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Abstract: Significant effort toward the automation of general anesthesia has been made in
the past decade. One open challenge is in the development of control-ready patient models
for closed-loop anesthesia delivery. Standard depth-of-anesthesia tracking does not readily
capture inter-individual differences in response to anesthetics, especially those due to age, and
does not aim to predict a relationship between a control input (infused anesthetic dose) and
system state (commonly, a function of electroencephalography (EEG) signal). In this work, we
developed a control-ready patient model for closed-loop propofol-induced anesthesia using data
recorded during a clinical study of EEG during general anesthesia in ten healthy volunteers.
We used principal component analysis to identify the low-dimensional state-space in which
EEG signal evolves during anesthesia delivery. We parameterized the response of the EEG
signal to changes in propofol target-site concentration using logistic models. We note that inter-
individual differences in anesthetic sensitivity may be captured by varying a constant cofactor
of the predicted effect-site concentration. We linked the EEG dose-response with the control
input using a pharmacokinetic model. Finally, we present a simple nonlinear model predictive
control in silico demonstration of how such a closed-loop system would work.

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Keywords: Biomedical control, medical applications, nonlinear control, model predictive
control, power spectral density

1. INTRODUCTION

studies on CLAD [Absalom et al., 2009; Gentilini et al.,
2001; Haddad et al., 2003; Soltesz et al., 2012; Van

General anesthesia (GA) is a profound state of uncon-
sciousness, analgesia, and amnesia [Brown et al., 2010].
Anesthesiologists control the depth of unconsciousness
during GA by assessing patient signs and symptoms
and/or using a brain monitor summary score and then
making concomitant changes to the infusion of hypnotic
medications at irregular time intervals. Automatic control
of unconsciousness with closed loop anesthesia delivery
(CLAD) would afford anesthesiologists more attention on
other aspects of anesthesia care and provide more regular
and frequent adjustments to hypnotic infusions. A diagram
of a CLAD system is shown in Figure 1.

Clinically available depth of unconsciousness summary
monitors have been used as the control signal for prior

* This research was supported by the National Institutes of Health
grants T32 HLO9701 and F32 AG064886 (to JHA).

Heusden et al., 2014] as well as commercially available
CLAD products [Liu et al., 2015]. Commercially available
consciousness summary monitors include bispectral index
(BIS, Medtronic) and NeuroSENSE (Neurowave Systems).
These monitors indicate the “depth of anesthesia” with
a single scalar between 0 and 100. Patients have been
shown to have inter-individual differences in both pharm-
codynamic (sensitivity) and pharmacokinetic (drug uptake
and elimination) monitor responses to hypnotic [Absalom
et al., 2009; Gentilini et al., 2001], particularly for children
[Soltesz et al., 2012; Van Heusden et al., 2014]. Depth of
anesthesia summary monitors are insensitive to patient
characteristics and anesthetic agents, and defining the un-
derlying physics of general anesthesia remains a significant
barrier for CLAD [Absalom et al., 2011].

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
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Fig. 1. Diagram of a closed-loop anesthesia delivery
(CLAD) system. This work focuses on development of
the control signal appropriate for closed-loop delivery
of propofol.

The summary scores produced by consciousness mon-
itors are dervied from recordings of the brain’s elec-
trical activity: the electroencephalogram (EEG). Cus-
tom metrics dervied from the EEG have been used for
automatic control of medically-induced coma. Specifi-
cally, the probability of brain activity senescence (the
"burst suppression probability”) was computed from EEG
in real-time and used as the control signal for devel-
oping linear-quadratic regulator [Shanechi et al., 2013;
Yang et al., 2019] and proportional-integral-derivative
[Ching et al., 2013] medically-induced coma controllers.
Medically-induced coma is only indicated for patients with
aberrant brain activity, and targets an even greater reduc-
tion in brain activity than GA. EEG can provide a richer
representation of neural activity than summary monitors,
but an EEG signature would need to be identified specifi-
cally for GA.

CLAD models have a wide-range of personalization and
adaptability. Many fit model parameters on patient popu-
lations [Absalom et al., 2009; Gentilini et al., 2001; Soltesz
et al., 2012; Van Heusden et al., 2014]. Some have devel-
oped personalization via an initial calibration period prior
to control tests [Ching et al., 2013; Shanechi et al., 2013].
Calibration during control has been previously performed
for medically-induced coma [Yang et al., 2019] and in
numerical simulations of general anesthesia [Haddad et al.,
2003].

Here, we develop a proof-of-concept EEG-based CLAD
system for general anesthesia. We first derive an EEG-
based control signal from a clinical trial on EEG response
to the hypnotic agent propofol. We then assess pharma-
cokinetic (PK) and pharmacodynamic (PD) model fitting
differences across patients. Next we formalize the applica-
tion of a model-based controller with an adaptive phase
of control that adjusts to an individual’s susceptibility. Fi-
nally, we perform simulations to demonstrate the proposed
system’s performance.
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2. PROBLEM FORMULATION AND APPROACH

We seek to ensure unconsciousness during anesthesia by
regulating neural activity as recorded via EEG. To do so,
we aimed to develop a pharmacokinetic-pharmacodynamic
(PKPD) model of EEG power spectral density (PSD) that
evolves over time ¢ according to:

P yt.pw) (1)

where system p € RP is some D-dimensional measure
of the relevant EEG characteristics and control input
u € Ry( is the anesthetic infusion dosing (concentra-
tion/time). By noting that the PSD is a function of effect-
site concentration of the drug

p = p(c(t)) (2)
the model may be separated into two components:

SHE

where ¢(t) is the drug concentration at the effect site.
The latter term, dc/dt, is the pharmacokinetic term and
has been studied extensively and implemented clinically in
the target-controlled infusion (TCI) paradigm [Absalom
et al., 2009; Barakat et al., 2007; Levitt and Schnider,
2005; Schnider et al., 1998, 1999]. In this work, we focus
on developing the former pharmacodynamic term, dp/de,
in a manner that enables control and is robust to inter-
individual variability in drug responses.

2.1 Identification of low-dimensional state space model
from EEG

We developed a control signal using the EEG data
recorded from prefrontal cortex (Fpl electrode) during a
clinical trial of ten healthy volunteers where the effect-
site concentration of propofol was varied systematically for
each individual. For details on the study and data collec-
tion, see Purdon et al. [2013]. Because the power spectral
density is known to vary reliably depending upon propofol-
induced anesthetic state, we first performed a multitapered
spectral analysis of the full Fpl EEG time series to arrive
at the multitaper spectrogram M, € RF*N  where F is
the number of frequency bins and N is the number of time
windows of the spectrogram. Here, the subscript s denotes
the individual subject from which the data was collected.
Each column of M; is denoted my; € RF*1 is the PSD in
each of F' frequencies at time window ¢ for subject s.

We performed multitaper spectral analysis in Python us-
ing the NiTime package [Rokem et al., 2009] using win-
dow length 2s with no overlap, normalized half-bandwidth
TW = 3, and a spectral resolution of 2 Hz. An adaptive
weighting routine was used to combine estimates of differ-
ent tapers [Thomson, 1982], and the resulting multitaper
spectrogram from each patient was converted to decibels.

The manifold along which the EEG PSD evolves during
anesthesia is of reduced dimensionality compared to F,
and many spectral features co-occur, e.g., slow-delta (0.1-
4 Hz) and alpha (8-12 Hz) [Purdon et al., 2013]. Thus, we
sought to reduce the dimensionality of the observations to
independent linear combinations of spectral power via pro-
jecting the PSD (each m ;) onto D principal components.
That is, we compressed M, € RF*N to P, € RP*N by:
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Diys,t = €; " Mgt (4)
where e; € RY™F is the ith principal component, or-
dered by the magnitude of the corresponding eigenvalue.
We computed the principal components (PCs) performing
principal component analysis (PCA) on all ten resulting
spectrograms [Mj, - -- , Mg], thus, the PCs are not a sig-
nature specific to each subject. The result of this approach
is shown in Figure 2.

We eliminated PCs above PC3, which each contained
< 2% of the observed variance in the spectrogram. We
chose to use two PCs (p1 = PC2, p» = PC3) due to
their clear concentration-dependence and good dynamic
range, thus enabling control to be applied. We did not
use PC1 due to its unclear dependence on concentration.
Furthermore, these two PCs correspond with unconscious
or conscious state, as shown by the separation between
conscious and unconscious signal in Figure 3, and thus
enable a controller to use a set point relative to conscious
state.

2.2 State-space dynamics and inter-individual variation

Having reduced the dimensionality along which the PSD
evolves during anesthesia, we next sought to characterize
pharmacodynamics (PD) by parameterizing a function
h;(c) that generates p;(c). Each h;(c) varies between
patients (as seen in Figure 2), and parameterization of
these functions is important for performing control. We
sought to find a universal parameter set so that control
may be implemented for any individual, and so h;(c) =
hi(c;a;) where a; is a fixed parameter set for function h;,
common to all subjects.

Ideally the PD model we developed would apply without
any subject-specific tuning. Although the shapes of h;(c)
are consistent across individuals, they appear to be scaled
by a constant parameter (Figure 4, top). Because we have
S =10 subjects, we can then state that for subject s,
hi(e) = his(c;ai, ks) = his(ksc; a;) (5)

where k; is the subject’s anesthetic sensitivity and a high
ks denotes high sensitivity. A higher sensitivity indicates
a larger response to a given anesthetic dose. This is of
additional use because, since kg is always a coefficient of
C,

d, d

dic’ = —h(kse) = kb (k) (6)
where h/(c) = 0h/Jc. Thus the equation we seek to control
for subject s becomes:

‘Z’ts = koh (ksc) (;f) . (7)

By parameterizing hy and he and taking the derivative,
we found an analytic form of dp/dt which depends on the
anesthetic sensitivity.

By inspection, we postulated that these functions may be
captured with logistic equations, specifically:

ai,1
hy s (ksc; = )
R A S P

8)
az,1 a2,3 (
h s ks 5 = ” - ’ .
2,5(Ksc; 02) 1+ exp(asoksc) 1+ exp(asgaksc)

Thus, parameter set a; € R?ém parameter set as € Rém

—as

and patient-specfic parameter set k = kq,--- , ks € Rgo.
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Fig. 2. Spectral characteristics of EEG during propofol
anesthesia. (A) Multitaper spectrogram of EEG signal
in a healthy volunteer, from Purdon et al. [2013]. (B)
Drug effect-site concentration corresponding to the
multitaper spectrogram in A, with loss of conscious-
ness (LOC) and restoration of consciousness (ROC)
labeled. (C) Fraction of the explained variance in each
of the first ten principal components. (D) Eigenvec-
tors e1, es, and eg corresponding to the first three
principal components. (E) First three principal com-
ponent score of the multitaper spectrogram during the
timecourse in (A,B).

We used a least-squares fitting to parameterize h, that is:

A= arg minlc Z Z zt: [|(hi,s(ksce; ai) — Dit,s)]|2

ai,az,

(9)

subject to:
Eqn. (8)

This optimization resulted in parameters

a1 =[70.1, 6.8, 36.2],

as =[37.0, 3.6, 17.4, 10.0],

k =[2.44, 6.78, 3.22, 2.88, 3.55,
5.79, 4.63, 2.97, 4.15, 2.61],

(10)

as shown in Figure 4. Finally, taking dh/dc yields our PD
control model in differential equation form:
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plotted for one subject, demonstrating the feasibility
of using values of p as targets for control that ensure
unconsciousness.
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Fig. 4. Example of two-dimensional control signal identi-
fied for two representative subjects, one with a high
anesthetic sensitivity (left, ki = 4.63) and one with a
low anesthetic sensitivity (right, k; = 2.44).

dp _ d hl,s
% o % |:h2,s:|
—a1,141,2 exp(amksc)
(L + explar,oksc))?
—a2,1a2 2 eXp(az,zksC) 2,302 4 exp(a274ksc)
(14 exp(ag 2ksc))? (1+ exp(a2,4ksc))? |
11

— 'vs

We note that k; is still a subject-specific parameter which
we do not know a priori. Luckily, we may estimate and
update this parameter in the same way an anesthesiologist
may adjust dosing to determine an individual’s anesthetic
sensitivity.
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2.8 Incorporating pharmacokinetics

There are numerous PK models used under varying cir-
cumstances in the operating room [Absalom et al., 2009;
Barakat et al., 2007; Levitt and Schnider, 2005; Schnider
et al., 1998, 1999]. These are most generally two- or three-
compartment models, but may be increasingly compli-
cated and multicompartmental. Model parameters are also
typically a function of patient body mass and age [Schnider
et al., 1998, 1999]. The model from Schnider et al. [1999]
was used in Purdon et al. [2013] to provide the ¢ values
we have used in this study, directly supporting the utility
of this approach in conjunction with the methods we have
developed. For our control implementation here, we used
the same four-compartment PK model from Schnider et al.
[1998, 1999] and used in Chakravarty et al. [2017]:

c1
d e _
dt |es|

C

—k12 — k1o — k13 — ke k21 ka1 ke ] [a1

k'12 —kigl 0 0 Co

klg 0 7]4331 O C3

kle 0 0 _kel C

(12)
where u is the anesthetic infusion concentration, ci 23
are non-effect compartment concentrations, and c is the
effect site concentration all in pg/mL. We used parameters
corresponding to a 24 year old female patient with a
mass of 65kg and a height of 163cm. We note that this
would be replaced with a model parameterized by patient
characteristics in a real-world implementation.

3. IMPLEMENTATION OF CONTROL
3.1 Formulating the control problem

The model developed in the prior sections may now be
used to formulate an in silico control problem to test the
feasibility of this approach. The nonlinear nature of the
control equations lends itself to a nonlinear model pre-
dictive control (NMPC) approach. NMPC has been used
in biological applications previously, with good successes
[Abel et al., 2019; Dassau et al., 2017]. In this case, we
set desired p = [p1, p2] and control the system to remain
stably at those values. In the future, the desired p values
may be selected by training classifiers using the conscious
state of the subject (e.g., sedation may correspond to
one p*“?, whereas general anesthesia might correspond to
another p9%).

We still retain the problem of the unspecified ks. In
practice, a standard induction bolus is given to each
patient, and the dosing is then modified depending upon
how the patient responds. In the same manner, we may
initialize the controller with a set ks value, and update this
value as we observe how the system responds. One possible
marker for identifying ks is the zero-cross of ps (PC3),
as it varies systematically with k£ and is observed prior
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Fig. 5. Finding k; is enabled by the dependence of the zero-
cross of ps on k. Left, ha(c;as, ks) is plotted for two
values of k,. The initial zero-cross of these depends
upon ks. Given the parameterization of h we have
developed, the relationship between ks and the PK
effect-site concentration at the predicted zero-cross of
p2 is shown here. Thus, by updating the controller
parameterization when ps is observed to cross zero,
we may attain individualized control.

to deep unconsciousness. Figure 5 shows the relationship
between the observed zero-cross of PC3 and k, given the
parameterization we have previously identified.

The state of the patient updates every 2 s, given the mul-
titaper parameters we have selected. Anesthetic infusion
pumps update more infrequently, so we parameterized u
as piecewise-constant with 10 s steps with control input
bounded on [0, t,42]. The anesthetic takes several minutes
to deliver its effect, and so we used control and prediciton
horizons of 300s (M = 30 steps of 10 s) with the predicted
value pP™¢ computed at the end of each of the steps. We
initialized the model with an initial sensitivity k;p;; = 2
and update this sensitivity once py crosses zero. The pre-
dicted states starting at time ¢y are given by integrating
Eqn. (11) forward 10 s at a time.

nzﬂj_% (u'm; a, ke) =

10
dh dc
nred + A (dc(c; a, ke)) (dt(cv um)) dt

(13)
where pPed is the value at the end of the previous step
and pf;:i% is the current observed state of the system. We
denote the current estimate of kg as ke, which is initialized
at a value of k;,,;+ = 2 and updated following the zero-cross
of ps.
Thus, we formulated the NMPC finite-horizon optimal

control problem for finding the optimal control u};p- over
the predictive horizon as follows:

M
* o . pred
Unpc = argiin E wy| [P —
m=1

PP+ wu[um||

subject to:
Eqn. (11)
Eqn. (12)
Eqn. (13)

0 < Uy < Umax,

(14)

where w, = 1, w, = 0.0001 to scale the minimization
and Upq, = 10mg/kg/min. We chose p9% = h(10; a, kinit)
because this corresponds to where the system is definitely
unconscious (projected value for a high effect site concen-
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tration). We are prevented from overdosing the patient
(the trivial solution to ensuring unconsciousness) by the
tunable control input penalty and the restriction on pump
concentration rate.

We applied this NMPC controller to a model of the system

given by:
dp (dh, de
P (dc(C,a,kS)) (dt (c, U))

p(t = 0) =h(0; a, ks)
and note that we have isolated system-model mismatch to
the k parameter and ignored measurement noise. Further
testing would be needed to determine robustness of this
approach to other parameter errors and observer design.

(15)

3.2 Two in silico examples

First, we simulated an example where the individual is
more sensitive to the anesthetic than the initial sensitivity
ks = 2k;nit. The risk in such a case is unintentional
overdosing of a patient. This can be avoided by simple
bounds on control input u, which may be relaxed or
tightened after k; is found. Next, we simulated an example
where the individual is less sensitive to the anesthetic than
the initial sensitivity ks = 0.75k;,;+- The risk in such a
case is underdosing of anesthesia and the patient retaining
consciousness.

The results of these simulations are shown in Figure 6.
We found that this controller design performs well in
generating a signal corresponding to unconsciousness in
our model without excess or insufficient delivery of the
anesthetic, i.e., it is sensitive to patient characteristics.
Both ks values (1.5, 4.0) are extremes near the range
observed in the clinical study of healthy volunteers. A
large difference in effect-site concentration between these
two cases (despite all patient characteristics remaining
identical) resulting in the same PD underlines the need
for PD-based control, rather than simple control of plasma
or effect-site concentration. Further testing of response
to signal noise, system-model mismatch, and disturbance
rejection is mnecessary, however, these simple examples
provide a proof-of-concept.

4. DISCUSSION

Several additional steps should be taken to validate the
control signal we have selected. First, the signal should be
analyzed in clinical cases to determine if it follows the same
dynamics in the presence of other drugs that may affect
EEG. Additionally, there are deeper states of anesthesia,
such as burst-suppression, which should be avoided if they
are not clinically desired [Brown et al., 2010]. Currently,
the controller avoids deeper-than-needed anesthesia by
minimizing the control input needed to attain the depth of
anesthesia setpoint, however, if the control signal continues
to evolve as anesthesia deepens, a control signal corre-
sponding to burst-suppression may be avoided explicitly.
Characterization of these states may be achieved using
data recorded during clinical administration of anesthesia
in the operating room [Purdon et al., 2015]. Running the
controller retroactively on EEG recorded during clinical
cases and comparing controller suggestions with anesthe-
siologist action is a reasonable next step in testing the
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Fig. 6. NMPC results for high anesthetic sensitivity ks = 2k;ni (left), and low anesthetic sensitivity, ks = 0.75k;nt
(right). In this simulation, the set point moves from conscious (first ten minutes) to unconscious (next 60 minutes)
to conscious (final 20 minutes). The controller in each case responds by inducing unconsciousness starting at the
10 minute mark. Furthermore, it correctly maintains unconsciousness using a lower anesthetic dose in the high-

sensitivity patient.

control system we have presented. We note that observer
design will also be important in applying control in this
fashion.

Despite these barriers, there are two main benefits
to using NMPC to control this system in compari-
son to linear-quadratic regulator or proportional-integral-
derivative controllers. First, NMPC does not attempt
to use a linear approximation of model dynamics, and
therefore requires less simplification of the complex un-
derlying neural system. Second, safety mechanisms may
be readily implemented in NMPC. We anticipate that a
clinical NMPC system would involve safety features such
as anesthesia-on-board constraints to prevent overdosing
(as in Ellingsen et al. [2009]) and modifying controller
responsiveness via confidence indexes (as in Laguna Sanz

et al. [2017]; Pinsker et al. [2018]).

Significant barriers remain to realizing closed-loop con-
trol of general anesthesia in clinical settings [Absalom
et al., 2011]. By developing physiologically interpretable
PD models of anesthesia, we seek to bridge the gap in un-
derstanding between the anesthesiologist and the controls
engineer.
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