
MIT Open Access Articles

Accurate Vision-based Manipulation through Contact Reasoning

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Kloss, Alina, Bauza, Maria, Wu, Jiajun, Tenenbaum, Joshua B, Rodriguez, Alberto et
al. 2020. "Accurate Vision-based Manipulation through Contact Reasoning." Proceedings - IEEE
International Conference on Robotics and Automation.

As Published: 10.1109/ICRA40945.2020.9197409

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/138353

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/138353
http://creativecommons.org/licenses/by-nc-sa/4.0/

Accurate Vision-based Manipulation through Contact Reasoning

Alina Kloss1, Maria Bauza2, Jiajun Wu2,3, Joshua B. Tenenbaum2, Alberto Rodriguez2 and Jeannette Bohg1,3

Abstract— Planning contact interactions is one of the core
challenges of many robotic tasks. Optimizing contact locations
while taking dynamics into account is computationally costly
and, in environments that are only partially observable, exe-
cuting contact-based tasks often suffers from low accuracy. We
present an approach that addresses these two challenges for
the problem of vision-based manipulation. First, we propose
to disentangle contact from motion optimization. Thereby, we
improve planning efficiency by focusing computation on promis-
ing contact locations. Second, we use a hybrid approach for
perception and state estimation that combines neural networks
with a physically meaningful state representation. In simulation
and real-world experiments on the task of planar pushing, we
show that our method is more efficient and achieves a higher
manipulation accuracy than previous vision-based approaches.

I. INTRODUCTION

In many robotics applications that involve manipulation or
legged locomotion, planning contact interactions is one of the
core challenges. The main problems are the computational
cost of optimization and the uncertainty induced by imper-
fect perception. Current approaches roughly fall into two
categories that align with these problems. The first focuses
on reducing the computational cost of motion optimization
especially for long sequences and complex dynamics. Such
approaches typically make the strong assumption of a fully
observable state and prior knowledge of the robot and envi-
ronment, which are rarely fulfilled in practice. The second
category focuses on including perception and being robust
to the resulting uncertainty. Approaches in this category
are typically learning-based and provide a larger level of
generalization to variations of the environment, such as
unknown objects. However, this often comes at the cost of
accuracy. We propose an approach that addresses both main
challenges in planning contacts, imperfect visual perception
and the computational complexity of the task. We show that
by combining learning-based perception with an explicit state
representation, we can achieve accuracy and generalization,
while disentangling contact and motion optimization allows
for efficient planning.

As a case study, we use quasi-static planar pushing with
a point contact. This non-prehensile manipulation primitive
can be represented by a simple, low-dimensional state, but
has surprisingly complex dynamics, making it difficult to
control. Prior work can be split according to the aforemen-
tioned two main challenges. Approaches based on analytical

1 Max Planck Institute for Intelligent Systems, akloss@tue.mpg.de
2 Massachusetts Institute of Technology, {bauza, jbt, albertor}@mit.edu
3 Stanford University, jiajunwu@cs.stanford.edu, bohg@stanford.edu

(a) Planar Pushing (b) Test objects

Fig. 1: (a) To push an object to a desired pose (red), a robot has to reason
over where (green contact points) and how (black arrows) to push. (b) The
test objects triangle, butter and hexagon.

models and a physically meaningful state representation
often achieve high accuracy, but assume full observability
and known object shape [1, 2, 3, 4, 5]. Learning-based
approaches address the perception problem and make fewer
assumptions about the environment, but are less accurate
[6, 7, 8, 9, 10, 11, 12]. Moreover, many of these works do
not explicitly reason over where to push, but sample random
actions [1, 2, 6, 7, 8, 9]. We argue that explicitly optimizing
contact points makes planning more efficient by focusing
evaluations on promising regions.

We address the problem of pushing an object to a goal pose
given RGBD images, illustrated in Figure 1a. The robot has
to decide where and how to push the object. We use a learned
model to capture the shape of the object from the visual
input and predict a physically meaningful representation of
the object state. This allows us to use filtering to estimate
latent variables like the centre of mass of the object online
and increase the accuracy of prediction.

Each point on the object outline is densely annotated with
approximate predictions of the object motion it affords. This
allows sampling promising candidates of where to push the
object given a desired target object pose. At these contacts,
we then optimize how to push. For predicting the possible
object motion, we compare an approach based on a physical
model to a model-free, learned one. The learned model
makes fewer assumptions and shows advantages in cases that
are not well-captured by the physical model. However, the
physics-based model is generally more accurate and even
generalizes to scenarios that violate some of its assumptions.

In summary, we propose a system for planar pushing that:
• allows for efficient planning by explicitly reasoning about

contact-location,
• improves over model-based approaches by including per-

ception and online estimation of latent object properties,
• achieves higher accuracy than previous vision-based works

by combining learned and analytical elements.
We quantitatively evaluate our method in simulation through
ablation studies and comparison to state of the art. We also

ar
X

iv
:1

91
1.

03
11

2v
2

 [
cs

.R
O

]
 1

7
A

pr
 2

02
0

demonstrate that it transfers to a real robotic platform.

II. RELATED WORK

There is a wide range of research on robotic pushing,
from modeling the dynamics, e.g. [13, 14, 15, 16], to state
estimation for pushed objects [17, 18]. Here, we focus on
works that include planning, for a broader review see [19].

A. Efficient Contact Planning under Full Observability

Hogan et al. [3] present a real-time controller for tracking
a desired trajectory under full observability. While the push
is locally optimized by a neural network that predicts sticking
or sliding, the global contact location is not. Zito et al. [1]
present an approach to push an object into a desired pose
in multiple steps by combining a global RRT planner with
a local, sampling based planner. Dafle et al. [4] reorient a
known object in-hand by pushing it against elements in the
workspace. Similar to our work, they use motion-cones to
efficiently describe the set of possible object movements.
Ajay et al. [20] use a hybrid approach that augments the
predictions from a physical model with learned residuals
to push two disks that are already in contact. The method
evaluates a predefined set of contacts.

Optimizing contacts is also considered in legged loco-
motion. Deits and Tedrake [21] compute a sequence of
footsteps given a set of obstacle-free regions. For efficiency,
the dynamics of the robot are not taken into account. To
address this issue, Lin et al. [22] take a similar approach
to ours: they train an approximate dynamics model over a
discrete set of actions that can be used for efficient contact
planning while taking robot dynamics into account.

All these approaches assume full observability and known
models of dynamics and geometry.

B. Push Planning under Partial Observability

Agrawal et al. [10] train a network to predict the pushing
action required to transform one RGB image into another.
In contrast, Li et al. [6], Finn and Levine [7], Ebert et al.
[8, 9] do not directly predict actions but learn a dynamics
model for predicting the effect of sampled pushes. The input
is either a segmentation mask or a full RGB image. Push-
Net [6] samples 1000 actions by pairing pixels inside and
outside of the object, while [7, 8, 9] sample pusher motions
that are refined iteratively. Neither work reasons over contact
locations, whereas our approach directly samples promising
contact points. Push-Net [6] also estimates the centre of mass
of objects during interaction using an LSTM. We rely on an
Extended Kalman Filter (EKF) that estimates the physically
meaningful state representation during interactions. Similar
to our work, Hermans et al. [11] learn a scoring function from
histogram features for finding suitable contact points. Stüber
et al. [12] learn a contact model and a contact-conditioned
predictive model for pushing with a mobile robot.

While making much fewer assumptions, these vision and
learning-based methods are less accurate than model-based
methods. Our method significantly improves on this.

III. METHODS

Figure 2 shows an overview of our system. At each time
step, it receives an RGBD image of the current scene, the
last robot action and the target object pose as input. In the
perception module, we use a Convolutional Neural Network
(CNN) to segment the object and estimate its position
and orientation. Since we do not assume prior knowledge
of object shape, we extract a representation based on the
segmentation map. Together with the last action, the object
pose is input to an EKF that estimates the full object state
including latent properties like centre of mass (COM).

The next module approximates the object motions that
can be produced by applying a discrete set of pushes at
each point on the object silhouette. We refer to the output
as push affordances of the contact points. While this may
be considered an abuse of terminology [23], we use the
term for a clear distinction to other parts in our model.
The affordances are continuously updated as they depend
on object properties that are estimated by the EKF, while
the object shape has to be computed only once. Finally, the
state estimate and affordances are the input to the planning
module which selects suitable contact points and optimizes
the pushing actions beyond the discrete set that is considered
in the affordance model.

A. Planar Pushing

We consider the task of quasi-static planar pushing of a
single object using a point contact, where quasi-static means
that the force is enough to move but not to further accelerate
the object. We parametrize a pushing action by the contact
point r and the pushing motion u. Pushes are executed at a
constant velocity of 20 mm/s.

The dynamics of pushing depend on object shape, friction
and pressure distribution of the object on the surface. The
relation between push force and resulting object motion is
often modeled using the limit-surface [24, 25]. We use an
analytical model by Lynch et al. [26]. It assumes continuous
object-surface contact and an uniform pressure distribution
for an ellipsoidal approximation of the limit surface pa-
rameterized by l. The model predicts object translation and
rotation around the COM given l, the push u, the normal n
at the contact point and the coefficient of friction between
pusher and object µ. We use x =

(
p, θ, c, l, µ

)
as object

state, where θ is the orientation of the object and c is the
position of the COM relative the object frame origin p.

B. Perception and State Estimation

We train a CNN to segment the object in each image and
compute its world-frame position from segmentation mask
and depth values. A bounding box around the segmentation
mask is reprojected into a top-down view centered on the
object. The orientation of the object is computed relative to
the first step by comparing stepwise rotations of the current
top-down projection to the initial one. We also evaluated
using a neural network for this task but found it to be less
reliable. The output object pose is used as observation for
an EKF that estimates the full object state x. The filter uses

Input

 RGBD Image

Shape Encoding Affordance Prediction

Possible Object Movement Outline Normals Local Coordinates

Perception

 Segementation Mask

Planning

Contact Point
Selection

Push
Optimization

Top-down view

State Estimation

Estimated Object State

 Extended Kalman Filter
Position

Orientation

Fig. 2: Overview: the perception module segments the object and computes its pose. An EKF estimates the full object state including latent properties like
the COM c. The object shape is encoded by a silhouette, coordinates and normals in a top-down view. It is input to the affordance prediction module, that
approximates the possible object motions at each contact point on the silhouette. The planning module selects contact point candidates using the predicted
affordances and optimizes the pushing motion there.

the analytical model [26] as process model and an identity
matrix selecting the object pose from x as observation model.

C. Shape Encoding

Our shape encoding needs to be independent of the object
position and contain the necessary information for predicting
the effect of pushes, i.e. the possible contact points and
the surface normals. We use the object-centric top-down
projection of the segmentation mask and depth values to
compute the x and y coordinates of each object pixel in this
frame. Together with the mask, the coordinates are the input
to a CNN that predicts the object outline and the unit 2D
surface normals to each point on the outline. Figure 2 shows
an example of the resulting 100 × 100 × 5 image (outline,
coordinates and normals) under Shape Encoding.

D. Affordance Prediction

For each point on the object outline, the affordance module
makes an approximate prediction of the object motions
that can be achieved by pushing there. For this, it densely
evaluates a predictive model for a fixed set of representative
pushing motions. This prediction then informs contact point
selection for pushing the object towards the target.

For our experiments, we use a relatively large set of ten
representative pushes: we take five directions relative to the
respective surface normal (0◦, ±30◦ and ±60◦) with two
lengths each (1 cm and 5 cm). In general, the expressiveness
of the affordance model is a tuning parameter of our method
that trades off accuracy against computational speed.1

We evaluate two predictive models for obtaining the
affordances, the analytical model and a learned model.

1) Affordances from the Analytical Model: Given the
representative pushes, the shape encoding and parameters
c, l and µ from the state estimation module, we can apply
the analytical model [26] at each contact point. We use a
one-step prediction, which can be done efficiently on GPU
but is less accurate than rolling out the model over smaller
substeps: During the push, values like the contact point and
normal there can change, e.g. when the the pusher slides
along the object or even loses contact completely. Such

1Ablation studies (not included for space) showed that including fewer
pushes has an overall small effect. Removing the 5 cm pushes was worst,
increasing the average number of steps taken by more than 15 %.

changes of the model’s input values cannot be taken into
account without substeps.

2) Affordances from a Learned Model: Alternatively, we
train a CNN to predict object movement given the pushes, c
and the shape encoding. Different from the analytical model,
it does not require the parameters l and µ, but can take the
shape around the contact point into account to predict effects
of pusher sliding like loss of contact. For this, the model
uses a 3-layer CNN with max-pooling to process the object
outline. The resulting local shape features, the pushes and
the shape encoding serve as input for predicting the object
motion using a second 3-layer CNN without pooling.

E. Planning

We use a greedy planner to find the contact point and
straight pushing motion that brings the object closest to the
desired goal pose at each step. We found this approach to
be sufficient in our scenario where no obstacles are present.
For planning around obstacles, our model could be combined
with a global planner for object poses, e.g. [1, 4].

Instead of jointly optimizing contact point and pushing
motion, we divide the problem into two subtasks. We first
propose a set of contact points and then separately optimize
the pushing motions at each candidate point before selecting
the most promising combination.

1) Contact Point Proposal: Our method uses the affor-
dances to score each point on the object outline by how
close pushing there could bring the object to the target pose:

s(ri) = min
u∈Ui

‖ vd − vp(u, ri) ‖2 +λ|θ̇d − θ̇p(u, ri)| (1)

Here, vd and θ̇d are the desired object translation and
rotation, Ui are the representative pushing motions at contact
point ri, and (vp(u, ri), θ̇p(u, ri)) their predicted object
motion. We weight the rotation error (in degree) stronger
(λ = 2) for a good trade-off between translation and rotation.
A softmax function turns the scores, s(ri), into a probability
distribution that is used to sample k candidate points. We
found that sampling the contact points instead of choosing
the k best points improved the robustness of our method.

2) Push Motion Optimization: The discrete set of actions
evaluated for the affordance model will in general not contain
the optimal pushing motion at each point. We thus optimize
push direction and length at each candidate contact point

Analytical Learned

Fig. 3: Predicted translation magnitude from the analytical and learned
affordance model (brighter is higher) for pushes along the normal and at a
60◦ angle. In contrast to the analytical model, the learned model predicts
low magnitude for pushes that are unlikely to properly hit the object (black
arrows) or pushes that will slide off the object (red arrows).

Fig. 4: Heuristic for contact point selection (geo): line m connects the
current p and desired object position d, n is its normal. Points on the blue
side of n afford pushing towards d, points to the right of m (red area) are
proposed for counter-clockwise rotation. For rotations below 2◦, candidates
need to lie within 2 cm of m. The intersection of both areas (purple) defines
the set of possible contact points for sampling.

by interpolating between five base pushes Ub with different
directions as follows:
1) For each ub ∈ Ub, roll out the analytical model over the

max. push length of 5 cm in substeps of 0.5 cm.
2) At each step, score the predicted object movement so far

using Equation 1.
3) Truncate each ub at its best-scoring step (min. push

length 1 cm). This gives ūb with optimal scores s̄b.
4) Find the optimal push direction ud by interpolating

between the ūb with the best s̄b and the two ūb with
neighbouring directions.

5) Optimize the length of ud as in steps (1) - (3) to find the
optimal push u∗ with score s∗

As explained before, rolling out the analytical model over
shorter substeps is more accurate than predicting the outcome
of the full 5 cm push in one step. The planner finally returns
the contact point and action with the highest s∗.

In our specific case, the affordances already contain pre-
dictions for the same five push directions that we also use
for Ub. This allows us to use the affordance predictions in
step (1) of the push optimization. Instead of steps (2,3) and
(5), the push length is then optimized by linearly rescaling
the push and prediction to match the desired motion. We
compare this to our regular method in Experiment V-D.

IV. TRAINING

For training the perception, shape encoding and learned
affordance model, we rely mostly on simulated data gen-
erated in pybullet [27]. Each datapoint contains an RGBD
image of an object on a surface, its ground truth position,
segmentation mask and outline with normals. We annotate 20
random contact points per object with the object movement
in response to the ten representative pushing actions defined
in Section III-D. Properties like object mass, centre of mass
and friction coefficients are sampled randomly. We generate
more than 15k examples using 21 objects, of which we hold
out three for testing (shown in Figure 1b, which also shows
the real-world setup after which we modeled the simulation).

While the segmentation and shape encoding network are
finetuned on real data from the Omnipush dataset [28], the
learned affordance model is only trained on simulated data.
We train the models in tensorflow [29] using Adam [30].

V. SIMULATION EXPERIMENTS

A. Setup

We evaluate three different tasks: translating the object by
20 cm without changing the orientation (translation), rotating
the object by 0.5 rad (28.6◦) without changing the position
(rotation) and translating for 10 cm plus rotating by 0.35 rad
(20◦) (mixed). A trial counts as successful if it brings the
object within less than 0.75 cm of the desired position and
5◦ of the desired orientation in at most 30 steps. We evaluate
the percentage of successful trials and the average number
of steps until the goal pose is reached.

For each task, object and method, we perform 60 trials.
At the beginning of each, the object is placed at the center
of the workspace. We vary its initial orientation in 20 steps
from 0 to 360◦ and perform three runs with each orientation.

B. Affordance Prediction

We first qualitatively compare the learned and the analyti-
cal affordance model to see if there are any major differences
between them. Overall, both models predict similar direc-
tions of movement, with the analytical model predicting more
pronounced rotation. A potential advantage of using a learned
model becomes apparent when we compare the magnitude
of the predicted translational movement, which is shown in
Figure 3. The analytical model predicts strong translation
for pushes to the sharp corners of the triangle, whereas the
learned model predicts comparatively low magnitudes there.
The same effect is visible for angled pushes that cause the
pusher to slide towards corners. As discussed before, the
analytical affordance model cannot predict a loss of contact
due to pusher sliding. However, this is more likely when
pushing at sharp corners or with high angles. The learned
model takes the object shape around the contact point into
account and is therefore better at predicting such cases.

C. Contact Point Selection

In this experiment, we test our hypothesis that explicitly
reasoning about the contact locations makes planning more
efficient as compared to sampling actions that collide with
the object in random locations. For this, we vary the number
of sampled contact points and compare our approach (that
uses the affordances to propose promising contact points) to
two baselines that select the contact points more randomly.

The simplest baseline samples uniformly from all points
on the object outline (rdn). A more informed approach (geo)
uses a geometric heuristic explained in Figure 4. Based on
the desired motion, it defines a quadrant of the object from
which the contact points are sampled. In contrast to rdn, geo
better avoids sampling contact points at which the object can
only be pushed away from the goal. It however ignores the
exact shape of the object and can thus still propose unsuitable
contact locations especially for non-convex objects.

1 3 5 10
0

1
2

1

contact points

Su
cc

es
s

R
at

e
%

Mixed

1 3 5 10
contact points

Translation

rdn geo ana lrn

1 3 5 10
contact points

Rotation

1 3 5 10
0

10

20

contact points

St
ep

s

Mixed

1 3 5 10
contact points

Translation

rdn geo ana lrn

1 3 5 10
contact points

Rotation

Fig. 5: Pushing performance over number of sampled contact points. We compare different sampling methods of contact locations: randomly (rdn) or
according to the geometric baseline (geo), analytical (ana) or learned (lrn) affordances. We analyse performance for three different tasks: Pure object
translation, pure object rotation and a mixed motion. Results are averaged over three test objects (See Fig. 1b). Our proposed affordance model (either ana
or lrn) generally requires only one contact point sample to achieve a high success rate with the lowest number of steps to get to a target object pose.

To minimize the influence of other components of our
system on the results, we do not use filtering for state
estimation in this experiment but assume access to perfect
state information at every step.

Results: We first compare the success rates in Figure
5 (left). By sampling from the affordance model (learned
lrn or analytical ana), our method can already achieve a
success rate close to 100% with only one contact point. The
geometric heuristic also performs well and often reaches
100% with as few as three contact points. We only see a
big impact of the number of contact points when sampling
randomly. On the tasks that involve translation, rdn only
reaches the success rate of the other methods with ten contact
points. The number of sampled points is generally more
important for translating than for rotating.

Figure 5 (right) shows the number of steps each method
took until the goal pose was reached. Even in successful runs,
rdn needs significantly more steps than the other methods.
Geo again performs better, although still worse than our
proposed method using the affordance prediction. Both lrn
and ana work very well with only one contact point and
their performance mostly saturates at three sampled candi-
dates. There is no significant difference between using the
analytical or the learned model for obtaining the affordances.

To summarize, using an affordance model to sample
contact points makes planning more efficient by reducing
the number of contact points that have to be evaluated per
step and the number of steps taken until the goal is reached.

1 3 5 10
0

10

20

contact points

St
ep

s

Mixed

1 3 5 10
contact points

Translation

ana ana direct lrn lrn direct

1 3 5 10
contact points

Rotation

Fig. 6: Steps taken vs. sampled contact points when rolling out the analytical
model for optimizing the push motions (ana, lrn) or directly using the
affordance (ana-direct, lrn-direct). While ana, lrn and ana-direct perform
similar, lrn-direct is less accurate and thus needs more steps to succeed.

D. Pushing Motion Optimization

In this experiment, we test if the predicted affordances are
accurate enough to also be used for optimizing the pushing
actions (see Section III-E.2). This is especially interesting
for evaluating the quality of the learned model. We call the
variants that use the predictions from the affordance model
directly ana direct and lrn direct respectively.

Results: As shown in Figure 6, using the analytical affor-
dance predictions does not significantly increase the number
of steps as compared to ana which optimizes the actions
by rolling out the analytical model over smaller substeps.
When using the learned affordances for push optimization,
the number of steps increases by up to four and the success
rate drops by up to 10% compared to lrn. This implies
that while being sufficient for selecting contact points, the
learned model is not as accurate as the analytical model
for predicting the outcome of a push. The negative effect
of using the learned model is also not compensated by
evaluating more contact points, which emphasizes the value
of an accurate predictive model for optimizing the pushes.

E. Full System

Now we evaluate the accuracy of our full system includ-
ing the state estimation module, with three contact points
sampled per step. In all experiments, c is initialized to zero
and l and µ to reasonable estimates. We first test on objects
whose centre of mass coincides with the geometric center to
evaluate the perception module and how well planning works
with imperfect pose information. In the second experiment,
we verify the benefit of estimating latent properties of the
object on the example of the COM. For this, we sample
the COM uniformly inside the objects. We also compare
to Push-Net [6] under this condition. Push-Net uses top-
down segmentation maps of the current and desired pose as
input to evaluate randomly sampled actions. A local planner
generates sub-goals by interpolating between the current and
the goal pose with a fixed step size, we use 5 cm and 10◦.

Results: In the previous experiments, we used ground truth
object pose information. Here, we compare those results to
doing pose estimation by filtering. We find that using the
filter has no impact on the success rate or the number of
steps taken. However, it increases the (true) average end
pose error from 5.0±1.8 mm, 1.8±1.3◦ to 8.7±4.2 mm and
3.0±2.2◦. This is expected as we use the estimated object

smallmediumlarge
0

1
2

1
Su

cc
es

s
ra

te
%

Mixed

smallmediumlarge

Translation

Push-Net Ours (ana) Ours (lrn)

smallmediumlarge

Rotation

smallmediumlarge
0

10

20

St
ep

s

Mixed

smallmediumlarge

Translation

Push-Net Ours (ana) Ours (lrn)

smallmediumlarge

Rotation

Fig. 7: Performance of our method and Push-Net on objects with random COM (averaged over objects). We evaluate three goal region sizes, small (0.75 cm
5◦), medium (2.5 cm 7.5◦) and large (5 cm 10◦). Our method has a higher success rate on smaller goal regions and needs fewer steps to reach the goal.

pose to determine if the goal is reached. Therefore, the real
pose error can be higher than the (7.5 mm, 5◦) margin of the
goal region.

On objects with a randomly sampled COM, we first
verify that estimating the COM position is beneficial, by
comparing to a variant that assumes a fixed COM. For the
triangle and butter shape, the average estimation error for
c is 17.7±8.5 mm, on the hexagon it is around 1 cm higher.
The average distance of c to p is 37.4±12.3 mm. Despite not
being extremely accurate, estimating c increases the success
rate by up to 5% depending on the task and object. The
number of steps is also lower, but not significantly, most
likely because estimating the COM takes a few steps in
which the object often does not move towards the goal.

We also compare our approach to Push-Net, which uses an
LSTM to estimate the COM. We evaluate three sizes of the
goal region, from the (0.75 cm, 5◦) we used in all previous
experiments to the (5 cm, 10◦) used in the original Push-
Net paper, plus a medium size of (2.5 cm, 7.5◦). Results are
shown in Figure 7. With the largest goal region, Push-Net
performs competitive to our approach and it still reaches
a good success rate for the medium sized region. On the
smallest size however, our approach outperforms Push-Net
by a large margin, despite evaluating much fewer actions.
Our method also requires less steps to reach each level of ac-
curacy. Qualitatively, Push-Net does well for translating the
object, but has trouble controlling its orientation precisely.

VI. REAL-ROBOT EXPERIMENTS

We also evaluate our approach on a real system (ABB IRB
120 industrial robotic arm, Intel RealSense D415 camera,
see Fig. 1a). This is especially interesting with respect to our
predictive models: We know that the analytical model makes
assumptions that are frequently violated in the real world,
while the learned model was trained purely in simulation
and might not transfer well to the real world.

1) Setup: To evaluate our affordance models, we first
compare lrn, ana and lrn direct given ground truth state
information on the butter object from the MIT Push
Dataset [31] that we also used in the simulation experiments
(see Fig. 1b). Then we test the full system with the analytical
affordance model on butter, triangle and a new object from
the Omnipush Dataset [28] (shown in Fig. 1a) This objects
has weights to change its pressure distribution and centre
of mass and thus violates the uniform pressure distribution
assumption of the analytical model. For both experiments, we

use a new task (12 cm translation, 46◦ rotation, maximum 20
steps). Every experiment is repeated 15 times.

2) Results: When comparing lrn, ana and lrn direct on
the real butter object, the results are very similar to the
simulation experiments. Using the analytic push optimization
step, both lrn, ana succeed in all trials and need 5.5±2.6 and
5.2±2.1 steps respectively. For lrn direct, the average number
of steps increases to 8.2±4.3.

With filtering, we achieve an average success rate of 97%
on triangle and butter with an end pose error of 9.2±4.2 mm,
5.8±2.1◦ in 6.7±3.5 steps. For the omnipush object, the
orientation estimation sometimes fails, dropping the success
rate to 89% and increasing the number of steps to 8.0±3.6.
We still reach an average end pose error of 8.8±4.5 mm,
7.2±5.5◦, confirming that our approach generalizes to con-
ditions that violate the assumptions of the analytical model.

VII. CONCLUSION

We presented an approach for vision-based manipulation
that uses an affordance model for selecting contact points
during planning. Our experiments on planar pushing show
that by explicitly reasoning over contact locations, we eval-
uate less actions and plan more optimal pushing actions than
when sampling random contact locations. Our method also
reaches a higher accuracy than previous vision-based work
by relying on a physically meaningful state representation.

By comparing a learned and an analytical predictive
model, we show that for selecting contact locations, approx-
imate predictions are sufficient. However, to optimize the
pushing motion at each contact point, the higher accuracy of
the analytical model proved to be important.

We thus find that using a hybrid approach - combining
learned and analytical components - is beneficial for robotics.
Learning is not only well suited for perception but also for
“intuitive physics” models that can quickly narrow down
large search spaces to few promising candidates that are then
optimized using more accurate but costly analytical models.

Limitations are the simple scenes we consider and that our
method assumes a mostly unoccluded object outline. Dealing
with strong occlusion is an interesting problem for future
work. Accurately estimating object orientation also proved
challenging in some cases. Finally, we would like to test
on more diverse, non-planar objects. Preliminary results in
simulation suggest that our approach is robust to this, but
real-world experiments are necessary to confirm these results.

ACKNOWLEDGMENT

This research was supported in part by the Max-Planck-
Society, the Toyota Research Institute (TRI), and ONR
MURI N00014-16-1-2007. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the funding organizations or any other Toyota entity.
The authors thank the International Max Planck Research
School for Intelligent Systems (IMPRS-IS) for supporting
Alina Kloss.

REFERENCES

[1] C. Zito et al., “Two-level rrt planning for robotic push
manipulation,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2012.

[2] W. C. Agboh, D. Ruprecht, and M. R. Dogar,
“Combining coarse and fine physics for manipula-
tion using parallel-in-time integration,” arXiv preprint
arXiv:1903.08470, 2019.

[3] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive
planar manipulation with convex hybrid mpc,” in IEEE
International Conference on Robotics and Automation,
2018.

[4] N. C. Dafle, R. Holladay, and A. Rodriguez, “In-hand
manipulation via motion cones,” in Robotics: Science
and Systems, 2018.

[5] M. Bauza, F. R. Hogan, and A. Rodriguez, “A data-
efficient approach to precise and controlled pushing,”
in Conference on Robot Learning, 2018.

[6] J. Li, W. S. Lee, and D. Hsu, “Push-net: Deep planar
pushing for objects with unknown physical properties,”
in Robotics: Science and Systems, 2018.

[7] C. Finn and S. Levine, “Deep visual foresight for plan-
ning robot motion,” in IEEE International Conference
on Robotics and Automation, 2017.

[8] F. Ebert et al., “Self-supervised visual planning with
temporal skip connections,” in Conference on Robot
Learning, 2017.

[9] F. Ebert et al., “Robustness via retrying: Closed-loop
robotic manipulation with self-supervised learning,” in
Conference on Robot Learning, 2018.

[10] P. Agrawal et al., “Learning to poke by poking: Ex-
periential learning of intuitive physics,” in Advances in
Neural Information Processing Systems, 2016.

[11] T. Hermans et al., “Learning contact locations for
pushing and orienting unknown objects,” in IEEE-RAS
International Conference on Humanoid Robots, 2013.

[12] J. Stüber, M. Kopicki, and C. Zito, “Feature-based
transfer learning for robotic push manipulation,” in
2018 IEEE International Conference on Robotics and
Automation (ICRA), May 2018, pp. 5643–5650.

[13] J. Zhou et al., “A convex polynomial model for planar
sliding mechanics: theory, application, and experimen-
tal validation,” The International Journal of Robotics
Research, vol. 37, no. 2-3, pp. 249–265, 2018.

[14] K. M. Lynch, “Locally controllable manipulation by

stable pushing,” IEEE Transactions on Robotics and
Automation, vol. 15, no. 2, pp. 318–327, 1999.

[15] M. Bauza and A. Rodriguez, “A probabilistic data-
driven model for planar pushing,” in 2017 IEEE In-
ternational Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 3008–3015.

[16] A. Kloss, S. Schaal, and J. Bohg, “Combining learned
and analytical models for predicting action effects,”
arXiv preprint arXiv:1710.04102, 2017.

[17] K.-T. Yu and A. Rodriguez, “Realtime state estimation
with tactile and visual sensing. application to planar
manipulation,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp.
7778–7785.

[18] A. S. Lambert et al., “Joint inference of kinematic and
force trajectories with visuo-tactile sensing,” in 2019
International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 3165–3171.

[19] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things
forward: A survey on robot pushing,” arXiv preprint
arXiv:1905.05138, 2019.

[20] A. Ajay et al., “Combining physical simulators and
object-based networks for control,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
2019.

[21] R. Deits and R. Tedrake, “Footstep planning on un-
even terrain with mixed-integer convex optimization,”
in IEEE-RAS International Conference on Humanoid
Robots, 2014.

[22] Y.-C. Lin et al., “Efficient humanoid contact planning
using learned centroidal dynamics prediction,” in IEEE
International Conference on Robotics and Automation,
2019.

[23] F. Osiurak, Y. Rossetti, and A. Badets, “What is an
affordance? 40 years later,” Neuroscience & Biobehav-
ioral Reviews, vol. 77, pp. 403 – 417, 2017.

[24] R. D. Howe and M. R. Cutkosky, “Practical force-
motion models for sliding manipulation,” The Interna-
tional Journal of Robotics Research, vol. 15, no. 6, pp.
557–572, 1996.

[25] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar slid-
ing with dry friction part 1. limit surface and moment
function,” Wear, vol. 143, no. 2, pp. 307 – 330, 1991.

[26] K. M. Lynch, H. Maekawa, and K. Tanie, “Manip-
ulation and active sensing by pushing using tactile
feedback,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 1992.

[27] E. Coumans and Y. Bai, “Pybullet, a python module
for physics simulation for games, robotics and machine
learning,” http://pybullet.org, 2016.

[28] M. Bauza et al., “Omnipush: accurate, diverse, real-
world dataset of pushing dynamics with rgb-d video,”
in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2019.

[29] M. Abadi et al., “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available:

http://pybullet.org

https://www.tensorflow.org/
[30] D. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.
[31] K.-T. Yu et al., “More than a million ways to be pushed.

a high-fidelity experimental dataset of planar pushing,”
in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2016.

https://www.tensorflow.org/

	I Introduction
	II Related Work
	II-A Efficient Contact Planning under Full Observability
	II-B Push Planning under Partial Observability

	III Methods
	III-A Planar Pushing
	III-B Perception and State Estimation
	III-C Shape Encoding
	III-D Affordance Prediction
	III-D.1 Affordances from the Analytical Model
	III-D.2 Affordances from a Learned Model

	III-E Planning
	III-E.1 Contact Point Proposal
	III-E.2 Push Motion Optimization

	IV Training
	V Simulation Experiments
	V-A Setup
	V-B Affordance Prediction
	V-C Contact Point Selection
	V-D Pushing Motion Optimization
	V-E Full System

	VI Real-Robot Experiments
	VI-.1 Setup
	VI-.2 Results

	VII Conclusion

