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ABSTRACT

Clerk Maxwell's theorem for the least weight arrangement
of filamentary trusses enabled A. G. M. Michell to come to
the tentative conclusion that in certain cases the least
weight arrangement of the truss members or the stiffeners of
an isotropic elastic continuum is obtained by following the
principal strain trajectories.

Using this as a basis, the Plane Stress Approximation
incorporated with the Finite Element Displacement Method are
employed to determine the general state of stress of a two-
dimensional planar structure through which a technique is
developed to obtain the principal stress trajectories for any
plane stress with an isotropic material problem.

A computer program has been written through which the
displacements, the stresses, and the stress trajectories can
be obtained; the results for several planar problems are in
agreement with those theoretically predicted.

A comparison among several stiffener arrangements
suggests that the least weight arrangement that reduces the
stress level by the required amount, throughout a cross-
section of a plate, is the one which adds material at the
location of maximum principal stress.
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INTRODUCTION

The present study formulates a technique which may
assist in determining the minimum weight design of two-
dimensional planar structures such as plated panels and
trusses. Of particular interest is the determination of the
minimum weight arrangement of (a) stiffeners for a plate, or
(b) the members of a truss, both being loaded in their plane.

Rectangular plates or truss members of linearly elastic,
isotropic and homogeneous material are examined in detail.
Although instability is not considered, the present method
of analysis may aid in the examination of such effects as
instability and/or plasticity.

The first part of this study functions as background.
The basic theorem for the design of truss-like structures
established by Clerk Maxwell in 1869 is discussed and numeri-
cal applications of the theorem are made.

A. G. M. Michell in 1904 used Maxwell's theorem to
arrive at the tentative conclusion that in certain cases we
can find lower limits to the total material necessary to
sustain given loads, and also assign the forms of frames
which are most economical. The implications of his conclu-
sion is the basis for the present study.

Michell has shown for a number of simple two-dimensional
truss problems that the minimum weight arrangement of the

truss members follows the lines of the "Michell Fields"
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which are lines that meet orthogonally at any point in the
Field.

These lines are analogous to the principal strain
trajectories which are curves that follow the directions of
the principal strains. Since only isotropic material is
considered in this study, the search for a way to obtain the
principal strain trajectories of a structure has been sub-
stituted by an efficient technique by which we obtain the
principal stress trajectories.

The principal stress trajectories, similar to the
Principal strain trajectories are lines which follow the
directions of the principal stresses.

The second part of this investigation, demonstrates how
one can efficiently obtain the stress trajectories by incor-
porating the plane stress approximation through the Finite
(or Discrete) Element Technique.

An introduction to the Finite Element (Displacement)
Method as applied to the development of a rectangular element
is given. This involves the definition of the displacement
functions, the development of the Element's Stiffness Matrix,
and the determination of the Energy Equivalent nodal forces.

From the assembled structure's stiffness matrix and the
Energy Equivalent nodal forces, the nodal displacements are
obtained. Therefore, the state of stress of the total struc-
ture can be determined from the stress-displacement relation-

ships. The magnitude and direction of the principal stresses
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at any nodal point (oxr control station) can be calculated.
Profiting from the existence of the orthogonal grid provided
by the Finite Elements! boundaries and from the fact that the
stresses vary linearly along the interelement boundaries, a
linear extrapolation method is described, through which the
principal stress trajectories are obtained, (for our purposes
only the compressive stress trajectories).

A computer program has been written in F@RTRAN IV for the
use of the G level compiler of the IBM 360 computer model.

The program enables one to adequately model any plane
stress problem subject to the above discussed limitations.

By reading in the geometric parameters, the boundary con-
ditions and the applied forces, concentrated anywhere in the
structure or distributed on the boundaries, one obtains as
output the displacements and the average stresses at each
nodal point, (or control station) of the structure.

From the calculation of the principal stresses derived
from the average nodal stresses, a plotting of the principal
compressive stress trajectories is obtained, (by the aid of
the IBM Calcomp Plotter).

Furthermore, the program is capable of reinforcing the
structure along the principal compressive trajectories with
fictitious stiffeners; that is, hy increasing the thickness

of the elements which are traversed by the trajectories.

Once the first trial of "stiffening" has been performed,

the new plot of stress trajectories is given together with



12

a listing of the elements to be reinfoxced for the second
trial, and so on.

The complete description of the Program's capabilities
and limitations is given in Appendix II-A,

The procedure followed by the program goes beyond the
determination of the stress trajectories. However, it is
not the purpose of this study te further develop the computer
method of reinforcing a structure by true stiffener sizes.

It is of greater importance to demonstrate first that
by adding material at the location(s) of the maximum princi-
pal stress, the required reduction of stress is achieveqd,
resulting at the same time with the least weight addition
of material for the specified stress reduction.

Part three of the present work compares four different
stiffener arrangements for the optimum (least weight) reduc-
tion of the principal stresses.

Two cross-sections along the length of a centrally
loaded plated plane panel (in its plane) and with fixed
ends were conveniently chosen to be at the quarter length
and at the midspan.

The Simple Beam Theory which is a good approximation
when applied to plane panels was employed. By its aid, the
maximum shear on the N.A. of the quarter length cross-section
and the maximum bending stress at the edges of the miw. _an
were calculated for the four different plate-stiffener

combinations, to yield two sets of curves, one for each kind
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of stress, These curves describe the behavior of the three
shear stresses and the three bending stresses corresponding
to the three best arrangements at each of the above specified
cross-sections respectively.

Part four includes all the significant results of this
study. Three plane stress problems are examined in detail
and their results for the nodal displacements, the average
nodal stresses, and the stress trajectories are in agreement
with the theoretically predicted or' anticipated results.

The computer "stiffening" procedure results are included
to demonstrate explicitly the maximum capability of the pre-
sent computing technique.

At the end of Part four two sets of graphs illustrate
that the stiffening of a plate is of least weight when the
reinforcing material is added at the location of the maximum

principal stress.
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I BACKGROUND

A. Maxwell Structures

The first to establish the theorem that governs the
design of "single purpose structures" as those structures
were described by H. L. Cox(l) was Clerk Maxwell in 1869.(2)
The theorem as it is stated by Maxwell is:

THEOREM-~"If every one of a system of points in a
plane is in equilibrium under the action
of tensions and rressures acting along
the lines joining the points, then if we
substitute for each point a small smooth
ring through which smooth thin rods of
indefinite length corresponding to the
lines are compelled to pass, then if to
each rod be applied a couple in the plane,
whose moment is equal to the product of
the length of the rod between the points
multiplied by the tension or pressure in
the former case, and tends to turn the
rod in the positive or the negative direc-
tion, according as the force was a tension
or a pressure, then every one of the sys-
tem of rings will be in equilibrium. For
each ring is acted on by a system of
forces equal to the tensions and pressures
in the former case, each to each, the
whole system being turned round a right
angle, and therefore the equilibrium of
each point is undisturbed."

LEMMA--"In any system of points in equilibrium
in a plane under the action of repulsions
and attractions, the sum of the products
of each attraction multiplied by the
distance of the points between which it
acts, is equal to the sum of the products
of the repulsions aultiplied each by the
distance of the points between which it
acts."
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Maxwell's Lemma takes the algebraic form:

z FTLT + % Ph = & Fch + % Rh [(1.1]

where:
FT' Fc are the internal tensile and compressive forces,
respectively,
e L are the lengths of the truss members (ties and
struts, respectively).
P, R are the external loads (applied and reactions,
respectively)
h is the height of the point on which the external

loads are applied.

If the reactions of the truss are not vertical, their
horizontal components must be considered to create tensile
Oor compressive moments.

Iwo examples of planar trusses are used to illustrate
the application of both the Theorem and the Lemma. These
are described in Appendix I-A.

According to Miche11(4) Maxwell's Lemma takes the form:
X FTLT - I Fch = C i1.2]

where:

C = IPh + I Rh [1.2.1]

C is a function of applied forces and the coordinates
of their points of application, and is independent of the

form of the frame.
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As it was mentioned in the beginning, Maxwell's Theorem
and Lemma apply to "single purpose structures" only. By that
it is meant that the structure will be able to support a
given set of loads. However, it may or may not support
another set of loads. Furthermore, the structure is:

(1) Filamentary (that is, a structure consisting

entirely of normal stress carrying elements).

(2) Constructed from uniform linearly-elastic

material.(S)

This Theorem is significant in that it relates the
total quantity of material of any truss member with a given
allowable stress, to the external pressure or tension on that
member. For any truss member with a known allowable stress
+0a11. or “0a11.’ depending on whether the member is in ten-
sion or in compression, the strength of the member will be
proportional to the cross-section A of the member.

That is,

a (6) [1.3]

The weight of the member is

W = pg AL [1.4]
where pg is the density of the material and %, the length

of the bar. Therefore,
F
all.

W= og - 2 [1.5]

or v - Call. = Py [1.6]
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where V is the volume of the bar. Therefore Maxwell's Lemma

becomes:

- - *
tht - chc = i Fi r. [1.7]

which is the algebraic form in which H. L. Cox introduces
Maxwell's Lemma. In equation [1.7]:
Vis Vc are the total volumes of the material in tension
and compression, respectively.
L fc are the maximum allowable tensile and compressive

stresses.

Ei is the planar external vector force applied to
the ith node of the structure.
Ei is the vector distance of the ith point from an

assigned origin on the plane of the structure.
We obtain the total volume of material needed by adding
the total material being in tension (all the ties) to the
total material being in compression (all the struts).
Using equation [1.6] and solving for V, we obtain the
following relationship which gives the minimum total volume
of a truss which will adequately support a given set of

external loads:(4)

FT ' Fc
V=13 ET — + z zc T [1.8]
all.T all.C

*
Note: In equation [1.7] the volume of the end fittings
is not included.
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In general, Oall.T for tension is not the same as Gall.c
for compression in the same structure and this is why the
notation icall. is not used above. zT,.zc, FT, and Fc are
as defined before,

To summarize, Maxwell's Theorem is the cornerstone in
the theory of optimization of weight in structural design
because it gives the relationship of the minimum weight
.Recessary to equilibrate a given set of applied loads. How-
ever, it conveys strict limitations:

(a) In that it applies only to a given structure

with a given set of loads (single purpose structure).

(b) In that it applies only to filamentary truss

structures of uniform elastic material.

B. Michell Structures

A. G. M. Michell's contribution to the field of
optimization of weight in structural design is made in the
exparsion of Maxwell's Theorem. He also deals with fila-
mentary type structures of uniform elastic material but
which are restricted in that they consist of two types of
filaments or bars which meet orthogonally. Thig orthogonality
is due to the fact that each type of the filaments, depend-
ing on whether it is a tie Or a strut, follows the paths of
the principal tensile or compressive strain trajectories.

Michell shows that in certain cases we can find (a) the

global minimum or the optimum of the optima of weight
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solutions which equilibrate a given set of forces and (b) the
configuration of the frames which gives the least weight of
all the minimum weight solutions.

Starting with equation [1.8] which gives the minimum
weight for a given frame and a given set of loads, he seeks
to find the least weight frame out of a set of acceptable
frames.

First he indicates that in order for the total volume
of the structure V to be the least,

L %|F|] must also be the least, ‘4 [1.9]
where % is the length of any tie or strut and |F| is the
absolute value of any tension or compression.

Consider a region of space R, and a set of frames
within R such that every frame in R equilibrates the applied
loads and satisfies the given boundary conditions.

If the imposed virtual deformation on the boundary of
the structure due to the external loads is being shared by
every member in such a way that the corresponding elongation
or contraction is

|af] < eg [1.10]
where € is an infinitesimal positive ratio, then, the virtual
work done on the structure will be

W =1L F AR [1.11]

or |6W| = |z F AL [1.12]
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But, mathematically, it is also true that:
T F a2 < ¢ |F| [Ag | [1.13]

Notice, however, that the inequality sign has no
physical significance here since the products of tension x
elongation or compression x contraction are always positive.

Therefore, equations [1.3], [1.10], and [1.13] vield

Z |F| |az|

IN

Oa11. € LI AL [1.14]

or < oall. eV [1.14.1]

where V is the total volume of the material of the structure.

From equations [1.12] and [1.14.1] we obtain
all.

Since we want the least volume of the structure for the

maximum use of the frame,

| 6w|

o mgx = Vleast [1.16]

all.
which is in complete agreement with equation [1.9].

This is easy to check. Note that if we substitute

Vleast by I A%, equation [1.16] becomes

| 6w |

max _
— = I °all.A [1.16.2]

Since 011, Stands for the numerical value of the

allowable stress and it is positive

03112 = |F| [1.16.3]
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where |F| is as defined in equation I1.9]. For a particular
frame M which satisfies the condition of equation [1.16],
equation [1.16.4] becomes

| ew|

max
——— = L |F|y [1.16.5]

For any other frame of the admissible frames that we

compare with frame M, say frame A,

18W]|,
1..13&& )

- alFla [1.16.6]

will hold true. Therefore, frame M, M representing Michell,
is the least weight frame.

To conclude, Michell has shown that there is always a
least volume material that could be used in a structure to
equilibrate a given set of loads. However, whether or not
a structure that uses the least volume material exists for
all cases is not known.(s) Michell has demonstrated the
existence of such structures in a number of examples, socme
of which are described in Appendix I-B.

It is clear from the preceding material that the least
weight structure, if it exists, must satisfy two conditions:(7)

(1) The stresses in all members are equal to the

allowable stress Oa11 (Equation [1.16.3])

(2) The virtual strains in each of the members of the
structure are equal to *e, where the sign is in

agreement with the sign of the end loads for each



22

member and in no case exceed the numerical

value of €.

These conditions imply that the membhers of the optimum
structure M must lie along the principal strain trajectories.
If they do not, and they simultaneously satisfy condition (2),
then points can exist on any of these members at which the
directions of the corresponding principal strains will be
*different than the directions of the members, and their
magnitude would be greater than €.

Since the principal strain trajectories as defined by
Mohr's circle form an orthogonal mesh of lines, it follows
that at any nodé cf a Michell structure, a tie comes vertical

to a strut.

.. The Stress Trajectory Approach

The approach followed in this study for the optimum
arrangement of two-dimensional planar structures is basically
the same as the one described in the previous Sections. How-
ever, instead of obtaining the principal strain trajectories,
the technique to follow obtains the principal stress
trajectories.

The principal stress trajectories are continuous curves,
divided into two families, each corresponding to the prin-
cipal compressive and tensile stresses, and at any point in
a continuous medium are tangent to the directions of the

principal compressive and tensile stresses which meet at
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right angles; the magnitude of the principal stress varies
along the paths of the trajectories, and it can be indicated
in a pictorial representation either by varying their thick-
ness or by assigning values of the principal stresses along
their paths.

As recently as 1966, they were known as curves
laborious to obtain, not easy to represent on paper and
.thurefore not often used in practical stress analysis work.(lz)

Today, however, the aid of the computer and the
applicability of the Finite Element Technique to linear
elastic problems provide the means by which one can easily
and economically obtain the stress trajectories. Also, the
representation on paper is done by the computer.

Two examples of stress trajectories have already been
introduced in association with the Michell Field lines in
Appendix I-B.

The stress trajectories have been introduced to ship
structural design by Hovgaard.(l3) He particularly demon-
strates their importance in that they are curves indicative
of the way to stiffen a plate against "wrinkling" which is a
particular case of buckling.

Specifically, for high stress levels, the principal
compressive stresses in a thin webbed plate like that of
Figure I-B.5 can cause wrinkling. The regions of the plate
where those principal stresses are totally, ox to the

greater percentage of their value, depended on the shear
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stress are moxe likely to wrinkle. . The dixections of the
principal compressive stresses are at 45° to the Neutral
Axis (N.A.)] of the plate at the N.A. and at a distance of
L/4 from either end of the plate.

Therefore, the buckling wave formed when the critical
stress value is reached runs along the direction of the
principal compressive stresses. 1Its effect however is
amplified due to the principal tensile stresses which in
stretching the wave in a 90° direction from that in which
the wave runs, create the wrinkling waves.

It is of extreme importance tc note that in the
longitudinally-framed ship, such as the warship of Figure I-1,
the girders run approximately along the pathways of the stress
trajectories. The plating of Section FFFF according to the
previous discussion will be the most vulnerable to compres-
sive stress due to shearing. Thexefore, proper stiffening
along the compressive stress trajectories will strengthen it.

This author has explained how one can obtain the stress
trajectories applying Simple Beam Theory to rectangular
plates:(l4) however, the computational method is limited to
one particular example, a centrally-loaded plate fixed at the
ends. A more complete method which can treat any two-
dimensional planar stress problem is described in detail in

the next Section.
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IX THE STRESS TRAJECTORY TECHNIQUE

A. The Pinite Element Approach

1. Introduction. The importance of the s&tress

trajectories in determining the minimum weight arrangement

of the truss members or the stiffeners of a plate under

two dimensional loading has been explained in the previous

.8ection. However, the question still remains as to how one
can easily obtain the principal stress trajectories.

The Finite Element Technique applied to the Plane Stress
Approximation serves as one answer: one can arrive at the
general state of stress of the structure and from Mohr's
circle dexive the principal stresses from which the stress
trajectories will be obtained. The efficiency of this
Techniéue is attributed to the fact that it is aided by the

computer.

2. General. The Finite Element Technique is based on
the fact that an elastic continuum, such as a plate or a
shell, can be thought of as an assemblage of finite struc-
turul elements interconnected at a diacrete number of
finite nodal points, or control stations. Within each
discrete or Finite Element, the behavior (displacements) is
described in terms of a limited number of degrees of freegom,
which are usually defined at interelement nodal stations

(the nodal displacements in the present case).
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In reality, however, an elastic continuum has an
infinite number of degrees of freedom, but since it is
impossible to treat them, the Finite Element Technique
becomes an approximation to reality.

The approach to a planar streés structural problem
using the Finite Element Displacement Method is similar to
that used in simple Frame Structural Analysis as again the
basic unknown parameters are the displacements of the nodal
;oints. The difference between the two is that a two
dimensional Finite Element can have three or more discrete
number of nodal points situated on its boundaries, while
the bars in Frame Analysis have only two nodes, one at each
end.

The follewing is the general procedure for working with
the Finite Element Technique:

(1) Separate the continuum into a number of Finite

Elements by imaginary lines.

(2) Define a set of nodes on the boundaries of each
element. The unknown displacements, q, will be
defined there.

(3) Choose a function (or functions) tc define
uniquely the displacements (u, v) of every point
within the element, in terms cf the ncdal
displacements, q.

(4) Define the strains (ex, ey, ny) of every point
within the element in terms of the displacements,
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u, v; and thusa, together with the elastic
propexties of the material, E, v define the
stresses (q,, Tyt Txyl within the element and
therefore on its boundaries in terms of the strains.
(5) Determine a system of nodal equivalent forces, Q,
which balance the boundary stresses and any dis-
tributed boundary loads, so that from the stiff-
ness relationship
{Q} = IKl{g} [2.1]
We can solve for q having worked out the

stiffness matrix [K].(ls)

3. Geometry. As mentioned in the Introduction, the
present Technique examines only orthogcnal geometry. There-
fore, the simplest manner to represent a rectangular plate
is to use a rectangular element, with dimensions which are

multiples of the dimensions of the plate. To simplify the

r element further for our purposes, the element under consider-
ation has only four nodes, one at each corner, and has no

other nodes along its four edges.

4. Forces and Displacements. If the Force-

Displacement relationships for the individual elements are
known, we can derive the properties and study the behavior
of the assembled structure.

The Finite Element Technique assumes that the internal

stresses which actually act along the boundaries of an
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. element are substituted by equivalent fictitious forces on
the nodes of the element. These equivalent forces, Q, will
relate to the nodal displacements which are the basic
unknown qnantittea; q.

Since the three kinds of possible inplane loads acting
on a two-dimensional planar structuré-*namely, the forces in
the x-direction, the forces in the y-direction, and the
moments about the z-direction in a cartesian coordinate
system--can be adequately modeled by a two-dimensional
orthogonal system of forces acting on each node of the
structure, each nodal point will have two degrees of freedom.
Therefore, the displacements u, in the x~direction, and v,
in the y-direction, within an element will have to be
uniquely defined by the nodal displacements, q, as defined
in Figure II-1. They are functions of the local coordinates
x and v and their simplest representation for a rectangular

element is the following:

_ X Y Xy
u=20, +a, ™ + 0 + a [2.1.1]
1 2 Lx 3 Ly 4 LxLy
= x v xy
v=oa. +a, = + a + a [2.1.2]
5 6 Lx 7 Ly 8 Lx v

where the constants Gl, 02, 03, 04 can be expressed in terms
of the nodal displacements, q. (15)

For each horizontal nodal displacement, we can write



%s

i

Figure II-1

The Nodal Displacements of
An Element in Their Positive Directions
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q; = oy [2.2.1]
q; = oy + o, [2.2.2]
R P X [2.2.3]
@y = 6y + 0 [2.2.4]

Solving for dl' &2, d3, and d4, we obtain

a; = qy [2.3.1]
Gy, = 93 = dy [2.3.2]
' a3 = qp = q | [2.3.3]
d4 =q ~d3 + 95 =~ dy [2.3.4]

Substitution for a;, a5, Qg and a, in equation [2.1.1]
yields
u=gq; + (a4 ql)Lx + (a4 ql)Ly

- - X

or, rewriting equation [2.4.1] one has

u=agq (1 - _i.-.JL4._£X_q +q (_5 _.Jqu
1l Lx LY LxLy 3 Lx LxLy

+q5 L_::f;.q- q7(£§.— I-f:%;) {2.4.2]

Note that the above expression for u, checks with the
horizontal nodal displacements of Figure II-1l, if we substi-
tute for (x =0, y=0), (x = Ly = 0), (x = L y= Ly),

a = = L .
and (x = 0, y y)
Simiiarly, we obtain the expression for the vertical

displacement:



32

= - x!‘ { ..x‘!‘
veaQ - g fﬁ" ii{;x Ayl ,_i%;)
+ ‘i*s(r:f;l + qs(f}; - ,%-1 [2.5]

- Clearly, the two expressions for the horizontal and
vertical displacements are s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>