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cultivation of big data 
Standardization and interoperability of data for both functional and environmental 
performance properties of nanomaterials is essential to accelerate sustainable 
design 
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Environmental sustainability is one of the most technically challenging and societally 
concerning issues of our time. For many today, it is clear that we should use resources 
more efficiently, that chemical and material pollution can lead to toxic outcomes, that 
energy supply is less rigid than once seemed, and that population density and 
ecological stresses lead to catastrophic outcomes for the ecological network of which 
we are a part. These themes are inspiring researchers in all fields to think about how 
they can address sustainability and climate grand challenges using their disciplinary 
tools. The trouble is: the problems are not disciplinary and there are no physical rules to 
guide sustainable design. In the absence of such guidance, we risk repeating a pattern 
of innovation that so far has led to environmental damage. The best way forward is to  
leverage our collective knowledge of the environmental system and of functional 
material and process performance in a coordinated, data-driven effort at a scale. We 
must curate and cultivate big data to inform design in a way that bridges materials and 
environmental disciplines to accelerate the path to a sustainable future. 
 
Status quo. 
Today, for many fields of nanotechnology, there is no such thing as “big data.” Big data 
are defined as extremely large datasets (particularly with respect to volume and 
variability, but potentially lacking in veracity) that have some potential value but are 
beyond the reaches of human trend or pattern recognition. The reason for a lack of big 
data in nanotechnology is that experimental successes are hard fought, costly and time 
consuming.  Further, due to strong interest in phenomenological demonstration, many 
findings are not replicated in the original study nor replicable in subsequent 
investigation.  This paucity of systematic data collection in nanotechnology is 
particularly acute in environmental health and safety (EHS) research (Figure 1), as is 
often the case in material innovation.  



 
 
Since the industrial revolution, the status quo in design optimization has been to focus 
squarely on performance and cost metrics to translate a product to market, at scale, as 
quickly as possible (Box 1). Nanomaterials were among the first where a concerted 
effort was made to consider environmental implications early in the design phase of the 
materials. The evidence of this exists as tangible research centers and initiatives 
established in the United States and Europe. Yet, in spite of this great advance, here we 
sit: approaching 20 years after those first calls to action were issued (circa 20031,2) and 
with few emergent design rules to guide the sustainable development of nanomaterials. 
This is a consequence of a limited data collection guided by coordinated efforts between 
materials and environmental health and safety (EHS) researchers. In other words, the 
data are too few and too far apart.  



 
This heterogeneous landscape of discovery is normal in any nascent field; there is a 
necessary induction period where research proceeds in multiple promising channels 
and best practices emerge. Moving beyond this phase, standardization of data reporting 
could create an opportunity to augment and accelerate subsequent breakthroughs. 
Several early nano EHS leaders saw such a need for in characterization practices3. 
Investigators quickly learned that nominal assignments (e.g., “nanotubes”) referred to 
classes of materials instead of individual entities, in contrast to the high level of 
specification that is implied by the name of a chemical. As such, minimum 
characterization criteria (such as particle size, shape, composition, and purity) were 
defined to help answer the very basic question of what, exactly, was the topic of study 
for a particular article. These minimum criteria raised the bar for experimentalists, and 
the additional data helped researchers tie observations of EHS effects to some implicit 
characteristic of the materials. Nevertheless, a lack of standardization in reporting the 
data (e.g., systematic units, standard language, and the location of the data (i.e., main 
text versus supplemental documentation)) continues to limit the machine readability of 
contributions.  Here, we emphasize that the qualitative and relative measures that are 
often part of nanomaterial characterization, such as electron micrographs or x-ray 
photoelectron spectra, were and are far from being standardized to a point of inter-
article machine interpretability; this is just emerging for self-contained studies4–6 and is 
not to a point of broad application that would aid interoperable study between many 
articles. This future is on our horizon7,8. 
 
Accelerating discovery. 
Advances in computer science permeate every corner of society and will change all 
fields of science and engineering. The value of the experimentalist remains- and is 
perhaps accentuated- but these experimentalists are challenged to adapt to an 
environment where non-human colleagues will be reading their articles.  Olivetti and 
colleagues9 helped shepherd this idea in an effort to elucidate synthetic pathways by 
mining many thousands of contributions using natural language processing and striving 
to identify best chemistries via machine learning techniques (manual efforts in Green 
Chemistry pathways were conducted earlier10). While making great progress in the 
development of the approach and algorithm, limitations emerged that resulted directly 
from the way that we report data. Principally, (1) we lack routine in how we articulate 



procedure, (2) we do not report synthetic failures, and (3) one of the only universally 
reported parameters is temperature, falling far short of the detail needed to reproduce 
an experiment (Box 1). The consequence of these choices is severe: new insights 
cannot be extracted from a collective body of literature when only a handful of studies 
have information presented in a findable, consistent manner.  
 
The benefit of interoperable data is simply summarized: the whole should be greater 
than the sum of the parts. Recognizing this, a consortium of scientists proposed a set of 
standards that encourages researchers to report and archive data in a way that is 
findable, accessible, interoperable, and reusable (FAIR11), going so far as to encourage 
the “Group of 20” (G20) leaders to endorse it and make it part of a Nanotechnology 
Roadmap for 203012. In the US, FAIR practices are now being required or strongly 
encouraged by several funding agencies, and that makes good sense: the public 
investment in the research enterprise should maximize its impact by extending beyond 
the benefits of the original investigation. The challenge is that individual principle 
investigators (PIs) working outside of fields that have standardized data repositories 
(i.e., most of nanotechnology) are often left to develop their own interpretation of FAIR 
practices. To combat this, some have skillfully defined best practices for collating 
metadata around procedure, minimum datasets, and even specifying units and tabular 
reporting conditions (see Chetwynd, Wheeler, and Lynch’s 2019 study, Best practice  in 
reporting corona studies: Minimum information about Nanomaterial Biocorona 
Experiments (MINBE) 13; now supported on the Open Science Framework; osf.io). 
Importantly, the authors note that their proposed system is flexible; it is not meant to 
constrain creativity, discourage bold experimentation, or provide an exclusionary, 
proscribed, or preconceived definition of “good work.” Instead, the point is to enable 
learning through intercomparable and reusable data. This is critically important in all 
fields, but especially in the very complex systems of nanoEHS, where both the material 
and receiving environments encompass a vast descriptor space. We are at a 
crossroads where we can no longer throw our hands up and say “it is too complex to 
understand,” but instead must strive to generate the information needed to make sense 
of it all. Indeed, the type of challenge that is outside the reach of reductionist human 
comprehension is exactly what machine learning and big data are here to help us 
tackle.   
 
Multi-objective optimization for sustainability. 
The challenge of sustainable design is unique in this space because it requires 
systematic data collection across at least two disciplines, one that is focused on 
functional performance and one that is focused on the environmental performance 
(sometimes called “implications”). The reason for this seems obvious on its face: no 
amount of environmental optimization in material synthesis is going to be meaningful if 
the product is not competitive and profitable. Conversely, no material designer can hope 
to achieve sustainability goals if the guidelines for environmental design are not there. 
The same materials must be evaluated alongside one another for both metrics of 
success, and when they cannot be collected simultaneously, the data from independent 
studies must be interoperable so they can be analyzed as a collective later.  Gilbertson 
et al. (14) described an elegant approach to this dual challenge, where the structure of a 



material gives rise to a measurable property that can impart either linked or decoupled 
(i.e., independently tunable) functional and environmental performance metrics. Early 
work from our group and colleagues15–17 illustrated a similar approach in synthetic 
chemical optimization, where the pairing of the two approaches yielded unique insights 
to the nanomaterial field. To date, these have been small data efforts, but the 
coordination between the materials and environmental teams established an important 
principle for effective discovery and multi-objective optimization. 
 
Multi-objective optimization has a history in materials and mechanical engineering, and 
that history can be leveraged to guide the design of interoperable datasets. Specifically, 
Michael Ashby famously collated vast datasets of materials performance metrics (e.g., 
stiffness, strain, and density) and later started to include embodied energy (which can 
be related to greenhouse gas footprint if one knows the energy source) as an 
environmental design metric. This type of cross-disciplinary data collection is urgently 
needed in nanomaterial research and is only starting to emerge18,9. The urgency is 
underscored by the pace of materials innovation, where functional performance and 
cost metrics are always prioritized in order to maintain economic viability (a basic 
necessity in a young company’s operation). If there is a hope for inclusion of 
environmental metrics in the design process, they have to be at-the-ready and poised to 
guide even untested chemistries. This can only happen with large volumes of data 
coming together to elucidate design principles.  Thus, we encourage teams of 
researchers working on both sides of this problem to collect and systematically report 
parametric data surrounding environmental and functional performance objectives, such 
that fundamental mechanisms and drivers for each may be identified by human or 
machine.  
 
Supporting a better future. 
To facilitate this bold vision, several publishing groups are building critical supporting 
infrastructure, including encouraging statements on data availability, expanding their 
online data storage file formats and file size limitations, and even setting up consulting 
services to help authors identify the best options for publicly-available storage of a 
particular type of data (see recent commentary in Nature Nanotechnology19 and other 
recent databases7,20,21).  What remains is for subfields to define specific metrics, units, 
keywords (i.e., to aid machine readability), and, importantly, to report failures as much 
as successes to bound the design and synthesis space. Salient experimental details 
should always be included in the main text, but a standard set of experimental 
parameters and performance metrics that are systematically stored in the supplemental 
documentation (often available free of charge) would aid machine readability while 
preserving the flexibility required for creative communication of novel scientific insights. 
Example basic process metrics might include efficiencies of energy and atoms (such as 
atom economy, yield, and energy demand). Absent the ability to report these metrics, 
researchers can provide the raw information necessary for calculation, which would 
support retroactive evaluation of the process or material in a future where new or 
potentially unifying metrics are identified. Finally, EHS and materials researchers should 
coordinate the choice of study materials to ensure that paired environment and 



functional performance datasets are available, whether collected in concert, series, or 
parallel, to support multi-objective optimization (Box 1).  
 
If we truly want to realize the sustainable-by-design future we seek, both materials and 
environmental experimentalists must start making decisions to accelerate the pace of 
discovery.  Experimentation and data preservation must be premeditated with a future 
of computational treatment in mind. Such an approach will not only serve to close the 
gaps between experimentation and computation, and between materials designers and 
environmental scientists, in order to meet the urgent need for a more resilient, 
sustainable society.  
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Figure 1. Disparities between material and chemical innovation and environmental health and safety 
(EHS) research reflected by the number of publication records.  The number of contributions in EHS 
research is often orders of magnitude behind. (Data from Web of Science; accessed December 8, 2020; 
nanomaterial-related work only; carbon nanotube (CNT); nano-silver (nAg); nano-titania (nTiO2)). 

 


