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Subspace techniques for task-independent EEG person identification

Mari Ganesh Kumar1, Saranya M S1, Shrikanth Narayanan2, Mriganka Sur3 and Hema A. Murthy1

Abstract— There has been a growing interest in studying
electroencephalography signals (EEG) as a possible biometric.
The brain signals captured by EEG are rich and carry
information related to the individual, tasks being performed,
mental state, and other channel/measurement noise due to
session variability and artifacts. To effectively extract person-
specific signatures present in EEG, it is necessary to define
a subspace that enhances the biometric information and sup-
presses other nuisance factors. i-vector and x-vector are state-
of-art subspace techniques used in speaker recognition. In this
paper, novel modifications are proposed for both frameworks
to project person-specific signatures from multi-channel EEG
into a subspace. The modified i-vector and x-vector systems
outperform baseline i-vector and x-vector systems with an
absolute improvement of 10.5% and 15.9%, respectively.

Index Terms— EEG, biometric, i-vector, x-vector

I. INTRODUCTION

In the literature, different elicitation protocols have been
a primary focus for building reliable systems. A detailed
review of these different techniques can be found in [1],
[2]. Although biometric systems are typically trained and
tested on the same set of tasks, it has been observed that
the person-specific information is present in the EEG signal
across various elicitation protocols [3], [4]. This leads to
a conjecture that these person-specific signatures should be
present in the EEG signal irrespective of tasks or state of
the brain. In [5], this conjecture was verified under closed
eyes condition by using different tasks/elicitation protocols
during train and test condition. In this work, we extend it to
the open eye condition as well and show that individuals can
be identified irrespective of the stimuli shown. To accomplish
this, we build upon and extend the latest advances in total
variability modeling in speaker recognition, namely, i-vectors
and x-vector based signal representations [6], [7] to EEG
biometrics.

In any EEG based biometric system, the efficacy of the
system should be cross-validated by retaining a few sessions
for testing purpose. Different days of recording in which
EEG sensors are removed and placed afresh are referred
to as sessions in this paper. This testing across sessions is
essential because the electrodes are unlikely to be placed at
the same place on the scalp across sessions. In addition to
this, the plastic nature of the brain and the mental state of
the individual can also change the EEG signatures across
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sessions. Person identification systems using EEG perform
poorly when tested on sessions that were not used for
training [5], [8]. This paper evaluates the scalability of person
identification irrespective of the tasks/elicitation protocol
with only mismatched train and test sessions.

Universal background model-Gaussian mixture model
(UBM-GMM) [9] systems have been widely used for EEG
person identification [5], [10]–[13]. In addition to the person-
specific information present in the EEG, the UBM also mod-
els the task-specific information along with the artifacts. This
paper explores different techniques to define a subspace in
which the person-specific biometric information is enhanced.
i-vector system is one such technique proposed for speaker
recognition in [6] and adopted for EEG person identification
in [14]. Similarly, x-vector is a deep neural network (DNN)
based speaker recognition approach proposed in [7]. i-vector
extracts the person-specific signatures from the UBM space,
whereas x-vector derives the same directly from the input
spectrograms. However, both of these approaches are defined
for speech data where speaker information is typically bound
within a channel.

EEG collects signals from multiple regions through the
sensors placed all over the scalp. It is well-known that
different parts of the brain respond to different types of
stimuli. Hence, person-specific signatures might be scattered
across multiple channels. Moreover, the effective use of mul-
tichannel information for EEG person identification is still
not well established. The objective of this paper is two fold.
First, to incorporate multi-channel information in the i-vector
and the x-vector framework to better identify individuals
from EEG. Second, to show that biometric signatures can
be reliably identified from EEG in a subspace where the
task related information is suppressed.

The rest of the paper is organized as follows. Section II
discusses the details of the baseline and proposed systems.
The EEG dataset and the experimental setup that is used
to evaluate the person identification systems are briefly
discussed in Section III and Section IV, respectively. The
results of the evaluation are analyzed in Section V, followed
by conclusions in Section VI.

II. METHODS

A. Baseline: UBM-GMM

UBM is a GMM trained using feature vectors pooled from
training sessions of all the subjects. Person-specific models
are obtained by adapting the UBM to a particular individual’s
data using maximum-a-posteriori (MAP) adaptation. Similar
to [5], [14], feature vectors are pooled from every channel,
and no explicit channel information is given to the model.



TABLE I
DETAILS OF DATA COLLECTION PROTOCOLS.

No.
Experiment

Description
No. of

Type subjects

1 Odd Ball Subjects were presented with frequent non-target stimuli and infrequent target stimuli. The target and non-target stimuli
consist of 1. Audio beeps of two different frequencies; 2. Audio beeps played in left and right ear and 3. Visual objects of
varying shape and color.

23

2 Familiar and Unfamiliar
words

Subjects were presented with common words and uncommon words. They were expected to respond with a mouse click on
hearing a familiar word.

7

3 Imagining binary answers A set of questions with the answer being either yes or no were presented to subjects. They were asked to imagine the answer
and then respond with a mouse click. Left click was used for positive responses and right click for negative responses.

7

4 Motor and Mental
imaginary

Subjects were asked to imagine motor-movements like left and right fist rotation. Followed by this, they were asked to count
numbers in reverse for mental activity. This experiment aimed to classify motor vs. mental task.

6

5 Passive audio In this experiment type, subjects listened passively to a variety of audio stimuli such as words, sentences, stories, music, and
sounds that trigger attention (for example sirens and the scattering of glass).

24

6 Steady State Visually
Evoked Potential

Visual objects were displayed at various frequencies to subjects. At the end of each trial, a question about the shape or color
of the object was asked.

10

7 Passive audio-visual Subjects were asked to watch audio-visual clips. At the end of each clip, a question was asked based on the stimuli shown. 7

During testing, Top-C scoring is used to determine the
identity of the EEG segment [9].

B. i-vector

i-vector is a lower dimensional representation of the
person-specific information modeled in UBM space. A total
variability space (T) matrix is used to project the information
from UBM space to i-vector space.

Let λ denote the parameters of the UBM and Y =
{ ȳcn | n = 1 to N & c = 1 to C} denote an EEG segment
with N time frames and C channels. The zeroth and first
statistics for every mixture component for given Y can be
estimated as given in Equation 1 and 2, respectively.

Nk(Y ) =

C∑
c=1

N∑
n=1

P (k | ȳcn, λ) (1)

Fk(Y ) =

C∑
c=1

N∑
n=1

P (k | ȳcn, λ)(ȳcn − m̄k) (2)

where k = 1 to K represent the mixture IDs of the UBM
and P (k | ȳcn, λ) corresponds to the posterior probability
of the k-th mixture component given the feature vector ycn.
m̄k is the mean of the k-th UBM component. These first
order statistics (Fk) are concatenated to form a supervector
of dimension Kd× 1 where d is the dimension of the input
feature vector. A T -Matrix of dimension Kd × R is used
to project the supervector to a lower dimension (R). The
procedure for training the T -Matrix and thereby extracting i-
vectors can be found in [6]. This system will be referred to as
“baseline-i-vector” in the rest of the paper. This standard ap-
proach for multichannel EEG [14] is perhaps not appropriate,
as this is not equivalent to collecting speaker data through
different channels or environments. Different stimuli activate
different regions of the brain. These activations are captured
by the EEG sensors placed on the corresponding regions.
To integrate channel information in the i-vector framework,
this paper proposes a novel way of finding the zeroth and
first statistics from UBM as given in Equation 3 and 4,

respectively.

Nkc(Y ) =

N∑
n=1

P (k | ycn, λ) (3)

Fkc(Y ) =

N∑
n=1

P (k | ycn, λ)(ycn −mk) (4)

Since in this approach the zeroth and first order statistics
are calculated for every channel, the dimensions of the su-
pervector and T -matrix increases to KCd×1 and KCd×R,
respectively. This system will be referred to as “modified-i-
vector”. Owing to the huge dimensions of the supervectors
this system uses a significantly lower number of mixtures for
UBM. It is better to concatenate the channel wise statistics
rather than concatenating the channel feature vectors at the
input level. The latter system has a huge input dimension and
leads to a poor estimation of UBM statistics. After extracting
the i-vectors, within class covariance normalization (WCCN)
and Linear Discriminant Analysis (LDA) are performed to
reduce nuisance factors in i-vector space. Finally, a one-vs-
all support vector machine (SVM) [15] with a cosine kernel
is trained to predict the class labels.
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Fig. 1. Architecture of the modified x-vector model for EEG person
identification. The values in red denote the specific number of hidden nodes
used for this implementation.



C. x-vector

x-vector is a DNN based state-of-the-art speaker recogni-
tion technique [7]. The DNN architecture process the input
speech first at frame level and then at segment level after
accumulating statistics. This is analogous to the i-vector
framework with UBM acting at the frame level and i-vectors
operating at the segment level. We propose a modification
to the x-vector architecture for EEG data by estimating the
statistics channel wise similar to Section II-B. x-vectors use
time delay neural network (TDNN) for modeling context in
speaker recognition. As the sampling rate of EEG is low (250
Hz), a frame size of 360ms is used. Hence for EEG data,
the context information did not help, and 1D convolution of
a single frame is used in place of TDNN.

The modified x-vector architecture is given in Figure. 1.
The model takes spectrograms of all channels as input. There
are four hidden layers in this model. The initial two layers
of the network act at the frame level, i.e., 1D convolution
on all the frames. Followed by the convolution layers, the
statistical pooling layer acts at the channel level, where the
mean and variance for every channel is estimated. The fourth
hidden layer takes the statistics concatenated from all the
channels and projects it onto a lower dimension using a
feedforward layer. All the hidden layers in this model use
sigmoid activation. The final output feedforward layer use
softmax activation. The network is trained using the cross-
entropy error function similar to [7].

The outputs of the network are the posterior probabilities
for each person given the EEG segment. Since the goal is
to identify the persons, the posteriors are directly used to
get the final class labels. This system will be referred to as
“modified-x-vector-classifier”. In addition to this, the fourth
hidden layer (“DNN embeddings” in Figure. 1) gives a lower
dimensional embedding of the person-specific information.
LDA is computed over these embeddings, and a one-vs-all
SVM classifier [15] is built using a cosine kernel to predict
the person IDs. This system will be referred to as “modified-
x-vector”. The advantage of this system is that it can be used
in a verification framework as well. The x-vector classifier
without any channel concatenation is used as a baseline.
This is referred to as “baseline-x-vector-classifier” in the
remainder of the paper.

III. DATASET

The dataset used in this work is an expanded and modified
version of the dataset used in [5]. A 128 channel EEG system
provided by Electrical Geodesics, Inc (EGI) [16] was used
to collect the dataset. This study was approved by the Ethics
Committee of the Indian Institute of Technology Madras.
All the subjects were informed about the aim and scope of
the experiment, and written consent was also obtained to
collect the data. It consists of EEG data from 30 participants
performing multiple tasks. The dataset was collected at a
sampling rate of 250Hz. The total duration of the collected
data is about 33 hours. Multiple sessions of data were
collected from all the individuals. The average number of
sessions per person in this dataset is ≈ 3.

Different stimuli were used to collect the dataset and
details of the same are given in Table. I. Protocols 2 to 5
are experiments with only audio stimuli, and the participants
were asked close their eyes. Visual stimuli were used in
protocols 6 and 7, and hence the recordings were collected
in open eye condition. Protocols 1 and 5 are a collection of
different experiments that fall under the same type, and hence
they have a significant number of participants compared to
other protocols. These diverse set of protocol cover various
tasks or mental states with both eyes open and closed
conditions.

IV. FEATURES AND EXPERIMENTAL SETUP

Using 128-Channel EEG system is not feasible for build-
ing real time biometrics. Hence, we use only 8 standard
electrodes, namely, Fz, F7, F8, C3, C4, P7, P8 and Oz.
These 8 channels were chosen such that they cover the
entire scalp. Raw power spectral density (PSD) features are
computed for every channel between 3Hz and 30Hz. The
spectrograms are estimated with a window size of 360ms
and no overlap. This configuration was fine-tuned for the
UBM-GMM system in [5]. For recordings with open eye
conditions, eye blink and other artifacts are removed using
[17].

The brain signals obtained from different experimental
protocols in Table. I are uniformly divided into segments
of uniform length. It is to be noted that, this division of
segments does not take into account the cognitive state, such
as, whether the person is in resting state or listening to an
audio stimulus or watching a visual stimulus or doing an
instructed task. Hence, identifying individuals from these
segments is evidence towards the presence of person-specific
signatures in EEG irrespective of tasks.

For every individual, 60% of the sessions are chosen
randomly for training. Of the remaining sessions data, 10%
is used for validation, and the rest is used for testing.

TABLE II
ACCURACY (%) OF DIFFERENT SYSTEMS FOR 15s SEGMENTS.

System P1 P2 P3 Average

UBM-GMM 67.15 68.68 70.09 68.63

baseline-i-vector 73.57 74.52 73.98 74.02

baseline-x-vector-classifier 61.28 64.76 64.48 63.48

modified-i-vector 82.53 87.54 83.71 84.59

modified-x-vector 77.51 81.3 77.85 78.89

modified-x-vector-classifier 78.12 81.7 78.36 79.42

Pi represents the i-th random partition of train, validation, and test data.

V. RESULTS AND DISCUSSION

A 128 mixture UBM was used to train baseline UBM-
GMM and i-vector systems. For the modified-i-vector sys-
tem, only 16 mixtures were used. i-vector dimension was
empirically set to 100. For x-vector systems, the complete
architecture used in this implementation is given in Figure. 1.
All these systems were trained using task-independent EEG
segments of 15s duration. The classification accuracy of
these systems on held out sessions are compared in Table. II.



The results are reported over three random partitions of train,
validation, and test to avoid bias towards a particular division.

From Table. II, it can be observed that all the modified
systems that handle channel information have outperformed
the baseline systems. On the averaged result, the modified-
i-vector system achieves an absolute improvement of 10.5%
over the baseline i-vector system. The modified x-vector sys-
tems are also robust compared to the baseline systems which
takes no channel information. Although all the systems are
trained on 15s segment length, they are capable of supporting
variable length segments. To determine the optimal length
of EEG required for identifying individuals, the length of
the EEG segments is varied from 10s to 40s. Similar to
Table. II, results for various length of EEG segments are
averaged across three random splits and shown in Figure. 2.

From Figure. 2 it can be seen that the performance of
all systems improves when the size (duration) is increased.
However, above 30 seconds, the performance get saturated.
The most important observation from both Figure. 2 and
Table. II is that all the modified systems that use the channel
information have outperformed the simple systems borrowed
directly from speaker recognition. This result suggests the
importance of using the multi-channel information to model
person-specific signatures. Instead of concatenating the chan-
nels at the input level, this paper proposes a novel way of
handling it in i-vector and x-vector frameworks. Initially, the
input feature vectors from all channels are transformed to
a UBM or a higher dimensional space. In the transformed
space, different orders of statistics are calculated for each
channel. These statistics from different channels are then
concatenated and projected to a lower dimensional space.
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Fig. 2. Accuracy of person identification systems for various size (duration)
of EEG signals.

For EEG segments greater than 30s in duration, the
modified-i-vector system gives an accuracy of around 90%
(Figure. 2). To recall, these segments were created by divid-
ing the EEG responses irrespective of task protocols and only
held out session are used for evaluation. Hence this result
is a strong evidence for the presence of individual related
signatures in EEG, irrespective of tasks or state of the brain.

VI. CONCLUSION

The paper proposes novel subspace techniques for task-
independent EEG person identification. The proposed sys-
tems are inspired by state-of-the-art sub-space based voice

biometric techniques. Using just 8 channels, the subspace
systems are shown to reliably model the person-specific
signatures in a vector of small dimension from the multi-
channel EEG data. By testing on segments with mismatched
task and session during testing, this paper also shows that
the person-specific signatures are always present in EEG
irrespective of the task.
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