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Combining high-throughput experiments with machine learning accelerates 
materials and process optimization toward user-specified target properties. In 
this study, a rapid machine learning-driven automated flow mixing setup with  
a high-throughput drop-casting system is introduced for thin film preparation,  
followed by fast characterization of proxy optical and target electrical 
properties that completes one cycle of learning with 160 unique samples in 
a single day, a >10× improvement relative to quantified, manual-controlled 
baseline. Regio-regular poly-3-hexylthiophene is combined with various types 
of carbon nanotubes, to identify the optimum composition and synthesis 
conditions to realize electrical conductivities as high as state-of-the-art 
1000 S cm−1. The results are subsequently verified and explained using offline 
high-fidelity experiments. Graph-based model selection strategies with 
classical regression that optimize among multi-fidelity noisy input-output 
measurements are introduced. These strategies present a robust machine-
learning driven high-throughput experimental scheme that can be effectively 
applied to understand, optimize, and design new materials and composites.
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accelerated via the implementation of 
high-throughput experiments. From the 
first automated pipette in 1950[1] to modern 
self-driving laboratories,[2–4] automation 
tools allow researchers to explore com-
plex, multi-dimensional parameter spaces, 
while freeing up researchers’ bandwidth 
for planning experiments and analyzing 
data. Datasets generated from computa-
tional studies have enabled estimation of 
electronic,[5] thermal,[6] and thermoelec-
tric[7,8] properties from material composi-
tions and structures, and augmented by 
machine learning models. With, machine 
learning employed as a cognitive assistant 
to plan and navigate complex parameter 
spaces, a new paradigm has emerged in 
recent years which is particularly useful 
for combinatorial experiments[9–13] and 
multi-variable optimization problems.[14–16] 
These methods have been used for dis-
covery of novel metal alloys,[13,14,17–19] 

perovskite materials for photovoltaics,[2,15,20] electronic property 
optimization of polymer thin films,[2,3] or synthesis of co-poly-
mers with pre-defined target properties.[21]

Machine Learning (ML) assisted materials property optimi-
zation is particularly useful in solution processable organic-
inorganic hybrid materials because the final material prop-
erty or device performance of this class of materials is highly 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adfm.202102606.

1. Introduction

One of the biggest bottlenecks for fast and efficient scientific 
discoveries is the bandwidth and cognitive ability of human 
researchers, who can conceive, conduct, and comprehend a 
limited number of experiments. With the emergence of auto-
mation, timelines for scientific progress can be significantly 
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influenced by multiple factors such as chemical structure, 
purity, processing solvents, solvent additives, nano-phase sepa-
ration, and interface/device engineering. Screening of suitable 
molecular structures, with process parameters determined by 
ML techniques has enabled rapid development of optoelec-
tronic devices such as organic photovoltaics.[22] ML algorithms 
can effectively learn from the vast amount of data on chemical/
electronic structures and build suitable models to predict the 
underlying material characteristics with reasonable accuracy, 
accelerating the discovery of high-performance materials. 
Yao et al. used random forest (RF) and boosted regression trees 
(BRT) to screen >32  millions of donor/acceptor pairs to iden-
tify six pairs of efficient organic photovoltaic material combi-
nations for experimental validation.[23] The benefits of using 
ML methods to predict macroscopic device properties from 
microscopic structures are highlighted by Florian Häse et al.[24] 
Wu  et  al. have successfully synthesized a high performance 
thermoelectric polymeric material using machine learning 
assisted polymer chemistry.[25]

In this report, we present a high-throughput semi-automated 
experimental platform driven by machine learning to maximize 
the electrical conductivity of inorganic-organic hybrid mate-
rials. As an integral part of this platform, Bayesian optimiza-
tion is performed for targeted sampling of data, which is then 
used to build and select robust Graphical-based Models that 
link multiple experimental inputs to outputs. These can then 
be used for analysis and design of high-performance materials 
for desired applications, as machine learning is exceptionally 
powerful in multi-parameter optimization, in contrast to tradi-
tional design of experiments where only one variable is tuned 
at a time.

We chose solution processable semiconducting polymer/
nanotube composites as a materials system of choice because 
they combine the advantages of mechanical flexibility and low-
cost manufacturing processes, making them suitable for elec-
tronic and thermoelectric applications. In particular, we chose 
regio-regular poly-3-hexylthiophene (rr-P3HT) as a polymer 
matrix, as it is a well-studied and understood system, and it still 
has potential for improvement as the polymer matrix in ther-
moelectric composites, as shown by Pawan Kumar et al.,[26] in 
contrast to other well-studied semiconducting polymers.

We used our machine learning driven high-throughput 
experimental platform to demonstrate optimization of electrical 
conductivity in rr-P3HT and carbon nanotube (CNT) compos-
ites. Such composite films of conjugated polymers with single-, 
double- or multiwall carbon nanotubes (SWCNTs, DWCNTs, 
or MWCNTs) have been used as an active material in various 
functional devices due to their unique optical, electrical and 
mechanical properties.[27–30] However, the electrical conductivity 
(σ) of P3HT/CNT composites requires significant improvement 
in order to make this class of nanocomposites viable for prac-
tical applications. Various strategies are proposed to increase 
the electrical conductivity of P3HT/CNT composites including 
molecular doping of P3HT, use of different CNT types,[31] 
process optimization, tuning the energy barrier between the 
polymer and CNT[32] and improvement of the crystalline struc-
ture or morphology of P3HT and CNT.[33–35] Most of these 
approaches are concentrated on enhancing inter-chain charge 
transport by improving the degree of crystallinity or nanoscale 

architecture of P3HT chains induced by CNTs.[36] The configu-
ration of P3HT wrapping around the CNTs, particularly the for-
mation of elongated polymer chain conformation with reduced 
torsional disorder, promotes inter-chain (π–π stacking) interac-
tion and thus increases charge mobility.[28] However, the degree 
of crystallinity and orientation of π–π stacking depends on the 
interaction between P3HT and CNT where parameters such 
as type, size, and length of CNTs manipulates the crystalline 
packing structure, thus influencing the charge transport.[28,31] 
In addition to CNT-induced charge carrier mobility enhance-
ment, chemical doping of P3HT increases the electrical con-
ductivity since doping of conjugated polymers with small 
molecular oxidizers such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracy-
anoquinodimethane (F4-TCNQ) or iron(III) chloride (FeCl3) 
introduces mobile charges to the conjugated polymer chain, 
which increases charge carrier concentration and reduces π–π 
stacking distances due to structural reorganization and polaron 
delocalization.[37–39] Therefore, there is a rich interaction space 
available where by changing the type of CNTs and tuning the 
physical and chemical interactions can potentially enhance the 
electrical conductivity.

In this study, we mix rr-P3HT with four types of CNTs, 
where the interactions between the P3HT chains and CNTs 
are expected to create different morphologies and crystal-
line structures that control the electrical conductivity of the 
composite film. The types of CNTs used in this study are: 
1) long single wall CNTs of lengths in the range of 5–30  µm 
(l-SWNTs), 2) short single wall CNTs of lengths in the range 
of 1–3µm, (s-SWNTs), 3) multi walled CNTs (MWCNTs), and 4) 
double-walled CNTs (DWCNTs). The choice of the nanotubes 
was aimed to cover a broad range of properties, by focusing on 
most widely used range of the nanotube types. Broader para-
meter space of nanotube properties (such as geometry and chi-
rality control, metallicity etc.) could in theory be studied, how-
ever we felt it more appropriate to study the space of nanotube 
attributes most widely used by the scientific community first. 
Further details of the materials can be found in Section S1.1, 
Supporting Information. All the composite films are doped 
with FeCl3 in order to increase the overall electrical conduc-
tivity. It has already been reported that doping increases the 
electrical conductivity of all P3HT/CNT composites irrespective 
of the type of CNTs.[31] The workflow begins with data genera-
tion from the high-throughput experimental platform, where 
P3HT/CNT composite films are prepared in a microfluidic 
reactor linked to an automated drop-casting system, then tran-
sitions to rapid optical, and electrical diagnostics, ending the 
cycle with using obtained data to run a Bayesian Optimization 
algorithm to scan the experimental manifold and explore input-
output correlations to suggest next experimental conditions tar-
getting high conductivity.

2. Data Generation: High Throughput 
Experiments with Bayesian Optimization
We first apply Bayesian Optimization (BO)[40,41] to optimize the 
high-throughput processing and characterization, and explore 
the parameter space for P3HT/CNT composites. This work is 
based on a hypothesis that a certain combination of CNTs and 
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P3HT should sensitively affect the alignment of P3HT chains 
to change the conductivity of the system, while dispersed 
nanotubes, due to their unique dimensionality, would act as 
seeds for P3HT crystallization. This hypothesis is qualitatively 
explored via high-throughput experimentation and machine 
learning. The schematic representation of the entire workflow 
is shown in Figure 1 in following steps: a) film fabrication; b) 
fast optical/electrical labeling; c) use of Bayesian Optimization 
for targeted exploration of the composition space. Subsequently, 
once experimental cycles-of-learning are completed, the anal-
ysis is done via d) construction of ML models for predicting 
electrical conductivity through graphical regression models; 
and e) to derive correlation between the composition and elec-
trical conductivity for interpretable ML. The high-throughput 
experimental platform consists of a LabView-controlled auto-
matic flow reactor (in plug flow mode), where formulations 
of different starting materials with varying composition ratios 
are mixed in situ. The mixing volume and ratio between the 
stock solutions (details on preparation of stock solutions can 

be found in Section S1.2, Supporting Information) are adjusted 
in order to prepare unique formulations. Each formulation 
forms a droplet and multiple droplets are subsequently drop-
casted onto a pre-cleaned smooth, double-side polished fused 
silica (quartz) wafer, eliminating the time-consuming process 
of cleaning and surface treatment of individual substrates. The 
optical and electrical properties of the drop-casted films are 
measured using a high-throughput diagnostic platform, which 
consists of a visible range (400–1000 nm) hyperspectral imaging 
system and a computer-controlled automated four-point probe 
setup (Figure  1b). This platform drives the BO algorithm for 
optimization of the electrical and optical characteristics, that 
relates them to the input processing/mixing conditions.

2.1. High Throughput Experiments

The hybrid solutions are mixed using a microfluidic flow 
reactor in order to fully exploit the composition space. The 

Figure 1.  Schematic representation of the workflow involving high-throughput experimental platform for film fabrication and data generation (a–c), and 
machine learning-based data analysis (d,e). a) Film fabrication. The workflow begins with the preparation of hybrid solution by mixing the pre-prepared 
P3HT and CNTs stock solutions (1 mg mL−1 in o-dichlorobenzene) using an automated microfluidic flow reactor. The microfluidic flow reactor, operated 
in a plug flow mode, is capable of mixing five different liquids in a precise ratio and separates them as “plugs” containing unique composition ratio 
(C) of P3HT and CNT. Five liquids include pure P3HT solution, and four CNT dispersions containing different types of CNTs, along with some P3HT 
as stabilizing surfactant. 36 droplets of P3HT/CNT mixtures are then drop-casted on pre-treated quartz (fused silica) wafer placed on a computer 
controlled XY stage. These 36 samples contain six unique compositions, where each condition has six replicates in order to check the reproducibility 
of the films. The drop-casted films are doped with FeCl3 after recording the Hyperspectral image of pristine films. b) Fast optical/electrical diagnostics: 
Hyperspectral image (spectral region from 400 to 1000 nm) of the drop-casted pristine films (before doping) and doped films are obtained. The absorp-
tion spectra of each film are obtained by averaging ≈20 pixels (area of 2.4 sq. mm) in the middle of the droplet. The absorbance ratio (R) between the 
interchain transition due to π–π stacking (≈602 nm) and intrachain transition due to π–π * is recorded as one of the proxy measurements to relate to 
the electrical conductivity of the film. The absorption spectra of the doped films are also recorded where the absorbance at 525nm (A) is measured for 
evaluation of the thickness of the doped films. The sheet resistance (S) of the doped films is tested using automated four-point probe measurement 
and then film thickness (T) of random 15% of the doped films is measured using a surface profilometer. c) Use of Bayesian optimisation (BO) to explore 
the electrical and optical characteristics related to the input processing/mixing conditions. The surrogate model in BO is a Gaussian process regressor. 
d) Construction of graphical regression models taking the absorbance, absorbance ratio, and sheet resistance into account to exploit maximal useful 
information when predicting electrical conductivity. e) The selected graphs are applied to derive correlations between the composition and electrical 
conductivity for interpretable machine learning.
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reactor consists of five computer-controlled syringe pumps, 
a mixing chamber, a gas-inlet T-junction, and a gas flow con-
troller. This setup allows to mix five different stock solutions 
together in precise ratios and separate the flow into “plugs” 
using N2 gas. The mixed precursor solutions are then drop-
casted onto the substrates in an automated high-throughput 
fashion, via a computer-controlled XY stage, connected to 
the  flow reactor. The samples then undergo post–treatment  
in the form of doping, to enhance the electrical conductivity 
of the polymer matrix (refer Section S1.4, Supporting Informa-
tion for more details).

The drop-casted films before and after doping are screened 
using hyperspectral imaging (HSI) system that measures the 
optical absorbance spectra in the visible to near-infrared region 
(400–1000  nm). The detailed HSI measurement protocols can 
be found in Section S2.1, Supporting Information. The absorp-
tion spectra of P3HT/CNT composite films without post treat-
ment are used to probe the degree of π–π stacking in P3HT. 
The absorption spectra of P3HT/CNT composite films generally 
show a peak at 525  nm, which corresponds to the intra-chain 
(π–π*) transition and the peaks at 550 and 602 nm correspond 
to vibronic and interchain transition due to π–π stacking respec-
tively (refer Figures S1 and S2, Supporting Information for more 
details). The intensity of inter-chain transitions increases when 
the number of well-ordered P3HT aggregates increases. There-
fore, we use absorption ratio (R) (ratio between the inter-chain 
interaction and intra-chain interaction) as one of the labeled 
measurements to correlate to the electrical conductivity (σ). The 
absorption ratio (R) of pristine films along with composition 
ratio (C) is used to train the ML algorithm to increase the degree 
of π–π stacking, which is hypothesized to increase the electrical 
conductivity of the P3HT/CNT composite. The doped films also 
undergo hyperspectral imaging in order to obtain the absorb-
ance data after doping, where the absorbance (A) at 525 nm is 
obtained to analyze the effect of CNT loading in the composite. 
Then the sheet resistances (S) of the doped films are measured 
using automated 4-point probe system, following which the 
films undergo surface profilometry measurement, where the 
thickness (T) of random 15% of the droplets is measured. The 
electrical conductivities (σ) of all droplets are obtained using the 
measured and estimated film thicknesses (T). Thus, our experi-
mental workflow can rapidly characterize the structural, optical 
and electrical properties of prepared samples, which are then 
used to create the dataset for machine learning.

2.2. Data Generation Guided by Batch Bayesian Optimization

The dataset D consists of experimental volumes of P3HT and 
CNT (different types) composition as well as the measured 
properties of the associated film. These properties include 
optical absorbance, absorption ratio, sheet resistance, film thick-
ness, and film conductivity, as shown in Table 1. Before using 
the machine learning, we took logarithms of some of these 
values and denoted them as “R”,“S”,’T’,’Y’, which makes the 
magnitude of the noise less dependent on that of the measured 
values (see Figure S3, Supporting Information). To account for 
variance, we drop-casted six films with identical experimental 
inputs (C) and measured the properties of the generated films.

Next, we build our dataset through a combined batch 
Bayesian Optimization (BO) and regression model, as shown 
in Figure  2. BO is a heuristic global optimization algorithm 
that incorporates exploration in the parameter space, which 
could reduce the total number of experiments and account for 
uncertainty of the measurements. Here, we use BO, by GPyOpt 
package,[42] mainly for a guided exploration of parameter 
regions that correspond to both high and low values of R and Y, 
to build a dataset representative of the whole landscape.

Due to high measurement costs associated with T and Y, 
we only measured randomly chosen 15% of them. The rest of 
the properties (A, R, S) can be obtained in a high-throughput 
way, hence we measured all of them. We then used a regression 
model to populate the unmeasured values in Y, after which the 
BO step can continue. After every step, the regression model 
was updated with the newly measured values, thereby building 
the dataset and reducing the uncertainty. Initially, when the 
dataset was small, a simple linear regression model (C  → Y) 
was used to ensure good generalization. As more data was col-
lected, we transitioned to a gradient boosting model to increase 
accuracy and reduce bias.

The combination of the batch BO and the regression forms 
our basic data generation workflow (Figure 2a). We started with 
a small initial dataset called ‘Run 0’, which was selected using 
a binary combination of P3HT (x%, ranging from 15% to 90%) 
and a single CNT type (100−x)%. From this initial set, data gen-
eration proceeded with four workflows corresponding to dif-
ferent targets that minimizing and maximizing R (absorbance 
ratio) and Y (electrical conductivity) to explore configurations 
of sufficiently varying conductivities and to reduce sampling 
bias towards high conductivity. These workflows were imple-
mented in parallel. The collected datasets were combined at 
the end of the each run for subsequent machine learning tasks. 
The histogram and boxplot of targets during batch BO runs are 
given in Figure  2b, which shows the targeted exploration and 
the convergence of BO within very few iterations. To ensure 
adequate exploration of parameter space, we used a teacher-
student framework: the trained machine learning model acts as 
an artificial representation (surrogate) of experimental ground 
truth. Using this surrogate model, we ran the BO in fully simu-
lated environment over uniformly random initial samples. The 
results indicate that the fast convergence is due to the good ini-
tial sample spread in our experimental data and verify the ade-
quate exploration of CNT composition space (See Section S3.4, 
Supporting Information for more details).

Table 1.  Attributes of multi-labelled dataset and their corresponding 
symbols.

Attribute Symbol

Composition C

Absorbance A

Ln(Abs. Ratio) R

Ln(Sheet Res.) S

Ln(Thickness) T

Conductivity σ

Ln(Conductivity) Y

Adv. Funct. Mater. 2021, 2102606



www.afm-journal.dewww.advancedsciencenews.com

2102606  (5 of 12) © 2021 Wiley-VCH GmbH

Figure 2.  Building of dataset through batch BO and regression models. The initial dataset is small and has data corresponding to composition , ,1
(0)

2
(0)C C …, 

where ( )C j
k  refers to the jth CNT composition at the kth step of BO iteration. The dataset is updated by the “data generation workflow” in (a) with multiple 

targets (R and Y, minimize and maximize). For a given target, batch BO suggests new conditions C Ck k, ,1
( 1)

9
( 1)…+ + , which will be added in the updated dataset 

after measuring the properties. Each condition has six droplets, and only 15% of all droplets have all their properties measured, while others are partially 
measured. The unmeasured properties are predicted by regression models (linear regression with various losses, boosting) for the next BO iteration. 
Finally, updated datasets corresponding to each target are combined for further machine learning tasks. The histogram and boxplot of targets during 
batch BO runs are given in (b).

Adv. Funct. Mater. 2021, 2102606
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2.3. Graphical Regression Model for Composition-Property 
Relationships

In this section, we outline our design of data-driven predictive 
models for the relationships between composition (C) and prop-
erties. The necessity to develop novel methods comes from two 
challenges that commonly arise in experimental settings. First, 
there are multiple measurements produced, many of which are 
intermediate values (e.g., thickness, absorbance ratio) and are 
potentially incomplete. They are not the final value of interest 
(in contrast to conductivity), but they provide valuable informa-
tion about the underlying materials system, hence the regression 
model should be able to fully exploit them. Second, the regres-
sion model should also capture the aspect of uncertainty due 
to the large experimental noise present in the measurements, 
which is crucial to make meaningful and reliable predictions, 
and to perform inverse design. We solved both of these problems 
by developing a graphical regression model that actively accounts 
for uncertainty in predictions. Such models can be used in sev-
eral ways, including property prediction, inverse design, and vis-
ualization of the “landscape” of conductivity with respect to the 
input composition, thereby deepening our understanding of the 
physical system at hand. The overview of the machine learning 
method used in this study is shown in Figure 3 and the detailed 
discussion are given in the following sections.

2.3.1. Overall Approach

In general, one can employ regression that relates only the 
composition (C) to conductivity σ or Y, while the graphical 

regression model takes multiple outputs (A, R, and S) into 
account to predict Y, and pursues not only the mean accuracy 
but also the uncertainty of the predictions due to experimental 
errors. Describing the composition (C) and each measured 
property as nodes and linking related nodes by directed edges, 
we can get a graph which represents the relations between 
composition (C) and its properties. Since our focus is on con-
ductivity (σ or Y), we used directed acyclic graphs that have 
conductivity as its unique output (terminal node). Therefore, 
the graph G can be regarded as a structured composite func-
tion that approximates the conductivity. An example of this 
is Y = F(C, R(C)) corresponding to the graph GC ,1

(3)  in Figure 3, 
which posits that the conductivity (Y) depends directly on com-
position (C) and absorbance ratio (R), which is determined by 
composition. This introduces a sub-model R(C) for the absorb-
ance ratio-composition relationship. We trained a collection of 
such graphical models (with different connectivity structures), 
from which we selected a final model using a scoring system 
that accounts for both accuracy and uncertainty. We present the 
detailed outline of this approach in the following section.

2.3.2. Modelling and Learning Under Uncertainty

Although the film compositions are determined by user-defined 
experimental inputs, the nature of drop-casting introduces 
uncontrollable factors that affect the measured values, such as 
variance in film quality and, therefore, inherent characterization 
noise. These factors suggest that we should regard the param-
eters as random variables. Since the conductivity is inversely 
proportional to the sheet resistance and thickness (σ = 1/(Rst)), 

Figure 3.  Workflow of the graphical regression method. 1) The graphical regression model is used to predict the target “Y” and its uncertainty. A 
graphical model, for example, ,1

(3)GC , is composited by some sub-regression-models, “C→R” and “CR→Y”. The sub-models are trained 20 times by tra-
ditional method (linear regression and gradient boosting with cross-validation) using randomly chosen training datasets. During the inference phase, 
the sub-models (each sub-model is randomly chosen from the 20 trained ones) are composited according to the graph architecture, while the R2-score 
measures the prediction accuracy. The whole dataset is randomly resampled and split into training and validation datasets, where the randomness of 
the training dataset is expected to capture the uncertainty of “Y”, while the KL-score measures the discrepancy between prediction and true uncertain-
ties. 2) The R2-score and KL-score are used to select graphs which have high accuracy and low discrepancy. 3) The selected graphs are used to extract 
the relationship between different properties and the conductivities. 4) The scores of some selected graphs are given.
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its noise is inherited from them. Due to the fractional form, 
after taking a natural logarithm of these parameters, we may 
assume that the noise follows a normal distribution (see Sec-
tion 3.1, Supporting Information for justifications for this 
assumption). Given the large range of conductivities that are 
accessible through the screening process, we model the loga-
rithm of conductivity as,

Y P Y C Yi i i i∼ ε( )( ) =| ,0
2N 	 (1)

where Yi = log(σi), Y i is the (unknown) conditional mean of Yi 
given Ci and εi is the noise level, which is estimated to be 0.3 
from data. To accommodate the uncertainties in Y, we intro-
duced two types of randomness into the graphical regression 
model: random resampling of the training dataset from the 
original dataset D and random training procedure of sub-
models M. Therefore, the output of a graph G describes a dis-
tribution P:

Y P Y C Gi i∼� ( )| ; , ,D M 	 (2)

which is expected to approximate the distribution P0(Y|Ci). 
The difference between P and P0 was minimized by model 
selection over various graphical models. Randomness in 
resampling was realized by a sub-sampling strategy that was 
designed to take the imbalance of D into account. Such imbal-
ance arised as we used the BO to generate datasets, which 
caused more data to be sampled in regions with extreme objec-
tive values, since BO aims to minimize/maximize its given 
objective. General treatment for imbalanced datasets can be 
found in Torgo  et  al,[43] Branco  et  al, 2018,[44] and the details 
of our resampling strategy is given in Section S3.2, Sup-
porting Information. Randomness in training procedure was 
realized by randomly choosing initial values and randomly 
searching hyper-parameters of machine learning models. The 
sub-models M in graph G were chosen from linear regres-
sion, Huber regression, and gradient-boosting models by 
usual cross-validation on the mean accuracy. Other models 
(including fully connected neural networks) were tested, but 
via cross-validation they were found to perform slightly worse, 
and hence are not included in this study. We emphasize that 
the randomness introduced in the dataset resampling and 
training procedure is not aimed to directly model the true 
experimental noise distribution. Rather, after introduction of 
some degree of noise, it becomes possible to design a strategy 
to select models that have the magnitude of the noise similar 
to the observations in the experiments. These selected models 
are more robust than traditional ones, which can only predict 
the mean of targets. The details of the model selection strate-
gies are outlined below.

2.3.3. Graphical Regression Model Selection Strategy

With the dataset D and the training procedure of sub-models 
M fixed, the final model P Y C Gi( | ; , , )D M  depends only on 
graph G, and the prediction performance can be measured 

according to the difference between this prediction distri-
bution P(Y|Ci) and the target distribution P0(Y|Ci). A good 
graphical model G should have a high similarity or low dis-
tance between P and P0. Here, we estimated this distance by 
two scores, namely the R2-score and KL-score, using the mean 
and variance of P and P0. The R2-score (uses only the mean 
of P and P0) is widely used as a metric for regression accu-
racy, and the KL-score (using both the mean and variance of 
P and P0, and assuming P and P0 are Gaussian normal dis-
tributions), named after the KL-divergence, is a measure of 
distance (strictly, divergence) between two probability distri-
butions. For the graphical model selection step, we used the 
R2-score as the main score (the higher the better, for mean 
accuracy) and KL-score (KL-divergence between P(Y|Ci) and 
P0(Y|Ci), the lower the better, for uncertainty) as the secondary 
score of the graphical models. The details of the definition 
and typical examples of the KL-score are given in Section S3.3, 
Supporting Information.

3. Results

The example graphs GC i
n
,

( ) shown in Figure 3 are those having 
the composition (C) as the only input, which does not require 
additional measurements as inputs. This special setting could 
provide a tool to investigate the dependence of conductivity (σ 
or Y) on the composition (C). Our results in Figure  3 (inset 
Table) show that to get predictions from C to Y, the simplest 
graphical model “C→Y” gives a good R2-score (0.816) but 
high KL-score (64.8), while the graph “C→R, CR→Y”, could 
give higher R2-score (0.825) and lower KL-score (28.0), which 
means the latter graphical model captures the uncertainty of 
Y much better. This performance improvement comes from 
the use of additional information from values of “A”, “R”, 
“S”, and “T”, rather than just the conductivity itself. Noting 
that addition of “A”, “S”, and “T” could further increase the 
R2-score and decrease the KL-score, but the improvements 
are small, and the graphs are more complex. Therefore, we 
designed a weighted score that captures accuracy, uncertainty, 
and graph complexity simultaneously (See Section S3.1, Sup-
porting Information for more details). The graphical model 
that has the highest weighted score, “C→R, CR→Y” was 
chosen as our final predictive model using C as inputs. The 
results shown in Figure 3 (inset Table) highlight that adding 
one node of “A”, “R”, and “S” improved the R2-score to 0.830, 
0.841, and 0.931, respectively (the KL-scores are also slightly 
improved). Therefore, we conclude that the most important 
node (disregarding thickness, since it is the most time-con-
suming step of the experimental workflow) to predict “Y” is 
the sheet-resistance (S), followed by the absorption-ratio (R), 
and absorbance (A), that is, “S>>R >A”, which is sorted by pre-
diction improvements after the feature is taken into account. 
Using this order, we can further reduce experimental costs by 
mainly measuring the most important quantities. As a result, 
for this high-throughput fabrication workflow, the composi-
tion space can be effectively sampled by directly measuring 
the sheet resistance and final validation of the conductivity of 
the best performing samples can be performed by measuring 
the thickness of a chosen composition.

Adv. Funct. Mater. 2021, 2102606
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4. High-Fidelity Experiments Based on Data 
Generation

We demonstrate that after 12 steps of batch BO, the maximum 
conductivity has no further improvement, which indicated fast 
convergence to locate the maximum conductivity as well as the 
optimal composition region. To verify this fast convergence 
indirectly, we designed an artificial ground truth experiment 
based on the graphical model, and then used the BO (same 
hyper-parameters with real experiments) to optimize film com-
position for maximum conductivity. Numerical results here 
indicate that seven BO steps are enough to locate the optimal 
region in parameter space for the artificial ground truth, with 
additional steps (ten more) having little improvement (for 
more details, refer Section S3.4, Supporting Information). 
Since the artificial ground truth approximates the true target 
as generated in our dataset, it is likely that we have found the 
optimal regions in our experiments as well. The feature impor-
tance analysis of both regression models (linear and gradient 
boosting) showed that fractions of l-SWCNT and DWCNT have 
the most influence on the resulting electrical performance of 
the final composite (see Figure 4a). Thus, we plot a full experi-
mental manifold represented in a reduced 2D plot comprising 
only these two CNT types (Figure 4b). Interestingly, we note a 
local maximum in the manifold emerged at ≈10% of DWCNTs 
in a L50D10P40 composite, which is not a common observation. 
In order to explore finer composition resolution, we ran addi-
tional validation experiments around this local maximum and 
found that the optimum is indeed reproducible, within experi-
mental error, shown as red dot in Figure 4c.

In order to interpret the ML suggestions and understand the 
mechanism behind electrical conductivity of the composites, 
we selected four samples for comprehensive high-fidelity exper-
imental analysis to relate the influence of P3HT/CNT compo-
sition ratio to electrical conductivity and absorption ratio. The 
samples included two high performing samples: L60P40 (40% 
P3HT and 60% long single-wall CNT), L50D10P40 (40% P3HT, 

10% double-wall CNT and 50% long single-wall CNT), a com-
posite with highest performing type of CNT, but at lower con-
centration: L10P90 (90% P3HT and 10% long single-wall CNT), 
and a composite with shorter type of CNTs, but same concen-
tration as in the highest performance one: S60P40 (40% P3HT 
and 60% short single-wall CNT). The electrical conductivities of 
the four samples were 825, 740, 200, and 15 S cm−1 for L60P40, 
L50D10P40, L10P90, and S60P40 respectively. The high-fidelity 
measurements include absorbance spectroscopy (from UV to 
mid IR range) to analyze the film crystallinity and polaron delo-
calization, Raman spectroscopy to understand the interaction 
between the P3HT and CNTs, and scanning electron micros-
copy (SEM) to evaluate the film morphology.

In the absorbance spectra, the π-π interaction of P3HT and 
the polaron delocalization length, representing the film crystal-
linity, can be observed by monitoring the red or blue spectral 
shift in the visible region for undoped films and Mid-IR region 
for FeCl3 doped film respectively (shown in Figure 5a,b). Pris-
tine P3HT and FeCl3 doped P3HT films were also measured for 
reference. All the spectra shown in Figure 5a,b are background 
subtracted, normalized and the Y-axis is offset in order to see 
the spectral features clearly. The absorption spectra of undoped 
L60P40, and L50D10P40 in the visible region (shown in Figure 5a) 
clearly shows red-shifted spectral features compared to pristine 
P3HT, where the spectral feature due to π–π* transition and 
π–π interactions of well aggregated pure polymer chains appear 
at around ≈2.36 and 2.06 eV respectively.[45] In addition to the 
red shifted spectral features, both L60P40, and L50D10P40 films 
show fine features due to inter-band transition between van 
Hove singularities of single wall CNTs.[46–48] The red spectral 
shift due to aggregated P3HT and absorption features due to 
long single-wall CNTs in both L60P40, and L50D10P40 films indi-
cate 1) efficient P3HT wrapping and ordering around the well-
inter connected CNT network and 2) the availability of more 
electronic states due to higher CNT concentration which con-
tribute to the better electrical conductivity in these two compos-
ites compared to other films. In contrast, in the low electrical 

Figure 4.  a) Feature importance of linear and gradient-boosting C→Y regression model. The top two features, l-SWCNT and DWCNT, are used to 
virtualize the experimental conductivity surface in (b). b) Experimental manifold with the electrical conductivity (σ) represented in the colored axis, 
as function of l-SWCNTs and DWCNTs compositions. Red dots are projected contents of the experiment dataset, and contour curves are provided by 
Gaussian-process-regression (main part of BO) with completed dataset as inputs. c) Boxplot of σ shows a local maximum at ≈10% of DWCNTs in 
L50D10P40 composite.
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conductivity (S60P40) sample, the spectral features due to π–π 
interaction are weak and shifted towards the blue region com-
pared to P3HT, which indicates that the introduction of short 
single wall carbon nanotubes is not contributing to the align-
ment of polymer chains. The CNT fine features are also not vis-
ible in S60P40 although the percentage of CNT is 60% indicating 
unfavorable polymer wrapping around CNT. Both pristine 
P3HT and L10P90 show spectral features corresponding to well-
aligned P3HT where the features due to intrachain (π–π*) and 
interchain interaction (π–π) are seen clearly (Refer Figure S8, 
Supporting Information for the complete UV–vis–MIR spectra 
of all the pristine and doped films).

The absorbance spectra of FeCl3 doped films are shown 
in Figure  5b. Doping of P3HT with FeCl3 induces polaron 
formation that introduces two localized electronic states in 
the bandgap. The optical transition between these two levels 
create two additional absorption bands at wavelengths longer 
than the neutral excitons found in undoped films.[49] The high 
energy polaron band in FeCl3 doped P3HT appears at around 
1.6  eV (P2 band) and the low energy polaron band appears at 
around 0.5  eV (P1 band). Generally speaking, the P1 band is 
isolated from other optical transitions and thus it can be used 
to monitor the extent of polaron delocalization. Highly ordered 

P3HT films doped with FeCl3 have shown a distinct P1 band 
at 0.38 eV,[50] although the energy location and absorption 
strength depends on the degree of crystallinity. The absorp-
tion spectra shown in Figure  5b is normalized to the low 
energy peak at around 0.5  eV. The P1 peak energy measured 
for P3HT and L10P90 is at ≈0.6  eV, that shifts towards 0.5  eV 
in L60P40, L50D10P40, and S60P40. It can be seen that the inten-
sity of P1 band in L10P90 is much stronger and broader than the 
other composites indicating the wide distribution of polaron 
delocalization with much stronger degree of crystallinity, but 
its electrical conductivity is lower than L60P40 or L50D10P40, indi-
cating that the interconnectedness of the carbon nanotubes is 
the dominant factor contributing to the electrical conductivity 
of the composite films.[48]

The Raman spectra of undoped and doped films using  
532 nm  laser excitation are shown in Figure  5c,d. In this 
analysis, we focus on the prominent vibrational modes in the 
wavenumber region between 1300 and 1700 cm−1 as it explains 
the interaction between P3HT and CNT. The pristine P3HT 
shows two prominent vibrational peaks at 1382 and 1450 cm−1  
that are assigned to CC intra-ring and symmetric CC 
stretching vibrations, consistent with literature values.[51] The 
Raman spectra of L10P90 shows three peaks at 1380, 1447, and 

Figure 5.  Optical and Morphological investigations on selected samples for interpretable ML model. a): Absorbance spectra of undoped P3HT/CNT 
composite films showing more red shift of absorption shoulder due to π–π interaction accompanied with fine absorption features due to CNT in both 
L60P40 and L50D10P40 films compared to other composites; b) absorbance spectra of doped films showing the position of P1 band due to polaron delo-
calization; c) Raman spectra of undoped and d) doped films showing the CC skeletal stretching vibration accompanied with “G” band vibration due 
to CNT and e–h) showing the SEM images of doped L60P40, L50D10P40, L10P90, and P3HT films respectively.
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1593  cm−1, which are attributed to C–C intra-ring stretching, 
CC skeletal stretching of thiophene rings and characteristic 
“G” band of SWNTs due to in-plane stretching of E2g mode.[52] 
The Raman spectra of L60P40, and L50D10P40 shows the charac-
teristic peaks of P3HT and CNT at around 1378, 1445, and 1592, 
however S60P40, which has 60% short single wall CNT does not 
show the characteristic “G” band signal indicating inhomoge-
neous distribution of carbon nanotubes. The Raman spectra of 
pristine CNTs are shown in Figure S9, Supporting Information.

The Raman spectra of FeCl3 doped films are shown in 
Figure  5d. The presence of delocalized polarons shifts the 
symmetric CC stretching vibrations to lower wavenumber 
compared to the undoped films as the presence of polarons 
weakens the bond strength, shifting the stretching to lower 
energy modes. The CC stretching vibrations in both doped 
L60P40, and L50D10P40 films exhibit larger shift towards the lower 
wavenumber compared to the other composites in addition to 
the strong “G” band contribution indicating the better degree 
of polaron delocalization and efficient polymer wrapping in 
a well-connected CNT network, which is consistent with the 
absorbance result shown in Figure  5b. Therefore, Absorbance 
and Raman spectra allow us to conclude that the better degree 
of polaron delocalization and well-connected CNT network with 
a high density of mobile charges contribute to the observed 
better electrical conductivity in L60P40, and L50D10P40 films.

To further evaluate the influence of morphology on elec-
trical conductivity, the Scanning Electron Micrographs (SEM) of 
doped films, L60P40, L50D10P40, L10P90, and P3HT, were obtained 
as shown in Figure  5e–h respectively (refer Figure S10, Sup-
porting Information for the SEM images of different magnifica-
tions). The SEM of all the three composite films (e,f) shows a 
homogeneous distribution of CNT wrapped with polymer; the 
well-interconnected CNT networks with 10% long single wall 
CNT concentration is shown in Figure 5f. The higher concen-
tration of long single wall CNTs in both L50D10P40 and L60P40 
films is expected to be the differentiating factor for the higher 
electrical conductivity compared to the L10P90 film, where a 
higher number of mobile charges due to doped CNTs are pre-
sent in the film, thereby modulating the band structure. The 
SEM image of S60P40 can’t be obtained due to low conductivity, 
which is consistent with the spectroscopy features indicating 
that polymer wrapping in the short single wall CNTs is not 
favorable for electrical conduction.

5. Discussion—Beyond Validation and Broader 
Applications of This Methodology
We would like to emphasize the inroads we have made into 
application of machine learning techniques to small, but rich 
datasets, common in materials science. These datasets have 
fewer samples than typical machine learning datasets, but 
contain many measurements per sample, some of which are 
incomplete and/or are difficult to measure. In this case, the 
challenge for machine learning is linking the different kinds 
of sparse information together in order to answer a scientific 
hypothesis. In classical regression models, the regression func-
tion is trained from the dataset, only including the inputs and 
target values. In contrast, our graphical regression model takes 

potentially measured proxy values, such as the absorbance 
ratio, into account; such practices can be generalized to other 
physical systems. The learned graphical models could have 
better prediction accuracy and uncertainty estimation. This is 
useful to visualize the landscape of the target, decrease meas-
urement cost, perform inverse design, and determine relevant 
features for prediction (feature selection). Let us illustrate these 
general advantages in the specific context of our experiments.

First, we discuss how having a surrogate model can help 
visualize complex relationships between physical quanti-
ties. For example, during the prediction of “Y” by using the 
graph “C → R, CR → Y”, we also predicted the value of “R”. 
Figure 4a visualizes the landscape of “Y” and the relationship 
between “R” and “Y” on a subspace of compositions with only 
l-SWCNT and DWCNT. Using the predicted values locally, we 
can fit a polynomial function to smooth the landscape. For 
the R–Y relationship, a bilinear function could fit well, which 
suggests a local bilinear relationship between R and Y. This 
indicates that once the P3HT concentration is fixed, the ratios 
of carbon nanotubes determine the conductivity. This is a 
clear trend that is consistent with percolation theory, as the 
CNTs allow for delocalization of charges, and are effectively 
responsible for how well charges flow in the hybrid system. 
Therefore, for each ratio of carbon nanotubes, the P3HT plays 
a secondary role to hold the hybrid together, but ultimately the 
degree of charge transfer is controlled by the relative mixing 
of different CNTs.

Next, the fact that a graphical regression model can handle 
multiple inputs and outputs can help with data imputation 
(filling gaps in missing data). During data generation, we used 
both simple linear regression and gradient boosting models 
(C  → Y) to predict the conductivity. However, our graphical 
regression model results show that we can leave some values 
(especially the thickness “T”, whose measurement is the most 
time-consuming) to be unmeasured, and the learned graphical 
model could predict “Y” well. Therefore, the measurement 
costs in future experiments can be reduced. Our graphical 
regression model also provides a tool to determine important 
values to predict a given target and detect the relationships 
between them.

Finally, the graph-based machine learning workflow intro-
duced in this paper forms a general approach to build models 
amongst multiple noisy inputs and outputs, especially when 
there is no a priori known relationships between them. This 
is a common occurrence when performing machine learning 
on experimental data. Our method is not only a regression 
model (with a fixed graph) but also a model/feature selec-
tion strategy considering both accuracy and uncertainty, 
with the eventual task of determining an optimal graphical 
model on which to build our regressor. Such an approach has 
resemblance to classical methods in multi-target regressions 
(MTR),[53–56] probabilistic graphical models (PGM),[57] and 
uncertainty estimation learning.[58,59] However, our problem 
setting is sufficiently different from usual statistical applica-
tions, and necessitates the development of novel techniques 
(Refer Section S3.5, Supporting Information for detailed 
discussion).

However, our graphical regression model-based machine 
learning methodology has two limitations. First, if the number 
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of measured attributes increases, the number of possible 
graph regression models increases exponentially. This makes 
the model selection much more expensive. Second, the cur-
rent selection technique focuses on graphs with “short paths”, 
where the output depends on input through limited number 
of intermediate measurements. This proved to work well for 
the current scientific setting, but may not be generally appli-
cable. It is plausible that some input-output relationships may 
have a deep hierarchical structure. We can address both of 
these challenges in the future by improving on the selection 
techniques that minimize the number of graphs to search/
optimize over, taking into account the underlying physical 
principles governing the system under study.

6. Conclusion

We have demonstrated a platform for machine learning-assisted 
high-throughput exploration and optimization for functional 
composites, consisting of regio-regular poly-3-hexylthiophene 
(P3HT), and carbon nanotubes (CNTs). The platform includes 
an automated flow system, drop-casting facility, hyperspectral 
imaging system and four-point probe for fast material pro-
cessing and optical/electrical diagnostics. With the combination 
of this semi-automated high-throughput platform and machine 
learning in the loop, we showed rapid optimization of 5D com-
position space, achieving state-of-the-art electrical conductivity 
close to 1000  S  cm−1. Furthermore, the graphical regression 
model-based machine learning methodology developed here 
may be applied to a wide variety of problems involving noisy 
measurements of several values, where model selection and 
regression must be coupled in a principled way to achieve accu-
rate and robust predictions.
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Supporting Information is available from the Wiley Online Library or 
from the author.
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