
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021 1

Learning of Causal Observable Functions for
Koopman-DFL Lifting Linearization of Nonlinear

Controlled Systems and Its Application to
Excavation Automation

Nicholas Stearns Selby and H. Harry Asada, Senior Member, IEEE,

Abstract—Effective and causal observable functions for low-
order lifting linearization of nonlinear controlled systems are
learned from data by using neural networks. While Koopman
operator theory allows us to represent a nonlinear system as
a linear system in an infinite-dimensional space of observables,
exact linearization is guaranteed only for autonomous systems
with no input, and finding effective observable functions for
approximation with a low-order linear system remains an open
question. Dual-Faceted Linearization uses a set of effective observ-
ables for low-order lifting linearization, but the method requires
knowledge of the physical structure of the nonlinear system.
Here, a data-driven method is presented for generating a set of
nonlinear observable functions that can accurately approximate
a nonlinear control system to a low-order linear control system.
A caveat in using data of measured variables as observables is
that the measured variables may contain input to the system,
which incurs a causality contradiction when lifting the system, i.e.
taking derivatives of the observables. The current work presents
a method for eliminating such anti-causal components of the
observables and lifting the system using only causal observables.
The method is applied to excavation automation, a complex
nonlinear dynamical system, to obtain a low-order lifted linear
model for control design.

Index Terms—Robotics and Automation in Construction; Re-
inforcement Learning

I. INTRODUCTION

THERE is a growing need in the construction and min-
ing industries for excavation automation. Various tech-

nologies are being developed for operating excavators au-
tonomously with increased productivity and fuel efficiency [1].
The recent and projected growth of the global construction in-
dustry [2] and the dangers of the excavation work environment
[3] are major drivers behind the development of intelligent
excavators for performing earth-moving tasks.

Excavation is a highly nonlinear process where soil and
rocks interact with the bucket of an excavator in a complex

Manuscript received: March 1, 2021; Revised May 20, 2021; Accepted
June 14, 2021. This paper was recommended for publication by Editor
Youngjin Choi upon evaluation of the Associate Editor and Reviewers’
comments. This material is based upon work supported by National Science
Foundation Grant NSF-CMMI 2021625. The authors are with the School of
Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
nselby@mit.edu; asada@mit.edu

Digital Object Identifier (DOI): 10.1109/LRA.2021.3092256.
© 2021 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

ℝ𝑙+𝑚

ℝ𝑙

Fig. 1. Learned lifting linearization of autonomous excavation.

manner (see Fig. 1). While terramechanics models have been
studied for many decades, their validity is limited due to the
difficulty of identifying the numerous parameters of mechanis-
tic models. Data-driven methods have recently been introduced
to autonomous excavation for capturing complex nonlinearities
[3]–[7], yet the nonlinear models are still too complex to use,
in particular, for real-time control.

Lifting linearization is a methodology for representing a
nonlinear dynamical system with a linear dynamic model in
a high-dimensional space. Underpinned by Koopman operator
theory, nonlinear systems represented with supernumerary state
variables behave more linearly in the lifted space. The method
has recently been applied to various robotics and automation
challenges, including active learning [8], soft robotics [9],
human-robot interaction [10], power systems [11], and mission
planning [12]. More broadly, deep learning has proven a
valuable tool for lifting linearization techniques [13]–[16].

The original Koopman Operator has two major limitations:
1) The theory is applicable only to dynamical systems with

no exogenous input, i.e. autonomous systems, and
2) Exact linearization requires an infinite-dimensional

space, except for a restricted class of systems.
Any extension to non-autonomous, finite-dimensional systems
is no longer exact, but an approximation. Various methods
for truncating the system with a finite-dimensional space have
been reported. Among others, the eigendecomposition of the
lifted system allows us to represent the system at desirable
accuracy and granularity while providing useful insights into
the system [17]. Furthermore, the extended Dynamic Mode
Decomposition (eDMD) is completely data-driven, providing a

ar
X

iv
:2

10
4.

02
00

4v
3

 [
cs

.R
O

]
 3

 A
ug

 2
02

1

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021

practical tool for complex nonlinear system representation [18].
These methods, however, need a set of observables, i.e. output
variables, which are nonlinear functions of independent state
variables. It is still an open question how to find an effective
set of observable functions.

One of the key challenges in the lifting linearization of
nonlinear systems with exogenous input is causality. If ob-
servable functions are functions of both state variables and
input variables, we cannot use such observables for lifting
the system. Lifting entails computing time derivatives of the
observables and, thereby, the dynamic equations inevitably
include the time derivative of input. In discrete formulation,
this means the use of future input. Including these input terms,
the time-evolution of the observables turns out not to be causal.
If one measures a set of candidates of observables from a
nonlinear system that is subject to control inputs and uses the
measured variables for lifting the system, they may end up
with a non-causal dynamical system.

In Dual-Faceted Linearization (DFL), another approach to
lifting linearization, the causality issue is analyzed based on
physical system modeling theory [19]. In DFL, the propagation
of inputs across the nonlinear dynamical system can be tracked,
and their effect on all observables, called auxiliary variables,
can be localized. Assuming that inputs are linearly involved in
observables, a method has been established for eliminating the
input-dependent component from each observable and lifting
the dynamics using the remaining input-free observables. In
the Koopman-based lifting linearization, too, it is assumed that
the observables are input-affine in order to eliminate input-
dependent components from observable functions so a causal
dynamic model can be obtained [20].

Lifting linearization is a powerful methodology for tackling
a broad spectrum of nonlinear problems, in particular, exca-
vation process modeling and control. However, two critical
challenges have not yet been fully solved:

1) Finding an effective set of observables to approximate a
nonlinear system in a low-dimensional lifted space

2) Finding causal observables uncorrelated with inputs

The objective of the current work is to solve these two
challenges. We present a low-dimensional, causal, lifting linear
model obtained from experimental data. Neural networks are
used to find effective observables through learning.

In the following, we summarize a basic formulation of
lifting linearization in § II. We present the learning method
for obtaining an effective set of observables in § III. First,
we deal with nonlinear controlled systems where all measured
observables are not affected by inputs. Then, the method is
extended for physical observables that may be functions of
inputs. Simple numerical examples are discussed for validating
the proposed method in § IV, and we apply it to excavation
process modeling in § IV-B.

II. BACKGROUND

This section summarizes background knowledge for read-
ability. More details can be found in [19], [21].

A. Koopman Operator Theory

First proposed in 1931 by Koopman [21], Koopman operator
theory originally modeled autonomous systems by mapping
nonlinear dynamics onto an infinite-dimensional linear space.
Later techniques expanded the use of the operator for nonau-
tonomous systems [22] and developed methods for approximat-
ing the infinite-dimensional mapping with a computationally
feasible, finite-dimensional space [23]–[25].

Let the discrete-time dynamics of a nonlinear, autonomous
system with state xt ∈ Rl at time t be given by xt+1 = f(xt).
Furthermore, define a vector of nonlinear observables of the
state, ηt = g(xt) ∈ Rm.

The Koopman operator, K, is linear and infinite-dimensional
and applies to observable functions: Kfg = g ◦ f , where ◦
represents the composition operator.

B. Dual-Faceted Linearization (DFL)

Despite the use of Koopman operators to provide a lifting
linearization for autonomous systems, the theory provides no
method by which to select an effective set of observables.
Because it is infeasible to compute the infinite-dimensional
space with finite computational resources, the choice of which
observables to use is very important. DFL [19] uses a particular
class of observables that are determined based on physical
modeling theory and bond graphs [26]. Those observables,
called auxiliary variables, are physically meaningful, and may
be measured physically. Furthermore, causality analysis of the
method allows us to examine how exogenous inputs propagate
the system and influence specific auxiliary variables. Using
those variables with no input influence, one can obtain a lifted
system that is causal. Alternatively, input-dependent variables
can be “laundered” into causal variables.

Consider the discrete-time dynamics of a nonlinear, nonau-
tonomous system with input ut ∈ Rn at time t given by:

xt+1 = f(xt, ut) (1)

Assuming that the system is a lumped-parameter system
with integral causality, we can choose outputs of all the
nonlinear elements involved in the system as observables
ηt = g(xt) ∈ Rm to augment the system state and construct a
linear representation of the system dynamics:

xt+1 = Axxt +Aηηt +Bxut (2)

where Ax ∈ Rl×l, Aη ∈ Rl×m, and Bx ∈ Rl×n are fixed
matrix coefficients determined by the physical structure of the
system. This part of the state evolution is exact.

We approximate the η-dynamics using a second equation:

ηt+1 = Hxxt +Hηηt +Huut + rηt+1
(3)

where Hx ∈ Rm×l, Hη ∈ Rm×m, and Hu ∈ Rm×n

are fixed matrix coefficients and rηt+1
∈ Rm is a residual.

Unlike Ax, Aη , and Bx, which are determined from the
physical structure of the system, Hx, Hη , and Hu must be
regressed from data. For brevity, define coefficient matrices
A , (Ax, Aη, Bx) ∈ Rl×p and H , (Hx, Hη, Hu) ∈ Rm×p

and datum vector ξt , (xᵀt , η
ᵀ
t , u

ᵀ
t)

ᵀ ∈ Rp where p = l+m+n.
Apply a negative discrete-time shift operator T−1 to (3) to

SELBY AND ASADA: LEARNED LIFTING LINEARIZATION 3

optimize H to minimize the mean squared error of predicting
ηt+1:

Ho = arg minH E
[
|Hξt−1 − ηt|2

]
= E

[
ηtξ

ᵀ
t−1

] (
E
[
ξt−1ξ

ᵀ
t−1

])−1
(4)

where E[·] is the expectation operator. Assuming that the
system is persistently excited and that ut is not collinear with
xt, there is a unique solution, Ho.

The original nonlinear dynamics f can now be modeled
using the dual-faceted linear dynamics:

xt+1 = Aξt; ηt+1 ≈ Hξt; η0 = g(x0); (5)

Practical benefits of using DFL as a tool to model systems
include:

• Augmented state feedback can be used to better inform
controllers [27].

• Linear observer design is enabled for augmented state
feedback.

• Model-predictive control is convex [17].
• Because DFL is based in physical modelling theory, aug-

mented state systems may be measurable, and dynamics
may have physical intuition [28].

For these reasons, DFL has proven to be a valuable tool in
modeling nonlinear systems. However, DFL requires knowl-
edge of the structure of the physical system. Furthermore,
many systems contain no obvious, measurable observables with
which to augment the state, and there is no guarantee that,
when they do exist, physically meaningful observables make
the best choices for augmenting the system state.

C. Machine Learning for Linear Latent Spaces

Like Koopman operator theory and DFL, learned latent-
space dynamic modeling techniques also involve constructing
a nonlinear representation of the original state, then using
a model to evolve the new “observables” through time. In
Koopman operator theory and DFL, the dynamic model is
linear. Recently, much work has been done to explore applying
deep learning techniques to Koopman operators.

Abraham and Murphey [8] presented an active learning
strategy for robotic systems that extended observables, g, from
Koopman operator theory to include the control input, ut. Their
algorithm trains a neural network to approximate an optimal
g. In each epoch, they recompute a finite-dimensional matrix
approximation of the Koopman operator K, but because g is a
function of both xt and ut, regressing such a matrix requires
knowing ut+1 in addition to xt+1. To solve this causality
problem, they propose replacing ut+1 with ut in the Koopman
operator update.

Han et al. [29] also proposed using a neural network that
approximates an optimal lifting function g. At the end of each
epoch, after feeding xt−1 forward through g, they solve a least
squares optimization problem to regress a modified Ho where
Hx = 0, then use the learned model to backpropagate the
error E [||g(xt)−Hoξt−1||F] plus a penalty on the norms of
the components of Ho. Because they do not track the evolution
of the state, x, directly, they must simultaneously learn an
additional matrix to approximate g−1.

Lusch et al. [30] and Mastia and Bemporad [31] replaced
the g−1 matrix approximation of Han et al. with a neural
network decoder, while in this work we handle this by feeding
the state forward directly into the linear dynamic model. Their
models learn to minimize cost along three axes: neural network
g−1 must invert neural network g, i.e. x = g

(
g−1(x)

)
;

the nonlinear model must be able to predict, i.e. xt+1 =
g−1 (Hg(xt)); and the lifted state must propagate linearly, i.e.
g(xt+1) = Hg(xt).

Work by Yeung et al. [32] applied deep learning to dynamic
mode decomposition (DMD) by training a neural network to
approximate the “snapshot” function mapping state to physical
observable. Instead of optimizing a complicated cost function
like in [29]–[31], their work simply trains a model to map
states to other measurements of the system, then regresses a
linear dynamic model to propagate the measurements forward
in time.

Other work in learned latent spaces for lifting lineariza-
tions leverages neural networks to approximate functions
similar to Koopman’s observables in reinforcement learning
[16], sampling-based motion planning [14], Kalman filtering
[15], and partially observable Markov decision process [13]
paradigms. However, these works all learn linearizations A and
H that are time- or state-dependent, further reducing the long-
term robustness of the linear model and giving up the benefits
of provably convex optimal control.

D. Anticausal Observables
Most lifting linearization techniques, including Koopman

operator theory and DFL, require that the lifting observables
be control input-independent, i.e. η = g(x). If auxiliary
variables depend on the control input, u, i.e. η = g(x, u),
then propagating η forward through time requires knowledge
of future values of control input:

ηt+1 ≈ ηt +
∂η

∂x
(xt+1 − xt) +

∂η

∂u
(ut+1 − ut) (6)

In order to avoid problems with causality, most methods
explicitly avoid augmenting the system state with control input-
dependent variables. There are two common techniques.

The first solution to the causality problem is to include a
state-feedback control law in the model [8], [29]. By con-
straining the control input to be a known function of state,
the system becomes effectively autonomous, and the original
formulation of Koopman operator theory applies. This works
for regulators, including for controllers regulating a system to
follow a predetermined state trajectory, but no exogenous input
is allowed.

The second solution to the causality problem is to assume
that the auxiliary variables are linear in u [19], [20], [33]:

η(x, u) = η∗(x) +Du (7)

where η∗ is exclusively state-dependent and D is a fixed matrix
coefficient of u.

Although predicting future values of η(x, u) remains im-
possible without a control law, this formulation allows for
the modeling of the evolution of η∗(x). The auxiliary state
equation can be rewritten:

η∗t+1 = H∗
xxt +H∗

ηηt +H∗
uut + rη∗,t (8)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021

J

g

EBP
_ _

g

_

_

ො𝑥𝑡+1

𝜁𝑡 𝜁𝑡
∗

𝐷𝑢𝑡 𝑢𝑡 𝐷𝑢𝑡+1

𝜂𝑡𝑥𝑡

Ƹ𝜂𝑡+1 𝜂𝑡+1 𝜁𝑡+1
∗

𝑥𝑡+1

𝜁𝑡+1

Linear

Dynamic

Model

EBP

Fig. 2. Block diagram of the learned lifting linearization algorithm. The loss, J , is used to tune the weights of neural network, g, and linear dynamic model
matrices A and H via error backpropagation (EBP). Note that both instances of g are equivalent to each other for all time t.

where rη∗,t is a residual.
Substituting (7) into (8) yields:

η∗t+1 = H∗
xxt +H∗

ηη
∗
t +

(
H∗
u +H∗

ηD
)
ut + rη∗,t (9)

which is a causal, augmented state dynamic equation. The
question of causality is therefore solved by preprocessing the
auxiliary state data to filter out their dependence on u.

III. MODELING ALGORITHM

Fig. 2 shows the overview of the modeling algorithm. The
learning system consists of three major components. The first
is the Linear Dynamic Model predicting the transition of
the system. The second is a multi-layer neural network for
generating auxiliary variables, and the third is the process of
evaluating the prediction error.

We assume all state variables are accessible and sufficient
data for training are attainable. All state variables are fed
into the left neural network, g, to produce a set of synthetic
observables, ηt, to be learned. The state xt, observables ηt, and
input ut are fed into the linear dynamic model parameterized
by matrices A and H . The linear model produces predicted
state x̂t+1 and predicted observables η̂t+1. The predicted state
and observables are compared to their ground truth values,
xt+1 and ηt+1 = g(xt+1; θ), respectively. The right neural
network in the figure is a twin copy of the left neural network,
sharing parameters θ.

The squared error of the predicted state and observables, J ,
is used for updating the linear dynamic model with respect to
parameters A and H and the neural network weights. The up-
date of these parameters is computed via error backpropagation
(EBP).

The causality analysis involved in the DFL modeling allows
us to examine whether observables, called auxiliary variables,
are functions of state alone or include inputs. If some auxiliary
variables are causal, having no dependence on control input,
they can be added to the state for lifting the dynamics. Let ζ∗t
represent causal auxiliary variables. As shown in Fig. 2, the
causal observables can be fed into the neural network, so that
the synthetic auxiliary variables ηt can be produced from richer
data. Note that the ground truth ηt+1, too, can be produced in

response to not only state xt+1 but also ζ∗t+1. The tunable
parameter space of the neural network is expanded with the
use of the causal auxiliary variables.

In case physically measurable auxiliary variables are func-
tions of both state and input, such input-dependent auxiliary
variables cannot be used in their original form for lifting the
dynamics. It is necessary to filter out the input components
from the observables. Fig. 2 also shows a simple filter to
eliminate the effect of input from those variables, ζt, as
discussed in § III-B.

A. Discrete-Time Learned Lifting Linearization
Consider the discrete-time dynamic system from (1). Let g

be a neural network, illustrated in Fig. 3, defined by randomly
initialized parameters θ to generate synthetic observables:

ηθt = g(xt; θ) (10)

B. Extension to Anticausal Observables

Define a datum vector ξθt ,
(
xᵀt , η

θᵀ
t , u

ᵀ
t

)ᵀ
. Let A ∈ Rl×p

and H ∈ Rm×p be matrix coefficients modeling the state and

Σ g

Σ g

Σ g

Σ g

Σ g

Σ g

Σ g

Σ g

Σ

Σ

𝑢𝑡
1

𝑢𝑡
𝑛

𝑥𝑡
1

𝑥𝑡
2

𝑥𝑡
𝑙

𝑥𝑡+1
1

𝑥𝑡+1
𝑙

𝜂𝑡+1
1

𝜂𝑡+1
𝑚

𝛿𝑥1

𝛿𝜂1

𝛿𝑥𝑙

𝛿𝜂𝑚

Fig. 3. Diagram of the neural network and linear dynamic model to compute
xt+1 and ηt+1 given xt and ut. With abuse of notation, we hereafter include
ζ∗ in x.

SELBY AND ASADA: LEARNED LIFTING LINEARIZATION 5

augmented state transition dynamics, respectively. We override
(5) to include residuals in the original and augmented state
dynamic equations:

xt+1 = Aξθt + rθxt+1

ηθt+1 = Hξθt + rθηt+1

ηθ0 = g(x0; θ)

(11)

Given observation data of xt, xt−1, and ut−1, we synthesize
observations of the augmented state, ηθt = g(xt; θ) and ηθt−1 =
g(xt−1; θ), and assemble datum vectors ξθt−1.

By applying the discrete-time shift operator T−1 to (11) and
rearranging, we can compute a residual for each observation:
rθxt

= xt −Aξθt−1 and rθηt = g(xt; θ)−Hξθt−1.
We define a quadratic loss function, Jt(θ,A,H), used to

train the model:

Jt(θ,A,H) , rθᵀt Qr
θ
t (12)

where Q is a symmetric matrix coefficient and rθt is a total
residual given by rθt ,

(
rθᵀxt

, rθᵀηt
)ᵀ

.
Model parameter matrices A and H , as well as the param-

eters of the neural network, θ, are computed by solving the
following optimization problem via error backpropagation:

θo, Ao, Ho = arg min
θ,A,H

E [Jt(θ,A,H)] (13)

As discussed in [19], augmenting the state with physi-
cal observables is often useful. Because this learned lifting
linearization is data-driven, augmenting the state, x, with
control-independent, physical observables is trivial. However,
as reviewed in § II, if the augmented state is dependent on
the control input, the augmented system dynamics become
anticausal. In state space modeling, output equations include
inputs algebraically if there is a direct transmission term
from inputs to outputs [34], [35]. Namely, observations of
the system are functions of xt and ut. Consider a vector of
physical observables, ζ(x, u) ∈ Rz , suspected of including a
dependence on u. As in [19], [20], and [33], assume that this
dependence is linear:

ζ(x, u) = ζ∗(x) +Du (14)

where ζ∗(x) ∈ Rz is exclusively a function of state and
D ∈ Rz×n is a fixed matrix coefficient of u. Assuming mean-
zero data, because ζ∗(x) is uncorrelated with the control input,
E [ζ∗(x)uᵀ] = 0. Therefore, multiplying (14) by uᵀ and taking
the expectation yields E [ζ(x, u)uᵀ] = DE [uuᵀ].

Given observations of ζ(x, u) and u, computing D becomes
a least-squares linear regression:

D̂ = E [ζ(x, u)uᵀ] E [uuᵀ]
−1 (15)

assuming that the input is persistently exciting.
Before training the learned lifting linearization model in

(11), we preprocess the data to “clean” the physical observables
from any linear dependence on u via

ζ∗(xt) = ζ(xt, ut)− D̂ut (16)

for each observation, t. Then, we augment the DFL
model to include ζ∗(x). We override (10) with ηθt =

g
(
(ζ∗ᵀ(xt), x

ᵀ
t)

ᵀ
; θ
)

and follow the same training procedure
described above to tune g, A, and H using (13).

The complete learned lifted linearization algorithm is sum-
marized in Algorithm 1.

Algorithm 1: Learned Lifting Linearization
Result: Lifting linearization of nonlinear dynamics
Randomly initialize neural network g and linear

dynamic model A, H;
D̂ ← E [ζuᵀ] E [uuᵀ]

−1 ;
while training do

get batch of xt, ζt, ut, xt+1, ζt+1, ut+1 from
training dataset ;
ζ∗t ← ζt − D̂ut ;
ζ∗t+1 ← ζt+1 − D̂ut+1 ;
ηt ← g((xt, ζ

∗
t)) ;

ηt+1 ← g((xt+1, ζ
∗
t+1)) ;

ξt ← (xᵀt , ζ
∗ᵀ
t , ηᵀt , u

ᵀ
t)

ᵀ ;
r ←

(
((xᵀt+1, ζ

∗ᵀ
t+1)ᵀ −Aξt)ᵀ, (ηt+1 −Hξt)ᵀ

)ᵀ
;

J ← rᵀQr ;
backpropagate J to update g, A, and H using
Adam ;

end
Au ← Au +AζD ;
Hu ← Hu +HζD ;

IV. NUMERICAL EXAMPLES

A. Toy Problem

The modeling algorithm in § III is implemented in PyTorch
[36] on a laptop running Ubuntu 18.04.5 LTS. The codebase
is hosted as a git repository at [37].

We test the learned lifting linearization (L3) algorithm on
the nonlinear, massless spring-damper illustrated in Fig. 4 with
ΦR(eR) = 2/

(
1 + e−4eR

)
− 1, and ΦC(q) = sgn(q)q2. We

generate 100 5s trajectories at 20Hz with initial conditions and
control inputs drawn from uniform random distributions. The
state, x, consists only of the linear position, q, and the control
input, u, is the scalar effort (n = 1). We use the system bond
graph to identify observables ζ = (f, eC)

ᵀ.

f

eC

1Se

ΦR

C

R

eC f

eR

f

u
eC

eR

q𝜁 =
f

eC

ΦC

f

Fig. 4. Bond graph of a nonlinear first-order system with state variable q.
In the bond graph, a nonlinear capacitor, C, and a nonlinear resistor, R, are
connected to an effort source, Se, that is an exogenous input u(t). Causality
analysis of the bond graph determines that effort variable eC is the output
of the nonlinear capacitor, while the output of the nonlinear resistor is flow
variable f . In the electrical circuit analogy, the effort variable eC is the voltage
across the capacitor, and the flow variable f is the current flowing through the
resistor. They are connected with the exogenous input voltage u(t) at the
“1” junction, which is equivalent to Kirchhoff’s Voltage Law. The causality
analysis also reveals that a direct transmission path exists from input u(t)
to flow variable f. Therefore, auxiliary variable f is not a causal variable for
lifting the system. For more details about causality analysis, see [19], [26].

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021

0 2 4 6 8 10
time (s)

−0.5

0.0

0.5

1.0
q

(m
)

u

Gnd. Truth
Koopman

eDMDc
DFL

L3
L3 (NoF)

Fig. 5. Results of open-loop simulation predicting the state, q of the
toy problem from Fig. 4 excited by a square wave input (in gray). The
solid black line indicates the true trajectory. The dashed lines indicate the
open-loop simulated trajectories of various models: Koopman-with-control
(Koopman, dim = 33), extended dynamic mode decomposition with control
(eDMDc, dim = 6), dual-faceted linearization (DFL, dim = 4), learned lifting
linearization (L3, dim = 6), and L3 without first filtering out the control input
using (16) (L3 NoF, dim = 6).

The neural network, g, approximating the optimal synthetic
observables, η, is a fully connected network of 3 linear input
neurons (l = 3); two hidden layers, each with 256 ReLU
neurons; and 2 output neurons, creating 2 synthetic observables
(m = 2). Before training, the data are randomly divided 80-20
into a training set and a validation set. The neural network,
g, and the linear model consisting of A and H are trained in
batches of 32 input-output pairs using an Adam optimizer [38]
with α = 10−5, β1 = 0.9, β2 = 0.999, and ε = 10−8. The
quadratic cost parameter Q = I . Before each training epoch,
the learned lifting linearization model is evaluated using the
validation dataset without backpropagating the loss. Training
continues until the validation loss begins to increase.

We benchmark the learned lifting linearization algorithm
against Koopman-with-control, eDMDc, DFL, and L3 without
the anticausal filter. Using the same data from the training and
validation sets described above, 32 observables using polyno-
mial basis functions are created for the Koopman observables
and two similar observables are created for eDMDc. We train
the eDMDc and DFL models using the same measurements,
ζ, as L3.

After training, we simulate all models given a zero initial
condition and a square wave input trajectory. The modeled
state trajectory is compared against the ground truth in Fig.
5. The learned lifting linearization model outperforms the
Koopman model despite the significantly lower dimensionality.
The integrated squared errors of the simulated models are
recorded in Table I.

Note that the fidelity of the Koopman operator model is
sensitive to hyperparameters. As discussed in [9], without
L1 regularization, high-dimensional Koopman models quickly
overfit to the training data. Both DFL and L3 outperform
eDMDc due to the anticausal filter compensating for the de-
pendence of eR on u. Without the anticausal filter, L3 performs
only marginally better than eDMDc. L3 also has a slight
advantage over DFL: in addition to penalizing nonlinearities

TABLE I
INTEGRATED SQUARED ERROR OF THE MODELS USED TO SIMULATE THE

TOY PROBLEM OVER TEN SECONDS.

Koopman eDMDc DFL L3 L3 (NoF)
5.9 14 0.73 0.48 12

𝑥

𝑦

(𝑥, 𝑦) (𝑣𝑥, 𝑣𝑦)

(𝐹𝑥, 𝐹𝑦)

𝑚soil

𝜔

𝜙

Fig. 6. Diagram of the states and physical observables included in the data.

in the state transition equation, the cost function of the learned
lifting linearization in (12) also penalizes nonlinearities in the
augmented state transition equation.

B. Excavation Process Modeling

We also test the learned lifting linearization algorithm on
an autonomous excavator simulation using agxTerrain, a spe-
cialized module of the AGX Dynamics [39] physics simulator
used to test algorithms for autonomous excavation [40]–[43]
illustrated in Fig. 1. We generate a random soil profile by sum-
ming several 2-D Gaussians of random height and variance,
yielding soil shapes like those in Fig. 1. Soil properties are set
in accordance to the AGX “gravel” profile.

We collect 100 7.5s randomized trajectories from large
sections of the workspace at 100Hz, setting one of them aside
for testing. A diagram of the collected data is illustrated in
Fig. 6. The trajectories include six states, x: position along
the x-axis, x; position along the y-axis, y; bucket angle, φ;
velocity along the x-axis, vx; velocity along the y-axis, vy;
and rotational velocity of the bucket, ω. The trajectories also
include three control inputs, u: force along the x-axis, ux;
force along the y-axis, uy; and torque actuating the bucket,
uφ. The trajectories also include three physical observables,
ζ: soil reaction force on the bucket along the x-axis, Fx; soil
reaction force on the bucket along the y-axis, Fy; and mass of
the soil in the bucket, msoil.

These trajectories are generated using a naı̈ve, noisy PID
controller on the translation forces and bucket angle:

ux = PID(ẋ− U(ẋmin, ẋmax)) + U(−wx, wx)

uy = PID(ẏ − U(ẏmin, ẏmax)) + U(−wy, wy)

uφ = PID(φ− U(φmin, φmax)) + U(−wφ, wφ)

(17)

where U is the uniform random distribution and wx, wy , and
wφ are bounds on additional noise added to ensure persistent
excitation. The set points are drawn from a uniform random
distribution in accordance with [44].

The learned lifting linearization and Koopman models for
the terramechanics experiment are almost identical to those of
the nonlinear spring-damper experiment, with some exceptions.
The neural network, g, has 9 input neurons, 1 hidden layer
with 256 ReLU neurons, and 4 output neurons. On average,
training the L3 model took 2.5 hours. The domain of the

SELBY AND ASADA: LEARNED LIFTING LINEARIZATION 7

0.0 0.5 1.0 1.5 2.0
−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

x
(m

)
Ground Truth Koopman DMDc L3 L3 (NoF) L3 (NoZ)

0.0 0.5 1.0 1.5 2.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

y
(m

)

0.0 0.5 1.0 1.5 2.0

1.2

1.4

1.6

1.8

2.0

2.2

ph
i (

ra
d)

0 2 4 6
time (s)

0

50

100

150

200

F_
x

(k
N

)

0 2 4 6
time (s)

−200

−100

0

F_
y

(k
N

)

0 2 4 6
time (s)

−20

−10

0

m
_s

oi
l (

M
T)

Fig. 7. Results of open-loop simulation predicting the positional state and observable trajectories of the bucket through the soil given the initial condition and
control input. The solid black line indicates the true, observed trajectory. The dashed green line indicates the trajectory predicted by the Koopman model. The
dashed lines indicate the open-loop simulated trajectories of various models: dynamic mode decomposition with control (DMDc), learned lifting linearization
(L3), L3 without first filtering out the control input using (16) (L3 NoF), and L3 without any information from ζ (L3 NoZ).

Koopman dynamic model has a dimensionality of 67, com-
pared to 16 for the learned lifting linearization model. We also
benchmark against a DMDc model with a dimensionality of
12 trained using the observables, ζ, in addition to the state.
There was not a significant performance difference between
DMDc and eDMDc. In addition to benchmarking the learned
lifting linearization model against the Koopman and DMDc
models, we also compare the results with and without filtering
out the control input from the physical observables using (16).
In this model, instead of following the procedure described
in § III-B, we incorporated ζ(x, u) directly into the state
without filtering. Effectively, this forces the model to violate
causality by predicting future values of observables dependent
upon control input, u. Finally, we also test L3 without any
information from observations, ζ, to examine the effect of
removing supplementary measurements.

After training the learned lifting linearization and Koopman
models, we simulate both models using the control input
trajectory and initial condition from the testing trajectory. The
modeled trajectories of the positional states, x, y, and ω, and
the three observables, Fx, Fy , and msoil, are compared against
the ground truth trajectories in Fig. 7. The integrated squared
error across the three states for the learned lifting linearization
model is only 5% and 18% of the same errors for the Koopman
and DMDc models, respectively.

We also retrain the learned lifting linearization model with-
out first filtering out the control input using (16) and simulate
using the same technique, L3 (NoF). The integrated squared
error across the three states is more than eight times the same
error for the standard L3 model. Input filtering is vital to
model robustness. A similar experiment performed without
any information from supplemental measurements, L3 (NoZ),
results in an error more than ten times greater than the
standard L3 model. Various experiments retraining the L3

model without access to individual states or observables (left
out of Fig. 7) result in similar reductions in accuracy.

V. DISCUSSION AND CONCLUSION

In this paper, we presented a learned lifting linearization
algorithm to model nonlinear dynamic systems. This model ex-
tended Koopman operator theory and dual-faceted linearization
by training a neural network to produce nonlinear observables
to augment the state. We also presented an algorithm to “clean”
anticausal physical observables of any linear dependence on
control input so that they can be used by the neural network to
generate richer synthetic observables. We tested this algorithm
on a nonlinear, massless spring-damper model and an au-
tonomous excavation simulation, and we compared the results
against Koopman, DMD, and DFL models. Learned lifting
linearization outperformed all benchmarks at minimizing state
prediction error.

As with many data-driven techniques, training data quality
is paramount to model accuracy. The reduced performance in
modeling progression along the y-axis is likely due to the
small domain of the training data along that dimension. If
we initialize the system in a different configuration from what
was recorded during data collection, or if the quantity of data
available for learning is reduced by more than half, models
such as L3 and DMD perform substantially worse.

In real-world excavation tasks, soil properties can vary.
While this paper addresses more homogeneous soil profiles like
gravel, intelligent use of observables to include information
about the environment could enable L3 to learn optimal aux-
iliary variables and linear models for dynamic soil properties.
Additionally, L3 could be primed with simulator data to reduce
the amount of hardware-in-the-loop learning required.

Excavators often require expensive hydraulics modifications
to execute end effector force control. State-of-the-art excava-
tors have solved this problem [7]. This work focused on the

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE 2021

nonlinearities involved in soil dynamics. Future work on this
topic should model the nonlinearity of hydraulic systems.

REFERENCES

[1] S. Dadhich, U. Bodin, and U. Andersson, “Key challenges in automa-
tion of earth-moving machines,” Automation in Construction, vol. 68,
pp. 212–222, 2016.

[2] J. Hook, “A global forecast for the construction industry to 2030,”
tech. rep., Global Construction Perspectives and Oxford Economics,
Broadwall House, 21 Broadwall, London SE1 9PL United Kingdom,
Sept. 2015.

[3] F. E. Sotiropoulos and H. H. Asada, “A model-free extremum-seeking
approach to autonomous excavator control based on output power
maximization,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 1005–1012, 2019.

[4] R. Fukui, T. Niho, M. Nakao, and M. Uetake, “Imitation-based control
of automated ore excavator: improvement of autonomous excavation
database quality using clustering and association analysis processes,”
Advanced Robotics, vol. 31, no. 11, pp. 595–606, 2017.

[5] O. Luengo, S. Singh, and H. Cannon, “Modeling and identification
of soil-tool interaction in automated excavation,” in Proceedings. 1998
IEEE/RSJ International Conference on Intelligent Robots and Systems.
Innovations in Theory, Practice and Applications (Cat. No. 98CH36190),
vol. 3, pp. 1900–1906, IEEE, 1998.

[6] R. J. Sandzimier and H. H. Asada, “A data-driven approach to prediction
and optimal bucket-filling control for autonomous excavators,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2682–2689, 2020.

[7] D. Jud, P. Leemann, S. Kerscher, and M. Hutter, “Autonomous free-form
trenching using a walking excavator,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 3208–3215, 2019.

[8] I. Abraham and T. D. Murphey, “Active learning of dynamics for
data-driven control using koopman operators,” IEEE Transactions on
Robotics, vol. 35, no. 5, pp. 1071–1083, 2019.

[9] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan, “Modeling
and control of soft robots using the koopman operator and model
predictive control,” in Proceedings of Robotics: Science and Systems,
(FreiburgimBreisgau, Germany), June 2019.

[10] A. Broad, T. Murphey, and B. Argall, “Learning models for shared
control of human-machine systems with unknown dynamics,” in Pro-
ceedings of Robotics: Science and Systems, (Cambridge, Massachusetts),
July 2017.

[11] Y. Susuki, I. Mezic, F. Raak, and T. Hikihara, “Applied koopman
operator theory for power systems technology,” Nonlinear Theory and
Its Applications, IEICE, vol. 7, no. 4, pp. 430–459, 2016.

[12] A. Leonard, J. Rogers, and A. Gerlach, “Koopman operator approach
to airdrop mission planning under uncertainty,” Journal of Guidance,
Control, and Dynamics, vol. 42, no. 11, pp. 2382–2398, 2019.

[13] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine,
“Solar: Deep structured representations for model-based reinforcement
learning,” in International Conference on Machine Learning, pp. 7444–
7453, PMLR, 2019.

[14] B. Ichter and M. Pavone, “Robot motion planning in learned latent
spaces,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2407–
2414, 2019.

[15] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, “Backprop kf: Learning
discriminative deterministic state estimators,” in Advances in Neural
Information Processing Systems (D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, eds.), vol. 29, Curran Associates, Inc., 2016.

[16] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from
raw images,” in Advances in Neural Information Processing Systems
(C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.),
vol. 28, Curran Associates, Inc., 2015.

[17] A. Mauroy, Y. Susuki, and I. Mezić, The Koopman Operator in Systems
and Control. Springer, 2020.

[18] S. Vijayshankar, S. Nabi, A. Chakrabarty, P. Grover, and M. Benosman,
“Dynamic mode decomposition and robust estimation: Case study of a
2d turbulent boussinesq flow,” in 2020 American Control Conference
(ACC), pp. 2351–2356, IEEE, 2020.

[19] H. Harry Asada and F. E. Sotiropoulos, “Dual faceted linearization
of nonlinear dynamical systems based on physical modeling theory,”
Journal of Dynamic Systems, Measurement, and Control, vol. 141, no. 2,
2019.

[20] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control,” Automatica,
vol. 93, pp. 149–160, 2018.

[21] B. O. Koopman, “Hamiltonian systems and transformation in hilbert
space,” Proceedings of the national academy of sciences of the united
states of america, vol. 17, no. 5, pp. 315–318, 1931.

[22] S. Maćešić and N. Črnjarić-Žic, “Koopman operator theory for nonau-
tonomous and stochastic systems,” in The Koopman Operator in Systems
and Control, pp. 131–160, Springer, 2020.

[23] I. Mezić, “Analysis of fluid flows via spectral properties of the koopman
operator,” Annual Review of Fluid Mechanics, vol. 45, pp. 357–378,
2013.

[24] M. Budišić, R. Mohr, and I. Mezić, “Applied koopmanism,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 22, no. 4, p. 047510,
2012.

[25] J. H. Tu, C. W. Rowley, S. L. B. Dirk M. Luchtenburg, and J. N. Kutz,
“On dynamic mode decomposition: Theory and applications,” Journal of
Computational Dynamics, vol. 1, no. 2, pp. 391–421, 2014.

[26] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System dynamics:
modeling, simulation, and control of mechatronic systems. John Wiley
& Sons, 2012.

[27] Y. Igarashi, M. Yamakita, J. Ng, and H. H. Asada, “Mpc performances for
nonlinear systems using several linearization models,” in 2020 American
Control Conference (ACC), pp. 2426–2431, IEEE, 2020.

[28] F. E. Sotiropoulos and H. H. Asada, “Causality in dual faceted lineariza-
tion of nonlinear dynamical systems,” in 2018 Annual American Control
Conference (ACC), pp. 1230–1237, IEEE, 2018.

[29] Y. Han, W. Hao, and U. Vaidya, “Deep learning of koopman representa-
tion for control,” in 2020 59th IEEE Conference on Decision and Control
(CDC), pp. 1890–1895, IEEE, 2020.

[30] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal
linear embeddings of nonlinear dynamics,” Nature communications,
vol. 9, no. 1, pp. 1–10, 2018.

[31] D. Masti and A. Bemporad, “Learning nonlinear state–space models
using autoencoders,” Automatica, vol. 129, p. 109666, 2021.

[32] E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network
representations for koopman operators of nonlinear dynamical systems,”
in 2019 American Control Conference (ACC), pp. 4832–4839, IEEE,
2019.

[33] G. Mamakoukas, M. Castano, X. Tan, and T. Murphey, “Local koopman
operators for data-driven control of robotic systems,” in Proceedings of
Robotics: Science and Systems, (FreiburgimBreisgau, Germany), June
2019.

[34] T. Kailath, Linear systems, vol. 156. Prentice-Hall Englewood Cliffs,
NJ, 1980.

[35] P. M. DeRusso, A. A. Desrochers, R. J. Roy, and C. M. Close, State
variables for engineers. John Wiley & Sons, Inc., 1997.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran
Associates, Inc., 2019.

[37] N. S. Selby, “Dfl.” https://github.com/Darbeloff/DFL, 2021.
[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[39] M. Servin, T. Berglund, and S. Nystedt, “A multiscale model of terrain
dynamics for real-time earthmoving simulation,” Advanced Modeling and
Simulation in Engineering Sciences, vol. 8, pp. 11–46, May 2021.

[40] Y. Yang, J. Pan, P. Long, X. Song, and L. Zhang, “Time variable
minimum torque trajectory optimization for autonomous excavator,”
arXiv preprint arXiv:2006.00811, 2020.

[41] Y. Yang, L. Zhang, X. Cheng, J. Pan, and R. Yang, “Compact reachability
map for excavator motion planning,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2308–2313,
IEEE, 2019.

[42] S. Ulin, “Digging deep: A data-driven approach to model reduction in a
granular bulldozing scenario,” 2018.

[43] S. Backman, D. Lindmark, K. Bodin, M. Servin, J. Mörk, and
H. Löfgren, “Continuous control of an underground loader using deep
reinforcement learning,” 2021.

[44] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Generalizing koopman
theory to allow for inputs and control,” SIAM Journal on Applied
Dynamical Systems, vol. 17, no. 1, pp. 909–930, 2018.

https://github.com/Darbeloff/DFL

	I Introduction
	II Background
	II-A Koopman Operator Theory
	II-B Dual-Faceted Linearization (DFL)
	II-C Machine Learning for Linear Latent Spaces
	II-D Anticausal Observables

	III Modeling Algorithm
	III-A Discrete-Time Learned Lifting Linearization
	III-B Extension to Anticausal Observables

	IV Numerical Examples
	IV-A Toy Problem
	IV-B Excavation Process Modeling

	V Discussion and Conclusion
	References

