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Abstract

We study the relationship between geom-
etry and capacity measures for deep neu-
ral networks from an invariance viewpoint.
We introduce a new notion of capacity—the
Fisher-Rao norm—that possesses desirable
invariance properties and is motivated by In-
formation Geometry. We discover an ana-
lytical characterization of the new capacity
measure, through which we establish norm-
comparison inequalities and further show
that the new measure serves as an umbrella
for several existing norm-based complexity
measures. We discuss upper bounds on the
generalization error induced by the proposed
measure. Extensive numerical experiments
on CIFAR-10 support our theoretical find-
ings. Our theoretical analysis rests on a key
structural lemma about partial derivatives of
multi-layer rectifier networks.

1 Introduction

Beyond their remarkable representation and memo-
rization ability, deep neural networks empirically per-
form well in out-of-sample prediction. This intriguing
out-of-sample generalization property poses two fun-
damental theoretical questions: (1) What are the com-
plexity notions that control the generalization aspects
of neural networks? (2) Why does stochastic gradient
descent, or other variants, find parameters with small
complexity?

In this paper we approach the generalization question
for deep neural networks from a geometric invariance
vantage point. The motivation behind invariance is
twofold: (1) The specific parametrization of the neural
network is arbitrary and should not impact its gener-
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alization power. As pointed out in [14], for example,
there are many continuous operations on the parame-
ters of ReLU nets that will result in exactly the same
prediction and thus generalization can only depend
on the equivalence class obtained by identifying pa-
rameters under these transformations. (2) Although
flatness of the loss function has been linked to gen-
eralization [6], existing definitions of flatness are nei-
ther invariant to nodewise re-scalings of ReLU nets
nor general coordinate transformations [5] of the pa-
rameter space, which calls into question their utility
for describing generalization.

It is thus natural to argue for a purely geometric char-
acterization of generalization that is invariant under
the aforementioned transformations and additionally
resolves the conflict between flat minima and the re-
quirement of invariance. Information geometry is con-
cerned with the study of geometric invariances arising
in the space of probability distributions, so we will
leverage it to motivate a particular geometric notion
of complexity—the Fisher-Rao norm. From an al-
gorithmic point of view the steepest descent induced
by this geometry is precisely the natural gradient [1].
From the generalization viewpoint, the Fisher-Rao
norm naturally incorporates distributional aspects of
the data and harmoniously unites elements of flatness
and norm which have been argued to be crucial for
explaining generalization [13].

Statistical learning theory equips us with many tools
to analyze out-of-sample performance. The Vapnik-
Chervonenkis dimension is one possible complexity no-
tion, yet it may be too large to explain generaliza-
tion in over-parametrized models, since it scales with
the size (dimension) of the network. In contrast, un-
der additional distributional assumptions of a margin,
Perceptron (a one-layer network) enjoys a dimension-
free error guarantee, with the `2 norm playing the role
of “capacity”. These observations (going back to the
60’s) have led to the theory of large-margin classifiers,
applied to kernel methods, boosting, and neural net-
works [2]. In particular, the analysis of [9] combines
the empirical margin distribution (quantifying how
well the data can be separated) and the Rademacher
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complexity of a restricted subset of functions. This
in turn raises the capacity control question: what is
a good notion of the restrictive subset of parameter
space for neural networks? Norm-based capacity con-
trol provides a possible answer and is being actively
studied for deep networks [11, 15, 14, 3, 13], yet the
invariances are not always reflected in these capacity
notions. In general, it is very di�cult to answer the
question of which capacity measure is superior. Nev-
ertheless, we will show that our proposed Fisher-Rao
norm serves as an umbrella for the previously consid-
ered norm-based capacity measures, and it appears to
shed light on possible answers to the above question.

Much of the di�culty in analyzing neural networks
stems from their unwieldy recursive definition inter-
leaved with nonlinear maps. In analyzing the Fisher-
Rao norm, we proved an identity for the partial deriva-
tives of the neural network that appears to open the
door to some of the geometric analysis. In particular,
we prove that any stationary point of the empirical
objective with hinge loss that perfectly separates the
data must also have a large margin. Such an automatic
large-margin property of stationary points may link
the algorithmic facet of the problem with the general-
ization property. The same identity gives us a handle
on the Fisher-Rao norm and allows us to prove a num-
ber of facts about it. Since we expect that the identity
may be useful in deep network analysis, we start by
stating this result and its implications in the next sec-
tion. In Section 3 we introduce the Fisher-Rao norm
and establish through norm-comparison inequalities
that it serves as an umbrella for existing norm-based
measures of capacity. Using these norm-comparison
inequalities we bound the generalization error of var-
ious geometrically distinct subsets of the Fisher-Rao
ball and provide a rigorous proof of generalization
for deep linear networks. Extensive numerical exper-
iments are performed in Section 5 demonstrating the
superior properties of the Fisher-Rao norm.

2 Geometry of Deep Rectified
Networks

Definition 1. The function class HL realized
by the feedforward neural network architecture of
depth L with coordinate-wise activation functions
�l is defined as the set of functions f✓ :
X Ñ Y (X Ñ Rp

,Y Ñ RK)1 with f✓pxq “
�L`1p�Lp. . .�2p�1pxT

W
0qW 1qW 2q . . .qWLq where ✓ P

⇥L Ñ Rd (d “ pk1 ` ∞
L´1
i“1 kiki`1 ` kLK) and ⇥L “

Rpˆk1 ˆ Rk1ˆk2 ˆ . . . ˆ RkL´1ˆkL ˆ RkLˆK .

1It is possible to generalize the above architecture to in-
clude linear pre-processing operations such as zero-padding
and average pooling.

For simplicity of calculations, we have set all bias terms
to zero2. Also, as pointed out by [7], a bias-less net-
work with homogeneous coordinates (in the first layer)
can be nearly as powerful as one with biases in terms of
the functions it can model. We also assume through-
out the paper that �pzq “ �

1pzqz for all the activa-
tion functions, which includes ReLU �pzq “ maxt0, zu,
“leaky” ReLU �pzq “ maxt↵z, zu, and linear activa-
tions as special cases.

To make the exposition of the structural results con-
cise, we define the following intermediate functions.
The output value of the t-th layer hidden node is de-
noted as O

tpxq P Rkt , and the corresponding input
value as N

tpxq P Rkt , with O
tpxq “ �tpN tpxqq. By

definition, O
0pxq “ x

T P Rp, and the final output
O

L`1pxq “ f✓pxq P RK . The subscript i on N
t

i
, O

t

i

denotes the i-th coordinate of the respective vector.

Given a loss function `p¨, ¨q, the statistical learning
problem can be phrased as optimizing the unobserved
population loss: Lp✓q :“ EpX,Y q„P `pf✓pXq, Y q based
on i.i.d. samples tpXi, YiquN

i“1 from the unknown joint
distribution P. The unregularized empirical objec-
tive function is denoted by pLp✓q :“ pE`pf✓pXq, Y q “
1
N

∞
N

i“1 `pf✓pXiq, Yiq .

We first establish the following structural result for
neural networks. It will be clear in the later sec-
tions that the lemma is motivated by the study of
the Fisher-Rao norm, formally defined in Definition
2 below, and by information geometry. For the mo-
ment, however, let us provide a di↵erent viewpoint.
For linear functions f✓pxq “ x✓, xy, we clearly have
that xBf{B✓, ✓y “ f✓pxq. Remarkably, a direct ana-
logue of this simple statement holds for neural net-
works, even if over-parametrized.

Lemma 2.1 (Structure in Gradient). Given a sin-

gle data input x P Rp
, consider the feedforward neu-

ral network in Definition 1 with activations satisfying

�pzq “ �
1pzqz. Then for any 0 § t § s § L, one has

the identity
∞

iPrkts,jPrkt`1s
BOs`1

BW t
ij
W

t

ij
“ O

s`1pxq. In

addition, it holds that

ÿ

iPrkts,jPrkt`1s,
0§t§L

BOL`1

BW t

ij

W
t

ij
“ pL ` 1qOL`1pxq .

Lemma 2.1 reveals the structural constraints in the
gradients of rectified networks. In particular, even
though the gradients lie in an over-parametrized high-
dimensional space, many equality constraints are in-
duced by the network architecture. Before we unveil
the surprising connection between Lemma 2.1 and the

2In practice, we found that setting the bias to zero
does not significantly impact results on image classifica-
tion tasks such as MNIST and CIFAR-10.



Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, James Stokes

proposed Fisher-Rao norm, let us take a look at an im-
mediate corollary of this result. The following corol-
lary establishes a large-margin property of stationary
points that separate the data.

Corollary 2.1 (Large Margin Stationary Points).
Consider the binary classification problem with Y “
t´1,`1u, and a neural network where the output layer

has only one unit. Choose the hinge loss `pf, yq “
maxt0, 1 ´ yfu. If a certain parameter ✓ satisfies

two properties: (a) ✓ is a stationary point for pLp✓q:
r✓

pLp✓q “ 0; (b) ✓ separates the data: Yif✓pXiq °
0 : @i P rN s, then it must be that ✓ is a large mar-

gin solution: Yif✓pXiq • 1 : @i P rN s. The same

result holds for the population criteria Lp✓q, in which

case if condition pbq holds PpY f✓pXq ° 0q “ 1, then
PpY f✓pXq • 1q “ 1.

Granted, the above corollary can be proved from first
principles without the use of Lemma 2.1, but the
proof reveals a quantitative statement about station-
ary points along arbitrary directions ✓.

The following corollary is another direct consequence
of Lemma 2.1.

Corollary 2.2 (Stationary Points for Deep Lin-
ear Networks). Consider linear neural networks with

�pxq “ x and square loss function. Then all stationary

points that satisfy r✓
pLp✓q “ r✓

pE
“
1
2 pf✓pXq ´ Y q2

‰
“

0 must also satisfy xwp✓q,XTXwp✓q ´ XTYy “ 0,
where wp✓q “ ±

L

t“0 W
t P Rp

, X P RNˆp
and Y P RN

are the data matrices.

Remark 2.1. This simple Lemma is not quite as-
serting that all stationary points are global optima,
since global optima satisfy XTXwp✓q ´ XTY “ 0,
while we only proved that stationary points satisfy
xwp✓q,XTXwp✓q ´ XTYy “ 0.

Remark 2.2. Recursively applying Lemma 2.1 yields
a tower of derivative constraints. For instance
x✓,Hess✓pf✓q✓y “ LpL ` 1qf✓.

3 Fisher-Rao Norm and Geometry

In this section, we propose a new notion of complexity
of neural networks that can be motivated by geomet-
rical invariance considerations, specifically the Fisher-
Rao metric of information geometry. After describing
geometrical motivation in Section 3.1 we define the
Fisher-Rao norm and describe some of its properties.
Detailed comparison with the known norm-based ca-
pacity measures and generalization results are delayed
to Section 4.

3.1 Motivation and invariance

In this section, we will provide the original intuition
and motivation for our proposed Fisher-Rao norm
from the viewpoint of geometric invariance.

Information geometry and the Fisher-Rao met-
ric Information geometry provides a window into ge-
ometric invariances when we adopt a generative frame-
work where the data generating process belongs to a
parametric family P P tP✓ | ✓ P ⇥Lu indexed by the
parameters of the neural network architecture. The
Fisher-Rao metric on tP✓u is defined in terms of a lo-
cal inner product for each value of ✓ P ⇥L as follows.
For each ↵,� P Rd define the corresponding tangent
vectors ↵̄ :“ dp✓`t↵{dt|

t“0, �̄ :“ dp✓`t�{dt|
t“0. Then

for all ✓ P ⇥L and ↵,� P Rd we define the local inner
product x↵̄, �̄yp✓ :“ ≥

↵̄

p✓

�̄

p✓
p✓, The above inner prod-

uct extends to a Riemannian metric on the space of
positive densities called the Fisher-Rao metric3. The
relationship between the Fisher-Rao metric and the
Fisher information matrix I✓ in statistics literature
follows from the identity x↵̄, �̄yp✓ “ x↵, I✓�y. Notice
that the Fisher information matrix induces a semi -
inner product p↵,�q fiÑ x↵, I✓�y unlike the Fisher-
Rao metric which is non-degenerate4. If we make
the additional modeling assumption that p✓px, yq “
ppxqp✓py |xq then the Fisher information becomes
I✓ “ EpX,Y q„P✓

rr✓ log p✓pY |Xq b r✓ log p✓pY |Xqs.
If we now identify our loss function as `pf✓pxq, yq “
´ log p✓py |xq then the Fisher-Rao metric coincides
with the Fisher-Rao norm when ↵ “ � “ ✓. In fact,
our Fisher-Rao norm encompasses the Fisher-Rao met-
ric and generalizes it to the case when the model is
misspecified P R tP✓u.
Flatness Having identified the geometric origin of
Fisher-Rao norm, let us study the implications for
generalization of flat minima. [5] argued by way of
counter-example that the existing measures of flatness
are inadequate for explaining the generalization capa-
bility of multi-layer neural networks. Specifically, by
utilizing the invariance property of multi-layer recti-
fied networks under non-negative nodewise rescalings,
they proved that the Hessian eigenvalues of the loss
function can be made arbitrarily large, thereby weak-
ening the connection between flat minima and gener-
alization. They also identified a more general problem
which a✏icts Hessian-based measures of generaliza-
tion for any network architecture and activation func-
tion: the Hessian is sensitive to network parametriza-
tion whereas generalization should be invariant un-
der general coordinate transformations. Our proposal

3[4] showed that it is essentially the the unique metric
invariant under the di↵eomorphism group.

4The nullspace of I✓ maps to 0 under ↵ fiÑ
dp✓`t↵{dt|t“0.
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can be motivated from the following fact which re-
lates flatness to geometry (under appropriate regular-
ity conditions) EpX,Y q„P✓

x✓,Hess✓ r`pf✓pXq, Y qs ✓y “
}✓}2fr. In other words, the Fisher-Rao norm evades
the node-wise rescaling issue because it is exactly in-
variant under linear re-parametrizations. The Fisher-
Rao norm moreover possesses an “infinitesimal invari-
ance” property under non-linear coordinate transfor-
mations, which can be seen by passing to the in-
finitesimal form where non-linear coordinate invari-
ance is realized exactly by the infinitesimal line el-
ement, ds2 “ ∞

i,jPrdsrI✓sij d✓id✓j . Comparing with
}✓}fr reveals the geometric interpretation of the Fisher-
Rao norm as the approximate geodesic distance from
the origin. It is important to realize that our definition
of flatness di↵ers from [5] who employed the Hessian
loss Hess✓

“pLp✓q
‰
. Unlike the Fisher-Rao norm, the

norm induced by the Hessian loss does not enjoy the
infinitesimal invariance property (it only holds at crit-
ical points).

Natural gradient There exists a close relationship
between the Fisher-Rao norm and the natural gra-
dient. In particular, the natural gradient descent is
simply the steepest descent direction induced by the
Fisher-Rao geometry of tP✓u. Indeed, the natural gra-
dient can be expressed as a semi-norm-penalized iter-
ative optimization scheme as follows,

✓t`1 “ argmin
✓PRd

„
x✓ ´ ✓t,r

pLp✓tqy ` 1

2⌘t
}✓ ´ ✓t}2Ip✓tq

⇢
,

where the positive semi-definite matrix Ip✓tq changes
with di↵erent t. We emphasize that in addition to
the invariance property of the natural gradient under
re-parametrizations, there exists an “approximate in-
variance” property under over-parametrization, which
is not satisfied for the classic gradient descent. The
formal statement and its proof are deferred to Sec.
A.1. The invariance property is desirable: in multi-
layer ReLU networks, there are many equivalent re-
parametrizations of the problem, such as nodewise
rescalings, which may slow down the optimization pro-
cess. The advantage of natural gradient is also illus-
trated empirically in Section 5.

3.2 An analytical formula

Definition 2. The Fisher-Rao norm for a parameter

✓ is defined as the quadratic form }✓}2fr :“ x✓, Ip✓q✓y
where Ip✓q “ Err✓`pf✓pXq, Y q b r✓`pf✓pXq, Y qs.

The underlying distribution for the expectation in the
above definition has been left ambiguous because it
will be useful to specialize to di↵erent distributions
depending on the context. Even though we call the
above quantity the “Fisher-Rao norm,” it should be

noted that it does not satisfy the triangle inequality.
The following Theorem unveils a surprising identity
for the Fisher-Rao norm.

Theorem 3.1 (Fisher-Rao norm). Assume the loss

function `p¨, ¨q is smooth in the first argument. The

following identity holds for a feedforward neural net-

work (Definition 1) with L hidden layers and activa-

tions satisfying �pzq “ �
1pzqz:

}✓}2fr “ pL ` 1q2 E
BB`pf✓pXq, Y q

Bf✓pXq , f✓pXq
F2

. (3.1)

The proof of the Theorem relies mainly on the geomet-
ric Lemma 2.1 that describes the gradient structure of
multi-layer rectified networks.

Remark 3.1. For absolute-value loss, the FR norm
becomes proportional to the function space norm

}✓}fr “ pL ` 1q
`
E f✓pXq2

˘1{2
. Similarly for squared

loss with residual modeled as5 Y |X „ Npf✓pXq,�2q.

Before illustrating how the explicit formula in Theo-
rem 3.1 can be viewed as a unified “umbrella” for many
of the known norm-based capacity measures, let us
point out one simple invariance property of the Fisher-
Rao norm, which follows as a direct consequence of
Thm. 3.1. This property is not satisfied for `2 norm,
spectral norm, path norm, or group norm.

Corollary 3.1 (Invariance). If there are two param-

eters ✓1, ✓2 P ⇥L such that they are equivalent, in the

sense that f✓1 “ f✓2 , then their Fisher-Rao norms are

equal, i.e., }✓1}fr “ }✓2}fr.

3.3 Norms and geometry

In this section we will employ Theorem 3.1 to reveal
the relationship among di↵erent norms and their corre-
sponding geometries. Norm-based capacity control is
an active field of research for understanding why deep
learning generalizes well, including `2 norm (weight de-
cay) in [11, 10], path norm in [14], group-norm in [15],
and spectral norm in [3]. All these norms are closely
related to the Fisher-Rao norm, despite the fact that
they capture distinct inductive biases and di↵erent ge-
ometries.

For simplicity, we will showcase the derivation with the
absolute loss function `pf, yq “ |f ´ y| and when the
output layer has only one node (kL`1 “ 1). The ar-
gument can be readily adopted to the general setting.
We will show that the Fisher-Rao norm serves as a
lower bound for all the norms considered in the litera-
ture, with some pre-factor whose meaning will be clear
in Section 4.1. In addition, the Fisher-Rao norm en-
joys an interesting umbrella property: by considering a

5It also holds for other appropriate losses when the
model residual follows from generalized linear models.
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more constrained geometry (motivated from algebraic
norm comparison inequalities) the Fisher-Rao norm
motivates new norm-based capacity control methods.

The main theorem we will prove is informally stated
as

Theorem 3.2 (Norm comparison in Section 4.1, in-
formal). Denoting ~ ¨ ~ as any one of: (1) spectral

norm, (2) matrix induced norm, (3) group norm, or

(4) path norm, we have
1

L`1}✓}fr § ~✓~, for any

✓ P ⇥L “ tW 0
,W

1
, . . . ,W

Lu. The specific norms (1)-

(4) are formally introduced in Definitions 3-6.

The detailed proof of the above theorem will be the
main focus of Section 4.1. Here we will give a sketch on
how the results are proved. For the absolute loss, one
has

`
B`pf✓pXq, Y q{Bf✓pXq

˘2 “ 1 and therefore Theo-
rem 3.1 simplifies to,

}✓}2fr “ pL ` 1q2 E
X„P

“
vp✓, XqTXX

T
vp✓, Xq

‰
, (3.2)

where we have defined the product of matrices
vp✓, xq :“ W

0
D

1pxqW 1
D

2pxq ¨ ¨ ¨DLpxqWL
D

L`1pxq P
Rp and D

tpxq “ diagr�1pN tpxqqs P Rktˆkt , for 0 †
t § L ` 1. The norm comparison results are thus es-
tablished through a careful decomposition of the data-
dependent vector vp✓, Xq, in distinct ways according
to the comparing norm/geometry.

4 Capacity Control and
Generalization

In this section, we discuss in full detail the questions
of geometry, capacity measures, and generalization.
First, let us define empirical Rademacher complexity

for the parameter space ⇥L, conditioned on data tXi :
i P rN su, as RN p⇥Lq “ E✏ sup✓P⇥L

1
N

∞
N

i“1 ✏if✓pXiq,
where ✏i, i P rN s are i.i.d. Rademacher random vari-
ables.

4.1 Norm Comparison

Let us collect some definitions before stating each
norm comparison result. For a vector v, the vec-
tor `p norm is denoted }v}p :“ p∞

i
|vi|pq1{p, p ° 0.

For a matrix M , }M}� :“ maxv‰0 }vTM}{}v} denotes
the spectral norm; }M}pÑq “ maxv‰0 }vTM}q{}v}p
denotes the matrix induced norm, for p, q • 1;

}M}p,q “
“ ∞

j

` ∞
i
|Mij |p

˘q{p‰1{q
denotes the matrix

group norm, for p, q • 1. Define the subset of param-
eters induced by the Fisher-Rao geometry, Bfrprq :“
t✓ P ⇥L : }✓}fr § pL ` 1qru. For any norm } ¨ } defined
on ⇥L, let B}¨}prq :“ t✓ P ⇥L : }✓}}¨} § ru denote the
corresponding ball of radius r, centered at the origin.

We will consider the spectral norm }✓}�, group
norm }✓}p,q, matrix induced norm }✓}pÑq and path

norm }⇡p✓q}q, where }✓}� :“ ±
L

t“0 }W t}�, }✓}p,q :“±
L

t“0 }W t}p,q, }✓}pÑq :“ ±
L

t“0 }W t}pÑq, }⇡p✓q}q :“` ∞
i0,i1,...,iL

±
L

t“0 |W t

itit`1
|q

˘1{q
. In addition, for any

chain P “ pp0, p1, . . . , pL`1q, pi ° 0 we define the
chain of induced norm }✓}P :“ ±

L

t“0 }W t}ptÑpt`1 .

Definition 3 (Spectral norm). Define the following
data-dependent “spectral norm”:

~✓~� :“
«
E

˜
}X}2

L`1π

t“1

}DtpXq}2
�

¸�1{2

}✓}� . (4.1)

Remark 4.1. Spectral norm as a capacity control
has been considered in [3]. Theorem 3.2 shows that
spectral norm serves as a more stringent constraint
than Fisher-Rao norm. Let us provide an explana-

tion of the pre-factor
“
E

`
}X}2 ±

L`1
t“1 }DtpXq}2

�

˘‰1{2

here. Applying Theorem 3.2 to (4.1), with the ex-
pectation over the empirical measure pE, then, because
}DtpXq}� § 1, we obtain for 1{r “ rpE}X}2s1{2, that
B}¨}� prq Ä Bfrp1q. It follows from Theorem 1.1 in [3]
that a subset of the Bfrp1q characterized by the spec-

tral ball of radius r “ rpE}X}2s´1{2 enjoys the following
upper bound on Rademacher complexity under mild
conditions: RN

`
B}¨}�prq

˘
À Polylog {

?
N Ñ 0. Inter-

estingly, the additional factor rpE}X}2s1{2 in Theorem
1.1 in [3] exactly cancels with our pre-factor in the
norm comparison. The above calculations show that a
subset of Bfrp1q, induced by the spectral norm geom-
etry, has good generalization error.

Definition 4 (Group norm). Define the following
data-dependent “group norm”, for p • 1, q ° 0

~✓~p,q :“
«
E

˜
}X}2

p˚

L`1π

t“1

}DtpXq}2
qÑp˚

¸�1{2

}✓}p,q ,

where 1{p`1{p˚ “ 1. Here }¨}qÑp˚ denotes the matrix
induced norm.

Remark 4.2. Group norm as a capacity mea-
sure has been considered in [15]. The same rea-
soning as before shows that group norm serves
as a more stringent constraint than Fisher-Rao
norm. In particular, Theorem 6 implies that the
group norm ball with radius defined by 1{r “
pkr1{p˚´1{qs` qL maxi }Xi}p˚ is contained in the unit
Fisher-Rao ball, B}¨}p,q prq Ä Bfrp1q. By Theorem 1 in
[15] we obtain, RN pBp,qprqq À 2L ¨ Polylog {

?
N Ñ 0.

Once again, we point out that the intriguing combina-
torial factor pkr1{p˚´1{qs` qL maxi }Xi}p˚ in Theorem 1
of [15] exactly cancels with our pre-factor in the norm
comparison. The above calculations show that another
subset of Bfrp1q, induced by the group norm geome-
try, has good generalization error (without additional
factors).
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Definition 5 (Path norm). Define the following data-
dependent “path norm”, for q • 1

~⇡p✓q~q :“

»

—–E

¨

˝
ÿ

i0,...,iL

ˇ̌
ˇ̌
ˇXi0

L`1π

t“1

Dt
itpXq

ˇ̌
ˇ̌
ˇ

q˚ ˛

‚
2{q˚ fi

�fl

1{2

}⇡p✓q}q

where 1
q

` 1
q˚ “ 1, indices set i0 P rps, i1 P rk1s, . . . iL P

rkLs, iL`1 “ 1. Here ⇡p✓q is a notation for all the paths
(from input to output) of the weights ✓.

Remark 4.3. The path norm }⇡p¨q}q has been inves-
tigated in [14]. Focusing on the case q “ 1, Theorem
3.2 gives B}⇡p¨q}1prq Ä Bfrp1q for 1{r “ maxi }Xi}8.
By Corollary 7 in [15] we obtain RN

`
B}⇡p¨q}1prq

˘
À

2L ¨Polylog {
?
N Ñ 0. Once again, the additional fac-

tor appearing in the Rademacher complexity bound in
[15], cancels with our pre-factor in the norm compari-
son.

Definition 6 (Induced norm). Define the following
data-dependent “matrix induced norm”, for p, q ° 0,
as

~✓~pÑq :“
«
E

˜
}X}2

p

L`1π

t“1

}DtpXq}2
qÑp

¸�1{2

}✓}pÑq .

Remark that }DtpXq}2
qÑp

may contain dependence on
k when p ‰ q. This motivates us to consider the fol-
lowing generalization of matrix induced norm, where
the norm for each W

t can be di↵erent.

Definition 7 (Chain of induced norm). Define the
following data-dependent “chain of induced norm”, for
a chain of P “ pp0, p1, . . . , pL`1q, pi ° 0

~✓~P :“
«
E

˜
}X}2

p0

L`1π

t“1

}DtpXq}2
ptÑpt

¸�1{2

}✓}P .

Remark 4.4. Theorem 3.2 applied to Definition 7 ex-
hibits a new flexible norm that dominates the Fisher-
Rao norm. The example shows that one can motivate
a variety of new norms (and their corresponding ge-
ometry) as subsets of the Fisher-Rao norm ball.

We will conclude this section with two geometric ob-
servations about the Fisher-Rao norm with absolute
loss function `pf, yq “ |f ´ y| and one output node.
In this case, even though Bfrp1q is non-convex, it is
star-shaped.

Lemma 4.1 (Star shape). For any ✓ P ⇥L, let

tr✓, r ° 0u denote the line connecting between 0 and

✓ to infinity. Then one has,
d

dr
}r✓}2fr “ 2pL`1q

r
}r✓}2fr

which also implies }r✓}fr “ r
L`1}✓}fr.

Despite the non-convexity of Bfrp1q, there is certain
convexity in the function space:

Lemma 4.2 (Convexity in f✓). For any ✓1, ✓2 P ⇥L

such that
1

L`1}✓1}fr, 1
L`1}✓2}fr § 1 we have for any

0 † � † 1, the convex combination �f✓1 ` p1 ´ �qf✓2
can be realized by a parameter ✓

1 P ⇥L`1 in the sense

f✓1 “ �f✓1 `p1´�qf✓2 , and satisfies
1

pL`1q`1}✓1}fr § 1.

4.2 Generalization

In this section, we will investigate the generalization
puzzle for deep learning through the lens of the Fisher-
Rao norm. We will first introduce a simple proof in
the case of multi-layer linear networks, that capacity
control with Fisher-Rao norm ensures good general-
ization. Then we will provide an argument bounding
the generalization error of rectified neural networks
with Fisher-Rao norm as capacity control, via norm
caparisons in Section 4.1. We complement our argu-
ment with extensive numerical investigations in Sec-
tion 5.

Theorem 4.1 (Deep Linear Networks). Consider

multi-layer linear networks with �pxq “ x, L hidden

layers, input dimension p and single output unit, and

parameters ⇥L “ tW 0
,W

1
, . . . ,W

Lu. Then we have

ERN pBfrp�qq § �
a
p{N assuming the Gram matrix

ErXX
T s P Rpˆp

is full rank.

Remark 4.5. Combining the above Theorem with
classic symmetrization and margin bounds [9], one can
deduce that for binary classification, the following gen-
eralization guarantee holds (for any margin parame-
ter ↵ ° 0) E1 rf✓pXqY † 0s § pE1 rf✓pXqY § ↵s `
C

↵
RN pBfrp�qq ` C

a
p1{Nq log 1{� for any ✓ P Bfrp�q

with probability at least 1 ´ �, where C ° 0 is some
constant. We would like to emphasize that to ex-
plain generalization in this over-parametrized multi-
layer linear network, it is indeed desirable that the
generalization error in Theorem 4.1 only depends on
the Fisher-Rao norm and the intrinsic input dimen-
sion p, without additional dependence on other net-
work parameters (such as width, depth) or extraneous
X-dependent factors.

In the case of ReLU networks, it turns out that bound-
ing RN pBfrp�qq directly in terms of the Fisher-Rao
norm is a challenging task. Instead, we decompose
RN pBfrp�qq into two terms: the Rademacher com-
plexity of a subset of the Fisher-Rao norm ball in-
duced by distinct geometry (spectral, group, and path
norm ball), plus a deterministic function approxima-
tion error term. Denote by Ffrp�q :“ tf✓ : ✓ P
BfrppL` 1q�qu the functions induced by parameters in
�-radius Fisher-Rao norm ball. Let the function class
realized by spectral norm ball, group-p, q norm ball,
and path-q norm ball be F�p�q :“ tf✓ : ✓ P B}¨}� p�qu,
Fp,qp�q :“ tf✓ : ✓ P B}¨}p,q p�qu, F⇡,qp�q :“ tf✓ : ✓ P
B}⇡p¨q}q p�qu.
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As discussed in Remarks 4.1-4.3, the spectral, group,
and path norms induce distinct geometric subsets
of the Fisher-Rao norm ball, in the following sense
Ffrp1q Ö F�prq,Fp,qprq,F⇡,1prq for appropriate radii
r. The following Theorem quantifies the generaliza-
tion error of Ffrp1q, relying on our norm comparison
inequality, and the results in current literature [3, 15].
Proposition 4.1 (Deep Rectified Networks). For G

taken as F�prq with r “ rpE}X}2s´1{2
, one has

ERN pBfrp1qq §
function approximation errorhkkkkkkkkkkkkkkikkkkkkkkkkkkkkj
sup

fPFfrp1q
inf

gPGprq
}f ´ g}8 ` 1?

N
¨ Polylog.

Similar bounds hold for G taken as either Fp,q or F⇡,1.

We would like to emphasize that the approximation
error is on the function space rather than the param-
eter space. Furthermore, because of the cancellation
of pre-factors, as discussed earlier, the generalization
bound does not involve pre-factors, in contrast to what
one would get with a direct application of [3, 15]. Be-
fore concluding this section, we present the contour
plot of Fisher-Rao norm and path-2 norm in a simple
two layer ReLU network in Fig. 6 (in Appendix), to
better illustrate the geometry of Fisher-Rao norm and
the subsets induced by other norms. We choose two
weights as x, y-axis and plot the levelsets of the norms.

5 Experiments

Over-parametrization with Hidden Units In
order to understand the e↵ect of network over-
parametrization we investigated the relationship be-
tween di↵erent proposals for capacity control and the
number of parameters of the neural network. For
simplicity we focused on a fully connected architec-
ture consisting of L hidden layers with k neurons
per hidden layer so that the expression simplifies to
d “ krp ` kpL ´ 1q ` Ks. The network parame-
ters were learned by minimizing the cross-entropy loss
on the CIFAR-10 image classification dataset with no
explicit regularization nor data augmentation. The
cross-entropy loss was optimized using 200 epochs of
minibatch gradient descent utilizing minibatches of
size 50 and otherwise identical experimental conditions
described in [17]. The same experiment was repeated
using an approximate form of natural gradient descent
called the Kronecker-factored approximate curvature
(K-FAC) method [12] with the same learning rate and
momentum schedules. The first fact we observe is that
the Fisher-Rao norm remains approximately constant
(or decreasing) when the network is overparametrized
by increasing the width k at fixed depth L “ 2 (see
Fig. 1). If we vary the depth L of the network at
fixed width k “ 500 then we find that the Fisher-
Rao norm is essentially constant when measured in its

‘natural units’ of L ` 1 (Fig. 3 supplementary mate-
rial). Finally, if we compare each proposal based on
its absolute magnitude, the Fisher-Rao norm is dis-
tinguished as the minimum-value norm, and becomes
Op1q when evaluated using the model distribution.
This self-normalizing property can be understood as
a consequence of the relationship to flatness discussed
in section 3.1, which holds when the expectation is
taken with respect to the model.

Corruption with Random Labels Over-
parametrized neural networks tend to exhibit good
generalization despite perfectly fitting the training
set [17]. In order to pinpoint the “correct” notion
of complexity which drives generalization error, we
conducted a series of experiments in which we changed
both the network size and the signal-to-noise ratio
of the datasets. In particular, we focus on the set of
neural architectures obtained by varying the hidden
layer width k at fixed depth L “ 2 and moreover for
each training/test example we assign a random label
with probability ↵.

It can be seen from the last two panels of Fig. 2 that for
non-random labels (↵ “ 0), the empirical Fisher-Rao
norm actually decreases with increasing k, in tandem
with the generalization error and moreover this corre-
lation seems to persist when we vary the label random-
ization. Overall the Fisher-Rao norm is distinguished
from other measures of capacity by the fact that its
empirical version seems to track the generalization gap
and moreover this trend does not appear to be sensi-
tive to the choice of optimization. The stability of the
Fisher-Rao norm with respect to increasing k suggests
that the infinitely wide limit k Ñ 8 exists and is in-
dependent of k, and indeed this was recently verified
using mean-field techniques [8]. Finally, we note that
unlike the vanilla gradient, the natural gradient di↵er-
entiates the di↵erent architectures by their Fisher-Rao
norm (Fig. 4 supplementary material). Although we
don’t completely understand this phenomenon, it is
likely a consequence of the fact that the natural gra-
dient is iteratively minimizing the FR semi-norm.

Margin Story [3] adopted the margin story to ex-
plain generalization. They investigated the spectrally-
normalized margin to explain why CIFAR-10 with
random labels is a harder dataset (poorer generaliza-
tion) than the uncorrupted CIFAR-10 (which gener-
alize well). Here we adopt the same idea in this ex-
periment, where we plot margin normalized by the em-
pirical Fisher-Rao norm, in comparison to the spectral
norm, based on the model trained either by vanilla gra-
dient and natural gradient. It can be seen in the sup-
plementary material that the Fisher-Rao-normalized
margin also accounts for the generalization gap be-
tween random and original CIFAR-10. In addition,
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Model FR Empirical FR Spectral

↵ “ 0 1.61 22.68 136.67
↵ “ 1 2.12 35.98 205.56
Ratio 0.76 0.63 0.66

Table 1: Comparison of Fisher-Rao norm and spec-
tral norm after training with natural gradient us-
ing original dataset (↵ “ 0) and with random la-
bels (↵ “ 1). Qualitatively similar results holds for
GD+momentum.

Table 1 shows that the empirical Fisher-Rao norm im-
proves the normalized margin relative to the spectral
norm. These results were obtained by optimizing with
the natural gradient but are not sensitive to the choice
of optimizer.

Natural Gradient and Pre-conditioning It was
shown in [16] that multi-layer networks struggle to
learn certain piecewise-linear curves because the prob-
lem instances are poorly-conditioned. The failure was
attributed to the fact that simply using a black-box
model without a deeper analytical understanding of
the problem structure could be computationally sub-
optimal. Our results (in Fig. 7 of Appendix) suggest
that the problem can be overcome within the confines
of black-box optimization by using natural gradient.
In other words, the natural gradient automatically pre-
conditions the problem and appears to achieve similar
performance as that attained by hard-coded convolu-
tions [16], within the same number of iterations.

Figure 1: Dependence of di↵erent norms on width k

of hidden layers pL “ 2q after optimizing with vanilla
gradient descent (red) and natural gradient descent
(blue).

Figure 2: Dependence of capacity measures on label
randomization after optimizing with gradient descent.
The colors show the e↵ect of varying network width
from k “ 200 (red) to k “ 1000 (blue) in increments
of 100.

6 Further Discussion

In this paper we studied the generalization puzzle
of deep learning from an invariance viewpoint. The
notions of invariance come from several angles: in-
formation geometry, non-linear local transformations,
functional equivalence, algorithmic invariance under
parametrization, “flat” minima invariance under linear
transformations, among many others. We proposed a
new non-convex capacity measure using the Fisher-
Rao norm and demonstrated its desirable properties
from both from the theoretical and the empirical side.
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