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AI Applications through the Whole Life Cycle
of Material Discovery

Jiali Li,1 Kaizhuo Lim,1 Haitao Yang,1 Zekun Ren,2 Shreyaa Raghavan,3 Po-Yen Chen,1

Tonio Buonassisi,2,3,* and Xiaonan Wang1,*
Progress and Potential

Advances in artificial intelligence

(AI), especially machine learning

(ML), provide enormous tools for

processing complex data

generated from experimental and

computational materials research.

With the rapid development of AI

methods and the complex nature

of interdisciplinary research, a

challenge is posed as for which

methods to choose for different

material systems or context and

which steps of the material

discovery process would stand to

benefit. This paper answers these

questions by first introducing ML

methods from a material study

perspective in a tutorial section.

We then discuss how AI can assist

in each step through the whole life

cycle of material discovery

(including characterization,

property prediction, synthesis,

and theory paradigm discovery)

by conducting a thorough

literature review in the material

application section. Finally, future

research efforts should focus on

in-depth understandings of

descriptors, materials’ ML

methods, data-driven application

strategies, and integration of

studies.
We provide a review of machine learning (ML) tools for material dis-
covery and sophisticated applications of different ML strategies.
Although there have been a few published reviews on artificial intel-
ligence (AI) for materials with an emphasis on a single material sys-
tem or individual methods, this paper focuses on an application-
based perspective in AI-enhanced material discovery. It shows
how AI strategies are applied through material discovery stages
(including characterization, property prediction, synthesis, and the-
ory paradigm discovery). Also, by referring to the ML tutorial,
readers can acquire a better understanding of the exact functions
of ML methods in each application and how these methods work
to realize the targets. We are aiming to enable a better integration
of AI methods with the material discovery process. The keys to suc-
cessful applications of AI in material discovery and challenges to be
addressed are also highlighted.

INTRODUCTION

New materials define the development of cultures, from the Stone Age to the pre-

sent day.1 We interact daily with many thousands of specialized materials as key

parts of advanced technology and infrastructure. It is challenging to predict an accu-

rate property-process-structure relationship to design new materials with specific

property requirements quickly and precisely. The reasons can be attributed to three

main aspects: (1) high dimensionality of features in material design including mate-

rials’ intrinsic information (e.g., material crystallinity, size, energy level, hydropho-

bicity) and extrinsic synthesis processes’ information (e.g., pH, reaction tempera-

ture, concentration); (2) the huge material design space containing a vast amount

of possible materials that are difficult to select from (e.g., nanomedicine carriers se-

lection,2 catalyst ligands selection,3,4 hybrid solar cells, wearable sensors5,6); and (3)

the absence of completely known underlying physics and chemistry of complex ma-

terial systems (e.g., active sites of catalyst,7,8 molecular targets of drugs,9 accurate

control of high entropy alloy,10 structure prediction of materials11–13). All the chal-

lenges are related to the complex material data management in analyzing, under-

standing, and predicting, which exceed human capability.

Different from experimental measurements of physical and chemical properties,

computational material simulation methods (e.g., density functional theory [DFT],

molecular dynamics [MD], coarse-grainedMD) can calculate various materials’ prop-

erties by performing simulations as opposed to actual material synthesis. Such

methods are relatively faster at predicting materials’ properties, yet are not always

perfectly accurate. Before combining with machine learning (ML) methods, there

are two generations of methods according to the historical development of research

in computational materials science: (1) property-structure relationship calculation
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and (2) property-structure-composition relationship calculation.14 These two ap-

proaches have enabled the development of extensive databases with properties

of organic and inorganic crystals, single molecules, and metal alloys.15–17 However,

the material synthesis conditions are not taken into consideration and the analytical

and predictive capabilities of simulation methods depend on clear understanding of

a material’s underlying physics and chemistry. Besides, even the well-constructed

simulation databases can include hypothetical structures that are not thermodynam-

ically stable, and the methods used fail in many cases such as for random or disor-

dered structures or non-zero-K temperatures. The limitations of computational ma-

terial simulation methods have become apparent for newer material systems, which

are significant for material discovery progress but are normally lacking first-princi-

ples understanding. Moreover, these simulation methods can be computationally

expensive and take infeasibly long to screen vast material design spaces.

Apart from traditional laboratory experiments and computational material simula-

tion approaches, artificial Intelligence (AI) could be an alternative approach that is

able to address the material design challenges mentioned above. For example,

ML methods have already managed to (1) automate materials’ characterization pro-

cesses and effectively analyze the characterization dataset,18–21 (2) quickly screen

the vast material design space (e.g., reducing the prediction time of DFT from 103

s to 10�2 s),22–25 (3) realize property prediction in complex material systems with

limited first-principles understanding,26 (4) directly map high-dimensional synthesis

recipes to materials with desired properties,27,28 and (5) extract generalizable scien-

tific principles from various material systems.27,29,30 The reason why AI is particularly

apt in material design is due to its inherently strong capabilities in handling huge

amounts of data as well as high-dimensional analysis. A single material type within

a synthesis protocol could contain enormous intrinsic information, such as various

physiochemical properties, chemical structure, and composition information. More-

over, with extrinsic synthesis condition information such as temperature, pH, and re-

action time, the dimensionality of data can be even higher. All of such information

may contribute to the final properties of materials. When combining this rich infor-

mation of one data point with the high volume of past experimental data (owing

to technological innovation in automation, robotics, and computer science), valu-

able information can be analyzed and discovered within a short period of time by

applying suitable ML methods. Here, ML’s strengths in analyzing large volumes of

high-dimensional data are the key.

As the AI field advances at a rapid pace it poses a challenge regarding which

methods to choose and apply for different material systems or context and which

steps of the material discovery process would stand to benefit. There have been a

few published reviews on AI for materials that provide an excellent overview of

the state of the art.31–34 However, different from those single material system or sin-

gle method oriented reviews, this paper focuses on an application-based perspec-

tive on the latest developments in AI-enhanced material discovery. This approach,

accompanied by a thorough ML tutorial, could inspire versatile ideas for materials

and AI scientists to contribute to this highly interdisciplinary field.

In this review, by showing how AI can assist in each step through the whole life cycle

of material discovery, we aim to provide useful information and links to further re-

sources, enabling better integration of AI methods with the material discovery pro-

cess. A tutorial of ML tools and their applications in material discovery is first intro-

duced. Different applications of AI in various material discovery stages (including

characterization, property prediction, synthesis, and theory paradigm discovery)
394 Matter 3, 393–432, August 5, 2020
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are then discussed in detail. Finally, a perspective of future directions within this

emerging field is provided.
MACHINE LEARNING TUTORIAL

Introduction to ML

In this section, we review the most popular and commonly usedML algorithms in the

fields of material science. Mitchell provides a definition of ML as ‘‘a computer pro-

gram is said to learn from experience E with respect to some class of tasks T and per-

formancemeasure P, if its performance at tasks in T, as measured by P, improves with

experience E,’’35 which is used as the underlying framework of ML as follows.

The Experience

Most ML algorithms, based on the type of examples they are given during the

training phase, can be classified into either unsupervised or supervised learning.36

Unsupervised learning involves a dataset of examples with features (measurable

properties of the object under analysis) x only and learns some meaningful relation-

ship among the examples such as the probability distribution pðxÞ. Supervised

learning involves a dataset of examples with features x and corresponding labels

y, which is the ‘‘correct’’ set of values that are associated with the features. Here,

the learning algorithm learns the probability distribution pðyjxÞ or the expected

value of a regression EðyjxÞ. There is another main category called reinforcement

learning (RL) whereby the agent learns by interacting with an environment to obtain

reward feedback. However, RL faces many challenges especially the difficulty of con-

structing interactive environments with fast feedback. Therefore, it is not as yet

widely adopted in material discovery, and this review limits its scope to supervised

and unsupervised learning.

The Task

ML can be applied to various tasks.36 The task usually involves the processing of ex-

amples (or data points) given to the algorithm. The examples contain features/de-

scriptors (e.g., chemical structures, chemical compositions, pH, reaction tempera-

ture), which are usually arranged as a vector x to describe a material’s

physiochemical properties, structural properties, composition properties, or synthe-

sis processes’ conditions. The various tasks that can be commonly solved using ML

are as follows.

Classification. The algorithm is tasked to determine the category or class to which a

particular example belongs. This is done by learning a function f : Rn/f1; .; mg ,
which maps the feature vector x to one particular class out of m distinct classes.

Instead of deciding on one class only, the function can also give a probability distri-

bution over all classes, where each entry in the output vector y = f ðxÞ is the probabil-

ity that the example belongs to a certain class. ML algorithms have been successfully

applied to solve material classification tasks. For example, when given a set of syn-

thesis conditions, a classification model can predict whether synthesized materials

will be successfully formed37,38 or which parts of synthesized materials will contain

flow defects.39

Regression. Another common task is regression, whereby the algorithm aims to

learn a function f : Rn/R, which determines a continuous value y or a set of contin-

uous values expressed as a vector y. One common use of regression models is the

prediction of materials’ properties such as heat capacity of inorganic solids,40 Debye

temperature,41 and band gaps of materials.42
Matter 3, 393–432, August 5, 2020 395
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Clustering. This is a form of unsupervised learning task that is useful when there is a

large amount of unlabeled data.43–45 The goal is to organize data points into clusters

where items within the same cluster are more ‘‘similar’’ to each other as compared

with another cluster. What defines ‘‘similar’’ is dependent on the context and re-

quirements. By organizing items into clusters, one can gain meaningful insight

into the data even when the dataset is unlabeled. The clustering methods have

been applied to material discovery in material text data mining46 and analysis of

microstructural images.47

Dimension Reduction and Visualization. When training a model, sometimes we

might have too many features. In such scenarios, it would be beneficial to reduce

the dimension of the features by mapping them into a lower dimension while preser-

ving as much information as possible.48,49 This will aid in improving computational

efficiency, possibly improving models’ performance, preventing overfitting, and

helping discover insights for the specific tasks. Dimension reduction has been

used in material discovery to improve the results of prediction, such as summarizing

full long-time dynamic information into lower-dimension information to achieve bet-

ter performance.50,51 In addition, by reducing less relevant features, dimension

reduction can be used to discern the underlying physics/chemistry of a material

model.52 Moreover, mapping of high-dimensional data to two-dimensional (2D) or

three-dimensional (3D) plots for visualization purposes is also an important function

of dimension reduction, as it allows useful insights to be derived from a comprehen-

sible plot. It has been utilized in material discovery to visualize the high-dimensional

material design space.53

Efficient Searching. Carrying out simulations and laboratory experiments to obtain

extra data is time-consuming and costly. Efficient searching methods can help iden-

tify the most informative extra data points to label and thus minimize the overall ef-

forts in data acquisition. Efficient searching has been incorporated in the material

design of ferroelectric perovskites, layered materials, and the MAX ternary car-

bide/nitride (layered, hexagonal carbides and nitrides that have the general formula

Mn+1AXn), among others.26,54,55

Overall, the identification of which task to be solved is the first step in successfully

applying ML in material discovery. However, these five categories of tasks do not al-

ways stand independently of each other. For example, efficient searching can be

combined with classification or regression to form a closed design loop to search

for high-temperature ferroelectric perovskites,26 and dimension reduction can be

used to construct a better feature set to train a classification model of membrane

activity.52

The Performance Measure

The performance measure is used to assess an algorithm’s performance on a specific

task.36 For classification, the performance of the algorithm can be measured based

on the accuracy (proportion of correct output), the error rate (proportion of incorrect

output), or a more complex metric based on the confusion matrix such as the Mat-

thews correlation coefficient.56 For algorithms that output a probability distribution,

the log probability can be calculated. For regression, it is common to use mean

square error or some forms of norm error. The dataset for a specific task is normally

separated into three parts, i.e., training dataset, validation dataset, and test dataset.

The algorithmwill be trained on the training dataset and further optimized (by tuning

hyperparameters such as learning rate and structure of the algorithmmodel) accord-

ing to the performance on the validation dataset. The performance of the optimized
396 Matter 3, 393–432, August 5, 2020



Figure 1. The Structure of Machine Learning Methods Reviewed in The Tutorial

ll
OPEN ACCESSReview
supervised learning algorithm is usually measured based on its ability to perform on

the test dataset, which is called the test performance and acts as a representation of

how well the model can generalize. With respect to unsupervised learning, the clus-

tering procedure can be measured by external and internal indices. External indices

need a priori known clustering structure, i.e., they need to have the true label for

data in the dataset.57 For internal indices, the result is evaluated using quantities

and features inherent to the dataset.58 An example is the Calinski-Harabasz index

that measures within-cluster coherence and between-cluster isolation.57 An over-

view of the metrics and an efficient tool is provided by Wang et al.59 For dimension

reduction, the performance is usually evaluated via loss of quality from the original

data (such as cumulative percent variance and the variance of reconstruction error).60

In the next section, several models useful for the materials field are introduced.

While there have been extensive efforts made in the perpetual search for a ‘‘better’’

model, there is no universally superior algorithm for all problems.36 Hence, the goal

is not to find a universally superior algorithm but to find an algorithm that is best

suited for a particular problem. For example, by using a suitable model or imposing

different suitable priors (e.g., feature engineering, task splitting) on anML algorithm,

we can develop a model that performs significantly better on a particular problem.36

Model Details

The type of ML to use is context-dependent, and it is important that the correct

model is chosen for the appropriate problem to achieve desirable performance

without under- or overfitting. Here, several ML models that are frequently used in

the field of AI-assisted material discovery are introduced and described. The intro-

duction of these models is sequenced within a supervised learning-unsupervised

learning-weakly supervised learning framework. The whole framework is illustrated

in Figure 1.

Supervised Model

In a supervised learning model, the model is first trained with a labeled dataset that

contains N training examples. For example, the ith training example is a pair of two
Matter 3, 393–432, August 5, 2020 397
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vectors for the features and labels ðxi;y iÞ. The model’s goal is to learn the function

f : x/y. Which features to feed into the model is extremely crucial and dependent

on the context of the problem. Figure 2 shows a general workflow of supervised

learning in material discovery. The dataset can be constructed from laboratory ex-

periments, simulations, or existing databases. There are two categories of features

commonly used in a material discovery context, namely the intrinsic and extrinsic in-

formation of the material system. The intrinsic information is based on the properties

of the materials/chemicals used, while the extrinsic information concerns the envi-

ronment in which the materials exist. The two types of features can be directly

used as raw features. However, some further transformations will normally be

applied to the raw features before feeding them into the predictive model. The first

possible pre-processing transformation is normalization to change the values of fea-

tures to a common scale. Another possible pre-processing transformation is dimen-

sion reduction to reduce the number of features, which is used when there are too

many different features, especially compared with the number of labeled training ex-

amples. In such a case, it might be desirable to reduce the dimensionality of the fea-

tures to prevent overfitting. Here, techniques such as principal component analysis

(PCA) and variational autoencoders (VAEs) can be applied to reduce the dimension-

ality of the feature vector, possibly allowing improved model performance.61,62

Those tools aim to provide the function f ðxiÞ = ~xi, where ~xi with reduced dimension

is used as an information-rich feature vector for the predictive model. Apart from

these general pre-processing techniques, domain-specific transformation can be

carried out with a domain-specific prior model. The prior model processes some

of the raw features, and its output is then fed to the final predictive model. For

example, the transformation of various chemical structures into fixed-length finger-

print vectors can help achieve better predictive accuracy in molecular properties

prediction tasks.63 After these processes, different processed and unprocessed fea-

tures can be concatenated to form the final feature input vector. This step of

deciding which features to use might be the most critical step in ensuring good

model performance. If the features provided to the model are inappropriate, no

matter how good a model may be, the performance will be poor. After feature pro-

cessing, different supervised models can be used for the prediction of the final

design tasks. The commonly used supervised learning models in material discovery

are introduced, and the outputs are normally a series of interested properties (label

y) that can be represented in a vector form.
398 Matter 3, 393–432, August 5, 2020
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Support Vector Machines. Support vector machines (SVMs) are efficient classifiers

based on Vapnik-Chervonenkis theory or statistical learning theory.64 An SVM has

two main principles:65,66 First, the pre-processing step maps the input space to a

high-dimensional feature space F : X/F , where F, X , and F are the map, input

space, and feature space, respectively. Second, the best separating linear hyper-

plane is found in the feature space. This is possible since the map F can be nonlinear

and high-dimensional, making linear separation possible. Also, the hyperplane in F
can be nonlinear in X . The training of an SVM can be computationally efficient, as it

involves solving a convex minimization problem. Moreover, the use of the kernel

trick where Kðx; x0Þ= CFðxÞ;Fðx0ÞD (x and x0 are two different input from X ) gives the

dot product of the transformed inputs without requiring the explicit map F, and

thus the convex problem can be efficiently solved. A detailed tutorial on SVM has

been given by Smola and Schölkopf.65

SVM has been successfully applied in much materials science research. It has been

used for classifying whether relaxation in glassy liquids will or will not happen,67

the emitted fluorescence color bands of silver clusters,68 and the outcomes of mate-

rials’ reactions for high-throughput screening purposes.69 Other than classification

tasks, SVM can successfully perform regression tasks and be renamed as support

vector regression (SVR). This is used in tasks such as predicting the Debye temper-

ature of an inorganic phosphor host41 or gas adsorption of metal-organic frame-

works (MOFs).23

Decision Trees. Decision trees (DTs) are sequential logic-basedmodels. A compre-

hensive overview of DTs is provided by Murthy,70 and more recent advances with

different algorithms can also be found.71 DTs provide a sequence of logical rules

that test an object’s features. In a DT, each node represents the feature that is being

classified, and the branches that extend downwards from the parent node represent

the values that the parent node’s feature can take. The parent node is then split recur-

sively into child nodes, with each of their features being tested until a stopping cri-

terion is met, e.g., the maximum depth of the tree is reached. However, DT is prone

to overfitting. When a tree is deep and each child node only has a small amount of

data, the generalizability of the DT model will be poor. Much work in DT has been

conducted in finding efficient algorithms that alsominimize the size of the tree to pre-

vent overfitting.71 Another way to prevent overfitting is to use an ensemble method,

e.g., random forest (RF)72 and gradient boosting (GB).73 These two methods make

predictions based on a combination of outputs of separately trained DTs and they

only differ in the way that the collection of DTs is constructed. RF trains each DT inde-

pendently with a random sample of the original data. The random samples can be

obtained by bagging, whereby a random number of samples is drawn with replace-

ment. To reduce the computational difficulty, each DT can only choose a random

sample of the whole feature set. A prediction is made from an RF model on an input

vector x by taking the average over the individual models (regression) or the class

with the most votes (classification). On the other hand, GB builds base learners

(the individual model, such as DT or SVM, which makes up the ensemble) sequen-

tially.74 At each iteration, the next model’s parameter is chosen to bemost correlated

with the negative of the gradient of the loss function. Hence, each additional base

learner improves the ensemble’s performance. It has been shown that GB will always

have better performance than RF if the parameters are finely tuned.74 However, GB is

generally much slower than RF and more sensitive to noisy data.

One of the core strengths of DT is its interpretability. DT has been applied to discov-

ery rule-like information in material discovery processes. Success and failure
Matter 3, 393–432, August 5, 2020 399
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synthesis experiments of templated vanadium selenites27 and gold nanoclusters37

were used to train predictive models as the first step. DTs are built on top of the pre-

dictive models to provide interpretability for the domain experts and to allow the un-

derstanding of which reaction conditions are important and how they affect the syn-

thesis results.

Artificial Neural Networks. The development of the artificial neural network (ANN)

has been loosely inspired by neurons in biological neural networks.75,76 The ANN

tries to approximate an unknown function f �ðxÞ by learning y = f ðx; qÞ. In a single-

layer feedforward ANN, the input x˛Rn31 is fed to a layer of hidden units withm no-

des. The single layer of nodes has a weight matrix, W˛Rn3m, and a bias vector, b˛
Rm31. The output of the hidden unit isWTx + b. To be able to approximate nonlinear

functions, a nonlinear activation function is applied to the output of the hidden unit,

resulting in the final output of the first hidden layer being

hð1ÞðxÞ = g
�
W ð1ÞTx + bð1Þ

�
: (Equation 1)

There are many different activation functions, the most commonly used being the

rectified linear units (ReLU),76 where gðzÞ = maxf0; zg. A single-layer feedforward

ANN has been shown to be a universal approximator, which is able to approximate

any function given enough hidden units.77 However, this theorem does not state

how many hidden nodes are required, and in the worst case it will require a huge

number of nodes. Hence, deep neural networks (DNNs) with more than one hidden

layer are often employed. DNNs or multilayer perceptrons (MLPs) are able to repre-

sent the same function as a single-layer ANN but with much fewer nodes, and hence

are muchmore computationally efficient to train and deploy. The output of anMLP is

y = hðdÞ
�
hðd�1Þ

�
.
�
hð1ÞðxÞ

��
.

�
: (Equation 2)

An MLP expresses the prior belief that the function we are trying to learn, f �, can be

expressed as a composition of several simpler functions.78 Informally, each layer of

the MLP learns an intermediate representation that is ‘‘easier’’ for the next layer to

make use of, allowing the learning of more complicated functions. A possible draw-

back of MLP is that if the layers are too numerous, it might be difficult to train the

deep network.

MLP would be a suitable choice for constructing a predictive model where there is

sufficient labeled data normally much larger than simpler ML approaches (e.g.,

SVMs), depending on how ‘‘difficult’’ the task is. For example, MLP has been used

to accurately predict X-ray pulse properties from a free-electron laser79 and predict

the glass-transition temperature of multicomponent oxide glasses.80 Also, MLPs are

often the building blocks of other more complicated models, such as being stacked

after a preceding convolutional neural network (CNN) model.

Convolutional Neural Networks. CNNs are a specialized form of neural network

that are especially suited for processing grid-like data such as 2D or 3D images

and audio waveforms.81,82 CNNs are adopted in processing data while maintaining

local spatial relationships that are inherent in data with grid-like topology. Hence, a

CNN should be used when the data can be represented as a grid-like structure and

the local information inside the data is important.

The architecture of a CNN generally consists of convolutional layers and pooling

layers, which are grouped in modules. Normally, grid-like data are input directly

to the network and will be processed by several stages of convolution and pooling.
400 Matter 3, 393–432, August 5, 2020
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Thereafter, representations from these operations can be used for further steps such

as input into an ANN for a classification task.81 The convolutional layers work as a

feature extractor. The feature representations are learned by applying filters and

activation functions to the input grid-like data. The kth output feature map Yk can

be calculated by the formula

Yk =g
�
Wk � xgrid

�
; (Equation 3)

where xgrid is input grid-like data; Wk is the convolutional filter related to the kth

feature map; the multiplication sign is the 2D convolutional operator, which is

used for calculation of inner product of the filter model at each location of the

grid-like input; and gð ,Þ is the nonlinear activation function.83 Besides, the pooling

layer is aiming to reduce the spatial size of the representation to reduce the number

of parameters and computation in the full network. It can have various forms, the

most common of which is max pooling, which is done by applying a max filter to sub-

regions of the initial representation.

Some interesting applications of CNN in material discovery include the use of CNN

to robustly classify crystal structures despite the presence of defects,84 fast extrac-

tion of atomic species and type of defects from atomically resolved images,85 and

prediction of the molecular structures directly from atomic force microscopy

(AFM) images.86

Graph Neural Networks. Data might be of a form that cannot be represented in an

ordered grid-like fashion. Often graphs, either cyclic or acyclic, directed or undirected,

are themost natural representation of certain data. Sequential data through time can be

regarded as an acyclic directed graph,87 andmolecules are often best represented as an

undirected graph with atoms as the nodes and bonds between atoms as the edges.22,63

Working directly with graphs as the input allows preservation of the graph topology in-

formation, whichmight convey important dependencies between the various nodes and

edges.Graph neural networks (GNNs) havebeenespecially successful in processingmo-

lecular structures using a special family of neural networks called the message-passing

neural networks (MPNN).22 MPNNs work with two phases: first, the message-passing

phase that acts on each node and runs for T time steps, followed by a readout phase,

which converts the final state of all the nodes into a feature vector that summarizes

the final state of the entire graph.

GNNs and their variants have been successfully applied to problems where the fea-

tures or part of the features are graph-like inputs (molecules such as drug mole-

cules88 or reactant molecules37). The GNN is usually placed before the predictive

model and acts as a feature pre-processing step to map the variably sized graph

into a fixed vector representation. The fixed vector representation is then passed

on to the predictive model, usually a DNN of a certain form, for further processing.

Recurrent Neural Networks. Recurrent neural networks (RNNs) are useful for

analyzing sequential data.89,90 Sequential data points (e.g., video, audio, DNA

sequence) are related to each other across time or space and are not independent.

Hence, standard DNNs are not suitable for such tasks.89 RNNs are able to selectively

store information and pass them forward across the sequence. The RNN has hidden

layers that store a hidden state for each node at every time step, which provides a

‘‘lousy’’ summary of the past sequence that has occurred.90 It is ‘‘lousy’’ in the sense

that it creates a map from an arbitrarily long sequence of past information to a fixed-

length vector representing the hidden states. However, this still allows the RNN to

possibly learn a way to encode past information into a rich enough hidden state
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vector, making it perform well for sequential data. Despite its benefits, the RNN has

some problems such as difficulties in optimizing and learning long sequences of

data.90 Thus, many variants of the basic RNN have been developed, such as

long-short-term-memory (LSTM)89,90 cells and gated recurrent units.90,91 All these

variants aim to perform the same task of learning, representing, and detecting key

features in the sequence of data that is useful for performing the task at hand,

e.g., supervised learning to learn the distribution pðyjxÞ.

RNNs have been successfully applied in analyzing DNA sequences, taking advan-

tage of high-throughput genomic sequencing data to train a hybrid CNN and bidi-

rectional LSTM model (an RNN that can process data in both forward and backward

direction which is useful for sequential data that varies across space rather than time)

framework that outperforms traditional benchmarks.92

Unsupervised Model

Unsupervised models are trained on an unlabeled dataset with the goal of gaining

useful insights from the data. Unsupervised learning tasks involve the learning of

the underlying probability distribution that generates the dataset, which mainly in-

cludes clustering or dimension reduction. In this section, we focus on these two tasks.

Clustering Algorithms. There are many different clustering methods, each with

their own intended purpose. The twomost common forms of clustering are partition-

ing clustering and hierarchical clustering.

Partitioning clustering aims to partition the items into k clusters.43,44 Crisp clustering en-

sures that each itembelongs to only one class with an output of {0,1} and fuzzy clustering

allows items tobelong to clusters in various degreeswith values [0,1]. Commonmethods

of partitioning clustering include k-means clustering and k-medians clustering.

Hierarchical clustering aims to show how clusters relate to each other via tree-like

structures.43,45 The tree can be built downward, splitting the top cluster into smaller

and smaller clusters (divisive algorithms), or upward by starting with many small clus-

ters and combining them (agglomerative algorithms). Hierarchical clustering pro-

vides clusters for a range of values of k (number of clusters) while partitioning clus-

tering only gives one set of clusters of a single value of k. Thus, hierarchical

clustering can help us understand how smaller clusters are related to larger ones.

k-means has been used to reduce many solar spectral sets into a few characteristic

sets to efficiently design solar cells.93 Moreover, the unsupervised word2vec clus-

tering model is used to capture latent knowledge frommaterials science literature.46

Principal Component Analysis. PCA is a common unsupervised learning method

used for dimension reduction.48 It finds a set of linear combinations of the original

variables (features), which are called the principal components (PCs). The PCs are

orthogonal to one anotherwith the first PChaving the highest variance (largest eigen-

value) across the data, followed by the second and so forth. Usually, if the data areN

dimensional,M number of PCs are selected whereM < N. Thus, when the originalN

dimensional data are projected onto the orthogonalMdimensional basis, the dimen-

sion is reduced while maintaining most of the informative variation in the data.94

PCA has been used to extract statistically significant information from the observed

polar vortices of PbTiO3/SrTiO3 superlattices95 and to select useful features in the

prediction of higher-selectivity catalysts.96
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Autoencoders. Autoencoders are a special case of feedforward neural networks.97

Unlike supervised learning where the neural network aims to predict y given x, au-

toencoders aim to learn the identity function. It has two parts, the encoder function

e= f eðxÞ and the decoder function r = f rðeÞ. An undercomplete autoencoder is

where the dimension of e is less than x and the latent space acts as an information

bottleneck. Hence, the encoder must learn to capture the most important aspects

of the features x and encode it in a lower-dimension latent space. The autoencoder

is trained by minimizing the following loss function:

Lðx; f rðf eðxÞÞÞ: (Equation 4)

After training, the encoder can be used as pre-processing on the input to give e =

f eðxÞ, after which e is fed into the actual classification or regression model, such as a

standard ANN. By reducing the dimensionality of the inputs, the performance tends

to improve because the salient aspects of the inputs are captured in the latent space

after being encoded.

The autoencoder can be made to have some properties of interest such as sparsity,

in which a sparse regularization term is added.98,99 Also, the autoencoder can be

made to be more robust against noise by adding a noise or corruption term,

Cðbx jxÞ. This is a denoising autoencoder,100 whereby the autoencoder aims to recon-

struct x from a noisy bx : Another interesting variant is the variational autoencoder

(VAE),101 which aims to learn the true underlying probability distribution of P�ðXÞ.
The VAE is trained by drawing some examples X from P� and trying to learn a distri-

bution bP that is as close to P� as possible. By doing so, we can obtain a generative

model that can generate new samples similar to true examples.

Autoencoders have been successfully applied in tasks such as material property pre-

diction102 and screening of inorganic material synthesis parameters,103 where the in-

formation-rich latent space enables enhanced prediction and generalization capa-

bilities. Moreover, using the generative models that VAEs produce,102 it is

possible to generate novel chemical molecules that have some desired properties

by sampling from the latent space and decoding back into a simplified molecular

input line entry system (SMILES) representation of the molecule.

t-Distributed Stochastic Neighbor Embedding. t-Distributed stochastic neighbor

embedding (t-SNE) is a popular unsupervised learning method for dimension reduction

and data visualization, which has two stages.104 First, in the original high-dimensional

space it constructs a probability distribution over how likely two pairs of points would

bepicked. Points that are closer together (e.g., with smaller Euclidean norm) have higher

probabilities and vice versa. Second, in the lower-dimensional space, a probability dis-

tribution is specified over all points. The algorithm then aims to minimize the Kullback-

Leibler divergence, ensuring that the probability distributions in the high- and low-

dimensional space are similar to one another. Hence, this allows the mapping of points

in high-dimensional space to a lower one. t-SNE is the current state-of-the-art method

for data visualization, replacing the traditional PCA. For example, it has been useful in

visualizing all adsorption sites of electrocatalysts simulated with DFT.53

Weakly Supervised Model

In supervised learning, a datasetD = fðx1; y1Þ; ðx2; y2Þ;.; ðxn; ynÞg is available to train

a model with. However, in a weakly supervised setting,105 there may only exist a

small subset of labeled data, with the vast majority being unlabeled, where D =

fðx1; y1Þ; ðx2; y2Þ;.; ðxl; ylÞ; xl + 1; xl + 2;.; xng. Here, there is only l labeled data and

u = n� lunlabeled data usually with u[l. For material discovery, the unlabeled
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data points here correspond to the search space in an experiment. Since training a

good predictive model, such as a neural network, would require sufficient and usu-

ally a large amount of data, extensive experiments need to be performed to label

these data points. Weakly supervised learning methods can be used to tackle this

challenge by training the model using a small set of labeled data.105

Active Learning. Active learning is the most frequently used weakly supervised

learning method in the materials field. The main hypothesis in active learning is

that the algorithm can choose the data it wants to learn from and thus requires sub-

stantially fewer data for training. Instead of performing a large number of experi-

ments (label all data points), active learning allows a more efficient search by finding

a balance between exploration and exploitation, thus reducing the number of

expensive and time-consuming experiments that need to be performed. This is

done by either selecting examples that are informative and/or representative.106

Informative examples are those examples which, when labeled, are predicted to

best reduce the model’s uncertainty, whereas representative examples are those

that can well represent the overall input distribution of unlabeled data.

Active learning methods tackle the challenge of efficient searching by mainly two

steps: (1) constructing a surrogate model by using the available l labeled data—

this surrogate model can be any supervised model mentioned before; (2) construct-

ing a reward function to choose the next data points from which to learn. The reward

function can also be called an acquisition function, which can be customized accord-

ing to specific purposes. Usually, the reward function is constructed to trade off

exploration and exploitation based on the predicted value and its uncertainty of

the surrogate model. Detailed acquisition functions that may be useful for material

discovery have been reviewed by Lookman et al.31

There are two main categories of active learning in the materials field. The first cate-

gory is to find the maximum of an unknown complex objective function (optimum

properties of materials) with minimum trials. There are several well-known methods

for this category (e.g., Bayesian global optimization, efficient global optimization).

Usually the predictive model created by this optimization strategy is more focused

on performing well in the region near the global optimum point.107 For material

discovery, instead of mapping the whole material design space, the objective

here is to find the global optimum material properties with a minimum number of

experimental trials. The second category is more focused on improving the overall

performance of a predictive model for investigating not only the best property but

also the whole material design space (e.g., query by committee method). By

choosing examples that are the most informative/representative for annotation, it

provides a more efficient route to labeling unlabeled data points as compared

with passive learning (random sampling of unlabeled points). A tutorial of active

learning from the computer science perspective has been given by Settles,106 and

a material community-focused review has been published by Lookman et al.31

Single- and multiple-objective Bayesian optimization strategies are used to find

the composition and structure with optimized materials’ properties of layered

materials54 and precipitation-strengthenedNiTi shapememory alloys108 or find the suit-

able compositions for producing ferroelectric perovskites with highest Curie tempera-

tures where the initial number of compounds with data collected was small.26 The opti-

mum conditions that produced the desired material could be found with a minimal

number of newly labeled data. Also, the query by committee ranking strategy is used

to develop accurate and transferrable potentials for predicting molecular energetics.109
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Overall, each model has its strengths and weaknesses. The key is to choose a suit-

able model for a specific problem. The applications of these methods in different

material discovery stages are discussed in the section Advancement of Material Dis-

covery Assisted by AI.
ADVANCEMENT OF MATERIAL DISCOVERY ASSISTED BY AI

There are four major parts in the material discovery process: characterization, prop-

erty prediction, synthesis, and theory paradigm discovery. The first stage, character-

ization, focuses on ‘‘seeing’’ and collecting information about a material and forms

the base from which the subsequent three stages of the material discovery arise.

During characterization (especially for imaging and mainly related to instruments),

there is an enormous amount of grid-like high-dimensional data (e.g., spectro-

scopic data and microscopic data), the analysis of which is beyond the capability

of human conceivability. AI can aid this scope by automating and enhancing the

characterization process, leading to a reduction in manual work, improvement of

data quality, and discovery of useful hidden information from the high-dimensional

data.

The property prediction aspect focuses on finding a final material with desired or set

of desired functionalities. Normally, the information used as input (features) for the

predictive model is intrinsic property information of material components, such as

the composition, structure, and physiochemical properties, to predict material func-

tionalities. AI-aided property prediction work can be categorized into two main

parts. On one hand, for material systems with known first-principle theories, AI

can be used to substitute the computational expensive simulation process, actively

guide the whole simulation process, or improve the accuracy of the first-principle

simulations. On the other hand, for systems with unknown first principles, AI can

be used to realize property prediction by efficiently learning from past experience,

especially laboratory data, to construct a predictive model.

The synthesis studies aim to search for one or more successful synthesis pathways to

form a final material with the desired properties. Here, both intrinsic property infor-

mation and extrinsic information about the materials’ synthesis environment (i.e.,

synthesis conditions such as pH, the ratio of different reactants, temperature, and

time) are used as features in the prediction of the desired synthesis recipes. The syn-

thesis studies to directly connect the synthesis recipe to the desired material func-

tionalities represent one step further than the property prediction.

Finally, the theory discovery aims to discover new phenomena and extract generaliz-

able scientific principles. These new mechanisms could be valuable rules in guiding

the design of new materials of a broader range. AI-aided theory paradigm discovery

is potentially the most powerful aspect, whereby contributing new mechanisms or

efficient design rules to an advanced material system sometimes can trigger a revo-

lution in the understanding of the field.

Although property prediction and synthesis studies are usually carried out before

the characterization process in a real experimental procedure, the availability of

large volumes of high-dimensional image data, with standard data-augmentation

methods (e.g., by rotation and random horizontal/vertical shifts of images) and

the mature processing pipeline for image data, make the field of AI in characteriza-

tion (especially for imaging) more mature. In addition, the accurate and large
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amount of information output from the characterization stage could be the essential

first step in applying AI in property prediction and synthesis studies. As a result, char-

acterization will be first introduced. For property prediction, the large amount of

simulation databases makes ML applications possible, while there are still chal-

lenges in processing the material-specific data efficiently (e.g., chemical molecular

structures, crystal structures). For synthesis studies usually laboratory data, which

are quite expensive and time-consuming to collect, are required. Moreover,

incorporating the complex extrinsic information makes the problem even more chal-

lenging. The theory discovery finally tackles the most difficult part in material discov-

ery, which is also the least mature application.

Here, we introduce sections in the sequence of characterization, property predic-

tion, synthesis, and theory paradigm discovery, following a descending maturity

trend. The detailed review structure that guides us into the AI-aided material discov-

ery universe is shown in Figure 3.
AI-Aided Material Characterization

Nowadays, material characterization methods such as super-resolution optical mi-

croscopy, free-electron laser, nuclear magnetic resonance (NMR) spectroscopy,

and scanning transmission electron microscopy (STEM) can generate a large amount

of data. Traditionally, the processing of such information is done manually or by

some computationally intensive processing methods. The lack of automation results

in the characterization process being time-consuming and accompanied by a poten-

tial loss in accuracy due to human errors. For example, finding well-performing pa-

rameterizations of complex imaging systems relies on extensive manual work, and
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Figure 4. Improving Characterization Quality, Speed, and Insights Using ML

(A) An example of a fully automated characterization process. Proposed fully convolutional network architecture for quality rating. Each convolutional

layer is followed by spatial batch normalization and an exponential linear unit activation. Reproduced with permission from Durand et al.110

(B) An example of enabling a new kind of characterization. Tracking complex defect transformations on the surface of silicon-doped graphene by using a

fully convolutional network framework to atomically resolve scanning transmission electron microscopy. Reproduced with permission from Ziatdinov

et al.85 Copyright 2018, American Chemical Society.

(C) An example of using ML to substitute computational expensive simulation methods to interpret experimental results faster. Comparison of

predictions fromML-based ShiftML method and DFT-based GIPAWDFT method for polymorphs of cocaine and AZD8329. Reproduced with permission

from Paruzzo et al.117
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the processing of noisy multidimensional characterization datasets is chal-

lenging.110,111 In addition, the analysis of pixel-scale imaging data of output infor-

mation from various characterization methods is difficult to ‘‘eyeball.’’ However,

with ML advancements the data-driven methods can provide a faster way to process

this information with fewer systematic errors by automating the whole process.

Moreover, due to the high-dimensional and complex nature of material characteriza-

tion data, it is difficult for humans to identify the hidden information among them

(such as complicated time-dependent crystallization information, collective dynamic

data of piezoelectric relaxation studies, and condensed phase molecular properties

hidden in a simpler characterization method).112–114 AI methods are proficient at

analyzing such information by design and, as a result, the hidden information inside

complex output can be analyzed more efficiently.

Faster and Automated Processing

Automation via AI seems to be a promising direction that has been successfully

applied in several published studies. The online single- and multiobjective optimiza-

tion of imaging parameters, such as the illumination and acquisition settings prior to

the different scientific imaging tasks (e.g., living cell and biomaterial imaging), is fully

automated by applying kernel regression, full CNN, and Thompson sampling to su-

per-resolution optical microscopy.110 The online training is achieved by including an

expert in the optimization routine. The expert can provide feedback (quality rating)

on the trade-offs that can be made among the different objectives, and the kernel

regression models’ capability to identify the optimum imaging parameters that

can be improved by learning this feedback. Next, a deep CNN is proposed to re-

move the expert and fully automate the overall image quality rating process. With

this deep CNNmodel, the whole optimization process is fully automated. The archi-

tecture of this automated image quality rating model is shown in Figure 4A. A CNN-

based approach has been developed to automatically detect and recondition

the quality of the probe of a scanning tunneling microscope (STM).115 Also, an auto-

mated multistage pattern recognition approach has been developed in the detailed

characterization of surface molecular architectures of STM. This is realized by con-

structing training data via simulation, identifying molecular structure states via Mar-

kov random field and classifying the accurate rotational class via a CNN.116 The auto-

mation of the characterization process could not only effectively save money and

time, but also be a strong tool to discover and track time-related information. A

fully convolutional network can be applied to atomically resolved images produced

by STEM to realize the fast extraction of atomic species and the type of defects.

Complex atomic and defect transformations identified by this approach, including

time-related information of switching between different coordination of silicon dop-

ants in graphene, show the potential of this approach to learn reaction time-series

information effectively (Figure 4B). Over 2,000 training images are generated

for this work, with a data-augmentation procedure to the original synthetic images

by using random horizontal/vertical shifts, rotations, zooming-in/-out, and shear

transformations.85
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Apart from the automatic and fast extraction of information, ML technologies such as

ANN and DNN have been applied to improve the accuracy of advanced character-

ization methods. These are applied to analyze complex patterns from the X-ray pulse

of a free-electron laser79 and noisy data from scanning probemicroscopy,111 respec-

tively. The neural networks can tackle the complex output information to obtain full

X-ray pulse information on every shot with high fidelity79 and map hyperspectral

data to lower-dimension material-specific parameters with an order of magnitude

higher signal-to-noise ratio than the traditional least-squares approach.111 In addi-

tion, a CNN is implemented in classifying crystal structure from the X-ray diffraction

image with no handcrafted engineering involved. This approach could be easily im-

plemented and realize accurate and standardized crystal systems classification.118

Aside from applying supervised learning methods, unsupervised learning methods

could also help in automation and accuracy improvement of the characterization

stage. Unsupervised cluster analysis methods show potential in classifying optical

microscope images of exfoliated graphene flakes and can identify automatically

the position, shape, and thickness of graphene flakes with high accuracy.119

AI methods can not only assist or substitute manual work but also accelerate the

computational processing schedule of characterization data. This can achieve

high-throughput characterization, which is beneficial to time-consuming NMR and

3D simulation work. A Gaussian process regression model is used to substitute

expensive computational DFT to calculate NMR chemical shifts for the structure

determination of molecular solids. The ML approach based on local atonic environ-

ments accurately predicts chemical shifts of molecular solids and their polymorphs

with different structures. The results are shown in Figure 4C, where Figure 4Ci dem-

onstrates the distribution of the difference in calculated chemical shifts between the

ML-based ShiftML method and DFT-based GIPAW DFT method, and Figure 4Cii

shows the correlation between the results of the two different methods. The results

demonstrate that the proposed ML-based method is within DFT accuracy.117 Also, a

conditional generative adversarial network is applied to reconstructing 3D porous

media from a single 2D image or limited morphological information. The proposed

method reconstructs 3D porous media layer by layer with lower computational cost

compared with the traditional pixel-by-pixel multipoint statistical reconstruction

method.120

Finally, there is a special valuable application aspect of AI in reaching faster charac-

terization, which is called the ‘‘inverse imaging problem.’’ This aspect concerns im-

aging problems when forward models are present and the difficulty is in mapping

the image back to the specific material information (e.g., molecular structures and

grain orientations) used in simulating the image. The probe particle model has

been used to construct a synthesized 3D AFM dataset from 134,000 isolated mole-

cules. A deep CNN is trained to solve the inverse imaging problem by predicting the

molecular structures directly from AFM images.86 In addition, a deep CNN is trained

on a simulated four-dimensional STEM dataset to predict structural descriptors of

complex oxides.121 Also, a CNN-based deep learning framework with a customized

loss function is built to extract grain orientations from electron backscatter diffrac-

tion (EBSD) patterns accurately and rapidly. This approach can replace low-accuracy,

dictionary-based indexing methods.122

Hidden Information Discovery

Apart from accelerating data processing of the characterization stage, ML can

help find hidden information that was previously undiscoverable due to the
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Figure 5. ML-Assisted Discovery of Hidden Characterization Information

(A) Hidden information revealed by automated ML tracking technology. Nucleation undercooling measurement method using X-ray radiography and

ML. The ML model can automatically track crystals’ locations and sizes versus time and quantify multiple processing information. Reproduced with

permission from Liotti et al.112

(B) (i) Schematic representation of the two-dimensional diffraction fingerprint calculation. (ii and iii) Examples of crystal classes and their 2D diffraction

patterns. (iv–vi) Even structures with defects can be classified into the corresponding class, showing that the diffraction fingerprint is robust to defects.

Reproduced with permission from Ziletti et al.84
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complex inner linkage within a dataset. One study used various computer vision

algorithms, which were trained to automatically track crystals’ locations and sizes

in order to learn the effect of cooling rate and solute concentration on nucleation

undercooling, crystal formation rate, and crystal growth rate for thousands of

separate crystals. The image information is derived from in situ synchrotron X-ray

radiography (Figure 5A). This approach allows the crystal formation rate, crystal

growth rate, and crystal movement to be quantified for each crystal as a function

of time, which was not feasible before. This achievement of ‘‘seeing’’ clearer for an

ongoing material reaction system could enable a better understanding of a field.112

In addition, PCA and k-means clustering are applied to robustly identify the onset

of a structural phase transition in nanometer-scale volumes by providing collective

dynamic data from piezoelectric relaxation studies for ferroelectric relaxors.113

Moreover, by finding hidden information via a simpler or faster characterization

method, one can bypass experimental difficulties in measuring certain properties

with simpler methods. Through the application of supervised ML (e.g., RF) and

consideration of physiochemical properties such as molecular size, the model can

correlate condensed phase physiochemical properties with dynamic gas-phase

clustering behavior measured by the differential mobility spectrometry (DMS). This

approach combining ML and DMS can be used to quantitatively access a variety

of molecular properties relating to an analyte’s interaction potential. Such an

approach can obtain the properties information faster and with fewer resources

than the traditional approaches of directly measuring these properties.114
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Besides finding hidden information from experimental characterization data alone,

ML methods can also be combined with various simulation methods to discover

insightful information more effectively. A robust method to classify crystal structures

despite the presence of defects is provided by training a CNN based on a 2D image

descriptor called diffraction fingerprint. It can dig out the space group information

even when the provided 3D materials science structural data are noisy and incom-

plete. The useful fingerprint is provided by simulating how the crystal structure dif-

fracts incoming incident plane of rays with varying incident angles in 3D space. The

learning process of the neural network is uncovered to show the landmarks the

model used in achieving good classification performance. The 2D fingerprint calcu-

lation process and the robustness of this fingerprint to defects are shown in Fig-

ure 5B.84 In addition, the presence of flexoelectricity in the polar vortices in

PbTiO3/SrTiO3 superlattices is discovered. This is realized by a method based

on a combination of unsupervised ML analysis (PCA) of the atomic-scale electron

microscopy imaging data and phenomenological phase-field modeling.95

Overall, ML methods are successfully applied to material characterization tasks in

impressive studies achieving faster speed, obtaining more accurate results, and

discovering valuable hidden information. However, the applicability of these studies

is not restricted to the characterization stage. The processed characterization data

may be used as the input feature to efficiently describe a material system. For

example, the 2D diffraction fingerprint from the crystal structure classification task

can be used as a promising structural descriptor in properties or synthesis recipe

prediction tasks of new crystals, due to its robustness to crystal defects in the crys-

tal’s space group classification tasks.84 In addition, the in situ synchrotron X-ray

setup could be used in more material systems. The time-series output generated

from it can be further analyzed for scientists to learn a dynamic advanced material

synthesis system that is far from equilibrium.112 For a detailed review of ML methods

for image processing related to material design, the work of Kalinin et al.33 is

recommended.

AI-Aided Property Prediction

Property prediction aims to find a suitable function f : F i/P, where the intrinsic

materials’ information ðF i ˛RnÞ is mapped to the desired functional properties

ðP ˛RmÞ. The property prediction work is normally done for material systems where

the synthesis protocols are standard and known, i.e., once an optimum final material

is found the synthesis of that material is not difficult, or the major interest is only in

analyzing the property of the final material.

With the boom of data-driven ML in the materials field, there is a strong need for

more data. There have been great advances made for computational material

data due to previous efforts from the Material Genome Initiative (lists of the data-

bases can be found in reviews by Butler et al. and Lauri et al.14,123). Almost always,

it is simpler, cheaper, and faster to generate those data via computational methods

as opposed to carrying out actual experiments.

Traditionally, property prediction was carried out by various simulation methods

using up considerable computational time. By applying AI to well-understood mate-

rial systems with known first principles, ML methods are able to partially or

completely substitute the computationally expensive simulation processes, to

actively guide the whole material simulation workflow, or to improve the accuracy

of some simulation methods by utilizing real experimental data or more accurate

but even more computationally expensive simulation data. For complex material
Matter 3, 393–432, August 5, 2020 411



ll
OPEN ACCESS Review
systems with limited understanding, AI methods can be used to learn the function of

property prediction directly from past experimental data and provide a data-driven

predictive model. This enables previously impossible property prediction for these

systems and hence heralds significant progress in this endeavor.

AI-Aided Property Prediction in Well-Understood Material Systems

This section first focuses on material systems that are well understood. This does not

imply that the system is simple or completely known with full certainty but instead

that there is sufficiently known information of the material systems that allows first-

principle calculations or simulations. Such well-understood material systems are dis-

cussed with respect to the AI-aided property prediction from threemajor aspects: (1)

direct model substitution with AI; (2) actively guided AI in-the-loop simulation; and

(3) simulation accuracy improved via AI.

Direct Model Substitution with AI. First-principle simulation methods have been

used to calculate various properties of different material systems such as intrinsic

breakdown strength of perovskites,124 CO adsorption of gold nanoclusters,125

and gas adsorption of MOFs.23 However, the computational cost is very high for

these simulation methods (e.g., 60 s to 103 s).22,23 ML methods can be used to

partially or completely substitute the computationally expensive simulation process

in order to achieve high-throughput material screening. This allows the fast search-

ing of the vast material design space to quickly find areas that contain the desired

functionalities.

A ML model can be trained by existing training datasets to form a data-driven pre-

dictive model, which provides the function f that can be used to predict functional

properties of new materials with different intrinsic information. However, for such

MLmodels to be effective, good descriptors must be developed and used as feature

input. Therefore, we first introduce some important work on chemical feature engi-

neering and then discuss the direct model substitution.

Many past studies have focused on demonstrating the substitution process by

applying a novel effectively tailored descriptor set to capture essential information

of the specific material system. For example, when predicting the properties of mol-

ecules, themolecular structure itself is a discrete form of information. Since gradient-

based optimization methods are much faster than discrete optimization methods,

efforts have been made to develop a variational autoencoder that transforms

discrete molecular representations (SMILES) into continuous latent vector represen-

tations. The continuous representations can then be used as input into the predictive

ML model. After prediction tasks, the continuous latent vector representations with

desired properties can be transformed back to SMILES by a decoder.102 In addition,

the bag-of-bonds method was developed to quickly estimate atomization energies

and different electronic properties for a representative set of organic molecules from

the GDB-7 simulated database.126 Moreover, an MPNN framework is constructed to

take a molecular graph as input and map it to a continuous vector. This approach is

able to achieve state-of-the-art results on an important molecular property predic-

tion benchmark (QM9Dataset), with a 5-orders-of-magnitude reduction in computa-

tional time compared with the conventional DFT approach.22 A continuous repre-

sentation of the material structure information is desired, as it contains much more

information than discrete representation, enabling ML to learn structure-property

relationships more efficiently. Besides the structure features, other descriptors

that can describe material intrinsic information such as composition descriptors

and physiochemical descriptors are frequently used in ML enhanced simulation
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work. An extensive review of material descriptors categorized the descriptors into

three different levels, from the gross-level property-based descriptors to molecular

fragment-level descriptors and further to sub-angstrom-level descriptors.127

By utilizing efficient descriptors consisting of both structural and compositional in-

formation, DFT calculations of CO adsorption energies of a Au-based nanocluster

can be successfully replaced by an RF-based ML framework. The training dataset of

this study contains over 2,000 DFT simulated data points. This model is an excel-

lent filtering tool to select first-round candidates for further simulation and analysis.

Moreover, the novel descriptors (mainly based on the structure of nanoclusters)

developed in this work for nanocluster material can be applied efficiently to other

ML nanocluster work (Figure 6A).125 Also, separate SVMs are trained on data of

various properties calculated by first-principle methods to directly discover desired

material from the periodic table, and the predicted material properties show

good agreement with experimental data.128 In addition, an ANN is implemented

to map directly the conformationally dependent electronic structure of a molecule

to coarse-grained (CG) pseudo-atom configurations. This accelerates the simula-

tion by eliminating both back-mapping of CG configuration to atomistic represen-

tation and repeated quantum-chemical calculations.129 Moreover, ANN, SVR, RF,

bidirectional neural network, and other regression methods were applied to

replace different time-consuming simulation steps in the prediction of intrinsic

dielectric breakdown strength of ABX3 perovskites,124 gas adsorption in MOFs,23

stability of ternary intermetallic compounds,130 and chiroptical responses of chiral

metamaterials.131 The models are built with a large variety of physiochemical,

structure, and composition descriptors. These methods show promising accuracy

and a much faster prediction, which can be utilized in screening a significant num-

ber of potential material candidates. Also, an SVM-based ML approach is con-

structed to classify and predict the crystal structures of ternary equiatomic compo-

sitions ABC. The features used are based only on the constituent elements.132

Finally, several ML models have been trained on high-quality heat capacity data

of solid inorganics from NIST-JANAF tables.40 The trained ML models can be

used to rapidly predict heat capacity, which can replace traditional methods such

as DFT-based calculation, Cation/anion contribution methods, and Neumann-

Kopp estimations, which are limited by either speed or accuracy. This method

can be used as a high-throughput screening tool for identifying useful new

materials.

Apart from substituting the whole simulation model with ML methods, an ML

model can replace some prediction steps of a simulation process and then be com-

bined with the simulation method to achieve both accuracy of ab initio methods

and high speed for screening. For example, feature selection and gradient boost

methods are used in finding the stable lead-free hybrid organic-inorganic perov-

skites (HOIPs) with desired band-gap properties using a training set composed

of 212 simulated data.133 The ML model can reach high accuracy, as shown in Fig-

ure 6B. The ML model is used as a pre-screening tool to select HOIPs with proper

band gaps and the DFT runs on the selected candidates to further evaluate their

electronic properties and stability. Also, the DFT simulation of Debye temperature

of inorganic phosphor host can be replaced by an SVR; this SVR model is used to

rapidly predict the Debye temperature of 2,071 potential phosphor hosts.41 The

Debye temperature is then plotted against the DFT calculated band gap to find

the compounds with the highest Debye temperature and the largest band gap

for synthesis.
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Figure 6. AI-Aided Property Prediction in Well-Understood Material Systems

(A) Creating new descriptors for nanocluster structures, and using ML as a surrogate model to predict CO adsorption on nanoclusters. Reproduced with

permission from Panapitiya et al.125 Copyright 2018, American Chemical Society.

(B) A partial simulation substitution study with an ML-based band-gap prediction model as the pre-screening tool. This prediction model can reach high

accuracy on the test set. Reproduced with permission from Lu et al.133

(C) An actively guided DFT workflow to screen catalysts quickly and with ab initio accuracy. Panel (iii) shows the proposed ML-based workflow to select

candidates systematically and automatically. Reproduced with permission from Tran and Ulissi.53 Copyright 2018, Springer Nature.

(D) An example of AI-aided simulation accuracy improvement study. This shows that the proposed ML combined MD approach (sGDML@CCSD(T)) can

reproduce the dihedral angle probability distributions of ethanol with higher accuracy than the traditional force-field method (Amber force field).

Reproduced with permission from Chmiela et al.134
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Actively Guided AI-in-the-Loop Simulation. Different active learning frameworks

can be combined with a simulation model to effectively navigate the search space

iteratively and identify promising candidates for improving the performance of the

surrogate ML model or guiding the simulation work in order to search materials

with optimum desired properties. This replaces traditional methods such as grid

search or change-one-variable-at-a-time methodology. As discussed in the ML tuto-

rial section, active learning aims to search for the next best unlabeled data point to

label. In other words, it aims to find the next best material to simulate based on the

greatest expected improvement of the model performance (overall performance or

performance on the optimum prediction) or the greatest improvement of the sample

input representativeness when the model is updated. This allows a more efficient

search of the materials’ design space as compared with traditional methods. A

Gaussian process regression (GPR) is used as a surrogate model to substitute

computationally expensive Poisson-Schrödinger simulations of GaN-based light-

emitting diode efficiency, and an efficient global optimization (EGO) strategy is

implemented to select the next sample point that maximizes the expected improve-

ment in efficiency while simultaneously accounting for the GP model’s uncer-

tainty.135 A similar work used Bayesian optimization with a surrogate GPR to find

layered materials with desired properties.54 In addition, an ML model is trained

on-the-fly as a computationally inexpensive energy predictive surrogate model to

accelerate the traditional genetic algorithm (GA) optimization workflow of energy

calculations of nanoalloy catalysts. When compared with the traditional ‘‘brute

force’’ GA, this approach yields a 50-fold reduction in the number of required energy

calculations in this case.136 In addition, a Bayesian optimization-based crystal struc-

ture prediction method is shown to outperform the random search-based method

on known systems such as NaCl and Y2Co17. The proposed method can reduce by

30%–40% of the number of searching trials required.137 Query by committee strat-

egy is also used to develop accurate and transferrable potentials for predicting mo-

lecular energetics with a fraction of data required when using naive random sam-

pling techniques. This strategy can improve the overall fitness of the potential by

sampling the chemical space when the potential fails to accurately predict the po-

tential energy.109 Moreover, an active learning framework is used to automatically

guide the full-accuracy DFT screening instead of simply substituting the DFT calcu-

lation. This is used for the discovery of electrocatalysts for CO2 reduction and H2

evolution. Conventional catalyst simulation-based design work involves the manual

analysis of DFT data to gain specific intuition to set the candidates for the next round

of calculation. In this work, by creating a surrogate ML predictive model in each

round to predict the adsorption sites with near optimum adsorption energies (and

add Gaussian noise) for next-round DFT calculation, the whole simulation workflow

can be more efficient and automated, as shown in Figure 6C.53 Finally, a benchmark

study of different multiobjective optimization-based adaptive design methods has

been conducted on both material simulation data and laboratory data over different

material systems. The proposed Maximin method can well balance exploration and
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exploitation in the data-sparse scenario, which commonly exists in materials’ data-

sets.138 Overall, the active learning design framework is suitable for simulation-

based material discovery, which, however, can also be effectively used in complex

material systems with laboratory data. More details will be discussed later. The gen-

eral framework of active learning is similar for different applications, while the details

(e.g., dataset size and feature choice) will vary with different applications case by

case.

Simulation Accuracy Improved via AI. Apart from the acceleration of computa-

tional material design, studies are aiming to improve the accuracy of simulation

methods. This target can be realized by several different approaches.

First, an ML model can be trained to correct the difference between more accurate

data sources (e.g., lab results or more computationally expensive but more accurate

simulation results) and an existingmodel trained on less accurate but larger amounts

of data (usually produced by approximate but faster simulation methods). An ANN is

used to correct systematic errors between quantum mechanical calculated heat of

formation and experimentally measured data for small molecules. This is realized

by using the ANN as an additional layer after the simulation to calibrate it with

ground-true laboratory data.139 In addition, ML corrections have been added to

computationally inexpensive approximate legacy quantum methods to more accu-

rately predict various chemical properties.140

Second, transfer learning can also help achieve higher simulation and prediction ac-

curacy. In transfer learning for material property prediction, one begins with a model

trained on proxy properties with sufficient data and then retrains the pre-trained

model on the related (or the same but more accurate) target properties with limited

data supply. Normally, when retraining the model, some of the model’s parameters

are fixed. CCSD(T)/CBS (coupled cluster considering single, double, and perturba-

tive triple excitation calculations, combined with an extrapolation to the complete

basis set limit) level accuracy can be achieved on various properties by first training

a neural network model on DFT data and then retraining it on a much smaller dataset

of gold-standard quantum mechanics calculations (CCSD(T)/CBS) that optimally

spans chemical space.141 In addition, a pre-trained library of material property for

transfer learning called XenonPy.MDL has been created. The effectiveness of using

transfer learning with this library for different material systems (small molecules,

polymers, and inorganic compounds) has been demonstrated.142 The transfer

learning strategy aims not only to improve simulation accuracy but also to bear

the potential of improving the prediction accuracy of any material discovery prob-

lem where large datasets of properties related to target properties are available.

Finally, ML can be used to calculate more accurate prior information (e.g., molecular

force field) that can be further used in the simulation. A gradient-domain ML model

trained on a high-level ab initio calculated dataset (coupled cluster single-double

and perturbative triple [CCSD(T)] level) is combined with MD simulation. The ML

model is used to produce a flexible molecular force field with high accuracy within

short computational time. This approach allows convergedMD simulations with fully

quantized electrons and nuclei. The MD simulation can work for flexible molecules

with up to a few dozen atoms. This level of exact MD simulation was previously un-

reachable due to infeasible computational time to produce the global force field at

CCSD(T) level. The developed approach could achieve spectroscopic accuracy and

rigorous dynamical insights in molecular simulations that improve on previous MD

approaches implementing traditional force-field methods, as shown in Figure 6D.134
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AI-Aided Property Prediction Study in Material Systems with Limited
Understanding

For complex material systems such as the ones with both organic and inorganic

parts, complex solid-solutions with fractional site occupancies, large supercells,

transition metal oxides with strong electron correlation, and prediction of functional

material property not in an ideal situation,26,143 first-principles simulation might be

infeasible due to the limited understanding of such systems. This then leads to the

necessity of ground-true laboratory data and a statistical predictive model to

analyze them effectively. Such a well-constructed statistical predictive model based

on laboratory results can be used to screen material candidates over vast design

space.

Active learning approaches have been implemented in the barium titanate material

system in order to find high dielectric permittivity material144 and piezoelectrics with

large electrostrains that are not limited to the zero-K condition.29 Only composition-

based descriptors are used in both studies, since the synthesis protocol is kept con-

stant within each study. The first study collects three data points initially and uses GP

to construct a surrogate function.144 With the EGO strategy, the next data point is

experimentally conducted. The new data are added and the workflow repeated.

The experimental search process is indeed improved as only 6 compositions over

16 possibilities are analyzed to find the optimal composition. For the second study,

61 experimental data points are collected as the database.29 A number of ML

models (e.g., SVR with radial-based kernel, polynomial fits, and gradient tree boost-

ing) and nonparametric bootstrap sampling are used to generate an ensemble of

1,000 models to predict the electrostrain of piezoelectric material. An expected

improvement that balances exploration and exploitation is calculated from the en-

sembled model to suggest the next points to carry out experiments. A design space

of 605,000 compositions is screened and leads to the synthesis of a piezoelectric ma-

terial with the largest electrostrain of 0.23% in the BaTiO3 family.29 A poorly under-

stood new field of spin-driven thermoelectric effect devices is explored by applying

DT methodology with mainly physiochemical and composition descriptors on 112

experimental data. Under the circumstance of lacking understanding of the funda-

mental physics and material properties responsible for the effect, the ML can exhibit

its full potential.145 In addition, the design of higher-selectivity chiral catalysts is

achieved by implementing SVMs and deep feedforward neural networks with

2,150 experimental data.96 To effectively analyze the selectivity property, a robust

structure descriptor called average steric occupancy is invented. This descriptor

has the potential to be applied inmaterial design where the property can be affected

by 3D steric occupancy. This AI-aided selectivity chiral catalyst design work has the

potential to change the way chemists select and optimize chiral catalysts from an

empirically guided to a mathematically guided approach. Moreover, a two-step

active learning framework is applied in searching for high Curie temperature ferro-

electric perovskites in a vast design space that traditional experimental approaches

find difficult to achieve. An SVM classifier is used to screen the compositions that can

synthesizematerials in the perovskite phase, and an SVRmodel is used to predict the

Curie temperature with composition descriptors. This process is completed by incor-

porating an EGO strategy to choose promising high-temperature candidates for ex-

periments to improve the performance of classification and regression models. This

kind of multistep active learning approach could improve the robustness of the ML

model and make the whole search process well guided.26 Furthermore, the glass-

transition temperature of multicomponent oxide glasses is predicted by an ANN

with a dataset of 55,150 examples and only composition descriptors.80 Finally, the

fluorescence intensity and color are studied for genomic silver nanoclusters by
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Figure 7. AI-Aided Property Prediction in Material Systems with Limited Understanding

Schematic of the sequence design method for DNA templates that stabilize AgN-DNA within specific color bands. Reproduced with permission from

Copp et al.68 Copyright 2018, American Chemical Society.
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SVMs. Since there are four color classes, one-versus-one classification is employed.

This shows that instead of the whole DNA sequence, the use of certain DNA base

subsequences, or ‘‘motifs,’’ can be more effective as the features. The workflow of

this fluorescence color study is well illustrated and can be treated as a typical work-

flow of this section. It includes data generation, task identification, feature construc-

tion, model training, inverse design, and experimental validation, as shown in

Figure 7.68

In summary, for property prediction tasks in both well-understood material systems

and the systems with limited understanding, ML could be an efficient tool to over-

come several challenges. ML could enhance the simulation process for well-under-

stood systems from three aspects. First, it could speed up the whole simulation pro-

cess by replacing a part of it or the whole. In addition, by incorporating ML in the

loop, the searching and optimization of the whole simulation process could be auto-

mated and accelerated. Finally, the simulation accuracy could also be improved by

accompanying ML methods. For systems with limited understanding, ML could be

an efficient fast screening strategy by learning extensively from both success and

failure experimental data.
AI-Aided Material Synthesis

For material synthesis studies, the goal is to find the map f : F i 3F e/P, where the

intrinsic materials’ information ðF i ˛RnÞ and the extrinsic materials’ information

ðF e ˛RwÞ are mapped to the desired functional properties ðP ˛RmÞ. Here, the inter-

est is in finding a suitable synthesis pathway, given a set of starting materials with

their intrinsic material information, to form the final product with desired functional

properties. This work is normally done for material systems with nonstandard synthe-

sis protocols using laboratory data. Traditionally, material synthesis is done by ma-

terial experts with an Edison approach, which is time-consuming and labor-inten-

sive. This approach is usually guided by qualitative information and does not fully

utilize previously collected quantitative information. Through AI and ML ap-

proaches, extrinsic information, intrinsic information, and past experimental
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Figure 8. AI-Aided Material Synthesis

(A) The power conversion efficiency of organic photovoltaic devices against several synthesis parameters (spin speed, total concentration, donor

concentration). Reproduced with permission from Cao et al.147 Copyright 2018, American Chemical Society.

(B) The general framework for generation of realistic synthesis recipes. Reproduced with permission from Kim et al.103

(C) A deep learning framework with a closed learning loop based on SNN. This framework is divided into classification prediction part and interpretation

part.37

(D) Photograph of the setup of the chemical robot, showing the pumps, reactors, and real-time analytics, including mass spectrometer (MS), NMR

device, and infrared spectrometer (IR). Reproduced with permission from Granda et al.69 Copyright 2018, Springer Nature.
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information can be effectively utilized to predict the synthesized material’s proper-

ties of interest.

Although this field is still at its early stage, some signature work has shown the great

potential of applying ML in material synthesis studies. Various ML methods are com-

bined with high-throughput experiments to rapidly discover three new glass-form-

ing systems for metallic glasses. Since diffusion kinetics play a critical role in stabiliz-

ing glasses, the different synthesis methods noticeably affect glass-forming ability.

To cope with this, various synthesis-method-dependent ML approaches for this sys-

tem are constructed.146 In addition, a radial base SVM is used to optimize the power

conversion efficiencies (PCE) of bulk heterojunction of organic photovoltaic devices.

This improves the PCE through optimizingmultiple synthesis variables such as donor

concentration, spin speed, and additive concentration. The visualization of PCE

versus these synthesis variables is shown in Figure 8A.147 Potential SrTiO3 synthesis

parameters can be suggested by a combination of VAE and logistic regression (LR)

binary classifier. The LR is trained to differentiate between text-mined (‘‘real’’) and

VAE-generated (‘‘virtual’’) synthesis descriptors. The VAE model can learn com-

pressed synthesis representations from sparse descriptors effectively and output
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novel synthesis recipes through the decoding process automatically. If the output

synthesis recipe can pass the LR, it is treated as the potential new synthesis recipe.

The framework is shown in Figure 8B.103 A graph convolutional neural network plus

Siamese neural network (SNN) classification model is trained on a small dataset of 54

success and failure experimental data to predict the synthesis recipe of atomically

precise gold nanoclusters. This framework provides a possible solution for low

data scenarios faced by AI in the materials field. In combination with a DT trained

on synthetic data from the well-trained classification model, useful chemical intuition

is also derived (Figure 8C).37 Moreover, the dissolution kinetics, defined as the SiO2

leaching rate, is studied for silicate glasses. Four different ML models are used,

namely linear regression, SVR, RF, and ANN. A noticeable point is that the design

parameters for the material itself only include composition descriptors, but the

target property is affected largely by the external environment such as pH value.

This shows that even a material synthesis process can be highly controllable; the

extrinsic descriptors that describe how the final material interacts with the external

environment can be essential if environment-dependent materials are desired.148

Finally, an automated synthesis platform that can predict the reactivity of possible

reagent combinations is constructed. This platform consists of an automated reac-

tion system controlled by the AI mind. The AI prediction model for material synthesis

is improved after each new round of experiments and can reach the desired accuracy

rapidly. This platform is showcased by exploring the Suzuki-Miyaura reaction, which

sets a good example of how a future lab could appear. The setup of this chemical

robot is shown in Figure 8D.69

Overall, ML methods are suitable for application in advanced material synthesis. For

material systems where the experimental part still consists of large uncertainty, ML

combined with both intrinsic and extrinsic descriptors could assist in finding the

complex prediction function. An efficient combination of suitable ML methods

and experimental datasets can convert an Edison approach to a quantitatively

guided approach that could largely accelerate the material discovery workflow.

AI-Aided Theory Paradigm Discovery

Rather than being limited to an effective tool to guide the design process of

advanced materials, it is always of interest and priority to gain generalizable scien-

tific principles of advancedmaterials’ systems. As already discussed, for material sys-

tems with insufficient or limited understanding, normally a prediction model based

on laboratory data can be created. By analyzing these prediction models with

feature importance and correlations, or model-agnostic methods, more understand-

ing of the system can be derived. Also, a detailed first-principles simulation can be

used to analyze the novel materials suggested by the prediction model to find the

mechanism behind the desired property gained.

Several successful studies have appliedML to guide the discovery of the theory para-

digm for a specific material system. One interesting study is the discovery of a new

hidden structural property of glassy liquids called softness.67 This property was con-

structed by training an SVM with several structure descriptors on a training dataset

containing 6,000 particles at each density. This new softness property of each parti-

cle in the system can be treated as a property that is constructed by forming certain

complex relationships among the structure descriptors used. By utilizing this new

hidden property, one can better predict the relaxation dynamics of glassy liquids,

which suggests that the challenge of understanding glass-transition dynamics could

be converted into the challenge of understanding the evolution of softness. This
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sheds light on understanding this complex material system by introducing a new

property that is easier to investigate. A CNNmodel is built to predict the photoelec-

trochemical power generation of a solar fuel photoanode based on composition and

Raman signal descriptors.149 By analyzing gradients in the trained model, key data

relationships that are not readily identified by human inspection or traditional statis-

tical analysis are discovered. This work shows that a gradient analysis approach of

material property prediction can be useful to gain understanding of a mechanism.

In addition, a layer-by-layer physics domain knowledge informed Bayesian network

is developed for optimizing photovoltaic devices’ efficiency. Instead of using tradi-

tional optimization (process variable-device performance), this two-layer optimiza-

tion approach (process variable-material properties-device performance) shows

better interpretability and reveals new aspects about the devices’ design processes.

The two-step highly interpretable Bayesian inference framework is shown in Fig-

ure 9A.30 New physical interpretations are also generated for complex, high-dimen-

sional grain-boundary systems.150 Several ML methods are combined with a high-

quality structure descriptor called smooth overlap of atomic positions (SOAP) to

capture local atomic environment (LAE) in predicting several crystalline properties.

This work uncovers the relationship between the LAEs with particular properties.

Once these local structures are understood, they can be optimized for desired be-

haviors. Moreover, insights of structure-phenomena relations can be extracted by

training DTs on data obtained from EBSD scans. The importance of different struc-

ture attributes in causing deformation twinning inMgAZ31 is ranked by the DTs. This

result can help the community understand the physical processes associated with

tensile twinning in Mg AZ31.151

With the assistance of various ML methods, new unwritten guidelines that can be

used by synthetic chemists to find the correct synthesis conditions are discovered.

An SVM-derived DT model is produced by training on a dataset of 3,955 unique,

complete reactions (both success and failure experiments).27 This model generates

three new hypotheses for the crystallization of templated vanadium selenites as

shown in Figure 9B. In addition, a GA is combined with a high-throughput robot

to search for the optimal synthesis conditions for a prototypical MOF.152 By

analyzing the generated data with an RF model, the chemical intuition that re-

searchers develop in their search for the optimal conditions is captured and quanti-

fied. This intuition can be transferred while the detailed chemistry is different for the

synthesis of other MOFs.

Finally, with the combination of simulation methods, the work introduced in the pre-

vious section to find piezoelectrics with large electrostrains can be further explored.

By implementing Landau theory and DFT, it reveals that the large electrostrain is due

to the presence of Sn, which allows for the ease of switching of tetragonal domains

under an electric field.29 Also, graph dynamical networks have been implemented to

extract statistically relevant dynamics from MD simulations.51 This approach has re-

vealed previously undiscoverable important dynamical information for various multi-

component amorphous material systems.

To dig the scientific understanding out of high-dimensional complex material data,

three key points must be understood. First, a good choice of informatics descriptors

for a specific material system and a specific task is necessary. Second, suitable ML

models must be chosen for the dataset, and good interpretation methods for these

ML models are available, taking advantage of the existing abundant interpretation

methods for different ML models.153 Lastly, a combination of simulation methods

and ML models can also reveal important theory paradigms. ML methods can assist
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Figure 9. AI-Aided Theory Paradigm Discovery

(A) Schematic of an interpretable ML framework as a physically informed two-step Bayesian

network-based process-optimization model. It first links process conditions to material descriptors,

then the latter to device performance.30

(B) Graphical representation of the three hypotheses generated from the model, and

representative structures for each hypothesis. Here three new hypotheses are made about the

formation of templated vanadium selenites, categorized by the molecular polarizability of the

amine. Reproduced with permission from Raccuglia et al.27 Copyright 2016, Springer Nature.
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in analyzing high-dimensional simulation data to obtain more understanding, and

once an optimum material or synthesis recipe is discovered from a large searching

space by ML models, detailed simulation can be carried out to analyze the rationale

behind the optimum performance.
FUTURE STEPS

Although an enormous number of articles have been reviewed for different applica-

tions of AI in material discovery in this paper, this highly interdisciplinary field is still
422 Matter 3, 393–432, August 5, 2020
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in the embryonic stage. All of the studies have shown the great potential of applying

ML to automate, accelerate, and improve the materials’ discovery processes. From

what has been reviewed, it can be concluded that the key to achieving good results

for AI in materials discovery work includes five major parts: (1) insightful choice of

informatics descriptors; (2) suitable models for dealing with specific materials’

data structure; (3) efficient labeling by implementing ML in the loop; (4) high-level

design to simplify the complex research problem; and (5) the integration of data

and methods from different research groups.

Apart from continuing to apply ML in different material systems to achieve different

goals, these five major key areas can be treated as the future directions for the com-

munity to advance into. By solving the challenges in these directions, our community

can discover materials knowledge that was previously not possible to find. For

example, solving the challenges can enable us to study complex material synthesis

systems that are far from equilibrium with both spatial and temporal complexities

(Figure 10).

Advancement in Descriptors

As introduced in this review, with effective use of suitable descriptors for the material

system under study, both good prediction results and in-depth understanding can

be achieved. There have been extensive studies in this field; however, a large space

still exists for developing and improving useful descriptors such as SOAP155 and Bag

of Bonds126 that could be used for a group of materials. In addition, suitable features

to effectively account for information from more complex materials such as organic

and inorganic hybrid systems of ligand-protected nanoclusters and MOFs still need

to be discovered. Also, studies that implement the most recent ML methods in

creating new material descriptors will be appreciated. New informatics descriptors

are created by combining only stoichiometry or even one-hot-encoding form infor-

mation with attention mechanisms. These new descriptors show promising results in

predicting various material properties.156,157 Moreover, with maturity in high-

throughput experimental systems, more complex material synthesis systems can

be studied. To acquire the finer information needed for these systems, more sophis-

ticated descriptors such as a descriptor that can capture information for a whole re-

action system instead of a single component (e.g., a reaction-system descriptor)

should be implemented.158 Finally, more materials-oriented feature selection

methods such as SISSO (sure independence screening and sparsifying operator)

are pressing for this emerging field.159

ML Algorithms’ Challenges in Complex Material Synthesis Systems

For complex material systems with little first-principle understanding, a statistical

predictive model might be trained to predict material properties or synthesis results.

Currently, most material systems are limited by data availability, with most ML

models being trained on the magnitude of hundreds or a smaller amount of data.

This is due to the expensive, labor-intensive, or time-consuming nature of laboratory

work. However, the recent development of high-throughput experiments would

likely alleviate this problem to a certain extent. We can take a step forward and ima-

gine ways to further utilize the high volume of data of complex material systems

generated by high-throughput experiments in the future. Currently, most complex

material systems-based ML models use both the intrinsic materials’ information

ðF i ˛RnÞ and the extrinsic materials’ information ðF e ˛RwÞ. Such information sets

are both commonly time-independent information. However, most complex reac-

tions of interest are dynamic, far from equilibrium, and spatially heterogeneous.

Thus, with better data collection and characterization approaches, we might be
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Figure 10. An Illustration of AI Study in a High-Throughput Material Synthesis System with Spatial-Temporal Complexity

Achievements in each of the five future directions can push our community one step closer to realizing next-generation material research as shown in the

figure. The advancements in each direction for the future directions mentioned can help in this material discovery workflow from different aspects.

Within the five future directions, the urging of material-based ML algorithms to analyze spatial-temporal material synthesis data is especially important.

The graph indicates UV-visible analysis with time information of gold nanocluster synthesis process. Reproduced with permission from Chen et al.154

Copyright ª 2018, American Chemical Society.
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able to incorporate the time dimension into themodels. Hence, the intrinsic informa-

tion ðF i ˛Rn3tÞ and extrinsic information ðF e ˛Rw3tÞ can be time-varying and fed

into our ML model at each time step to achieve better performance. Certain neural

networks such as recurrent or attention-based neural networks could be used to pro-

cess such time-series features.89,90 Meanwhile, how to better incorporate chemical

information into these ML methods in the materials field is still a topic worth

exploring. For example, there can be discrete information of molecular structures

as well as continuous information such as temperature, pH, and so forth at each

time point. Various methods have been implemented to convert discrete informa-

tion into continuous data and then combine this with other continuous information

to realize the prediction and inverse design tasks of materials or material
424 Matter 3, 393–432, August 5, 2020



ll
OPEN ACCESSReview
devices.62,160,161 However, analyzing these mixed information forms together with a

temporal element can be a challenging problem.

Moreover, characterization methods such as attenuated total reflection Fourier

transform infrared spectroscopy with focal plane array detectors can capture infor-

mation for a two-dimensional space.162 As a result, not only could the bulk proper-

ties during the synthesis process of the material be considered, but more detailed

spatial information could also be taken into consideration. For example, the spatial

information of a material synthesis process as well as materials with heterogeneous

structures can be studied. There exists some good work analyzing spatiotemporal

chemical information, although there is still much room for improvement.112,163

Finally, when temporal and spatial chemical information are analyzed together, we

should expect to understand the complex system much better. Methods such as

graph dynamical networks and spatiotemporal graph convolutional networks can

be possible solutions to this challenge,51,164 while multiple efforts and advances

are still needed in methodologies, especially in the fitting materials research

domain.

Machine Learning in the Loop

Since material synthesis experiments are often costly and time-consuming, the data

amount is somewhat limited. Although high-throughput material synthesis/process

can solve this problem to a certain extent, it is expensive to conduct high-throughput

experiments and there are currently great difficulties in realizing this for some com-

plex material systems. Therefore, it remains crucial to develop ML strategies that are

effective with sparse data. As a suitable solution, active learning has been well re-

searched theoretically and experimentally. There are many different active learning

methodologies such as Bayesian optimization,31 query-based methods,106 and

closed form variance reduction.106 However, most active learning research and

benchmark tests have only been performed on traditional computer science data-

sets such as visual or text-based tasks.165,166 The results of different active learning

methods vary greatly depending on the context and task at hand. Thus, it is impor-

tant to investigate active learning in the context of the materials field. While there

have been various studies applying active learning in this area, there is still a strong

need to investigate and understand which active learning methods are better for

specific classes of material systems or tasks. In particular, the question of how uncer-

tainty should be quantified and different ways to maintain balance between exploi-

tation and exploration in different material systems should be investigated further.

There are several pioneering benchmark studies of active learning in materials dis-

covery,138,167 but more work assessing different material systems with different final

targets needs to be done. In addition, studies to converge these benchmarks and

create guidelines for the applications are urged. Efforts to make active learning on-

line in the loop of high-throughput experiments will be an important component of

next-generation lab work.

Decomposition of Complex Tasks in Material Discovery

To perform good predictions as well as gain understanding of mechanisms of com-

plex systems, decomposition of a complex task is usually needed. Some material

properties or synthesis prediction tasks, as well as the data preparation process,

are complex in nature. For example, the prediction of perovskite with high Curie

temperature and the multiclass classification of genomic silver nanocluster with

specific fluorescence color are difficult tasks to achieve with a single prediction

model.26,68 A clever approach is to decompose this final task into simpler tasks,

which normally need fewer efforts in collecting data, whereby the underlying
Matter 3, 393–432, August 5, 2020 425
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relationships are clearer. As a result, these tasks are easier to train and could reach

a higher prediction accuracy than the straightforward approach to analyze the com-

plex task. For example, to synthesize perovskite with high Curie temperature, the

formation of the perovskite structure needs to be ensured. The composition sug-

gested by one-step regression Curie temperature prediction failed due to the pres-

ence of secondary phases (not pure perovskite structures). To fix this problem, a

two-step approach is proposed to decompose the high Curie temperature predic-

tion problem into firstly constructing an SVM classifier to predict whether a perov-

skite can be synthesized or not to limit composition space, followed by regression

for the Curie temperature. This two-step approach realizes the final target to syn-

thesize high-temperature ferroelectric perovskites.26 In addition, if the final task is

not achieved easily, we can try to first complete studies for simpler tasks. For

example, the brightness prediction for DNA-templated Ag nanocluster can be

studied first and then used as a hint to the design of DNA-templated Ag nanoclus-

ter within specific color bands. The motif mining method, high-throughput exper-

imental procedures, and ML implementation experience developed in brightness

prediction studies have become the base bricks in realizing the more

complicated multiclass classification of fluorescence color of the same material sys-

tem.68,168 Although ML methods can find complex information directly from data,

the decomposition of tasks can improve the prediction ability of the whole system

as well as adding more transparency to the whole process. Instead of mapping the

relations between process variables and device performance of photovoltaics

directly, a two-step ML framework is proposed to connect target variables to ma-

terial descriptors first, then to process conditions.30 Such transparency can enable a

better understanding of the whole prediction workflow, which in turn gives

more interpretability. For different material systems, the detailed decompositions

of tasks are different; however, there will be several general frameworks that

could guide different material systems. This is potentially a valuable research

direction.

Integration of Different Applications of AI in Material Discovery

There are many different applications of ML in materials discovery. However, there is

a gap between studies of applications during different stages, since each subcom-

munity normally specializes in their own topic. This gap should be bridged in the

long term. Promising methods used in characterization should be effectively com-

bined with ML framework in the property prediction and synthesis component to

accelerate the whole process. Several ML frameworks in property prediction should

be compiled together to substitute different computationally expensive simulations

and be integrated into a single platform. The learned weights of well-trained prop-

erty prediction models can be transferred to more complex synthesis study models

with limited data to achieve better performance. The standardization of different

work is preferred to ensure this level of integration. Finally, an integration of efforts

through characterization, property prediction, synthesis, and theory should be

compiled in high-throughput experimental systems to realize the next generation

of materials laboratories.

In conclusion, the keys to successfully applying AI in different material discovery

stages are a detailed analysis of the desired tasks and material data structure, a care-

ful choice of informative descriptors, and suitable selections of models and the

whole ML strategy. Through such approaches, the application of AI in material dis-

covery will be able to solve the challenges in designing new materials with specific

property requirements. This has the potential to accelerate the whole material dis-

covery workflow by speeding up the understanding of experimentation and
426 Matter 3, 393–432, August 5, 2020
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navigating to optima in multidimensional parameter space for 10- to 100-times

acceleration.169
Notations Used in This Review

x, feature vector

pðÞ, probability distribution

y, output vector

EðÞ, expected value

f ð ,Þ, function
R, set of real numbers

~x, reduced dimension feature vector

X , input space

F , feature space

F, map used to transform the input space to a high-dimensional feature space

K, similarity function used in an SVM

q, parameters of a model

W , weight matrix

b, bias in neurons

h, hidden units in a neural network

gð ,Þ, activation function in a neural network

z, output from a layer of neurons before transforming by the activation function

Yk , kth output feature map

xgrid, input grid-like data

Wk , convolutional filter related to kth feature map

k, number of clusters from clustering methods

e, encoder function

r, decoder function

L, loss function

Cð ,Þ, corruption term

bx, noisy feature vector

X , examples from true probability distribution

P�, true probability distribution of databP , learned probability distribution of data

D, set of tuples that forms the dataset available

F i, material’s intrinsic information

P, desired functional properties

F e, material’s extrinsic information

t, time dimension of experiments
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