ILE+1l, ITE-1
IG = I-ILE+1
IF(PSPEC(IG,IS).NE.0.0 .AND. PSPEC(IG-1,IS).EQ.0.0) IX0 =TI
IF(PSPEC(IG,IS).NE.0.0 .AND. PSPEC(IG+1,IS).EQ.0.0) THEN
IX1 =1
GO TO 59
ENDIF
541 CONTINUE
54 CONTINUE
STOP 'Couldn''t find freewall segment endpoints’

59 ISMIX = IS

WRITE(S5,*) 'Freewall segment endpoints: ',bIXO,IX1,' side ',IS
IF(IX0.EQ.0 .OR. IX1.EQ.0O) STOP 'Invalid endpoint index'
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IF(IX0.EQ.IX1) STOP 'Can''t have zero-length segment'
IF(IX0.GT.IX1) STOP 'Endpoint indices out of order'
C
ENDIF
Cc
C---- set intermittency factor arrays
DO 60 IS=1, 2
J=1
IF(IS.EQ.2) J = JJ
DO 601 I=1, II
IF(X(I,J).LE.XTR1(IS)) THEN
GTR(I,IS) = 0.
ELSE IF(X(I,J).GE.XTR2(IS)) THEN
GTR(I,IS) = 1.0
ELSE
XT = (2.0*X(I,J) - XTR1(IS)-XTR2(IS))/(XTR2(IS)-XTR1(IS))
GTR(I,IS) = 0.5 + 0.25*(3.0*XT - XT**3)
ENDIF
601  CONTINUE
60 CONTINUE

C---- set arc length arrays for BL equations
SBLD = SBLE
DO 70 ISs=1, 2
IF(IS.EQ.2) SBLD = SB(IIB) - SBLE
DO 701 I=ILE, ITE
IG = I-ILE+1
XI(I,IS) = SG(IG,IS)*SBLD
701 CONTINUE
DO 702 I=ITE+1, II
IG = I-ITE+1
XI(I,IS) = SBLD + SOUT(IG)*SWAK
702 CONTINUE
70 CONTINUE

C---- set Pi DOF shape functions

PIE = 4.0*ATAN(1.0)

DO 80 IG=1, NBLD
FNO(IG,1) = SIN(PIE*SG(IG,1))
FNO(IG,2) = SIN(PIE*SG(IG,2))
FN1(IG,1) = SIN(2.0*PIE*SG(IG,1))
FN1(IG,2) SIN(2.0*PIE*SG(IG,2))

80 CONTINUE

RETURN
END ; INIT
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SUBROUTINE NCALC
$INCLUDE STATE.INC
$INCLUDE ISES.INC

(o
C---- set usual Nhat vectors perpendicular to all streamlines
DO 10 IO=1, II
IP = I0+1
IM = I0-1

IF(I0.EQ.1 ) IM = 1
IF(I0.EQ.II) IP = II
DO 101 Jo=1, JJ
IF(I0.EQ.ITE .AND. (JO.EQ.l .OR. JO.EQ.JJ)) IM=IO
IF(IO.EQ.ILE .AND. (JO.EQ.1 .OR. JO.EQ.JJ)) IP=T0
DY = X(IP,JO) - X(IM,JO)
DX = -Y(IP,JO) + Y(IM,JO)
DSINV = 1.0 / SQRT(DX*DX + DY*DY)

NX(IO,JO) = DX*DSINV
NY(10,30) = DY*DSINV
101 CONTINUE
10 CONTINUE
C
IF(LDESI) THEN
C----- Full inverse case: rotate Nhats so that axial chord is preserved
XLE = X(ILE,1l)
XTE = X(ITE,1l)
DXE = XTE - XLE
DO 20 IO=1, II
DO 201 JO=1, JJ
IF(X(I10,J0).LE.XLE) GO TO 201
XNORM = AMIN1((X(IO,JO)-XLE)/DXE , 1.0)
DX = NX(I0,JO)*(1.0-XNORM)
DY = NY(IO,JO)*(1.0-XNORM) + XNORM
DSINV = 1.0 / SQRT(DX*DX + DY*DY)
NX(I0,JO) = DX*DSINV
NY(I0,JO) = DY*DSINV
201 CONTINUE
20 CONTINUE
ENDIF
C
IF(LANAL) THEN
C----- Analysis or Mired-Inverse case: set LE Nhat parallel to blade
C

DX = DEVAL(SBLE,XB,XPB,SB,IIB)

DY = DEVAL(SBLE,YB,YPB,SB,IIB)
DSINV = 1.0 / SQRT(DX*DX + DY*DY)
NX(ILE,1) = DX*DSINV

NY(ILE,1) = DY*DSINV

NX(ILE,JJ) = NX(ILE,1l)

N
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NY(ILE,JJ) = NY(ILE,1)
ENDIF

RETURN
END ; NCALC

SUBROUTINE DISSIP
$INCLUDE STATE.INC
$INCLUDE ISES.INC

C
DO 1 Jo0o =1, JJ-1
C
C-===-- Calculate MU
C
I1 = II-1
I2 = 2
DO 2 IO = 2, II-1
MSQ1l = Q(I0-1,J0)**2 / (GM1*(H(JO) - 0.5*Q(I0-1,J0)**2))
MSQ2 = Q(IO ,JO)**2 / (GM1*(H(JO) - 0.5*Q(I0 ,JO)**2))
MSQ = AMAX1(MSQ1,MSQ2)
MU(I10,J0) = 0.
MUC(IO,J0) = O.
I¥(MSQ.LT.MSF) GOTO 2
MU(I0,JO) = MUCON * (MSQ-MSF) / (GP1*MSQ)
I1 = MINO(IO,11)
I2 = MAX0(IO,I12)
2 CONTINUE
C
K2 = 12-I1
ccce
o] K2 =0
CcCccC
IF(K2.LT.2) RETURN
C
Crmmwe= Calculate MUC for second order correction
C MUC - MPPCON*MUC'' = MU
C
DO 3 K =1, K2
BB(K) = -MPPCON
AA(K) = 2.0*MPPCON + 1.0
CC(K) = -MPPCON
DD(K) = MU(I1+K-1,J0O)
IF(MU(I1+K-1,J0).£Q.0.0 .OR. MU(I1+K,JO).EQ.0.0) THEN
BB(K) = 0.
AA(K) = 1.0
CC(K) = 0.
DD(K) = 0.
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ENDIF

3 CONTINUE
o
DO 4 K = 1, K2-1
CC(K) = CC(K) / BAA(K)
DD(K) = DD(K) / AA(K)
AA(K+1) = AA(K+1) - BB(K+1)*CC(K)
DD(K+1) = DD(K+1) - BB(K+1)*DD(K)
4 CONTINUE
c
DD(K2) = DD(K2) / AA(K2)
o
DO 5 K = K2-1, 1, -1
DD(K) = DD(K) - CC(K) * DD(K+1)
5 CONTINUE
c

DO 6 K = 1, K2
MUC(I1+K-1,J0) = AMIN1(DD(K),MU(I1+K-1,J0))
6 CONTINUE

C
1 CONTINUE
RETURN
END ; DISSIP
Cc

SUBROUTINE INPUT

$INCLUDE STATE.INC
DIMENSION STATE(1)
EQUIVALENCE (X(1,1),STATE(1))
CALL DISGET(1,STATE,NSTATE)
RETURN
END

SUBROUTINE OUTPUT

$INCLUDE STATE.INC
DIMENSION STATE(1)
EQUIVALENCE (X(1,1),STATE(1l))
REWIND 1
CALL DISPUT(1,STATE,NSTATE)
RETURN
END
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SUBROUTINE DISGET(LU,BUF,IWCNT)
DIMENSION IB(5)

INTEGER*2 IB2(10)

DIMENSION BUF(1)

EQUIVALENCE (IB,IB2)

ICNT=4*IWCNT
CALL SYSIO(IB,Y'00000049',LU,BUF,ICNT,0)
IF(IB2(2) .EQ. 0) RETURN
WRITE(S5,1000) IB2(2),IB2(1)
1000 FORMAT(1X,'**ERROR** DISK STATUS =',b225,' (DISGET)')
STOP
END

SUBROUTINE DISPUT(LU,BUF,IWCNT)
LIMENSION IB(5)

INTEGER*2 IB2(10)

DIMENSION BUF(1)

EQUIVALENCE (IB,IB2)

ICNT=4*IWCNT
CRLL SYSIO(IB,Y'00000029',LU,BUF,ICNT,O)
IF(IB2(2) .EQ. O) RETURN
WRITE(S5,1000) IB2(2),IB2(1)
1000 FORMAT(1X,'**ERROR** DISK STATUS =',b2Z5,' (DISPUT)')
STOP
END

o

SUBROUTINE PICALC(J)
$INCLUDE STATE.INC
$INCLUDE ISES.INC

c
Jo =J
JP =J0 + 1
C
I0 =1
IP = 2
C
DX = 0.5%(X(IP,JP)+X(IP,30) - X(IO,JP)-X(I10,J0))
DY = 0.5*(Y(IP,JP)+Y(IP,JO) - Y(I0,JP)-Y(IO,JO))

DS1INV = 1.0 / SQRT(DX*DX + DY*DY)
SX1 = DX*DS1INV
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SY1 = DY*DS1INV

AX1 = 0.5*%(X(IF,JP)+X(I0,JP) - X(IP,JO)-X(I0,JO))
AYl = 0.5*(Y(1P,JP)+Y(IO,JP) - Y(IP,JO)-Y(I0,JO))
AN1 = SX1*AYl - SY1*AX1

RO = R(IO,JO)

R1 = R(IO,JO)

RS1 = R(I0,J0)

Q1 = M(JO)/(AN1*RS1)

Pl = GCON * Rl * (H(JO) - 0.5*Q1*Q1l)

RQQ1 = R1*Q1*Q1

Q(I0,J0) = Q1

Sweep along streamtube
DO S IO = 2, II-1

IM = IO-1

IP = I0+1

DX = 0.5*(X(IP,JP)+X(IP,JO) - X(IO,JP)-X(I0,JO))

DY = 0.5*(Y(IP,JP)+Y(IP,JO) - Y(IO,JP)-Y(IO,JO))

DS2INV = 1.0 / SQRT(DX*DX + DY*DY)

SX2 = DX*DS2INV

SY2 = DY*DS2INV

AX2 = 0.5*(X(IP,JP)+X(I0,JP) - X(IP,JO)-X(I10,JO))

AY2 = 0.5*(Y(IP,JP)+Y(IO,JP) - Y(IP,JO)-Y(I0,JO))

AN2 = SX2*AY2 - SY2*AX2

BXM = 0.5*(X(IP,JO)-X(IM,JO))

BXP = 0.5*(X(IP,JP)-X(IM,JP))

BYM = 0.5*(Y(IP,JO)-Y(IM,JO))

BYP = 0.S5*(Y(IP,JP)-Y(IM,JP))

AXA = AX1*AY2 - AX2*AYl

SXSM = (X(IO,JO)-X(IM,JO)) * (Y(IP,JO)-Y(IO,JO))
- (Y(I0,J0)-Y(IM,JO)) * (X(IP,JO)-X(IO,JO))

SXSP = (X(IO,JP)-X(IM,JP)) * (Y(IP,JP)-Y(IO,JP))
- (Y(I0,JP)-Y(IM,JP)) * (X(IP,JP)-X(IO,JP))

XS = 0.5*(BXM+BXP)

YS = 0.5*(BYM+BYP)

XN = 0.5%(AX1+AX2)

YN = 0.5*(AY1+AY2)

SXNINV = 1.0 / (XS*YN - YS*XN)
Gl = AN1*(SX1*XN+SY1*YN)*SXNINV
G2 = ANZ2*(SX2*XN+SY2*YN)*SXNINV

MODS = SQRT(XS*XS + YS*YS)
MODN = SQRT(XN*XN + YN*YN)
SANA = MODS*MODN

SXN = (XS*YN - YS*XN) / SANA
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SDN = (XS*XN + YS*YN) / SANA
------ Calculate flow variables

R2 = R(10,J0)

MU2 = MU(IO,JO)

RS2 = R2 - MU2*(R2-R1) + MUC(IO,JO)*(R1-RO)
Q2 = M(JO) / (AN2*RS2)

P2 = GCON * R2 * (H(JO) - 0.5%Q2*Q2)

ROQ2 = R2*Q2*Q2

------ calculate dP/dA correction and current PI's

MSQ = 0.5 * (RQQ1/P1 + RQQ2/P2) / GAM

PWT = PCWT

IF(MSQ.GT.1.0) PWT = 0.0

PCORR = 0.25*PWT*(P1+P2)*GAM*MSQ*( 1.0-MSQ)* ( SXSM-SXSP)*SXNINV
PIDIF = RQQ1*Gl - RQQ2*G2 + PCORR*AXA*SXNINV

PISUM = P1 + P2 + 2.0*PCORR

PI(IO,JP) = 0.5%(PISUM + PIDIF)

PI(I0,JO) = 0.5*(PISUM - PIDIF)

Q(10,J0) = Q2

SX1 = SX2
SYl = SY2
AX1 = AX2
AY1l = AY2
AN1 = AN2

DS1INV = DS2INV

RS2

Mu2
R1
R2

RS1
MUl
RO
R1
Ql = Q2

Pl = P2

RQ21 = RQQ2

W ouon

S5  CONTINUE

PI(1,JP)
PI(1,J0)
PI(II,JP)
PI(II,JO)

PI(2,JP)
PI(2,J0)
= PI(II-1,JP)
= PI(II-1,J0)

[

RETURN
END ; PICALC
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SUBROUTINE LCALC
$INCLUDE STATE.INC
$INCLUDE ISES.INC
C
C**** Tt js assumed that PICALC was called for streamtubes 1 & JJ-1 ***
C
PITE = 0.5*(PI(ITE,1) + PI(ITE,JJ))
C
C---- calculate lift, drag, and moment on blade
LIFT = 0.
DRAG = 0.
MOMN 0.
VLIFT 0.
VDRAG = 0.
VMOMN 0.

[}

DO 10 IO=ILE, ITE
IM I10-1
IP I0+1

]

BXS
BXP
BYS
BYP

0.5*(X(IP, 1)-X(IM, 1))
0.5*(X(IP,JJV-X(IM,JJ))
0.5*(Y(IP, 1)-Y(IM, 1))
0.5*%(¥Y(IP,JJ)-Y(IM,JJ))

PIS PI(IO, 1) - PITE

PIP PI(IO,JJ) - PITE

XBARS = X(IO, 1) - XCENT

XBARP = X(I0,JJ) - XCENT

YBARS = Y(IO, 1) - YCENT

YBARP = Y(I10,JJ) - YCENT

LIFT = LIFT + (BXP*PIP - BXS*PIS)

DRAG = DRAG + (BYS*PIS - BYP*PIP)

MOMN = MOMN + (BXS*PIS*XBARS - BXP*PIP*XBARP)
& + (BYS*PIS*YBARS - BYP*PIP*YBARP)

VLIFT = VLIFT + BYS*TAU(IO,1) + BYP*TAU(IO,2)

VDRAG = VDRAG + BXS*TAU(IO,1l) + BXP*TAU(IO,2)

10 CONTINUE

C
C---- airfoil drag calculations
IF(JJJ.NE.O) THEN
IM = II-1
VDRAG = R(IM, 1)*UEDG(IM,1)**2 * THET(IM,1)
& + R(IM,JJ-1)*UEDG(IM,2)**2 * THET(IM,2)

PINF = GCON*R(1,1)*(H(1) - 0.5*Q(1,1)**2)
QINF = Q(1,1)
DRAG = 0.0
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DO 20 JO=1, JJ-1
IF(JO.EQ.JJJ) GO TO 20
DO 201 I=1, II-1
MSQ = Q(I,JO)**2 / (GMI*(H(JO) - 0.5%Q(I,JO)**2))
IF(MSQ.GE.1.0) GO TO 202

201 CONTINUE
GO TO 20
202 RST2 = R(IM,JO) * (1.0 - 0.5*Q(IM,JO)**2/H(JO))**(~-1.0/GM1)

PST2 GCON*RST2*H(JO)
Q2INF = SQRT(2.0*H(JO)*(1.0 - (PINF/PST2)**GCON))
DRAG = DRAG + (QINF-Q2INF)*M(JO)

20 CONTINUE

ENDIF
C---- calculate mass-averaged inlet and outlet velocities
MXINL = O.
MYINL = O.
MXOUT = 0.
MYOUT = 0.
DO 40 JO=1, JJ-1
JP = JO+1
DX = 0.5*(X(2 ,JP)+X(2 ,J0) - X(1 ,JP)-X(1 ,J0O))

DY = 0.5*(Y(2 ,JP)+Y(2 ,JO) - Y(1 ,JP)-Y(1 ,JO))
DS1INV = 1.0 / SQRT(DX*DX + DY*DY)

SX1 = DX*DS1INV

SY1 = DY*DS1INV

DX = 0.5*(X(II,JP)+X(II,JO) - X([I-1,JP)-X(II-1,J0))
DY = 0.5*(Y(II,JP)+Y(II,JO) - Y(II-1,JP)-Y(II-1,J0))
DS2INV = 1.0 / SQRT(DX*DX + DY*DY)

SX2 = DX*DS2INV

SY2 = DY*DS2INV

Rl = R(1,J0)

Ql = Q(1,J0)

P1 = GCON * Rl * (H(JO) - 0.5*Q1*Ql)
R2 = R(II-1,J0)

Q2 = Q(II-1,J0)

P2 = GCON * R2 * (H(JO) - 0.5*Q2*Q2)
MXINL = MXINL + M(JO)*SX1

MYINL = MYINL + M(JO)*SY1l

MXOUT = MXOUT + M(JO)*SX2

MYOUT = MYOUT + M(JO)*SY2

40 CONTINUE

MINL = SQRT(MXINL**2 + MYINL**2)
SXINL = MXINL/MINL
SYTNL = MYINL/MINL
MOUT = SQRT(MXOUT**2 + MYOUT**2)
SXOUT = MXOUT/MOUT

203



SYOUT = MYOUT/MOUT
SPINL = SYINL/SXINL
SPOUT = SYOUT/SXOUT
RETURN

END ; LCALC
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SETUP is the suk outine that sets the coefficients of the
linearized s-momentw and n-momentum equations for the flow in the
interior of the computational region.

SUBROUTINE SETUP
$INCLUDE ISES.INC

C
REAL NX1M, NX1P, NY1M, NY1P
REAL NX2M, NX2P, NY2M, NY2P
REAL NX3M, NX3P, NY3M, NY3P
C

DO 1 I=1, II
DO 11 J=1, JJ
21(J,1)
22(J,I) =
23(J,I) =
24(J,1) =
25(J,1)
26(J,I)
27(J,1)
28(J,1)
Al(J,I)
A2(J,I) =
A3(J,I) =
A4(J,I)
AS(J,I)
A6(J,1)
A7(J,1)
A8(J,I)
B1(J,I)
B2(J,I)
B3(J,I)
B4(J,I)
B5(J,I)
B6(J,I)
B7(J,I)
B8(J,I) =
C1(J,I)
c2(J,1)
C3(J,I)
C6(J,I)
c7(J,1)
11  CONTINUE
DO 12 K=1, 2
2T(K,I) =
AT(K,I)
BT(K,I)
CT(K,I)

1]

o [}

0
0
0
0
0
0
0
0
0
0
0
0
0
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0

il
[eNeoNeNel
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DO 121 L=1,
AI(K'L'I) -
BI(K,L,I)
121 CONTINUE
DO 122 L=1, 6
AVC(K,L,I) =
BVC(K,L,I)
ZVC(K,L,I)
AVT(K,L,I)
BVT(K,L,I)
ZVT(K,L,I)
AVH(K,L,I)
BVH(K,L,I)
ZVH(K,L,I) =
122 CONTINUE
CVC(K,1,I)
CVC(K,2,I)
CVT(K,1,I)
CVT(K,2,1) =
CVH(K,1,I)
CVH(K,2,1)
12 CONTINUE
DO 13 J=1, 2*JJ+5
DO 131 L=1, NRHS
DR(J,L,I) = 0.
131 CONTINUE
13 CONTINUE
1 CONTINUE

nun o
o o

non
[elelNeNoNolNeoNoNoNo

non
OO OOO0OOo

AVC(1,4,1
AvT(1,5,1
6,1

.1

AVH(1,
AVC(2,4
AVT(2,5,1
AVH(2,6,1
AVC(1,4,II)
AVT(1,5,II)
AVH(1,6,II)
AVC(2,4,1I)
AVT(2,5,II) =
AVH(2,6,II)

N N’ e

nn
e e e el S e
e e e s e e 4 e e e .

C---- Loop over all streamtubes

RMS = 0.
RMAX = 0.

DO 4 JO =1, JJ-1
IF(JO.EQ.JJJ) GOTO 4
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JP =JO0 + 1

JZ = 3O + JJ

I0 =1

IP = 2

SX1M = X(IP,JO) - X(IO,JO)

SX1P = X(IP,JP) - X(IO,JP)

SYIM = Y(IP,JO) - Y(IO,JO)

SY1P = Y(IP,JP) - Y(IO,JP)

DX = 0.5*(X(IP,JP)+X(IP,JO) - X(IO,JP)-X(IO,JO))
DY = 0.5*(Y(IP,JP)+Y(IP,JO) - Y(IO,JP)-Y(IO,JO))
DS1INV = 1.0 / SQRT(DX*DX + DY*DY)

SX1 = DX*DS1INV

SY1 = DY*DS1INV

AX1 = 0.5*(X(IP,JP)+X(I0,JP) - X(IP,JO)-X(IO,JO))
AY1l = 0.5*(Y(IP,JP)+Y(I0,JP) - Y(IP,JO)-Y(IO,JO))
A1 = SX1*AYl - SY1*AX1

NX1M = NX(IO,JO)

NX1P = NX(IO,JP)

NY1M = NY(IO,JO)

NY1P = NY(IO,JP)

NX2M = NX(IP,JO)

NX2P = NX(IP,JP)

NY2M = NY(IP,JO)

NY2P = NY(IP,JP)

DAINIM = 0.5*(-(SX1*NY1M-SY1*NX1M)

DAl

DAl

DAl

RO
R1
RS1

Q1

+ (AX1*NY1M-AY1*NX1M

+ AN1*(SX1*NX1M+SY1*NY1M))*DS1INV)
N1P = 0.5%( (SX1*NY1P-SY1*NX1P)
+ (AX1*NY1P-AY1*NX1P

+ AN1*(SX1*NX1P+SY1*NY1P))*DS1INV)

N2M = 0.5*%(-(SX1*NY2M-SY1*NX2M)
= (AX1*NY2M-AY1*NX2M

+ AN1*(SX1*NX2M+SY1*NY2M))*DS1INV)
N2P = 0.5*( (SX1*NY2P-SY1*NX2P)

- (AX1*NY2P-AY1*NX2P
AN1*(SX1*NX2P+SY1*NY2P) )*DS1INV)

+

R(I0,JO)
R(10,J0)

= R(IO,JO)

= M(JO)/(AN1*RS1)

Q(I10,J0) = Q1

Pl

= GCON * R1 * (H(JO) - 0.5*Q1*Q1)

RQQ1 = R1*Q1*Q1
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C
C
C
C
C

LA R 2 &

MSQ1 = RQQ1/(GAM*P1)
RST1 = Rl * (1.0 - 0.5*Q1*Q1/H(JO))**(-1.0/GM1)
IF(JO.EQ.1) BETSQ = 1.0 - MSQl

Calculate sensitivities

DQIDRO = O.
DQIDR1 = - Q1/R1
DQ1DAl = -Q1/AN1
DP1DQ1 = -GCON*R1*Q1
DP1DRl = P1/R1

Inlet entropy FANARXANAARXXANARKRKANRNKRNRAXXRRNRRRRR

Z = RSTINL(J) - RSTinlet

DZDQ1 = RST1 * Q1 / ( GM1 * (H(JO)-0.5*Q1*Ql) )
DZDR1 = RST1 / Rl
DZDA1l = DZDQ1*DQ1DAl

B8(JO,I0) = DZDQ1*DQ1DRO
A8(JO,I0) = DZDQ1*DQ1DR1 + DZDR1

A6(JO,IO0) = DZDA1*DA1INIM

A7(JO,I0) = DZDA1*DA1IN1P
C6(JO,I0) = DZDA1*DA1INZ2M
C7(JO,I10) = DZDA1*DA1NZP

DR(JZ2,1,I0) = RSTINL{(JO) - RST1
Set isentropic sensitivities

DR1DAl1 = (R1/AN1) * MSQ1/(1.0-MSC1)

DRIN1M(JO,IO) = DRIDA1*DA1IN1M
DRIN1P(JO,IO) = DR1DA1*DAIN1P
DR1N2M(JO,I0) = DRI1DA1*DA1lN2M
DRIN2P(JO,I10) = DR1DA1*DA1N2P

Sweep along streamtube setting coefficients
DO 5 In = 2, II-1
IL = I0-2

IM I0-1
IP I0+1

NX3M = NX(IP,JO)
NX3P = NX(IP,JP)
NY3M = NY(IP,JO)
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NY3P = NY(IP,JP)

SX2M = X(IP,JO) - X(IO,JO)
SX2P = X(IP,JP) - X(IO,JP)
SY2M Y(IP,JO) - Y(I0,J0)
SY2pP Y(IP,JP) - Y(IO,JP)

DX = 0.5*(X(IP,JP)+X(IP,JO) - X(IO,JP)-X(IO,JO))
0.5*(Y(IP,JP)+Y(IP,JO) - Y(IO,JP)-Y(I0,JO))

DS2INV = 1.0 / SQRT(DX*DX + DY*DY)

SX2 = DX*DS2INV

SY2 = DY*DS2INV

AX2 = 0.5*(X(IP,JP)+X(I0,JP) - X(IP,JO)-X(10,J0))

AY2 = 0.5*(Y{IP,JP)+Y(IO,JP) - Y(IP,JO)-Y(I0,J0O))
AN2 = SX2*AY2 ST2*AX2

BXM = 0.5*(X(IP,JO)-X{IM,JO))

BXP = 0.5*(X(IP,JP)-%(IM,JP))

BYM = 0.5*(Y(IP,JO)-Y(IM,JO))

BYP = 0.5*%(Y(IP,JP)-Y(IM,JP))
AXA = AX1*AY2 - AX2*AY1
BXB BXM*BYP - BXP*BYM
SXSM = (SX1M*SY2M - SY1IM*SX2M)

SXSP = (SX1P*SY2P - SY1P*SX2P)
XS = 0.5*(BXM+BXP)
YS = 0.5*(BYM+BYP)
XN = 0.5*(AX1+AX2)
YN = 0.5*%(AY1+AY2)

SXNINV = 1.0 / (XS*IN - YS*XN)

F1 = AN1*(SX1*XS+SY1*YS)*SXNINV

F2 = AN2*(SX2*XS+SY2*YS)*SXNINV

Gl = AN1*(SX1*XN+SY1*YN)*SXNINV

G2 AN2* (SK2*XN+SY2*YN) *SXNINV

D1 = AN1*(SX1*YS-SY1*XS)*SXNINV*DS1INV*0.5
D2 = AN2*(SX2*YS-SY2*XS)*SXNINV*DS2INV*0.5
E1l = AN1*(SX1*YN-SY1*XN)*SXNINV*DS1INV*0.5
E2 = AN2*(SX2*YN-SY2*XN)*SXNINV*DS2INV*0.5

DAIN2M = 0.5*(-(SX2*NY2M-SY2*NX2M)
+ (AX2*NY21-AY2*NX2M

+ AN2*(SX2*NX2M+SY2*NY2M) ) *DS2INV)
0.5*( (SX2*NY2P-SY2*NX2P)
+ (AX2*NY2P-AY2*NX2P

+ AN2* (SX2*NX2P+SY2*NY2P) ) *DS2INV)
.5*(-(SX2*NY3M-SY2*NX3M)
- (AX2*NY3M-AY2*NX3M

+ AN2*(SX2*NX3M+SY2*NY3M) ) *DS2INV)
.S5*( (SX2*NY3P-SY2*NX3P)
- (AX2*NY3P-AY2*NX3P

+ AN2*(SX2*NX3P+SY2*NY3P))*DS2INV)

DA2N2P

DA2N3M

]
(@]

DAZ2N3P

"
o
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-------- Calculate flow variables

R2 = R(I0,JO)
RS2 = R2 - MU(IO,JO)*(R2-R1) + MUC(IO,JO)*(R1-RO)
Q2 = M(JO) / (AN2*RS2)

P2 = GCON * R2 * (H(JO) - 0.5*%*Q2*Q2)

ROQ2 = R2*Q2*Q2
MSQ2 = RQQ2/(GAM*P2)
MU2 = 0.0

MSQMAX = AMAX1(MSQ1,MSQ2)
IF(MSQMAX.GT.MSF) MU2 = MUCON * (MSQMAX-MSF) / (GP1*MSQMAX)
RS2 = R2 - MU2*(R2-Rl) + MUC(IO,JO)*(R1-RO)

Q2 = M(JO) / (AN2*RS2)

P2 = GCON * R2 * (H(JO) - 0.5%Q2*Q2)

RQQ2 = R2*Q2*Q2

MSQ2 = RQQ2/(GAM*P2)

RST2 = R2 * (1.0 - 0.5%Q2*Q2/H(JO))**(-1.0/GM1)

-------- calculate dP/dA correction and current PI's

MSQ 0.5 * (MSQ1 + MSQ2)
PWT = PCWT
IF(MSQ.GT.1.0) PWT = 0.0

PCORR = 0.25*PWT*(P1+P2)*GAM*MSQ*(1.0-MSQ)*(SXSM~SXSP)*SXNINV
PCORR = PWT*(P1-P2)

PIDIF = RQQ1*Gl - RQQ2*G2 + PCORR*AXA*SXNINV

PISUM = P1 + P2 + 2.0*PCORR

PIP = 0.5*(PISUM + PIDIF)

PIM = 0.5*(PISUM - PIDIF)

MU(I0,J0) = MU2
Q(I0,J0) = Q2

PI(I0,JO) = PIM
PI(IO,JP) = PIP

nou

-------- Calculate P and Q sensitivities

DM2DR1 = O.
DM2DR2 = O.
IF(MU2.GT.0.0 .AND. R2.LE.R1)

& DM2DR2 = -MUCON*MSF*(2.0+GM1*MSQ2)/(GP1*MSQ2*MSQ2*R2)
IF(MU2.GT.0.0 .AND. R2.GT.R1)

& DM2DR1 = -MUCON*MSF*(2.0+GM1*MSQ1)/(GP1*MSQ1*MSQ1*R1)
DQ2DRO = 0.0 ; Q2/RS2 * MUC(I0,JO)
DQ2DR1 = -Q2/RS2 * (MU2 + MUC(I0,JO) - (R2-R1)*DM2DR1)
DQ2DR2 = -Q2/RS2 * ((1.-MU2) - (R2-R1)*DM2DR2)
DQ2DA2 = -Q2/AN2
DP2DQ2 = -GCON*R2*Q2
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DP2DR2 = P2/R2

Calculate PCORR sensitivities

DPCDSS =

DPCDSN
DPCDPP
DPCDMA
DPCDQ1
DPCDQ2
DPCDRO
DPCDR1
DPCDR2
DPCDSS
DPCDSN
DPCDQ1
DPCDQ2
DPCDRO
DPCDR1
DPCDR2

QDS =

0.25S*PWT*(P1+P2)*GAM*MSQ*(1.0-MSQ)*SXNINV
0.25*PWT*(P1+P2)*GAM*MSQ*(1.0-MSQ)*(SXSM-SXSP)
0.25*PWT*GAM*MSQ*(1.0-MSQ) * (SXSM-SXSP) *SXNINV
0.25*PWT*(P1+P2)*GAM*(1.0-2.*MSQ)*(SXSM-SXSP)*SXNINV

DPCDPP*DP1DQ1 + DPCDMA*0.5*MSQ1*(2.0 + GM1*MSQ1)/Q1
DPCDPP*DP2DQ2 + DPCDMA*0.5*MSQ2*(2.0 + GM1*MSQ2)/Q2
DPCDQ2*DQ2DRO + DPCDQ1*DQ1DRO

= DPCDQ2*DQ2DR1 + DPCDQ1*DQ1DR1 + DPCDPP*DP1DR1

= DPCDQ2*DQ2DR2 + DPCDPP*DP2DR2
0.
0.
PWT*DP1DQ1

-PWT*DP2DQ2
DPCDQ2*DQ2DRO + DPCDQ1*DQ1DRO

= DPCDQ2*DQ2DR1 + DPCDQ1*DQ1DR1 + PWT*DP1DR1
DPCDQ2*DQ2DR2 - PWT*DP2DR2

0.25*DPCDSN*SXNINV**2

DPCN1M = -(NX1M*SY2M - NY1M*SX2M) * DPCDSS
+ ( NXIM*YN - NYIM*XN - NX1M*YS + NY1M*XS)*QDS
+ DPCDQ1*DQ1DA1*DA1IN1M

DPCN1P

(NX1P*SY2P - NY1P*SX2P) * DPCDSS

+ ( NX1P*YN - NY1P*XN + NX1P*YS - NY1P*XS)*QDS
+ DPCDQ1*DQ1DA1*DA1IN1P

DPCN2M

(NX2M*SY2M - NY2M*SX2M) * DPCDSS
+(NX2M*SY1M - NY2M*SX1M) * DPCDSS

+ (-NX2M*YS + NY2M*XS)*2.0*QDS
+ DPCDQ1*DQ1DA1*DAIN2M + DPCDQ2*DQ2DA2*DA2N2M
DPCN2P = -(NX2P*SY2P - NY2P*SX2P) * DPCDSS

-(NX2P*SY1P - NY2P*SX1P) * DPCDSS

+ ( NX2P*YS - NY2P*XS)*2.0*QDS

+ DPCDQ1*DQ1DA1*DA1N2P + DPCDQ2*DQ2DA2*DA2N2P
DPCN3M = -(NX3M*SY1M - NY3M*SX1M) * DPCDSS

+ (-UX3M*YN + NY3M*XN - NX3M*YS + NY3IM*XS)*QDS

+ DPCDQ2*DQ2DA2*DA2N3M

DPCN3P

(NX3P*SY1P - NY3P*SX1P) * DPCDSS

+ (~NX3P*YN + NY3P*XN + NX3P*YS - NY3P*XS)*QDS
+ DPCDG2*DQ2DA2*DA2N3P

Set isertropic sensitivities

DR2DA2 = (R2/AN2) * MSQ2/(1.0-MSQ2)
DRIN1IM(JO,IO0) = DR2DA2*DA2N2M
DR1N1k¥(JO,IO) = DR2DA2*DA2N2P
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Ct******

C
C
C

R "2 eI - g R R n

'd

DR1IN2M(JO, IO)
DR1N2P(JO,I0)

DR2DA2*DA2N3M
DR2DA2*DA2N3P

IF(ISMOM.EQ.1) THEN
S Momentum CoeffiCients HAARARAKARKRAARKNARKNANKNR

Z = Pl - P2 + R1*QL*Ql*F1 - R2*Q2*Q2*F2 + PCORR*BXB*SXNINV

1l

DZDPC
DZDQ1
DZDQ2
DZDR1
DZDR2
DZDA1
DZDA2

]

z8(JO, I0)
B8(JO, I0)
A8(JO,I0)

B6(JO, I0)

BXB*SXNINV
DP1DQ1 + 2.*R1*Q1*F1

-DP2DQ2 - 2.*R2*Q2*F2

DP1DR1 + Q1*Ql1*F1l

-DP2DR2 - Q2*Q2*F2

DZDQ1*DQ1DAl + RQQ1*F1/AN1
DZDQ2*DQ2DA2 - RQQ2*F2/AN2

DZ2DQ2*DQ2DRO + DZDQ1*DQ1DRO + DZDPC*DPCDRO
DZDQ2*DQ2DR1 + DZDQ1*DQ1DR1 + DZDR1 + DZDPC*DPCDR1
DZ2DQ2*DQ2DR2 + DZDR2 + DZDPC*DPCDR2

DZDA1*DA1N1M ; nl-

+ 0.25*SXNINV*(-P1+P2-PIP+PIM)*(XS*NY1M-YS*NX1M)
- RQQ1*D1 * (SX1*NY1M-SY1*NX1M)
+ DZDPC*DPCN1M
B7(JO,10) = DZDA1*DA1N1P ; nl+
+ 0.25*SXNINV*(+P1-P2-PIP+PIM)*(XS*NY1P-YS*NX1P)
- RQQ1*D1 * (SX1*NY1P-SY1*NX1P)
+ DZDPC*DPCN1P

A6(JO, I0)

DZDA1*DA1N2M + DZDA2*DA2N2M ; n2-

+ 0.25*SXNINV*(-P1+P2-P1+P2 )*(XS*NY2M-YS*NX2M)
+ RQQ1*D1 * (SX1*NY2M-SY1*NX2M)

+ RQQ2*D2 * (SX2*NY2M-SY2*NX2M)

+ DZDPC*DPCN2M

A7(JO,I0)

DZDA1*DA1N2P + DZDA2*DA2N2P ; n2+

+ 0.25*SXNINV*(+P1-P2+P1-P2 )*(XS*NY2P-YS*NX2P)
+ ROQ1*D1 * (SX1*NY2P-3Y1*NX2P)
+ RQQ2*D2 * (SX2*NY2P-SY2*NX2P)
+ DZDPC*DPCN2P
C6(J0,I0) = DZDA2*DA2N3M ; n3-
+ 0.25*SXNINV*(-P1+P2+PIP-PIM)*(XS*NY3M-YS*NX3M)
- RQQ2*D2 * (SX2*NY3M-SY2*NX3M)
+ DZDPC*DPCN3M
C7(J0,10) = DZDA2*DA2N3P i n3+
+ 0.25*SXNINV*(+P1-P2+PIP-PIM)*(XS*NY3P-YS*NX3P)
- RQQ2*D2 * (SX2*NY3P-SY2*NX3P)
+ DZDPC*DPCN3P
DR(JZ,1,10)

ELSE

= P2 - Pl + RQQ2*F2 - RQQ1*F1 - PCORR*BXB*SXNINV
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CRRRKRRXN

Cc
C
Cc

ARKKKRKX

OOO0O0O0O0O0000a0

Entropy continuity coefficients *Ansxxkxxxxxxrnn

Z = RST1 - RST2

DZDQ1 RST1 * R1*Q1/(GAM*P1)
DZDQ2 = -RST2 * R2*Q2/(GAM*P2)
DZDR1 = RST1/R1

DZDR2 = -RST2/R2

DZDAl1 = DZDQ1*DQ1DA1l

DZDA2 = DZDQ2*DQ2DA2

28(JO0,I0) = DZDQ1*DQ1DRO

B8(JO,I0) = DZDQ1*DQ1DR1 +

A8(JO,I0) = DZDQ2*DQ2DR2 + DZDR2
B6(JO,I0) = DZDA1*DAIN1M

B7(JO,I0) = DZDA1*DA1N1P

A6(JO,I0) = DZDA1*DA1N2M + DZDAZ2*DA2N2M
A7(JO,I0) = DZDA1*DALIN2P + DZDA2*DA2N2P
C6(JO,I0) = DZDA2*DA2N3M

C7(J0,I0) = DZDA2*DA2N3P

DR(JZ,1,I0) = RST2 - RST1

ENDIF

DZDQ2*DQ2DR1 + DZDR1

; nl-
; nl+
; n2-
; n2+
; n3-
; n3+

N Momentum’ part l RRKRKKRRKRARKRKRAARRKRRKRKRRRAKRRRARNNRRN

2 =
+/- (P1 + P2 + 2.0*PCORR)
N -
= 2.0%Pi /  =2.0*Pi
DZDPC = AXA*SXNINV
DZDQLl = 2.*R1*Q1*G1
DZDQ2 = -2.*R2*Q2*G2
DZDR1 = Q1*Q1*Gl
DZDR2 = -Q2*Q2*G2
DZDAl = DZDQ1*DQ1DAl + RQQ1*G1/AN1
DZDA2 = DZDQ2*DQ2DA2 - RQQ2*G2/AN2
z5(J0,I0) = DZDQ2*DQ2DRO
+ DZDPC*DPCDRO
24(Jp,I10) = DZDQ2*DQ2DRO
+ DZDPC*DPCDRO
BS5(JO,I0) = B5(JO,I0) + DZDQ2*DQ2DR1
+ DZDPC*DPCDR1
B4(JP,IO0) = B4(JP,IO0) + DZDQ2*DQ2DR1
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-+

R1*Q1*Q1*Gl - R2*Q2*Q2*G2 + PCORR*AXA*SXNINV <~ part 1

<- part 2

DZDQ1*DQ1DRO
DZDQ1*DQ1DRO
DZDQ1*DQ1DR1 + DZDR1

DZDQ1*DQ1DR1 + DZDR1



o R

g

c

C**'k****

c

DZDPC*DPCDR1

+

A5(J0,I0) = A5(JO,I0) + DZDQ2*DQ2DR2 + DZDR2
+ DZDPC*DPCDR2

A4(JP,I0) = A4(JP,IO0) + DZDQ2*DQ2DR2 + DZDR2
+ DZDIC*DPCDR2

TMP = DZDA1*DA1N1M + DZDPC*DPCNI1M

+

0.25*SXNINV*(-P1+P2-PIP+PIM)* (XN*NY1M-YN*NX1M)

RQQ1*E1l * (SX1*NY1M-SY1*NX1M)

B2(JO,I0) = B2(JO,IO) + TMP

B1(JP,I0) = B1(JP,I0) + TMP

TMP = DZDA1*DA1N1P + DZDPC*DPCN1P
+ 0.25*SXNINV*(+P1-P2-PIP+PIM)*(XN*NY1P-YN*NX1P)
- RQQ1*E1l * (SX1*NY1P-SY1*NX1P)

B3(JO,I0) = B3(JO,I0) + TMP

B2(JP,IO) = B2(JP,IO) + TMP

TMP = DZDA1*DA1N2M + DZDA2*DI2N2M + DZDPC*DPCN2M
+ 0.25*%*SKXNINV®(-P1+P2-P1+P2 )*(XN*NY2M-YN*NX2M)
+ RQQL*E1l * (SX1*NY2M-SY1*NX2M)
+ RQQ2*E2 * (SK2*NY2M-SY2*NX2M)

A2(JO,I0) = A2(JO,I0) + TMP

A1(JP,IO) = A1(JP,I0) + TMP

TMP = DZDA1*DAIN2P + DZDA2*DA2N2P + DZDPC*DPCN2P
+ 0.25*SXNINV*(+P1-P2+P1-P2 )*(XN*NY2P-YN*NX2P)
+ RQQ1I*E1l * (SX1*NY2P-SY1*NX2P)
+ RQQ2*E2 * (SX2*NY2P-SY2*NX2P)

A3(JO,I0) = A3(JO,IO) + TMP

A2(JP,I0) = A2(JP,IO) + TMP

TMP = DZDA2*DA2N3M + DZDPC*DPCN3M
+ 0.25*SXNINV*(-P1+P2+PIP-PIM)*(XN*NY3M-YN*NX3M)
- RQQ2*E2 * (SX2*NY3M-SY2*NX3M)

C2(J0,I0) = C2(J0,I0) + TMP

C1(JP,I0) = C1(JP,IO) + TMP

TMP = DZDA2*DA2N3P + DZDPC*DPCN3P
+ 0.25*SXNINV*(+P1-P2+PIP-PIM)*(XN*NY3P-YN*NX3P)
- RQQ2*E2 * (SX2*NY3P-SY2*NX3P)

C3(JO,I0) = C3(JO,I0) + TMP

c2(.JP,I0) = C2(JP,I0) + TMP

N Momentum' part 2 KRXKRKRRKRRKRRKRRARKRKRRANRARRANKRRANRAKRK

DzZDQ1 = DP1DQ1
DZDQ2 = DP2DQ2
DZCRO = 2.0*DPCDRO
DZDR1 = DP1DR1 + 2.0*DPCDR1
DZDR2 = DP2DR2 + 2.0*DPCDR2

DZDAl = DZDQ1*DQ1DA1l
DZ2DA2 = DZDQ2*DQ2DA2
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[p N

Z5(Jo, I0)
24(Jp, [0)
B5(JO, I0)
B4(JP, I0)
A5(JO,I0)
A4(JP,10)

o

25(J0,10) -
z4(JP,I0) +
B5(JO,I0) -
B4(JP,I0) +
AS(JO,I0)
A4(JP,I0)

TMP = DZDA1*DA1NI1M

B2(JO,I0) =
B1(JpP,I0) =

B2(JO,I0) -
B1(JP,I0) +

TMP = DZDA1*DA1N1P

B3(JO,I0) =
BZz(JP,I0) =
TMP =

B3(JO,I0) -
B2(JP,I0) +

DZDA1*DA1N2M + DZDA2*DA2N2M

JZDQ2*DQ2DR0
DZDQ2*DQ2DRO
DZDQ2*DQ2DR1
DZDQ2*DQ2DR1

- DZDQ2*DQ2DR2
+ DZDQ2*DQ2DR2

+

TMP
TMP

TMP
TMP

+

A2(JO,IC) = A2(JO,IO0) - TMP
Al(JP,I0) = Al(JP,I10) + TMP

TMP = DZDA1*DAIN2P + DZDA2*DA2N2P
A3(JO,IO0) = A3(JO,IO) -

A2(JP,I0) = A2(JP,IO) +

TMP = DZDA2*DA2N3M

€2(J0,I0) = C2(Jo,I0) -

C1(JP,I0) = C1(JP,IO) +

TMP = DZDA2*DA2N3P

€3(Jo,I0) = C3(JO,I0) -

C2(Jp,I0) = C2(JP,I0) +
DR(JO,1,10) =

DR(JP,1,10)

set up Ue equation aund/or BL equations

-+

T™MP
TMP

TMP
TMP

TMP
TMP

DR(JO,1,I0) + 2.0*PIM
DR(JP,1,I0) - 2.0*PIP

IF(JO.EQ.1 .OR. JO.EQ.JJ-1) THEN

Is =1

IF(JO.EQ.JJ-1) IS = 2

KC =

IF(ITER.EQ.1) UEDG(IO,IS) =

2*JJ + 3*(IS-1)

RES = (Q1+Q2) - 2.0*UEDG(IO,IS)

BVC(IS,4,10) = 0.

AVC(IS,4,I0) = -2.0
BVC(IS,5,I0) = O.
AVC(IS,5,I0) = 0.
BVC(IS,6,I0) = O.
AVC(1S,6,10) = O.
DR(KC,1,I0) = -RES

IF(LVISC .AND. IO.GT.ILE) THEN
CALL SETBL(IO,JO)
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DZDQ1*DQ1DRO
DZDQ1*DQ1DRO
DZDQ1*DQ1DR1
DZDQ1*DQ1DR1

.O*DPCN1M

.O*DPCN1P

.0O*DPCN2M

.0O*DPCN2P

.0*DPCN3M

.0*DPCN3P

0.5%(Q1+Q2)

+

+

DZDRO
DZDRO
DZDR1
LZDR1
DZDR2
DZDR2



ELSE

AVT(IS,5,I0) = 1.0
AVH(IS,6,I0) = 1.0
ENDIF
ENDIF
SX1IM = SX2M
SX1P = SX2P
SYIM = SY2M
SY1P = SY2P
SX1 = SX2
SY1 = SY2
AX1 = AX2
AY1l = AY2
AN1 = AN2
DS1INV = DS2INV
NX1M = NX2M
NX1P = NX2P
NX2M = NX3M
NX2P = NX3P
NYIM = NY2M
NY1P = NY2P
NY2M = NY3M
NY2P = NY3P
RS1 = RS2
MUl = MU2
RO = R1
Rl = R2
01 = Q2
Pl = P2
RQQ1 = RQQ2
MSQ1 = MSQ2
RST1 = RST2
NDQ1DRO = DQ2DR1

DQ1DR1 = DQ2DR2
DQ1DAl1 = DQ2DA2
DP1DQ1 = DP2DQ2

DP1DR1 = DP2DR2

DA1INIM = DA2N2M

DA1IN1P = DA2N2P

DAIN2M = DA2N3M

DAIN2P = DA2N3P
5 CONTINUE

------ set exit pressure
Z8(JO,II) = MFRACT(JO)*DP1DQ1*DQ1DRO
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OO0 00

4

B6(JO,
B7(JO,
B8(JO,
A6(JO,
A7(JO,
DR(JZ,

-- set ex

Z = RS

DZDQ1

DZDR1 =

DZDA1l

Z8(JO,
B8(JO,
B6(JO,
B7(JO,
A6(JO,
A7(J0,

DR(JZ,

-- dummy

A8(JO,
CONTINUE

RETURN
END ; SE

II) = MFRACT(JO)*DP1DQ1*DQ1DA1*DA1IN1M
II) = MFRACT(JO)*DP1DQ1*DQ1DA1*DAIN1P
II) = MFRACT(JO)*(DP1DQ1*DQ1DR1+DP1DR1)
II) = MFRACT(JO)*DP1DQ1*DQ1DA1*DA1N2M
II) = MFRACT(JO)*DP1DQ1*DQI1DA1*LA1N2P

1,11) = MFRACT(JO)*(PEXIN-P1)

it stagnation density
T1

RST1 * R1*Q1l/(GAM*P1)

RST1/R1
= DZDQ1*DQ1DAl
II) = MFRACT(JO)*DZDQ1*DQ1DRO
II) = MFRACT(JO)*(DZDQ1*DQ1DR1 + DZDR1)
II) = MFRACT(JO)*DZDA1*DA1N1M
II) = MFRACT(JO)*DZDA1*DA1N1P
II) = MFRACT(JO)*DZDA1*DA1N2M

II) = MFRACT(JO)*DZDA1*DA1N2P
1,II) = MFRACT(JO)*(RSTOUT - RST1)

variable coefficient
II) = 1.0

TUP
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; n2-
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SETBC .s the subroutine that sets the coefficients of the
linearized boundary conditions.

SUBRCUTINE SETBC
$INCLUDE STATE.INC
$INCLUDE ISES.IilC

c

Cx*** Store blade surface sensitivities **xxxaxaixx

C

DO S5 I0=1, II
Al1S(IO,1) = Al(1,I0)
A2S(1i0,1) = A2(1,I0)
A3S(10,1) = A3(1,I0)
A4S(I0,1) = A4(1,IO0)
A5S(I0,1) = AS5(1,I0)
B1s(I10,1) = B1(1l,IO0)
B2S(I0,!l) = B2(1,I0)
B3S(10,1) = B2(1,I0)
B4S(10,1) = B4(1,I0)
B55(10,1) = B5(1,10)
C1S(I0,1) = C1(1,I0)
C25(10,1) = C2(1,10)
C3S8(I0,1) = C3(1,I0)
24S(10,1) = 24(1,1I0)
258(10,1) = 25(1,10)
Al1S(I10,2) = Al1(JJ,I10)
A2S(In,2) = A2(JJ,I0)
A3S(IO,2) = A3(JJ,I0)
A4S(IO,2) = A4(JJ,I0)
A5S8(10,2) = A5(JJ,I0)
B1S(I0,2) = B1(JJ,I0)
B25(10,2) = B2(JJ,I0)
B3S(I10,2) = B3(JJ,bI0)
B4S(I10,2) = B4(JJ,I0)
B5S(10,2) = B5(JJ,10)
C15(10,2) = C1(JJ,I0)
C28(10,2) = C2(JJ,10)
C35(I10,2) = C3(JJ,I0)
245(10,2) = 24(J3J3,10)
25S(10,2) = 25(JJ,10)
5 CONTINUE

C

Cx*** Set boundary conditions at each streamwise station ***#*xawkmxxanwn

C

DO 100 IO = 2, II-1

IM = I0-1

C

GO TO (10,20,30,40,50), NBCTYP(IO)
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C------ Set periodic boundary condition
10 DELP = 0.0
24(1,I0) = 24(JJ,10)
B1(1,I0) = B1(JJ,IO0)
BT(1,I0) = B2(JJ,I0)
B4(1,I0) = B4(JJ,bI0)
Al(1,IO0) = Al1(JJ,I0)
AT(1,I0) = A2(JJ,I0)
RA4(1,I0) = A4(JJ,I0)
C1(1,10) = C1(JJ,1I0)
CT(1,I0) = C2(JJ,IO0)
DR(1,1,I1I0) = DR(1,1,I0) + DR(JJ,1,I0) + 2.0*DELP
DO 11 L=2, NRHS
DR(1,L,I0) = DR(1,L,IO) + DR(JJ,L,IO)
11 CONTINUE
C
CALL CLROW(IO,JJ)
A2(JJ,10) = -1.0
AT(2 ,I0) = 1.0
DO 12 L=1, NRHS
DR(JJ,L,I0) = O.
12 CONTINUE
GOTO 100
C
C====- Set hard wall condition
20 CALL CLROW(IO,1)
CALL CLROW(IO,JJ)
A2(1,I0) = 1.0
A2(JJ,I10) = 1.0
GOTO 100
Cc
C------ Set Pspec condition

30 IG = IO-ILE+1
DR(1 ,1,I0) = DR(1 ,1,IO0)

& - 2.0*( PSPEC(IG,1)
& - PDFO*FNO(IG,1) - PDF1*FN1(IG,1)
& - PDFL*FNO(IG,1) )

DR(JJ,1,I0) = DR(JJ,1,I0)
& + 2.0%( PSPEC(IG,2)
& - PDFO*FNO(IG,2) - PDF1*FN1(IG,2)
& + PDFL*FNO(IG,2) )

DR(1 ,LPDFO,IO)
DR(1 ,LPDF1,1I0)
DR(1 ,LPDFL,IO)

-2.0*FNO(IG,1)
-2.0*FN1(IG,1)
-2.0*FNO(IG,1)

DR(JJ,LPDFO,I0) = 2.0*FNO(IG,2)
DR(JJ,LPDF1,I0) = 2.0*FN1(IG,2)
DR(JJ,LPDFL,I0) = -2.0*FNO(IG,2)
GO TO 100
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cNeNe NN NN Ne!

------ Set grid edge - Dstar equivalence on wall (direct BL coupling)

40 CALL CLROW(IO,1l)
A2(1,I0) = 1.
BI(1,1,I0) =
BI(1,2,I0) =
BI(1l,3,I0) =
AI(1,1,I0) =
AI(1,2,I0)
AI(1,3,I0)

= O O0OO0OO0OO0OO0o

.0

CALL CLROW(IO,JJ)
A2(JJ,I0) = 1.0
BI(2,4,10) =
BI(2,5,I0) =
BI(2,6,10) =
AI(2,4,I0) =
AI(2,5,I0) =
AI(2,6,I0) =
GO TO 100

- O O00O0O0

------ Set deltaP across wake
50 DELP = 0.0
Z24(1,I0) = Z4(JJ,10)
B1(1,I0) = B1(JJ,bI0)
BT(1,1I0) = B2(JJ,I0)
B4(1,I0) = B4(JJ,I0)
Al(1,I0) = Al(JJ,I0)
AT(1,10) A2(JJ,I0)
A4(1,I0) = A4(JJ,IO0)
C1(1,1I0) = C1(JJ,10)
CT(1,I0) = C2(JJ,I0)
DR(1,1,I0) = DR(1,1,I0) + DR(JJ,1,I0) + 2.0*DELP
DO 51 L=2, NRHS
DR(1,L,IO) = DR(1,L,I0) + DR(JJ,L,IO)
5. CONTINUE

------ Set grid gap to Dstar on wake
DX = X(IO+1,1) + X(IO+1,JJ) - X(IO-1,1) - X(IO-1,JJ)
DY Y(I0+1,1) + ¥(I0.1,JJ) - ¥Y(IO-1,1) - ¥Y(IO-1,J3)
DS SQRT(DX*DX + DY*DY)
DX -DY/DS
DY = DX/DS
DOTP = DX*NX(IO,l) + DY*NY(IO,1l)
CALL CLROW(IO,JT)
A2(JJ,I0) -1.0
AT(2 ,IO) 1.0
BI(2,1,10) 0.
BI(2,2,1I0) 0.

it

L}
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BI(2,3,I0) =
AI(2,1,I0) =
AI(2,2,I0)
AI(2,3,10)
BI(2,4,I0)
BI(2,5,10)
BI(2,6,I0) =
AI(2,4,I0)
AI(2,5,I0)
AI(2,6,I0)
100 CONTINUE
C
Cx*»* Leading edge

1]
- OO0 00OO0OM~~OO O

point movement identity HARAXXKXXRAARKKNNARKKNARKKRANRNN

DR(1 ,LSBLE,ILE) =
DR(JJ,LSBLE, ILE)

in
1o
—
o O

Mixed-Inverse freewall seg“‘ent RRARXRRRRARRRRRARRRRARNRNRRANRRRNNRRKRKRKN KK
IF(LMIXI) THEN

IS = ISMIX
IF(IS.EQ.1) JO
IF(IS.EQ.2) JO
PWT = 1.0
IF(IS.EQ.1) PWT =
DO 110 IO=IX0, IX1
IG = IO-ILE+1
IGXO = IXO-ILE+1
IGX1 = IX1-ILE+1
A1(JO,IO0) = A1S(IO,IS)

1
JJ

-1.0

A2(JO,I0)
A3(JO,I0)
A4(JO,I0)
AS5(JO,I0)
B1(JO, I0)
B2(JO, IO)
B3(JO,I0)
B4(JO,I0)
B5(JO, I0)
C1(Jo,I0)
€2(Jo,I0)
c3(J0o,I0)
24(JO, I0)
25(J0,10)

A2S(I0,IS)
A3S(I0,IS)
A4S(I0,IS)
ASS(I0,IS)
B1S(I0,1S)
B2S(I0,1S)
B3S(I0,IS)
B4S(I0,1S)
BSS(10,IS)
C1s(10,1S)
C2s(10,1S)
C3s(10,1IS)
248(10,18S)
258(10,1S)

FX0
FX1

(SG(IG,IS) - SG(IGX0,IS)) / (SG(IGX1,IS) - SG(IGXO0,IS))
(SG(IGX1,IS) - SG(IG,IS)) / (SG(IGX1,IS) - SG(IGXO,IS))
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DR(JO,1,I0) =
& 2.0*PWT*(PSPEC(1G.IS) + PDXO*FXO + PDX1*FX1 - PI(10,J0))
DR(JO,LPDX0,I0) = -2.0*PWT*FX0
DR(JO,LPDX1,I0) = -2.0*PWT*FX1
110 CONTINUE
C
ENDIF
C
C*x*** Cascade inlet/outlet fixing conditions ****XXAXAXAANARKKKNKANNNRAR
cC
IF(LCASC) THEN
Cc
DO 150 JO = 1, JJ
I0=1
A2(JO,I0) = 1.0
DR(JO,1,10) = 0.
DR(JO,LNINL, IO)
150 CONTINUZ

0
= -1.0

[

[e ol ool
—

DO 155 JO =
A2(JO,II)
A3(JO,II)
B2(JO,II)
B3(JO,II) =
DR(JO,1,II) = 0.0

155 CONTINUE

L T ]
-

i
|

[
— - O
.

A2(JJ,II) = 1.0

DR(JJ,LNOUT,II) = -1.0

RETURN
o

ENDIF
Cc
C**x% Dirfoil far field CONditions "* A AR AAN AR A ARANKARR RN RARRNNARRANNRNRNKR
C

IF(LAIRF) THEN

c
SOURCE = (Y(II,1) - Y(II,JJ)) / 6.2831853
JO = JJJ
JP = JJJ+1
C
DO 200 IO = 2, II
C

CALL CLROW(IO,JO)
BWHY = SQRT(BETSQ)*Y(I0,JO)

EXXS = X(I0,JO) - XCENT - 0.5

ANGLE = ATAN2(BWHY,-EXXS)

RSQ = (Y(I0,JO0)-YCENT)**2 + (X(IO,JO)-XCENT)**2 / BETSQ

222



ALOGR = 0.5*ALOG(RSQ)

RES = Y(I0,JO) - YTOP(IO) - ALFA*(X(IO,JO)-XCENT) - CIRC*ALOGR
& - SOURCE*ANGLE

A2(JO,I0) = 1.0 - CIRC*(Y(IO,JO)-YCENT)/RSQ

DR(JO,1,I0) = -rES

DR(JO,LCIRC,I0)

DR(JO,LALFA,10)

-ALOGR
-(X(I0,J0O)-XCENT)

W

CALL CLROW(IO,JP)

BWHY = SQRT(BETSQ)*Y(I0,JP)

EXXS = X(I0,JP) - XCENT - 0.5

ANGLE = ATAN2(BWHY,-EXXS)

RSQ = (Y(IO,JP)-YCENT)**2 + (X(IO,JP)-XCENT)**2 / BETSQ

ALOGR = 0.5*ALOG(RSQ)

KES = Y(IO,JP) - YBOT(IO) - ALFA*(X(IO,JP)-XCENT) - CIRC*ALOGR
& - SOURCE*ANGLE

A2(JP,I0) = 1.0 - CIRC*(Y(IO,JP)-YCENT)/RSQ

DR(JP,1,I0) = -RES

DR(JP,LCIRC,IO)

DR(JP,LALFA,IO)

-ALOGR
-(X(I0,JP)-XCENT)

1

o
200 CONTINUE
o
DO 250
10 =
BWHY = SQRT(BETSQ)*Y(I0,JO)
EXXS = X(I0,JO) - XCENT - 0.5
ANGLE = ATAN2(BWHY,-EXXS)
RSQ = (Y(IO,JO)-YCENT)**2 + (X(I0,JO)-XCENT)**2 / BETSQ
ALOGR = 0.S5*ALOG(RSQ)
RES = Y(T0,J0) - YINL(JO) - ALFA*({X(IO,JO)-XCENT) - CIRC*ALOGR
& - SOURCE*ANGLE
A2(JO,I0) = 1.0 - CIRC*(Y(IO,JO)-YCENT)/RSQ
DR(JO,1,I0) = -RES
DR(JO,LCIRC,IO) = -ALOGR
DR(JO,LALFA,IO) = -(X(IO,JO)-XCENT)
250 CONTINUE

Jo =1, JJ
1

C
DO 255 JO = 1, JJJ-1
A2(JO,II) = 1.0
A3(JO,II) = -1.0
B2(JO,II) = -1.0

B3(JO,II) = 1.0
DR(JO,1,II) = 0.0
255 CONTINUE

C
DG 260 JO = JJJg+2, JJ
A1(Jo,II) = -1.0
A2(JO,II) = 1.0
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B1(JO,II) 1.0

B2(JO,1I) -1.0

DR(JO,1,II) = 0.0
260 CONTINUE

C
C---- Set dummy s-mom equation
C
Do 270 10 = 1, II
A8(JJJ,I0) = 1.0
270 CONTINUE
C
ENDIF
RETURN
END ; SETBC

SUBROUTINE CLROW(I,J)
$INCLUDE STATE.INC
$INCLUDE ISES.INC
c

24(J3,1) =

25(J,1) =

B1(J,I) =

B2(J,I) =

B3(J,I) =

B4(J,I) =

BS(J,I) =

AL(J,I) =

A2(J,I) =

A3(J,I) =

A4(J,T) =

AS(J,I) =

C1(J,I) =

c2(J,I) =

€3(J,1)

DO 10 L=1, NGLX

DR(J,L,I) = O.
10 CONTINUE
RETURN
END ; CLROW

[eNeoNeNolNoNoNoNoNoNololNoNoNo o)
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SETBL is the subroutine that sets the coefficients for the
linearized boundary layer equations, as detailed in M. Drela's Ph.D.
thesis [11].

SUBROUTINE SETBL(I,J)
$INCLUDE STATE. INC
$INCLUDE ISES.INC
Cc

I0 =1

IM = IO-1

JOo = J

JP JO+1

IG IO-ILE+1

"

HMU =
TRF =
FB2
FB1

.00
.87

5

I
- O OO
oo

- FB2

IF(JO.EQ.1) THEN
IS =1

KT = 2*JJ+1

KH 2*JJ+2
ELSE

Is = 2

KT = 2*JJ+4

KH = 2*JJ+5
ENDIF

DO 10 L=1, &
AVT(IS,L,IO0) =
BVT(IS,L,IO)
ZVT(IS,L,IO)
AVH(IS,L,IO)
BVH(IS,L,IO)
ZVH(IS,L,I0) =

10 CONTINUE

CVT(ISs,1,I0)

CVT(1s,2,10) =

CVH(IS,1,1I0)

CVH(IS,2,I0)

DR(KT,1,IO)

DR(KH, 1,1I0)

([l
COO0OO0OO0OO0o

I
[oleoNoNe)

non

0.
0

TAU(IO,iS) = 0.0

WT
WL

GTR(IO,IS)
1.0 - WT

it
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(9

X1 = XI(IM,IS)
X2 = XI(IO,IS)

Ul = UEDG(IM,IS)
U2 = UEDG(I0,1IS)
T1 = THET(IM,IS)
T2 = THET(IO,IS)
D1 = DISP(IM,IS)
D2 = DISP(IO,IS)

TO = THET(IM-1,IS)
DO = DISP(IM-1,IS)

M1 = Ul*Ul / (GM1*(H(JO)-0.5*U1*Ul))
M2 = U2*U2 / (GM1*(H(JO)-0.5*U2*U2))

TR1
TR2 =

1.0 + 0.5*GM1*M1
1.0 + 0.5*GM1*M2
R1
R2

RSTOUT*TR1**(-1.0/GM1)
RSTOUT*TR2**(~-1.0/GM1)

IF(IO.EQ.ILE+1) THEN
----- similarity station

WL = 1.0

WT = 0.

HMU = O.
XLINV = 0.
BETU = BULE
BETT = 0.5*(1.0 - BULE)
X1 = X2

Rl = R2

Ul = U2

M1 = M2

Tl = T2

D1 = D2

TO = T2

DO = D2
ELSE

----- any other station
XLINV = 1.0 / ALOG(X2/X1)
BETU = ALOG(U2/Ul)*XLINV
BETT = ALOG(T2/T1)*XLINV
ENDIF

M1 Ul M!*(2.0 + GM1*M1)/U1l
M2_U2 = M2%(2.0 + GM1*M2)/U2
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OO0 0O00n

R1_Ul = -R1/TR1 * 0.5*M1_Ul
R2_U2 = -R2/TR2 * 0.5*M2_U12
HO = DO/TO

H1 = D1/T1

H2 = D2/T2

HO_DO = 1.0/TO

H1 D1 = 1.0/T1

H2_D2 = 1.0/T2

HO_TO = -HO/TO

H1_T1 = -H1/T1

H2 T2 = -H2/T2

HS1 = H(JO) - 0.5*U1*Ul

HS2 = H(JO) - 0.5*%U2*U2

V1l = SQRT((HS1/H(JO))**3) * (H(JO)+HVIS)/(HS1+HVIS) / REYN
V2 = SQRT((HS2/H(JO))**3) * (H(JO)+HVIS)/(RS2+HVIS) / REYN

won u un &k u
el ololeoNoNoNoNeol

<
>r
non

HL1
HL2
HL1_TO
HL1_T1
HL2_T1
HL2_T2
HL1_DO
HL1_D1
HL2_D1
HL2_D2

HKA
HK1

(]

H
H

V1*U1*(1.0/(HS1+HVIS) '1.5/HS1)
V2*U2*(1.0/(HS2+HVIS)-1.5/HS2)

S1 + TRF*(H(.,0)-HS1)
S2 + TRF*(H(JO)-HS2)

SQRT( (HW1/H(JO))**3) * (H(JO)+HVIS)/(HW1+HVIS) / REYN

= SQRT((HW2/H(JO))**3) * (H(JO)+HVIS)/(HW2+H/IS) / REYN

VW1*U1*(1.0/(HW1+HVIS)-1.5/HW1) * (1.0-TRF)
VW2*U2*(1.0/(HW2+HVIS)-1.5/HW2) * (1.0-TRF)

.5*(X1+X2)
.5*(R1+R2)
L5*%(U1+U2)
.S*(M1+M2)
S*(T1+T2)
.5*%(D1+D2)
.5*(H1+H2)
S5*(V1+V2)

(
(

(
(

1.0-HMU)*H1 + HMU*HO
1.0-HMU)*HZ + HAMU*H1
HMU *HO_TC
(1.0-HMU)*H1_T1
HMU *H1_T1
(1.0-HMU)*42_T2
HMU *HO_DO
(1.0-HMU)*H1_D1
HMU *H1 D1
(i.0-HMU)*H2_D2

L | I T | Y N | R T 1}

HA -~ 2.29*MA)/(1.0 + 0.113*MA)
HL1 - 0 29*M1)/(1.0 + 0.113*M1)
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C****

C****

HK2 = (HL2 - 0.29*M2)/(1.0 + 0.113*M2)
HKA = AMAX1(HKA,1.02)
HK1 = AMAX1(HK1,1.02)
HK2 = AMAX1(HK2,1.02)

HKA HA = 1.0/(1.0 + 0.113*MA)

HK1 _HL1 = 1.0/(1.0 + 0.113*Ml)
HK2_HL2 = 1.0/(1.0 + 0.113*M2)
HKA MA = (-.29 - 0.113*HKA) / (1.0 + 0.113*MA)
HK1 M1 = (-.29 - 0.113*HK1l) / (1.0 + 0.113*M1)
HK2 M2 = (-.29 - 0.113*HK2) / (1.0 + 0.113*M2)

HKA_Ul = HKA_MA*0.5*M1_U1
HKA_U2 = HKA_MA*0.5*M2_U2

HKA_T1 = HKA_HA*0.5*H1_T1
HKA_T2 = HKA_HA*0.5*H2_T2
HKA_D1 = HKA_HA*0.S*H1 D1
HKA D2 = HKA_HA*0.5*H2 D2

HK1_Ul = HK1_M1*M1 Ul
HK2_U2 = HK2_M2*M2_U2

HK1_TO = HK1 HL1*HL1_TO
HK1_T1 = HK1 HL1*HL1 Tl
HK2_T1 = HK2_HL2*HL2_T1
HK2_T2 = HK2_HL2*HL2_T2

HK1_DO = HK1_HL1*HL1_DO
HK1 D1 = HK1 HL1*HL1 D1
HK2 D1 = HK2 HL2*HL2 D1
HK2_D2 = HK2_HL2*HL2_D2

Laminar HE correlation (from LeBalleur)

EX1 = EXP(-2.5%(HK1-2.0))
EX2 = EXP(-2.5*(HK2-2.0))
HE1 = WL*(0.635 + 0.055*HK1*(HK1+8.0)/(HK1-1.0) - 0.U48*EX1)

IF(HK1.GT.4.0) THEN

HEl = 1.514676

HE1 HK1l = 0.0
ENDIF
HE2 = WL*(0.635 + C.055*HK2*(HK2+8.0)/(HK2-1.0) - 0.048*EX2)
HE1_HK1 = WL*(0.055%(HK1-4.0)*(HK1+2.0)/(HK1-1.0)**2 + 0.12*EX1)
HE2 HK2 = WL*(0.055*(HK2-4.0)*(HK2+2.0)/(HK2-1.0)**2 + 0.12*EX2)
IF(HK2.GT.4.0) THEN

HE2 = 1.514676

HE2_HK2 = 0.0

ENDIF

Turbulent HE correlation (Whitfield)
IF(HK1.LE.3.4) THEN
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Ch*xx

Ccc
ccC
ccc

Chrx%

EX1
FX2

T™P1 =

TMP2
HE1l =
HE2 =

EXP(6.0*(HK1-3.4))
EXP(6.0*(HK2-3.4))

(HK1-2.75)/1.75
(HK2-2.75)/1.75

HEl + WT*(1.5 + TMP1*TMPl1/6. - TMP1*TMP1*TMP1/3. + .02*EX1)
HE2 + WT*(1.5 + TMP2*TMP2/6. - TMP2*TMP2*TMP2/3. + .02*EX2)

HE1_HK1
HE2_HK2

ELSE
HE1
HE2 =

HE1_HK1 + WT*((TMP1/3.0 - TMP1*TMP1)/1.75 + 0.12*EX1)
HE2_HK2 + WT*((TMP2/3.0 - TMP2*TMP2)/1.75 + 0.12*EX2)

HEl + WT*(1.628 + .0133*(HK1-5.) + .0556*((HK1-5.)/1.6)**3)
HE2 + WT*(1.628 + .0133*(HK2-5.) + .0556*((HK2-5.)/1.6)**3)

HE1_HK1
HE2_HK2

ENDIF

HE1_U1
HE2_U2
HE1_TO
HE1_T1
HE2_T1
HE2_T2
HE1_DO
HE1_D1

now ouononon

HE2 D1 =

HE2 D2

HE1 HK1 + WT*(.0133 + .0556*3.0*((HK1-5.)/1.6)**2/1.6)
HE2 _HK2 + WT*(.0133 + .0556*3.0*((HK2-5.)/1.6)**2/1.6)

HE1_HK1*HK1 U1l
HE2_HK2*HK2_U2
HE1_HK1*HK1_TO
HE1_HK1*HK1 T1
HE2_HK2*HK2_T1
HE2_HK2*HK2 T2
HE1_HK1*HK1 DO
HE1_HK1*HK1 D1
HE2_HK2*HK2_D1
HE2_HK2*HK2_D2

RT = RA*UA*TA/VA

Laminar Cf correlation (from Falkner-skan)
IF(HKA.LT.7.4) THEN
TMP = (7.4-HKA)**2.2 / (HKA-1.0)

CFN 0.02844*TMP - 0.134

CFN_HKA = -.02844*TMP * (2.2/(7.4-HKA) + 1.0/(HKA-1.0))
ELSE

T™P = 1.0 - 1.4/(HKA-6.0)

CFN = 0.044*TMP**2 - 0.134

CFN_HKA = 0.083*TMP*1.4/(HKA-6.0)**2
ENDIF

CF = WL*CFN/RT

CF_HKA = WL*CFN_HKA/RT

CF_RT = ~-CF/RT
CF = WL*CFN

CF_HKA = WL*CFN_HKA

CF_RT = 0.0

Turbulent Cf correlation (Whitfield)

GRT = ALOG(RT)
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GRT = AMAX1(GRT,3.0)
GEX = -1.74 - 0.31*HKA
CFB = 0.3*EXP(-1.33*HKA) * (GRT/2.3026)**GEX
CFB_HKA = -1.33*CFB - 0.31*ALOG(GRT/2.3026)*CFB
CFB_RT = GEX*CFB/(GRT*RT)
C
CF = CF + WT*CFB
CF_HKA = CF_HKA + WT*CFB_HKA
CF_RT = CF_RT + WT*CFB_RT
C
C IF(IO.GT.ITE) THEN ; set zero shear in wake
Cc CF = 0.
C CF_HKA = 0.
C CF_RT = 0.
(o ENDIF
C
CF_Ul = CF_HKA*HKA Ul + CF_RT*.5*RT*(R1_Ul/RA + 1.0/UA - V1_U1/VA)
CF_U2 = CF_HKA*HKA U2 + CF_RT*.S5*RT*(R2_U2/RA + 1.0/UA - V2 _U2/VA)
CF_T1 = CF_HKA*HKA_T1 + CF_RT*.5*RT/TA
CF_T2 = CF_HKA*HKA T2 + CF_RT*.5*RT/TA
CF_D1 = CF_HKA*HKA D1
CF_D2 = CF_HKA*HKA D2
C
Cccc TAU(IO,IS) = O0.5*RA*UA*UA * CF
TAU(IO,IS) = O.5*RA*UA*UA * CF/RT
C
C**** Laminar CD correlation (from Falkner-Skun)
IF(HKA.LT.4.0) THEN
TMP = (4.0-HKA)**4.44
CDN = 0.004*TMP + 0.156
CDN_HKA = -.004*TMP*4.44/(4.0-HKA)
ELSE
TMP = (HKA-4.0)**1.8
CDN = -.0015*TMP + 0.156
CDN_HKA = -.0015*TMP*1.8/(HKA-4.0)
ENDIF
C
CcccC CD = WL*CDN/RT
Ccc CD_HKA = WL*CDN_HKA/RT
CCC CD_RT = -CD/RT
Cc
CD = WL*CDN
CD_HKA = WL*CDN_HKA
CD_RT = 0.0
C
C**»x Turbulent CD correlation (Whitfield)
C22227222722727
c

CD_U1 = CD_HKA*HKA_U1 + CD_RT*.S*RT*(R1_U1/RA + 1.0/UA - V1_U1/VA)
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CD_U2 = CD_HKA*HKA U2 + CD_RT*.5*RT*(R2_U2/RA + 1.0/UA - V2_U2/VA)
CD_T1 = CD_HKA*HKA_T1 + CD_RT*.S5*RT/TA
CD_T2 = CD_HKA*HKA_T2 + CD_RT*.S*RT/TA
CD_D1 = CD_HKA*HKA_D1
CD_D2 = CD_HKA*HKA_ D2
o
C---- set up momentum equation
BTMP = HA + 2.0 - MA
CCC CTMP = 0.5*XA/TA
S1 = X1*V1/(R1*U1*T1*T1)
S2 = X2*V2/(R2*U2*T2*T2)
CTMP = 0.25*(S1 + S2)
REZ1 = BETT + BTMP*BETU - CTMP*CF
2 S = -0.25*CF
o
Z Ul = -CTMP*CF_U1l - BETU*0.5*M1_Ul - XLINV/U1*BTMP
Z_U2 = -CTMP*CF_U2 - BETU*0.5*M2_U2 + XLINV/U2*BTMP
Z2_T1 = -CTMP*CF_T1 + BETU*0.5*H1_T1 - XLINV/T1 ; + 0.5*CTMP*CF/TA
Z_T2 = -CTMP*CF_T2 + BETU*0.5*H2 T2 + XLINV/T2 ; + 0.5*CTMP*CF/TA
Z_D1 = -CTMP*CF_D1 + BETU*0.5*H1_D1
Z_D2 = -CTMP*CF_D2 + BETU*0.5*H2 D2
c
Z_Ul = Z Ul + 2_S*(-S1/U1 - S1/R1*R1_U1l + S1/V1*V1l_Ul)
Z2_U2 = Z_U2 + Z_S*(-S2/U2 - S2/R2*R2_U2 + S2/V2*V2_U2)
2Tl = 2_T1 + 2_S*(-S1/T1)
Z_T2 = Z_T2 + Z_S*(-S2/T2)
Cc
BVT(1S,4,I0) = Z2_Ul
AVT(I1S,4,I0) = Z2_U2
BVT(IS,5,I0) = 2_T1
AVT(IS,5,I0) = Z_T2
BVT(IS,6,I0) = 2 D1
AVT(IS,6,I0) = Z D2
C
DR(KT,1,I0) = ~-REZ1
C
Cc
C---- Set up dissipation equation
Cc
BETH = 0.0
IF(IO.GT.ILE+1) BETH = ALOG(HE2/HE1l)*XLINV
Cc
HEA = 0.5*(HE1+HE2)
C
BTMP = 3.0 - MA
CTMP = (S1+S2)/HEA

REZ2 = BETH + BETT + BTMP*BETU - CTMP*CD
Z_HE1 = 0.5*CTMP*CD/HEA - XLINV/HE1l
Z_HE2 = 0.5*CTMP*CD/HEA + XLINV/HE2
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Z_CD = -CTMP
Z2_MA = -BFTU
Z_TA = 0.0
Z_S = -CD/HEA
Z_Ul = 2_HE1*HE1_Ul + Z_CD*CD_Ul + Z_MA*0.5*M1 Ul - XLINV/U1*BTMP
Z U2 = Z_HE2*HE2 U2 + Z _CD*CD_U2 + Z_MA*0.5*M2 U2 + XLINV/U2*BTMP
Z_TO = Z_HE1*HE1_TO
Z_T1 = Z_HE1*HE1l T1 + Z_CD*CD_T1 + Z_TA*0.5 - XLINV/T1
+ Z_HE2*HE2_T1
Z2_T2 = Z_HE2*HE2 T2 + Z_CD*CD_T2 + 2Z_TA*0.5 + XLINV/T2
Z_ DO = Z_HE1*HE1_DO
Z D1 = Z_HE1*HEl D1 + Z_cD*CD D1
+ Z_HEZ*HE2_D1
Z_D2 = Z_HE2*HE2_D2 + Z_CD*CD_D2
Z_Ul = Z2_Ul + 2_S*(-S1/U1 - S1/R1*R1_Ul + S1/V1*V1_U1)
2 U2 = 2_U2 + Z_S*(-S2/U2 - S2/R2*R2_U2 + S2/V2*V2_U2)
Z2_T1 = 2_T1 + Z_S*(-S1/T1)
Z2_T2 = 2_T2 + Z_S*(-S2/T2)
ZVH(IS,4,I0) = O.
BVH(IS,4,10) = z_Ul
AVH(1S,4,10) = 2_U2
ZVH(IS,5,I0) = Z_TO
BVH(IS,5,I0) = 2_T1
AVH(IS,5,I0) = 2_T2
ZVH(IS,6,10) = Z_DO
BVH(IS,6,I10) = 2_D1
AVH(IS,6,I0) = 2 D2

DR(KH,1,I0) = -REZ2

IF(I0.LE.ILE+6) THEN

WRITE(S,*) ' °

WRITE{5,*) IO, REZ1l, REZ2, HK1, HK2
WRITE(S,*) HEl, HE2, CF, CD, X1, X2
WRITE(S,*) BETU, BETT, BETH, S1, S2

ENDIF

IF(I0.EQ.ILE+1) THEN
redefine Jacobian entries for similarity station

AVT(IS,4,1I0) = AVT(1S,4,I0) + BVT(IS,4,I0) + ZVT(IS,4,10)
BVT(IS,4,I0) = O.
ZVT(IS,4,I0) = 0.
AVT(IS,5,I0) = AVT(IS,5,I0) + BVT(IS,5,I0) + ZVT(IS,5,I0)
BVT(IS,5,I0) = 0.
Z2VT(1s,5,10) = 0.

232



AVT(IS,6,I0)
BVT(IS,6,I0)
ZVT(IS,6,10)
AVH(IS,4,I0)
BVH(IS,4,I0)
ZVH(IS,4,1I0)
AVH(IS,S,I0)
BVH(IS,S,I0)
ZVH(IS,5,10)
AVH(IS,6,I0)
BVH(IS,6,10)
2VH(IS,6,10)
ENDIF

RETURN
END ; SETBL

I

[}

AVT(IS,6,10)
0.

0.
AVH(IS,4,I0)
0.

0.
AVH(IS,5,I0)
0.

0

= AVH(IS,6,I0)

]]

0.
0.

-+

+

BVT(IS,6,I10)

BVH(IS,4,I0)

BVH(IS,5,I0)

BVH(IS,6,10)
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FSOLVE is the subroutine that solves the linear system of Newton
equations by the direct block elimination method.

SUBROUTINE SOLVE

$INCLUDE STATE.INC

$TNCLUDE ISES.INC
COMMON/ARRAY/A(JW,JW) ,B(JW,JW) ,C(JIW,JIX,IX),2(JW,JW)

o
NBK = 2*JJ+5
K1l = JJ+1
K2 = NBK-6

fa)

CCC** Forward sweep: Elimination of lower block diagonals (B's and Z's).
DO 1000 I=1, II
IM = I-1
IL = I-2
DO 5 K=1, NBK
DO 501 L=1, NBK
A(K,L) = 0.
B(K,L) = 0.
Z(K,L) = 0.
CONTINUE
DO 502 L=1, JJ
C(K,L,I) = 0.
502 CONTINUE
S CONTINUE

501

Cc

C

CCC***» FIRST, fill 'er up
2(1 ,K2) = 24(1,1)

2(1 ,K1) = 25(1,I)
2(JJ3,K2) = 24(J33,1)
Z(JJ,K1) = 25(JJ,I)
B(1 ,K2) = B4(1,I)
B(1 ,Kl) = B5(1,I)
B(JJ,K2) = B4(JJ,I)
B(.JJ,K1) = B5(JJ,I)
A(1 ,K2) = A4(1,I)
A(l ,Kl) = AS(1,I)
A(JJ,K2) = A4(JJ,I)
A(uJ,K1) = AS5(JJ,I)

DO 111 J=2, JJ-1

2(J,K1+J-2) = 24(J,I)
Z(J,K1+J-1) = 25(J,1)
B(J,K1+J-2) = B4(J,I)
B(J,K1+J-1) = BS(J,I)
A(J,K1+J-2) = A4(J,I)
A(J,K1+J-1) = A5(J,I)
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111

112

CONTINUE

DO 112 J=I, JJ-1

K = K1+J-1

Z(K,K) = 28(J,I)

B(K,K) = B8(J,I)

A(K,K) = A8(J,I)
CONTINUE
Z(K2+1,K1) = 2vC(1,3,I)
Z(K2+2,K1) = 2VT(1,3,1)
Z(K2+3 ,K1) = ZVH(1,3,I)
Z2(K2+4,K2) = 2vC(2,3,1)
Z(K2+5,K2) = ZVT(2,3,1)
Z(K2+6,K2) = ZVH(2,3,I)
B(K2+1,K1) = BvVC(1,3,I)
B(K2+2,K1) = BVT(1,3,I)
B(K2+3,K1) = BVH(1,3,I)
B(K2+4 ,K2) = BVC(2,3,1)
B(K2+5,K2) = BVT(2,3,I)
B(K2+6,K2) = BVH(2,3,I)
A(K2+1,K1) = AVC(1,3,I)
A(K2+2,K1) = AVYT(1,3,I)
A(K2+3,K1) = AVH(1,3,I)
A(K2+4,K2) = AVC(2,3,I)
A(K2+5,K2) = AVT(2,3,I)
A(K2+6,K2) = AVH(2,3,I)
Fill left parts of ? block
B(1 ,1) = B82(1 ,I)
B(1 ,2) = B3(1 ,1)
B(1 ,JJ-1) = B1(1 ,I)
B(1 ,JJ) = BT(1 ,I)
B(JJ,2) = B3(JJ,I)
B(JJ,JJ-1) = B1(JJ,I)
B(JJ,JJ) = B2/JJ,1)
B(JJ,1) = BT(2 ,I)
A(l ,1) = A2(1 ,I)
A(l ,2) = A3(1 ,I)
A(l1 ,JJ-1) = Al(1 ,I)
A(l1 ,JJ) = AT(1 ,I)
A(JJ,2) = A3(JJ,1)
A(JJ,JJ-1) = Al(JJ,I)
A(JT,JT) = A2(JJ,I)
A(JJ,1) = AT(2 ,I)
c(1 ,1 ,I) = C2(1 ,1)
c(1 ,2 ,I) = C3(1 ,I)
c(1 ,J3J-1,I) = C1(1 ,I)
c(1,33 ,I) =CT(1 ,I)
c(JJ,2 ,I) = C3(3J,I)
c(JJ,J3-1,I) = C1(JJ,1I)
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131

132

C(J3J,J3J

(33,1 ,I)
DO 131 J=2, JJ-1

B1(J,I)
B2(J,I)
B3(J,I)
Al1(J,I)

B(J,J-1)
B(J,J )
B(J,J+1)
A(J,J-1)
A(J,J )
A(J,J+1)

c(J,J3-1,1)
c(J,3 ,I)
C(J,3+1,1)

CONTINUE

,I) = C2(JJ,I)

CcT(2 ,I)

A3(J,1)

wonon

Cl(J,I)
c2(J,I)
C3(J,I)

DO 132 J=1, JJ-1

K = J+JJ
B(K,J )
B(K,J+1)
A(K,J )
A(K,J+1)

C(K,J ,I)
C(K,J+1,I)

CONTINUE

B(K2+1,1)
B(K2+2,1)
B(K2+3,1)
B(K2+1,2)
B(K2+2,2)
B(K2+3,2)

B(K2+4,JJ-1)
B(K2+5,J33-1)
B(K2+6,JJ-1)

B(K2+4,JJ)
B(K2+5,JJ)
B(K2+6,JJ)
A(K2+1,1)
A(K2+2,1)
A(K2+3,1)
A(K2+1,2)
A(K2+2,2)
A(K2+3,2)

A(K2+4,33-1)
A(K2+5,J3-1)
A(K2+6,J3-1)

A(K2+4,JJ)
A(K2+5,3J)
A(K2+6,JJ)
C(K2+1,1,I)
C(K2+2,1,1I)
C(K2+3,1,I)

B6(J,I)
B7(J,I)
A6(J,I)

A7

(J.1)
C6(J,I)
C7(J,1)

= BVC(1,1,I)

onononononou

I VI T 1N T A 1

BVT(1,1,I)
BVH(1,1,I)
BVC(1,2,7)
BVT(1,2,I)
BVH(1,2,I)
BVC(2,1,1)
BVT(2,1,I)
BVH(2,1,I)
BVC(2,2,I)
BVT(2,2,I)
BVH(2,2,I)
AvVC(1,1,I)
AVT(1,1,I)
AVH(1,1,1I)
AvVC(1,2,I)
AVT(1,2,I)
AVH(1,2,I)
AvVC(2,1,1)
AVT(2,1,I)
AVH(2,1,1I)
AvVC(2,2,1)
AVT(2,2,I)
AVH(2,2,I)

uwonon

cvC(li,1,I)
CVT(1,1,I)
CVH(1,1,I)
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C(K2+1,2,1I) = ¢ve(l,2,I)
C(K2+2,2,1) = CVT(1,2,I)
C(K2+3,2,I) = CVH(1,2,I)
C(K2+4,JJ-1,I) = CVC(2,1,1)
C(K2+5,JJ-1,1) = CVT(2,1,I)
C(K2+6,J3-1,1) = CVH(2,1,1)
C(K2+4,JJ,1) = CVC(2,2,I)
C(K2+5,J3,I) = CVT(2,2,I)
C(K2+6,JJ3,I) = CVH(2,2,I)
c
DO 14 N=1, 6
L = K2+N
B(1 ,L) = BI(1,N,I)
B(JJ,L) = BI(2,N,I)
A(1 ,L) = AI(1,N,I)
A(JJ,L) = AI(2,N,I)
14  CONTINUE
c
DO 15 L=1, 3
Z(K2+1,K2+L) = ZVC(1,L+3,I)
Z(K2+2,K2+L) = ZVT(1,L+3,I)
Z(K2+3,K2+L) = ZVH(1,L+3,I)
B(K2+1,K2+L) = BVC(1,L+3,I)
B(K2+2,K2+L) = BVT(1,L+3,I)
B(K2+3,K2+L) = BVH(1,L+3,I)
A(K2+1,K2+L) = AVC(1,L+3,I)
A(K2+2,K2+L) = AVT(1,L+3,I)
A(K2+3,K2+L) = AVH(1,L+3,I)
Z(K2+4 ,K2+L+3) = 2VC(2,L+3,I)
Z(K2+5,K2+L+3) = ZVT(2,L+3,I)
2(K2+6,K2+L+3) = ZVH(2,L+3,I)
B(K2+4,K2+L+3) = BVC(2,L+3,I)
B(K2+5,K2+L+3) = BVT(2,L+3,I)
B(K2+6,K2+L+3) = BVH(2,L+3,I)
A(K2+4,K2+L+3) = AVC(2,L+3,I)
A(K2+5,K2+L+3) = AVT(2,L+3,I)
A(K2+6,K2+L+3) = AVH(2,L+3,I)
15  CONTINUE
c

CCC**** Eliminate right 2 block
IF(I.GE.3) THEN
DO 16 K=1, NBK
DO 161 J=K1l, NBK
IF(2(K,J).EQ.0.0) GO TO 161
DO 1611 L=1, JJ
B(K,L) = B(K,L) - Z(K,J)*C(J,L,IL)
CONTINUE
DO 1612 L=1, NRHS
DR(K,L,I) = DR(K,L,I) - Z(K,J)*DR(J,L,IL)

lell
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1612 CONTINUE

lel CONTINUE
16  CONTINUE
ENDIF

Cc
CCC***» EF]liminate B block
IF(I.GE.2) THEN
DO 17 K=1, NBK
DO 171 J=1, NBK
IF(B(K,J).EQ.0.0) GO TO 171
DO 1711 L=1, JJ
A(KIL) = A(K,L) - B(KIJ)*C(JILIIM)
1711 CONTINUE
DO 1712 L=1, NRHS
DR(K,L,I) = DR(K,L,I) - B(K,J)*DR(J,L,IM)
1712 CONTINUE

171 CONTINUE
17 CONTINUE
ENDIF

C
CCCx*** Tnvert A block
DO 20 NP=NBK, 2, -1
NM1 = NP-1
PIVOT = 1.0/A(NP,NP)

C-mmmmmm- normalize pivot row
DO 201 L=1, NM1
A(NP,L) = A(NP,L)*PIVOT
201 CONTINUE
DO 202 L=1, JJ
C(NP,L,I) = C(NP,L,I)*PIVOT
202 CONTINUE
DO 203 L=1, NRHS
DR(NP,L,I) = DR(NP,L,I)*PIVOT
203 CONTINUE

C--====--- eliminate pivot column
DO 210 K=1, NM1
IF(A(K,NP).EQ.0.0) GO TO 210
DO 2101 L=1, NM1
A(K,L) = A(K,L) - A(K,NP)*A(NP,L)
2101 CONTINUE
DO 2102 L=1, JJ
C(K,L,I) = C(K,L,I) - A(K,NP)*C(NP,L,I)
2102 CONTINUE
DO 2103 L=1, NRHS
DR(K,L,I) = DR(K,L,I) - A(K,NP)*DR(NP,L,I)
2103 CONTINUE
210 CONTINUE
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20  CONTINUE

C-=m=-- normalize last row
PIVOT = 1.0 / A(1,1)
DO 21 L=1, JJ
c(1,L,I) = C(1,L,I)*PIVOT
21 CONTINUE
DO 22 L=1, NRHS
DR(1,L,I) = DR(1,L,I)*PIVOT
22 CONTINUE

Cr-===- back substitute
DO 24 NP=2, NBK
NM1 = NP-1
DO 241 K=1, NM1
IF(A(NP,K).EQ.0.0) GO TO 241
DO 2411 L=1, JJ
C(NP,L,I) = C(NP,L,I) - A(NP,K)*C(K,L,I)
2411 CONTINUE
DO 2412 L=1, NRHS
DR(NP,L,I) = DR(NP,L,I) - A(NP,K)*DR(K,L,I)
2412 CONTINUE
241 CONTINUE
24 CONTINUE

1000 CONTINUE

CCC** Backward sweep: Elimination of upper block diagonal (C's).
DO 2000 I=II-1, 1, -1
IP = I+l
DO 51 N=1, NBK
DO 511 L=1, NRHS
DO 5111 K=1, JJ
DR(N,L,I) = DR(N,L,I) - C(N,K,I)*DR(K,L,IP)
5111 CONTINUE
511 CONTINUE
51 CONTINUE
2000 CONTINUE

RETURN
END ; FSOLVE
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CSOLVE is the subroutine that solves the linear system of Newton
equations for choked flows.

SUBROUTINE SOLVE
$INCLUDE STATE.INC
$INCLUDE ISES.INC
$INCLUDE ARRAY.INC

C
NBK = 2*JJ+5
Kl = JJ+1
K2 = NBK-6
Js = JJ/2
KS = JJ+JS
Cc

CCC** Forward sweep: Elimination of lower block diagonals (B's and 2's).
DO 1000 I=1, II
IM = -1

N W >
P~ o~
RARR
[ ol
N Nt
nouou
[oNeNe]

501 CONTINUE
DO 502 L=1, JJ
C(K,L,I) = 0.
502 CONTINUE
DO 503 L = NRHS+1, NRHS+3
DR(K,L,I) = 0.

503 CONTINUE
5 CONTINUE
c
CCC**** FIRST, fill 'er up
C

CCC***» T1=] Special treatment (assumes Z,B are zero)
IF(I.EQ.1) IHEN
DO 6 J=1, JJ
A(J,J) = A2(J,1)
6 CONTINUE
DO 7 J=1, JS-1

K = K1+J-1

A(K,J ) = A6(J,1)

A(K,J+1) = A7(J,1) - A6(J+1,1)
A(K,J+2) = - A7(J+1,1)
A(K,K ) = A8(J,1)

A(K,K+1) = - AB(J+1,1)
C(K,J ,1) = C6(J,1)

C(K,J+1,1) = C7(J,1) - C6(J+1,1)
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C(K,J+2,1) =
DO 71 L = 1, NRHS
DR(K,L,1) = DR(K,L,1) - DR(K+1,L,1)
71 CONTINUE
7 CONTINUE
DO 8 J=JJ-1,
K =

= C7(J+1,1)

JS+1, -1

A6(J-1,1)

A7(J-1,1) - A6(J,1)
- A7(J,1)

z

Fa

[
nonon

A8(J-1,1)

~
iton

- A8(J,1)
C6(J-1,1)
C7(J-1,1) - Ce6(J,1)
- C7(J,1)

C(K,J+1,1)
DO 81 L = 1, NRHS
DR(K,L,1) = DR(K-1,L,1) - DR(K,L,1)
CONTINUE
8  CONTINUE
A(KS,JS )
A(KS,JS+1)
A(KS,KS )
C(KS,Js ,1)
C(KS,JS+1,1)
DR(KS,NRHS+1,1)
DR(KS,NRHS+2,1)
DR(KS,NRHS+3,1)
DO 9 L=1, NRHS
DR(KS,L,1) =
9  CONTINUE
DO 10 K = K2+1, K2+6
A(K,K) = 1.0
CONTINUE

B6(JS,2)
B7(JS,2)
B8(JS,2)
A6(JS,2)
A7(JS,2)
A8(JS,2)
C6(Js,2)
c7(Js,2)

1

DR(KS,L,2)

10
c
CRRRRAN

I not equal to 1
ELSE

Z(1 ,K2)
Z(1 ,K1)
Z2(JJ,K2)
Z2(JJ, K1)
B(1l ,K2)
B(1 ,Kl)
B(JJ,K2)
B(JJ,K1)
A(l ,K2)
A(1 ,K1l)
A(JJ,K2)
A(JJ,K1)

24(1,1)
25(1,1)
24(J3J3,1)
25(JJ,1)
B4(1,I)
B5(1,I)
B4(JJ,I)
B5(JJ,I)
A4(1,I)
AS(1,I)
A4(JJ,T)
AS5(JJ,I)

DO 111 J=2, JJ-1
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111

112

2(J,K1+J-2) = 24(J,1)
Z(J,K1+J-1) = 25(J,1I)
B(J,K1+J-2) = B4(J,I)
B(J,K1+J-1) = B5(J,I)
A(J,K1+J-2) = A4(J,I)
A(J,K1+J-1) = AS J,I)
CONTINUE
DO 112 J=1, JJ-1
K = K1+J-1
Z(K,K) = 28(J,1)
B(K,K) = B8(J,I)
A(K,K) = A8(J,I)
CONTINUE
Z(K2+1,K1) = ZVC(1,3,1)
Z(K2+2,K1) = ZVT(1,3,I)
Z2(K2+2,K1) = ZVH(1,3,I)
Z(K2+4 ,K2) = 2ZvC(2,3,I)
Z(K2+5,K2) = Z2VT(2,3,1I)
Z(K2+6,K2) = ZVH(2,3,I)
B(K2+1,K1) = BVC(1,3,I)
B(K2+2,K1) = BVT(1,3,I)
B(K2+3,K1) = BVH(1,3,1I)
B(K2+4,K2) = BVC(2,3,I)
B(K2+5,K2) = BVT(2,3,I)
B(K2+6,K2) = BVH(2,3,I)
A(K2+1,K1) = AVC(1,3,I)
A(K2+2,K1) = AVT(1,3,1)
A(K2+3,K1) = AVH(1,3,I)
A(K2+4 ,K2) = AVC(2,3,I)
A(K2+5,K2) = AVT(2,3,I)
A(K2+6,K2) = AVH(2,3,I)
Fill left parts of ? block
B(1 ,1) = B2(1 ,I)
B(1 ,2) = B3(1 ,I)
B(1 ,JJ-1) = B1(1 ,I)
B(1 ,JJ) = BT(1 ,I)
B(JJ,2) = B3(JJ,I)
B(JJ,JJ-1) = B1(JJ,I)
B(JJ,JJ) = B2(JJ,I)
B(JJ,1) = BT(2 ,I)
A(1 ,1) = A2(1 ,I)
A(l ,b2) = A3(1 ,I)
A(l ,JJ-1) = Al(1 ,I)
A(1 ,JJ) = AT(1 ,I)
A(JJ,2) = A3(JJ,I)
A(JJ,JJ-1) = A1(JJ,I)
A(JJ,33) = A2(JJ,I)
A(JJ,1) = AT(2 ,I)
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131

132

c(1 .1 ,1)
c(1,2 ,I)
c(1 ,J33-1,1)
c(1 ,J3 ,I)
c(JJ,2 L1)
C(JJ,JJ-1,1)
c(J3J3,33 ,I)
c(JJ,1 LI

c2(1 ,1)
c3(1 ,I)
ci(1 ,I)
CT(1 ,I)
C3(JJ.1)
C1(JJ,I)
C2(J3J,1)
cT(2 ,I)

DO 131 J=2, JJ-1

B(J,J-1)
B(J,J )
B(J,J+1)
A(J,J-1)
A(J,J )
A(J,J+1)
c(J,3-1,1)
(3,3 ,I)
C(J,J+1,I)
CONTINUE

wou o

Bl
B2
B3
Al
A2

= A3

(J,1)
(J,1)
(J.1)
(J,1)
(J.1)
(J,1)
C1(J,I)
c2(J,I)
C3(J,I)

DO 132 J=1, JJ-1

K = J+JJ
B(K,J )
B(K,J+1)
A(K,J )
A(K,J+1)
C(K,J ,I)
C(K,J+1,1)
CONTINUE
B(K2+1,1)
B(K2+2,1)
B(K2+3,1)
B(K2+1,2)
B(K2+2,2)
B(K2+3,2)
B(K2+4,JJ-1)
B(K2+5,J3J-1)
B(K2+6,JJ-1)
B(K2+4,3J)
B(K2+5,JJ)
B(K2+6,JJ)
A(K2+1,1)
A(K2+2,1)
A(K2+3,1)
A(K2+1,2)
A(K2+2,2)
A(K2+3,2)
A(K2+4,3J-1)
A(K2+5,J3J-1)
A(K2+6,JJ-1)

B6(J,I)

B7

(J,1)

A6(J,T)

Al

(J,I)

= C6(J,I)

C7(J,I)

BVC(1,1,I)
BVT(1,1,I)
BVH(1,1,I)
BVC(1,2,I)
BVT(1,2,I)
BVH(1,2,I)
BvVC(2,1,I)
BVT(2,1,I)

= BVH(2,1,I)

BvVC(2,2,1)
BVT(2,2,I)
BVH(2,2,I)
AVC(1,1,I)
AVT(1,1,I)
AVH(1,1,I)
AvC(1,2,I)
AVT(1,2,1)
AVH(1,2,I)
aAvC(2,1,I)
AVT(2,1,I)
AVH(2,1,I)
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A(K2+4,37)
A(K2+5,37)
A(K2+6,37)
C(K2+1,1,1)
C(K2+2,1,1)
C(K2+3,1,I)
C(K2+1,2,I)
C(K2+2,2,1)
C(K2+3,2,1I)
C(K2+4,J3-1,1)
C(K2+5,3J-1,1)
C(K2+6,J3-1,1)
C(K2+4,33,1)
C(K2+5,J3,1)
C(K2+6,J3,1)

i n

DO 14 N=1, 6
L = K2+N
B(1 ,L)
B(JJ,L)
A(l ,L)
A(JJ,L)

CONTINUE

BI
BI
AI
Al

14

DO 15 L=1, 3
B(K2+1,K2+L)
B(K2+2,K2+L)
B(K2+3,K2+L)
A(K2+1,K2+L)
A(K2+2,K2+L)
A(K2+3,K2+L)

AVC(2,2,1)
AVT(2,2,1)
AVH(2,2,I)

o ononon

(1
(2
(1
(2

w

cve(l,1,1)
CVT(1,1,I)
CVH(1,1,I)
cve(l,2,1)
CVT(1,2,I)
CVH(1,2,I)
cve(2,1,1)
CVT(2,1,I)
CVH(2,1,I)
cve(2,2,1)
CVT(2,2,I)
CVH(2,2,I)

N, I)
N, I)
N,I)
N, I)

BVC(1,L+3,I)
BVT(1,L+3,I)
BVH(1,L+3,I)
AVC(1,L+3,I)
AVT(1,L+3,I)
AVH(1,L+3,I)

B(K2+4 ,K2+L+
B(K2+5,K2+L+
B(K2+6,K2+L+
A(K2+4,K2+L+
A(K2+5,K2+L+
A(K2+6 ,K2+L+

3)
3)
3)
3)
3)
3)

0o

BYC(2,L+3,I)
BVT(2,L+3,I)
BVH(2,L+3,I)
AVC(2,L+3,1I)
AVT(2,L+3,I)
AVH(2,L+3,I)

15  CONTINUE
C
CCC**** Do JS shift

IF(I.LT.II-1)

THEN

Z(KS,Ks )
B(Ks,Js )
B(KS,JS+1)
B(KS,KS )
A(KS,Js )
A(KS,J5+1)
A(KS,Ks )

C(Ks,Js ,I

)

0.

0.

0.
28(JS,I+1)
B6(JS,I+1)
B7(JS,I+1)
B8(JS,I+1)

= A6(JS,I+1)



C(KS,JS+1,I) = A7(JS,I+1)
DR(KS,NRHS+1,I) = A8(JS,I+1)
DR(KS,NRHS+2,I) = C6(JS,I+1)
DR(KS,NRHS+3,I) = C7(JS,I+1)
DO 151 L = 1, NRHS
DR(KS,L,I) = DR(KS,L,I+1)
151 CONTINUE

ELSE IF(I.EQ.II-1) THEN
DO 152 K=1, K2

Z(KS,K) = 0.
B(KS,K) = 0.
A(KS,K) = 0.
C(KS,K,I) = 0.

152 CONTINUE
DO 153 L=1, NRHS
DR(KS,L,I) = 0.
153 CONTINUE
DO 154 J=1,JJ-1

K = K1+J-1

B(KS,K ) = B(KS,K ) + 28(J,I+1)
A(KS,J ) = A(KS,J ) + B6(J,I+1)
A(KS,J+1) = A(KS,J+1) + B7(J,I+1)
A(KS,K ) = A(KS,K ) + B8(J,I+1)

C(Ks,J ,I)=C(KS,J ,I) + A6(J,I+1)
C(KS,J+1,I)=C(KS,J+1,I) + A7(J,I+1)
DO 1541 L = 1, NRHS
DR(KS,L,I) = DR(KS,L,I) + DR(K,L,I+1)
1541 CONTINUE
154 CONTINUE
ENDIF
C
ENDIF
C
CCCx*»* Eliminate right Z block
IF(I.GE.3) THEN
DO 16 K=1, NBK
DO 161 J=K1i, K2
IF(2(K,J).EQ.0.0) GO TO 161l
DO 1611 L=1, JJ
B(K,L) = B(K,L) - 2(K,J)*C(J,L,IL)
1611 CONTINUE
DO 1612 L=1, NRHS
DR(K,L,I) = DR(K,L,I) - Z(K,J)*DR(J,L,IL)
1612 CONTINUE
KS = K1+JS-1
B(K,KS ) B(K,KS ) - Z(K,J)*DR(J,NRHS+1,IL)
A(K,JS ) = A(K,JS ) - 2(K,J)*DR(J,NRHS+2,1IL)
A(K,JS+1) A(K,JS+1) - Z(K,J)*DR(J,NRHS+3,1IL)
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161

CONTINUE

16  CONTINUE
ENDIF

C

CCC***» EFEliminate B block
IF(I.GE.2) THEN
DO 17 K=1, NBK

DO 171 J=1, NBK
IF(B(K,J).EQ.0.0) GO TO 171
DO 1711 L=1, JJ
A(K,L) = A(K,L) - B(K,J)*C(J,L,IM)

1711 CONTINUE
DO 1712 L=1, NRHS
DR(K,L,I) = DR(K,L,I) - B(K,J)*DR(J,L,IM)
1712 CONTINUE
A(K,KS ) = A(K,KS ) - B(K,J)*DR(J,NRHS+1,IM)
C(K,Js ,I) = C(K,JS ,I) - B(K,J)*DR(J,NRHS+2,IM)
C(K,JS+1,I) = C(K,JS+1,I) - B(K,J)*DR(J,NRHS+3,IM)
171 CONTINUE

17 CONTINUE
ENDIF

C

CCC**** Tnvert A block
DO 20 NP=NBK, 2, -1

201

202

2101

2102

NM1 = NP-1
PIVOT = 1.0/A(NP,NP)

normalize pivot row
DO 201 L=1, NM1

A(NP,L) = A(NP,L)*PIVOT
CONTINUE
DO 202 L=1, JJ

C(NP,L,I) = C(NP,L,I)*PIVOT
CONTINUE
DO 203 L=1, NRHS+3

DR(NP,L,I) = DR(NP,L,I)*PIVOT
CONTINUE

eliminate pivot column
DO 210 K=1, NM1
IF(A(K,NP).EQ.0.0) GO TO 210
DO 2101 L=1, NM1
A(K,L) = A(K,L) - A(K,NP)*A(NP,L)
CONTINUE
DO 2102 L=1, JJ
C(K,L,I) = C(K,L,I) - A(K,NP)*C(NP,L,I)
CONTINUE
DO 2103 L=1, NRHS+3
DR(K,L,I) = DR(K,L,I) - A(K,NP)*DR(NP,L,I)
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2103 CONTINUE
210 CONTINUE
20 CONTINUE

C-=m==- normalize last row
PIVOT = 1.0 / A(1,1)
DO 21 L=1, JJ
c(1,L,I) = C(1,L,I)*PIVOT
21 CONTINUE
DO 22 L=1, NRHS+3
DR(1,L,I) = DR(1,L,I)*PIVOT
22 CONTINUE

C------ back substitute
DO 24 NP=2, NBK
NM1 = NP-1
DO 241 K=1, NM1
IF(A(NP,K).EQ.0.0) GO TO 241
DO 2411 L=1, JJ
C(NP,L,I) = C(NP,L,I) - A(NP,K)*C(K,L,I)
2411 CONTINUE
DO 2412 L=1, NRHS+3
DR(NP,L,I) = DR(NP,L,I) - A(NP,K)*DR(K,L,I)
2412 CONTINUE :
241 CONTINUE
24  CONTINUE
C
1000 CONTINUE
C
CCC** Backward sweep: Elimination of upper block diagonal (C's).
DO 2000 I=II-1, 1, -1
IP = I+1
IQ = I+2
DO 51 N=1, NBK
DO 511 L=1, NRHS
DO 5111 K=1, JJ
DR(N,L,I) = DR(N,L,I) - C(N,K,I)*DR(K,L,IP)
5111 CONTINUE
IF(I.NE.II-1) DR(N,L,I) = DR(N,L,I)

& - DR(N,NRHS+1,I)*DR(KS,L,IP)

& - DR(N,NRHS+2,I)*DR(JS,L,IQ)

& - DR(N,NRHS+3,I)*DR(JS+1,L,IQ)
511 CONTINUE

51 CONTINUE
2000 CONTINUE
C
RETURN
END ; FSOLVE
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ISOLVE is the subroutine that solves the linear system of Newton
equations by an iterative method.

SUBROUTINE SOLVE
$INCLUDE STATE.INC
$INCLUDE ISES.INC

COMMON/ISOL/ DS(JW,NGLX,-1:IX+1),D(IX,NGLX+2)
c
CCC** Zero changes

DO 1 I=-1, II+l

DO 11 K=1, 2*JJ-1
DS(K,1,I) = O.
11 CONTINUE

1 CONTINUE
C
CCC** Call pre-processor
CALL PRE
C
CCC** Iterate, sweeping downstream and upstream
C WRITE(S,*) 'Input NITREL, UNDER'
C READ(5,*) NITREL, UNDER
C WRITE(S5,*) ' '
NITREL = 21
UNDER = 1.0
C
WRITE(S,*) ' '
DO 2 ITREL = 1, NITREL
RESRMS = 0.
RESMRX = 0.
IMAX = O
JMAX = 0
LMAX = 0
DO 21 I =1, II
CALL RELAXN(I,UNDER,RESRMS,RESMAX, IMAX,JMAX,b LMAX)
21  CONTINUE
Do 22 J = 2, JJ-1
CALL RELAXS(J,UNDER,RESRMS,RESMAX, IMAX, JMAX,LMAX)
22 CONTINUE
RESRMS = SQRT(RESRMS/(2*II>JJ*NRHS))
IF(MOD(ITREL,10).EQ.1) WRITE(S,*) 'Rms, max residual = ',
& RESRMS,RESMAX,' at I,J,L = ',6IMAX,JMAX,LMAX
2 CONTINUE
C
CCC** Call post-processor
CALL POST
c
RETURN
END ; SOLVE
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C

SUBROUTINE PRE
$INCLUDE STATE.INC
$INCLUDE iISES.INC

DO 1 IO = 1, II-1
IL = I0-2
IM = IO-1
IP = IO+1
DO 11 JO = 1, JJ-1

JP = JO+1

Process n-mom equations
IF(IO.GT.2) THEN

22(J0,I0) = 22(JO,IO)
23(J0,I0) = 23(JO,I0)
21(JpP,10) = 21(JP,IO0)
Z2(Jp,10) = 22(JP,IO)
B2(JO,I0) = B2(JO,I0)
B3(JO,I0) = B3(JO,IO)
B1(JP,I0) = B1(JP,IO)
B2(JP,I0) = B2(JP,IO)
ENDIF
IF(I0.GT.1) THEN
B2(J0,I0) = B2(JO,IO)
B3(JO,I0) = B3(JO,IO)
B1(JF,I0) = B1l(JP,IO)
B2(JP,IO0) = B2(JP,I0)
A2(JO,I0) = A2(JO,I0)
A3(JO,IC) = A3(JO,I0)
Al1(JP,I0) = Al(JP,I0)
A2(JP,IO0) = A2(JP,IO)
ENDIF
A2(JO,IO0) = A2(JO,IO0) +
A3(JO,I0) = A3(JO,IO) +
A1(JP,IO) = Al(JP,IO) +
A2(JP,I0) = A2(JP,IO) +
€2(J0,I0) = C2(J0,IO0) +
€3(Jo,I0) = ¢3(JO,I0) +
C1(JP,I0) = C1(JP,IO) +
C2(JP,I0) = C2(JP,IO) +

Process s-mom equations
IF(J10.GT.2) THEN

+ 4+ + + + + + 4+

+ o+ + + + + o+ o+

25(J0,I0)*DRIN1M(JO,IL)
Z5(J0,I0)*DR1IN1P(JO,IL)
Z24(JP,I0)*DRINIM(JO,IL)
Z4(JpP,I0)*DRIN1P(JO,IL)
25(JO,I0)*DR1IN2M(JO,IL)
25(J0, I0)*DRIN2P(JO, IL)
Z4(JP,I0)*DRIN2M(JO, IL)
Z4(JP,I0)*DRIN2P(JO, IL)

B5(JO, IO)*DRINIM(JO, IM)
B5(JO, I0)*DR1N1P(JO, IM)
B4(JP,I0)*DRIN1IM(JO, IM)
B4(JP,I0O)*DRIN1P(JO, IM)
B5(JO, I0)*DR1IN2M(JO, IM)
B5(JO,I0)*DRIN2P(JO, IM)
B4(JP,IO)*DRIN2M(JO,IM)
B4(JP,I0)*DRIN2P(JO,IM)

A5(JO,I0)*DRIN1M(JO, 10)
A5(J0O,I0)*DRIN1P(JO,IO)
A4(JP,I0)*DRIN1M(JO,IO)
A4(JP,IO)*DRIN1P(JO,I0)
A5(JO,IO0)*DRIN2M(JO,I0)
A5(JO,IO0)*DRIN2P(JO, IO)
A4(JP,I0)*DRIN2M(JO, IO)
A4(JP,IO0)*DR1IN2P(JO,I0)
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11

26(J0,I0) = Z6(JO,I0)
27(J0,I0) = 27(JO,I0)
B6(JO,I0) = B6(JO,IO0)
B7(J0O,10) = B7(JO,IO0)
ENDIF

IF(IO.GT.1) THEN

B6(JO,I0) = B6(JO,I0)
B7(JO0,I0) = B7(JGC,I0)
A6(JO,I0) = A6(JO,I10)
A7(J0,I0) = A7(JO,IO)
ENDIF
A6(JO,10) = A6(JO,I0)
A7(JO,I0) = A7(JO,I0)
C6(JO,IQ0) = C6(JO,I0)
C7(J0,10) = C7(J0,I0)
CONTINUE
JO = JJ-1
Jp = 1

IF(IN.GT.2) THEN

21(JP,I0) = 21(JP,IO)
ZT(1 ,I0) = ZT(1 ,IO)
B1(JP,I0) = B1(JP,IO)
BT(1 ,I0) = BT(1 ,IO)
ENDIF

IF(IO.GT.1) THEN

B1(JP,I0) = B1(JP,IO)
BT(1 ,I0) = BT(1 ,IO)
Al1(JP,I0) = Al(JP,IO)
AT(1 ,I0) = AT(1 ,IO)
ENDIF
Al(JP,I0) = Al(JP,IO)
AT(1 ,IO0) = AT(1 ,IO)
C1(JP,I0) = C1(JP,IO)
CT(1 ,I0) = CT(1 ,IO)
JO = JJ
Jp =1

IF(T0.GT.2) THEN
ZT(2 ,I0)
23(J0, I0)
BT(2 ,IO)

+
+

+

+ + + +

+ + + +

+ + + 4+

+ + + +

Z28(J0,I0)*DRINIM(JO,IL)
Z8(JO,IO0)*DRIN1P(JO,IL)
Z28(JO,I0)*DRIN2M(JO,IL)
Z8(JO,I0)*DRIN2P(JO, IL)

B8(JO, I0)*DRIN1IM(JO, IM)
B8(JO,I0)*DRIN1P(JO,IM)
B8(JO,I0)*DR1IN2M(JO, IM)
B8(JO,I0)*DRIN2P(JO, IM)

+ A8(JO,I0)*DRINIM(JO, IO)

+

A8(JO,I0)*DRIN1P(JO,IO)

+ A8(JO,IQ)*DRIN2M(JO,I0)

+

A8(JO, I0)*DRIN2P(JO,I0)

24(JP,I0)*DRINIM(JO, IL)
24(JP,I0)*DRIN1P(JO, IL)
Z4(JP,IO0)*DRIN2M(JO, IL)
24(JP,I0)*DRIN2P(JO, IL)

B4(JP,I0)*DRIN1M(JO,IM)
B4(JP,I0)*DRIN1P(JO,IM)
B4(JP,IO)*DRIN2M(JO, IM)
B4(JP,IO)*DR1IN2P(JC,IM)

44 (JP,I0)*DRINIM(JO,I0)
A4(JP,IO)*DR1IN1P(JO,IO)
+ A4(JP,IO)*DRIN2M(JO, I0)
A4(JP,IO0)*DRIN2P(JO, I0)

ZT(2 ,I0) + 25(JO,IO)*DRINIM(JP,IL)
= 23(JO,I0) + 25(JO,ILO)*DRIN1P(JP,IL)
BT(2 ,I0) + Z5(JO,I0)*DRIN2M(JP,IL)
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B3(JO,I0) = B3(JO,IO)
ENDIF
c
IF(IO.GT.1) THEN
BT(2 ,i0) = BT(2 ,IO)
B3(JO,I0) = B3(JO,I0)
AT(2 ,IO) = AT(2 ,IO)
A3(JO,I0) = A3(JO,IO)
ENDIF
o
AT(2 ,I0) = AT(2 ,I0)
A3(JO,I0) = A3(JO,IO)
CT(2 ,I0) = CT(2 ,I0)
C3(J0,I0) = C3(JO,I0)
o
1 CONTINUE
o
RETURN
END

SUBKOUTINE POST
$INCLUDE STATE.INC
$INCLUDE ISES.INC

+ + 4 4+

+

+ + + +

Z5(JO,I0)*DRIN2P(JP, IL)

B5(JO,I0)*DRINIM(JP, IM)
B5(JO, IO)*DRIN1P(JP, IM)
B5(JO, I0)*DRIN2M(JP, IM)
BS(JO, I0)*DRIN2P(JP, IM)

A5(JO,IO0)*DRIN1IM(JP, I0)
A5(JO,IO)*DRIN1P(JP,IO)
A5(JO,IO0)*DRIN2M(JP,I0)
A5(JO,I0)*DRIN2P(J>,I0)

COMMON/ISOL/ DS(JW,NGLX,-1:IX+1),D(IX,NGLX+2)

c
DO 1 I0 =1, II
IP = IO+1
DO 11 L = 1, NRHS
DO 111 Jo =1, JJ

DR(JO,L,IO) = DS(JO,L,IO)

111 CONTINUE
DO 112 JO = 1, JJ-1
JP = JO+1
JZ = JO+JJ

DR(JZ,L,I0) = D5(J2Z,L,I0)

&
&
&
112 CONTINUE
11 CONTINUE
1 CONTINUE

RETURN
END
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DRIN1M(JO,IO)*D3(JO,L,IO)
DRIN1P(JO,IO)*DS(JP,L,I0)
DR1N2M(JO,I0)*DS(JO,L,IP)
DRIN2P(JO,IO)*DS(JP,L,IP)



C

SUBROUTINE RELAXN(IO,UNDER,RESRMS,RESMAX, IMAX,JMAX, LMAX)

$INCLUDE STATE.INC
$INCLUDE ISES.INC
COMMON/ISOL/ DS(JW,NGLX,-1:IX+1),D(IX,NGLX+2)

LOGICAL LPER
C
IL = I0-2
IM = I0-1
IP = I0+1
C
CCC** First relax entropy variables
Cc
IF(IO.NE.II) THEN
DO 1 JO =1, JJ-1
JP = JOo+1
JZ = JO+JJ
DO 101 L = 1, NRHS
RES = DR(JZ,L,IO) - 26(J0,I0) * DS(JO,L,IL)
& - 27(J0,I0) * DS(JP,L,IL)
& - 28(J0,I0) * DS(JZ,L,IL)
& - B6(JO,I0) * DS(JO,L,IM)
& - B7(J0,10) * DS(Jpr,L,IM)
& - B8(JO,I0) * DS(JZ,L,IM)
& - A6(JO,I0) * DS(JO,L,IO)
& - A7(JO,10) * DS(JP,L,IO)
& - A8(JO,IO) * DS(JZ,L,IO0)
& - C6(JO,I10) * DS(JO,L,IP)
& - C7(JO,I10) * DS(JP,L,IP)
C
RESRMS = RESRMS + RES**2
IF/ABS(RES).GT.ABS(RESMAX)) THEN
RESMAX = RES
IMAX = IO
JMAX = JO
LMAX = L
ENDIF
Ds(JZ,L,I0) = DS(JZ,L,I10) + RES/A8(JO,IO)
c WRITE(S,*) 'JO= ',JO,' Entropy RES= ', RES
101 CONTINUE
1 CONTINUE
ENDIF
Cc
CCC** Second relax node position variables
C
LPER = (Al(1,I0).NE.O.) .OR. (AT(1,I0).NE.O0.) .OR.
& (AT(2,I0).NE.O.) .OR. (A3(JJ,IO0).NE.O.)
C
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JOo =1
JM = JJ-1

J1 2*JJ-1
J2 = JJ+1

BB(1) 0
AA(1)
CC(1)

A2(1,I0)
A3(1,I0)

DO 2 L = 1, NRHS

RES = DR(1,L,I0) - 21(JO,I0) * DS(JM,L,IL)
& 2T(1 ,I0) * DS(JJ,L,IL)
& 22(Jo,I0) * DS(1 ,L,IL)
& 23(Jo,I0) * DS(2 ,L,IL)
& 24(JO,I0) * DS(J1,L,IL)
& 25(J0,T0) * DS(J2,L,IL)
& B1(JO,10) * DS(JM,L,IM)
& BT(1 ,T0) * DS(JJ,L,IM)
& B2(JO,10) * DS(1 ,L,IM)
& B3(JO,I0) * DS(2 ,L,IM)
& B4(JO,I0) * DS(J1,L,IM)
& BS(JO,I0) * DS(J2,L,IM)
RES = RES A1(JO,IO0) * DS(JM,L,IO)
& AT(1 ,IO0) * DS(JJ,L,IO)
& A2(JO,IO0) * DS(1 ,L,IO)
& A3(JO,I0) * DS(2 ,L,IO)
& A4(JO,I0) * DS(J1,L,IO)
& A5(J0,I0) * DS(J2,L,I0)
& C1(JO,I0) * DS(JM,L,IP)
& CT(1 ,I0) * DS(JJ,L,IP)
& c2(Jo,10) * DS(1l ,L,IP)
& c3(Jo,I0) * DS(2 ,L,IP)
RESRMS = RESRMS + RES**2
IF(ABS(RES).GT.ABS(RESMAX)) THEN
RESMAX = RES
IMAX = IO
JMAX = 1
ILMAX = L
ENDIF
D(1,L) = RES
WRITE(5,*) 'JO= 1',' Node RES= ',RES
2 CONTINUE
D(1,NRHS+1) = Al(1,IO)
D(1,NRHS+2) = AT(1,IO)
DO 3 JO = 2, JJ-1
JM = Jo-1
JP = JO+1
Jl = JO+JJ-1
J2 = JO+JJ

BB(JO) = A1(JO,IO)
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AA(JO) = A2(JO,IO0)
CC(Jo) = A3(JO,IO)
DO 31 L = 1, NRHS
RES = DR(JO,L,IO) - 21(JO,I0) * DS(JM,L,IL)
& - 22(J0,I0) * DS(JO,L,IL)
& - 23(J0,I0) * DS(JP,L,IL)
& - 24(J0,I0) * DS(J1,L,IL)
& - 25(J0,I10) * DS(J2,L,IL)
& - B1(JO,I0) * DS(JM,L,IM)
& - B2(JO,I0) * DS(JO,L,IM)
& - B3(JO,I0) * DS(JP,L,IM)
& - B4(JO,I0) * DS(JL,L,IM)
& - B5(J0,I0) * DS(J2,L,IM)
& - A1(JO,I0) * DS(JM,L,IO)
& - A2(J0,I0) * DS(JO,L,IO)
& - A3(JO,IO0) * DS(JP,L,IO)
& - A4(JO,I0) * DS(J1,L,IO)
& - AS(JO,I0) * DS(J2,L,IO)
& - C1(JO,I0) * DS(JM,L,IP)
& - €2(Jo,I0) * DS(JO,L,IP)
& - C3(JO,I0) * DS(JP,L,IP)
RESRMS = RESRMS + RES**2
IF(ABS(RES).GT.ABS(RESMAX)) THEN
RESMAX = RES
IMAX = IO
JMAX = JO
LMAX = L
ENDIF
D(JO,L) = RES
WRITE(S,*) 'JO= ',JO,' Node RES= ',RES
31  CONTINUE
D(JO,NRHS+1) = O.
D(JO,NRHS+2) = 0.
3 CONTINUE
BB(JJ) = Al(JJ,IO)
AA(5J) = A2(JJ,I0)
cc(JJ) = 0.
M = JJ-1
Jl = JJ+1
J2 = 2%JJ-1
DO 4 L = 1, NRHS
RES = DR(JJ,L,I0) - 21(JJ,I0) * DS(JM,L,IL)
& - 22(J3,1I0) * DS(JJ,L,IL)
& - 2T(2 ,I0) * DS(1 ,L,IL)
& - 23(J3,10) * DS(2 ,L,IL)
& - 24(33,10) * DS(J1,L,IL)
& - 25(J3,10) * DS(J2,L,IL)
& - B1(JJ,I0) * DS(JM,L,IM)



C

C-==-

51

R R

[°£]

R R R

RES RES

RESRMS

RESMAX
IMAX
JMAX
LMAX
ENDIF
D(JJ,L)
WRITE(S,*
CONTINUE
D{JJ,NRHS+1
D(JJ,NRHS+2

L

RESRMS +

I0
JJ

)

)
)

RES

RES

'Jo= JJ',’'

0.
0.

B2(JJ,I0)
BT(2 ,I0)
B3(JJ,I0)
B4(JJ, IO)
BS(JJ, 10)
A1(JJ,I0)
A2(JJ,10)
AT(2 ,I0)
A3(JJ,I0)
A4(JJ,10)
A5(JJ,I0)
C1(JJ, I0)
C2(JJ,10)
CT(2 ,I0)
C3(JJ,10)

RES**2
IF(ABS(RES).GT.ABS(RESMAX)) THEN

Solve for nonperiodic systems
IF( .NOT.LPER) THEN
, JJ-1

DO 5 JO
JP = JO+

1
1

PIVOT = 1./AA(JO)
PIVOT*CC(JO)

cc(Joy =
DO 51 L
D(JO,L

CONTINUE

AA(JP) = AA(JP) - BB(JP)*CC(JO)

DO 52 L

D(Jde,L

CONTINUE
CONTINUE

)

)

1,

NRHS

= PIVOT*D(JO,L)

1,

NRHS

* % % % X X X H X X X X X X X

DS(JJ,I..IM)
DS(1 ,L,IM)
DS(2 ,L,IM)
DS(J1,L,IM)
DS(J2,L, IM)
DS(JM, L, IO)
DS(JJ,L,1I0)
DS(1 ,L,IO)
DS(2 ,L,IO)
DS(J1,L,I0)
DS(J2,L, I0)
DS(JM,L,IP)
DS(JJ,L,IP)
DS(1 ,L,IP)
DS(2 ,L,IP)

Node RES= ', RES

D(JP,L) - BB(JP)*D(JO,L)

PIVOT = 1./AA(JJ)
DO 6 L = 1, NRHS
D(JJ,L) = PIVOT*D(JJ,L)

CONTINUE

po 7 Jo = JJ-1,1,-1
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DO 71 L =

D(Jo,L)

71 CONTINUE
7 CONTINUE

1, NRHS
= D(JO,L) - CC(JO)*D(JO+1,L)

c
C---- Solve for periodic sytems
ELSE
N1 = NRHS+1
N2 = NRHS+2

DO 8 JO = 1, JJ-2
JP = JO+1
PIVOT = 1./AA(JO)
CC(JO) = PIVOT*CC(JO)
DO 81 L = 1, N2
D(JO,L) = PIVOT*D(JO,L)
81 CONTINUE
AA(JP) = AA(JP) - BB(JP)*CC(JO)
DO 82 L = 1, N2
D(JP,L) = D(JP,L) - BB(JP)*D(JO,L)
82 CONTINUE
8 CONTINUE

M = JJ-1

AA(JM) = AA(JM) + D(JM,N1)

CC(JM) = CC(JM) + D(JM,N2)

PIVOT = 1./AA(JM)

CC(JM) = PIVOT*CC(JM)

DO 9 L = 1, NRHS

D(JM,L) = PIVOT*D(JM,L)

9 CONTINUE

/ (AR(JJ) - BB(JJ)*CC(JM))
1, NRHS
= PIVOT * (D(JJ,L) - BB(JJ)*D(JM,L))

PIVOT = 1.
DO 10 L =
D(JJ,L)

10 CONTINUE
D(JJ,N1) = PIVOT*AT(2,I0)
D(JJ,N2) PIVOT*A3(JJ,I0)

DO 11 L = 1, NRHS
D(JM,L) = D(JM,L) - CC(IM)*D(JJ,L)
11 CONTINUE
D(JM,N1) = -CC(JIJM)*D(JJ,N1)
D(JIM,N2) -CC(IJM)*D(JJ,N2)

po 12 Jo = JJ-2, 2, -1
JP = JO+1
Tl D(JO,N1)
T2 D(JO,N2)
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121

12

13

14

151
15

C-=--~

161
16

DO 121 L = 1, NRHS

p(Jo,L) = D(JO,L) -CC(JO)'bL(JP,L) -T1*D(JM,L) -T2*D(JJ,L)

CONTINUE
D(JO,N1) = -CC(JO)*D(JP,N1) ~T1*D(JM,N1) -T2*D(JJ,N1)
D(JO,N2) = -CC(JO)*D(JP,N2) -T1*D(JM,N2) -T2*D(JJ,N2)
CONTINUE
A21 = D(2,N1)
A22 = D(2,N2) + 1.0

Tl = D(1,N1)
T2 = D(1,N2)
DO 13 L = 1, NRHS

D(1,L) = D(1,L) -T1*D(JM,L) -T2*D(JJ,L)
CONTINUE
All = -T1*D(JM,N1) -T2*D(JJ,N1) + 1.0
Al2 = -T1*D(JM,N2) -T2*D(JJ,N2) + CC(1)

DETINV = 1./(A11*A22-A12*A21)
AL11INV = A22*DETINV
A12INV = -Al12*DETINV
A21INV = -A21*DETINV

A22INV = Al1*DETINV
DO 14 L = 1, NRHS
Tl = D(1,L)
T2 = D(2,L)
D(1,L) = ALLINV*T1 + A12INV*T2

D(2,L) = A21INV*T1 + A221INV*T2
CONTINUE
po 15 Jo = 3, JJ

DO 151 L = 1, NRHS
b(Jo,L) = D(JO,L) - D(JO,N1)*D(1,L) - D(JO,N2)*D(2,L)
CONTINUE
CONTINUE

ENDIF

Add onto DS
DO 16 JO =1, JJ
DO 161 L = 1, NRHS
bs(Jo,L,I0) = DS(JO,L,IO) + UNDER*D(JO,L)
CONTINUE
CONTINUE

RETURN
END ; RELAXN
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Cc

SUBROUTINE RELAXS(JO,UNDER,RESRMS,RESMAX, IMAX,JMAX,IMAX)

$INCLUDE STATE.INC
$INCLUDE ISES.INC

COMMON/ISOL/ DS(JW,NGLX,-1:IX+1),D(IX,NGLX+2)
LOGICAL LPER

CCC**

MR RRIDRRRR DR R

JM = JO-1
JP = JO+1
J1l = JO+JJ-1
J? = JO+JJ

Relax node position variables

DO 1 I0 =1, II
IL = I0-2
IM = IO-1
IP = IO+l
22(I10) = 22(JO,IO0)
BB(IO) = B2(JO,IO)
AA(IO) = A2(JO,IO)
CC(10) = C2(JO,I0)

DO 11 L = 1, NRHS

RES

DR(JO,L,I0)

RESRMS = RESRMS +

IF(ABS(RES).GT.ABS(RESMAX)) THEN

RESMAX = RES

- 21(JO,I0)
- 22(J0,10)
- 23(JOo,I0)
- 24(J0,10)
- 25(J0,10)
- B1(JO,I0)
- B2(J0,10)
- B3(JO, I0)
- B4(JO,I0)
- B5(JO,I0)
- A1(JO,I0)
- A2(JO,I0)
- A3(JO,I0)
- A4(JO0,I0)
- A5(J0,I0)
- C1(J0,10)
- C2(J0,10)
- C3(J0,10)
RES**2
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DS(JM,L,IL)
DS(JO,L,IL)
DS(JP,L,IL)
DS(J1,L,IL)
DS(J2,L,IL)
DS(JM, L, IM)
DS(JO,L,IM)
DS(JP,L,IM)
DS(J1,L,IM)
DS(J2,L,IM)
DS(JM,L,IO)
DS(JO,L,I0)
DS(JP,L, I0)
DS(J1,L, I0)
DS(J2,L,I0)
DS(JM, L, IP)
DS(JO,L, IP)
DS(JP,L,IP)
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21

22

IMAX = IO
JMAX = JO
LMAX = L
ENDIF

D(IO,L) = RES
WRITE(S,*) 'JO= ',JO,' Node RES= ', RES

CONTINUE
CONTINUE
Solve
DO 2 I0 =1, II
IP = I0O+1
IQ = I0+2
PIVOT = 1./AA(I0)
CC(I0) = PIVOT*CC(IO)
DO 21 L = 1, NRHS
D(IO,L) = PIVOT*D(IO,L)
CONTINUE
IF(IP.GT.II) GOTO 2
AA(IP) = AA(IP) - BB(IP)*CC(IO)
DO 22 L = 1, NRHS
D(IP,L) = D(IP,L) - BB(IP)*D(IO,L)
CONTINUE
IF(IQ.GT.II) GOTO 2
BB(IQ) = BB(IQ) - ZZ(IQ)*CC(IO)
DO 23 L = 1, NRHS
D(IQ,L) = D(IQ,L) - 2Z(IQ)*D(IO,L)
CONTINUE
CONTINUE

bpo 3 10 = 1I-1,1,-1
DO 31 L = 1, NRHS
D(I0,L) = D(IO,L) - CC(IO)*D(IO+1,L)
CONTINUE
CONTINUE

Add onto DS
DO 4 I0 =1, II
DO 41 L = 1, NRHS
DS(Jo,L,I0) = DS(JO,L,I0) + UNDER*D(IO,L)
CONTINUE
CONTINUE

RETURN
END ; RELAXS
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UPDATE is the subroutine which calculates the global variables and
then updates the solution, with clamping if necessary to prevent exces-
sive changns.

SUBROUTINE UPDATE
$INCLUDE STATE.INC
$INCLUDE ISES.INC
CHARACTER*1 VVAR, SVAR

C
RLXI = 1.0
RLXV = 1.0
C
C---- calculate global iterates
CALL GLOBIT
C
C---- subtract off extra righthand sides
po 10 I=1, II
DO 11 J=1, 2*JJ+5S
DR(J,0,I) = 0.
DR(J,1,I) = DR(J,1,I)
& - DNINL*DR(J,LNINL,I)
& - DNOUT*DR(J,LNOUT,I)
& - DCIRC*DR(J,LCIRC,I)
& - DALFA*DR(J,LALFA,I)
& - DSBLE*DR(J,LSBLE,I)
& - DPDFO*DR(J,LPDFO,I)
& - DPDF1*DR{J,LPDF1,I)
& - DPDFL*DR(J,LPDFL,I)
& - DPDXO*DR(J,LPDX0,I)
& - DPDX1*DR(J,LPDX1,I)
11 CONTINUE
10 CONTINUE
C
C---- clamp DSBLE
DSLE = 0.50 * SQRT((X(ILE+1,1)-X(ILE+1, Jl))**2
& + (Y(ILE+1,1)-Y(ILE+i, VY )+PITCH)**2)
IF(RLXI*ABS(DSBLE).GT.1.5*DSLE) KLXI - !.5*DSLE/ABS(DSBLE)
C
C---- find max and rms changes
DNMAX = 0.0
DNRMS = 0.0
DRMAX = 0.0
DRRMS = 0.0
INMAX = O
JNMAX = 0
IRMAX = 0
JRMAX = 0
VVAR = ' !




401

402

IVMAX
ISMAX

0
0

= 2*J3J-1

DO 40 I =1, II-1

DO 401 J =1, JJ-1

RRAT = DR(J+JJ,1,I)/R(I,J)
IF(RLXI*RRAT.GT.1.0) RLXI = 1.0/RRAT
IF(RLXI*RRAT.LT.-.5) RLXI = -.5/RRAT
IF(ABS(RRAT) .GT. ABS(DRMAX)) THEN
DRMAX = RRAT

IRMAX = I
JRMAX = J
ENDIF

DRRMS = DRRMS + RRAT**2

CONTINUE

DO 402 J =1, JJ
IF(ABS(DR(J,1,I)) .GT. ABS(DNMAX)) THEN

DNMAX = DR(J,1,I)
INMAX = I
JNMAX = J
ENDIF
DNRMS = DNRMS + DR(J,1,I)**2
CONTINUE
DHI = 1.7
DLO = -.6

IF(.NOT.LVISC .OR. I.LE.ILE) GO TO 40

DO 403 Is=1, 2
DV = DR(K2-2+3*1S,1,I)/UEDG(I,IS)

IF(RLXV*DV.GT.DHI .OR. RLXV*DV.LT.DLO) THEN

IVMAX = I

ISMAX = IS

VVAR = 'U'
ENDIF

IF(RLXV*DV.GT.DHI) RLXV = DHI/DV
IF(RLXV*DV.LT.DLO) RLXV = DLO/DV

DV = DR(K2-1+3*1S,1,I)/THET(I,IS)

IF(RLXV*DV.GT.DHI .OR. RLXV*DV.LT.DLO) THEN

IVMAX = I

ISMAX = IS

VVAR = 'T'
ENDIF

IF(RLXV*DV.GT.DHI) RLXV = DHI/DV
IF(RLXV*DV.LT.DLO) RLXV = DLO/DV
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DV = DR(K2 +3*IS,1,I)/DISP(I,IS)
"W(RLXV*DV.GT.DHI .OR. RLXV*DV.LT.DLO) THEN

""MAX = I
ISMAX = IS
4VAR = 'D'
_NDIF
IF(RLXV*DV.GT.DHI) RLXV = DHI/DV ; clamp dDSTAR
IF(RLXV*DV.LT.DLO) RLXV = DLO/DV
C
DDIF = DR(K2-1+3*IS,1,I) - DR(K2+3*IS,1,I)
VDIF = DISP(I,IS) - THET(I,IS)
IF(VDIF.LT.RLXV*DDIF) THEN
RLXV = 0.75*VDIF/DDIF ; clamp dH
IVMAX = I
ISMAX = IS
VVAR = 'H'
ENDIF
c
403 CONTINUE
c
40 CONTINUE
C
C---- limit max iterate to CLAMP% relative change
RLX = AMIN1(1.0,RLXI,RLXV)
c
C---- update density

DO 50 I=1, II-1
DO 501 J = 1, JJ-1
R(I,J) R(I,J) + RLX*DR(J+JJ,1,I)
501 CONTINUE
50 CONTINUE

C---- update grid
DO 51 I=1, II
DO 511 J=1, JJ
X(I,J) = X(I,J) + RLX*DR(J,1,I)*NX(I,J)
Y(I,J) = Y(I,J) + RLX*DR(J,1,I)*NY(I,J)
511 CONTINUE
51 CONTINUE

C---- adjust inlet stagnation streamline nodes
SLEN = 0.
DO 53 I=2, ILE
SLEN = SLEN + SQRT((X(I,1)-X(I-1,1))**2 + (Y(I,1)-Y(I-1,1))**2)
53 CONTINUE
XOLD = X(1,1)
YOLD = Y(1,1)
SLENM = 0.
DO 55 I=2, ILE-1
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62
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65

DXM = X(I,1) - XOLD
DYM = Y(I,1) - YOLD

DXP = X(I+1,1) - X(I,1)
DYP = Y(I+1,1) - Y(I,1)

DSM = SQRT(DXM*DXM + DYM*DYM)
DSP = SQRT(DXP*DXP + DYP*DYP)

SLENO = SLENM + DSM

DX = DXM + DXP

DY = DYM + DYP

DELTS = SLEN*SINL(I) - SLENO
XOLD = X(I,1)

YOLD = Y(I,1)

X(I,1) = X(I,1) + DELTS * DX/SQRT(DX*DX + DY*DY)

Y(I,1)
X(I,J3) = X(I,1)
Y(I,JJ) = Y(I,1) + PITCH
SLENM = SLENO

CONTINUE

IF(LVISC) THEN
update BL parameters
K2 = 2*3JJ-1
DO 62 I=ILE, II-1

Y(I,1) + DELTS * DY/SQRT(DX*DX + DY*DY)

UEDG(I,1) = UEDG(I,1l) + RLX*DR(K2+1,1,I)
UEDG(I,2) = UEDG(I,2) + RLX*DR(K2+4,1,I)
THET(I,1) = THET(I,1l) + RLX*DR(K2+2,1,I)
THET(I,2) = THET(I,2) + RLX*DR(K2+5,1,I)
DISP(I,1) = DISP(I,1) + RLX*DR(K2+3,1,I)
DISP(I,2) = DISP(I,2) + RLX*DR(K2+6,1,I)

CONTINUE

ENDIF

update global variables
SBLE = SBLE + RLX*DSBLE

CIRC = CIRC + RLX*DCIRC
ALFA = ALFA + RLX*DALFA
PDFO = PDFO + RLX*DPDFO0
PDF1 = PDF1 + RLX*DPDF1
PDFL = PDFL + RLX*DPDFL
PDX0 = PDX0O + RLX*DPDXO
PDX1 = PDX1 + RLX*DPDX1

set new mass vector
DO 65 J=1, JJ-1

M(J) = MASS*MFRACT(J)
CONTINUE

IF(LDESI.OR.LMIXI) CALL NEWBLD
CALL NEWDIS
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1200
1210
1240
1250
1260

1270

1280

DRRMS
DNRMS

SQRT(DRRMS/FLOAT( (II-1)*(JJ-1)))
SQRT(DNRMS/FLOAT( (II-1)*(JJ-1)))

set SMOVE flag if necessary
IF(ABS(SBLE-SBLOLD).GT.0.5*DSLE) THEN
LSMOVE = .TRUE.

SVAR = 'S!

SBLOLD = SBLE

ELSE

LSMOVE = _FALSE.

SVAR = ' !
ENDIF

IF(RLX .LT.1.0) WRITE(S,*) ' '
IF(RLXI.LT.1.0) WRITE(5,1200) RLXI
IF(RLXV.LT.1.0) WRITE{S,1210) RLXV,VVAR,IVMAX,ISMAX
WRITE(S5,1240) ITER,SVAR, DRRMS, DRMAX, IRMAX, JRMAX
WRITE(S,1250) DNRMS, DNMAX, INMAX, JNMAX
WRITE(S5,1260) DR(1,1,1), DR(1,1,II), DSBLE
IF(LDESI) WRITE(5,1270) DPDFO, DPDF1, DPDFL
IF(LMIXI) WRITE(5,1280) DPDX0O, DPDX1
FORMAT(/X,'RLXI: ',F8.6)
FORMAT( X,'RLXV: ',LF8.6,4X,Al,' clamped at' I = ',6I3,', side
FORMAT(/X,I4,X,A,' rms(dR): ',E9.3,' Max(dR): ',E9.3,' at
FORMAT( X,6X, ' rms(dN): ',E9.3,' Max(dN): ',E9.3,' at
FORMAT( X,6X,' Inl(dN): ',E9.3,' Out(dN): ',bE9.3,

' LE(AN) : ',E9.3)

FORMAT( X,6X,' dDOFO : ',E9.3,' dDOF1 : ',6E9.3,
' dDOFL : ',E9.3)
FORMAT( X,6X,' 4DOFO : ',E9.3,' dDOF1 : ',E9.3)

RETURN
END ; UPDATE

SUBROUTINE NEWBLD

$INCLUDE STATE.INC
$INCLUDE ISES.INC

C
C----

REAL XNEW(IBX), YNEW(IBX), SNEW(IBX)

set new blade coordinates

K2 = 2*JJ-1
IB =0
SNEW(1) = 0.
DO 80 I=ITE, ILE, -1
IB = IB+1
SS (1.0 - SG(I-ILE+1,1))*SBLE

XOLD = SEVAL(SS,XB,XPB,SB,IIB)
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&
80

YOLD = SEVAL(SS,YB,YPB,SB,IIB)
DX DEVAL(SS,YB,YPB,SB,I1IB)
DY -DEVAL(SS,XB,XPB,SB,IIB)
DS = SQRT(DX*DX + DY*DY)
[F(.NOT.LVISC) DX = 0.0
IF(.NOT.LVISC) DY = 0.0
XNEW(IB) = XOLD + (NX(I,1)*DR(1,1,I) - DX*DR(K2+3,1,1)/DS)*RLX
YNEW(IB) = YOLD + (NY(I,1)*DR(1,1,I) - DY*DR(K2+3,1,I)/DS)*RLX
IF(IB.GT.1) SNEW(IB) = SNEW(IB-1)
+ SQRT( (XNEW(IB)-XNEW(IB-1))**2 + (YNEW(IB)-YNEW(IB-1))**2)

CONTINUE
IF(IBLE.GT.O0) THEN
IB=IB+1
XNEW(IB) = XNEW(IB-1)
YNEW(IB) = YNEW(IB-1)
SNEW(IB) = SNEW(IB-1)
ENDIF
DX = 0.
DY = O.
DS = 0.
DO 82 I=ILE+1, ITE
IB = IB+1

SS = SBLE + (SB(IIB)-SBLE)*SG(I-ILE+1,2)

XOLD = SEVAL(SS,XB,XPB,SB,IIB)
YOLD = SEVAL(SS,YB,YPB,SB,IIB)
DX = DEVAL(SS,YB,YPB.SB,IIB)
DY = -DEVAL(SS,XB,XPB,SB,IIB)

DS = SQRT(DX*DX + DY*DY)
IF(.NOT.LVISC) DX = 0.0
IF(.NOT.LVISC) DY = 0.0

¥NEW(IB) = XOLD + (NX(I,JJ)*DR(JJ,1,I) - DX*DR(K2+6,1,I)/DS)*RLX
YNEW(IB) = YOLD + (NY(I,JJ)*DR(JJ,1,I) - DY*DR(K2+6,1,I)/DS)*RLX
SNEW(IB) = SNEW(IB-1)
& + SQRT((XNEW(IB)-XNEW(IB-1))**2 + (YNEW(IB)-YNEW(IB-1))**2)
82 CONTINUE
o
C---- fix up TE gap
TEGAP = SQRT((XB(IIB)-XB(1))**2 + (YB(IIB)-YB(1l))**2)
XTE = 0.5*(XB(1) + XB(IIB) ) ; preserve axial chord
YTE = O.5*(YNEW(1l) + YNEW(IIB))
XNEW(1) = XTE - 0.5*DX*TEGAP/DS
XNEW(IIB) = XTE + 0.5*DX*TEGAP/DS
YNEW(1) = YTE - 0.5*DY*TEGAP/DS
YNEW(IIB) = YTE + O.S*DY*TEGAP/DS
C

IF(IBLE.EQ.O) THEN

CALL SPLINE(XNEW.XPB,SNEW,IIB)
CALL SPLINE(YNEW,YPB,SNEW,IIB)
ELSE
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CALL SPLINE(XNEW,XPB,SNEW, IBLE)

CALL SPLINE(YNEW,YPB,SNEW, IBLE)

IBP = IBLE+l

CALL SPLINE(XNEW(IBP),XPB(IBP),SNEW(IBP),IB-IBLE)
CALL SPLINE(YNEW(IBP),YPB(IBP),SNEW(IBP),IIB-IBLE)
ENDIF

C---- set blade surface grid points to match SG arrays
IB =0
SBLE = SNEW(NBLD)
SB(1) = 0.
DO 90 IG=NBLD, 1, -1
IB = IB+1
SS = SBLE * (1.0-SG(IG,1))
XB(IB) = SEVAL(SS,XNEW,XPB,SNEW,IIB)
YB(IB) = SEVAL(SS,YNEW,YPB,SNEW,IIB)
IF(IB.GT.1) SB(IB) = SB(IB-1)
& + SQRT((XB(IB)-XB(IB-1))**2 + (YB(IB)-YB(IB-1))**2)
90 CONTINUE
IF(IBLE.GT.O0) THEN
IB=IB+1
XB(IB) = XB(IB-1)
YB(IB) YB(IB-1)
SB(IB) = SB(IB-1)
ENDIF
DO 92 IG=2, NBLD
IB = IB+1
SP = SBLE + (SNEW(IIB)-SBLE)*SG(IG,2)
XB(IB) SEVAL(SP,XNEW,XPB,SNEW,I1IB)
YB(IB) SEVAL(SP,YNEW, YPB,SNEW,IIB)
SB(IB) = SB(IB-1)
SQRT( (XB(IB)-XB(IB-1))**2 + (YB(IB)-YB(IB-1))**2)

&
92 CONTINUE

+

C
C---- respline blade arrays
IF(IBLE.EQ.O) THEN
CALL SPLINE(XB,XPB,SB,IIB)
CALL SPLINE(YB,YPB,SB,IIB)
ELSE
CALL SPLINE(XB,XPB,SB,IBLE)
CALL SPLINE(YB,YPB,SB,IBLE)
IBP = IBLE+l
CALL SPLINE(XB(IBP),XPB(IBP),SB(IBP),IIB-IBLE)
CALL SPLINE(YB(IBP),YPB(IBP),SB(IBP),IIB-IBLE)
ENDIF
RETURN
END ; NEWBLD
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SUBROUTINE NEWDIS
$INCLUDE STATE.INC
$INCLUDE ISES.INC
C
C---- set leading edge Dstar
DISP(ILE,l) = 0.
IF(IBLE.EQ.O) DISP(ILE,l) = 0.5*(DISP(ILE+1,1)+DISP(ILE+1,2))
DISP(ILE,2) = DISP(ILE,1)
c
C---- offset grid from blade surface
DO 10 IG=1, NBLD
I = ILE + IG - 1
DIS = 0.
IF(LVISC) DIS = DISP(I,1)
SS = SBLE * (1.0-SG(IG,1))
DY -DEVAL(SS,XB,XPB,SB,IIB)
DX DEVAL(SS,YB,YPB,SB,I1IB)
DS SQRT(DX*DX + DY*DY)
X(I,1) = SEVAL(SS,XB,XPB,SB,IIB) + DIS*DX/DS
Y(I,1) SEVAL(SS,YB,YPB,SB,IIB) + DIS*DY/DS
10 CONTINUE
DO 20 IG=1, NBLD
I = ILE + IG - 1
DIS = 0.
IF(LVISC) DIS = DISP(I,L2)
SS = SBLE + (SB(IIB)-SBLE)*SG(IG,2)
DY = -DEVAL(SS,XB,XPB,SB,IIB)
DX DEVAL(SS,YB,YPB,SB,IIB)
DS SQRT(DX*DX + DY*DY)
X(I,J3J3) SEVAL(SS,XB,XPB,SB,IIB) + DIS*DX/DS
Y(I,JJ3) SEVAL(SS,YB,YPE,SB,IIB) + DIS*DY/DS + PITCH
20 CONTINUE

C
RETURN
END ; NEWDIS

SUBROUTINE GLOBIT
$INCLUDE STATE.INC
$INCLUDE ISES.INC

REAL QQ(NGLX,0:NGLX)
C

CALL LCALC
o

DO 888 K=1, NRHS

DO 777 L=0, NRHS
QQ(K,L) = 0.
177 CONTINUE
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888 CONTINUE

C

DO 1000 K=1, NGLOB

Go T0 (1,2,3,4,5,6,7,8,9,10,11,12), KGCON(K)

Inlet slope
Do 19 Jo =1, JJ3-1
JP = JO+1
SX = X(2,J0) + X(2,JP) - X(1,J0) - X(1,JP)
SY = Y(2,J0) + Y(2,JP) - Y(1,J0) - ¥Y(1,JP)
QQ(K,1) = QQ(K,1) + M(JO) * (SY/SX - SINLIN)
DO 191 L = 1, NRHS
DSX = NX(2,J0)*DR(JO,L,2) + NX(2,JP)*DR(JP,L,2)
- NX(1,J0)*DR(JO,L,1) NX(1,JP)*DR(JP,L,1)
DSY = NY(2,J0)*DR(JO,L,2) + NY(2,JP)*DR(JP,L,2)
- NY(1,J0)*DR(JO,L,1) - NY(1,JP)*DR(JP,L,1)
QQ(K,L) = QQ(K,L) + M(JO) (SX*DSY - SY*DSX) / SX**2
CONTINUE
CONTINUE
GOTO 1000

*

Outlet slope

IM = II-1
Do 21 JO =1, JJ-1
JP = JO+1
SX = X(II,JO) + X(II,JP) - ¥X(IM,JO) - X(IM,JP)

sY = Y(II,JO) + Y(II,JP) - Y(IM,JO) - Y(IM,JP)
QQ(K,1) = QQ(K,1) + M(JO) * (SY/SX - SOUTIN)
DO 211 L = 1, NRHS

DSX = NX(II,JO)*DR(JO,L,II) + NX(II,JP)*DR(JP,L,II)
- NX(IM,JO)*DR(JO,L,IM) - NX(IM,JP)*DR(JP,L,IM)
DSY = NY(II,JO)*DR(JO,L,II) + NY(II,JP)*DR(JP,L,II)

NY(IM,JO)*DR(JO,L,IM) - NY(IM,JP)*DR(JP,L,IM)
QQ(K,L) = QQ(K,L) + M(JO) * (SX*DSY - SY*DSX) / SX**2
CONTINUE
CONTINUE
GOTO 1000

leading edge Kutta

I0 = ILE

IM = IO - 1
IP = 10 + 1
Jo =1

JP = 2

JM = JJ-1

DO 31 L=1, NRHS
QQ(K,L) = B4S(I10,2) * DR(JM+JJ,L,IM)
+ A4S(IO0,2) * DR(JM+JJ,L,IO)
+ B58(I0,1) * DR(JO+JJ,L,IM)
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R R R

R R

31

- - -

PR R RRRRR R

41

+ ASS(I0,1)
+ B2S(I0,1)
+ A2S(I0,1)
+ C2S(I0,1)
+ B3S(I0,1)
+ A3S(I0,1)
+ C3S(10,1)
+ B1S(I0,2)
+ Al1S(1I0,2)
+ C1S(I10,2)
+ B2S(10,2)
+ A2S(IO0,2)
+ C2S(10,2)

CONTINUE

QQ(K,1) = QQ(K,1) + 2

GO TO 1000

trailing edge Kutta

I0 = ITE

IM = I0 - 1

IP = 10 + 1

JOo =1

JP = 2

JM = JJ-1

DO 41 L=1, NRHS

QQ(K,L) = B4S(I0,2)

+ A4S8(10,2
+ B5S(10,1)
+ A5S(I0,1)
+ B2S(IO,1)
+ A2S(1I10,1)
+ C2S8(I0,1)
+ B3S(I10,1)
+ A3S(IO,1)
+ C3S8(10,1)
+ B1S(IO,2)
+ Al1S(I0,2)
+ C18(I0,2)
+ B2S(IO,2)
+ A2S(I0,2)
+ C25(10,2)

CONTINUE

QQ(K,1) = QQ(K,1) + 2.

GO TO 1000

Alpha

QQ(K,LALFA) = 1.0

DR(JO+JJ,L,10)
DR(JO,L, IM)
DR(JO,L,IO)
DR(JO,L, IP)
DR(JP,L,IM)
DR(JP,L, IO)
DR(JP,L,IP)
DR(JM,L, IM)
DR(JM,L, I0)
DR(JM, L, IP)
DR(JJ,L,IM)
DR(JJ,L,I0)
DR(JJ,L,IP)

* X F X X X X X X X X * *

.0*(PI(IO,JJ)-PI(IO,1))

DR(JM+JJ,L, IM)
DR(JM+JJ,L, IO)
DR(JO+JJ,L, IM)
DR(JO+JJ,L, IO)
DR(JO,L, IM)
DR(JO,L,I0)
DR(JO, L, IP)
DR(JP,L,IM)
DR(JP,L, IO)
DR(JP,L,IP)
DR(JM,L,IM)
DR(JM,L,I0)
DR(JM,L,IP)
DR(JJ,L,IM)
DR(JJ,L,I0)
DR(JJ,L,IP)

* % X %F X X X X %X X X X X X X X

0*(PI(I0,JJ)-PI(IO,1))

QQ(K,1) = ALFAIN - ALFA

GO TO 1000
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6 Jo =1
JP = 2
JM = JJ-1
DO 61 IO=ILE, ITE
IM = I0-1
IP = I0+1
BXS = 0.5*(X(IP,JO)-X(IM,J0O))
BXP = 0.5*(X(IP,JJ)-X(IM,JJ))
BYS = 0.5*(Y(IP,JO)-Y(IM,bJO))
BYP = 0.5*(Y(IP,JJ)-Y(IM,JJ))
PIS = PI(I0,J0)
PIP = PI(I0,JJ)
DO 611 L=1, HWRHS
SUMS = B5S(IO,1) * DR(JO+JJ,L,IM)
& + ASS(IO,l) * DR(JO+JJ,L,TI0)
& + B2S(10,1) * DR(JO,L,IM)
& + A2S(IO,1) * DR(JO,L,IO)
& + C2S8(10,1) * DR(JO,L,IP)
& + B3S(10,1) * DR(JP,L,IM)
& + C3S(I0,1) * DR(JP,L,IP)
& + A3S(IO,1) * DR(JP,L,IO)
SUMP = B4S(I10,2) * DR(JM+JJ,L,IM)
& + A4S(I0,2) * DR(JM+JJ,L,I0)
& + B1S(I0,2) * DR(JIM,L,IM)
& + A1S(IO,2) * DR(JM,L,IO)
& + C1S(10,2) * DR(JM,L,IP)
& + B2S(10,2) * DR(JJ,L,IM)
& + A2S(I0,2) * DR(JJ,L,IO)
& + C25(10,2) * DR(JJ,L,IP)
DPIS = -.5*SUMS
DPIP = 0.5*SUMP
DBXS = 0.5*(NX(IP,JO)*DR(JO,L,IP) - NX(IM,JO)*DR(JO,L,IM))
DBXP = 0.5*(NX(IP,JJ)*DR(JJ,L,IP) - NX(IM,JJ)*DR(JJ,L,IM))
QQ(K,L) = QQ(K,L) + (BXP*DPIP - BXS*DPIS)
& + (DBXP*PIP - DBXS*PIS)
61l CONTINUE
61 CONTINUE
QQ(K,1) = QQ(K,1) + LIFT - LIFTIN
GO TO 1000
------ Zero leading edge gap
7 DO 71 L=1, NRHS

QQ(K,L) DR(1,L,ILE) - DR(JJ,L,ILE)
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71  CONTINUE

GO TO 1000
C
C-=-==~- Preserve trailing edge gap
8 DX = X(ITE+1,1) + X(ITE+1,JJ3) - X(ITE-1,1) - X(ITE-1,JJ)
DY = Y(ITE+1,1) + Y(ITE+1,JJ) - Y(ITE-1,1) - Y(ITE-1,JJ)
DS = SQRT(DX*DX + DY*DY)
DX = -DY/DS
DY = DX/DS
CcccC DOTP = DX*NX(ITE,l1) + DY*NY(ITE,1l)
K2 = 2%*3JJ-1
DO 81 L=1, NRHS
QQ(K,L) = (DR(1,L,ITE) - DR(JJ,L,ITE))
& - DR(K2+3,L,ITE) - DR(K2+6,L,ITE)
81 CONTINUE
GO TO 1000
c
Commm== Zero leading edge movement
9 Jp = 1
JM = JJ
DO 91 L=1, NRHS
QQ(K,L) = DR(JP,L,ILE) + DR(JIM,L,ILE)
91 CONTINUE
GO TO 1000
c
Cemm=-- Zero trailing edge movement
10 Jp =1
JM = JJ

DO 101 L=1, NRHS
QQ(K,L) = DR(JP,L,ITE) + DR(JM,L,ITE)
101  CONTINUE

GO TO 1000
C
C---==- Zero IX0 point movement
11 IS = ISMIX
K2 = 2*33-1

IF(IS.EQ.1) THEN
DO 111 L=1, NRHS
QQ(K,L) = DR(1,L,IX0) - DR(K2+3,L,IX0)
111 CONTINUE
ELSE
DO 112 L=1, NRHS
QQ(K,L) = DR(JJ,L,IX0) + DR(K2+6,L,IX0)
112 CONTINUE

ENDIF
GO TO 1000
c
Commmmw Zero IX1 point movement

12 IS = ISMIX
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K2 = 2*J3-1
IF(IS.EQ.1) THEN
DO 121 L=1, NRHS
QQ(K,L) = DR(1,L,IX1) - DR(K2+3,L,IX1)
121 CONTINUE
iLSE
DO 122 L=1, NRHS
QQ(K,L) = DR(JJ.L,IX1) + DR(K2+6,L,IX1)
122 CONTINUE
ENDIF

(@]

1000 CONTINUE

DO 333 KK= 1,NGLOB

WRITE(S5,1234) (QQ(KK,KKK),KKK=1,NGLOB+1)
C333 CONTINUE
C1234 FORMAT(1X,10F9.5)

oo Ne]

o
Cc---- STS
IF(NGLOB.NE.O) CALL SOLVIT(NGLX,NGLOB,QQ(1,2),00(1,1))
DNINL = O.
DNOUT = 0
DCIRC = 0
DALFA = 0
DSBLE = 0.
DPDFO = O.
DPDF1 = 0
DPDFL = 0
DPDX0 = O
DPDX1 = O.
IF(LNINL.GT.0) DNINL = QQ(LNINL~1,1)
IF(LNOUT.GT.0) DNOUT = QQ(LNOUT-1,1)
IF(LCIRC.GT.0) DCIRC = QQ(LCIRC-1,1)
IF(LALFA.GT.0) DALFA = QQ(LALFA-1,1)
IF(LSBLE.GT.0) DSBLE = QQ(LSBLE-1,1)
IF(LPDF0.GT.0) DPDFO = QQ(LPDFO-1,1)
IF(LPDF1.GT.0) DPDF1 = QQ(LPDF1-1,1)
IF(LPDFL.GT.0) DPDFL = QQ(LPDFL-1,1)
IF(LPDX0.GT.0) DPDXO = QQ(LPDX0-1,1)
IF(LPDX1.GT.0) DPDX1 = QQ(LPDX1-1,1)
o

RETURN
END ; GLOBIT

SUBROUTINF. SOLVIT(NSIZ,NN,Z,R)
DIMENSION Z(NSIZ,NSIZ), R(NSIZ)
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DO 1 NP=1, NN-1

NP1 = NP+1
C
Commm=- find max pivot index NX
NX = NP
DO 11 N=NP1l, NN
IF(ABS(Z2(N,NP))-ABS(Z(NX,NP))) 11,111,111
111 NX = N
11 CONTINUE
C
PIVOT = 1.0/Z(NX,NP)
C
Commmm- switch pivots
Z(NX,NP) = Z(NP,NP)
C
Comm==- switch rows & normalize pivot row
DO 12 L=NP1, NN
TEMP = Z(NX,L)*PIVOT
Z(NX,L) = Z(NP,L)
Z(NP,L) = TEMP
12 CONTINUE
C
TEMP = R(NX)*PIVOT
R(NX) = R(NP)
R(NP) = TEMP
C
C-=---- forward eliminate everything
DO 15 K=NP1, NN
DO 151 L=NP1l, NN
Z(K,L) = Z2(K,L) - Z(K,NP)*Z(NP,L)
151 CONTINUE
R(K) = R(K) - Z(K,NP)*R(NP)
15 CONTINUE
Cc
1 CONTINUE
C
C---- solve for last row
R(NN) = R(NN)/Z(NN,NN)
cC
C---- back substitute everything
DO 2 NP=NN-1, 1, -1
NP1 = NP+1
DO 21 L=NP1l, NN
R(NP) = R(NP) - Z(NP,L)*R(L)
21 CONTINUE
2 CONTINUE
C
RETURN
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END ; SOLVIT

SUBROUTINE SPLIN2(XD,SD,IID,XS,XPS,SS,IIS)

DIMENSION XD(300),SD{30C),Xx5(300),XPS(301),S5(300)
DIMENSLON A(3,3,300),8(3,3,300),C(3,3,300),D(3,300)

DO 1 IO = 1,

DO 11 J =1, 3
D(J,I0) = O.

DO 111 K = 1
B(J,K,I0)
A(J,K,I0)
c(J,K,I0)

CONTINUE

IIS

nou -~
OO0 W

111

11

CONTINUE
CONTINUE

I0 1
IP = 2
DSP =
A(3,1,10)
A(3,2,I0)
C(3,1,1I0)
C(3,2,I0)

A(1,3,I0)
A(2,3,I0)
B(1,3,IP)
B(2,3,1IP)

woton i

DO 2 IO =

[\S}

IM
IP
DSM
DSP

I0 -
I0 +

B(3,1,I0)
B(3,2,I0)
A(3,1,I0)
A(3,2,10)
Cc(3,1,I0)

SS(IP) - SS(I0)

A(3,1,I10)
A(3,2,10)
C(3,1,10)
C(3,2,10)

+ 1+ 4+

A(1,3,10)
A(2,3,10)
B(1,3,IP)
B(2.3,IP)

+ 1+ +

» IIS-1

1
1

SS(I0) - SS(IM)
SS(IP) - SS(I0)

B(3,1,I0)
B(3,2,10;
A(3,1,10)
A(3,2,10)
C(3,1,10)

2.*DSP
DSP
2.*DSP

DSP

+ 3.*(DSP/DSM)

+ DSP

3.*(DSP/DSM - DSM/DSP)
+ 2.*(DSM+DSP)
3.*(DSM/DSP)
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G

C(3,2,10)

C(1,3,IM)
c(2,3,IM)
A(1,3,10)
A(2,3,10)
8(1,3,1P)
B(2,3,IP)

CONTINUE

10 =
IM =

Iis

IIS - 1

= C(3,2,10) +

= C(1,3,IM)
= C(2,3,1H)
= A(1,3,10)
= a(2,3,10)
= B(1,3,IP)

+ +

+

= B(2,3,IP) +

DSM = SS(IO) - SS(IM)

B(3,1,I0)
B(3,2,10)
A(3,1,10)
A(3,2,10)

C(1,3,IM)
C(2,3,IM)
A(1,3,I0)
A(2,3,1I0)

I0 = 1

B(3,1,I0)

= B(3,2,I0)

A(3,1,I0)
A(3,2,10)

C(1,3,IM)
c(2,3,IM)
A(1,3,I0)
A(2,3,10)

. +
MWD w

DSM

3.*(DSP/DSM)

DSP

3.*(DSP/DSM - DSM/DSP)
2.*(DSM+DSP)
3.*(DSM/DSP)

DSM

+
o
v -
=

+
N

DO 3 ID =1, IID

@]

31

IP = IO+1

IF(SD(ID).LT.SS(IP)

I0 = IP
GOTO 32

DS =
T

FP = 3.%T*T - 2
= 3*T*T + 2. *T*T*(
DS * ( -T*T + T*T*T )
DS * (T - 2.%T*1 + T*T*[ )

FM = 1.
FPP =
FPM =

A(1,1,I0)
A(1,2,10)
c(1,1,I0)
c(1,2,10)
D(1, I0)

A(2,1,I0)

= D(1,

SS(IP) - SS(IO)
= (SD(ID)-SS(I0)) / DS

A(1,1,I0)
A(1,2,10)
c(1,1,I0)
C(1,2,I0)
10)

A(2,1,1I0)

«PATATD

+ + + + +

.OR. IP.EQ.IIS) GOTO 31

FM*FM
FM*FPM
FM*FP
FM*FPP
FM*XD(ID)

FPM*FM
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A(2,2,10)
c(2,1,10)
C(2,2,10)
D(2, TIO)

B(1,1,IP)
B(1,2,1IP)
A(1,1,1IP)
A(1,2,1IP)
D(1, 1IP)

B(2,1,IP)
B(2,2,IP)
A(2,1,IP)
A(2,2,IP)
D(2, 1IP)

3 CONTINUE

= A(2,2,10) + FPM*FPM

= C(2,1,1I0) + FPM*FP

= C(2,2,10) + FPM*FPP

= D(2, 1IO) + FPM*XD(ID)
= B(1,1,IP) + FP*FM

= B(1,2,IP) + FP*FPM

= A(1,1,IP) + FP*FP

= A(1,2,IP) + FP*FPP

= D(1, 1IP) + FP*XD(ID)
= B(2,1,IP) + FPP*FM

= B(2,2,IP) + FPP*FPM

= A(2,1,IP) + FPP*FP

= A(2,2,IP) + FPP*FPP

= D(2, 1IP) + FPP*XD(ID)

CALL SOLV2(A,B,C,D,IIS)

DO 4 10 =
XS(I0)
XPS(I0)

4 CONTINUE

RETURN
END ;

1,

SPLIN2

IIS
D(1,I0)
D(2,10)

SUBROUTINE SOLV2(A,B,C,D,II)

DIMENSION A(3,3,1),B(3,3,1),C(3,3,1),D(3,1),AI(3,3)

DO 1 I 1,

DETA

°¢]
+ +

AI(1,1) =
AI(2,1)
AI(3,1)

AI(1,2)
AI(2,2)
AI(3,2)

II

( A(2,2,I)*A(3,3,I) -

( A(2,3,I)*A(3,1,1)
( A(2,1,I)*A(3,2,1)

( A(3,2,I)*A(1,3,I)

( A(3,3,I)*A(1,1,I)
( A(3,1,I)*A(1,2,I)
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A(2,3,I)*A(3,2,1I)
A(2,1,I)*A(3,3,I)
A(2,2,I)*A(3,1,I)

A(3,3,I)*A(1,2,1)
A(3,1,I)*A(1,3,1)
A(3,2,I)*A(1,1,1)

)
)
)

~N NN ~N NN N

A(1,1,I)*( A(2,2,I)*A(3,3,I) - A(2,3,1)*A(3,2,I) )
A(1,2,I)*( A(2,3,I)*A(3,1,I) - A(2,1,I)*A(3,3,1) )
A(1,3,I)*( A(2,1,I)*A(3,2,I) - A(2,2,I)*A(3,1,I) )

DETA
DETA
DETA

DETA
DETA
DETA




AI(1,3) = ( A(1,2,I)*A(2,3,I) - A(1,3,I)*A(2,2,1I) ) / DETA
AT(2,3) = ( A(1,3,I)*A(2,1,I) - A(1,1,I)*A(2,3,I) ) / DETA
AI(3,3) = ( A(1,1,I)*A(2,2,I) - A(1,2,I)*A{2,1,I) ) / DETA
El = AI(1,1)*D(1,I) + AI(1,2)*D(2,I) + AI(1,3)*D(3,I)

E2 = AI(2,1)*D(1,I) + AI(2,2)*D(2,I) + AI(2,3)*D(3,I)

E3 = AI(3,1)*D(1,I) + AI(3,2)*D(2,I) + AI(3,3)*D(3,I)
D(1,I) = El1
D(2,I) = E2
D(3.I) = E3

IF(I.EQ.II) GOTO 1

bO 2 K=1, 3

E1l = AI(1,1)*C(1,K,I) + AI(1,2)*C(2,K,I) + AI(1,3)*C(3,K,I)
E2 = AI(2,1)*C(1,K,I) + AI(2,2)*C(2,K,I) + AI(2,3)*C(3,K,I)
E3 = AI(3,1)*C(1,K,I) + AI(3,2)*C(2,K,I) + AI(3,3)*C(3,K,I)
C(1,K,I) = El
C(2,K,I) = E2
C(3,K,I) = E3
2 CONTINUE

IP = I+l

DO3J =1, 3
DO 31 L =1, 3

D(J,IP) = D(J,IP) - B(J,L,IP) * D(L,I)

DO 311 K =1, 3
A(J,K,IP) = A(J,K,IP) - B(J,L,IP)*C(L,K,I)
311 CONTINUE
31 CONTINUE
3 CONTINUE

1 CONTINUE

po 41 =1II1-1, 1, -1
IP = I+1
DO 41 J =1, 3
DO 411 L 1, 3
D(J,I) D(J,I) - C(J,L,I) * D(L,IP)
411 CONTINUE
41 CONTINUE
4 CONTINUE

i

1]

RETURN
END ; SOLV2
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(@]

SUBROUTINE SPLINE(X,XP,S,II)

DIMENSION X(300),XP(300),S(300)
DIMENSION A(300),B(300),C(300),D(300)

DO 11 =2, II-1
I0 = I
IM=1I-1
IP=1+ 1
DSM = S(IO) - S(IM)
DSP = S(IP) - S(IO)
B(IO) = DSP
A(IO) = 2. * ( DSM + DSP )
C(IO) = DSM
D(IO) = 3.*( DSM*(X(IP)-X(IO))/DSP + DSP*(X(IO)-X(T“))/DSM )
CONTINUE
A(l) = 2.
c(1) = 1.
D(1) = 3. * (X(2)-X(1)) / (S(2)-5(1))
B(II) = 1.
A(II) = 2.
D(II) = 3. * (X(II)-X(II-V}) / (S(II)-S(II-1))

CALL SOLV(A,B,C,D,II)

DO 2 I =1, II
XP(I) = D(I)
CONTINUE

RETURN
END ; SPLINE

SUBROUTINE SOLV(A,B,C,D,KK)
DIMENSION A(1),B(1),C(1),D(1)

DO 1 K = 2, KK
KM = K - 1
C(KM) = C(KM) / A(KM)
D(KM) D(KM) / A(KM)
A(K) = A(K) - B(K) * C(KM)
D(K) = D(K) - B(K) * D(KM)
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1 CONTINUE

c
D(KK) = D(KK) / A(KK)
c
DO 2 K = KK-1, 1, -1
D(K) = D(K) - C(K) * D(K+1)
2 CONTINUE
c
RETURN
END ; SOLVE
FUNCTION SEVAL(SS,X,XP,S,N)
REAL X(1), XP(1), S(1)
c
DO 10 I=2, N
IF(SS.LT.S(I)) GO TO 11
10 CONTINUE
I=N
c
11 DS = S(I) - S(I-1)
T = (SS-S(I-1)) / DS
CX1 = DS*XP(I-1) - X(I) + X(I-1)
CX2 = DS*XP(I) - X(I) + X(I-1)
SEVAL = T*X(I) + (1.0-T)*X(I-1) + (T-T*T)*((1.0-T)*CX1 - T*CX2)
RETURN
END ; SEVAL
FUNCTION DEVAL(SS,X,XP,S,N)
REAL X(1), XP(1), S(1)
c
DO 10 I=2, N
IF(SS.LT.S(I)) GO TO 11
10 CONTINUE
I=N
o
11 DS = S(I) - S(I-1)
T = (SS-S(I-1)) / DS
CX1 = DS*XP(I-1) - X(I) + X(I-1)
CX2 = DS*XP(I) - X(I) + X(I-1)
DEVAL = X(I) - X(I-1) + (1.-4.*T+3.*T*T)*CX1 + T*(3,*T-2.)*CX2
DEVAL = DEVAL / DS
c
RETURN
END ; DEVAL
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FUNCTION CURV(SS,X,XP,Y,YP,S,N)
REAL X(1), XP(1l), Y(1), YP(1l), S(1l)

c
DO 10 I=2, N
IF(SS.LT.S(I)) GO TO 11
10 CONTINUE
I =N
c
11 DS = S(I) - S(I-1)
T = (SS-S(I-1)) / DS
c
CX1 = DS*XP(I-1) - X(I) + X(I-1)
CX2 = DS*XP(I) - X(I) + X(I-1)
XS = X(I) - X(I-1) + (1.-4.*T+3,*T*T)*CX1l + T*(3.*T-2.)*CX2
XSS = (6.*T-4.)*CX1 + (6.*T-2.0)*CX2
o
CY1l = DS*YP(I-1) - Y(I) + Y(I-1)
CY2 = DS*YP(I) - Y(I) + Y(I-1)
YS = Y(I) - Y(I-1) + (1.-4.%T+3 . *TAT)*CY1l + T*(3.*T-2.)*CY2
YS3 = (6.*T-4.)*CY1l + (6.*T-2.0)*CY2
o
CURV = (XS*YSS - YS*XSS) / (DS*(XS**2 + YS**2))
c
RETURN
END ; CURV
c

SUBROUTINE SMOVE
$INCLUDE STATE.INC
$INCLUDE ISES.INC

REAL DXI(IX)

REAL XT(4),YT(4),KT(4,4)

DO 99 I=1, II-1
DSI = SQRT((X(I+1,1)=-X(I,1))**2 + (Y(I+1,1)-Y(I,1))**2)
DXI(I) = SQKT(SQRT(DSI))
99 CONTINUE

DO 1 I=1, II
DO 2 J=1, JJ
Al(J,I)
A2(J,1)

non
o
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A3(J,I) =
B1(J,I) =
B2(J,1)
B3(J,I) =
C1{J,I)
c2(3,1)
C3(J,1)
DR(J,1,I)
DR(J,2,I) =

2 CONTINUE

1 CONTINUE

|
"hoooooo o

|
o o

------ Assemble stiffness matrices
po 3 J0 =1, JJ-1
IF(JO.EQ.JJuJ) GOTO 3
JP = JO + 1

DO 4 10 = 1, II-1

IP = I0 + 1

XT(1) = X(I0,JO)
XT(2) = X(IP,JO)
XT(3) = X(IP,JP)
XT(4) = X(IO,JP)
YT(1) = Y(IO,JO)
YT(2) = Y(IP,JO)
YT(3) = Y(IP,JP)
YT(4) = Y(IO,JP)

CALL STIFF(XT,YT,KT)
DXIO = DXI(IO)

DR(JO,1,I0) = DR(JO,1,I0) - DXIO*( KT(1l,2) + KT(1l,3) )

A2(JO,I0) = A2(JO,I0) + KT(1,1)
A3(J0,I0) = A3(JO,I0) + KT(1,4)
€2(J0,I0) = C2(JO,I0) + KT(1,2)
C3(J0,I0) = C3(JO,I0) + KT(1,3)

DR(JO,1,IP) = DR(JO,1,IP) + DXIO*( KT(2,1) + KT(2,4) )

B2(Jo,IP) = B2(JO,IP) + KT(2,1)
B3(Jo,IP) = B3(JO,IP) + KT(2,4)
A2(JO,IP) = A2(JO,IP) + KT(2,2)
A3(JO,IP) = A3(JO,IP) + KT(2,3)

DR(JP,1,IP) = DR(JP,1,IP) + DXIO*( KT(3,1) + KT(3,4) )
B1(JP,IP) B1(JP,IP) + KT(3,1)
B2(JP,IP) B2(JP,IP) + KT(3,4)
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C

C

Cc
C--
C

CccC
CcccC

Cccc
ccc
ccc

]

Al(Jp,IP)
A2(JP,IP)

Al1(JpP,IP) + KT(3,2)
A2(Jp,IP) + KT(3,3)

DR(JP,1,I0) = DR(JP,1,I0) - DXIO*( KT(4,2) + KT(4,3) )

Al(JP,I0) = AL(JP,IO) + KT(4,1)
A2(JP,I0) = A2(JP,I[0) + KT(4.4)
C1(JP,I0) = C1(JP,IO) + KT(4,2)
C2(JP,I0) = C2(JP,IO0) + KT(4,3)
4 CONTINUE
3 CONTINUE
CALL DSOLV
-- Move nodes
DSRMS = 0.
DSMAX = O.
DO 7 J =2, JJ-1
X1 = X(1,J)
Yl = Y(1,J)
X2 = X(2,J)
Y2 = Y(2,J)
po81I=2, II-1
X3 = X(I+1,J)
Y3 = Y(I+1,J)
DSH = - DR(J,2,I)/(DXI(I)+DXI(I-1)+DR(J,2,I+1)-DR(J,2,I-1))
X(I,J) = X(I,J) + DSH * (X3-X1)
Y(I,J) = Y(I,J) + DSH * (Y3-Y1)

DSRMS = DSRMS + DR(J,2,I)**2
DSMAX = AMAX1(DSMAX,ABS(DR(J,2,I)))
X1 = X2
Yl Y2
X2 X3
Y2 Y3
CONTINUE

Honowo

CONTINUE

DSRMS = SQRT(DSRMS/FLOAT((II-2)*(JJ-2)))

WRITE(S,*) ' '

WRITE(5,*) 'SMOVE: rms(ds) = ',DSRMS,"' max(ds) = ',DSMAX

RETURN
END ; SMOVE
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SUBROUTINE STIFF(X,Y,K)

- . . . . "~ — - —— B YN e S~ e e - a4 e o = = - = e - . - - - m - e = e -

THIS PROGRAM CALCULATES THE STIFFNESS MATRIX FOR SOLVING LAPLACE'S
EQUATION USING A FOUR NODE ISOPARAMETRIC ELEMENT.

WRITTEN BY KENNETH C. HALL
COPYRIGHT JULY, 1984

OO0 0000n0

REAL K(4,4),X(4),Y(4),JAC(2,2),PPRIME(2,4), WT(2),ETA(2),KSI(2)
RFAL XY(4,2),JINV(2,2),TEMP2(2,%),TEMP3(4,4)

DATA ETA / -.57735, 0.57735 /
DATA KSI / -.57735, 0.57735 /
DATA WT / 1.00000, 1.00000 /

C---- SET INITIAL VALUE OF STIFFNESS MATRIX TO ZERO

DO 10 I=1,4
po 5 J=1,4
K(I,J) = 0.0
5 CONTINUE
10 CONTINUE

DO 20 I=1,4
XY(I,1) = X(I)
XY(1,2) = Y(I)

20 CONTINUE

C
C---- DO SUMMATION OVER THE 2 X 2 GAUSSIAN STATIONS
o
DO 210 I=1,2
C
Commmm- SET VALUES OF PPRIME, THE INTERPOLAT..N FUNCTION
C
PPRIME(2,1) = -0.25*%(1. - KSI(I))
PPRIME(2,2) = -0.25*(1. + KSI(I))
PPRIME(2,3) = +0.25*(1. + KSI(I))
PPRIME(2,4) = +0.25*(1. - KSI(I))
C
DO 200 J=1,2
PPRIME(1,1) = -0.25*(1. - ETA(J))
PPRIME(1,2) = +0.25*%(1. - ETA(J))
PPRIME(1,3) = +0.25*(1. + ETA(J))
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55

60
70

75

80
90

25

PPRIME(1,4) = -0.25*%(1. + ETA(J))
COMPUTE JACOBIAN MATRIX

DO 50 II=1,2
DO 45 JJ=1,2
SUM = 0.0
DO 43 KK=1,4
SUM = SUM + PPRIME(II,KK)*XY(KK,JJ)
CONTINUE
JAC(II,JJ) = SUM
CONTINUE
CONTINUE

COMPUTE INVERSE OF JACOBIAN

DET = JAC(1,1)*JAC(2,2) - JAC(1,2)*JAC(2,1)
DETINV = 1./DET

JINV(1,1) JAC(2,2)*DETINV

JINV(1,2) = -JAC(1,2)*DETINV

JINV(2,1) -JAC(2,1)*DETINV

JINV(2,2) JAC(1,1)*DETINV

FIND JINV*PPRIME

DO 70 II=1,2
DO 60 JJ=1,4
SUM = 0.0
DO 55 KK=1,2
SUM = SUM + JINV(II,KK)*PPRIME(KK,JJ)
CONTINUE
TEMP2(II,JJ) = SUM
CONTINUE
CONTINUE

DO 90 II=1,4
DO 80 JJ=1,4
SUM = 0.0
DO 75 KK=1,2
SUM = SUM + TEMP2(KK,II)*TEMP2(KK,JJ)
CONTINUE
TEMP3(II,JJ) = SUM
CONTINUE
CONTINUE

DO 30 II=1,4
DO 25 JJ=1,4
K(II,JJ) = K(II,JJ) + WT(I)*WT(J)*DET*TEMP3(II,JJ)
CONTINUE
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30 CONTINUE

200 CONTINUE
210 CONTINUE

RETURN
END ; STIFF

SUBROUTINE DSOLV
$INCLUDE STATE.INC
$INCLUDE ISES.INC

c
DO 1 KOUNT=1, 5
o
DSRMS = O.
DSMAX = O.
DO 11 I0=2, II-1
IM = I0-1
IP = IO+1
cc(1l) = 0.
DD(1) = O.
DO 111 JO=2, JJ-1
JM = JO-1
JP = JO+1
BB(JO) = Al(JM,IO)
AA(JO) = A2(JO,I0)
CC(JO) = A3(JP,IO0)
DD(JO) = DR(JO,1,IO)
& - B1(JO,IO)*DR(JM,2,IM)
& - B2(JO,I0)*DR(JO,2,IM)
& - B3(70,I0)*DR(JP,2,TM)
& - A1(JO,IO)*DR(JM,2,I0)
& - A2(JO,I0)*DR(JO,2,10)
& - A3(JO,IO)*DR(JP,2,IO0)
& - C1(JO,IO)*DR(JIM,2,IP)
& - C2(JO,I0)*DR(JO,2,IP)
& - C3(JO,I0)*DR(JP,2,IP)
AA(JO) = AA(JO) - BB(JO)*CC(JIM)
DD(JO) = DD(JO) - BB(JO)*DD(JM)
CC(JO) = CC(JO) / AA(JO)
DD(JO) = DD(JO) / AA(JO)
111 CONTINUE
c
DD(JJ) = O.
c

DO 113 JO=JJ-1, 2, -1
DD(JO) = DD(JO) - CC(JO)*DD(JO+1)
DR(JO,2,I0) = DR(JO,2,I0) + DD(JO)
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CcccC
ccc
113

11

(@]

121

ccC
ccc
123

~

I

12
C
Cccc
CcccC

R RRRRRR

DSRMS
DSMAX
CONTINUE

CONTINUE

DO 12 JO=2

JM
JP

JOo-
JO+

CC(1)
DD(1)

]

1
1

0.
0.

DSRMS + DD(JO)**2
AMAX1(DSMAX,ABS(DD(JO)))

JJ-1

DO 121 I0=2, II-1

IM = T0-1
IP = IO+1
BB(IO) = B2(JO,IM)
AA(IO) = A2(JO,IO)
CC(I0) = C2(JO,IP)
DD(IO) = DR(50,1,I0)
- B1(JO,IO)*DR(JM,2,iM)

AA(IO)
DD(IO)
CC(I0)
DD(1I0)
CONTINUZ

DD(II) =

B2(JO,I0)*DR(JO,2,IM)
B3(JO,IO0)*DR(JP,2,IM)
A1(JO,IO0)*DR(JM,2,I0)
A2(JO,I0)*DR(JO,2,I0)
A3(JO,I0)*DR(JP,2,I0)
C1(.J0,I0)*DR(JM,2,IP)
C2(J0,I0)*DR(JO,2,IP)
C3(J0,I0)*DR(JP,2,IP)
AA(IO) - BB(IO)“CC(IM)
DD(IO) - BB(IO)*DD(IM)
CC(IO0) / AA(IO)

DD(IO) / AA(IO)

0.

20 123 I10=IT-1, 2, -1

DD(I0)

DD(IO) - CC(IO)*DD(IO+1)

DR(JO,2,I0) = DR(JO,2,I0) + DD(IO)
DSRMS = DSRMS + DD(JO)**2
DSMAX = AMAX1(DSMAX,ABS(DD(JO)))

CONTINUE

CONTINUE

DSRMS = SQRT(DSRMS/FLOAT(2*(II-2)*(JJ-2)))

WRITE(S,*)

SMOVE: rms(ds) = ',DSRMS,'

286

max(ds) = ',DSMAX



ccc IF(DSMAX.LT.1.0E-4) RETURN
1 CONTINUE
c
RETURN
END ; DSOLV

SUBROUTINE DEKINK
$INCLUDE STATE.INC
$INCLUDE ISES.INC
LOGICAL KINKED
o
DO 1 J=2, JJ-1
IF(J.EQ.JJJ .OR. J.EQ.JJJ+1) GO TO 1
KINKED = .FALSE.

XM = X(1,J)

™ = Y(1,J)

X0 = X(2,J)

YO = Y(2,J)

DO 11 I=2, II-1
XP = X(I+1,J)

YP = Y(I+1,J)
DOTP = (XO-XM)*(XP-XO) + (YO-YM)*(YP-YO)
IF(DOTP.LT.0.0) THEN
X(1,J) 0.5*(XP+XM)
Y(I,J) = 0.5*%(YP+YM)
KINKED .TRUE.
ENDIF
XM = XO
™ = YO
X0 = XP
YO = YP
11 CONTINUE
IF(KINKED) WRITE(S5,*) J,'''th streamline dekinked'
1 CONTINUE
RETURN
END ; DEKINK
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