
Towards a theory for the emergence of grid and

place cell codes

by

Tzuhsuan Ma

Bachelor of Science in Physics

Submitted to the Department of Brain and Cognitive Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

oMassachusetts Institute of Technology 2020. All rights reserved.

Signature redacted
A uthor

Department of Brain and Cognitive Sciences
November 26, 2019

CSignature redacted,
C ertified by I.......

Matthew A. Wilson
Sherman Fairchild Professor of Neuroscience and Picower Scholar

Thesis Supervisor

Signature redacted
A ccepted by

Rebecca Saxe
John W Jarve (1978) Professor of Brain and Cognitive Sciences

Associate Head, Department of Brain and Cognitive Sciences

I Affiliate, McGovern Institute for Brain Science

RECEIVED

MIT LIBRARIES

SEP 2 3 2021

Towards a theory for the emergence of grid and place cell

codes

by

Tzuhsuan Ma

Submitted to the Department of Brain and Cognitive Sciences
on November 26, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This work utilizes theoretical approaches to answer the question: which functions grid
and place cells perform that directly lead to their own emergence? To answer such a
question, an approach that goes beyond a simple modelling is necessary given the fact
that there could be circuit solutions other than grid or place cells that better perform
these functions. With this reasoning, I adopted a systematic guideline that aims for
an optimization principle attempting to find the optimal solution for performing the
hypothesized functions while reproducing the correct phenomenology.

Within the optimization principle framework, I applied both recurrent neural net-
work (RNN) training and coding-theoretic approaches to set up appropriate opti-
mization problems for testing a given function hypotheses. The descriptive function
hypotheses: 1) Grid cells exist for having a high-capacity and robust path-integrating
code and 2) Place cells exist for having a sequentially-learnable and highly-separable
path-integrating code were adopted. The non-converging performance in training an
RNN to perform a hard navigation task suggests that the attractor dynamics forbids
a network to simultaneously possess online learnability and high coding capacity. Be-
cause of this dynamical constraint in learning, a grid cell circuit has to be hardwired
through some developmental process and cannot be easily modified by an experience-
based synaptic rule without compromising its capacity. On the contrary, a place cell
circuit being able to continually learn a novel environment inevitably have a mere
linear capacity. These results imply that the functional separation of grid and place
cell systems observed in the brain could be a result of an unavoidable dynamical
constraint from their underlying RNNs.

Lastly, a fundamental principle called the tuning-learnability correspondence was
uncovered in pursuit of a sequentially learnable neural implementation for place cells.
It explains that the seemingly incidental existence of conjunctive tuning property is
in fact caused by a necessary metastable attractor dynamics for having sequential
learnability rather than by another functional need attached to a particular tuning
property. In addition, from the unique property of metastable attractor dynamics, I
also predicted that the biased place field propensity recently observed in CA1 sub-

2

region should originate from CA3 due to an inevitable biased activation in the RNN
as a side effect of such a dynamical property. In sum, both this principle and the
subsequent prediction thus provide a new perspective that contradicts the conven-
tional wisdom which often assumed that a certain nonspatial tuning property exists
for performing a relevant task.

Thesis Supervisor: Matthew A. Wilson
Title: Sherman Fairchild Professor of Neuroscience and Picower Scholar

3

Acknowledgments

I thank my advisor, Ila Fiete, for her valid challenges and encouragements that helped

me both venture and think critically when I was new in the lab and to neuroscience;

I also thank her for all the discussions regarding my research, this thesis will not be

possible without her contribution. I thank her husband, Gregory Fiete, for pointing

me a direction towards neuroscience when I was facing such an uncertainty in career

change. It was for them, I can ever be a theorist in the field of neuroscience.

I thank my former advisor, Gennady Shvets, for his advises when I was in physics.

I thank my committee, Matt Wilson, Rebecca Saxe, Laura Colgin, and Sasha

Rakhlin for their continuous supports for my graduation. I thank Matt and Laura

for instructing and guiding me on writing the thesis. Because of their guidance and

kindness, this journey became one of the most enjoyable time in my PhD.

I thank people who were in the Fiete lab: Birgit, Ingmar, Rishi, John, Berk, Biraj,
Ryota, Abhranil, Anastasiya, Lixiang, Chris, and Kalina for our many enjoyable

discussions in science and life. I thank Rishi and John for their warm supports,
encouragement, and being kind when I started to doubt.

I thank my friends in Boston, Manyi, Su, Mikail, Eunice, Mirko, Leenoy, David,
and C.J. for being here with me in the final stage of my PhD. I also thank Erik, Evan,
and Jason for listening to me and helping me tremendously.

I thank my friends in Austin, Haisoyu, Lucy, Wanhsuan, Sariel, Yu-An, Yikuan,
Weijin, Benny, Xing, Xi, Danlu, Panpan, Zhiyuan for their endless caring and the

laughter we shared. I thank Ernie and Kalina for being with me constantly even after

I left Austin. And I thank Luda for all the light brought into my life.

I thank my mom, my dad, and my brother for witnessing my stories and for always

finding some goodness in it. I thank my partner Weimien for what has been, and will

be.

4

Contents

Contents 5

List of Figures 9

List of Tables 12

1 Introduction 13

1.1 Phenom enology . 14

1.1.1 Tuning properties of grid and place cells 14

1.1.2 Circuitry of the dual system 18

1.1.3 Function complementarity in grid-assist architecture 25

1.2 Function hypothesis testing: Searching for the emergence 26

1.2.1 From phenomenology to function hypothesis 27

1.2.2 Experimental and theoretical frameworks on hypothesis testing 28

1.2.3 Emergence from optimizing functions affirms a function hypoth-

esis: an exam ple . 29

1.3 Optimization principle: a theoretical framework for function hypothe-

sis testing . 30

1.3.1 W hy optim ization? . 31

1.3.2 From constraints to an optimization problem 31

1.3.3 Necessity of specific functional, biological, and core constraints 34

1.3.4 In comparison with Marr's three levels of analysis 35

1.4 Structure of the thesis . 36

2 Grid cells emerge as an optimal high-capacity robust code 38

2.1 Introduction . 38

2.1.1 Function hypothesis: High capacity robust coding 38

2.1.2 Optimization principle: Focus on searching necessary functional

constraints . 41

2.1.3 Chapter organisation . 42

5

2.2 From training RNN to coding theoretic approach 42

2.2.1 Training RNNs: Grid cells emerge to perform a task 42

2.2.2 Two RNN training schemes aiming for an optimization principle 43

2.2.3 Deepmind's training scheme & general takeaway- . 50

2.2.4 Function complementarity revisited 57

2.2.5 Coding theoretic approach: Grid cells emerge for specific coding

properties . 58

2.3 Which coding properties lead to grid cells? 60

2.3.1 Grid cell code is translationally invariant (TI): Insight from

binary neurons . 61

2.3.2 TI constraint for continuous neurons 65

2.3.3 W hy a TI code? . 68

2.3.4 Optimization using basis functions and an inherent noise as-

sum ption . 70

2.3.5 Which capacity measure? Euclidean distance vs mutual infor-

m ation . 75

2.3.6 A biological constraint is needed 80

2.4 Scheme A: Dense code with a linear denoising projection 81

2.4.1 A candidate biological constraint targeting sinusoidal tuning

curves . 81

2.4.2 A mechanism for module formation is needed 82

2.4.3 Ad hoc denoising scheme: Advantages of coding theoretic ap-

proach . 85

2.4.4 A denoising scheme that implements tradeoff correctly 95

2.4.5 A capacity involving coding dimensionality is needed for lever-

aging tuning diversity . 97

2.4.6 Remarks of Scheme A . 101

2.5 Scheme B: Sparse code with optimized separability 102

2.5.1 Simple noise assumption and an implicit sparse constraint . . 102

2.5.2 Robustness-separability tradeoff 104

2.5.3 How modules might emerge without a denoising model? 109

2.5.4 Modular periodic solution is not typical 109

2.5.5 Remarks of Scheme B . 114

2.6 Scheme C: A new capacity measure, towards emergence of grid cell code114

2.6.1 New capacity measure demands a long robust coding line . . . 114

2.6.2 How modules might emerge with the new capacity measure? . 119

6

2.6.3 Differentiable capacity measure with softmax

2.6.4 Issues to overcom e .

2.6.5 Outlook and remarks of Scheme C

2.7 Chapter sum m ary .

3 Place cells emerge as an optimal learnable representation guided

by grid cells

3.1 Introduction .

3.1.1 Function hypothesis: Learning distinctive codewords while re-

taining the old .

3.1.2 Optimization principle: Focus on finding learnable neural im-

plem entation .

3.1.3 Chapter organisation .

3.2 Optimal online learning algorithm .

3.2.1 Grid cell activity as an ideal cue to guide formation of new place

field s .

3.2.2 Optimal learning as online sparse manifold transformation . .

3.2.3 Function complementarity revisited

3.2.4 Learning topological codes with flexible manifold transformation

3.3 RNN sequential learnability on multi-environment landmark-prediction

120

121

125

126

128

128

128

131

134

134

135

136

139

141

.. 14 6

3.3.1 Training scheme with random and balance RNN initialization 147

3.3.2 LD attractor dynamics exacerbates catastrophic forgetting . . 150

3.3.3 HD dynamics enables sequential learnability 155

3.3.4 HD dynamics is inherently nonautonomous without intrinsic

representation . 160

3.3.5 Place fields, remapping, and the tuning-learnability correspon-

d ence . 162

3.4 CA3 recurrent network as a learnable path-integrator 168

3.4.1 Pattern completion, pattern separation, and path-integration

in C A 3 . 169

3.4.2 Metastable attractor dynamics enables a learnable path-integrator 171

3.4.3 Experimental implications and predictions 175

3.5 RNN implementation of optimal online learning algorithm 177

3.5.1 k-winner-take-all RNN as a baseline sequential learner 178

3.5.2 Online similarity matching with BPTT algorithm 180

7

task

3.3.1

3.3.2

3.3.3

3.3.4

3.5.3 Persistent biased field propensity: an outcome of metastable

attractor dynam ics .

3.5.4 Experimental predictions in CAl and CA3 place field statistics

3.5.5 Remarks and outlook .

3.6 Chapter sum m ary .

4 Conclusion

A Supplementary Information for Chapter 2

A.1 Proof: a TI code can only be generated by incremental rotations . . .

A.2 A typical continuous TI code is not strictly positive

A.3 Counting m odules .

A.4 Analytical capacity upper-bound for unimodal tuning curves

A.5 Stochastic orthogonal gradient descent

A.6 Modular solutions must be island solutions to be optima

A.7 New capacity measure is a piecewise discrete function of tuning curves

A.8 RNN training hyperparameters for Scheme 1

A.9 RNN training hyperparameters for Scheme 2

A.10 Optimization hyperparameters for Scheme A-i

A.11 Optimization hyperparameters for Scheme A-2

A.12 Optimization hyperparameters for Scheme B-1

A.13 Optimization hyperparameters for Scheme B-2

A.14 Optimization hyperparameters for Scheme C

B Supplementary Information for Chapter 3

B.1 Interpolating codewords are always orthogonal to

codewords ..

B.2

B.3

B.4

B.5

B.6

B.7

. 208

. 209

. 2 11

. 2 1 1

. 2 12

. 2 13

. 2 14

216

the distant landmark

............... 216

Training hyperparameters for the sequential tasks

Evaluating performance using the error of estimated position

LD vs HD manifolds in regular or topological environments

Learning ten environments .

Computing relaxation time .

Simulation hyperparameters for demonstrating persistent propensity

219

220

222

224

225

226

227

8

185

190

190

191

194

198

198

202

203

204

205

205

207

Bibliography

List of Figures

1.1 Grid cell tuning properties . 16

1.2 Place cell tuning properties . 19

1.3 Grid cell or place cell centric paradigm 22

1.4 Periodic tuning curves and cofiring structure of grid cells are not pre-

served after place cell remapping in place-to-grid architecture 23

1.5 Grid and place cell complementary paradigm 26

1.6 Optimization principle framework . 33

1.7 Notion of direct or indirect emergence 35

1.8 Optimization principle frameworks vs. Marr's three levels of analysis 37

2.1 RNN training schemes in a large ID environment 46

2.2 Learning did not converge in Scheme 1 47

2.3 Learning did not converge in Scheme 2 49

2.4 Deepmind's supervised learning schemes in a small 2D environment 50

2.5 Grid cell agent perform vector navigation in Deepmind's RL scheme 55

2.6 A binary grid cell code is not optimal in capacity 62

2.7 Continuous-neuron equivalent of a binary grid cell code 67

2.8 Spatial resolution saturates with increasing number of cells 73

2.9 The upper-bound of spatial resolution scales as 1/o 73

2.10 Linear relation between intrinsic noise o and inverse maximal frequency

w in Fourier basis functions . 76

2.11 Capacity measure as average Euclidean distance or mutual information 79

2.12 A maps of energy-inverse capacity as Loss 1-landscape for 4- or

6-cell TI codes. Good solutions cover most of the landscape 84

2.13 An optimized solution converges to a set of sinusoidal tuning curves

with few m odules . 89

2.14 Statistics of final spectra indicates that a good solution has no special

frequency combination . 90

9

2.15 Optimal number of modules decreases with increasing denoising capa-

b ility . 9 1

2.16 All three loss functions are necessary for the emergence 92

2.17 A solution with a constant frequency ratio of adjacent modules is not

optim al . 93

2.18 Optimal solutions in Scheme A-2 shares the same tuning properties

with Schem e A-i . 99

2.19 Scheme A-2 implements correct tradeoff so that optimal number of

modules decreases with increasing noise level 100

2.20 An optimal solution is unimodal given enough cells 107

2.21 Optimal capacity decreases linearly with noise level 108

2.22 Multi-module solutions are not optimal in Scheme B-2 113

2.23 A good code based on the new capacity measure has uniformly dis-

tributed coding lines . 117

2.24 The regions of optimal solutions based on separability do not overlap

with those based on the new capacity 118

2.25 A maps of energy-negative capacity as Loss 1-landscape for 4- or

6-cell TI codes. A good solution is surrounded by high-energy barriers

in isolation . 119

2.26 Soft version of the new capacity is differentiable and ready for opti-

m ization in Schem e C . 121

2.27 Optimized solutions are yet far from the global optimum 124

3.1 An optimal solution is unimodal given enough cells 133

3.2 A grid cell code is an ideal allocentric cues for guiding a formation of

new place fields . 137

3.3 Online sparse manifold transformation as an optimal algorithm that

generates an independent place cell code with the assistance of grid cells.140

3.4 Place cells can flexibly allocate resources to create a topological code 143

3.5 Different place cell codes can underlie various graphs in the same en-

vironm ent . 145

3.6 Sequential learning scheme of a landmark-prediction task that requires

an RNN both to path-integrate and to avoid catastrophic forgetting . 150

3.7 Qualitatively different learning trajectories of LD and HD networks are

results of their distinct dynamics set by two classes of initial recurrent

connectivity . 152

10

3.8 Qualitatively different learning and testing curves show the presence

of catastrophic forgetting in an LD network and the absence of it in

an HD network . 154

3.9 HD network can learn topological environments with the same efficiency159

3.10 Metastable attractor dynamics of an HD network implies a different

mechanism for path-integration from the conventional representation-

first approach . 163

3.11 Metastable and inherently nonautonomous dynamics of an HD net-

works reveals how place cells might learn and path-integrate 166

3.12 A plausible neural implementation of the optimal online learning algo-

rithm . 184

3.13 A RNN implementation of the optimal online learning algorithm learns

the graph that underlies a certain task trajectory 185

3.14 The observed persistent field propensity of a place cell ensemble could

be a direct consequence of its metastable attractor dynamics during

learning . 188

A.1 A typical continuous TI code is not strictly positive 203

A.2 Any two high-capacity modular solutions are separated by low-capacity

non-modular solutions . 206

A.3 New capacity exhibit discrete jump in value when sweeping the thresh-

old noise . 207

B.1 Mapping between loss and error of estimated position 221

B.2 Manifolds after learning multiple regular environments in the landmark-

prediction task . 222

B.3 Manifolds after learning multiple topological environments in the landmark-

prediction task . 223

B.4 An HD network can learn ten geometrically or topologically different

environm ents . 224

11

List of Tables

2.1 Deepmind's scheme vs Scheme 2 . 53

2.2 Binary-neuron representation of modular arithmetic of a discrete position 64

A.1 Scheme 1 - Place cells with WTA dynamics 208

A.2 Scheme 2 - Softmax nonlinearity to approximate WTA dynamics . . 209

A.3 Scheme A-1 - Ad hoc denoising model 211

A.4 Scheme A-2 - Denoising model that implements correct tradeoff . . . 212

A.5 Scheme B-i - Preliminary of Scheme B-2 212

A.6 Scheme B-2 - Simple scheme without denoiser 213

A.7 Scheme C - Simple scheme with new capacity measure 214

B.I Sequential landmark-prediction tasks 219

B.2 Demonstration of place cells' biased propensity 226

12

Chapter 1

Introduction

The discovery of place cells and grid cells marked an important step in studying

neural basis of cognition. Both place and grid cells encode position with precision;

they are only active when the animal is at either one or multiple particular loca-

tions. Most amazingly, these cells even do so when the surrounding sensory cues are

seriously deprived. In contrast to the earlier discovered cell types with their activ-

ities mostly representing sensory stimuli, the circuitry that underlies place or grid

cells must perform computation that involves memory and, subsequently, integration

and inference-in other words, the essential computational ingredients for cognition.

For this reason, place and grid cells could be important model systems for studying

cognition down to the circuit level.

Curiously enough, although both place and grid cells are spatial cells, their tuning

curves and dynamics are distinctly different. It raises the question-why isn't there

just one type of spatial cells if position coding is the only goal? To bring some insights

into this question, I hypothesized the major functions of place and grid cells based

on the previous studies, and tested these hypotheses using a theoretical framework

called optimization principle. Thus, the main objective of this thesis is to find out

precisely what functions place and grid cells perform that necessarily lead to their

own emergence. We will see that, in fact, place and grid cells provide two spatial

codes that are complementary to each other and both are essential for the brain to

perform spatial tasks.

In this chapter, I will start with a brief review on the tuning properties and

circuitries of grid and place cells from both experimental and theoretical perspec-

tives. Before going into any specific function hypotheses, to be discussed in Chapter

13

2 and 3, I will state a fundamental stance of this thesis-which assumes that grid

and place cells are functionally complementary-along with its implication on the

circuitry. I will then introduce the framework of optimization principle and point out

how it differs from a more conventional methodology of hypothesis testing: theoret-

ical modeling. Lastly, I will show that the framework of optimization principle well

complements Marr's three levels of analysis with an additional emphasis on neural

implementations and learning dynamics.

1.1 Phenomenology

Place and grid cells display both slow and fast dynamics. The slow dynamics, or fir-

ing rate dynamics, on the time scale of a second and above, determines their tuning

properties. On the other hand, the fast dynamics, or spike dynamics, on the time

scale of small fractions of a second and below, produces effects like theta or gamma

oscillations, phase precessions, sharp-wave ripples, or sequences (Colgin, 2016). The

focus of this thesis and the function hypotheses to be discussed are based on phenom-

ena from the slow dynamics. Therefore, the following introduction will be limited

mainly to the tuning properties and to the circuit mechanism based on the canonical

neural network rate equation (Ermentrout and Terman, 2010).

1.1.1 Tuning properties of grid and place cells

Although the firing rate of a cell, or its activity, is changing rapidly over the course

of seconds, the tuning curves that underlies it are stable over the course of minutes,
hours, or even days. For our purposes in later formulating function hypotheses, it is

useful to categorize a tuning property to be either static or dynamic. A static tuning

property concerns a relatively fixed tuning shape of a cell within the course of a few

minutes, whereas a dynamic tuning property focuses on the change of each tuning

curve as well as the change of cofiring structure at the population level over the course

of tens of minutes to hours.

Static tuning properties of grid cells

Periodic tuning curves with locally narrow fields. As first discovered by Hafting et al.

(2005), a grid cell in medial entorhinal cortex (MEC) of a freely moving rat fired a

14

burst of spikes only at certain locations within a small square box; the multiple firing

locations eventually resembled a triangular lattice after the rat explored the entire

box as shown in Figure 1.1(b); the identical local fields at lattice points is a narrow

gaussian function with a width 30cm. The periodic tuning curve of a grid cell can

be well described by von Mises functions (Mathis et al., 2013).

Multi-periodicity and Modularity. The scale of the triangular lattice of a grid cell

ranges from 25cm to 3m (Brun et al., 2008) (but the range is more likely to be from

30cm to im (Stensola et al., 2012)). The spacing of a grid cell progressively increases

from dorsal to ventral MEC as shown in Figure 1.1(b,c). Surprisingly, however,

Stensola et al. (2012) found that this increasing of grid spacing is not continuous for

62 simultaneously recorded grid cells; instead, only three or four particular periods

exist for a single rat. In other words, an ensemble of grid cells in MEC forms discrete

modules with different periods.

Constant grid-spacing ratio. Moreover, the ratios of the period of two adjacent mod-

ules are approximately a constant, pi/pi+1 ~ 1.4, across different rats (Stensola et al.,
2012).

Uniform phase coverage within a module. Because the grid cell tuning curves are

periodic, one can assign a unique phase combination for every tuning curves within

a module (two phases for a 2D periodic function). Given that one can assign an

arbitrarily chosen tuning curve to be zero-phase, other tuning curves with non-zero

phase correspond to shifted versions-as shown in Figure 1.1(d). It turns out that

the grid cells within a module have uniform distribution in their phases such that

every part of space in the box is equally covered (Hafting et al., 2005).

Dynamic tuning properties of grid cells

Realignment and conserved cofiring structure during sleep. The dynamic tuning prop-

erty of a grid cell ensemble was revealed when a rat was moved to a different envi-

ronment. As shown in Figure 1.1(e), the tuning curves underwent both a translation

and rotation (Fyhn et al., 2007) after the movement from a square to a circular en-

vironment-a phenomenon termed the grid cell realignment. Crucially, the cells that

cofired within a module realigned in the same way such that their tuning correlation

was preserved. Amazingly, even during sleep, this cofire structure among all cells

within a module was preserved as well (Trettel et al., 2019; Gardner et al., 2019).

Because that the grid cell realignment can be easily explained away by a simple reset

15

on the default orientation and displacement of tuning curves when an animal enters a

new environment, these experimental findings strongly suggest a static nature of grid

cell tuning curves. In other words, both the tuning curves and the circuitry underlies

them remain largely unchanged over experiences.

(a) (b) Cell 1 Cell 2 Cell 3 Cell 4

~4L*NIL

Dorsal +- -+ Ventral

2 meters

62 grid cells
Dorsal Ventral 984

S ** . 65.0

*

(d)

I.r.3

CD
CD

P 48.4

38.8

0 0.03
Prob.

Cell 1

Cell 2

Cell3

Imr

Figure 1.1: Grid cell tuning properties. (a) Multiple cells in a rat's medial entorhinal

cortex (MEC) are simultaneous recorded during free exploration in a small environment. (b)
Single grid cell tuning curves exhibit a triangular lattice arrangement. The spacing between

any two neighboring local fields is smaller in dorsal MEC and increases towards ventral
MEC. (c) Grid spacing statistics from 62 simultaneous recorded cells shows a multimodal

distribution. It revealed that a population of grid cells forms multiple modules with spacing

ranging roughly from 40 cm to 1m. (d) Within a module, all grid cell tuning curves differ

only by a 2D translation which can be specified by two phases. The phases are uniformly

distributed from 0 to '2pi such that all grid fields together tile space uniformly. (e) Grid
cell realignment happened after moving the rat from a square room to a circular room. it

rotated and translated a cell's original tuning curve without changing the tuning shape.

The cells belong to the same module realign together such that their cofiring structure is

preserved. (b,c) are replotted from (Stensola et al., 2012), (d) from (Hafting et al., 2005),
and (e) from (Fyhn et al., 2007).

Static tuning properties of place cells

Narrow unimodal tuning curves in a small environment. In the hippocampus of a rat,

a place cell have a spatially selective firing field of a gaussian shape with a narrow

16

(C)
100

50

E-S 80
.G 70

:250
40

30

width 30cm located somewhere in a relatively small environment (O'Keefe and Nadel,
1978) as shown in Figure 1.2(b).

Uniform spatial coverage. A place cell ensemble in one subregion (e.g. CA1 or CA3)

has their fields tiling entire environment with roughly a uniform coverage (Muller

et al., 1987). This tuning property together with the narrow unimodal tuning shape

show that there should be only a small fraction of cells that fire at any time because

each cell only fires in a small region within the environment. For example, it has been

recorded that there are 3% of active cells (with a rate threshold 1.5 Hz) at any time

in CA3 subregion (Leutgeb et al., 2004).

Different tuning widths. Similar to grid cells, place cells also have multiple scales in

their tuning width that progressively increases from dorsal to middle with an average

ranging from 24cm to 42cm (Maurer et al., 2005)-as shown in Figure 1.2(c) with

two example cells. However, unlike grid cells, there is no sign of modularity in a place

cell ensemble.

Multimodal tuning curves in a large environment with biased field propensity. In a

large environment, a place cell eventually fires at multiple locations. Rich, Liaw

and Lee (2014) demonstrated, with 253 simultaneously recorded cells, that most cells

display many fields in a 45m long track as shown in Figure 1.2(d). The multimodal

tuning property immediately implies that the resource of a place cell ensemble is

limited, in which the unused cells eventually run out so that the cells need to be

reused for encoding new locations. In such a reasoning, every cell should be activated

equally likely in order to maximize coding capacity. Surprisingly, the number of place

fields for each cell is far from a constant. Rather, they follow a Gamma-Poisson

distribution for which more than one-third of the cells are completely silent on the

one extreme, and a few cells have more than twenty fields on the other extreme (Rich

et al., 2014).

Dynamic tuning properties of place cells

Rapid formation of place fields in a novel environment. When a rat first introduced

to a novel environment, the firing field of a place cell is unstable. But after exploring

in a relatively small environment for 10 mins (about revisiting every location 3 or 4

times), a set of the place fields, or a map, are stabilized (Wilson and McNaughton,
1993).

Retaining previous learned place fields in a familiar environment. When a rat returns

17

to a familiar environment, the same set of place fields will immediately be reactivated

indicating that place cell ensemble has a way to store such a map in its connectivity.

More importantly, a place cell ensemble can continuously learning and remembering

multiple environments (Alme et al., 2014).

Remapping. If one compares a newly learnt map to an old one, an individual cell

fires at a different location in different environments. More importantly, the cofiring

structure among all place cells also changed to such an extreme that the firing loca-

tion of each cell randomized, a phenomenon named global remapping (Muller et al.,

1987). It's been shown that the hippocampus can store up to eleven maps with lit-

tle correlations between any of the two maps (Alme et al., 2014). The hippocampal

remapping also comes with the other classes (see a comprehensive review (Leutgeb

et al., 2007) for more details); another prominent class is called rate remapping for

which the peak firing rate of individual cells change instead of the firing location.

Reactivation of recent firing patterns during sleep. During sleep, place cells are still

active with their firing pattern resembles that during awake to a certain extent. More

specifically the cofiring structure of a place cell ensemble resembles that of the recent

experience but not prior to that (Wilson and McNaughton, 1994) and this structure

decays rapidly during subsequent sleep (Kudrimoti et al., 1999).

1.1.2 Circuitry of the dual system

Studying circuitry in the brain is helpful for gaining insights about the mechanism

that might underlie a certain neural activity. It is especially helpful for distinguishing

which aspects of a given phenomenon are responsible for a functional need or simply

exist because of biological constraints. A few experimental and theoretical investiga-

tions have revealed certain aspects regarding what circuitry underlies grid or place

cells separately. More interestingly, the two circuits have also been studied together

to better understand the functions of such a dual system. But so far, the reason for

the brain to have both systems remains unknown. Below, I will briefly talk about the

circuits of grid and place cells separately, and then I will discuss two circuit paradigms

for the dual systems-i.e., either place-centric or grid-centric paradigm. I will then

point out the issues of such paradigms for the fact that 1) they violate the function

complementarity standpoint of this thesis and 2) for some important contradictions

to experimental findings.

18

(b)

Cell 1 Cell 2 Cel 3 Ce 4 Cel 15 Cel 6 Cell 7 Cell 8 Cell 9 Cell 10 Cell 11 Cell 12

(C) Dorsal Middle
pyramidal cell pyramidal cell

160 -

60 -

E

c 80 -- L40- 20

0 100 0 100
Position (cm)

(d)
1E:-*^

253

If V tt

0

45 meters

100

Gamnma-Poisson

.40 Equal Poissson

2 0

aL
0 e 10 15 20 25 30

Number of fields per cell

Figure 1.2: Place cell tuning properties. (a) Multiple cells in a rat's hippocampus are
simultaneous recorded during free exploration in a small environment. (b) Single place cell
tuning curves exhibit a unimodal narrow field. The fields from the population of cells tiles
entire room uniformly. When the rat was introduced to a new environment (from square to
circular room), a new set of fields emerge after 10-min exploration, and a global remapping
happened where both the firing locations and the cofiring structure among all cells are not
preserved. When the rat is reintroduced to a familiar environment (square room), the place
fields retained. (c) Place field size progressively increases from dorsal to middle with an
average ranging, from 24cm to 42cm. (d) In a large environments, multiple place fields with
a biased field propensity was observed. The distribution of the number of fields for 253 cells
is Gamma-Poisson instead of regular Poisson in the case if all cells have the same number of
fields on average. (b) is replotted from (Fyhn et al., 2007), (c) from (Maurer et al., 2005),
and (d) from (Rich et al., 2014).

Grid cell circuit: an RNN with topographic uniform local connections

Theoretically, it has been shown that an RNN-with uniform local connections (i.e.,

a cell connects to its neighbors in exactly the same way as everyone else does) and

a nonlinear activation (capable of creating versatile attractor geometries) -possesses

a continuous attractor with each state on the attractor that resembles a periodic

activity pattern (Fuhs, 2006; Burak and Fiete, 2009). If a feedforward velocity input

is properly incorporated, the continuous attractor can path-integrate such that a

periodic activity pattern (of multiple active bumps) moves within the neural ensemble

precisely tracking the animal's position in real time. Consequently, a cell will start to

19

(a)

2 meters

fire whenever an activity bump moves towards it. And since the bumps are arranged

periodically, the cell will have a periodic tuning curve just like a grid cell.

This uniform local connectivity underlies, so far, all the slow dynamics of a grid cell

ensemble including a preserved cofiring structure within a module across environments

even after grid realignments (Yoon et al., 2013), as well as the preserved cofiring

structure during sleep (Trettel et al., 2019; Gardner et al., 2019). Even in a non-

circular or a non-square environment when grid cells display a highly distorted tuning

curves, the cofiring structure is still preserved (Barry et al., 2007; Stensola et al., 2015).

Most recently, a more direct evidence also showed a topographic organization of grid

cells on a two-dimensional neural sheet (Gu et al., 2018). For which the neighbor

cells belong to the same module, have similar firing pattern, and the dropping and

rising of similarity, while moving on the neural sheet, follows closely with the tuning

curves from a continuous attractor network with uniform local connections.

Place cell circuit: an RNN with non-topographic connections

Unlike grid cells, there is no topographic organization in the recurrent connectivity of

CA3 place cells (O'Keefe et al., 1998; Redish et al., 2001; Guzman et al., 2016) with,
on average, one out of 300,000 CA3 cells receiving inputs from the other 12,000 CA3

cells (Witter and Amaral, 2004; Rolls, 2013). The apparent random connectivity

is closely related to the global remapping property due to the fact that a single

fixed set of connections (after learning multiple environments) can generate multiple

uncorrelated sets of place fields; that is, two cells with similar tuning curves in one

environment could have very different tuning curves in another one such that it is

impossible to have a topographic organization among CA3 cells.

In theory, multiple sets of place fields can also be generated from an attractor net-

work called the multichart attractor network (McNaughton et al., 1996; Samsonovich

and McNaughton, 1997; Tsodyks, 2005) which stores multiple uncorrelated continu-

ous attractors. The connectivity of a multichart attractor network is random (and

symmetric) which agrees with the experimental findings. However there are many

unresolved issues regarding the biological implausibility from such a circuitry and

from the dynamics it generates as I will address and discuss in detail in Chapter 3

(Section 3.4).

20

Grid- or place-centric paradigm

Having known the connectivity of individual circuits, I will now discuss two circuit

paradigms for the dual system. In a grid-centric paradigm, the grid cell representa-

tion is assumed to be functionally relevant to behaviors directly, whereas the place

cell representation is some intermediate step for finally transforming sensory or self-

motion cues to the grid cell representation. The corresponding circuit thus consists

of a place-to-grid feedforward projection as shown in Figure 1.3(a). Similarly, in a

place-centric paradigm, the circuit consists of a grid-to-place projection as shown in

Figure 1.3(b). The focus of the past theoretical works have been only to understand

how this feedforward projection gives rise to the downstream target representation

given that the upstream representation already exists. One issue of these studies is

that they did not provide any insights to the questions: 1) how does the upstream

circuit come about, and 2) what exactly are the functions needed to perform such

that the downstream representation is required. The purpose of this thesis is to

gain insights regarding these questions by searching for the emergence based on the

hypothesized functions (to be discussed in Section 1.2). Below, I pointed out the

inconsistencies between these two circuit paradigms and the experimental results.

Place-to-grid architecture

The motivation behind this architecture was based on some experimental findings that

1) place cells emerge few weeks prior to grid cells during their development (Langston

et al., 2010; Wills et al., 2010) and 2) grid cells lose their triangular firing pattern after

hippocampal inactivation (Bonnevie et al., 2013). However, none of those observations

provides a functional reason for such an architecture. To motivate it on the basis of

functions, Dordek et al. (2016) suggested that the downstream grid cell ensemble

performs principal component analysis (PCA) on the upstream place cell population

activities. In so doing, a grid cell code is a compressed version of a place cell code

via dimensionality reduction. Such a compression has been theoretically shown to

be beneficial in the visual system (Riesenhuber and Poggio, 1999; DiCarlo and Cox,

2007; DiCarlo et al., 2012). However, in the case of spatial codes, a theoretical

demonstration on its advantages is still lacking1 . Regardless, I will discuss two major

'In the visual system, dimensionality reduction makes sense given the high-dimensionality of a
raw image. In comparison, a spatial variable are very low-dimensional (ID or 2D). It therefore makes
little sense to first encode using a high-dimensional representation (place cell code) and then again
reduce back to a lower-dimensional representation (grid cell code).

21

Grid- or place-centric paradigm

(a) To downstream (b) To downstream
circuits circuits

Grid cells Place cells

f t
Place cells Grid cells

Self-motion Sensory Self-motion :'Sensory
cues cues cues -.. cues

Figure 1.3: Grid cell or place cell centric paradigm. (a) Place-to-grid architecture

with pre-existing place cells that transform sensory and self-motion cues to an allocentric
position code and a feedforward projection, learnt via Hebbian rule, that performs principal
component analysis (PCA) on the upstream place code (Dordek et al., 2016). Grid cell code
can be seen as a compressed spatial code that might be useful for the downstream circuits
(b) Grid-to-place architecture with pre-existing grid cells that path-integrate to provide an

allocentric position code and a feedforward projection, learnt via Hebbian rule (Sreenivasan
and Fiete, 2011), along with a winner-take-all place cell layer serving as a decoder. The
decoded representation as a place cell code is easier to be interpreted for the downstream
circuit.

predictions from this architecture that do not coincide with experimental observations.

First, although the feedforward projections in this architecture can be learned-with

a modified hebbian rule and a non-negativity constraint-such that the downstream

cells have triangular fields like grid cells, the model fails to produce modules (a major

characteristic of grid cells) even after adding lateral connections within the output

layer due to the fact that these cells were doing PCA largely independently.

Second, unlike grid cells, both the periodic tuning curves and cofiring structure

would not be preserved after place cell remapping as illustrated in Figure 1.4. This

example shows that a learnt feedforward projections in Environment 1 should have

reminiscence in Environment 2 when the animal is first introduced to. Followed by

a random shuffling of the place fields (global remapping), the original feedforward

projections produce aperiodic tuning curves which was never observed in grid cells.

And the change in the cofiring structure also contradicts the effect of grid realignment

that otherwise preserves it as discussed in Section 1.1.1.

To resolve these contradictions, one may consider learning the recurrent connec-

22

tivity within output layer too (Widloski and Fiete, 2014) to build a stable continuous

attractor that underlies periodic tuning curves. The issue is that such a remedy does

not suggest any functional roles for this architecture either. On the other hand, there

is another speculation regarding vector navigation (Bush et al., 2015; Banino et al.,

2018; Baram et al., 2018) that do not regard a grid cell code to be a compressed spa-

tial code. Instead, they hypothesized that the long-distance correlation from grid cell

tuning curves is beneficial for performing vector navigation. However, a sound rea-

soning and demonstration are necessary before casting this speculation into a theory

(more discussion on vector navigation in Chapter 2).

(a) Env 1: Grid cells do PCA after learning feedforward projections via Hebbian rule.

PCs

•GC1
Two neay cofinng

•GC 2

GC 3

position

(b) Env2: Grid cells remap with place cells if feedforward projections are fixed.

Apenodic tuning

GC1
.afterreapping

Change in cofting
structure

position

Figure 1.4: Periodic tuning curves and cofiring structure of grid cells are not
preserved after place cell remapping in place-to-grid architecture. (a) The place
cell tuning curves (black curves ordered by field location) in a 1D environment provide
feedforward inputs to three example grid cells. The topographic feedforward connections
learnt via Hebbian-type rule generate periodic tuning curves of grid cells that equivalently
do principal component analysis on the place cell code (Dotdek et al., 2016). Grid cell 1 and
2 are a slight shifted versions of each other so that they cofire with high probability. (b)
With the previously learnt feedforward projections, the three grid cells lose their periodic
tuning curves after the place cells remap. In addition, Grid cell 1 and 2 tuning curves have
little correlations so that they rarely cofire in this new environment.

23

Grid-to-place architecture

The interpretation of grid-to-place architecture is relatively straightforward in which

the place cell ensemble serves as a winner-take-all (WTA) decoder that transforms

a complex dense representation of grid cells to a simpler sparse representation such

that the animal's location can be directly read out (Sreenivasan and Fiete, 2011; Bush

et al., 2015; Stemmler et al., 2015). However, this architecture directly contradicts

some of the experimental results that agree with the place-to-grid architecture as

mentioned above. But even putting those contradictions aside, there are still three

predictions come out of this architecture that qualitatively do not agree with the

experiments.

First, in experiments, place fields in a familiar environment remained intact after

an inactivation of grid cells by either a specific removement of NMDA glutamate

receptors (Gil et al., 2018) or by a disruption of theta oscillations (Brandon et al.,

2014). The latter experiment also showed that a new set of distinct place fields can

still form in a novel environment after grid cell inactivation. Yet the grid-to-place

architecture predicts otherwise.

Second, in experiments, during the initial exploration of a novel environment,

the place fields kept changing until finally stabilized after 10 mins (Wilson and Mc-

Naughton, 1993); in contrast, the fields were retained immediately when the animal

was placed in a familiar environment. However, the grid-to-place architecture requires

a relatively fixed decoder once it is learnt in order to maintain the same fields in a

familiar environment; consequently the fixed decoder should immediately produce a

new set of place fields in a novel environment without going through another learning

process.

Finally, following the last reasoning, the subsequent sets of place fields should not

be entirely uncorrelated across environments and exhibit a certain degree of regularity

given that 1) there is only one decoder and 2) there is only one set of grid cells with

highly regular activity patterns. At first glance, this prediction about an existent

regularity in place cell tuning curves contradicts the experimental conclusion that the

tuning curves across environments are highly uncorrelated. However, the signature

of regularity could be small or hidden in some higher order statistics. With that, this

potential regularity remains to be theoretically quantified and experimentally tested.

24

1.1.3 Function complementarity in grid-assist architecture

Grid-place complementary paradigm

From the discussion above, it is clear that neither of the two extreme architectures

of grid- or place-centric paradigm can account for all experimental evidence. The

lack of a specific theoretical motive also suggests a more reasonable paradigm that

considers grid and place cell systems have complementary functions. There has been

theoretical hypotheses that a grid cell ensemble with modular periodic tuning curves

provides a topographic spatial code with metric information from which the distance

and direction between any two locations can be precisely decoded (Moser et al., 2015),
whereas a place cell ensemble with unimodal tuning curves does not provide a precise

metric information but mostly encodes a graph that captures the spatial relationship

among different locations, a property that defines topological codes (Chen et al., 2012,

2014; Curto, 2016; Curto et al., 2017; Dabaghian et al., 2012, 2014; Low et al., 2018)

There have been hints from either numerical simulations (Banino et al., 2018) or

experiments(Morris et al., 1982; Gil et al., 2018) that either one of the two systems

could be important depending on the tasks. However, it remains unclear under which

circumstances a topological code is more advantageous than a topographic code, or

vice versa. The question whether a dual topological-topographic code is necessary for

a more general task needs to be answered as well. Having said that, it is without a

doubt that the two systems are both essential for survival and one cannot simply be

replaced by another. The grid-place complementary paradigm is thus a reasonable

standpoint. Below, I will briefly discuss a more detailed architectural assumption for

exploring this paradigm in the remaining chapters.

Grid-assist architecture

A grid-assist architecture illustrated in Figure 1.5 has the grid cell and place cell

circuits operating independently. Both circuits process sensory and self-motion cues

to give rise to their own distinct dynamics and tuning properties. And both provide

the processed information to the downstream circuits. In this particular architecture,
I consider a minimal interaction between the two circuits in which the grid cells

provide sporadic feedforward inputs and supervised signal that assists place field

formation during the learning phase in a new environment. After learning, in a

familiar environment, place cell circuit goes back to operate on its own. Without

25

going into any functional reasons for this particular choice of architecture (which will

be discussed in Chapter 3), it is worth mentioning that the grid-assist architecture

is compatible with experimental results; that is, 1) the circuit underlies grid cells

are largely fixed, whereas 2) the circuit underlies place cells changes on the demand

through experience as discussed earlier in Sections 1.1.1 and 1.2.

Grid-place complementary paradigm
with grid-assist architecture

Sensory :---- PTo downstream
.. cues .: --.) ccircuits

Sporadic inputs + superv. signal
during learning new fields

Self-motion Grid cells To downstream
cues * circuits

Figure 1.5: Grid and place cell complementary paradigm. In this paradigm, both
grid cell and place cell representations have particular functions that are complementary
to each other, and both representations are important for downstream circuits. A specific
architecture called grid-assist architecture within this paradigm is adopted by this thesis.
In which, the grid cells play an additional role that provide either a sporadic inputs or a
supervising signal only during the period of place field formation in a novel environment.
After learning, the two circuits operates independently. More details about this architecture
will be discussed in Chapter 3.

1.2 Function hypothesis testing: Searching for the

emergence

A function hypothesis in biology is a type of hypothesis that is lacking in other natural

sciences like physics or chemistry. Going beyond establishing causation, It concerns

purposes or functions for the existence of a given phenomenon (Wilson, 1991). In this

section, I will first clarify the distinction between a function hypothesis and a more

generic hypothesis in science. Then I will discuss how testing a function hypothesis

requires a different approach then modeling, i.e., it requires to search for the emergence

by demanding the system to perform hypothesized functions. At last, I will provide

one example of the early visual system about how searching for the emergence can

bring solid insights about its functions.

26

1.2.1 From phenomenology to function hypothesis

A generic hypothesis establishes a causal relation. Most of the time, it takes multiple

cycles of hypothesizing, testing, re-hypothesizing, and re-testing before a well thought

out hypothesis to be formalized. But in general, given an initial observation of a

few related phenomena, a scientific hypothesis aims to find out causal relationships

among them. For example, it has been observed that CA1 and CA3 place cells behave

similarly (Leutgeb et al., 2004) to a large degree. Given the anatomical observations

that 1) there are lots of connections between the two subregions, 2) there is no obvious

recurrent connections among CA1 cells, and 3) there are lots of recurrent connections

among CA3 cells (Witter and Amaral, 2004), one might hypothesize that the stable

CAl place fields are caused by the feedforward inputs from the CA3 place cells. Note

that this hypothesis does not care about what functions either CAl or CA3 or both

subregions might perform, but only about establishing a causal relation (Krakauer

et al., 2017).

A function hypothesis concerns purposive phenomena. When one talks about func-
tions based on an observation, one implicitly assumes that a certain observed phe-

nomenon exists for the purpose of having these functions. If finding out the causal

relations among correlated phenomena is to answer the how question (how it works),
finding out the functions underlies a phenomenon is to answer the why question (why

it exists). The function, or purpose even, of a given neural phenomenon can be of

either low- or high-level. A low level function could be a certain coding or dynamical

property of a system that is important as the part of a higher-level goal. On the other

hand, a high-level function can be directly related to a "goal-oriented" behavior, e.g.,
moving body in certain ways for minimizing energy costs, making a series of decisions

for maximizing rewards, or perhaps just to simply play and explore.

Formulating a function hypothesis. A function hypothesis about the brain often

started from relating the temporal sequence of a neural activity to an ongoing behav-

ior. The construction of tuning curves is the most common first step: to find task or

behaviorally relevant variables (e.g. position, speed, time, audio frequency, olfactory

concentration, visual intensity, color, shape, etc.) such that the observed neurons

selectively fire in response to them. Next, one may analyze an ensemble of cells with

the same selectivity to relevant variables, and study whether such a population code is

sufficient in solving the task before finally formalizing the function hypothesis. As an

example, the observed orientation selectivity of VI cells in the early visual system has

been hypothesized as object edge filters for compressing the high-dimensional pixel

27

image on the retina before projecting to the downstream circuits (Daugman, 1988;

Tai Sing Lee, 1996). In other words, one may hypothesize: Vi orientation selectivity

exists for a specific function of capturing edge information of an image.

1.2.2 Experimental and theoretical frameworks on hypothesis

testing

As discussed above, a function hypothesis is a statement goes beyond direct causation

because it is not at all clear how the need for such a function can directly cause evo-

lution to produce the corresponding phenomenon. Testing a function hypothesis, on

this ground, is not as straightforward as testing a generic (causation-based) hypothe-

sis. To a certain degree, one would need to imitate the process of evolution, or to seek

for the emergence based on a hypothesized functions. Below I list a few experimental

or theoretical frameworks for testing either a generic or a function hypothesis.

Testing a generic hypothesis: Phenomenon A causes Phenomenon B

In vivo experiment. First, one can probe the upstream system that produce Phe-

nomenon A and see how Phenomenon B responds to this perturbation. Experimen-

talists often lesion or inactivate (e.g. genetic manipulation, drug, optogenetic per-

turbation) the upstream system to see if the downstream Phenomenon B is affected.

Second, once the effect is confirmed, one may try to rescue the upstream system to

see if Phenomenon B is restored. If yes, a direct causal link is established. If no,

the inactivation of upstream system may cause other irreversible effects that subse-

quently affects Phenomenon B. The second rescue step is difficult to perform in early

day lesion experiment but easier in nowadays optogenetics approach or the use of a

reversible neurological drug.

Theoretical modeling. The advantage for a theoretical or numerical modeling is not

only to reproduce the phenomena and understand its mechanism, but also to have

an equivalent system where a more sophisticated perturbation or manipulation can

be performed for establishing causation. For example, in the case of neural network

modeling, individual change in synaptic connections can be made which is otherwise

difficult in experiments. Moreover, given a potentially complex causal link between

Phenomenon A and B, there could be more than one model that can reproduce the

phenomenology. Each of such models could predict their own version of unforeseen

28

phenomena that might later guide the next experiment to discover some previously

unseen Phenomenon C, and therefore establish a more complex and complete causal

link.

Testing a function hypothesis: Phenomenon A exists for Function B

Searching for the emergence. Opposite to the modeling framework which builds a

system that performs Function B from components that contain Phenomenon A,
a framework that searches for the emergence does not hand-craft or prescribe the

phenomenology. Instead, it finds sufficient conditions involving performing Function

B that could lead to Phenomenon A. This framework is a weaker form compared

to the optimization principle framework discussed next. Since this framework does

not find the necessary conditions but only sufficient conditions, it's often hard to

narrow down which subset of conditions might truly attribute to the existence of

phenomenology.

Optimization principle. As the name suggests, an optimization principle framework

involves defining an optimization problem. Specifically, it is to find a system to per-

form Function B and only Function B optimally. In other words, this optimal system

emerges as a result of the necessary conditions for performing Function B. And if the

optimal system also reproduce Phenomenon A, one has affirmed the function hypoth-

esis in the strongest possible form. Below, I will use an example in the early visual

system to explain how this framework could work before a more detailed discussion,
in Section 1.3, for each step in applying this framework.

1.2.3 Emergence from optimizing functions affirms a function

hypothesis: an example

The success in advancing the understanding of early visual system can be largely

attributed to the application of optimization approaches. As an example, I will

discuss below how optimizing a hypothesized function can lead to the emergence of

orientation selectivity of Vi cells in the primate brain (Hubel and Wiesel, 1968). The

function hypothesis stated:

Vi orientation selectivity exist to optimally recover the sources that un-

derlie a natural image.

29

It's worth noting that this hypothesized function were formulated normatively-i.e.,

based only on knowing that such a computation ought to be performed in the brain,

and the computation has almost nothing to do with orientation selectivity at first

glance.

Next, to quantify this function, Bell and Sejnowski (1997) assumed that the

sources of an image have structures going beyond gaussian statistics. And since

the resultant intensity of each pixel on the image is a mixture of multiple sources, its

statistics appear to be more gaussian according to the central limit theorem. Having

known that, one could argue that the intensity statistics from a source is maximally

non-gaussian, so that their recovery means to maximize nongaussianity at the out-

put layer-i.e., the VI cells. Because the lowest order of cumulants for quantifying

nongaussianity is kurtosis, the optimization objective is therefore to maximize the

kurtosis of the intensity statistics from natural images.

Surprisingly, after the optimization using an efficient algorithm that performs an

independent component analysis, the receptive field of a cell at the output layer is

a Gabor filter with localized orientated shape resembling closely the receptive fields

of VI cells. This function hypothesis was therefore affirmed with a much stronger

footing than those earlier studies that assumed and modeled only an edge-detection

capability.

1.3 Optimization principle: a theoretical framework

for function hypothesis testing

From the discussion and a working example in the above section, we have known that

how the optimization principle framework can quantify and test a function hypothesis.

In this section, I will start from motivating the reason behind doing optimization in

studying a biological system. Next, I will define three types of constraints used in

the framework and lay down specific steps which guide the search for an optimization

principle. Finally, I will compare the optimization framework to well-known Marr's

three levels of analysis that attempt to understand the brain by bridging the gap

between animal's behaviors and neural phenomena at the circuit level.

30

1.3.1 Why optimization?

The concept of optimization has been around as long as the study of biology itself.

Looking at nature carefully, it's not hard to see why this notion is so compelling.

The evenly spiral arrangement of sunflower seeds utilizes the property of golden ratio

for maximizing packing density (Mitchison, 1977); the prime 13- and 17-year lifespan

of periodical cicadas keeps their genes that control lifespan intact by minimizing the

probability of cross breeding such that these cicadas emerge all at once to survive

through predator satiation (Cox and Carlton, 2003); or the single-photon detection

in human vision is a result of the evolution pushing the light-detection sensitivity of

photoreceptors up to their physical limit bounded merely by the fundamental neuronal

noise at the molecular level (Bialek, 2012); the list can go on. Although we know

that evolution solves a survival problem heuristically, the fact that optimal solutions

abound in nature suggests that natural selection has imposed strong pressures towards

individuals or groups such that they perform essential functions nearly optimally for

survival within physical limits.

Even not knowing whether an optimal performance is truly required for a par-

ticular case, the principle of optimization in a sense still provides a useful way to

"quantify" an otherwise subjective definition for "functions" in biology. To see this,
consider the fact that there can be many different solutions underlie a single function

each with its own distinct phenomenon. Given that the solution space is vast, the link

between a certain phenomenon and a hypothesized function is weak by default. How-

ever, if one demands optimal performance on the function, it greatly narrows down

the solution space as well as the possible phenomena these solutions can produce.

Thereby, if the phenomenon, produced by one of the remaining solutions, matches

the experimental observations, one can then make a strong claim that the observed

phenomenon in experiment indeed exists for performing such a function.

1.3.2 From constraints to an optimization problem

Throughout the thesis I follow a guideline from the optimization principle framework

as shown in Figure 1.6, in which a function hypothesis can be formulated into a precise

optimization problem. Like mentioned, the rationale behind this framework is to see

whether the optimal solution coincides with the targeted phenomenology. If so, one

claims that the system emerges in the brain for performing such functions. If not,
one is forced to revise the hypothesized functions given the fact that there are other

31

solutions without a given phenomenon that perform these functions better.

From functions to quantitative functional constraints. To formulate an optimization

problem, a descriptive function needs to be quantified. It could be a measure of

performance, e.g. fitness score, cumulative reward, or classification accuracy. It could

also be the measure of a certain coding property, e.g. coding capacity, separability,

decodability, or mutual information. Most of the time, a descriptive function, e.g.

navigation, encompasses too many subcomponents and needs to be carefully broken

down into a few separate functional constraints before formulating a corresponding

optimization problem.

Formulating optimization problem with both functional and biological constraints. Be-

sides functional constraints, biological constraints are equally important in the opti-

mization principle framework, and one should not formulate an optimization problem

without them. As we will see in the following chapters, certain phenomena could only

emerge in the presence of a particular biological constraint. It would be mistaken to

think of any salient phenomena exist for a functional need. An optimization problem

thereby can be loosely defined as

min Loss (fnl, fn2, ... I biol, bio2, ...) (1.1)
0

where the objective function, or the loss function, is a function of both functional or

biological constraints which are parameterized according to an appropriate choice of

parameter space. Without a well defined parameter space, both of these constraints

cannot exist. It is natural to assume a parameter space specifies something physi-

cal-e.g. a neural network with synaptic connections to be optimizable parameters,

but a parameter space can also specify something more abstract, like a set of tuning

curves with an optimizable coefficient matrix (i.e. a coding theoretic approach to be

discussed in Chapter 2).

Optimization, reformulating optimization problem, and revising hypothesis. After for-

mulating an optimization problem, one needs to find its global optimum. For most of

the problem in practice, this is an unsolved problem in computer science. The opti-

mization methods adopted in this thesis are all based on stochastic gradient descent

in which certain local minima may be avoided. For a multi-objective optimization

problem, I developed a method called stochastic orthogonal gradient descent in order

to reach Pareto optimum (Shoval et al., 2012), which will be discussed in Chapter

2. If one manages to reach global optimum (or close to it) but finds a mismatch in

32

phenomenology, a revision in the optimization problem is needed. One could revise

certain biological constraints, reformulate optimization problem by choosing another

system, or even revise the function hypothesis all together until the targeted phenom-

ena emerges as the optimal solution.

Ensuring necessity of each constraint. After the appearance of targeted phenomena,
one has shown a sufficient condition-i.e., the optimization problem with a particular

set of constraints-for the emergence. To acquire an optimization principle, how-

ever, one needs to show such a sufficient condition is necessary as well. The step

of ensuring necessity is less straightforward and rather depends on the format of an

individual optimization problem. For an optimization problem loosely defined above

in Equation (1.1), one could remove each constraint one at a time until a minimal set

of necessary constraints has reached. After the necessity is ensured, an optimization

principle is acquired, and the function hypothesis passes the test.

Phenomenology Hypothesize fns of system Revise fn.
fn1, fn2, ... , etc. hypothesis

Until

emergence ee e No

Formulate optimization problem ptmzfrom constraints: Emergence?
min Loss(fn1, fn2 ,I bio , bio2

Until Yesminimal
constr.

Test necesst ofeach fn o

Figure 1.6: Optimization principle framework. 1) Starting from the phenomenology,
one hypothesizes a set of functions the system performs. 2) Within a chosen parameter
space, 0, that can describe the system, one formulate an optimization problem with a loss
as a function of both functional and biological constraints. 3) If optimizing the parameters
does not lead to the emergence of target phenomena, revise the function hypothesis, or
reformulate the optimization problem until the emergence. 4) After the emergence, test
the necessity of each constraint in the optimization problem until reaching a minimal set of
necessary constraints.

33

1.3.3 Necessity of specific functional, biological, and core con-

straints

Necessity of high- and low-level functional constraints. Intuitively, a brain function

could be either high-level that directly related to behavior or low-level that is part

of a higher level goal. Because of this potential hierarchy, there is a notion of direct

or indirect emergence. A direct emergence guarantees that the condition leading to

it is necessary, whereas an indirect emergence does not. As an example illustrated in

Figure 1.7 and explained in the caption, only low-level functions could lead to a direct

emergence which reaches the criterion in the optimization framework. Therefore, as

will be seen in Chapter 2 and 3, the hypothesized functions for place and grid cells are

broken down to a few low-level functions in terms of coding or dynamical properties.

Biological constraints restrict a parameter space to biologically plausible regions. Sim-

ilar to the philosophy of parameterization for formulating an optimization problem,

biological constraints further narrow down the solution space as regions with biological

plausibility. Similar to functional constraints, a different set of biological constraints

terraforms an energy landscape such that the global optimum is relocated. In practice,

a biological constraint can also take a soft form with a quantitative measure, e.g. en-

ergy consumption, to be optimized. In such a case, a biological constraint have equal

footing as a functional constraint mathematically and does not directly limit search

regions in parameter space with rigid boundaries. Consequently optimizing soft bio-

logical constraints could create a conflict with optimizing functional constraints and

potentially leads to an emergence for the wrong reason-i.e., an emergence mainly

comes from biological constraints such that the function hypothesis cannot be justi-

fied. It is thus important to keep in mind to assign a biological constraint when its

really needed.

Core constraints is always necessary. Unlike a functional or biological constraint, a

core constraint directly account for plausibility of the chosen parameter space for an

optimization problem. The optimization principle framework I laid out demands the

fulfillment of core constraints. In other words, one cannot declare an optimization

principle if the optimal solution is not realizable in the brain even after the emergence.

For example, in a coding theoretic approach, an optimal solution takes the form of

tuning curves; and it is necessary to find a corresponding neural implementation for

the optimization principle to be finalized.

34

Indirect emergence

e'
- - Low-level fn1 s

System 1 (necessary) High-level fn A
(with target (sufficient)
phenomena)

Low-level fn2
-------- (necessary)

System 2 High-level fn B
(with other (nufcet
phenomena)

y% Low-level fn

Figure 1.7: Notion of direct or indirect emergence. System 1 with the targeted

phenomena simultaneously performs both low-level Function 1 and 2 optimally. If an op-

timization problem is formulated at this level, the optimal solution will be System 1 as a

result of direct emergence. However, if an optimization problem is formulated based on a

high-level Function A which consists of all three low-level functions, an indirect emergence

could happen with the optimal solution exhibits characteristics of both System 1 and 2. An

indirect emergence is therefore a result of only a sufficient condition, not a necessary one,
and thus it does not match the criterion in the optimization principle framework.

1.3.4 In comparison with Marr's three levels of analysis

Given that the optimization principle framework connects the circuit-level neural

phenomena to the higher-level functions, we can compare it with Marr's three levels

of analysis (Marr and Poggio, 1976) (also see (Krakauer et al., 2017) for a compre-

hensive review) and see what in addition this framework may offer. As illustrated

in Figure 1.8(a), Marr's three levels start from defining a computation problem that

is essential for the brain to solve. Next, the effort goes into finding an algorithmic

solution that can realistically solve the problem before eventually implement such an

algorithm in a physical system-e.g. the brain. In Marr's framework, each level is a

successive realization step of the previous level following a relatively strict hierarchy.

However, the three analogous levels in the optimization principle framework illus-

trated in Figure 1.8(b) are not strictly hierarchical. In this framework, both the top

and bottom levels have an influence on the middle level. The top level demands not

only "a' solution but "the" solution that is optimal at the algorithmic level. On the

other hand, the bottom level imposes another constraint (the core constraint) that

demands a plausible neural implementation. Having the demands from both levels,

the solution space at the algorithmic level is greatly reduced, and thus more likely to

35

iM

be the only solutions left that nature might have discovered in the brain.

Another potential advantage with these non-hierarchical levels comes from an

equal emphasis on both the algorithmic and implementation level. In Marr's unidi-

rectional realization steps, one naturally attempt to find a working algorithm with

the least parameters (a minimal model) based on the computation problem. How-

ever, even the found solution appears conceptually simple at the algorithmic level,

it might not be at the implementation level. These hierarchical steps thereby create

a bias towards finding a solution that fits human intuition instead of discovering a

solution adopted by the brain. As an example, many algorithms used to model vision

did not concern dynamics at all because of this bias. In contrast, the optimization

principle framework finds a solution that is optimal at both algorithmic and imple-

mentation levels. Because there is no inherent bias to find a minimal algorithm, this

framework could 1) lead to novel insights about how the observed phenomena might

come about due to the dynamical constraints at the implementation level, or 2) lead

to a discovery of an counter-intuitive algorithmic solution that is otherwise plausible

to be implemented in the brain. More recently, in similar philosophy, Poggio (2012)

revisited Marr's three levels of analysis and argued that, to better understand the

brain, one should put more emphasis on the learning dynamics as well.

1.4 Structure of the thesis

The rest of the thesis applies the framework of optimization principle on grid and

place cells separately.

Chapter 2 starts from hypothesizing grid cell functions based on their major tuning

properties and their lack of slow dynamics. Next, an RNN training approach is

applied to encompass only the hypothesized low-level functions. In which, I will

compare my training results to Deepmind's and reason why the training failed to

converge, and what the implications are regarding the grid cell circuit. From there, a

pure coding theoretic approach is developed to circumvent the issues from the RNN

training approach. And it is followed by a journey of formulating and reformulating

the optimization problem with three major optimization schemes each of which aiming

for resolving the issues of the last.

Chapter 3 starts from, again, hypothesizing functions but for place cells. Then, I

will introduce an optimal online learning algorithm as the first half of the optimization

36

(a) Marr's three levels of analysis

Computation problem

realization

Algorithmic solution

Irealization
Implementation

0-,
C4 C

0~ a

CW

(b) Optimization principle

Hypothesized functions

optimization

Optimal algorithmic solution

constraint jrealization
Neural implementation

Figure 1.8: Optimization principle frameworks vs. Marr's three levels of anal-
ysis. (a) The unidirectional hierarchy among three levels inherently create a bias towards
finding minimal algorithmic solution for a given computation problem. The conceptually
easy solution at algorithmic level might not be simple or plausible at implementation level.
(b) The algorithmic level-having constraints from both top and bottom levels-finds opti-
mal solutions for the hypothesized functions that can be implemented in the brain. Without
putting particular emphasis that prioritize the algorithmic level, the optimization principle
framework provides a guideline for discovering a counter-intuitive but otherwise plausible
solution in the brain.

principle that is compatible with finding a neural implementation. Next, I will use

a simplified task to investigate the online learnability of an RNN in order to find

a plausible neural implementation. In which, I compare this learnable RNN to an

existing multichart attractor network model for place cells, discuss how the new model

resolves the implausibility of the old model, and make experimental predictions. At

last, I will illustrate how the optimal algorithm can be implemented based on the

result from the learnable RNN, and, from there, predict the origin of the biased field

propensity observed in the CA1 place cells.

Chapter 4 concludes all the important insights discovered in this work.

37

(aZ

03.

Chapter 2

Grid cells emerge as an optimal

high-capacity robust code

2.1 Introduction

In Chapter 1, we were introduced to the notion of function complementarity in a grid-

assist circuit architecture. It is a fundamental stance of this thesis that regards place

and grid cells as a dual system with different sets of functions that are complementary

to each other. Although this architecture has the two systems as a whole, they are

also largely independent. In it, grid cells are not just to assist place cells for learning

a novel environment; they also have distinct functional roles and can operate in

isolation. Therefore, it is possible to independently formulate a function hypothesis

for grid cells. And for that, the purpose of Chapter 2 is to focus on testing grid cell

function hypotheses alone via different approaches and optimization schemes.

2.1.1 Function hypothesis: High capacity robust coding

In Chapter 1, we were introduced to the tuning properties and circuitry of grid cells.

Here, we will start discussing their potential functions and formulate a plausible

function hypothesis for later testing via optimization principle approach. A function

can be of low-level or high-level. In the context of grid cells, a low-level function

is directly hypothesized as a coding property derived from their tuning properties;
whereas a high-level function can be a combination of a few low-level functions or

something totally new without clear connection to the low-level.

38

A low-level function is a coding property

Recall that there were three essential tuning properties introduced that defines a

population of grid cells:

1. They have spatially periodic tuning curves (Hafting et al., 2005).

2. They form a few discrete modules of different periods (Stensola et al., 2012).

3. Within an individual module, there are uniform phase coverage (Hafting et al.,

2005; Stensola et al., 2012).

A low-level function as a corresponding coding property can be directly derived from

these tuning properties. Fiete et al. (2008) provided theoretically derived coding

properties including:

1. Exponential capacity with respect to the number of cells.

2. Efficient serial update of codewords via parallel modular addition. coverage

(Hafting et al., 2005; Stensola et al., 2012).

The first property regarding coding capacity was derived from the first and second

tuning properties, i.e. a set of modular periodic tuning curves. The derivation fol-

lowed directly from modular arithmetic as will be discussed in detail in Section 2.3

when we talk about binary grid cell code. The second coding property was derived

from all three tuning properties. It describes an efficient codeword progression that

implements a series of updates in animal's location. For this reason, it directly relates

to path-integration. In addition, this coding property can take another format ren-

dering a code translationally invariant (TI) as its importance will be further discussed

in Section 2.3.

A type-i high-level function directly combines coding properties

There exists functions at higher level that is not immediately obvious until one com-

bines few low-level ones. As an example, a grid code has an extra singularly precise

error-correction capability as a result of combining the above two coding properties

(Sreenivasan and Fiete, 2011). To understand how this higher function arises, imagine

a code with a set of modular periodic tuning curves. The global geometric structure

39

of its coding line (assuming a ID spatial code) will be arranged in a nested fashion.

That is, nearby locations are encoded on the same augmented long segment of coding

line, and distant locations are encoded in parallel segments that are packed closely to

save space. In such a coding line arrangement, the posterior of a decoded location is

redistributed leaving a singularly precise sharp peak at true location.

A type-ii high-level function indirectly relates to the coding properties

Other grid cell functions were also proposed that do not have an obvious connection

to the coding properties.

Vector navigation. From observation of extended tuning curves, grid cells have been

hypothesized to perform vector navigation (Bush et al., 2015; Stemmler et al., 2015;

Banino et al., 2018) in which an animal is capable of figuring out a goal-vector-i.e.

the direction and distance of a goal-location from current location-using merely

the codewords of goal and current location. The two type of goal-vector decoding

processes were studied:

1. Direct goal-vector decoding (Bush et al., 2015; Stemmler et al., 2015)

2. Linear-look-ahead goal-vector decoding (Erdem and Hasselmo, 2014, 2012; Ku-

bie and Fenton, 2012)

Both of the above compute a goal-vector as necessary information for vector naviga-

tion. That said, however, it is also possible to perform a similar vector navigation

without explicitly computing a goal-vector as we will discuss in Section 2.2.3. The

process is related to multi-policy successor representation (SR) in a reinforcement

learning (RL) task. Multi-policy SR (Barreto et al., 2016) or simply SR (Stachen-

feld et al., 2017) in spatial RL tasks have been studied extensively. In those studies,
grid cells' peculiar spatially extended tuning curves have been thought to play an

important role in efficiently and effectively building SRs.

Computation in conceptual space. There are also speculations and theories regarding

the functions of grid cells beyond spatial tasks (not the scope of the thesis) which I

list a few below.

1. Better computation in conceptual space (Herz et al., 2017; Behrens et al., 2018)

2. Generalisation of structural knowledge (Whittington et al., 2018)

40

Taken together, we will start pursuing an optimization principle from considering the

two low-level functions. A tentative function hypothesis can be stated as:

Grid cells exist for having a high-capacity and robust path-integrating code.

We will see how this hypothesis stands as we walk the journey of testing the necessity

of each function in various optimization schemes.

2.1.2 Optimization principle: Focus on searching necessary

functional constraints

To test the function hypothesis, we need to further formalize these low-level func-

tions-or coding properties-as a set of functional and biological constraints in pre-

cise mathematical forms. E.g. formulating a set of loss functions in an optimization

problem. But before doing so, we must remember-back in Chapter 1-to fulfill the

non-negotiable core constraint demanded by optimization principle approach. That

is, to demonstrate neural implementation of the corresponding code.

Demonstration of neural implementation in this thesis can be twofold: 1) to show

the existence of a circuit and 2) to show the existence of learning rules that wires up

the circuit. In the context of grid cells, showing the existence of learning rules is not a

concern. The reason is that unlike a place cell circuit-a grid cell circuit, to a large

degree, does not seem to change much across behavioral timescale. Circuit learn-

ing therefore is irrelevant to grid cell functions. And for this reason, we only need

to demonstrate the existence of circuit. This realization gives us a big freedom in

designing optimization scheme, because-as long as we can-it doesn't matter how

we get to the optimal solutions. And for that, we will be carrying out two differ-

ent optimization schemes: RNN training scheme and coding theoretic optimization

scheme.

In the second part of Chapter 2 where we discuss coding theoretic approach, the

focus will be entirely on searching necessary functional and biological constraints on

the code without worrying about underlying circuitry that generates the code. It is

justifiable to do so because it has been demonstrated that for each plausible grid cell

code, there exists a corresponding RNN solution (Burak and Fiete, 2009). More detail

about moving towards coding theoretic approach will be discussed in Section 2.2.

41

2.1.3 Chapter organisation

The rest of Chapter 2 has two parts. Part 1, or Section 2.2, focuses on approach

of RNN training-which fulfills core constraint automatically. At the end of this

section, I will argue-based on both my training results and Deepmind's-why it

makes sense moving from an RNN training to a coding theoretic approach. Part 2,
spanning from Section 2.3 to the end, focuses on coding theoretic approach. It is a

journey of formulating, testing, and reformulating details in constraints regarding the

function hypotheses. At the end of Chapter 2, I will summarize the insights acquired

and-based on those-where we may go next for future study.

2.2 From training RNN to coding theoretic approach

In this section, we will start from an approach of training recurrent neural network

(RNN). I will demonstrate the result from two different schemes aiming to implement

a task that directly demands two main grid cell functions from our earlier function

hypothesis- Grid cells exist for having a high-capacity and robust path-integrating

code. I will explain why both training schemes fail to converge and compared them

to a recent study from Deepmind (Banino et al., 2018) on the same topic.

I will reason why Deepmind's training scheme was not yet based on a concrete

function hypothesis so that the scheme-leading to observation of grid cell forma-

tion-cannot account for an optimization principle. I will discuss their demonstra-

tion of vector navigation-an actual function hypothesis they had in mind-via a

reinforcement learning (RL) task. I will then proceed to give an alternative explana-

tion regarding their vector navigation result, and formulate a corresponding high-level

function hypothesis based on this new explanation.

At last, I will end the section by motivating another entirely different kind of

approach for pursuing an optimization principle, i.e. a coding theoretic approach. I

will point out its advantages and legitimacy regarding removing RNN dynamics.

2.2.1 Training RNNs: Grid cells emerge to perform a task

An approach of RNN training lies on the edge for calling it an approach of optimiza-

tion principle. In general, it is-at most-an approach at the level of searching for

emergence as we discussed in Chapter 1. In an RNN training, we demand the agent

42

to perform a task-which could be thought as a high-level function-that indirectly

combines few low-level functions (or coding properties in context of grid cells). Be-

cause this approach does not target low-level functions, the emergence it provides-if

any-is a result from a combination of all necessary and possibly some unnecessary

constraints. Very often, a designed task inevitably encompasses too many unnecessary

constraints including those of coding, dynamical, or other uncategorizable properties

of RNN. Because of that, one can only claim sufficiency after emergence at best'.

Having said that, training RNN remains appealing and should be our starting

point for that it is the most straightforward setup to translate a function hypothesis

into precise mathematical form. And for that, most importantly, it automatically

fulfill the core constraint-need for a neural implementation-in optimization princi-

ple approach (see Chapter 1 for details). With a careful craft on designed task and

RNN architecture, one may still claim necessity-not just sufficiency-of a task for

emergence. Next, I will show the setups and results from two RNN training schemes,

and discuss how they fit into the criteria of being an optimization principle approach.

2.2.2 Two RNN training schemes aiming for an optimization

principle

To truly make an approach of training RNN an approach of optimization principle, one

needs to clearly separate undesirable constraints of RNN dynamics (and even learning

dynamics) from necessary functional constraints of a task2 . It is however inherently

impossible to do so, because a task is performed by an RNN. Consequently, dynamical

and functional constraints are inevitably tangled in an RNN. As a starting point, one

may keep RNN architecture as simple as possible such that an emergent phenomenon

can be unambiguously attributed to either functional or dynamical constraints. Also,
one should keep task straightforward such that it directly connects to the demanded

coding properties (hypothesized low-level functions).

The tasks behind my two training schemes are the same. They both demand an

RNN agent to accurately self-localize in a large environment. The corresponding loss

function for the task is simply a square error of estimated position. To succeed in

this task-which is a high-level function, an RNN agent needs and only needs the

'Another different task might also cover all necessary constraints attributed to the emergence.
For that, one can, at most, claim sufficiency for these tasks leading to emergence.

2 One cannot claim optimization principle if a dynamical constraint ends up leading to emergence,
because it is not in the function hypothesis.

43

two low-level coding properties in our function hypothesis: 1) high-capacity encoding

and 2) accurate path-integration. For this reason, these training schemes are aiming

for an optimization principle.

Note that, since the loss function assigns none of the two coding properties, these

properties can only be implicitly specified in details of a training environment and an

RNN architecture. Both Scheme 1 and 2 share the same training environment. The

difference between the two lie in their architectures as we will discuss next.

Setup of Scheme 1

The environment and architecture of Scheme 1 is shown in Figure 2.1(a,b). For RNN

agent to acquire path-integration ability-i.e. integrating self-motion cue to self-

location-the landmarks in the environment should be sporadic and only serve for

the purpose of an occasional error correction. I therefore used dilute landmarks as

infrequent as one landmark per meter or every 5 seconds (with an average speed of 20

cm/s). This setup forces an RNN to generate a persistent activity pattern-instead of

simply passing landmark input in a feedforward way to the output-over few seconds

for continuously representing positions between two adjacent landmarks where there

is no external input.

As for acquiring high-capacity encoding, I used a 50-meter-long track. To judge

the relative size of this coding range, we need to compare it to the number of cells used

in the main computation layer, i.e. the grid cell recurrent layer SG in Figure 2.1(b).

I used a heuristic estimates on coding range in unit of number of cells:

L 50m
f ~= 200 ;, 100 (or200)=NG (2.1)

v • 1s 25cm

The number of cells is chosen such that the coding range is large in all my training

schemes. With that, a low-capacity type of encoding (e.g. place cells) is unable to

3 A precise estimate on coding range will need to take RNN dynamics into account. The problem
is challenging because of the unpredictable nature of RNN dynamics-given that there are virtually
infinite many of them-in response to a noise source. An attempt to quantify the effect on a well-
structured continuous attractor network has been made: (Burak and Fiete, 2012). However, much
less is known if the RNN is also highly non-autonomous-receiving landmark and velocity inputs-or
has a non-canonical recurrent dynamics, e.g. a LSTM adopted by Deepmind as will be discussed
next. Also, in practice, to reduce the computation cost in training, the simulation timestep cannot be
too small. This discreteness on the otherwise smooth activities and inputs could cause nonphysical
stochasticity mixed with a physical one. To conclude: If there is no well defined stochasticity in RNN
as a yardstick, there is no sense of counting how many separable states an RNN can produce-i.e.
no reliable way to estimate a coding range.

44

solve the task and will not emerge as an optimal solution.

In this scheme, both grid and place cell layers are recurrent networks. The re-

current, feedforward projection, and feedback projection weights of grid cell layer is

trainable. The dynamics of grid cells evolve according to

(1)s ~u(~ GS GSJ + b0 + a<) , (2.2)
sG1 - qtG + 71 O- (Uext + WGGs'G + WGPstP +N 0GO

where o(u) = [1 + exp(-4(x - 1/2))]-' is a scaled-shifted sigmoid function that

would promote dense activity of grid cells. The velocity input xt are generated via

a correlated random walk. And a weak independent gaussian noise t ~ 9(0, 1) is

added for each cells. The place cell layer is a fixed winner-take-all (WTA) recurrent

network. The dynamics of place cells evolve according to

st+1=(1 -7) st + [UxWp + WPstP +WPGSt P1+ (2.3)

{0 if U < 0
where [u]+ if 0 . And a landmark input x, is only active when the agent

1 if U ;> 0
is near landmark I (see Appendix A.8 for detail). The target and batch loss function

are given as
yt = U x, (2.4)

toa+T Ni~ ~

Batch loss = (Y -P s)2* x -. 9
t=to 1-+

(2.5)

N1

where x1 - 9 is a mask for only activating gradient descent update when

the agent is very close to one of the landmarks. Each training session comes with a

batch of 10 parallel trials. To minimize loss, backpropagation thought time (BPTT)

algorithm was used with a-second-long backprop time window.

To succeed the task, place cell state s, cannot simply pass on the landmark input

Ulxl in real time to its own current activity; i.e. Equation (2.3) would not be satisfied

because of the presence of WTA recurrent dynamics. Rather, it is important that

place cells' last state, its recurrence, and grid cell inputs all work together to generate

coherent temporal dynamics for matching the target.

Results of Scheme A is shown in Figure 2.2. The trained RNN failed to accurately

estimate position-which is measured by running average of Batch loss, and the

45

(a)

\\\\\\\\\\\\\\\\\|| I\ \\11 1\ 1 \ l\\\ \l \I n i I\ || \

50 meters

(b) Scheme 1 (c) Scheme 2

U1 X1 U1 x1

U

WyP • p U, 1SPX

WGP WPG WPG UGa

8G ------- v SG Ev
WGG U, WGa UV

Figure 2.1: RNN training schemes in a large 1D environment. (a) The agent
random walked and is demanded to self-localize in a 50-meter-long 1D circular track. (b)
Network architecture of Scheme 1 had an essential RNN as grid cell layer SG that integrated
velocity input x, and a WTA place cell layer as a decoder of upstream grid cell code for
consistently matching the targeted landmark signals.xj. (c) Architecture of Scheme 2 that
simplified place cell layer by removing its dynamics. In addition, the grid cell layer also
received a landmark input xo for a more stabilized training process. All red-marked weights
are trainable.

trainable weights did not converge-which is measured by the gradient

AWGG ao9Batch loss

OWGG

as shown in Figure 2.2(a). The final loss is roughly 6 times lower than the initial,

this is really not remarkable compared to the result from a similar training scheme

but with a far smaller final loss-the loss is roughly 100 times lower than the initial,

or the error in position estimate is 10 times lower than the initial (keep in mind

that-in that training to be discussed in Chapter 3-the environment is also smaller:

L ~ 1Om).

It is worth pointing out that, in this result, I did see a sign of periodic tuning

curves in the grid cell layer as shown in the enlarged area of Figure 2.2(b), however,

as one might expect, this activity was only transient and kept changing from epochs to

epochs because the non-converging weights. At the time, I speculated the unsuccessful

46

J

training can be attributed to the slow WTA dynamics of the place cell decoder. The

slow dynamics could cause an unstable delay in transmitting grid cell activity pattern

to the final output, and ultimately cause the change in weights never settling down.

For this reason, I removed the dynamics of place cell decoder in the next scheme.

(a) 1 epoch = 5000 timesteps = 10s

0 10000 20000 30000
time (s)

0 20 40 60 80
time (s) in selected epochs

40000 50000

100 120

0 20 40 60 80 100 120
time (s) in selected epochs

60000

0.8

0.6

0.4

0.2

0.0

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0I1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

200-

150-

100-

50-

0-

(C)
2000 -

1500-
U
0 1000-
U

a 500-

0-

(d)
2000 -

1500-

1000 -

500 -

Setup of Scheme 2

In this scheme as shown in Figure 2.1(c), only grid cells has recurrent dynamics. Their

recurrent and feedforward projection weights are the only two trainable parameters.

47

60

40

20

0

- loss
______ ______ ______dWgg*30

(b)

0 20 40 60 80 100 120
time (s) in selected epochs

Figure 2.2: Learning did not converge in Scheme 1. (a) Neither loss as landmark

signal estimation error (blue) nor recurrent weight change (orange) converge for a successful

learning. (b) Grid cell activity in selected epochs. Oscillatory activities started to become

visible (enlarged) toward later epochs, but they were not stable. (c,d) place cell activities

and their corresponding targets.

The recurrent dynamics evolve according to

-G(1 - TI)G + I a (Uvxt + UGiXi + WGGStG + WGPStp + bG + a<t) (2.6)

here o-(u) = [1 + exp(-4(x - 1/2))]-lis a scaled-shifted sigmoid function that would

promote dense activity of grid cells. The velocity input xt are generated via a cor-

related random walk. A landmark input xt is only active when the agent is near

landmark 1 (see Appendix A.9 for detail). And a weak independent gaussian noise
t ~ 9(0, 1) is added for each cells. The place cell layer is now a simple softmax

function that nonlinearly transform the linear sum of grid cell activities. The output

is given as

st+1 = softmax (1/a, U1x' + WPGSG (2.7)

The target and batch loss function are given as

yt U xI/(.1Np), (2.8)

to +T ~Ni~ ~

Batch loss = (* xY - . , (2.9)
t=to -i 1. .

~Ni

where xt - .9 is a mask for only turning on gradient descent when very close

to one of the landmarks. Each training session comes with a batch of 10 parallel trials.

The loss batch loss function is minimized via BPTT algorithm with a-second-long

backprop time window.

To succeed the task, place cell state s, cannot simply pass on the landmark input

Uzx1 in real time to its own output, because the mismatch caused by softmax' non-

linear transformation of the input. Rather, it is important to include grid cell inputs

for compensating the mismatch to the target.

Result of Scheme 2 is shown in Figure 2.3. The major takeaways from this scheme is

the same as that from Scheme 1. The RNN failed to accurately estimate position, the

weight changes did not converge, and while there was a sign of oscillatory activities

for spatially periodic tuning, they were transient and kept changing from epochs to

epochs.

After many attempts and hyperparameter fine-tuning and after comparing to

Deepmind's result-we will discuss next, I concluded that the schemes I set up are

48

too challenging such that the high-performance solutions-potentially grid cell so-

lutions-are rare and unreachable via a gradient-based optimization. These results

further motivated a coding-theoretic optimization approach that may have better

chance to reach these islands of solutions, which we will discuss at the end of this

section.

(a) 1 epoch = 5000 timesteps = 10s

loss

~- -

2

1

0
0

100
75

50

25

0

(C) 0
1000

750
U

500

U 250

0

(d) 0
1000
750

500

250

0

49

20000 40000 60000 80000 100000 120000

(b)
100 -_ ...-

* 25 0.4

___ 1.2

-0.8

00.6

10.2
0 25 50 75 100 125 150 175 200

(C) time (s) in selected epochs

1000 0.0200
0.0175

750 10.0150
0.0125

S500.0100
0.0075
0.0050
0.0025

0 0.0000
0 25 50 75 100 125 150 175 200

(d) time (s) in selected epochs

1000 10.0200
0.0175

750 10.0150
0.0125

500 0.0100
0.0075

250 10.0050
0.0025

0 0.0000
0 25 50 75 100 125 150 175 200

time (s) in selected epochs

Figure 2.3: Learning did not converge in Scheme 2. (a) Neither loss as landmark
signal estimation error (blue) nor recurrent weight change (orange) converge for a successful
learning. (b) Grid cell activity in selected epochs. Oscillatory activities started to become
visible (enlarged) toward later epochs, but they were not stable. (c,d) place cell activities

and their corresponding targets.

2.2.3 Deepmind's training scheme & general takeaway

In this section, we will discuss a result from deepmind's recent paper (Banino et al.,
2018). I would also like to point out a similar attempt has been studied in (Cueva and

Wei, 2018). The training scheme and RNN architecture from Deepmind are shown

in Figure 2.4. At the end of training, they were able to acquire grid cell tuning

curves for 20% of cells in a dropout layer. So, why can their training be successful

whereas mine failed to converge? what is the mechanism in their scheme that drives

grid cell formation? and what does their results speak about function hypotheses

and optimization principle? By the end of this discussion, I hope I can provide some

insight into these questions.

(a) Self-localization task (b)
£(y, z, c, h) = -c log(y) - h log(z)

C h

y Z

g

CO

LSTM ho

2.2 meters [v, ']

Figure 2.4: Deepmind's supervised learning schemes in a small 2D environment.
(a) The agent random walked and demanded to self-localize in a small circular arena with ini-
tial place cell inputs acting as landmark-depicted as background gray points-corrections.
(b) Network architecture with an essential LSTM for path integration and a dropout layer
g for regularization that responsible for the emergence of grid cells. c and h are ground-true
head direction and place signals.

Not aiming for high-capacity encoding

Deepmind had two training schemes. The first one, seeking for grid cell emergence,
is a supervised self-localization task in a small square or circular environment (The

second reinforcement learning (RL) scheme will be brought up later). The size of

the environment is 2.2m x 2.2m. If using unit of number of cells from our heuristic

estimate above, the corresponding coding range is marginally smaller than the number

50

of LSTM, short for long short-term memory, units:

(L () 2 = 215 < 256 = NLSTM

Because of that, a low-capacity code of place cell type is possible to solve the task.

In fact, in the Extended Data of the paper, they did find the solution to be of place

cell type when turning off the dropout regularizer as discussed next.

An additional dropout regularizer and a conventional wisdom in deep

learning

From Figure 2.4(b), we note that the LSTM layer does not directly project to the

output decoder y and z, even though a direct projection would be the most sensi-

ble choice given that LSTM contains all spatial information about agent's position.

Instead, Deepmind inserted an additional dropout layer g in between with 50% of

randomly selected cells being turned off at any instances. In the discussion below, I

would like to leave the argument about biological plausibility of this dropout layer

behind, and just try to understand the effect and meaning of such architecture.

First, the dropout layer contains 512 cells. It therefore has more than enough

capability to preserve all the information from the upstream LSTM layer, which has

only 256 units. Because the training ground is relatively small, there were many

possible solutions potentially all interconnected forming a smooth energy landscape

in the solution space. The convergence of training was therefore guaranteed in a

gradient-based optimization. This follows the first part of a conventional wisdom in

deep learning (Bengio, 2012; Bottou, 2012) which states in essence:

Always use a big model...

And the second part:

... with a strong regularization

If the purpose of a big model is to make optimal solution dense-hence a smooth en-

ergy landscape, a strong regularization is to steer the solution toward certain desirable

region during gradient descent. However, one has to keep in mind that, sometimes,

if a regularizer is too strong, it could practically change the task. For example, a

training loss may saturates at a higher value, such that the final solution does not

51

belong to any solution classes without regularizer. In that case, whatever function

hypothesis this training scheme aims towards must include a description of the regu-

larizer too. In later discussion, I will give an example of tentative function hypothesis

that includes description of regularizer.

Autoencoder or path-integrator?

Although the use of a dropout layer in Deepmind's architecture does not seem to be

the most common choice 4, It did nevertheless effectively implement an information

bottleneck, in the sense of (Tishby et al., 2000), similar to that of an autoencoder, in

which the middle (hidden) layer5 has much less cells than that of input and output

layers. While it's known that such an autoencoder type of architecture can produce

periodic tuning curves (Dordek et al., 2016; Kropff and Treves, 2008). That said,

Deepmind's architecture is not entirely equivalent to this type, nor an autoencoder

type of mechanism without dropout is responsible for the emergence of a modular

code.

In Deepmind's scheme, they had a place cell input only being active initially. For

the rest of a training epoch lasting for 2 seconds, the LSTM layer needs to path

integrate. This makes an effective 30cm inter-landmark distance6 as indicated as

gray dots in Figure 2.4(a). While path-integration for 2 seconds doesn't seem to be

very long, it is nevertheless significant. Taken together, it is likely that the modular

periodic representation Deepmind observed in their training scheme emerged out of

an interplay between the need for an effective feedforward transformation of place cell

inputs and path-integration. However, the precise mechanism for such an emergence

is still unknown.

Why a successful training?

To understand why Deepmind's training were successful and achieved accurate self-

localization. I made a table for comparison to my earlier scheme.

In general, deepmind's scheme had a smaller environment and a powerful LSTM

layer that provided twice more degrees of freedom than a simple RNN layer for more
4 L1 or L2-norm on synaptic connectivity, or dropout directly in main computational layers are

more common and straightforward forms of regularization.
5Although the dropout layer has 512 cells, the effective number of cells is much smaller because

50% of the cells are randomly turned off.
6The effective inter-landmark distance = 2s*15cm/s =30cm.

52

Deepmind Scheme 2
Spatial dimension 2D 1D
Inter-landmark distance 100*.02s*15cm/s = 30cm 50m/50 = Im
Type of recurrent layer LSTM RNN
Number of cells: N 256 LSTM units 100 RNN units
Effective coding range: f 215 200
N > ? Yes No
Noise in cells 50% dropout layer No, or small indep. noise to

each cells

Table 2.1: Deepmind's scheme vs Scheme 2. The difference was threefold: 1) smaller

vs large environment, 2) LSTM vs simple RNN, and 3) dropout vs no noise-type regularizer.

flexible dynamics and easier learning. Another factor that might also attribute to

an easier learning is the use of 2D environment. In 2D, every location has more

neighbors (e.g. left, right, front, and back) than that in 1D. The relative abundance

of neighbors together with the fact that neighbor codewords overlap, a 2D agent

effectively revisited one location more frequently than a ID agent, resulting in a faster

convergence 7 . All three effects together made an overall smoother energy landscape

such that a good solution is more accessible by the process of gradient descent.

The emergence was not from a task based on a function hypothesis

The training recipe provided by Deepmind was not backed by a rigorous function

hypothesis. Based on their results, in hindsight, one may formulate a corresponding

function hypothesis that states:

Grid cells exist for an accurate self-location estimate in a small environ-

ment under presence of extreme noise in circuit.

This hypothesis doesn't sound all that plausible and is unlikely a function performed

by the brain. It is also not the function hypothesis Deepmind had in mind originally

(They emphasized that grid cells perform efficient vector navigation which will be

discussed next.) The training scheme of Deepmind's, in the end, can neither be

accounted for a search for emergence let alone an optimization principle.

Having said that, their observation is nonetheless very interesting and more de-

tailed studies should be done in the future for understanding how such a grid cell like

7Revisiting a location is crucial for gradient-based optimization to incrementally reduce the error.
In BPTT, this is particularly important. A relevant weight change for building up a stable codeword
at one location needs to accumulate before the precious gradient signal get lost in a random walk.

53

code is capable of resisting a strong dropout noise.

A function hypothesis about vector navigation is not responsible for the
emergence

The function hypothesis Deepmind had in mind is vector navigation. Although they

did not seek for emergence based on this function hypothesis. Utilizing grid cells

for vector navigation is nonetheless very interesting and totally worth investigating

in future studies. In the second part of the paper, they demonstrated how a grid

cell code may be advantageous for vector navigation. I would like to highlight one

of their findings and make a remark regarding how it works. The actual mechanism

that underlies their result might be very different from that of goal-vector decoding

(a mechanism Deepmind used to explain their results).

Attempted to observe goal-vector decoding by feeding policy LSTM a
codeword from goal location

In their RL scheme, Deepmind fixed the weight of a grid cell agent and only trained

an external policy LSTM. The policy LSTM has access to the grid cell codeword

(activity pattern) of the current location as well as that of the goal location. They

claimed that the agent is inherently able to use these two codewords to decode a

goal-vector (Bush et al., 2015; Stemmler et al., 2015) at any given time for a direct

marching toward the goal. The evidence they provided is shown in Figure 2.5 where

the agent had been trained when only the 5th door was opened. In the test runs,
however, all 5 doors were opened. One can clearly see the change in the agent's policy.

No explicit goal-vector decoder and no linear-look-ahead circuitry

The claim of observing vector navigation is however questionable. First, for a real-

time explicit goal-vector decoding to be possible, there must be an elaborate external

decoder built in the system as stressed in Bush et al. (2015) for large-scale navigation

with a combinatorial grid cell code or in Stemmler et al. (2015) for small-scale high-

precision navigation with a nested grid cell code. However such a decoder is absent (or

at least too implicit to identify) in Deepmind's policy network. Moreover, a real-time

decoding as such in the both cases can be done with place cells alone (only with a

smaller coding range or lower precision). There is no reason to expect place cell agent

54

(a) RL task: training

goal

25 3

start

(b) RL task: testing

Roa

direct
gaze

start

Figure 2.5: Grid cell agent perform vector navigation in Deepmind's RL scheme.

(a) Only the 5th door was opened during training, grid cell agent has to take a detour

towards goal-location. (b) The agent is capable of switching policy when a gaze toward

goal-location made available after all the doors were opened in test runs. Figure re-plotted

from (Banino et al., 2018)

has qualitatively different behavior (as stressed in their paper) if explicit goal-vector

decoding is indeed the mechanism the policy network implemented.

The other decoding strategy requiring no elaborate decoder is called linear-look-

ahead decoding (Erdem and Hasselmo, 2014, 2012; Kubie and Fenton, 2012). The

decoding method uses existing path-integrator to rapidly sweep a series of mental

simulation radiating outward from the current location. If one of the simulated tra-

jectories hits the target, i.e. matches goal representation, one terminates sweeping

simulation and extract goal-direction-as direction of the matching trajectory, and

goal-distance-in proportion to the duration of the target trajectory.

The issue regarding using linear-look-ahead decoding is the same. The explicit

circuitry wasn't there in Deepmind's policy network. Moreover, such a strategy re-

quires extensive time for planning, which doesn't seem to happen in their test runs.

The grid cell agent seem to respond immediately and marched toward goal location

from time zero.

Not a goal-vector decoding but a switchable mnlti-policy successor repre-

sentation instead

To explain their finding, I propose that the agent managed to learn more than one

successor representations (SRs) (Dayan, 1993) implicitly stored in the policy LSTM

over the course of training. An immediate policy switch, in Deepmind's RL scheme,

after a change in visual scene (doors opened) is one evidence for this explanation.

55

From the beginning of training, the policy LSTM is fed with activities from a set of

spatially extended tuning curves of grid cells'. If such tuning curves are thought of as

spatially extended basis functions used for building an implicit set of SRs, the initial

SRs and action-value function were both be extended in space and far from random

(due to long range correlation of the initial SRs).

Over time, the agent started to reach the goal and gradually refine its SRs for

a faster path. Those inefficient SRs, however, were not lost after training, but only

become dormant in the policy LSTM. Meanwhile, the policy LSTM learnt to better

associate the goal-visual input with the goal-location codeword-in such a way that

this particular visual input could modify dynamics of the policy LSTM drastically-as

goal-reaching events accumulated. It is therefore possible for the existence of such a

goal-directed behavioral switch in the test runs without ever using explicit goal-vector

decoding.

Recent studies have shown how such multi-policy SRs can be learnt in a deep

neural network, and how this strategy can even be optimal in many settings (Barreto

et al., 2016; Kulkarni et al., 2016).

Vector navigation as a potential functional constraint for an optimization

principle

Based on this observation, it is possible to formulate a relevant function hypothesis:

Grid cells exist in order to build multiple successor representations for a

flexible policy switching during a goal-directed navigation.

This function hypothesis is an elaborate one. To further formulate a corresponding

optimization problem requires many more judicious thoughts. The attempt will likely,
however, bring a much deeper insight for vector navigation and the functions of grid

cell code.

Lastly, I would like to stress that the above explanation I provided for Deepmind's

finding is unlikely the full story. More study is needed and is worth to be done for a

deep understanding of how all of it really works.

56

2.2.4 Function complementarity revisited

In this section, I would like to make a few conjectures regarding the existence of the

grid-place function complementarity (introduced in Chapter 1) in the brain, based on

the results of the RNN training schemes we have discussed. The conjectures goes as

follows

1. A grid cell circuit is evolutionarily hard-wired through a non-Hebbian-type plas-

ticity mechanism during development.

2. A grid cell circuit-to a large degree-cannot be modified through experience via

synaptic plasticity without compromising its essential function -high-capacity

encoding.

3. A place cell circuit can only learn from experience via synaptic plasticity-with

a compromise in its coding capacity.

To see how these conjectures are plausible, ironically, we need to rely on the negative

results on the attempts of searching for emergence. Specifically, The unsuccessful

demonstrations of the emergence-from both mine and Deepmind's' RNN training

schemes-may provide insights to an important question-why there exist place-grid

cell duo system instead of a mono system.

Grid cell circuit solution is inaccessible via synaptic plasticity

The failure of converging to a static circuit implies rarity or inaccessibility of these

solutions capable of solving the task. If we equate a gradient descent update to

a biological synaptic learning9 , a grid cell circuit in the brain could as well be an

island of solutions scattered sparsely among all other non-grid cell solutions, isolated,
inaccessible by synaptic modification based on the animal's experience. And this

ultimately explains Conjecture 2, i.e. the incapability of modifying a grid cell circuit

across experiences because the other potential grid cell solutions are not reachable

via synaptic plasticity rules.

8 Deepmind's results only demonstrated emergence in a small environment.
9While it's debatable to draw a parallel between gradient descent connectivity update and synap-

tic plasticity in biological circuit, it is also not too far-fetched-from an algorithmic viewpoint-given
that the two processes both search a solution though a series of incremental moves in the solution
space.

57

One might argue that there is no need for a grid cell circuit to be modifiable;
however, if one considers the fact that a place cell circuit exist in the brain and is

constantly under reconstruction based on experience, it is undeniable that such an

experience-dependent learnable circuit is very much needed.

Evolution might wire up grid cell circuitry without relying on synaptic
plasticity

The above argument begs a question-how does a grid cell circuit come about if these

circuit solution is inaccessible by synaptic plasticity? Fortunately, there is more than

one way for the brain to wire up a circuit. Because a grid cell circuit-to a large

degree-is static, it might as well be developed (connectivity blueprint programmed

in genes) rather than be wired up via Hebbian-type synaptic strengthening (Widloski

and Fiete, 2014). In other words, evolution could have millennia to work out a creative

way for constructing such circuit without ever being restricted to synaptic plasticity;

hence Conjecture 1.

Function complementarity exists due to dynamical constraints from neural
circuitry

Putting all the above reasoning together, we can see how function complementarity

plays out in the grid-place cell duo system. A grid cell circuit solution-in order to

achieve high-capacity encoding-are rare and largely inaccessible via synaptic learn-

ing rules. Consequently, it has a rigid connectivity that does not change based on

experience. In a drastic contrast, a place cell circuit solution-in order to achieve a

learnable encoding-needs to be abundant and accessible by synaptic learning rules.

In exchange for this essential function, place cells compromise its coding capacity-as

we will discuss in Chapter 3. And this explains Conjecture 3.

2.2.5 Coding theoretic approach: Grid cells emerge for spe-

cific coding properties

Starting from the next section, we will depart from RNN training approach until

Chapter 3. The focus will be on an entirely new paradigm for pursuing an optimiza-

tion principle-a coding theoretic approach. As the name suggests, this approach

58

focuses directly on a code-a set of tuning curves-without concerning which dy-

namical process that generates it. This approach also takes the liberty of computing

any coding related quantities that might not be shannon-type of information (e.g.

Fisher information or mutual information) -hence the separation from information

theoretic approach. Because of this freedom, handling a large population code could

be more feasible. And by carefully choosing a coding quantity to compute, the re-

sults could also be more interpretable-from a geometric viewpoint-than that from

an information theoretic approach.

In a coding theoretic approach, the tuning curves themselves are the optimiza-

tion parameters instead of recurrent weights-that give rise to tuning curves-as it

would be in an RNN training approach. By leaving the RNN dynamics behind, a

functional constraint can be precisely specified without being tangled with dynamical

constraints. Moreover, leaving dynamics behind is rather necessary if we would like

to proceed using gradient-based optimization method for the reason-discussed in

the last section-that a grid cell circuit solution could be inaccessible via an RNN

training approach. And a coding theoretic approach, on the other hand, provides us a

bypass to avoid a highly restricted solution space caused by a gradient-based learning

dynamics.

That said, before diving into coding theoretic approach, one has to address an

immediate issue that is seemingly in conflict with the requirement in an optimization

principle-to fulfill core constraints, or to demonstrate the existence of a neural im-

plementation. Luckily, for a grid cell system, the core constraint is fulfilled so long

as a static circuit exists to generate desirable tuning curves. It is unnecessary to

show how this circuit is wired up due to grid cells' rigid-up to a shift or rotation in

grid-tuning properties across environmentsi as mentioned in Chapter 1. Further,

fulfillment of the core constraint is guaranteed because the special wiring of RNNs ca-

pable of generating grid cell tuning curves have been shown (Burak and Fiete, 2009).

These studies demonstrated how a stable continuous attractor can be embedded in a

subnetwork, and how a full network can virtually generate any codes with arbitrarily

assigned number of modules, periodicity, etc. In other words, for every set of plausible

grid cell tuning curves, one can find a corresponding RNN circuit to generate it.

With the issue being addressed, a coding theoretic approach is a fully legitimate

approach for pursuing an optimization principle.

0A place cell system in contrast has changing tuning curves. It can acquire a new set of tuning

curves in a novel environment. Core constraint for place cells therefore also require demonstration

of RNN sequential learnability as discussed in Chapter 3.

59

2.3 Which coding properties lead to grid cells?

Using an approach of RNN training to formulate and test a function hypothesis

seems straightforward. For that, I used a self-localization task demanding an RNN

agent to accurately path-integrate in a large environment. On the other hand, it

is not immediately obvious how to formulate a function hypothesis using a coding

theoretic approach. The challenge lies in abstracting a high-level description, like

path-integration-or navigating-in large environment, into a set of coding proper-

ties.

In this section, I will first quantify two main properties of a binary grid cell code

which provides a clue for formulating two precise coding properties for continuous

neurons: 1) high-capacity and 2) translationally invariant (TI). I will explain how

the TI constraint relates to path-integration and motivate the use for its potential

benefit to other important high-level functions it might provides. In the meantime, I

will point out why a binary neuron optimization scheme cannot answer the question

of emergence-using generalization of the TI constraint" as an example and it is

rather necessary to generalize the problem to continuous neurons.

To proceed with this generalization, I will introduce a necessary method that uses

basis functions for constructing continuous tuning curves. The basis function method

not only enables a gradient-based optimization but also implants an important noise

assumption in a code. I will then reason why-for continuous neurons-using separa-

bility type of capacity measure as a starting point in philosophy of having a minimal

assumption on noise. And I will explain why choosing average Euclidean distance

over mutual information as the capacity measure.

With both the generalization of capacity measure and TI constraint in place, I

will end the section by pointing out why the two functional constraints are still not

sufficient and what could be the third candidate constraint for the emergence of grid

cell code.

"The TI constraint for continuous neurons does not exclude non-periodic solutions-or non-grid
cell solutions-unlike its binary counterpart.

60

2.3.1 Grid cell code is translationally invariant (TI): Insight

from binary neurons

We know-from our function hypothesis-that a grid cell code possess path-integration

capability. But if path-integration is merely for a reliable spatial encoding, a set of

random spatial tuning curves will do. In this section, I will show that a grid cell code

has highly structured spatial tuning curves that supports a plausible path-integration.

A path-integrating code is not just spatially tuned

If a set of tuning curves is merely a collection of random spatial functions, the pro-

gression of a codeword will depend on the position. This could be problematic for the

brain because the machinery for generating such inhomogeneous progression would

need to be an elaborate one, i.e. being fundamentally state-dependent or even being

codeword-specific. Because such a codeword-specific path-integrator is highly unlikely

to be implemented in a biological system 2, we can assume that a path-integrating

code is not of any arbitrary spatial tuning curves, but highly structured instead.

A generic constant-curvature spatial code is not grid cell code

So, which type of structure one should expect for constraining a path-integrating

code? To start, I assumed that a codeword progresses in a constant rate-with respect

to position-such that the curvature between two adjacent codewords is conserved:

d 2
r,(x) = z(x) const. (2.10)

dx

where zi(x) is tuning curves of cell i. Under this constraint, If we further maximize the

capacity (avoiding repeating codewords) for a binary spatial code, the outcome will

not be a grid cell code. An example of such maximal capacity code is demonstrated

in Figure 2.6(c). The code has 2 out of 8 cells being active at anytime, the number

of possible codewords are

Ncodewords 8 28. (2.11)
2)=

12To have a state-dependent path-integration, a circuit needs to not only generating these states
but also remember all the different integration rules corresponding to each different state.

61

We can see in Figure 2.6(c) that it is, in fact, possible to have a code with a constant

curvature whilst using up to all 28 nonrepeating codewords. Such code is therefore

maximum in capacity, but it does not have periodic tuning curves like a grid cell code.

Binary grid cell code: C=15

0 5 10 15 ;0 25XE
x

Maximal capacity code: C=28

K~SN
5 10 15 20 25

X

(b) ~(d) = 1.15196

1.0

20 f0.5

0 10000'

x

(d) d 1.18618

1.0

0.5

20

0.0

10

Figure 2.6: A binary grid cell code is not optimal in capacity. (a) A two-module
binary grid cell code with coding range L=15. Gray codewords started to repeat. (b)
Euclidean distance matrix for each pairs of codewords is constant diagonal-a manifestation
of a translationally invariant (TI) code. (c) A maximal capacity binary code with a constant
changing rate of adjacent codewords. (d) The corresponding distance matrix is not constant

diagonal. .

A binary grid cell code is TI

The implication from the above maximal capacity code is clear: a grid cell code

is constrained differently from just having constant curvature. To see what this

constraint might be, I plotted an example 8-cell grid cell code-partitioned into two

modules: 8=3+5-for comparison. Its tuning curves are shown in Figure 2.6(a). One

can see that due to the periodic organization, not all 28 possible codewords are used

in the construct. And the codewords start to repeat after x = 15. The periodic

organization of codewords indicates a globally coherent structure among not just

neighboring but also distant codewords. It is therefore interesting to investigate the

correlation structure for all pairs of codewords. The result is plotted in Figure 2.6(b)

in which one can see a clear constant diagonal structure of Euclidean distance matrix

of the code. A constant diagonal distance matrix implies the corresponding code to

62

(a)

(C)
0-

S2 -
4
6-

0

6-

0

14

be translationally invariant (TI) because d(x, x + Ax) = const. for a fixed Ax. A

binary grid cell code is therefore a TI code.

A TI code is a direct representation of modular arithmetic

It is important to stress that the binary grid cell code demonstrated above is an

equivalent of modular arithmetic with a progressive constant addition. In the above

example, all 15 codewords can be generated by repetitively applying a permutation

transformation as follow.

z(x) = WX z(0), (2.12)

where z(0) = [1, 0, 0, 1, 0, 0, 0, 0] with only the first cell of each module being active,

and

1 0

1

W (2.13)
1

0 1

1

is a two-module permutation matrix. Each time when one apply W on codeword

z(x), one moves the active bumps to the next cells. The codewords generated in

this process will be unique until reaching its capacity limit (the non-repeating coding

range) (Fiete et al., 2008):

C(PN) - LCM(PN), (2.14)

where a certain partition PN=8 = [3, 5] is chosen for our 8-cell example and LCM(PN=8)

3 x 5 = 15 is the least common multiple of this partition PN=s. Below I use the 8-cell

example to compare the representation of modular arithmetic with the equivalent

representation of binary neuron.

From this simple exercise, we can see that a binary grid cell code directly imple-

ments modular arithmetic underlies a simple path-integration machinery. We have

now much more insight about what coding properties a grid cell code endows and

should be ready for formulating an optimization problem to test its function hypoth-

esis. Nevertheless, there are still issues in using binary neuron scheme for our purpose

63

x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

x mod (3,5)

(0,0)
(1,1)
(2,2)
(0,3)
(1,4)
(2,0)
(0,1)
(1,2)
(2,3)
(0,4)
(1,0)
(2,1)
(0,2)
(1,3)
(2,4)
(0,0)

Table 2.2: Binary-neuron representation of modular arithmetic of a discrete
position

which I briefly discuss below.

The optimization problem in binary neuron scheme is irrelevant to the

emergence

In a binary neuron scheme, the TI constraint is equivalent to having modular periodic

tuning curves as demonstrated in the above 8-cell code example. The remaining

optimization problem is therefore only on the capacity, i.e. to maximize the coding

range with no repetitive codewords. In other words, the only mission is to find the best

modular periodic codes among all possible modular periodic codes. Unfortunately,

this optimization problem is trivial for our purpose: seeking for emergence, because

the binary neuron scheme pre-excludes all other non-modular non-periodic codes.

Issue on generalizing to continuous neurons

The above demonstration is just one reason for not dwelling on binary neuron scheme.

More importantly, it is unclear whether the knowledge gained from a binary neuron

scheme can be transferred to a continuous neuron scheme. For example, a TI con-

64

binary code

(100 10000)
(010 01000)
(001 00100)
(100 00010)
(010 00001)
(001 10000)
(100 01000)
(010 00100)
(001 00010)
(100 00001)
(010 10000)
(001 01000)
(100 00100)
(010 00010)
(001 00001)
(100 10000)

straint for continuous neurons could manifest very differently, e.g. a continuous TI

code might not have modular periodic tuning curves.

Also, a continuous neuron scheme contain vastly more possible solutions from that

of binary neurons. It is implausible to do an exhaustive search on all possible tuning

curves. A gradient-based optimization is therefore a reasonable choice. However, for

such algorithm to run efficiently, a fixed architecture is required (a changing coding

range is not feasible). This means, a new capacity measure rather than counting

nonrepetitive codewords needs to be considered".

For these reasons, we should move on and study how both high-capacity and TI

coding properties can be generalized to a continuous neuron scheme.

2.3.2 TI constraint for continuous neurons

We start from generalization of the TI constraint. Recall that a binary grid cell

code can be generated from repetitively applying a permutation transformation to an

initial codeword.

z(X) = W, z(0)

And spatial translational invariance is a direct consequence for such a code, i.e.

d(x, x + Ax) = const. for a fixed Ax

where d(x, x') is the Euclidean distance between two codewords. If one adopts this

type of machinery for codeword progression, then the remaining question for the

generalization is straightforward: what is the matrix W that can produce a continuous

TI code? The answer-as it turns out-is that W can only be an orthogonal matrix.

One can see the proof I provided in the Appendix A.1, but here we focus on how such

an orthogonal transformation is at work and how such a continuous code related to

a binary grid cell code.
13For a binary neuron code, it is straightforward about what it means for two codewords to be

different, i.e. zi - z 2 # 0. But for continuous neurons, this distinction is blurry, and it is necessary
to introduce a threshold parameter for counting differences. Consequently, this introduces a new
hyperparameter into an optimization scheme which I will try to avoid in Scheme A and B, but finally
adopt in Scheme C.

65

A TI code's manifold is generated by incremental n-rotation

In Figure 2.7, I demonstrated an example of a continuous equivalent of a binary grid

cell code. We can see that the tuning curves and distance matrix in Figure 2.7(c,d)

resembles those features of binary neurons in Figure 2.7(a,b). To create such a con-

tinuous code, one needs to interpolate continuously from a binary codeword to the

next. It means that an incremental progression-instead of a big jump made by per-

mutation matrix-should be implemented. Assuming it takes n incremental steps to

make a jump:

Wperm = W", (2.15)

where n » 1. Using the fact that Wperm is an orthogonal matrix, one can diagonalize

it and takes n-th root on just the corresponding diagonal matrix of Wperm to find W.

The resultant W is also an orthogonal matrix as I proved in Appendix A.1. Applying

W to the initial state creates continuous tuning curves like Figure 2.7(c).

The progression made by W can be seen as an incremental rotation in N dimen-

sional state space given that W can be block-diagonalized into a series of rotational

matrices:

W = PBPT, (2.16)

where P is an orthogonal matrix. The fundamental structure of such a code is only

specified by B which is composed as N/2 blocks of 2 x 2 rotational matrices regardless

the viewpoint specified by P.

cosl, sinG, (2.17)
- sin 0; Cos 0;

A code progresses with B is connected with the original though an arbitrary orthog-

onal projection P:

y(x) = Bxy(O), (2.18)

where y(x) = PTz(x). This additional orthogonal transformation pT do not change

structure of the code because the correlation between a pair of codewords is conserved.

zp = yPTy, = YT y (2.19)

66

In the coordinate frame of y(x), the tuning curves are simple sinusoidal waves as

shown in Figure 2.7(e). Its unchanged correlation structure is plotted in Figure 2.7(f)

in comparison with Figure 2.7(d).

Binary grid cell codes form a small subset among a more general set of

continuous grid cell codes

Binary grid code (BGC)

2.5 5.0 7.5 10.0 12.5 15.0
X

Continuous equivalent of BGC (cBGC)

6

0
0.0 2.5 5.0 7.5 10.0 12.5 15.0

X

8

6

4

0
0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.0

* 0.6

-0.4

*0.2

.0.0

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- 0.50

-0.25

0.00

-- 0.25

-- 0.50

()15 (d) 1.15427

5 -0.5

10 0.0
0 5 10 15

X

(d) o-o
15 (d) = 1.173371

10 1.0

X

0 5 10 15
X

15 (d) =1.173371

10 1.0

XE:
0 5 10 15

X

Figure 2.7: Continuous-neuron equivalent of a binary grid cell code. (a,b) A

two-module binary grid cell code and its corresponding distance matrix. (c) A continuous

neural code-generated via an incremental rotation of the initial codeword-that resembles

the binary grid cell code in (a). (d) The corresponding distance matrix also displays similar

sideband feature visible in (c). (e) Fundamentally the same code as (c) but in a different

Cartesian basis. Code (e) is a result of an orthogonal transformation on code (c). (f) The

distance matrix remain intact because (c) and (e) share the same underlying coding-line

geometry in high-dimensional coding space.

67

8-

6

2.

0-
0.0

(a)

(C)

(e)

C)

I

I

Zt I

From the above example, we know that all binary grid cell codes have a continuous-

neuron equivalent, that is to say, all binary grid cell codes are solutions within a much

larger group of continuous TI codes. An optimization problem for continuous neurons

therefore encompasses all possible binary grid cell solutions as well as those potential
"non-binary" grid cell solutions, e.g. a modular periodic code without frequencies

being integer multiples".

2.3.3 Why a TI code?

Path-integration is unlikely to be codeword-specific

As we have discussed, if a code were just spatially tuned, its corresponding path-

integrator has to be codeword-specific and therefore is unlikely to be implemented in

a biological circuit. On the other hand, we have seen that if a code were generated

via a simple path-integrator that progresses codewords using a constant orthogonal

transformation, the code will naturally endows a code with TI property. However, in

general, this global TI property is only true for a deterministic system. For a noisy

system, it is, in fact, a labor to maintain global TI as we will discuss next.

Local TI constraint is generic

A code that is locally TI is likely to be generated merely by a generic path-integrator

without much precision. As long as it progresses codewords in a constant rate, even

for a noisy integrator, the short range correlation is conserved:

E [4zx+6] _ (zTzz+ 6) VX, (2.20)

where 6 aminimal tuning width. A grid cell code is also locally TI. And an important

function of this property is to rapidly guide the formation of a place cell code through

an online similarity matching process-as we will discuss in Chapter 3 in detail. It

might sound like any locally TI codes can do the job, but a grid cell code is required

because of its second crucial coding property: nonrepetitive codewords over a large

coding range. To see why, imagine a small segment of a grid cell code guides the

14 All binary grid cell codeword progresses one integer step at a time. The frequencies from its
continuous equivalent are therefore integer multiples for building up integer periodicity. A non-
binary grid cell code can therefore be defined as a modular periodic code without frequencies being
integer multiples.

68

formation of a map of place cells; multiple non-repeating segments of the same grid

cell code therefore guide the formation of multiple maps of place cells.

Global TI constraint may be maintained for important high-level functions

A code that is globally TI requires precision in underlying circuitry. It is not difficult

to see why. Imagine a noisy path-integrator that progresses a codeword with error:

z(x + 1) = (W + () z(x). (2.21)

One then cannot expect a reliable long range correlation between codewords, i.e.

E [zTzz+ 6] ~zTzX+mfA) Vx, (2.22)

where f(A) is an increasing function with A, and A »minimal tuning width The

long range correlation Delta » 1 naturally becomes fuzzy at the location which a

codeword is supposed to encode, and the average over noisy trials will wash away the

delicate sideband structure in distance matrix-e.g. Figure 2.7(d,f). The bottom line

is that such elaborate global correlation structure is unlikely to happen by accident,
and it might hint an important functional role.

The functional role of a globally TI code might lie in vector navigation, which is a

high level function built upon this coding property. There are two decoding processes

thought to be essential for vector navigation.

1. Direct goal-vector decoding (Bush et al., 2015; Stemmler et al., 2015)

2. Linear-look-ahead goal-vector decoding (Erdem and Hasselmo, 2014, 2012; Ku-

bie and Fenton, 2012)

A code with long range correlations like grid cell code is thought to be important for

both of these decoding processes. For the first decoding process, it is debatable that

such long range correlations are required because-as we discussed in Section 2.2.3-a

direct goal-vector decoding can also be done in a code without global correlations

as long as its decoder contains the necessary spatial information. Therefore, more

thought needs to be put into the first decoding process before hypothesize it to be

a function of a TI code. Nonetheless, the second decoding process is uncannily a

function requiring global TI constraint and can only be done in path-integrator with

global precision.

69

Another possibility also mentioned in Section 2.2.3 is that the vector navigation

may not be done by a decoding process but by building multi-policy successor repre-

sentation using tuning curves of a global TI code as basis functions. But, by far, it

remains understudied to determine whether such basis functions are really necessary

or advantageous for a RL agent to learn a task requires vector navigation.

2.3.4 Optimization using basis functions and an inherent noise

assumption

In Section 2.3.3, we see how binary neuron solutions can be incorporated into a much

larger solution space: the continuous neuron solutions. However in a continuous

neuron scheme, one faces an immediate challenge in formulating a computational

problem: Curse of dimensionality. Because a target solution-a grid cell code-has

exponential coding range with respect to the number of cells, there will be as many as

N x exp(aN) number of parameters to be optimized even in just binary neuron case.

Curse of dimensionality is, of course, getting worse in the case of continuous neurons.

For example, if one approximates a binary bump (a square function) as a gaussian

function and discretizes a standard deviation into 10 spatial steps, the optimization

problem will then contain ten times more parameters-10 x N x exp(aN)-than that

for binary neurons. To mitigate Curse of dimensionality, we will use an approach of

basis functions to construct tuning curves throughout the rest of Chapter 2.

Use basis functions to reduce dimensionality

In a basis function approach, one constructs tuning curves as a linear sum of a fixed

set of spatial basis functions: b(x), that is

zi(x) Pizjzj), (2.23)

where i = 1,... ,N is cell index, and j = 1,... ,Nb is basis function index. The

dimension of the optimization problem is N x Nb. To sufficiently construct an arbi-

trary function within a coding range: x - [0, L], one should at least have as many as

Nb ~ L = exp(aN) basis functions. With this choice, the dimensionality goes back

to that of the binary neuron case. The reason of using this many basis functions is

straightforward. It directly follows the idea of generalizing a binary neuron scheme

70

to a continuous one whilst preserving its coding properties. The generalization con-

siders an upper-bound in spatial resolution 1/o of a tuning curve. For example,
Figure 2.7(b) shows a continuous equivalent of a binary grid cell code. One can easily

imagine an effective way to construct such tuning curves is to use a set of identical

gaussian functions with their standard deviations to be a which is half the width of a

binary neuron's square tuning bump. Therefore, to tile the entire coding range, one

also needs L of such gaussian functions equally distributed in space.

Inherent noise assumption

The introduction of a fixed upper-bound in spatial resolution has an important impli-

cation. It makes a fundamental assumption about noise in a system. To understand

this, consider a set of tuning curves of a system which is generated via two abstract

steps: 1) a dynamical process that reliably produces spatially tuned firing rates-or

simply tuning curves, and 2) a sampling process that generates spikes out of the

underlying tuning curves. If we further assumed that Step 1 is deterministic and

the only noise source in the system is from Step 2, then the spatial resolution of a

population code is correlated with tuning width in various ways depending on the di-

mensionality of an encoded variable (Pouget et al., 1999; Zhang and Sejnowski, 1999).

For ID tuning curves, spatial resolution (measured by Fisher information) increases

with decreasing tuning width. For 2D, spatial resolution is independent of tuning

width. For 3D and above, spatial resolution increases with increasing tuning width.

The above study has seemingly concluded that there is no dependence between

optimal tuning width and noise. If so, our use of basis function approach is not

justifiable without introducing another noise source-because tuning width itself does

not represent noise. However, if one considers that an intrinsic noise exists in Step

1-that is, the dynamical process underlies tuning curve generation is noisy (Burak

and Fiete, 2012)-then the dependence of spatial resolution on tuning width changes

(Yoo, 2014). Now for all dimensions, spatial resolution increases with decreasing

tuning width: or until saturation after a <Unoise. This result shows a near one-to-one

correspondence between optimal tuning width and intrinsic noise.

One-to-one correspondence

To finally establish a one-to-one correspondence between tuning width and intrinsic

noise, we need to know how the above spatial resolution is calculated (Yoo, 2014). In

71

the semi-analytic calculation of the spatial resolution, an assumption of enough spike

statistics is made, i.e. Npak » 1 where Nepk is number of spikes in a unit time within

a tuning width. This assumption puts the result away from sampling failure; in other

words, there is no consequence of using an arbitrary narrow tuning width even exceed-

ing the saturation of spatial resolution. However, if we also consider this sampling

failure in a system, decreasing tuning width-after the saturation: O < cinoise-will

cause a drop in spatial resolution. So there we have it, a one-to-one correspondence

between optimal tuning width a and intrinsic noise anoise, as a result of balancing two

opposing forces: 1) to increase spatial resolution via decreasing tuning width and 2)

to maintain spatial resolution via avoiding sampling failure. Below I demonstrated

this correspondence numerically with an analytical upper-bound on spatial resolution

limited by minimal tuning width, or-as we established just now-intrinsic noise.

Spatial resolution is bounded and scales with intrinsic noise

In Figure 2.8, I numerically computed the curvature (equivalent to Fisher information)

of a population code as a direct measure of spatial resolution:

) - -z(x) (2.24)
do

where zi(x) is gaussian tuning curves that uniformly tile a finite range: [-L/2, L/2].

As one can see, at x = 0 (away from the coding boundaries), the curvature saturates

roughly after N r 10 cells (N - L/o = 10/1). The upper-bound of curvature after

saturation is
1

K (x = 0|1 N -+0c) =(2.25)

The equation above shows that an optimal curvature is inversely proportional to the

tuning width. One can interpret this result as a tradeoff between noise robustness

and spatial resolution. The larger the noise, the wider the tuning width, a, needs to

be for robustness, and thereby, the smaller the spatial resolution-/,. This relation

is demonstrated in Figure 2.9 where it shows an inverse linear tradeoff given enough

cells (region away from (b)) and given that tuning curves being away from coding

boundaries (region away from (d)).

These results show that the spatial resolution of a code (which is closely related

to the capacity of the code as we will discuss later) is fundamentally bounded by the

intrinsic noise represented by minimal allowable tuning width a.

72

(a)
4

2

0
-10 -5 0 5 10

x

0.15--

0.10 _ _ _ _ _ _

0.05 --

0.00

-10 0 10

x

(c)
20

(b)
7.5

450

U2.5 gg

0.0
-10 -5 0 5 10

x

60.075

0.050--

0.025-

0.000
-10 0 10

x

(d)
-2-0 ' -- -40- - -- - -

0.075 - 30.075
100.5-2

0.050; 0.050 2

0.025 - 0.025

0 U0.000 -- -- ~0 0.000
-10 -5 0 5 10 -10 0 10 -10 -5 0 5 10 -10 0 10

x x x x

Figure 2.8: Spatial resolution saturates with increasing number of cells. (a) 5
cells have the same but shifted gaussian tuning curves with minimal width set by intrinsic

noise level. The curvature-as a measure of spatial resolution-oscillates around analytic

bound plotted as red dashed line. (b-d) As number of cells increases, the curvature (at

x = 0) saturates and converges to analytic bound that is only a function of tuning width a.

(a) (b) r= L I2

(b) 8v2o

(C)

. , ,, .. (d)M

100

fT =1

-5 0 5 10
X

Figure 2.9: The upper-bound of spatial resolution scales as 1/a. (a) The cur-
vature-as a measure of spatial resolution-matches the analytic bound: r ~ 1/o given

enough cells (region away from (b)) and without strong boundary effect (region away from

(d)). (b-d) Three example tuning curves highlighted in (a).

Why using Fourier basis functions

So far, we successfully establish the relation between minimal allowable tuning width

and intrinsic noise. From the discussion, it is natural to use gaussian basis functions
73

10-1

10-2

40

30

20

10

a-4

(c)
40

30

20
C)

10

01
-10

-5 0
x

5 10
0 -
-10

(d)
4 0

30

20

10I

0 -M
-10 -5 0

X
5 10

with the same standard deviation o- at any locations within the coding range. Never-

theless, we will proceed using Fourier basis functions throughout the chapter for the

following two reasons:

1. Fourier basis functions potentially provide a smoother energy landscape for gradient-

based optimization to reach global optimum. Because of the distributed nature

of these periodic basis functions, a local change in codeword z(x) via chang-

ing a few coefficients in P can result in changes of all other codewords z(x').

Therefore, a gradient-based optimization (incremental change in P) can quickly

explores globally-diverse tuning curves, suitable for our interest-targeting var-

ious multi-field tuning curves.

2. Fourier basis functions are the most natural basis functions for a TI code such

that they provide a sparse coefficient matrix. As shown in the last section, a

TI code is essentially a series of incremental high-dimensional rotations on an

initial codeword. If one rotates a TI code to align to its fundamental coordinate,

the subsequent tuning curves are simple sine and cosine functions, and hence

Fourier basis functions. If the outcome tuning curves are the basis functions

themselves, the coefficient matrix P will be sparse, and thereby one may apply

suitable optimization techniques exploiting the spareness of P for approaching

general good solution regions.

Intrinsic noise is represented by maximal frequency

The use of Fourier basis functions does not change the intrinsic noise assumption. To

see this, I maximized the sparseness of a tuning curve constructed by a set of Fourier

basis functions, and showed that the inverse maximal frequency of basis functions

linearly correlates with the narrowest achievable tuning width. The tuning curve is

constructed via Fourier basis function as follows:

Nb

zi (x) = Pi by (x), (2.26)
j=1

where i = 1, ... , N, x C [0, L], and by(x) = cos(27rfe x + #j)

with vj =1, ... , V. The frequencies and phases are equally divided: fe, E

j 1 .. ,No UV

74

[0, 1/w] and #,, E [-7r, 7r]. The maximal frequency 17w of Fourier basis functions sets

strength of intrinsic noise that limits the narrowest allowable tuning width 'sigma.

The loss function for this optimization problem is

Loss = Z([zi(z)1+ - a[zi(x)]_) (2.27)

When a = 1, the loss function is reduced to an average of Li-norm. Here I used

a = 10 to encourage nonnegative tuning curves. In Figure 2.10, I ran 400 random

initial P to cover various w. The resultant tuning curves are fit to a gaussian function

to extract the tuning width a. It is clear that the tuning width is directly bounded

by and proportional to the inverse maximal frequency w:

or = Y w (2.28)

The maximal frequency 1/w of a chosen Fourier basis functions therefore also assumes

an intrinsic noise just like that of a gaussian basis function. In the later optimization

scheme (Scheme B), we will use this linear relation to derive a separability upper-

bound in the large N limit as a yardstick for the case of finite N.

2.3.5 Which capacity measure? Euclidean distance vs mutual

information

Use a capacity measure with least hyperparameters

The capacity measure used in the earlier binary neuron scheme demands no repeat-

ing codewords. As for continuous neurons, such capacity measure requires an addi-

tional threshold parameter. In philosophy of seeking minimal sufficient conditions

for emergence (discussed in Chapter 1), we should try to avoid introducing any more

hyperparameters unless it's absolutely necessary 5 . In this guidance, there are two

immediate candidate capacity measures that have been widely used: 1) Average Eu-

clidean distance and 2) mutual information. In the following example, I will show how

they share similar characteristics and why average Euclidean distance is potentially

a better choice.
15Later in Scheme C, we will return to and discuss such a capacity measure with a threshold noise.

75

a = yw, where -y = .480576

1.0 1.5 2.0 2.5 3.0

w

(C)

(a)

2.00 -

1.75

1.50

1.25
01

1.00-

0.75

0.50

0.25

-20

-15
0

- 10 •

-0

.... linear fit

asa

- - _- - - - --0- - - - - --.

•; ~

[w,seed] - [3.94, 885]; [a.x0.sigmal - [2.387545 7.789164 1.9818841
2-- - d

4 .___W fit __ 2 - ga 1 t

___ ___ti_____
(w,seed] - [1.22. 100] ; [axO.sigma] - [3.801814 15.397104 0.7829841

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[w,seed] - [1.94, 55]; [a,xO,sIgmal_- (3.260005 5.054508 1.063289]
3 -dat

OEIL___ 1
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[w.seed] - [2.94. 71; [a,xO,sigmal - [2.777901 5.760535 1.4649751

0.0 2.5 5.0 7.5 120.0 12.5 13.0 175 20.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[w.seedl = [3.93, 7861; [a,xO,slgma] - [5.371361-1.00232 1.7636691

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[w,seed] - [3.9, 4071; [a.x0,sIgma] - [2.941212 17.927505 1.30532 1

02! -L --

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

[w.seed] - [3.82, 723] ; [a,xO,sigmal - [2.675951 4.788859 1.5719651

1 - - - - - - - - - -

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Figure 2.10: Linear relation between intrinsic noise a and inverse maximal fre-
quency w in Fourier basis functions. The sparsity of a single cell tuning curve is
maximized via minlz(x)|-where P is Fourier coefficient matrix-under a soft-nonnegative

P
tuning constraint. (a) The results of 400 optimizations-with random initial coefficient
matrix and a sweep in w-are plotted. The tuning width a is extracted from a gaussian fit.
An approximate linear relation: a = .48w will be adopted for establishing another analytic
bound for capacity in Figure 2.21. (b) 4 examples of a growing with increasing w. (c) Four

examples of the similar w but different a due to the boundary effect.

76

4.00.5 3.5

(b)
[w,seed] - [0.58, 2191 ; [a.xO,sigmal - [5.191977 5.95719 0.42013]

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

3 ... ga~isalan ffjif .. gmi-

I___ L___ ___ ____
1 T

A

0 a I

LZ

Definitions

Euclidean distance matrix is a collection over all pair of codewords:

D(x, x') = D(z(x), z(x')) = I z,(x) - z,(XI)|2 (2.29)

The mean of this distance matrix is used as a scalar capacity measure:

(d) = D(x, x') (2.30)

To implement a capacity measure as mutual information (MI) whilst being compatible

to the use of basis functions, we need to express MI as a function of tuning curves

alone. The MI between a random location X and activity pattern N is given as

I(X; N) = H(X) - H(X|N), (2.31)

where

H(X) P - PX(x) log PX(x) (2.32)
X

H(X|N) :- P(n) 1 PXIN(xzn) log PXIN(xln) (2-33)
n x

are the entropies. x is position and n is activity pattern generated from a poisson-

spiking process that samples spikes from the underlying tuning curves z(x). To sim-

plify I(X; N), we need to first simplify a log conditional probility function PXIN(In).

log PX|N(iI HOC log [(i(I)"i)eXp (-szz())1(4
N N

= Z nri, log z(x) - e zz(x)

i=1 i=1

In the above, I used the result from (Zhang et al., 1998) with assumptions of a

uniform prior and a unity time window T = 1. To further reduce the computation

cost, I assumed that a possible activity pattern n encompasses only those from the

77

tuning curves z(z'):

N N

logP(X, c') _ log PxIz(z Iz(z'))c zi(z') log zi(X) - zi(X) (2.35)

We can now simplify MI from Equation (2.31), I(X; Z) is interpreted as a measure

that tells us how much-on average-an activity pattern z(z') conveys about a loca-

tion x:

I(X; Z) H(X) - H(X|Z)

- Z Px(x) log Px(c)4 Z Pxlz(zlz(z')) log Pxlz(zlz(z'))
x x'x, (2.36)

=log L - exp(logP(x, c')) . logP(x, z'),

where P(x) = 1/L is used and logP(x, x') can be numerically computed from Equa-

tion (2.35). To compare to the distance matrix D(x, x'), I also define an equivalent

matrix for MI:

M(, x') _ exp(logP(x, x')) • logP(x, x') (2.37)

Why choosing average Euclidean distance as capacity measure

In Figure 2.11, I compared MI with average Euclidean distance for two different

classes of tuning curves. The top row are modular periodic tuning curves (of grid

cells), the corresponding distance matrix D(x, x'), and MI matrix M(x, x'). The

bottom row are for unimodal tuning curves (of place cells). From these results, we

see that D(, x') and M(x, x') are qualitatively the same. They both compute how

separable a pair of codewords is. Maximizing either quantity, as a separability, tends

to reduce overlaps among all codewords. However, in the case of modular periodic

tuning curves, Euclidean distance matrix is more sensitive to small differences between

codewords-resulting in more visible sidebands, whereas MI matrix only displays a

clear sideband when the difference is large enough. Overall, this discussion shows

that using average Euclidean distance as capacity measure has two advantages:

1. Euclidean distance is more sensitive to small tuning curve change, and it is

simpler both computationally and interpretively in a geometric viewpoint.

2. Unlike MI, Euclidean distance is well defined for both positive and negative

78

tuning curves 6 . Using a hard constraint on nonnegative tuning has the follow-

ing two issues: a) It makes gradient-based optimization more difficult'. And

b) TI condition is hard to be met because a typical TI code is not strictly

positive (Appendix A.2). In other words, many high-capacity TI code that is

mostly-but not a-hundred-percent-nonnegative will be excluded by the opti-

mization scheme.

For the above reasons, I used the average Euclidean distance as capacity measure for

the following optimization schemes. At this point, we have two functional constraints

finalized, i.e. 1) maximizing capacity as average Euclidean distance and 2) minimizing

the deviation from being a TI code.

(a) modular periodic (b d) 1.095 MI 2.498 nats
3002

20 0.4 0 .0 20
r__4 I / -0.1

02 1 0.5 X I
U010 0.2 100.

(d) 0 20 0 20
unimodal (e) (d) 1.319 - MI= 2.865 nats

150

100 0.3 20 1.0 20 -0.05
0.2

50 -00.5 10 -0.10

0 0 0 -0.15

0 10 20 20 0 20

Figure 2.11: Capacity measure as average Euclidean distance or mutual infor-
mation. (a-c) From left to right: a modular periodic tuning curves, its corresponding
Euclidean distance matrix D(x, x'), and its mutual information matrix M(x, x'). (d-f)
Same measures but for a unimodal tuning curves.

161n computing MI, one needs to compute log-probability function, which has to be strictly pos-
itive. And since firing rates-hence tuning curves-are directly,interpreted as probability density,
they have to be strictly positive too.

17 Restricting search region of a solution to only the first quadrant in state space creates rough
energy landscape, because the learning trajectory cannot bypass those restricted state space which
may potentially provide a low-energy path towards global optimum.

79

2.3.6 A biological constraint is needed

To end this section, I summarized what we have so far and what is still missing for a

full optimization problem.

What we have

1. We have learnt that an optimization problem in binary neuron scheme cannot

address the question of emergence, so that an optimization scheme for contin-

uous neurons needs to be established.

2. We have established two functional constraints for continuous neurons via a)
defining a capacity measure as average Euclidean distance and 2) generaliz-

ing the binary TI constraint by associating it to incremental high-dimensional

rotations on codewords.

What is missing From knowing these, one can construct two corresponding loss func-

tions: Loss 1 that maximizes the capacity and Loss 2 that minimize the variance

along diagonals of distance matrix18 . The issue however is that the two functional

constraints are not yet sufficient for the emergence of grid cell code.

From Section 2.3.2 and Appendix A.1:, we know that a TI code under an arbitrary

rotation is still a TI code. However the tuning curves can be completely off after this

rotation. For example, if a modular periodic code z(x) appears after optimization,
an extra rotation on the entire code via a random orthogonal matrix 0 will mess

up the clean periodicity of tuning curves: y(x) = Oz(x) 19, whereas preserving the

correlation structure across codewords:

z z = yTOTOy = yTy (2.38)

That is, both Loss 1 and Loss 2 are unchanged after 0, but the tuning curves are no

longer of grid cells.

To conclude, a third loss function is necessary for the emergence of grid cells. We

hypothesize that the third loss function specifies a biological constraint and explore

various forms of Loss 3 that may lead to the emergence of grid cell code. Specifically,
in Scheme A, I used Loss 3 to encourage a dense code that eventually give rise to a

18More details in the next section.
19Tuning curve for a cell in y(x) is random linear sum of all tuning curves in z(x). If there were

multiple frequencies in z(x), Tuning curves in y(x) will not be periodic (or single frequency).

80

set of sinusoidal tuning curves, and in Scheme B and C, I used Loss 3 to encourage a

sparse code targeting a von Mises type of tuning curves (locally narrow and gaussian-

like, but globally periodic).

2.4 Scheme A: Dense code with a linear denoising

projection

Early on in Section 2.3.2 (and Appendix A.1), we know that every TI code can be

uniquely (up to a constant phase freedom) represented via a set of sinusoidal tuning

curves. In Scheme A, I used this fact to motivate such simple periodic tuning curves

as targets. I will show why a denoising model is needed on top of three loss functions

for module formation. We will begin from an ad hoc scheme, Scheme A-1, meant to

demonstrate what advantages a coding theoretic approach can offer, and end with

Scheme A-2 which successfully eliminates the issues present in Scheme A-1.

2.4.1 A candidate biological constraint targeting sinusoidal

tuning curves

From the observation that a TI code can be uniquely represented as a set of N/2 pairs

of sinusoidal tuning curves (Appendix A.1), one may hypothesize that this particular

representation among all the equivalents (up to a random orthogonal transformation)

has lowest energy in the grid cell optimization problem.

z 2i(x) = cos(27fix + #i) (2.39)

z2i+ (X) = sin(27rfix + #i) (2.40)

It's then interesting to ask which type of biological constraint Loss 3 should implement

such that this unique representation is optimal. Below I provide one candidate Loss

3 that is used in both Scheme A-1 and A-2.

Loss 3 = 1 z (X) (2.41)
i'X

This loss function puts a strong penalty on a few particularly large activities in z(x),
it thereby promotes a dense code that doesn't have any large outliers in activity. One

81

can interpret Loss 3 as sparseness of the tuning curves to be minimized. The reason

I used power of 4 instead 2 is because a generalized firing rate 20

ri(x) = z2 (X) (2.42)

is used and constrained such that

Z ri(x) = L. (2.43)
i'x

For this reason, one needs to go to next power for defining sparseness. To see how

minimizing Loss 3 can lead to simple sinusoidal tuning curves, imagine summing

two simple sinusoidal functions with different frequencies. Any possible linear sums

of these two functions move the code away from the target and result in two more

complicated functions due to constructive or destructive interference of waves. As a

result, Loss 3 goes up.

As for a biological motivation of using Loss 3, one could interpret such constraint

as to avoid costly high activity. But here we will simply explore and try to understand

how such constraint gives rise to the target tuning curves. The biological plausibility

of Scheme A will be discussed in the end of this section.

2.4.2 A mechanism for module formation is needed

By far we have all three loss functions in place such that an optimal code is expected

to be periodic tuning curves. However, to declare the emergence of grid cell code, the

code has to be modular-clustering in tuning frequencies-too. In this section, I will

demonstrate that having these three loss functions alone is not sufficient to give rise

to modularity. An additional mechanism for module formation is required.

We have known that Loss 3 is to "rotate" a code to its most dense representation

without changing Loss 1 and 2. Loss 3 alone therefore does not change the fundamen-

tal codeword structure; hence no preference towards modularity. Meanwhile, neither

does Loss 2 attribute to creation of modules since it only demands a TI code in which

each tuning curve has the liberty of having an arbitrary frequency. What remains

less obvious is the contribution of Loss 1. To gain more insight about how Loss 1 may

(or may not) lead to module formation, I mapped out the entire "energy landscape"
20 The notion of firing rate here is related to the length of a codeword. The signal itself cannot be

interpret as firing rate because we don't restrict tuning curves to be strictly positive.

82

of Loss 1 for all possible frequency combinations for 4- and 6-cell TI codes.

Recall that our capacity measure is defined as average Euclidean distance:

(d) L Z Iz(x) - z(X')2, (2.44)

where the tuning curves

Z (X) z2i(x) cos(27rfx + 0i) (2.45)
z2i + 1(X) sin(27rf x + 0i)

are simple sine and cosine functions such that Loss 2 vanishes (z(x) is a TI code by

design). To effectively maximize the the capacity, I used logarithmic of geometric

mean in Loss 1:

Loss 1 - L2 log z(x) -z(x') 2 (2.46)

2.12(a) shows a map of Loss 1 for a 4-cell TI code, i.e. two frequencies. The first

pair of cells has unity frequency: fi = 1, and the frequency of the second pair is

plotted as horizontal axis. The different colors label the case with different coding

range L-measured by the minimal wavelength of basis functions: 1/fi. We can see

that as L » 1, 1) the boundary effect become negligible for most of the frequencies,

and 2) locally good solutions (lower value in Loss 1) form flat valleys with their Loss 1

approaching to global optimum (all locally flat valleys share approximately the same

value), and 3) the bad solutions (peaks) satisfy the condition that two frequencies

are multiple integers of each other, or their ratio is a rational number such that the

corresponding code possess strong repetition.

f2/fl C Q (2.47)

Similarly for the 6 cell cases plotted in 2.12(b,c), the bad solutions (red spots) are of

rational frequency ratio. The reason is simple, if the frequency ratio are rational, after

coding range exceeds the least common multiple of their corresponding wavelength,

the codewords started to repeat, and hence lower in capacity.

These results put us in a difficult position, because it implies that a modular

code-having so many cells reuse just few frequencies-is a bad solution, and hence

83

a local maximum in Loss 1. If we follow the current scheme and proceed the opti-

mization for a case with more cells, say N = 100, the optimal solution will have as

many as N/2 = 50 different frequencies, which is in a drastic contrast to real grid

cells-often have only 3 to 10 modules in a rodent's brain. Next, we will use an ad

hoc optimization scheme to demonstrate how modular solutions can be advantageous

if a denoising mechanism is introduced.

(a) Loss 1 map for two modules

N

0

0

0 0.2 0.4 0.6 0.8 1.0

f2

1.0

0.8

0.6

Loss 1 maps for three modules
1.0

0.8

0.6

0.4

0.21

01
0

0.4

0.2

-. 20

-. 22

-. 24

-. 26

-. 28

0 1=
0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

f2 f2

Figure 2.12: A maps of energy-inverse capacity as Loss 1-landscape for 4- or
6-cell TI codes. Good solutions cover most of the landscape. (a) Landscape of a
4-cell TI code with fixed frequency for first cell pair f1 = 1. (b,c) Landscape of a 6-cell TI

code with coding range L = 10wand50w respectively.

84

two-module code with
w1 =1& L = 5

L = 50 one-module code

L =10

f3

2.4.3 Ad hoc denoising scheme: Advantages of coding theo-

retic approach

In the current scheme, having a modular code is equivalent to having redundancy in

the code. That is, multiple pairs of tuning curves share one frequency. To make such

redundancy advantageous, a denoising mechanism is necessary. The most simple

denoising model is to linearly sum many similar-yet noisy-signals such that the

signal-to-noise ratio (SNR) of the output signal is much larger than the original input

signals. To see how it works, consider two random numbers, X ~ g(px, ak) and

Y ~ 9(py, Uo), representing two noisy signals. The sum of them is also a random

variable:
2 2 (2.48)Z = X + Y ~ g(px + py, ax + a1)(248

with both the mean and variance sum up linearly. Note that, however, SNR is doubled

if the two signals were the same, i.e.

Z 2X ~ (2pux, 2a4) (2.49)

-= SNR(Z) = (2px)2 = 2 SNR(Z) (2.50)

For N neurons case, one can consider a similar linear denoiser that inclines to sum

up similar tuning curves for increasing SNR. With this denoising mechanism, one

can expect a tradeoff between the following two forces that ultimately gives rise to a

couple of modules in an optimal solution:

1. Each module within a code tends to recruit more cells to improve its own SNR.

2. A code, as a whole, prefers more modules via diversify its tuning curves to avoid

repetitive codewords.

And precisely how many modules are needed should depend on the noise level. Specif-

ically, a qualitatively correct tradeoff should satisfy the following two conditions:

1. Number of modules should decrease with increasing noise level.

2. Overall capacity should decrease with noise level.

Following these guidelines, the first denoising model, Scheme A-1, uses an ad hoc

correlated noise term-in addition to the uncorrelated noise-as a turning knob for

85

controlling the allowable denoising capability. This ad hoc approach serves as a

stepping stone for searching a minimal denoising model that finally implements the

tradeoff correctly as we will discuss in Scheme A-2.

In philosophy of finding a minimal model, we may tentatively use the coefficient

matrix-that generates tuning curves-itself as a denoiser. In so doing, both the

uncorrelated and correlated noise is added at the level of Fourier basis functions2 1

Below is the setup of the optimization problem step by step.

Setup of Scheme A-1

I. Building tuning curves using Fourier basis functions. The tuning curve of i-th cell

is
Nb

zi(x) = Pi3 a3 by (x), (2.51)
j=1

where i = 1, ... , N, X E [0, L], and bj(x) - cos(27rfu,x + #vj)

Ui = 1, .. U

with v] = 1, ... ,V. The frequencies and phases are equally divided: fu, E

j = 1, .. ,Nb UV

[0, 1/w] and #v E [-7r, 7r].

IL Denoising model

of (x l#) = C2 P. 15(x) + //N, (2.52)
j

where c2 {IZ,x a? b?(x) l is a normalization factor, and 1 j{1(x)} is a matrix

with all entries equal 1. The matrix 1 simulates an unbiased noise strength for all

cells at any locations. # controls the level of the ad hoc correlated noise, which will

be used to explore the tradeoff discussed earlier.

III. Separability as capacity measure. To explore the effect of noise, I used a noise-

normalized codewords instead of that from the original tuning curves.

zi(x l3) = zi(x) (2.53)
o-i(x 13)

2 1We will see in the next section how to implement the tradeoff using a more plausible denoiser
with noise being added at the level of tuning curves.

86

And the separability is defined as the average Euclidean distance between all pairs of

these renormalized codewords:

D (z (x10), z(z'l13)) =i (X1) -zi(X'11))2 (2.54)

IV. Three loss functions. The first loss function maximizes separability:

L1(I) 1 log D (z(x 3), z(x'l#0)) (2.55)
L2Z

x'x,

The second loss function is a soft version of constraining the code to be translationally

invariant (TI):
N-1

L2 = Var(D(A)), (2.56)
A=O

where D(A) -{D(z(x), z(x + A))}, x C [1, L - A]. The above expression looks

complicated, but all it does is to minimize the variance of each diagonals in distance

matrix D = {D(x, x')} for fulfilling the TI requirement. The third loss is interpreted

as a biological constraint that puts a large penalty on high firing rate. It is therefore

favor solutions of dense code.

L3 = z4(X) (2.57)
i'X

V. Training objective. To simultaneously optimize three objectives, I used the most

simple strategy, a weighted sum, to reduce the problem to single train objective.

min Loss(#) = irl - L1(#) + lr2 . L2 + 1r3 - L3, (2.58)
P,a

where Irl, lr2, and r3 are the relative learning rates. VI. Constraint on popula-

tion firing rate. At last, there is a single constraint to keep the code bounded: the

constraint on total firing rate:

z2(X) = L (2.59)

87

Why using a "correlated noise" term to control denoising capability?

Before going into the results from the above optimization scheme, we should first

address the question of having a correlated noise term. From the earlier simple two

random numbers example, we know that SNR for N identical tuning curves can be

boosted up by a factor of N. For a code with large N, SNR scales virtually without

bound. This shows just how effective the linear denoising model we adopt in the

scheme can be. Unfortunately another force-that increases capacity by diversifying

tuning frequencies-is now totally overwhelmed given that the largest Euclidean dis-

tance for a pair of codewords is at most 2 (when they are on the opposite side of

the unisphere). In other words, the average Euclidean distance is bounded regardless

how judicious a combination of frequency is chosen.

The role of the correlated noise term thus becomes clear. It forces a lower bound

on total noise term: oa ~- /N such that SNR saturates at N///2M. That is,

SNR can only go so far and is bounded by #22. After SNR saturates, further increase

of redundancy wouldn't help, so it is better to diversify tuning curve frequency for

the unused cells-to increase the number of modules.

Convergence to a random set of frequencies with a conserved number of

modules

Figure 2.13 shows an example of optimized solutions. The final tuning curves are

clearly modular periodic (6 modules from the spectrum). The simulation hyperpa-

rameters are listed in Appendix A.10. Figure 2.14 are results from the same hy-

perparameters but with different random initial coefficient matrix P. Figure 2.14(a)

shows that 1) for a fixed denoising capability, 1/3, different random initial conditions

converge to the same number of modules with minor deviation, and 2) the final fre-

quencies of a solution are largely at random, i.e. there is no special frequency for a

better grid cell code.

Tendency towards higher frequencies

Figure 2.14(b) shows 1) broadly covered cumulative spectra over 100 different ran-

dom initial P and 2) a uniform phase coverage 23. The resultant cumulative spectra
22Large #: no denoising capability. Small 3: strong denoising capability.
23The reason for uniform phase coverage in Scheme A-1 is not due to the need for uniform spatial

encoding. Since a single pair of sine and cosine tuning curves already cover uniformly entire spatial

88

() initial tuning curves(b

final unsorted tuning curves final sorted tuning curves441.03
20 .02

15 .01

(C initial spectrum final spectrum 0 2

5 -. 02

800 2 4 6 8 10 12 0 2 4 6 8 10 12 -0

0 2 .4 .6 .8 1 0 .2 .4 .6 .8 position (m) position (m)
frequency (1/30cm)

Figure 2.13: An optimized solution converges to a set of sinusoidal tuning curves
with few modules. (a) Random initial tuning curves. (b) The unsorted, and sorted final

set of tuning curves revealing its modular periodic nature with uniform phase coverage. (c)
Left: random initial spectrum; right: modular final spectrum.

reaffirms the statement of no special frequency that echoes the Loss 1 map from

4- or 6-cell TI codes in Figure 2.12. It also shows a tendency toward using higher

frequencies as a result of combining the following two effects:

1. Avoiding high Loss 1 in regions with very low frequencies due to the boundary

effect of a finite environment.

2. A tendency of collective movement in spectrum between neighboring frequen-

cies-caused by higher overlaps of their tuning curves-towards higher fre-

quency region during the early stage of gradient descent, and before a final

winner-take-all (WTA) type of process dominates to select only a few frequen-
24

cies

Optimal number of modules as a function of denoising capability

To demonstrate how an optimal solution ending up to a certain number of modules for

balancing the tradeoff, I ran algorithm with 10 random initial P for each 3, and swept

covering the regime from very high-denoising capability to no denoising capability

at all. As shown in Figure 2.15(a,b), the larger the denoising capability, 1/#, the

smaller the optimal number of modules M-or a more redundant code for fighting

range, the real reason for uniform phase coverage here is because of the phase freedom discussed in
Appendix A.1

24The second effect largely depends on the variance of the initial amplitudes of P-also in spec-
trum. The larger the variance, the quicker the WTA-type process resolves the final few frequencies,
and the more spread out the final frequencies can be.

89

(a) Sampled spectra of final states
(different initial conditions)

Var(a) 0
seed =0 V seed = 1 seed = 2

Var(a) = .2
seed = 0 seed = seed =2

Var(a) =.4

s=
0f seed = 1

s

Var(a) = .6
seed = 0 seed = 1 seed = 2

Var(a) = .8
seed = 0 sed= 1 sed = 2

seed = 0
see = 1 se =

frequency

(b) cumulative spectrum offinal states

(100 random initial conditions)

Var(a) =.6

A
Solutions found avoid
large period

- Range of period span only factor of 3:

Amax SAmin
Var(a) = 0

Var(a) 4 .

0.0 0.2 0.4 0.6 0.8 1.0

frequency

Figure 2.14: Statistics of final spectra indicates that a good solution has no

special frequency combination. (a) Examples of final spectra from different initial con-

ditions. A final frequency combination is largely at random scattered across higher frequency

region. (b) Cumulative spectra provide a clear demonstration of 1) no special frequency

combination, 2), tendency towards higher frequencies, and 3) uniform phase coverage.

noise. If there is no limit on the denoising capability, i.e. # = 0, it is always more

advantageous to use a single module for boosting SNR.

Next, we can derive an analytics for this tradeoff for further understanding the

precise scaling of SNR and average Euclidean distance with respect to N, M, and

3. Because in this scheme, SNR does not depend on animal's position (see Equa-

tion (2.52)), the distance between normalized codewords can be, thereby, decomposed

into a product:
1

D (z(x), z(x')) = D(z(x), z(x')) - ,o-
(2.60)

where o- is the average noise over cells. The above assumes that all cells approxi-

mately share the same noise level. Like mentioned the Euclidean distance between

two codewords is bounded, i.e. D(z(x), z(x')) < 2, and monotonically increases with

90

~1

-o

CD

M that can be well fit using a tanh function as shown in Figure 2.15(c).

Doptm(M) ~ a tanh(bM),

And SNR scales as
1 2M #3

SNR oc1 - -+
a2 N V1N

The optimal number of module is then to find the maximum of the following equation

D(z(x), z(x')) ~ D(M N, /) c tanh(bM). + (2.63)

In Figure 2.15(d), I numerically found optimal M for various # with a fixed N. One

can see a qualitatively correct tradeoff following the same trend as that of the full

optimization problem-Figure 2.15(a).

2 4 6 8 10

/3
denoise off:

= 3 o (xI/p)= 1

(c) Dg,id(M) 7ZD(z.,s,) 4jid(M) ~ +

1.40 tanh

:9 denoise-off
1.38 simulations

1.36 10

S1.34_

1.32 -

C 1.30 - = 1 -- #=3 -- 3=5
=2 -#=4 --- --+v7

E 1.28 a 1

0 5 10 15 20 25 30 35 40

M (number of modules)

(d)
1.3

1.2

1.0

.0 0.9

C
0.8

1 # 3

8

- -

0 5 10 15 20 25 30 35 40

M (number of modules)

Figure 2.15: Optimal number of modules decreases with increasing denoising
capability. (a) Optimal number of modules M increases roughly linearly with inverse

denoising capability /. (b) Example spectra of (a). (c) The capacity as average Euclidean

distance can be analytically decoupled into a product of a monotonically increasing and

decreasing functions of M, i.e. 1) a signal-only distance: Dgrid and 2) a gain in SNR: 9SNR-
(d) Maxima of the analytical capacity qualitatively predict the numerical optimal M for
various #.

91

(2.61)

(2.62)

(a)
S25

20
0

'~15

-10
E
S65

0
0

-0-

-1

Test necessity of each loss function

So far we have seen that Scheme A-1 gave rise to modular periodic tuning curves

as optimal solutions. However this demonstration is only halfway through in the

optimization principle approach introduced in Chapter 1-it shows that all three loss

functions together is sufficient for the emergence. The other half is to demonstrate

the necessity of the individual loss functions. To do this, I selectively turned off the

loss functions, and observed deviation from the target tuning curves. Figure 2.16(a-c)

sum up the necessity for all three loss functions. That is, the target tuning curves

only emerge as an optimal solution when all three loss functions are present.

(a) L1 + L2 + L3 -> dense, modular, periodic, TI
30 10.03 540 0.0" 10 spectrum

0246 81012 0 12 4 16 .

X (mn) X (mn) frequency (1/30cm)

(b) LI + L2 -~ sparse, non-modular, non-periodic, TI

40 -0.0

0.04 s
30 0.02

91-0.023e

0 -0.06

0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 .2 .4 .6 . 1

X (M) X (M) frequency (1/30cm)

(C) L1 + L3 - dense, non-modular, non-periodic, non TI
0.04 s so

400.03 1 s

30 1
0.00

0

20 f00 n

-0.02 so

-0.030

0 - 1-0.04
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 .2 .4 .6 .0 1

X (m) X (m) frequency (1/30cm)

Figure 2.16: All three loss functions are necessary for the emergence. (a) Optimal
tuning curves possess all features of the target tuning curves when all three loss functions
are present. (b,c) Optimal tuning curves are not the target tuning curves if one ofthe three
loss functions is turned off.

Advantage of using special frequency ratio between adjacent modules?

There is one seemingly important feature of grid cells observed in experiments-wasn't

considered in the target tuning curves-that is, the frequency ratios of the adjacent

92

modules are roughly a constant (Stensola et al., 2012):

fi+1
(2.64)

From the discussion above, we know already that Scheme A-1 does not lead to an

optimal solution with a set of special frequencies. But just for a sanity check, I

applied a frequency mask-for selecting a set of frequencies with constant ratio in basis

functions-in the original optimization problem. The results are shown in Figureconst

freq ratio(a). It is clear that those solutions with constant frequency ratio is not

optimal in our scheme, and the optimal solutions do not cluster into certain frequency

ratios-Figureconst freq ratio(b). This demonstration implies that whatever function

a grid cell code may implement by having a constant frequency ratio is not within our

functional hypothesis-which states that a grid cell code has only two main functions:

1) a high-capacity encoding and 2) a robust path-integration.

Optimal multi-module solutions found in Scheme A [Wei 2015] single mod.const. freq. solutio
0.2 0.4 -06 0.8 1.0 ratio = 1.4 Ve solution

_ A 111111111 go

mber of (b)
t/dules

thin edgea: uji = 1 (C: top)

solution category

.0
-f

.. Sche ne A
- ---

-4-e --I- -

1 . 2 3 4 5 6 7 8 9

ratio of adjacent frequencies

(c) w1=1

8 i~ 1.4

i = 1/L

0 .2 .4 .6 .8 1
frequency

Figure 2.17: A solution with a constant frequency ratio of adjacent modules
is not optimal. (a) A comparison in capacity across different solution types. Overall, a

solution with a fixed frequency ratio has lower capacity. (b) Examples of frequency ratios

for a set of optimal solutions. (c) Two examples of non-optimal solution with a constant

frequency ratio.

93

(a)
Var(a) = 0.0

8.8 nu

- 6 mo

8.4

8.2

(b)

C

100

80

60

40

20

0

4 4

Summary on advantages of a coding theoretic approach

Below is a list to sum up the finding from Scheme A-1, it emphasizes what a coding

theoretic approach offers whereas a direct RNN training approach fails to.

" A denoising model can be directly implemented and analytically understood in

a coding theoretic approach. The denoising model qualitatively explored the

tradeoff between either diversifying tuning curve frequency or grouping them to

boost SNR.

• Coding theoretic approach gives us a bird's-eye view of a much broader energy

landscape of an optimization problem. Since the optimization progressed with-

out involving RNN dynamics, a single run took much less computation cost.

Acquiring statistics from a large number of runs became possible.

• Necessity of either a functional or a biological constraint can be directly tested

simply by turning off their corresponding loss functions. In the earlier demon-

stration, we saw that all three loss functions are necessary for the emergence of

grid cell code.

• Coding theoretic approach provides a flexible platform to test an alternative hy-

pothesis. If one wants to explore the effect of an extra condition or constraint

on loss function, one can simply apply those on a code. For example, I added

a frequency mask to restrict the search region of solutions with a constant fre-

quency ratio. As a result, I found that the restricted solutions were significantly

less in capacity. This demonstration showed how a coding theoretic approach

can achieve such a level of clarity.

Remaining issues of the ad hoc denoising model

The correlated noise term in the current denoising model is unsatisfactory for two

reasons:

1. The linear sum of correlated noise should also depend on the Fourier coefficient

matrix just like the sum of uncorrelated noise. E.g. a poisson correlated noise

model should sum as j P b(x). Scheme A-1, however, used a constant term

merely to lower-bound the noise.

94

2. A proper denoising model-even with only uncorrelated noise-should already

display a correct tradeoff in the benefit of using redundant code.

For these reasons, we will next set up an improvement, Scheme A-2, and discuss in

the end the overall plausibility of Scheme A and the denoising model.

2.4.4 A denoising scheme that implements tradeoff correctly

In this section, I will address the issues raised by Scheme A-1 regarding the use of ad

hoc correlated noise term. In this improved scheme, I used a more straightforward

denoiser with an additional layer of cells. We will see how a complex capacity measure

is necessary in order to circumvent the issues raised and, in general, implement a

correct tradeoff in such a denoising model.

Setup of Scheme A-2

I. Building tuning curves using Fourier basis functions. The construction of tuning

curve is now simpler and without a diagonal matrix a as a frequencies picker.

Nb

zi(x) = > Pi b (x), (2.65)
j=1

where i = 1, ... , N, X C [0, L], and by(x) - cos(27f, jx + #q%)

ny = 1, .. U

with v. = 1, ... ,V . The frequencies and phases are equally divided: fj C

j = 1, .. ,No - UV

[0, 17w] and #5, E [-7r, 7r].

II. Denoising model. The noise in this denoising model is added to the level of tuning

curves.

z (x) z(x) - (1 + (i(x)) (2.66)

The model is conceptually simpler, however, consequently, we need to introduce a

second layer of cells as a denoiser:

yi) = Qi z (), (2.67)

95

where Qi, - z 2(x) z(x) measures the similarity between tuning curves zi(x) and

zj(x). As a result, this denoiser sums up similar tuning curves from the layer below

and output denoised version of the original tuning curves. The noise a is summed up

differently:

o-'((Ilag, a() = ljy1(x)/N + a Qi jx,(2.8
a j j jW 8

where at and a(specify the strength of uncorrelated and correlated noises respectively.

In the following simulation, I set a= 1 and a(= 0 for simplicity and clarity. We will

see that with uncorrelated noise term alone, the denoising model implements correct

tradeoff.

III. A capacity measure involving separability and coding dimensionality. Since the

denoiser is now at the level of y, the following normalized codewords is used to

computed a new capacity measure.

y2Qz) 1
Bi) = c (X) (2.69)

o-i(x)

The capacity is defined as

C(6) S(6) dD (2.70)

where

S(6) I 1 - exp (-d 2,/62) (2.71)
dS (d) (2.72)

)1|2
D Y - (2.73)

NL o 0-x))-1

with dxx, VE (O(x) - (X')) as Euclidean distance between codeword y(x) and

y (').

IV. Three loss functions. The geometric mean definition of the separability in Equa-

96

tion (2.72) allows a simpler form of Loss 1:

Ll(6) -log C(6)

-log S(6) - D L2 log d,,' (2.74)

The second loss function for acquiring a TI code is not changed:

1N-1

L2 = I Var(D(A)), (2.75)
A=O

where D(A) {D(z(x), z(x+A))}, x E [1, L -A]. Neither is the third loss function:

L3= l Z4 (x) (2.76)
i'x

V. Training objective. follow the earlier approach, I used a weighted sum to reduce

the problem to single training objective. The only difference is that there is only P

matrix to be optimized.

min Loss() i rl - L1(6) + lr2. L2 + lr3- L3, (2.77)
P

where irl, lr2, and lr3 are the relative learning rates.

VI. Constraint on population firing rate. The constraint on total firing rate remain

the same:

z 2(x) = L (2.78)
2,X

2.4.5 A capacity involving coding dimensionality is needed for

leveraging tuning diversity

From the previous denoising model, we know that without an ad hoc correlated noise

term for controlling denoising capability, an optimal solution always converged to the

ones of single module. This is due to an imbalanced scaling of two counter forces

trying to improve overall capacity. As a result, the force from the denoiser-utilizing

redundancy to improve SNR-always won. Thus single-module solutions were opti-

mal.

To fix this imbalanced scaling from the denoiser, mathematically, one may consider

97

a capacity measure that also takes coding dimensionality into account-as introduced:

C(6) = S(6) dD

Dmax= 1 specifies full dimensionality when all tuning curves are maximally dissimilar,
and Dm in 1/N specifies minimal dimensionality when all tuning curves are identical.

dD explicitly implements an exponentially large coding volume among codewords as

a function of coding dimensionality. S(6) discounts those volume between codewords

that cannot be distinguished under a certain noise level 6. Below I show how this

new capacity measure implements a correct tradeoff such that a solution with few

modules is optimal for a moderate noise level-parameterized as 6.

Convergence to few-module solutions with just uncorrelated noise

From the numerical results with only uncorrelated noise, we can see that the optimal

solution reliably converge to that of few modules in Figure 2.18(a). I proceeded to run

the algorithm for 100 different random initial conditions, the cumulative spectrum is

plotted in Figure 2.18(b-d). The optimal solutions again cover all frequency range

relatively uniformly without a special frequency. Curiously, this time there is a more

pronounced boundary effect that causes a frequency-phase lock manifesting four tilted

stripes in frequency-phase histogram. Also this time there was no obvious tendency

toward higher frequency solutions.

Scheme A-2 implements tradeoff correctly

Next, By sweeping the noise level we can see manifestations of a correct tradeoff in

Figure 2.19:

1. Number of modules M decreases with increasing noise level 6.

2. Capacity C decreases with increasing noise level 6.

Figure 2.19(b-d) shows three examples of different noise level representing qualita-

tively the same features of overall 100 solutions in Figure 2.19(a).

98

(a)
[seed,noise level] = [112, 5.0] ; last(logCapacity)) = 0.006696 ; numMods = 3

final z

x

100 random init. conditions with Var(a) = .6

frequency-phase histogram

frequency histogram

final spectrum
2.0 -

1.5-

1.0-

0.5-

0.00 0.25 0.50 0.75 1.00

frequency

(C)

0.2 0.4 0.6 0.8 1.0
frequency

Figure 2.18: Optimal solutions in Scheme A-2 shares the same tuning properties

with Scheme A-1. (a) An optimized solution with moderate noise level coverage to a 3-

module sinusoidal tuning curves. (b) Cumulative frequency-phase histogram of 100 random

initial conditions. (c) Uniform phase coverage. (d) Uniform coverage in frequency reaffirms

no special frequency combination for an optimal solution.

Remaining issues in general

The attempt of Scheme A-2 to address the issues-regarding the ad hoc denoising

model from Scheme A-1-revealed some fundamental problems of the need for a

99

30-

20-

10 -

0

(b)

2.0

final d
40

30

x 20

10

0-
0 20 40

x

1.5

1.0-

0.5-

0.0

count

+-

**~ IV

.

-C
CL

(d)

0
ILL

-0

Co

0.8.
0.6-
0.4]
0.2

0.0
0.0

.1Q,

(a)
20.0

17.5

15.0

12.5
0

10.0

0 7.5

5.0

2.5

S

8
- e- e -0-

0e as_ ___e0 ___e0

-0.0

-- 0.1

- -0.2 0

-- 0.3

-- 0.4

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

noise level: 6

(b [seed,noise level] = [291, 2.61 ; last(logCapacity)) = 0.094665 ; numMods = 19
final z final d final spectrum

30 40 2.0

30 1.5

X120 1.0

10 0.5

0 0 0.0
0 10 20 30 40 0 20 40 0.00 0.25 0.50 0.75 1.00

X X frequency

(C [seed,nose level] [110, 4.2] last(logCapacity)) =0.025549 : numMods =5
30 final z 40 final d 2.-final spectrum

02.0

30 a 1.5- 0 z20
20 1.0

10~ 0.5
0.10 10 0.5

0 10 20 30 40 0 20 40 0.00 0.25 0.50 0.75 1.00
X X frequency

[seed,noise level] = [814, 5.9] ; last(logCapacity)) = -0.009972 ; numMods = 3
final z final d final spectrum

C.)L X 20 1.0-

10 10 NS0.5S

0 0 -0.
0 10 20 30 40 0 20 40 0.00 0.25 0.50 0.75 1.00

X X frequency

Figure 2.19: Scheme A-2 implements correct tradeoff so that optimal number of
modules decreases with increasing noise level. (a) Both optimal number of modules
and capacity decreases with increasing noise level. (b-d) Three examples with different
noise levels.

denoiser.

L Three noise-related parameters Ideally, there should be only one noise in a system

for demonstration purposes. This scheme, however, required three: a) an intrinsic

noise set by maximum frequency 1/w in basis functions, b) an uncorrelated noise

a(in the denoiser, and c) a threshold noise 6 that discounts ambiguous codewords.

In principle, these three noises should not be, independent, free parameters. They

100

should, instead, be connected via a unified underlying noise assumption. In that

attempt, one might introduce and fine-tune few more parameters for such a potentially

elaborate noise model. And it could obscure the purpose of demonstration. To

avoid this, I fixed the first two parameters: w and a(, and only vary 3 for clarity.

Nonetheless, the issue of three-noise assumption needs to be addressed properly.

IL Unlikely complex capacity measure Besides the implausible involvement of three

noises, our only working capacity measure involves computing an unlikely global

quantity: coding dimensionality. Computing coding dimensionality requires tracking

activities of N cells over a long firing history L. It's difficult to imagine the biology

will try to optimize a design based on computing such elaborate statistical quantity

using yet another circuitry. Most importantly, while it is the fact that the average

coding volume between codewords scales as dD, this exponential scaling only provides

more space to fit more codewords in. The ability to distinguish all existing codewords

should still scale with Euclidean distance alone. The bottom line is that this capacity

measure is, again, an ad hoc mathematical fix-which is not backed by a sound

theoretical motive. And for this reason, we should be critical about the plausibility

of the very first assumption of Scheme A: The Use of sinusoidal functions as target

tuning curves.

2.4.6 Remarks of Scheme A

• Scheme A targets sinusoidal tuning curves, and a denoiser is thereby needed for

module formation.

• Scheme A demonstrates how noise plays an important role in balancing degree

of redundancy and thus shaping the optimal solution. Such fine balance of

optimal solution leads to a noise-dependent optimal number of modules.

" Scheme A shows how coding theoretic approach is advantageous in various as-

pects compared to RNN training approach-especially when it comes to affirm-

ing the necessity of hypothesized functions of a system.

• Scheme A uses a necessary-but unlikely-complex capacity measure for imple-

menting a correct tradeoff that leads to few-module solutions. The unlikeliness

of the capacity measure forced one to reconsider the plausibility of the first

assumption-sinusoidal target tuning curves.

101

2.5 Scheme B: Sparse code with optimized separa-

bility

The main takeaway from Scheme A regarding using sinusoidal target tuning curves is:

a mechanism for module formation-that is a key feature of grid cell codes-is absent.

Consequently, an implausible extra denoiser as well as a complex capacity measure

needed to be implemented. To resolve this issue, we need a much simpler scheme. In

Scheme B, I will remove the need for a denoiser by targeting a different, more sparse

tuning curve. We will see how this scheme can potentially give rise to a modular

tuning curves regardless of having no external denoising model and, towards the end,

why a new capacity measure instead of average Euclidean distance-that measures

how separable the codewords are-is needed. Lastly, for clarity in comparison with

Scheme C in the next section, I will call our capacity measure- separability.

2.5.1 Simple noise assumption and an implicit sparse con-

straint

The target tuning curves in Scheme B resemble more closely-than that of Scheme

A-to the experimentally observed grid cell tuning curves, which are well described

by von Mises functions:

zi(x) oc exp cos(22fx + (2.79)
02

A von Mises tuning curves has three important features: 1) it is locally a narrow

gaussian function with standard deviation uj, 2) it is globally periodic, and 3) it is

positive. Features 1) and 3) contrast the earlier target tuning curve. Because of

these new features, it is now possible to have a module formation mechanism without

external denoising model-as will be discussed later. I will, first, demonstrate how

the new tuning features 1) and 3) are in fact related under capacity maximization.

This connection can be derived using a connection-in a population code-between

Euclidean distance and autocorrelation. Note that, the average circular autocorrela-

tion over all cells is

=11 E (E IL
(c)= ci (X) = -Y zi (x) zi(x') (2.80)

i x i x x'=O

102

which essentially measures long-range tuning similarity of each cells. On the other

hand, the average square Euclidean distance is given as

(2 =2 (X2z(x) ± zz(('))2

=2 - 2jL2 ZS z(X) zi(X')
x,x 1i

=2 (1 - (c))

The above simplification uses an assumption of unity codeword length: E z 2(x) = 1.
It shows that maximizing (d2) is equivalent to minimize (c). It also tells us that

maximizing a population quantity (d2) can be understood by just minimizing a single

cell quantity, 1E ci(x), the average autocorrelation of cell i.

Meanwhile, we note that the minimal single cell autocorrelation can be achieved

via using a white noise tuning curve. The autocorrelation scales as ci(x) oc-x/,

where o-sets the maximal spatial resolution-is small and hence a fast decaying

ci(x). The reason that the autocorrelation quickly decays to zero for large offset is

due to the cancellation between random positive and negative signals of white noise.

Now if we constraint tuning curves to be strictly positive, the only way to achieve the

same minimal autocorrelation is to use a sparse tuning curve: zi(x) c e- 2 /2

The resultant sparse codes echoes the sparse representation in VI in primate visual

system. The sparse representation in the brain was originally hypothesized as a strat-

egy to maximize information about stimuli (Bell and Sejnowski, 1995). The equiva-

lence between sparseness and maximal information was demonstrated by maximizing

output information about the stimulus for nonnegative neurons (van Vreeswijk, 2001).

The resultant representation was sparse even though sparseness was not imposed as

an additional constraint.

From above we see how a nonnegativity constraint-an innate property of a real

cell's tuning curve-naturally leads to sparse tuning curves. This makes this candi-

date biological constraint for Loss 3 ever more plausible because we don't even have

to put in sparseness constraint explicitly. To conclude, a high capacity code with

positive tuning curves is naturally sparse.

103

2.5.2 Robustness-separability tradeoff

Before moving on to the full optimization problem, we first use Scheme B-1 to under-

stand within which parameter regimes a multi-field solution-a key tuning property of

grid cells-is optimal. The optimization problem of Scheme B-1 is meant to establish

two essential facts:

1. An optimal solution is unimodal given enough cells.

2. An optimal solution displays a robustness-separability tradeoff under various

levels of intrinsic noise.

As mentioned, in this optimization scheme I removed the need for a denoiser and

introduced a new nonnegative tuning constraint for Loss 3. Other parts of the setup

remains the same as Scheme A. The challenge for this simple scheme lies on the issue

of approaching global optimum for which I will address in the next section.

Setup of Scheme B-1

I. Simple scheme without denoiser.

Nb

zi (x) =L Pi bj (x), (2.82)
j=1

where i 1, ... , N, X E [0, L], and bj(x) = cos(27rfu3 x + #,)

with v, =1, ... ,1V . The frequencies and phases are equally divided: fu E

= 1,...,Nb UV
[0, 17w] and #vj E [-7r, 7r.

II. Separability as capacity measure. Note that since we don't have a denoiser this

time, separability is directly calculated from Euclidean distance between pairs of

codewords:

D(x,x') = D(z(x),z(x')) Z(zi(X) - Zi(X'))2 (2.83)

III. First loss functions. The first loss functions is for maximizing capacity as usually

104

except that it is now averages over D2 instead of log D as it was in Scheme A.

L1 - I D2 (, x')

XX ((2.84)

L2 Z(zi(x) - zi(z'))2

IV. Second loss functions. We don't use second loss function in this first demonstra-

tion.

V. Third loss function. The third loss function is a soft constraint on demanding

nonnegative tuning:

L3 = log (r2 - r t,)2 , (2.85)

where the a ratio r2 is defined as negativity of tuning curves z(x):

r N -- ' ((2.86)z N L EiL z2 (z)

z_) = [zi(x)]_ u if u < 0 u if u ;, 0
with ' ; [u = and [u]+ . The

wih z+,i(z) = [zi(x)]+ u]- 0 if U > 0 ad[]+ 0 if U < 0.Th

target r a, is a chosen and fixed number.

VI. Soft constraint on codeword length. In this scheme I used a soft constraint on

demanding unity codeword length. The constraint helps a solution to avoid being

trapped in a local minimum that has only few cells firing.

LO = log 1 (-Lz z) (2.87)
)(2

VII. No single training objective. In this scheme, the energy landscape is rough. Using

a single training objective as a weighted sum of all three loss function is no longer

effective. As an alternative, we will use a technique I named stochastic orthogonal

gradient descent discussed in Appendix A.5.

min [LO, Li, L3], (2.88)
P

VIIL. Constraint on population firing rate. At last the constraint on total firing rate

105

remains the same:

z 2(x) = L (2.89)

Using the above setup, I fixed the coding range to be L = 20 and swept the

number of cells N. The results shown in Figure 2.20. Firstly, we can see that the

separability (d) saturates after N > 40. This number depicts a condition of using

exactly one cell to encode one location-a place-cell-like code as will be discussed in

Chapter 3. The condition of having enough cells can be given as an inequality:

N > , (2.90)

where y .48 is a linear-fit parameter from Figure 2.10. If an optimal code has

enough cells: N > 40, its tuning curves are always unimodal (single field). Secondly,

as shown in Figure 2.21, there is a robustness-separability tradeoff for those solutions

with enough cells. That is, a more robust code using larger tuning width w leads to

a lower separability (d):

(d)optm (w) = v'2(1 - log 4 - 7) (2.91)

This analytical upper-bound is derived in Appendix A.4.

106

(a)
--- 1.36

1.34

CC 1.32

1.30

0 1.28

bD 1.26

1.24

- 3.5

-3.0p

-2.5

0

-2.0
CD

-1.5

- 1.0

0 10 20 30 40 50 60 70 80

number of cells: N

(b) seed = 3 last(dlz,r2z) =[1.292e+00 1.000e-031; ast(I1,13) = [-1.734747 0.
final z; # fields = 2.81 final d final spectrum
15'' n21. 21.

0.8 15 0.8
151.0 -: -

10 Q t 0.6 * 08 L 0.6

10 20
Q) 0 i .4 X 10 0.6 0.4

5~~~. ::a002 - 0.2

0 asil 0.0 0 * - 0.0 0 10.0 .
0 10 20 0 10 20 0.0 0.5 1.0

X X frequency

(C) seed = 0; last(dlz,r2z) = (1.336 0.0031 last(11,13)= [-1.844528e+00 5.0000ooe-06
final z; # fields = 1.9 final d final spectrum

20 20 1.4 2 1-0

0.8 4 1.2 .0 .1.0 .

X X frequency

(d) seed =0; 'ast~diz~r2z)>= 1.368e400 1.000-03]; last11.3 =[1.91s341 0. 1
final z ; # fields = 0.98 final d final spectrum

20 14 2

40 -. 8 15 10.8.

0 0.4 0 '0.6 0.4

0.2 5 0.2

0.2 06
0 -0.0 0 10.0 0 1 1.0

0 10 20 0 10 20 0.0 0.5 1.0
X X -frequency

Figure 2.20: An optimal solution is unimodal given enough cells in Scheme B-2.
(a) With a fixed maximal frequency 1/w in Fourier basis functions, an optimal solution has

one field per cell if the number of cells, N, satisfies N > L/o- = 20/.48 = 42. (b-d) Three
examples with different N.

107

- - - - --- (d -)--

-- - -

- -a

W A

0.5 1.0 1.5 2.0 2.5

intrinsic noise: w
3.0 3.5 4.0

(b) [seed,w] [2, 0.5 last(dlz,r2z) = [1.389e+00 1.000e-03]; last(I1,13) = [-1.955386 0. 1
final z# fields 1.04 final d final spectrum

80 20 1.4 2 1.0

1.02060'08 1 - 0.8
0.6 0.4

C.)L
0.4 0.6 0.4

20 -0.2 5 0.2

0 10.0 0 10.0 U0 10.01
0 10 200 10 20 0.0 0.5 1.0

X X frequency

(C) [seed,w] = [3, 1.71; last(dlz,r2z) = [1.325e+00 1.000e-03] ; last(I1,13) = [-1.821104 0. 1
final z# fields 0 .99 final d final spectrum

80 20 1.4 2 1.0
0.71.

6 12 *~0.860 -0.6 15 1.00.0.5 0.6
40 - 10

a)- 0.3 0.6 0.4
0 0.2 0.4

0.1 -0.20.

0 0.0 0 0.0 0 0.2
0 10 20 0 10 20 0.0 0.5 1.0

X X frequency

(d) [seed,w] T[3 3.8];last(dlz,r2z)
final z# fields 0 .95

80 0.5

60 0.4
•@ -0.3

40 0.2
C.20E 1

0
10.1

0 0.0
0 10 20

x

E=[1.251e.00 1.000e-03]:
final d

20 1.4

15 1.2
.,1.0

g/10 0.68

5

0 0.0

3 last(1,13) = [-1.686946 0.
final spectrum

2 - 10

0.8

0.6 0.6

0.4

0 0 0.200.002 01 020

0 10 20 , 0.0 0.5 1.0
X frequency

Figure 2.21: Optimal capacity decreases linearly with noise level. (a) Given enough

cells, an optimal solution has capacity linearly decreases with noise level w. (b-d) Three

examples with different w.

108

(a)
1.38

1.36

1.34

1.32

1.30

1.28

1.26

1.24

C.)

bb

(b) _ _.

d) 0

tt

1.03

1.02

1.01

1.00

0.99

0.98

0.97

0.96

0.95

0

-4

2.5.3 How modules might emerge without a denoising model?

After introducing the parameter regime for a set of multimodal tuning curves to

be the optimal solution, we are in a good place in discussing of module formation

mechanism. Specifically it is curious to ask how a scheme lacking of denoising model

might still group tuning curves for redundancy. In the current scheme, a tradeoff

from the following two opposing forces may lead to module formation:

1. An already existing module wants to recruit more cells for sharpening tuning

widths to increase intra-module separability.

2. Population as a whole would like more modules to avoid repeating codewords.

Early on in Scheme A, the above tendency 1 does not exist because the target tuning

curves are dense and of sinusoidal functions. But with a new Loss 3 that favor sparse

code, the more cells within a module allows for achieving narrower tuning curves

(until the width saturates). Module formation therefore may happen when there is

not enough cells or when noise level is small: N < L/o-.

2.5.4 Modular periodic solution is not typical

Scheme B-2 in this section adds back the second loss function that demands a TI code.

The challenge in optimization is constant conflicts between three loss functions. Using

the method of the stochastic orthogonal gradient descent developed in Appendix A.5,
I was able to largely improve the optimization such that both separability S and

nonnegativity 1/r' increases overall for an optimized solution.

Setup of Scheme B-2

I. Simple scheme without denoiser.

Nb

zi (x) = Pi b (x), (2.92)
j=1

109

where i= 1, ... , N,x [0, L], and bj(x) = cos(2-rf,,x + #,j)

Il = 1 ... , U

with V = 1, ... , V. The frequencies and phases are equally divided: fa, C

j= 1, ... , No - UV
[0, 1/w] and #vj c [-7r, 7].

I. Separability as capacity measure. Separability is calculated from averaging Eu-

clidean distance over pairs of codewords.

D(x, x') - D(z(x), z(x')) Z(zi(x) - Z,(X'))2 (2.93)

III. Loss functions. All loss functions remain the same except I added the second loss

function back in this full optimization problem for ensuring a TI code.

L1 I - D2 (X, X')

X,X (2.94)

L ' Z(Zi(X) - zi(x'))2

The second loss function now takes a softer form. It first computes a target constant

diagonal matrix out of the ongoing distance matrix D(z(x), z(x')):

1 L-A

Dtr(X, X') L - A Z D(x, x + A) (2.95)
X=1

Dar(X, X') replaces the value of each entry in D2 (x, X') to the mean along its diagonal.

The second loss function is now simply

L2 = log IE (D2 (x, IX') - D2 ,(X, X')) , (2.96)

IV. Third loss function. The third loss function differ from that of Scheme B-1 in a

way that it is a soft version of the last. The constraint on demanding nonnegative

tuning with a moving target bounded to the final target:

L3 = log (r, -0 (.99 r , rZar)) 2 , (2.97)

110

~~2 i W z!()z_,i~ = [zi(z)]- ...
where r = - with is the negativity of tuning curvesZ NL z+,i~ =+,i [z-i(z)]+

z (z),

0 (U, Utr) = u if U > Utar is a clip function, and
utar if U €; Utar

the target r 2, is a chosen and fixed number.

V. Soft constraint on codeword length in stochastic orthogonal gradient descent. In

this full optimization problem, Loss 0 is not directly optimized but used to compute

a corresponding gradient vector used in stochastic orthogonal gradient descent.

2

LO= 1 -A z (z) (2.98)

VI. Multiple objectives. I used stochastic orthogonal gradient descent introduced in

last section on three main loss functions.

min [LI, L2, L3], (2.99)
P

VIL Constraint on population firing rate. The constraint on total firing rate remains

the same:

z (x) = L (2.100)
2,X

Modular periodic solutions are not typical

Figure 2.22 shows 100 optimized solutions with vanishing Loss 2, i.e. these solutions

are TI codes. There is a clear tradeoff between minimizing Loss 1 and Loss 3, or

between maximizing separability and nonnegativity, as shown in Figure 2.22(a). The

colored markers indicate the number of modules-computed based on the similarity

of a pair of tuning curves (Appendix A.3). There are few remarks to be made from

this plot:

1. There is a clustering of optimized solutions towards a potential Pareto front

(Shoval et al., 2012).

2. There are only 18 out of 100 optimized solutions that are modular (of more

than one module).

111

3. Modular solutions are less optimal (further away from Pareto front) compared

to single module solutions.

112

lmod:80, 2mods:18 (out of 100)
i r-r 2 .0

(a)

bb• 1c

0.0 0.1 0.2 0.3 0.4 0.5

tuning negativity: r,

(b) seed = 25;Iast(dlzrz2) = [1.3360.081]; last(1,12,13) =[-1.851928e+00 1.2000OOe-05 1.OOOOOOe-061
final Q; * mods = 2 final z final d final spectrum

20 1.0 20 1.0 100 1.4 2 - 1.0

50.8 15 752 0.8

]7 ~ ~ 04 U 0.4 ~ 0 ~ 0.6 1L1 =J 0.410 10 0.4 2 5 0. 1 -
5 0.2 5 25 0. 0.20 0.0 0 -0.2 0 0.0 0 0.0

0 10 20 0 50 100 0 50 100 0.0 0.5 1.0
cell j x xi freq

(C) seed =74; last(dlz,rz2) = [1.38 0.147]; Iast(1i,12,13) =[-1.977943e+00 1.0000OOe-06 2.0000OOe-06]
final Q; mods 1 final z final d final spectrum -

20 1.0 20 1.0 100 1.4 2.- 1.0

15 0.8 0.8 1.2 08

0.6 1.0 0610 = 10 . 00.8 1. 10.6
U0.4 U 0.42 5 0.6 Jj~I04

5 5 25 0.4L02O.2 0. 10.2 0.[2
0 0.0 0 -0.2 0 0.0 0 0.0

0 10 20 0 50 100 0 50 100 0.0 0.5 1.0
cell j x x_1 freq

(d) f eel 86; ast(dlz-rz2) = [1.372 0.154]; last(11,12,13) =-1.935754e+00 2.6000OOe-05 2.0000OOe-06]
final Q; mods 2 final z final d final spectrum

20 1.0 20 1.0 100 1.4 -2- 1-0
108 1561.0 70

10 0.8 . 12 . 0.6
0. 10m.8

U 0.4 U 0.4 0.6 0.4

50.2 505 .2
02 0.0 0 0.2 0 [[0 10 00 50 02 2: 5 10.4 0.0

0 10 20 0 100 0 50 100 0.0 0.5 1.0
cell j x x-i freq

(e) seed = 27; last(dlz,rz2) = [1.368 0.077]; last(1,12,13) = [-1.939099e+O0 2.OOOOOOe-06 1.OOOOOOe-06]
final Q; # mods 1 final z final d final spectrum

20 1.0 20 1.0 100 1.4 2 -1.0

0.8 15 0.8 1.2 08

i10E1 10E10 50 0.1j~J
5 05 25 0.20.2 00 ..710.8 0..

0 0.0 0 -0.2 0 .0 0 ,e
0 10 20 0 50 100 0 50' 100 0.0 0.5 1.0

cell J x x_ freq

Figure 2.22: Multi-module solutions are not optimal in Scheme B-2. (a) A range

of optimized solutions cluster near a potential Pareto front with a tradeoff between capacity

and tuning nonnegativity. Only a minority of these solutions have more than one modules,
which resembles grid cells. (b-e) Four example solutions in (a). The leftmost plots are

tuning curves similarity matrices used to quantifies number of modules (Appendix A.3).

113

- 1.84*::
0

-1.6
0

-1.4

-1.2

-1.0

1.42

1.40-

1.38

1.36

1.34

1.32

1.30

1.28

e poential Pareto f ont
(C) - 1. e

3 - I.

e4 * (d

/32-

,417 :1
'* 4

__ __I __ _I I1 ?r%

2.5.5 Remarks of Scheme B

After trying a variety of Loss 3 and attempting to push the solution towards global

optimum. Scheme B-2 is by far the closest I can get. However, the optimal solutions

are still not grid cell codes. These results forced me to reevaluate the plausibility

of the current function hypothesis; more specifically, to reconsider the feasibility of

using average Euclidean distance as the capacity measure.

While being aware that a more systematic study needed to be done to make a

solid claim, I am convinced from the results of Scheme B that the main objective of

a grid cell code is not only to achieve overall high coding separability, but also to

have a long unsegmented robust coding line. In the next section, I will introduce a

new capacity measure in Scheme C that could be of much more discriminability for

narrowing down good solution space and excluding non-grid cell solutions, or more

specifically, non-modular solutions as I will explain next.

2.6 Scheme C: A new capacity measure, towards emer-

gence of grid cell code

In this section, I propose another optimization scheme that uses a new capacity

measure. Scheme C is mostly the same as Scheme B, yet it no longer uses coding

separability for Loss 1. The new capacity measure resembles that we have discussed

in the beginning of this chapter: the capacity measure for binary neurons. A notion of

threshold noise is thus necessary on top of the intrinsic noise specified by the minimal

tuning width (or maximal frequency in basis functions). I will end this chapter by

pointing out the remaining issues about reaching the global optimum and suggesting

how one may overcome these issues.

2.6.1 New capacity measure demands a long robust coding

line

We will start from an example of 4-cell code to motivate the use of new capacity

measure with its higher discriminability (higher contrast) on neighboring solutions

than that of coding separability defined as average Euclidean distance. In this exam-

ple shown in Figure 2.23, the frequency of first cell pair is fixed to 1 and the second

114

frequency is chosen to be either 1/r for the low-capacity code (top set of 6 plots) or

1/a for high-capacity code (bottom set of plots), where o is the golden ratio. The

4-cell codes are TI by default, an additional random orthogonal matrix was applied

to rotate the whole codeword structure to an arbitrary direction in state space. zi

and z2 in Figure 2.23(d) thus can be seen as a random projection from a 4D state

space onto a 2D plane.

Operational definition of separability. Figure 2.23(b,c) defines separability in the

following steps:

1. Plot Euclidean distances of all codewords relative to the first codeword as shown

in Figure 2.23(b).

2. Calculate separability by averaging distances over a chosen coding range x < L

excluding the neighboring codewords x < 1/2 shown as yellow area in Fig-

ure 2.23(b).

3. Compute average separability over different integral range shown as blue area

in Figure 2.23(c).

Operational definition of new capacity. Figure 2.23(e,f) defines capacity in the fol-

lowing steps:

1. Plot Euclidean distances of all codewords relative to the first codeword as shown

in Figure 2.23(e).

2. Calculate capacity by finding the first collision point of a given threshold noise;

i.e., C = min arg(d(O, x)) < dthres, where x > 1/2 marked as green star in

Figure 2.23(e).

3. Compute average capacity over different threshold noise shown as blue area in

Figure 2.23(f).

Discriminability of separability and capacity. Early on in an 4-cell code example in

Scheme A (Figure 2.12), we see how a solution is a local maximum in Loss 1 (or

local minimum in separability) if a chosen frequency ratio between two modules is a

rational number. The example frequencies, 1/pi and 1/varphi, we used here are both

irrational numbers. However, the golden ratio varphi is a number so called the most

irrational number, whereas pi is very close to the neighboring rational number. One

115

therefore can expect that the case with f2/fi = 1/p should result a larger separability,

which is indeed the case: (S,) = 1.349 vs. (S,) = 1.351. However, their separabilities

are almost identical, so as all the other frequency choices between them. To better

discriminate these two codes. We should observe their overall coding line structures.

In Figure 2.23(ld), we can see that for the case of f 2 /fi = 1/7r, the coding line is

cramped in some areas but loose in others, the unevenness of codeword distribution is

eventually compensated and result in a relatively high separability. As for capacity,

however, it is very sensitive to the precise relative location, x - x', of those close

by codewords. Therefore this uneven coding line has small capacity (C7) = 2.573

compared to (C,) = 3.094 in the case of f2/fl = 1/p. The golden frequency ratio has

evenly distributed coding line as shown in Figure 2.23(2d) which results in a robust

code with its capacity decreases smoothly during a gradual increase of the threshold

noise as shown in Figure 2.23(2f).

116

Low-capacity code: (fi, f2) = (1, 1/7r)

(1a) tuning: z(x) (1 b)
4 1.0 2.0--

3 0.5 1.5 -

2 0.0 1.0 -

-0.5 0.5 ------

0.0 2.5 5.0 7.5 10.0 0 2 4 6 8 10

x x

(1d) (1e) (1
1.0 2.0-

0.5- 8 1.5

6 .o N
Z2 0.0 -1.0

4~ -
____________ Its:

-0.5 0 1 2 0.54

-'-1 6 i °0 2 4 6 8 10

z 1
x

(C) (sapa) = 1.349
1.5

0.01

0 2 4 6 8 10
x

0 (capa)= 2.573
10

8-

6

4 - -
2

0.0 0.5 1.0 1.5 2.0

thres. noise: 6

(2a) tuning: z(x)
4 1 i
3 0.5o

211.0

1-10
0.0 2.5 5.0 7.5 100

x

High-capacity code: (f, f2) = (1, 1/<1)

(2b) (2) (sapa)= 1.351
2.0 1.5 s

1.0

-05 0.5 - - .

0.0 0 2 4 6 8 10 0 2 4 6 8 10

x x

(capa)= 3.094(2d) (2e) (2
1.0- 2.0- 10

0.5- 1.5-A li A10a

050
6 .A 6

Z2 0.0 1.0

-0.5 1 0.5 XI 0
-ion

~'"0 -1 0 ° °-°0.00 2 4 6 8 10 0

zi x

Figure 2.23: A good code based on the new capacity measure has uniformly

distributed coding lines. (la) Tuning curves of a low-capacity 4-cell TI code with
frequencies: (f1, f2) = (1, 1/7r). (1b) Operational definition of separability as average

Euclidean distance over a given coding range. (1c) Separability quickly saturates with

increasing coding range. (1d) Coding line (1D manifold) of tuning curves of (la). (le)
Operational definition of the new capacity as spatial distance of first collision point given a

threshold noise (. (if) Capacity quickly decreases with increasing ((critical failure: a sign

of non-robust code). (2a-2f) Same but for a high-capacity code with (f1, f2) = (1, 1/p).

Optimal solution regions of separability do not overlap with that of capacity. In

117

0.0 0.5 1.0 1.5 2.0

thres. noise: C

Figure 2.24(a), I plotted both separability and capacity for all frequency choices. The

shaded region are relatively bad solutions with strong boundary effect caused by fi-

nite coding range. In the middle frequency range: .6 < f < .9, I defined the top

30% as good solutions of separability (blue) or capacity (orange) and re-plotted in

Figure 2.24(b). First, we can clearly see that capacity has better contrast than sep-

arability in discriminating good from bad solutions, and second, their corresponding

good solution regions do not overlap much. This result has important implication:

the energy landscape and locations of optimal solution from the new capacity measure

will be different from that of Scheme B-2 in Figure 2.27 which used separability, and

thus has a chance to favor more grid cell like codes.

(a) (b) Good solutions:= top 30%

C

E

E

1.75

1.50

1.25 -

1.00

0.75

0.50 -

0.25 -

fl.00 L

1.75

1.50

1.25

1.00

0.75

0.50

0.25
T~! IN1

0.5 0.6 0.7 0.8 0.9 1.0 0.60 0.65 0.70 0.75 0.80 0.85 0.90
frequency frequency

Figure 2.24: The regions of optimal solutions based on separability do not over-

lap with those based on the new capacity. (a) Separability and capacity landscape for

a 4-cell TI code with a fixed first frequency: fi = 1. (b) Less than half of the good solutions

based on capacity overlap with that based on separability in the non-shaded region of (a).

Loss 1 map with the new capacity for 4-cell and 6-cell codes. In Figure 2.25, I

plotted the Loss 1 map for 4-cell and 6-cell codes for a comparison with the Loss 1

map in Figure 2.12. The new Loss 1 is simply defined as the negative capacity. In

these maps, locations of local maxima (bad solutions) are of rational frequency ratio

(same as before). A major difference is that the minima (good solutions) this time

are local islands separated by large energy barriers. This implies that a good solution

should have very specific coding line structure, and a'perturbation on its frequency

will render the solution no longer high-capacity. This result is in a drastic contrast

to the Loss 1 map in Figure 2.12 where the good solution regions connect and form

continents.

While this new capacity measure seems promising for the emergence of grid cell

codes, there is an immediate issue needed to be addressed-i.e., the capacity is not

differentiable with respect to optimization parameters. Next, I will address this issue

118

I- <sepa>
-- <capay 47

- - - ----

75. V

I I

ij

n0 n

by proposing a variation in the current capacity measure.

0

Loss 1 maps for two modules

L 10

L =50

0.2 0.4 0.6 0.8 1.0

f2

Loss 1 maps for

-1.25

1. 0

0.6

0.2

0 0.2 0.4 0.6 0.8 1.0

f2

-2.5

'-3.75

-5.0

three modules

0 0.2 0.4 06 08 10

fh
Figure 2.25: A maps of energy-negative capacity as Loss 1-landscape for 4-

or 6-cell TI codes. A good solution is surrounded by high-energy barriers in

isolation. (a) Landscape of a 4-cell TI code with fixed frequency for first cell pair fi = 1.

(b,c) Landscape of a 6-cell TI code with coding range L = 10w and 50w respectively.

2.6.2 How modules might emerge with the new capacity mea-

sure?

The intuition from Section 2.5.3 about how modules might emerge was wrong. Funda-

mentally, a capacity measure like average Euclidean distance-as a smooth function

of the tuning curves-cannot give rise to an energy landscape in solution space such

that the modular solutions are island minima. This is important because modular

119

(a)
-1

T)
CO)
0
-j

-2

-3

-4

-5

-6

-7

[0

-3.5

-7.0

-10.5

-- 14.0I

solutions must form islands for them to be optima (See a simple topological argu-

ment in Appendix A.6 which shows that any two high-capacity modular solutions are

necessarily separated by low-capacity non-modular solutions.)

Given the fact that the new capacity measure is a piecewise discrete function of

tuning curves (See Figure 2.23(f) or Appendix A.7 for more details), it is very likely

that the energy landscape shares similar island structure (Figure 2.25 as an example)

even in high-dimensional space. For this reason, optimizing the new capacity measure

is likely to give rise to modular solutions like grid cell codes.

2.6.3 Differentiable capacity measure with softmax

The reason for the current capacity measure indifferentiable is because the min(-)

operation in its definition. To remove this problem, I use a heuristic softmax function

that properly weight the probability of a collision point at any positions, and thus

estimate where this collision point will be.

New capacity measure.

C(dthres) = min arg[dxx, < dthres Ox - 3?' > A)] (2.101)

Soft version of new capacity measure.

softC(dthres) j j Ix - x'| P(x, x'| dthres, p, A) dx dx' (2.102)
0 0

where dthres sets the strength of threshold noise, and

P(x, x' I dthres, p, A) {softmax(x, x' | p, dthres) if IX - X'| > A (2.103)
0 if Ix - x'| < A

is a well normalized probability function of the capacity being at x > x0 1/2. A

heuristic softmax function is given as

softmax(x, x | p, dthres) = exp p. - (2 - ,s L (2.104)
1 2 dthres (2 -- dthres -| c) L)

where p sets the "stiffness" of the softmax function, e .001 is a small number to

prevent a vanishing numerator. The first term in the exponent amplifies probability

120

of certain displacements I X- x'| with small distances dX2, compared to threshold noise

dthres, i.e. dxx, < dth,es. The second term biases the these small distances toward the

ones with smallest displacement: ix - x'| - 0, i.e., min arg(dx1 ,). Note that for a
|x-x,I

strong threshold noise: dthre, - 2, the probability of a dxx, where Ix - x'| = 0 is

always the largest.

To test how close this soft version of capacity resembles the original, I computed

6 examples in Figure 2.26 ranging evenly from f2/fl = 2/7r to f2/fl = 1/<p. As one

can see the soft capacity function follows the original very well in various threshold

noise.

freq = 0.318 (1/r)

-- capa
-soft capa

0.0 0.5 1.0 1.5 2.0

thres. noise: (

(d) freq 0.498
10

-- capa
8 soft capa

2 --

0 -
0.0 0.5 1.0 1.5 20

thres. noise: (

(b) freq= 0.378
10

capa
8 ---- soft capa

6-

C.)

2-

ON
0.0 0.5 1.0 1.5 2.0

thres. noise: (

(e) freq = 0.558
10

-- capaI
softcapa

1-l---------l- --

Ca)

2

0.0 0.5 1.0 1.5 2.0

thres. noise: (

(c)
10-

8-
41S6-

2

0-
0.0

10

8i

2-

0-
0.0

Figure 2.26: Soft version of the new capacity is differentiable and ready for

optimization in Scheme C. (a-f) six examples of different 4-cell TI codes show a good
match between the soft capacity and the original.

2.6.4 Issues to overcome

This last simulation is meant to be a preliminary run for pointing out the issues

regarding approaching global optimum. The setup of Scheme C is identical to that of

Scheme B except Loss 1 now implements the new capacity measure. There was only

a minor fine-tuning on the relative firing rates (Appendix A.14).

121

(a)
10

•U6

2

0

freq= 0.438

-- capa
soft capa

0.5 1.0 1.5 2.0

thres. noise: (

freq= 0.618 (1/<)

-- capa
soft capa

0.5 1.0 1.5 2.0

thres. noise: (

Setup of Scheme C

I. Simple scheme without denoiser.

Nb

zi (x) = EPi by (x),
j=1

(2.105)

where i = 1, ... , N, x E [0, L], and bj(x) = cos(27fujx + #,j)

wt = 1, ... , U

with fvj = 1, ...,I V .The frequencies and phases are equally divided: fuj E

j =1

[0, 1/w] and #,, E [-7r, 7T]

UV

II. Soft version of new capacity measure.

softC(dthres) -jL jL L - X' - P(x, x' dthres, p, A) dx dx'

where dthres sets the strength of threshold noise, and

P(x, x' I dthres, P, A) {softmax(x, x' I p, dthres)

0

if |x - x'I > A

if |x - x'| < A

is a well normalized probability function of the capacity being at x > xO = 1/2. The

heuristic softmax function is given as

softmax(x, x' p, dthres) = exp p
- cv - X'I

2 dthres (2 - dthres +) L

where p sets the "stiffness" of the softmax function, E = .001 is a small number to

prevent a vanishing numerator.

III. Loss functions. All loss functions remain the same as those of Scheme B-2 except

Loss 1 is now to maximize the new capacity.

L1 i -softC(dthres) (2.109)

The second loss function takes a softer form.

L2 = log (D 2 (x, ') - D2,a(X, X')) 2 ,
L2x

(2.110)

122

(2.106)

(2.107)

(2.108)

where D'ar(X x') replaces the value of each entry in D2 (x, x') to the mean along its

diagonal:

D 2
L-A

Dar(X, X') =L 1 D(x, x + A) (2.111)
=1

The constraint on demanding nonnegative tuning with a moving target bounded to

the final target:

L3 = log (r2 - o (.99 r , r ,r)) 2 , (2.112)

2 LEz 22 (X) z= [zi(x)]_
where rz 1 s z[(x) with is the negativity of tuning curves

+ z+,i~ = [zi(x)]+

z (X),

0 (U, Utar) = if U > Utar is a clip function, and
Utar if 'U 1 Utar

the target r 2 , is a chosen and fixed number.

IV. Soft constraint on codeword length in stochastic orthogonal gradient descent.

2

LO = 1 -Z2 (X) (2.113)

V. Multiple objectives. Stochastic orthogonal gradient descent is used on three main

loss functions.

min [LI, L2, L3], (2.114)
P

V. Constraint on population firing rate. The constraint on total firing rate remains

the same:

z2(x) = L (2.115)

Results of Scheme C are shown in Figure 2.27 The issue is immediately clear in

Figure 2.27(a) where the 100 optimized solutions do not give rise to a visible potential

Pareto front, indicating that these solutions are trapped in bad local minima and

thus far from optimal. This issue is anticipated from the Loss 1 map of 4- and 6-cell

codes; that is, the good solutions are islands separated by large energy barriers. Even

though the introduction of the soft capacity enabled a gradient-based optimization

method. It didn't fundamentally change the structure of energy landscape. And an

optimization method like stochastic gradient descent will still have a hard time to

approach the global optimum.

123

(a) 1mod:89, 2mods:0 (out of 100) _ __ 2.007- .

Co,

CL

CU

0

70 -

60

50

40-

10

0
0.0

-------------------- ---- - --------- ----pten-ofish emfefon

(d) ___ _e_

04 0 i

3 .0• .

0ia1
0

1.4

-1.2

* 1.0
0.1 0.2 0.3 0.4 0.5

tuning negativity: rr

(b) [seed,d_thres] = [32, 0.5] ; last(dlz,rz2) - [1.284 0.159] ; last(I1,12,13) = [-2.3202533e+02 2.7200000e-04 2.00000OO e-06]
final Q; mods 1 final z final d final spectrum

0 14 0. 0. 1.0

00.I 1.28 1 L

celjx xi freq

(c) [seed,d thres] = [76, 0.5] ; last(dlz,rz2) = [1.218 0.094]; last(Il,12,13) = [-2.1704852e+02 2.0000000e-06 0.0000000e+00]

OfnlQ; # mods =1.0 2 fifinal 1.0l80 1.4 ~2 .- n 1 pctu

5 0.8 15 08 60 0.80.6 1.20 .1 0

0.6 0.8 CIL 0.6
U 0.4 U 0.6 0.4

1 20 I0.4 ~4 4

15 0.2 5 200 0.2

0.0 0 1 0.2 0 0 0 0.0

0 10 0 50 0 50 0.0 0.5 1.0

()cell J x xi freq

(d)[seed,d thres] = [69, 0.5]; last(dlz,rz2) = [1.272 0.153]; last(l1,12,13) = [-1.9635538e+02 2.00000 e-05 2.0000000e-06]

final Q; mods = 1 final z final d 14final spectrum 10
S1. 0 1.0 80 1.2 2 -0

-0.2 C

0.6.6 0.6

0 10 0400 500..05 .

10 jl10 0.4 406 114

4 0.] U 02 2 104 1.000 02

S0.0 0.4 2

-51.2 50.0 2 000 002

0.0 0 " -0.2 0 10.0 U0- L 0.0
0 10 0 50 0 50 0.0 0.5 1.0

(e) cell J x xI freq
[seed,dthres] [8, 0.5] ; iast(dlz,rz2) [1.291 0.12]; last(l1,12,13) [-1.fro5e+02 .0000oe-0 .O aTOOe-06]
f final ; mods 1 fnal z final d 1.4 2 final spectrum 10

0. 50.8 [1.00 068
060.6 60 01.06E l! 0.42 4 0.6 0.4

10 520.4 0.2 .15 10.0 10.2 f0
0 00-0.2 0 0.0 0 -0.0

0 10 0 50 0 50 0.0 0.5 1.0

()celli x x-1 freq

fo tedfiniti; on)ds hav no 2 nridi tuin curves. ld 1. .ial,spcru .

124

%_ A

2.6.5 Outlook and remarks of Scheme C

I have a couple of general suggestions to the issues raised above following the wisdom

from either physics or, more recently, deep learning. The detailed implementation of

these suggestions will still require judicious strategies and experimentation.

First, to follow the conventional wisdom from theoretical physics about studying

minimal models, one may try to narrow down the search region to a few general so-

lution types. For example, parameterizing tuning curves differently by forcing them

into couple of modules. One can fix the number of modules for each set of runs and

later compare among groups of optimized solutions with different number of modules.

Same can also apply to parameterizing types of non-modular solutions and comparing

their performance to that of modular solutions. This approach of re-parameterization

not only narrows down the search region in the original full solution space, but po-

tentially re-sculptures the optimization problem for avoiding island minima from a

rough energy landscape. Although the approach excludes lots of the other possible

solutions, it is nevertheless a good starting point for approaching global optimum.

Having said that, it is entirely possible that, even within a narrower solution

type, the feasible parameterization of tuning curves still give rise to a rough en-

ergy landscape. For this, one can attempt to map out entire energy landscape by

carefully sampling the initial conditions. The mapping in parameter space become

more feasible because the search region has been narrowed down drastically after re-

parameterization. To efficiently map out the energy landscape, one can hierarchically

shrink the mapping regions. E.g., first running 100 initial conditions that coarsely

cover full parameter range, and secondly focusing on the search region near the top

10% of good solutions. Doing this 100 runs hierarchically each time with an ever

more narrowed search region should improve the percentage of good solutions, and

eventually the last 100 runs should be closer to global optimum for all solutions.

Alternatively, one may follow the wisdom from deep learning and operate in an

over-parameterization regime. A deep neural net can be a suitable candidate func-

tion approximator for our purpose given its latest successes (Bengio, 2012; Bottou,

2012). The rationale behind using a multilayer feedforward network for effectively

constructing a desired function is to have many more parameter configurations-in

close vicinity with each others-that give rise to a single tuning curve solution. If so,

these desired solutions could form continent in configuration space and might become

largely accessible by gradient-based optimization approaches.

125

2.7 Chapter summary

• The descriptive function hypothesis I adopted focuses on two coding proper-

ties of grid cells: Grid cells exist for having a high-capacity and robust path-

integrating code.

" This chapter focuses on setting up various optimization schemes and quantita-

tive measures to test this function hypothesis. These optimization schemes can

be broadly categorized as 1) RNN training approach and 2) coding theoretic

approach.

" The unsuccessful demonstrations of the emergence-from both mine and Deep-

mind's RNN training schemes-may provide insights to the existence of the

function complementarity in place-grid cell dual system in the brain. Specifi-

cally, it supports two conjectures about grid cells: 1) a grid cell circuit is evolu-

tionarily hard-wired through a non-Hebbian-type plasticity mechanism during

development; 2) a grid cell circuit-to a large degree-cannot be modified via

synaptic plasticity without compromising its high-capacity encoding.

" A coding theoretic approach removes RNN dynamics and only focuses on for-

mulating quantitative measures as functions of tuning curves themselves.

" A coding theoretic approach is legitimate for pursuing an optimization principle

in the context of grid cells, because RNN learning dynamics (learning a circuit)
is irrelevant to the function hypothesis.

" A binary grid cell code optimizes its coding range (capacity) under the con-

straint of being TI-short for translationally invariant (associated to path-

integration); whereas, a continuous grid cell code optimizes 1) coding capacity,

2) TI constraint, and 3) an additional biological constraint.

" Scheme A targets modular sinusoidal tuning curves. It requires an extra de-

noiser and a complex capacity measure for leveraging a multi-module-instead

of a single-module-solution to emerge as the optimum. This implausible re-

quirement of an denoiser and complex capacity measure is caused by the as-

sumption on targeted tuning curves being sinusoidal.

" Scheme B targets modular, periodic, narrow, positive tuning curves-with a

shape of von Mises function. It doesn't require a denoiser and has a capacity

126

measure as simple as an average Euclidean distance. The optimized solutions

had one or two modules and clustered towards a potential Pareto front indi-

cating global optimality. The double-module solutions-some of them resemble

grid-like tuning-are minority and less in capacity than single-module solutions.

e Scheme C reformulates the capacity measure-targeting a robust long coding

line without critical failure. A soft version of new capacity measure was pro-

posed for circumventing the issue of indifferentiability. The energy landscape of

the new capacity measure is rough such that a local minimum is surrounded by

high-energy barriers in isolation. A test run using modified Scheme B showed

that optimized solutions are yet far from the global optimum. The major chal-

lenge for future studies is on means to approach the global optimum.

127

Chapter 3

Place cells emerge as an optimal

learnable representation guided by

grid cells

3.1 Introduction

In this chapter, we will see how place cells possess coding and dynamical properties

that are complementary to grid cells. Unlike grid cells, a place cell code is changeable

through experiences; for that, the focus of Chapter 3 is more about understanding the

role of dynamical constraints in the optimization principle and less about studying

static coding properties (which are the focus of Chapter 2). The main goal of this

chapter is therefore to fulfill the core constraint, i.e., to finding a neural iniplementa-

tion as a learnable recurrent neural network (RNN) that can continuously learn new

representations for novel environments without the issue of catastrophic forgetting

caused by severe synaptic overrides.

3.1.1 Function hypothesis: Learning distinctive codewords while

retaining the old

In comparison with grid cells, the dynamics of place cells is much richer and contex-

tual for which it leads to a much larger mass of literature and function hypotheses.

To keep the focus, I will limit the discussion only to the low- or high-level functions

that directly relate to the aim of this chapter-i.e., finding a plausible neural imple-

128

mentation of a rapidly learnable spatial code. It is necessary to mention that CA3 is

the focus of this thesis out of all the other subregions in the hippocampus because of

its rich recurrent connectivity that potentially enables a standalone path-integrator,

a requirement for the function complementarity introduced in Chapter 1. Although

CA3 cells were also hypothesized to play a functional role in pattern separation and

completion in nonspatial memory tasks, I will narrow the discussion within its func-

tions related to spatial tasks-hence to respect the name: place cells.

Low-level functions of CA3 place cells

Below, I relist the tuning properties of place cells introduced in Chapter 1 with hints

of their corresponding coding properties.

1. High-spatial resolution: They have narrow unimodal spatial tuning curves in a

relatively small environment (Maurer et al., 2005).

2. Uniform spatial coverage: Their tuning curves uniformly cover the space of an

environment (Muller et al., 1987).

3. Global remappingi: They have near orthogonal set of tuning curves such that

the cofiring structure of a certain environment is uncorrelated to the other ones

(Muller et al., 1987; Alme et al., 2014).

4. Learnable representation: A new set of tuning curves can be rapidly learnt when

encountering a novel environment (Wilson and McNaughton, 1993; Frank et al.,

2004).

5. Biased field propensity: Some place cells always have more fields than the others

in either a small or a large environment (Rich et al., 2014; Lee et al., 2019).

From these tuning properties, one can hypothesize their corresponding coding prop-

erties as low-level functions:

1. Being a path-integrating code: In parallel to the grid cell uniform phase cover-

age within a module, the uniform spatial coverage of place cell tuning curves

'Unlike grid cells which largely preserve their tuning curves (up to a rotation and translation)
and cofiring structure (Fyhn et al., 2007; Leutgeb et al., 2007), place cells randomize their cofiring
structure in a different environment. This decorrelated tuning property across environments-as
much of an independent function as it appears to be-can simply be a direct consequence of Function
1 if one takes a parsimonious interpretation.

129

could be for path-integration. However, note the subtle difference for which the

translational invariant (TI) coding property is not explicitly needed in case of

place cells for a reason to be discussed in Section 3.1.2

2. Having high coding separability: A direct consequence from having 1) a nar-

row unimodal tuning curve for each cell and 2) a uniform spatial coverage for

an ensemble is to have a spatial code that is maximally orthogonal (a result

discussed in Section 2.5.2). In other words, any two place cell codewords are

highly separable.

There were a lot of speculations about the potential functions for global remap-

ping. Here I take a parsimonious interpretation: A global remapping is a direct

consequence of seeking a new segment of place cell code that is maximally or-

thogonal to the existing code. In that regard, a global remapping is within the

function of having high coding separability.

3. Having a learnable representation: This function is better classified as a dy-

namical property than a coding property for reasons discussed in Section 3.1.2.

In short, because new place fields rapidly form in a novel environment. The

time it takes for an algorithm to search for orthogonal codewords needs to be

constrained.

4. Functions of a biased field propensity: It has been hypothesized (Lee et al.,

2019) that such a bias is to perform both a rapid recognition of an environment

(task of classification) and to have a high spatial resolution within an environ-

ment (task of self-localization). The idea is that a cell that rarely fires provide

straightforward information about which environment the rat is in (because

it only fires in very few environments); whereas a cell that fires all the time

provides necessary spatial resolution for having a path-integration capability.

Following the guidance of having minimal assumptions, the descriptive function hy-

pothesis I provide below is based on the first three functions. The biased field propen-

sity, as it turns out, can emerge in an RNN already based on just the first three func-

tions without optimizing the fourth. The function hypothesis for place cells thereby

states:

Place cells exist for having a sequentially-learnable and highly-separable

path-integrating code.

130

High-level functions of place cells

Without restricting to the CA3 place cells, I listed few relevant high-level functions

that have been hypothesized for flexible behaviors in a spatial task.

1. Topological codes: Place cells code is hypothesized to be topological (Curto

and Itskov, 2008; Curto, 2016; Curto et al., 2017; Dabaghian et al., 2012, 2014;

Babichev and Dabaghian, 2018; Low et al., 2018; Chen et al., 2012, 2014) such

that it mainly captures underlying graph structure of a task without excessively

devoting resources for a precise metric encoding as what an ensemble of grid

cells does.

2. Predictive maps: From asymmetric or reward-biased tuning curves observed in

experiments (Hollup et al., 2001; Zheng and Colgin, 2018), place cells has been

hypothesized as successor representations in a reinforcement learning (RL) task

(Stachenfeld et al., 2017; Gershman, 2018; Gardner et al., 2018) that contain

information about transition probability for a learnt policy which can lead to

an optimal cumulative reward.

In Section 3.2.4, I will discuss how topological code and predictive maps can be a

higher-order learning as an extension of the first-order learning based on hypothesized

low-level functions.

3.1.2 Optimization principle: Focus on finding learnable neu-

ral implementation

Given that the hypothesized functions for place cells are complementary to grid cells,
the approach for pursuing an optimization principle also has to be different. Be-

cause place cells can learn sequentially in such a way that RNN learning dynam-

ics is an essential part of the optimization problem, a pure coding theoretic ap-

proach-introduced in Chapter 2 for grid cells-is no longer applicable. Having said

that, we may still apply a coding theoretic approach along with an RNN training ap-

proach because each of the two hypothesized functions for place cells can be described

as nicely as either a coding or a dynamical property:

Function 1 is a coding property: Having a spatial code with high separa-

bility within and across environments.

131

Function 2 is a dynamical property: Capable of learning a novel environ-

ment with ability to recall a learnt one.

To optimize Function 1, one may consider a coding theoretic optimization scheme

introduced in Chapter 2, i.e., Scheme B-1 in Section 2.5.2, in which both the sepa-

rability (average Euclidean distance between all pairs of codewords) and the nonneg-

ativity (which demands positive tuning curves) are optimized simultaneously using

the stochastic orthogonal gradient descent (See Appendix Appendix A.5 for details).

From the results replotted below, in Figure 3.1(a), one can see that an optimal so-

lution given enough cells always has 1) the highest separability that is theoretically

bounded and 2) unimodal tuning curves with the narrowest achievable width. Note

that the optimal solution is both locally and globally TI even though such a constraint

is not explicitly applied in the optimization scheme. The local TI property is achieved

implicitly from the fact that all tuning curves have narrowest allowable width and

they tile the space evenly (a condition allows a simple mechanism for path-integration

as discussed in Section 2.3.3). The global TI is achieved because all distant pair of

codewords are orthogonal to each other.

The tuning curves from the above optimal solutions agree with the static tuning

properties of place cells. The other half concerns the dynamic tuning property-i.e.,

Function 2. To reconcile Function 1 and Function 2, which demands sequential learn-

ability, one may consider Function 2 as an algorithmic constraint for optimizing Func-

tion 1. In other words, the process of optimizing Function 1 needs to be online,

rendering Scheme B-1 an unsuitable approach for the optimization principle. In Sec-

tion 3.2, I will introduce an optimal online learning algorithm that aims to approach

the optimal solutions in Scheme B-1 under the constraint to rapidly construct tuning

curves as the agent moves. This optimal algorithm can be seen as a preparation

to fulfill the final core constraint in the optimization principle: a learnable neural

implementation, as will be introduced in Section 3.5.

132

(a)

0 10 20 30 40 50 60 70 80

number of cells: N

(b) seed =3 ; ast(dlz,r2z) = [1.292e+00 1.000e-031: Iast(1,13) = [-1.734747 0.
final z; # fields = 2.81 final d final spectrum

15 10.8 14 21.2 5.
'. 15 0.8

1 0.6 0.8 0.6
Q) i 0.4 X110 0.6 0,4

S0.2 0
0 1. 0N 0.0 0 .0

0 10 20 0 10 20 0.0 0.5 1.0
X frequency

() seed = 0; last(dlz,r2z) = [1.336 0.0031; last(1,13) = [-1.844528e+00 5.0000OOe-06]
final z; # fields = 1.9 final d final spectrum

20 20 1.4 2 1-0

0.8 1.2 ..

15 088

O-4 0.6 *C6
r-0.6. 0.6

Q10 0."a4 X 10 ,• • 0.6 1 0.4

5 0.4 00.2 0
0 "" 0.0 0 - • -0.0 00 1 10.

0 10 20 0 10 20 0.0 0.5 1.0
X X frequency

(d) seed =0; ast(dlz,r2z)final z; # fields = 0.98

40 0.8

Q20 0.4

0.2

0 0.0
0 10 20

x

= [1.368e4001.000e-031
final d

20

15

'10

5

0

;last(1,13) = [-1.915341 0. 1
final spectrum

1.4 2 1.0
1.2 0.8
1.0 .c
0.8 CL10.6
0.6 0.4
04

0.0 0 L.I
0 10 20 0.0 05 1.0

x frequency

Figure 3.1: An optimal solution is unimodal given enough cells in Scheme B-2.

(a) With a fixed maximal frequency 1/w in Fourier basis functions, an optimal solution has

one field per cell if the number of cells, N, satisfies N > L/o- = 20/.48 = 42. (b-d) Three
examples with different N.

133

- -- en6' tMippet6 end-,-

- ---- --

-,

1.36

1.34

1.32

1.30

1.28

1.26

1.24

bb

3.5

3.0 go

2.5 *

0
2.0

1.5 m

1.0

x

3.1.3 Chapter organisation

The rest of Chapter 3 has three parts. Part 1, or Section 3.2, focuses on finding an

optimal online learning algorithm that give rise to place cells within the framework

of coding-theoretic approach. Part 2, or Sections 3.3 and 3.4, focuses on overcoming

the catastrophic forgetting-a well known problem in training a neural network. And

the last part, Section 3.5, focuses on finding a plausible neural implementation of the

optimal online learning algorithm based on the knowledge developed in Part 2 about

how to circumvent the catastrophic forgetting. In both Part 2 and 3, I will discuss

experimental implications and predictions mostly based on the inevitable dynamical

constraints of an RNN which has been overlooked by the field in general.

3.2 Optimal online learning algorithm

In this section, I will introduce to an optimal online learning algorithm-that maxi-

mizes codeword separability (Function 1)-as a necessary step towards fulfilling the

core constraint in the optimization principles. The algorithm is purely coding the-

oretic yet already capturing the online aspect of Function 2-capable of learning a

novel environment-such that the algorithm can be directly adapted for a plausible

neural implementation as will be discussed in section 3.5.

To keep the online algorithm simple, it needs a guiding source from a translational

invariant (TI) spatial code that assists the formation of place fields. The most suitable

candidate is no other than a grid cell code-to which I introduced in Section 1.1.3

as a part of the fundamental stance of this thesis: the grid-assist architecture. I

will emphasize the minimalism of this architecture by comparing to using another

high-level visual cue from object manifolds, e.g., from inferior temporal cortex (IT) in

macaques, as a guiding source. The algorithm consists of two interleaving algorithmic

steps: 1) optimal random landmark sampling and 2) online similarity matching. Both

of them require the assistance from grid cells. But, importantly, after an RNN-as will

be introduced in section 3.5-has learnt to generate a place cell code, it is expected

to operate alone.

In the last two subsections, I will revisit the function complementarity (introduced

in Chapter 1 and discussed in Section 2.2.4) from the perspective of place cells, and

make a straightforward extension on the original online algorithm to incorporate the

topological coding aspect of place cell code that has been observed in experiments.

134

3.2.1 Grid cell activity as an ideal cue to guide formation of

new place fields

The main stance-the grid-place function complementary-is to have both the grid

and place cell systems function largely independently. To achieve this, place cells

cannot be a simple decoder of the grid cell code. Being a spatial code, however, a

place cell code needs to acquire a similar neighbor relationship, like grid cells, among

codewords in such a way that a place cell code is 1) locally translationally invariant

and 2) orthogonalizing codewords beyond the close neighbors2 . A spatial code like

this is fundamentally allocentric (Leutgeb et al., 2013) such that it takes an allocentric

guidance for the formation of the code. Grid cell code is obviously a suitable choice

as a guide, but let us first discuss another possibility about what it takes to use the

visual cue from a high-level sensory system as guidance.

Imagine an environment like Figure 3.2(a) on which there are three objects along

the way. The stream of raw visual stimuli from these objects are represented and re-

represented along a hierarchical feedforward pathway-e.g., the primate ventral visual

stream: Retina -+ RGC -> LGN -± V1 -+ V2 -± V4 -+ IT. This pathway,

level by level, transforms a pixel image on the retina to a compressed representation

that is most useful for solving relevant behavioral tasks. This representation at the

top level, i.e. IT, has been hypothesized to form object manifolds (DiCarlo and

Cox, 2007; DiCarlo et al., 2012; Chen et al., 2018; Chung et al., 2018; Cohen et al.,
2019) such that it can solve classification problem easily with a biologically plausible

decoder whilst keeping the encoding of various viewpoints for each object. The key

is to store flattened3 object manifolds and arrange them in parallel, so that they are

linearly separable, and hence a classification task can be trivially solved.

Figure 3.2(b) illustrates how the state trajectories of an IT cell ensemble might

go as the animal traverses in Figure 3.2(a). As one can see that in order to capture

various visual aspects of an object (e.g. position, pose, size, and shape, etc.) the

manifold needs to span into a few dimensions. As a result, the trajectory on a

manifold highly depends on where and how this manifold is placed in the state space.

And a flat manifold with linearly interpolating states does not provide translationally

invariant cues either. Moreover, the activation of a manifold state depends on whether

2The property of orthogonalizing codewords beyond neighbors directly corresponds to maximizing
codeword separability.

3Any points on a flat manifold can be expressed as a linear combination of other points on the
same manifold.

135

the corresponding object is currently within the animal's view. Consequently, the

state trajectories for proximal objects, though provide more position information,

are short-lived; whereas, a long-lived state trajectory from a distal object provides

much less position information (a distal object does not change shape or size much

during traversing). In other words, even with a highly compressed representation at

the top visual hierarchy, the visual cues are still viewpoint dependent. It is therefore

unsuitable for directly assisting place field formation.

In contrast, a grid cell code is allocentric-a property directly inherited from being

a translationally invariant spatial code. Figure 3.2(c) illustrates the state trajectory

of a ID grid cell code; one can see that the local structure is identical everywhere on

of the coding line, a feature inherited from being a TI code. In other words, a grid

cell code is not contextual and contains purely location information, and thereby an

ideal cue to guide formation of new place fields.

3.2.2 Optimal learning as online sparse manifold transforma-

tion

Unlike a grid cell code, a place cell code is only locally translationally invariant.

This crucial difference makes it possible to construct a place cell code online since

the correlation between two distant codewords is not a quantity directly relevant

to be optimized. Having Known that, the algorithm, also named the online sparse

manifold transformation, can be broken down into two interleaving steps as explained

in Figure 3.3.

Step 1: Optimal random landmark sampling

The main idea is to firstly lay down orthogonal codewords each encodes a sampled

landmark location that tiles the entire environment, and secondly do local interpola-

tions between any adjacent locations for establishing neighboring relationships among

these codewords. To do this rapidly while animal is running, the algorithm is not

allowed to compare a currently sampled codeword to the previous ones. It is therefore

no guarantee for a new sample codeword to be orthogonal to all previous sampled

codewords. The best one can do under such a constraint is to sample a sparse code-

word with each cell being drawn at equal probability. Ideally, the more sparse a

sampled codeword is, the less overlap among all randomly sampled codewords. Prac-

136

(a)

137

XO X1 X2

(b) Object manifolds: (C) Grid-cell manifold:
viewpoint-dep. traj. viewpoint-indep. traj.

ZN ZN

X1 X2

X2OX

size 0

Z3 Z3

Z2 Z2

Figure 3.2: A grid cell code is an ideal allocentric cues for guiding a formation

of new place fields. (a) A three-object environment that provides distinct visual scenes

for the animal to identify its location. (b) Compressed representations known as object

manifolds in higher visual system, e.g. IT in a macaque, organized as parallel and flat

segments. The dash lines on the manifolds depict the state trajectories when the animal

traverses along a straight line. These sequential activation on object manifolds are highly

viewpoint-dependent (egocentric): e.g. the brick changes both size and shape when the

animal moves while the ball changes only its size yet was blocked until the animal passed

through x1 , meanwhile, the distant star do not change shape or size during the traversing.

Note, however, that the shape or size of individual objects need not to be encoded in the

same direction. The manifolds are drawn this way simply for the explanation purpose. (c) A

grid cell manifold is allocentric such that the local progression is identical, or translationally

invariant. It is thereby an ideal cue for forming an allocentric place cell code.

tically, one should use a finite sparsity for a sampled codeword to achieve desirable

noise resistance. As an example, the CA3 place cell ensemble has the fraction of

activation below 3% (with a rate threshold above 1.5 Hz) at any given time (Leutgeb

et al., 2004).

As for the sampling rate, it is optimal to have the distance between two sampled

landmarks equal to half the minimal allowable tuning width (See a discussion on the

relation between noise and tuning width in Section 2.3.4). In such a case, the place

cell code locally reach the highest spatial resolution-or maximal separability. The

minimal observed tuning width in rodent grid cells or place cells is about one body

size - 20cm, so it makes a 10cm interlandmark distance.

As an example, assuming an optimal sampling process once every 10cm with

1% activation using a uniform distribution. In doing so, it will take 100 times ran-

dom landmark sampling before a substantial overlap between any two sampled code-

words-which translates to a coding range of 10m on a ID track. In other words,
an environment smaller than 10m is considered to be small and a place cell code

under the online construction is almost as good as an offline construction (maximally

separable) that ensures all codewords at sampled landmarks are nearly orthogonal.

Step 2: Online similarity matching

Once a new sampled codeword is assigned to a landmark location, the process of

online similarity matching searches for a series of overlapping codewords to fill in

the gaps between the current and the last sampled codewords. As illustrated in

Figure 3.3(a), these codewords in the gap need to interpolate between the adjacent

landmark codewords such that all the codewords within the gap have correlation

structure that locally matches the correlation structure of the grid cell code-e.g.,

Figure 3.3(d,e). The process of similarity matching is online in the sense that only

the correlations between neighboring codewords-not the distant pairs-are required

to match that of grid cells. The memory required in the process is a time interval

as short as Is; the biological plausibility of this synaptic memory will be discussed in

Section 3.5.2.

An example of the resultant place cell codes out of Step 1 and 2 will have a dis-

tance matrix looks like Figure 3.3(d); note that it matches grid cell distance matrix

in Figure 3.3(e) only locally. The corresponding coding line is illustrated as Fig-

ure 3.3(b) in which all the codewords that encode sufficiently faraway locations are

distant with each other in state space. On the other hand, this is not necessarily true

for grid cells where two distant locations can be encoded with close by codewords

as shown in Figure 3.3(c). It is worth to note that although the online similarity

matching only interpolates the two adjacent landmark codewords locally, they are

automatically orthogonal to all the distant landmark codewords or their correspond-

ing interpolating codewords (See Appendix B.1 for details). Therefore a distance

matrix like Figure 3.3(d) can be achieved even without explicitly imposing a global

138

orthogonality constraint.

Online sparse manifold transformation is not to decode grid cells, but to

learn an independent spatial code

It is important to stress that the online manifold transformation introduced here is not

simply building a feedforward decoder to find a one-to-one mapping with preserved

codeword correlation: a method mostly used to find a compressed representation in

a stream of visual data (Sengupta et al., 2018). The manifold transformation in my

setting is to produce a place cell code independent of its guide, the grid cell code,
such that a learnt place cell code can still function even after turning off the grid

cell inputs. Note that there is no sense of turning off the grid cell inputs in the two

algorithmic steps of online sparse manifold transformation. The importance of this

conceptual distinction will only become clear after we are introduced to the RNN

implementation in Section 3.5-in which both the landmark sampling and similarity

matching process is to learn the recurrent connections among place cells instead of

feedforward projections from grid to place cells.

3.2.3 Function complementarity revisited

This is a good point to revisit the function complementarity discussed in Section 2.2.4

from the place cell perspective. The three conjectures, regarding the existence of grid-

and-place-cell dual system in the brain, are:

1. A grid cell circuit is evolutionarily hard-wired through a non-Hebbian-type plas-

ticity mechanism during development.

2. A grid cell circuit-to a large degree-cannot be modified through experience via

synaptic plasticity without compromising its essential function -high-capacity

encoding.

3. A place cell circuit can only learn from experience via synaptic plasticity-with

a compromise in its coding capacity.

In Section 2.2.4, we discussed how dynamical constraint could be the reason for the

origin of the dual system in the brain. Specifically how grid cells-in order to achieve

high coding capacity-compromise their learnability (Conjecture 1 and 2). For place

139

similarityI? matching

4I - -- -- -- -
I radm anm

XO X1

iadmlnmrk sampling

X2

Place-cell manifold:
Orthogonal codewords

ZN

X2
.

Z3

Z2

X

(C) Grid-cell manifold: Densely packed,
overlapping codewords

ZN

3

Z3/

(e)

1.0I05
0.0

1.0

10.0
X

Figure 3.3: Online sparse manifold transformation as an optimal algorithm that

generates an independent place cell code with the assistance of grid cells.. (a) The

algorithm consists two interleaving steps: 1) the optimal random landmark sampling that

sporadically generates codewords using the instantaneous grid cell input as a sampler, and

2) the online similarity matching that interpolates two adjacent landmark codewords. The

sampled landmark codewords in Step 1) needs to be sparse and from a uniform distribution

such that they are mostly orthogonal to each other. (b,c) A comparison between place and

grid cell manifolds, in which a place cell manifold is shorter in length (or having a shorter

coding range) such that a highly-separable code is affordable, whereas a grid cell manifold

is lengthy and so requires the coding line to be nicely packed such that they have a descent

separability above some threshold. (d,e) A comparison between place and grid codeword

distance matrices. For a place cell code, all distant codeword pairs are maximally separable

(orthogonal), whereas a distant codeword pairs for grid cells overlaps a lot.

140

(a)

Li

a'a

(b)

(d)

a 0 0

0 4Q&
V

BV a "R

cells (Conjecture 3), however, learnability is a major function such that their coding

capacity is compromised. As one can see in the example given in Section 3.2.2, a code

created from the online sparse manifold transformation has maximal separability only

up to a coding range linearly proportional to the number of cells-assuming p active

cells are required for any codewords. The fraction of active cells is p/N such that the

coding range, before substantial overlaps among codewords, is

N
L < -w oc N, (3.1)

p

where w is the minimal tuning width. This result naturally comes about due to the

online aspect of the optimal learning algorithm, which is the first requirement for

having a learnable representation. In Section 3.5, we will discuss how the dynamical

constraint of an RNN-on top of the constraint of being an online algorithm-further

lower the coding capacity in Section 3.5.3.

3.2.4 Learning topological codes with flexible manifold trans-

formation

It has been long hypothesized that a place cell code is fundamentally topological in the

sense that it captures neighbor relations (e.g. A is next to B; B is next to C) among

all encoded landmark locations instead of the precise distances between them (e.g. A

is 20cm away from B; B is 30cm away from C). The topological aspects of a place cell

code have been studied extensively both experimentally and theoretically (Curto and

Itskov, 2008; Curto, 2016; Curto et al., 2017; Dabaghian et al., 2012, 2014; Babichev

and Dabaghian, 2018; Low et al., 2018; Chen et al., 2012, 2014). Below, I provide

two simple extensions to the online sparse manifold transformation to incorporate

essential topological aspects of place cell codes.

I. Flexible random landmark sampling for building a topological code

From earlier discussion, we know that the place cell has a coding capacity approxi-

mately equal to the amount of orthogonal codewords that can be drawn from a random

sampling. This capacity-measured in the number of orthogonal codewords-does not

directly depend on the spatial scale. That is, the spatial coding range can either be

small or large depending on the landmark sampling rate-which effectively changes

the spatial resolution of a place cell code (Maurer et al., 2005).

141

As an example, Figure 3.4(a) shows that the landmark sampling rate is relatively

higher around the middle region of the track where the sensory cues are the most

rich. This reallocation of the available orthogonal codewords empowers a place cell

code to cover a much larger spatial range. Because of this changeable interlandmark

distances that underlies a topological code, the online learning algorithm requires

an adaptable similarity matching assisted by a code with various spatial resolutions.

Fortunately, the assisting grid cell code can again fulfill this role because it is modular

with multiple scales (Stensola et al., 2012) and it can be compositional in such a way

that a subset of few modules still forms grid cell code (still translationally invariant).
As illustrated in Figure 3.4(c-e), one can therefore use modules with smaller grid

spacings to guide the formation of place fields in the middle region, and those with

larger grid spacings for place fields outside the middle region.

Alternatively, a similar augmented spatial code can also be achieved with a steady

sampling rate but using a flexible sampling sparsity. Such a learning process could be

suitable for encoding a small environment in which cells are relatively abundant and

a high spatial resolution is affordable everywhere. In which case, a place cell code

would dedicate more cells (lower sparsity) in encoding the middle region of the track

for achieving higher noise resistance. In fact, this effect of a biased spatial coding has

been observed in experiments (Hollup et al., 2001; Zheng and Colgin, 2018) in which

the percentage of active place cells are higher near the reward location.

II. Learning trajectory-dependent spatial codes that underlie various graphs

From our discussion so far, it is not hard to draw a parallel between a place cell

code and a graph. One might consider the sampled random codewords-that encode

landmark location-as vertices and the interpolating codewords between them as

edges on a graph. In which sense, one can extend the original online sparse manifold

transformation to build a topological code that underlies a given graph. To illustrate

how this can be done, I use four place cells to encode a square environment of nine

discrete positions as an example-shown in Figure 3.5.

Although the agent was trained in the same environment, depending on which

learning trajectory it learnt a distinct place cell code that underlies a unique graph.

In Figure 3.5(a), the four corners can be considered as landmark locations and the

other ones the interpolating codewords that connect them. Note that Codeword E

only overlaps with Codewords 1 and 3 so that it can be seen as an edge connecting

142

(a)

-z X1 X2

Place cell code 1. unbiased sampling, smaller spatial coverage

Place cell code 2: biased sampling, larger spatial coverage

(b) From place cell code 1 (d) Grid cell tuning curves

Module 1

1.0 M l

0.5 Module 3

X 0.0

(C) From place cell code 2 From grid code with module 1 & 2 From grid code with module 2 & 3

100

l.0 0.6 10.75
0. 2 x 10.4 0500

X 2 X 2 I: :
x x x

Figure 3.4: Place cells can flexibly allocate resources to create a topological
code. (a) A biased landmark sampling rate can cover a larger spatial range with a finite

amount of orthogonal codewords, while achieving demanded spatial resolution within the

most behaviorally relevant region. (b) The distance matrix among the codewords from an

unbiased place cell code is locally translationally invariant (TI) as can be seen in its constant

diagonal structure. (c) The distance matrix from a biased place cell code breaks local TI

condition, which illustrates the main feature of being a topological code is not to encode

precisely the metric information. (d) A three-module grid cell code with different grid

spacings can be used to guide the formation of a biased place cell code with locally different

spatial resolutions. (e) The distance matrix of the assisting grid cell code composed with

larger-spacing or smaller-spacing modules. The modular property of a grid cell code enables

its compositional ability for which a new grid cell code composed out of only a few modules

is still TI, and thereby still provide allocentric cues.

Vertices 1 and 3 in the resultant graph. In Figure 3.5(b), however, Codeword E

overlaps with all four corner codewords such that it is better described as a vertex

in the resultant graph. Figure 3.5(c) depicts how a location can even be encoded by

143

more than a single codeword. As a result, depending on the spatial trajectory going

along either the path 1-3 or the path 2-4, different place cells can be activated.

In which case, Codewords E and F contribute less to encode a position but more

to encode a trajectory; consequently, this particular place code underlies a complex

graph. This simple example therefore shows how a place cell code can fundamentally

build an abstract graph out of a physical space-a topological code that helps an

agent figure out which locations connect to which.

144

(a) Learning traj. 1 (b) Learning traj. 2 (C) Learning traj. 3

1 A 2 1 A 2 1 A 2

d) (1000) (1100) (0100) (1000) (1100) (0100) (1000) (1100) (0100)
-0
0

D E B D E B D E(1010) B
(1001) (1010) (0110) (1001) (1111) (0110) (1001) F (0101) (0110)

U
-)

4 C 3 4 C 3 4 C 3

1L (0001) (0011) (0010) (0001) (0011) (0010) (0001) (0011) (0010)

.A 2 A 2 A 21 1

E B E B
Q D D EB D
_U D
. 3

4 C C
4 C 4 3 4 C FW F

Figure 3.5: Different place cell codes can underlie various graphs in the same

environment. (a) A code for nine locations that has four orthogonal codewords at corners

(black) and five interpolating codewords (green) establishing the neighbor relations among

them. Note that the Codeword E has only overlap with Codewords 1 and 3 but not Code-

words 2 and 4, so that it underlies a graph shown below. (b) A different code for the

same environment that has Codewords E connects Codeword 2 and 4 too, which results in

a different graph. (c) A place cell code can also have more than one codeword per location

which results in trajectory-dependent tuning curves and a complex underlying graph.

Topological codes or predictive maps as a higher-order learning

In earlier secti'ons, we discuss some high-level functions of place cells that have been

hypothesized. Most of them are based on the higher-order tuning properties beyond

a uniform (unbiased) tiling of place fields in an environment. For example, place

cells have been thought to form predictive maps (Stachenfeld et al., 2017) that stores

necessary information for an agent to navigate towards rewards in a reinforcement

learning setting (Gershman, 2018; Gardner et al., 2018). A predictive map-needing

to encode reward information-is necessarily biased; In terms of our setting, locations

near a reward can have either different landmark sampling rate or different sampling

sparsity, or both. From experiments, most place fields stabilize rather quickly-a few

minutes after a rat is placed in a novel environment. One can see this first stage of

fast place field formation as a first-order learning-i.e., learning an unbiased map.

After that, as the rat moves around, discovers more structures of the environment

that could be relevant to the task, the first-order place fields are molded and gradually

form a biased map. This slower learning of a biased map with more contextual infor-

mation can thus be seen as a higher-order learning as an extension of the optimization

145

principle.

3.3 RNN sequential learnability on multi-environment

landmark-prediction task

With the development of the optimal online learning algorithm, it is now straightfor-

ward to fulfill the core constraint in the optimization principle-i.e., to find a neural

implementation that can perform the two algorithmic steps: 1) optimal random land-

mark sampling and 2) online similarity matching. Meanwhile, because place cells

are required to operate independently once a code is learnt based on the function

complementarity, it is best to use an RNN for such a neural implementation so that

a place cell circuit can function as an independent path-integrator.

Before we discuss the explicit implementation of the two algorithmic steps (Sec-

tion 3.5). It is important to investigate how the RNN dynamical property influences

the ability of online learning. It's well known in the machine learning community

that there is a major issue regarding using a single neural network to learn multi-

ple tasks sequentially: the catastrophic forgetting (Goodfellow et al., 2013; Coop and

Arel, 2013; Kirkpatrick et al., 2016). The cause of catastrophic forgetting is more of

synaptic overrides than of exceeding capacity limit4 . During the time in learning a

new task, an RNN modifies its synaptic weight without concerning the performance

of the earlier tasks.

Having said that, it is still possible to avoid catastrophic forgetting. As it turns

out, the severity of synaptic overrides in an RNN largely depends on its dynamical

property. The aim of this section is therefore to discover the type of RNN dynamics

that can learn sequentially without catastrophic forgetting such that this insight can

be transferred to the final neural implementation for completing this final piece in

the optimization principle.

Despite not explicitly implementing the optimal online learning algorithm, we will

see how an RNN-capable of sequential learning-naturally shares tuning properties

with place cells. At the end of this section, I will introduce the second fundamental

principle in this thesis: the tuning-learnability correspondence, which has an impor-

tant implication about the nonspatial tuning properties of place cells that have been

4It is known that an RNN of 256 cells has the capacity to learn to navigate in a hundred different
environments (Kanitscheider and Fiete, 2016)

146

abundantly observed in experiments (McNaughton et al., 1983; Mehta et al., 2000;

Battaglia et al., 2004; Leutgeb et al., 2006).

3.3.1 Training scheme with random and balance RNN initial-

ization

For simplicity, I use only a simple RNN layer for modeling place cells that receive

a scalar sparse input for each landmark and a continuous velocity input. The grid

cell inputs for the step of random landmark sampling are spared in this training

scheme. Likewise, the step of similarity matching is replaced by a simpler training

objective-an accurate prediction of an upcoming landmarks.

Setup of sequential learning scheme

. Landmark prediction task. The task I adopted falls into the class of self-localization

similar to those RNN training schemes in Chapter 2. During training, the agent ran-

dom walks in a novel environment-a circular track with few landmarks-as shown in

Figure 3.6(a,b) before a training in the next environments. Within an environment,

the agent is demanded to predict the next landmark by gradually increasing the ac-

tivity of an assigned landmark prediction neuron at the output end while approaching

one. The supervised landmark prediction signals, x red, are shown in Figure 3.6(d)

in which one can see that the RNN has to raise the activity of a landmark predic-

tion neuron-from roughly 60cm away-long before the encountering, which is only

5cm away when the RNN starts to receive landmark inputs: Xk. During crossing the

space between two landmarks-where there is no landmark inputs-the agent still

needs to generate predictions continuously; it is therefore necessary for the RNN to

path-integrate and know the agent's position at all time.

II. Dynamics, architecture, and training. The RNN has dynamics of a canonical

neural network. The place cell layer has activity evolves according to

sp(t + 1) = (1 - rj) sp(t) + , [Wppsp(t) + bp + Uvxv(t) + Ukxk(t)1+, (3.2)

~ is he 0 if 'a < 0

where T= is the discretization constant, [u)+ = , x is velocity input
1 if Al ;; 0

from a correlated random walk, and x4 is a sparse landmark input. All hyperparame-

147

ters are listed in Appendix B.2. The activity of landmark predictions neurons follow

a similar dynamics:

s ± (t + 1) = (1 -) s(k) (t) + r, [WLpsp(t) + bL]+. (3.3)

In this scheme, since landmark predictions neurons only receive feedforward inputs

from the place cell layer, they can as well be viewed as purely nonlinear readout layer.

Though I preserved the natural decaying dynamics of a neuron here, one might not

expect any qualitative difference in results if one simply uses a readout layer without

dynamics, e.g. s ((t) = [WLpsp(t) + bL.

The RNN is trained using standard gradient descent with backpropagation through

time (BPTT) algorithm. The loss function in environment k at time t is defined as a

L2-norm between landmark prediction signals xpred (t) and the activity of landmark

prediction neurons sf (t):

1 2
Lk (t) (k) (t)-Xped(t (3.4)

2 NLk)

where N(k) is the number of landmarks in Environment k. The total loss function for

applying BPTT is
to+T

Batch loss = Lk(t) (3.5)
t-to

Each training session comes with a batch of 100 parallel trials, and the weight updates

are the averages across all trials. A session last few-thousand to ten-thousand epochs

depending on the error convergence. Each epoch last 10s (approximately the time

for a rat to run 1 lep with maximum speed in a 6.4m long track). The truncated

BPTT interval is T = Is which is approximately half the time for the rat to run from

one landmark to the next. The significance of BPTT interval to the optimization

principle will be discussed in Section 3.5.

III. Learning geometrically or topologically different environments. There are two

types of environments in this sequential learning scheme. The RNN is trained in

either a set of geometrically different or topologically different environments. Type I

consists of ten environments as shown in Figure 3.6(a,b) with their difference defined

by the track length, number of landmarks, and location of those landmarks; in other

words, these environments are distinguishable from their geometrical differences. In

these environments, all landmarks are distinctively specified by unique input weights

148

Uk. Type II consists also ten environments, as shown in Figure 3.9(a,b), but with

few indistinguishable landmarks within a given environment. These environments are

thereby distinguishable by both their geometry as well as their topology.

In either Type I or II environments, I trained the RNN in Environment 1 by

learning Wpp and W(', and subsequently in Environment 2 after first training asLP,

illustrated in Figure 3.6(c). In the learning of Environment 2, I froze the trained

environment-dependent readout weight W 1 , enable the update for W ,(2) and keep

on training Wpp in the meantime. The training will keep going in such a sequential

fashion until completing all ten environments.

IV. Random and balanced initialization. In each training session of ten environments,

I initialized the RNN using either the following two connectivity matrices as shown

in Figure 3.7(a,d). For a random initialization, I used:

W = G(-20, 0), (3.6)

where G draws a random gaussian matrix, and < 1 is used for a stable initial

learning with the RNN dynamics mostly reflects the instantaneous sensory inputs

(Sompolinsky et al., 1988). For a balanced initialization, I used:

Wpp = I - 13, (3.7)

where I is identity matrix. An RNN with a balanced initialization-similar to identity

initialization reported in (Le et al., 2015)-has long time scale dynamics such that

its activity integrates all sensory and self-motion inputs. We will be discussing the

consequence of these initialization on the learning dynamics in subsequent sections.

V. Learning a new, and re-adapting to a familiar environment. During a training

session of learning a new environment, the connectivity is modified using a constant

learning rate lrtrain; whereas during a test run in a familiar environment, I used a small

learning rate: Iradapt .llrtrain for a relatively small adjustment on the connectivity

in order to require the original place fields.

149

(b)

env0 env2 -+ •••

xpred pred(d)x 2-

s 1 s (2) ..

V V

ILP) LP
U.

U
U2

-

x1 X2 ---

10 1 m I I 1 1 I
9 I| I II
8 |I || | |I|
7 || II| | |

95 II 1ilil I I
4 I I ll
3 I| I |||
2 |1 1 I
61 1,1 1

0 2.5 5 7.5 10 12.5
position (m)

0 2 4 6

0o2t4o6 8 10
position (mn)

Figure 3.6: A sequential learning scheme of a landmark-prediction task that
requires an RNN both to path-integrate and to avoid catastrophic forgetting.
(a) An agent is trained to navigate in multiple environments one at a time. (b) Each

environment is a circular track with a certain size and number of landmarks. All landmarks

provide a unique inputs to place cell ensemble such that they are distinguishable. (c) The
network for the task consists of a recurrent layer of place cells and a layer of landmark-
prediction cells. Both the recurrent connections among place cells and the feedforward

connections froin place cells to landmark-prediction cells are trainable (marked red). The

Place cells-that receive a stream of velocity inputs x, and sparse landmark inputs x-need

to learn an appropriate representation for the landmark-prediction cells to generate correct

spatial signals that match the supervised signals. (d) Landmark inputs and landmark-

prediction supervised signals in spatial coordinate for Environments 1 and 2. Note that the

landmark-prediction signals are much broader than the landmark inputs so that the agent

needs to path-integrate for generating correct outputs even when a landmark input is absent.

3.3.2 LD attractor dynamics exacerbates catastrophic forget-

ting

As described in the training scheme, because landmark prediction signals cover all

those positions where landmark inputs are lacking, it is necessary for an RNN to

integrate a velocity input in order to properly generate landmark predictions at all

time. Consequently, the RNN has to learn a continuous attractor (Tsodyks, 2005;

Samsonovich and McNaughton, 1997; Burak and Fiete, 2009; Kanitscheider and Fiete,

150

(a)

(c)

2017) that encodes the agent's position even though the position is not explicitly

given as a supervised signal unlike another study that requires an LSTM network to

generate explicit x - y coordinate (Kanitscheider and Fiete, 2016).

A randomly initialized RNN learns an LD manifold

From the convergence based on the learning curve as shown in Figure 3.8(a), we see

that a randomly initialized network can learn at least one environment. After training,

the activity trajectory traced out a ring-like ID manifold in the high-dimensional state

space as shown in Figure 3.7(c). Because the low-dimensional (LD) nature of such a

manifold, from this point onwards, I will call the corresponding RNN an LD network.

The LD network learnt such a circular manifold by adjusting its recurrent con-

nectivity from the random initial weight: Figure 3.7(a). During learning, the activity

trajectory started from a random point attractor-similar to a stored pattern in a

Hopfield net5 (Hopfield, 1984)-and gradually formed a one-dimensional continuous

attractor as illustrated in Figure 3.7(b). The learning took a long time-see the

blue curve of Figure 3.8(a)-because the LD network was, initially, only capable of a

one-to-one mapping from the sensory inputs to the neural activity around this point

attractor. Due to the lack of ability to integrate velocity input, the initial updates

of the recurrent connectivity at different time tended to cancel each other out. Only

when a set of points beyond the original point attractor became relatively stable,
the learning sped up as can be seen in the blue curve of Figure 3.8(a) around 2000

epochs.

A subsequent learning trajectory highly depends on the last learnt LD

manifold

After learning Environment 1, the LD network succeeded in learning the subsequent

ones as shown in the learning curves in Figure 3.8(a) in which a successful learn-

ing is defined as the error asymptotes around or below 10cm-the width of a land-

mark-indicated in the green shaded region in Figure 3.8(a). One caveat, though, is

that the three learning curves looks very different-which indicates a sign of very dif-

ferent learning dynamics within individual environments beyond just an effect caused

by the environmental differences. To understand this, one can compare the manifold

50r more appropriately, a continuous Hopfield network model-also known as Grossberg additive
model (Grossberg, 1988)

151

(b) Learning trajectory of an LD manifold

(a) Random initialization

(C)

PC1.

1 2 - 3 -o
1 -2 -3 -o

CP)

PC2

(e) Learning trajectory of an HD manifold

(d) Balanced initialization

(f)
M

N-

-y

I
¼

V

M~
0CL

PCI

-..... -- +J
1 ;... -, 5 -o

PC2

Figure 3.7: Qualitatively different learning trajectories of LD and HD networks

are results of their distinct dynamics set by two classes of initial recurrent con-

nectivity. (a) A randomly initialized recurrent connectivity matrix that will result in a

low-dimensional (LD) manifold after learning. (b) The illustrated learning trajectory of an

LD manifold. The learning starts from a random point attractor, and the LD network grad-

ually develops a ring attractor for path-integration. (c) State trajectories of Environment

1 and 2 projected to the first three principal components after consecutively training in

three environments. The fact that the second manifold are on top of the first one indicates

the reuse of first learnt manifold when learning the second environment. (d) A balanced-

initialized recurrent connectivity that will result in a high-dimensional (HD) manifold after

learning. (e) The illustrated learning trajectory of an HD manifold. The learning starts

from an inconsistent state trajectory on a flat energy landscape, and a consistent trajectory

is gradually developed for those states that were more frequently visited. (f) State trajec-

tories after training in five environments. The manifolds are HD with a little overlap which

implies the latest learning is largely independent of the existing learnt manifolds.

152

of Environment 1 and 2, plotted together in Figure 3.7(c) after learning Environment

1 to 3. The fact that the two manifolds plotted with the shared principal components

are on top of each other suggests that there is only one ring-like manifold developed

after training in these three environments (See Appendix B.4 for a comparison of

manifolds in all three environments).

It is worth pointing out that the track length, number of landmarks, and position of

landmarks are all different for these three environments; if one trains three randomly

initialized networks on these environments separately, the chance for their manifolds

to overlap should be almost zero. This simple thought experiment explains why the

learning curves of Environment 2 and 3 are so different from that of Environment

1 in Figure 3.8(a). Because the LD network possessed only a single strong ring-like

attractor after learning just one environment, the learning trajectory of the next en-

vironment had to start from those states on the attractor given that they are the only

stable states in this current RNN. The subsequent learning dynamics was therefore

greatly influenced by the existing LD manifold, and consequently the manifold was

modified to suit the task in Environment 2. Similarly, the manifold was modified

again after learning Environment 3.

A strong attractor dynamics accelerates the catastrophic forgetting

The fact that an LD network is incapable of learning multiple manifolds is problem-

atic. This drastic manifold modification in an LD network underlies an important

issue in the machine learning community: the catastrophic forgetting (Goodfellow

et al., 2013; Coop and Arel, 2013). To show that a modified manifold is no longer

compatible for using in an earlier learnt environment, I tested the performance of an

LD network-after learning only three environments-to navigate in the earlier two

environments. In a test run, a small learning rate-one-tenth of the value in a train-

ing session-is applied for the network to "re-adapt" to a familiar environment. The

results are shown in Figure 3.8(b). One can see that the LD network could not revert

to the original performance in Environment 1 even after an extensive period of time

much longer than the original training time for achieving desirable performance.

The catastrophic forgetting problem was extensively studied in Hopfield networks

6 Note that the LD network was able to recall Environment 2 after learning Environment 3
potentially because that these two environments are more similar in their track length and number
of landmarks; thereby the manifolds learnt in Environment 2 can be adopted in Environment 3 with
minor changes and vice versa (Note that also the learning curves of Environment 3 is fast converging
after learning Environment 2)

153

(a) LD, training (C) HD, training

80 - --

40 --

20- AO

10

1 -- - 2
5

0 1000 2000 3000 4000 5000 60
epoch

LD, testing

80 -

40- --

80

40

20

10

5

80

40

20
2

--- 4---= *-2-

1 -+2 -+3 ->

-J

0 100 200 300 400 500 60
epoch

HD, testing

- -- i-- -- - + - ,,

14-> ... -+r5 -

0

10- 3-10

5- 5

0 1000 2000 3000 4000 5000 6000 0 100 200 300 400 500 600
epoch epoch

Figure 3.8: Qualitatively different learning and testing curves show the pres-
ence of catastrophic forgetting in an LD network and the absence of it in an HD
network. (a) Learning curves of an LD network in first three environments. A successful

learning is defined when the desirable prediction error (indicated by a green shaded region)

is reached. The fact that a rapid convergence only happened after 2000 epochs in Environ-

ment 1 (blue) implies that it takes a long time to develop a ring attractor from an initial

point attractor. The vastly different learning curves of Environment 2 (orange) implies the

influence from the first learnt ring attractor. (b) Testing curves of the LD network with

one-tenth of the original learning rate. The failures of going back to the desirable perfor-

mance within the original learning time reveal an exacerbated catastrophic forgetting in an

LD network. (c,d) Learning and testing curves for an HD networks. The learning time for

an HD network is more than ten-fold less than that in an LD network. The qualitatively

identical-monotonically decreasing-learning curves for all five environments imply that

there is little influence of the existing manifolds on the learning of a new one. The fast

convergence in the testing phase also shows that an HD network is much less influenced by
catastrophic forgetting.

in which the quality of memories degrade drastically if the number of stored pat-

terns exceeds the network capacity (Hertz et al., 1991). However, before the runaway

memory loss by crossing the capacity limit, the forgetting problem in a Hopfield net-

work is, in fact, manageable, and the memory only degrades gradually due to the

154

E

0

(b)
00

'20

inevitable small overlaps among stored patterns. This simple example of the forget-

ting mechanism really makes it more obvious the severity of catastrophic forgetting

in an LD network in which it has the capacity of learning merely a single environ-

ment. This extreme version of catastrophic forgetting highlights just how important

an RNN dynamics is when it comes to sequential learning. Because an ongoing RNN

dynamics directly determines the course of learning (i.e., modifying RNN connectiv-

ity and molding manifolds), an RNN with a strong attractor dynamics suffers from

an accelerated modification of the earlier stored knowledge; hence an exacerbated

catastrophic forgetting.

3.3.3 HD dynamics enables sequential learnability

Now we understand how, in an LD network, a strong attractor dynamics underlies the

forgetting mechanism. These results thus motivate another class of RNN operating

in entirely different dynamical regime.

Balanced initialization: learning from a flat energy landscape

If an RNN starts its learning from a balanced initialization:

WPP = I - 0, (3.8)

where I is identity matrix and 0 (# 1, then the initial RNN dynamics goes as

follow:

dsp
Tdt -sp + [WPpsP + bp + Ux]+

= sp + [sp - /Np (sp) + bp + Ux]+ (3.9)

-#Np (sp) + bp + Ux,

where (sp) = >9spi(t) is the average activity, and the argument inside the rec-

tified linear unit is assumed to be positive for the most time. If we further assume

that (sp) ~ 1 is constant in time and set

bp= /3Np (sp), (3.10)

155

the initial RNN becomes an integrator:

rsP = JUx dt (3.11)

If there is no external inputs, any states sp is initially stable given that sp = 0.

The learning dynamics of a balanced-initialized RNN thereby contrasts that of a

randomly-initialized one; that is, it carves channels out of a flat energy landscape,

establishes local instability for constructing a stable manifold (On the other hand,

an LD network-from a randomly initialization-constructing a stable manifold by

reshaping and expanding a local point of energy minimum.)

It is worth pointing out that there exists a continuous set of RNN solutions for a

flat energy landscape, i.e. {Wpp =- I - 3 0 < / < 1}. The eigenvalues of Wpp equal

1 for all except one of them equal to 1 - /3N-with the corresponding eigenvector

Sp oc (1, ... , 1)T. The fact that all other Np -1 eigenvectors have eigenvalues that are

independent of # implies the similar integrating dynamics as explained above. Two

polar extremes of 3 = 0 or 1 can be biologically interpreted as an RNN with strong

synaptic self-excitation that cancel out cell decays, or an RNN without self-excitation

but with strong uniform background inhibition, respectively. In the training scheme,

I initialized an RNN using a small # = 2/Np. But one should expect a drift of # if

there is no special constraint that prefer one extreme than the other.

Learning an HD manifold

The learning trajectory of an HD manifold is illustrated in Figure 3.7(e). Since all

states are initially stable, one can expect a rather chaotic trajectory in the state space

in the early stage of learning. As the learning progresses, those states revisited more

frequently become lower in energy than their surrounding states, and a much more

stable manifold was thereby gradually developed. Figure 3.7(f) shows the final learnt

manifolds of Environment 1 and 2 after sequentially learning five environments. One

can clearly see that these manifolds are qualitatively different from an LD manifold

in two major aspects: 1) the underlying dimension of the manifold is much larger

than 1-the spatial dimension of a task, and consequently 2) a given position is

not encoded by a single state on the manifold but by a set of states spanning in

all dimensions. Because the high-dimensionality of such a manifold, from this point

onwards, I will call the corresponding RNN an HD network. It is important to note

that despite the fuzziness of an HD manifold seems to produce a source of uncertainty

156

in representation for decoding position, the performance on the task is nonetheless

high7

An HD network learns and recalls five environments in sequence

Another important takeaway from these two manifolds plotted in Figure 3.7(f) is that

they have unambiguously different shapes, which implies that the subsequent learning

is largely not constrained to the existing manifolds. The ability to learn a different

manifold in a novel environment greatly reduces the effect of manifold overrides hap-

pened in an LD network, and hence greatly mitigates the catastrophic forgetting.

This drastic improvement on sequential learnability can be, again, attributed to the

distinctive learning dynamics of an HD network in which a large fraction of states

remained stable-or rather untouched-even after learning a few environments. A

new manifold can thus be developed out of those unused states without much overlap-

ping with the existing ones (Note that the fuzziness of these manifolds also explains

the reduction the overlaps, in which a quantitative estimate (Equation (3.14)) of the

overlap between two manifolds is done from computing the tuning overlaps)

The training and testing results of an HD network that learnt five environments is

shown in Figure 3.8(c,d) respectively. The fact that-all five learning curves converged

in a qualitatively similar way and the time it takes for a successful training was around

the same order of magnitude for all environments-indicates the lack of a strong

attractor to influence the course of learning in the early stage. Note that the learning

time in the case of an HD network is more than ten times faster (learning time is on

the scale of 100 epochs, or 1000 s = 17 mins) than that in the case of an LD network

(learning time is on the scale of 2000 epochs, or 5 hrs and 33 mins). Moreover, in

a test run, the performance quickly revert to the desirable after roughly the same

time it took during the earlier training sessions regardless of using only one-tenth

of the original learning rate. These results show that an HD network is capable of

learning multiple environments in sequence without the catastrophic forgetting like

an LD network.
7A similar demonstration on how an uncertain representation can give rise to a stable performance

can be found in this study (Druckmann and Chklovskii, 2012)

157

An HD network can learn topologically different environments

Motivated by the fact that-in a trained HD network-there is no simple one-to-one

mapping from position to state, it is interesting to ask how an HD network will learn

its representation if there are ambiguous landmarks in an environment. For example,
as shown in Figure 3.9(b), Environment 2 contains three identical landmarks such

that the original circular track might well be an eight-shape or a clover-leaf-shape

track with identical landmarks appear only once at the center from the observer's

point of view. Meanwhile, because there is no constraint about assigning the same

state to these identical landmarks, the topology-i.e., the underlying graph of the

representation-of a learnt HD manifold needs not respect the topology of an envi-

ronment.

In this training, I again compared the performance of an HD network with an LD

network. From Figure 3.9(c), we can see that an LD network had a much harder

time learning a topologically non-trivial environment. For example, after the first

successful learning on Environment 1, the network was totally incapable of learning

Environment 2, yet was able to learn Environment 3. Oddly enough, an untrained LD

network was, nevertheless, not able to learn Environment 3 without learning Environ-

ment 1 first. Also, if an LD network first learns Environment 2 (which is topologically

more complex), it can then learn Environment 1 or 3 (which is topologically simpler).

The corresponding learnt manifolds were plotted in Figure B.3(a,b). Note that the

manifold-after successfully learning a topologically non-trivial environment, i.e., En-

vironment 2-was highly distorted and developed a subloop. All in all, these results

reconfirm the strong dependence of a learning trajectory on an existing manifold with

strong attractor dynamics in an LD network.

As for an HD network, the learning and testing trajectory did not differ from those

of non-topological environment. They all converged in the qualitatively same way. A

closer investigation on the learnt manifolds-in Figure B.3(c)-showed that they still

possess the two main features that define an HD network: 1) these manifolds are high-

dimensional and 2) they do not encode a position using just a single state. In principle,
as long as the trajectory on an HD manifold can consistently produce landmark

prediction signals, it doesn't matter if these locations with identical landmarks are

encoded as the same state.

158

(a) (b)

env2
true shape

Distinguishable landmarks
- Indistinguishable landmarks

10- I I I lI I I I I I
9 -

8 -

7 -

65- |1
5- II 11111il I I
4 -

3 - 1

2 I II I I I I
1-

0 2.5 5 7.5 10 12.5
position (m)

LD, 1st training

- - - - - - - - -

0 40 00 M0 10
epoch

LD, 2nd training

--0-----

5-

0 2000 4000 6000 8000 10000
epoch

(e)

E

LD, testing

80 - - -- --

40 --- ----

10-

5 3 D

0 1000 2000 3000 4000 5000 6000
epoch

(LD, testing

80- -

40 - - - - --

20 --

10 2 1

5

0 1000 2000 3000 4000 5000 6000
epoch

U

0

S

HD, training

80-- - --

12

40 -

1 2-3
20- -+T

5

0 100 200 300 400 500 600
epoch

(h) HD, testing

80. -

40 -

20

10--

5

0 100 200 300 400 500 600
epoch

Figure 3.9: An HD network can learn topological environments with the same

efficiency while an LD network struggles from topological incompatibility. (a)
Environments with indistinguishable landmarks are topologically nontrivial, or simply, topo-

logical. (b) Environment 2 is topological (with three ambiguous landmarks) in the sense

that a different environment shape than a circle can also produce identical landmark inputs

that are indistinguishable from the observer's viewpoint. (c-f) Learning and testing curves

for an LD network with an emphasis on that a failure of learning happens when the topology

of the consecutive environment is incompatible to that of the currently existing manifold.

(g-h) Learning and testing curves for an HD network. The lack of difference between the

curves implies that there is no qualitative difference between the learning in a topologically

trivial or non-trivial environment.

An HD network is capable of learning ten environments

At last, I also pushed an HD network to learn ten environments-both only geomet-

rically different or topologically different Ifds-with the results shown in Figure B.4.

Observer's alternative
hypotheses

C
S

5-

(d)
80

40

9)
80 -.

40-

20

10

Although it did take longer for the network to come back to a decent performance

in comparison to learning only five environments, the tuning memory degraded in a

non-catastrophic way. This process of a slow memory loss is very much an analogue

of storing random patterns in a Hopfield network as discussed earlier, in which the

memory degradation is manageable as long as the number of stored items is within the

network capacity limit. The degraded tuning memory is plotted in Figure B.4(d,h)

where the overlap-between 1) the tuning curves when first trained in Environment k

and 2) the recalled tuning curves in a test run after learning all ten environments-are

calculated. One can see that the degradation is roughly linear as a more distant tuning

curve have less overlap with the recalled one.

3.3.4 HD dynamics is inherently nonautonomous without in-

trinsic representation

To better understand the inner workings of both LD and HD network, I ran relaxation

simulations with 2000 random initial states on a network that has been trained on

multiple environments; the results are shown in Figure 3.10. During the relaxation,

both velocity and landmark inputs were turned off, and the state iterated according

to the following autonomous dynamical equation:

dse
d-= -Sp + [Wppsp + bp]+, (3.12)
dt

where [u]+ = 0 if U < 0. A relaxation simulation lasted for half a second and the
1 if U ;;'0

last states were projected onto the first two principal components computed from all

2000 last states.

An LD network learns an intrinsic representation as a ring-like continuous

attractor

In an LD network one can see that these random initial states quickly settled down to a

ring attractor within fraction of a second. The instantaneous relaxation time-indicated

in color-are around .1s. The shorter the relaxation time, the faster the decay-in

the direction orthogonal to a manifold, and hence the more stable the manifold. Note

that the relaxation time plotted is computed for the second longest decaying mode

160

(See Appendix B.6 for details), because the longest mode is parallel to the manifold

and thus not informative regarding the stability of a continuous attractor. For an LD

network there was always only a single manifold despite learning multiple environ-

ments; this also confirmed the modification on the original, Environment 1, manifold

as discussed earlier. The inner workings of the LD network thus agrees with previous

studies on path-integration with a continuous attractor (Tsodyks, 2005; Samsonovich

and McNaughton, 1997; Burak and Fiete, 2009; Kanitscheider and Fiete, 2017). At

algorithmic level, an LD network builds a continuous set of stable states as a spa-

tial representation that can exist without external inputs, or autonomously. The

nonautonomous part of an LD dynamics then serves as a perturbation for performing

path-integration-i.e., the velocity input updates a current state to its neighboring

state within the set, and the landmark inputs pin-pointing particular states within

the set serves as error correction against diffusion8 (Burak and Fiete, 2012)].

An HD network needs not learn a stable representation to path-integrate

We have known that-from Figure 3.7(f)-an HD manifold enables path-integration

in spite of not respecting the underlying dimensionality of the task relevant vari-

able (in the landmark-prediction task, it is a ID spatial variable). Given the high-

dimensionality of this manifold at any given position, no one stable state should en-

code a single position. However, one should still expect some weak stability for states

near the manifold. Indeed, this is what I saw when running the relaxation simulation

on a trained HD network as shown in Figure 3.10(b). The relaxation time is more

than ten times longer than that of a trained LD network. Surprisingly, even after

the network has been trained on five environments, these states were still, to a large

extent, not attracted to a general region-that supposedly resembling a loop-close

to the HD manifold when external inputs were present. These results also imply that

all states beyond the fuzzy manifold region are metastable with a long relaxation

time, and thereby are still available for learning a new non-overlapping manifold for

a subsequent task.

8 Instead of spikes as a noise source like (Burak and Fiete, 2012), the diffusion can still be caused
by-a finite discretization time, non-vanishing learning rate, occasional abrupt turn in random walk,
not-perfectly smooth continuous attractor, etc.-even when an explicit noise source is absent.

161

Coding stability only exists when a consistent series of external inputs are
present

Algorithmically, the results from an HD network suggest a much less intuitive-at

the algorithmic level-solution for path-integration. Unlike an LD network, an HD

network is no longer using the nonautonomous part of its dynamics as perturbation

to update the state within a pre-existing stable representation. Instead, the line that

separates autonomous and nonautonomous parts of the dynamics vanishes, and the

HD dynamics as a whole is inherently nonautonomous. This essential feature of the

HD dynamics implies that the coding stability necessary for performing a task can

only exist when external inputs are present; more importantly, the landmark inputs

that defines an environment need to be consistently present at the correct locations in

a random walk trajectory. For example, if one landmark is removed or replaced after

training, the ongoing state will react to the vacancy that could send the trajectory

off the original manifold. In an extreme case, if the network is still learning, it

could well recognize this one-landmark-removed environment as a novel environment,

and thereby exhibit a global remapping. More regarding this dynamical-constraint-

induced remapping will be discussed in Section 3.4.3. Overall, the inner workings of

an HD network do not follow a simple algorithmic solution like an LD network, which

contrast the conventional representation-first computation (Hertz et al., 1991).

3.3.5 Place fields, remapping, and the tuning-learnability cor-

respondence

From the above discussion, we know how different the autonomous dynamics of an

HD network is compared to a continuous attractor dynamics in an LD network: The

lack of strong attractor dynamics largely contributes to the sequential learnability

of an HD network. And the abundance of metastable states-even after learning

a few environments-allows an HD network to learn a new manifold largely uncon-

strained by the existing ones. Next, we will study these networks' nonautonomous

dynamics-when there are external inputs-by investigating their position and ve-

locity tuning within an environment, as well as comparing these tuning curves across

environments. Surprisingly, an HD network is not only capable of learning like place

cells, i.e., having sequential learnability without catastrophic forgetting, but also share

similar tuning properties with them.

162

(a) Stable attractor dynamics

1

1 -+2

C)/

1 -2 -+ 3

(b) Metastable attractor dynamics

1

1 -+2

*9:~ 4.~

Relaxation time (s)

P 0 2
a-

LPCI

1 -2--3

1 -+ 2-3-+ 4

S1 2+3 --+ 4-+ 5

-_J

i. A

Figure 3.10: Metastable attractor dynamics of an HD network implies a differ-
ent mechanisi for path-integration from the conventional representation-first

approach. A relaxation simulation for a trained network were run from 2000 random ini-

tial states separately without external inputs. The simulation lasted for .5s; all last states

are projected to the first and second principal components and plotted together. (a) The

fact that, for an LD network, all random initial states quickly settle down to form a con-

tinuous ring of stable states within .5s shows the existence of one (and only one) stable

ring attractor after training in one, two, or three environments. (b) For an HD network,
there is no stable low-dimensional representation even after learning five environment. These

results suggest that an HD network path-integrates in a very different way from the conven-

tional representation-first implementation approach, and the consistent representation only

show up when the external inputs are present. An HD network thereby has inherently a

nonautonomous dynamics.

An HD network has narrow and directional tuning curves

The example tuning curves from Environment 2 plotted in Figure 3.11(b,e) are com-

puted as a heat map with 10cm bin size in the spatial axis and 16 equal sized bins

163

along velocity axis:

z 3(r, () V) -- sP'i(t) I t = tr"c}, (3.13)
t C test epochs

where tr,, is moments when position and velocity equals r and v respectively. The 24

out of 256 selected tuning curves are from the cells receiving either positive, near-zero,

or negative feedforward-weighted velocity input, respectively. The comparison reveals

two major differences between an LD and HD networks: 1) an HD network has much

narrower and localized tuning curves, and 2) an HD network possesses prominent

directional tuning curves. Curiously, these two tuning properties coincide with place

cells (McNaughton et al., 1983) especially in a one-dimensional track (Mehta et al.,

2000; Battaglia et al., 2004; Kjelstrup et al., 2008).

An HD network has narrow and directional tuning curves

Next, I computed the tuning correlation between Environment k and 1-a measure

to quantify similarity between two maps:

O3(k) CM'
DkI =,(C C (3.14)

i~j

where {C}(properly normalized) is the pairwise correlation matrix for Environ-

ment k that summarize the spatial tuning correlation among all cells:

JY, yk)(r) dr (3.15)

with the marginal tuning curves: yk (r) -- fz (r, v) dv.

For an LD network, I computed DOl after learning three environments. The result

in fig. 3.11(c) shows a near a-hundred-percent preservation on pairwise tuning corre-

lation, a tuning property similar to grid cells (Trettel, 2017; Yoon et al., 2013; Fyhn

et al., 2007)-which only realign though a constant shift and rotation within a gird

modules. This result reconfirms a complete reusage of the first learnt manifold for a

further learning in an LD network.

For an HD network, DkI computed for five environments in fig. 3.11(f)-or ten

environments in Figure B.4(c)-are much smaller indicating a complete change in

pairwise tuning relations moving from one environment to another hence a global

164

remapping similar to that observed in place cells (Wills et al., 2005; Colgin et al.,
2008; Alme et al., 2014)

An HD manifold is not a 2D manifold that explicitly encodes velocity

In the earlier discussion, I quickly touched upon the advantage of high-dimensional

manifolds in sequential learnability-i.e., these manifolds circumvent the catastrophic

forgetting issue due to a small overlap among them as shown in Figure 3.7(f). Here

I investigated what variables are these manifolds encode by coloring them according

to either the agent's instantaneous velocity or position-as shown in Figure 3.11(d).

It reveals how an HD network actually encodes these variables using such an exotic

continuous manifold9 for performing the task. In Figure 3.11(d), the position-colored

manifold shows that the position is encoded in the longitudinal direction (along the

fuzzy loop). Notably this loop is neither a 1D manifold like that of an LD networks

nor a flat 2D manifold with the shape of a ribbon. Instead, the loop is truly high-

dimensional given that the fuzzy structure is visible in multiple projections using

different principal components. The clear separation of the colors on the manifold

suggests the decodability; together with proper feedforward projection weights to the

landmark prediction cells, a trained HD network is capable of predicting upcoming

landmarks very accurately.

When the manifold is velocity-colored, one also sees a clear color separation in

the transverse directions (orthogonal to the loop). However, it is important to keep

in mind that this observation only implies the existence of a pronounced velocity

tuning. The HD network was not trained to accurately encode velocity, thereby it's

not at all clear if such a high-dimensional arrangement of states-resembling a fuzzy

manifold-is useful for decoding velocity. Conceptually, if the task would require an

accurate velocity decoding too, it is most easy to dedicate a unique transverse direc-

tion for encoding velocity-given a position-such that the manifold is locally two-

dimensional and its global structure resembles a ribbon embedded in high-dimensional

state space.

9This is in contrast to the LD network which learnt a one-to-one mapping from position to state
on a ID ring-like manifold as shown in Figure 3.11(a); the mixing in the color blue and red highlights
that these cells are lack of velocity tuning.

165

(a)

U,~>0

position

0 094 0 93

> 0 94 1 0 0 96

C 9 9

> 9 9 .

(m/s) (M)

1.64

1101

-0 Pi5

[64 PC i1 o

PC2

(f)
04

r_

CLO

env1 env2 env3

0.22 0.19 0.17 0.20

0.22 8 0.35 0.31 0.32

0.19 0.35 6 0.39 0.44

0.17 0.31 0.39 % 0.35

0.20 0.32 0.44 0.35 S

env1 env2 env3 env4 env5

Figure 3.11: Metastable and inherently nonautonomous dynamics of an HD net-
works reveals how place cells might learn and path-integrate. (Caption continued

on the following page.)

The tuning-learnability correspondence

The above comparison of the tuning properties between a learnt LD and HD networks

uncovers a fundamental principle between tuning curves and sequential learnability,

which I named the tuning-learnability correspondence:

166

Pci

PC2

(d)

0 (m/s) (M)
.64 101

PCI -o PCi 5o

U[64 0

PC2 PC2

(e) Uv<0

a) --

Uv > 0

Us~0
U0>

position

(b)

(c)

Figure 3.11: Metastable and inherently nonautonomous dynamics of an HD
networks reveals how place cells might learn and path-integrate. (a-c) are results
for an LD network trained in three environments, while (d-f) are for an HD network trained

in 5 environments. (a) The manifold of an LD network when navigating Environment 2. The

manifold being colored by either velocity or position shows that it would only take a pure
position code for solving such a landmark-prediction task. (b) Joint velocity-position tuning
curves of LD network from three populations of cells that receive position, near-zero, and
negative feedforward projections for velocity inputs. The cells are only position tuned and

tend to have wider tuning curves. (c) The cross-environment tuning correlation matrix (Dkl
between any pairs of Environment k and 1, defined in the main text) shows that the cofiring

structure of an LD network is preserved across different environments, which is a tuning

property similar to that of grid cells. (d) The colored manifold of a trained HD network

shows a seemingly redundant velocity coding unnecessary for solving the task. (e) The cells

in an HD network show a clear conjunctive tuning property for encoding both position and

velocity. (f) The cross-environment correlation matrix shows that the cofiring structure is

not preserved in an HD network: a result known as global remapping in place cells. The

fact that an HD network shares both similar tuning properties and sequential learnability

with place cells suggests that a place cell ensemble might learn and path-integrate through

a nonautonomous metastable attractor dynamics.

For a simple RNN to possess a sequential learnability without catastrophic

forgetting, the cells are necessarily conjunctively tuned beyond task relevant

variables.

For example, in the landmark-prediction task, the task relevant variable is position,

and yet the cells from a trained HD network are also highly velocity tuned. This con-

junctive tuning property need not exist at algorithmic level (Marr and Poggio, 1976),

but it is nonetheless necessary at implementation level, consequently resulting in a

less intuitive and conceptually more complex algorithmic solution 0 . In contrast to a

non-sequential learner, e.g. an LD network that builds a strong attractor for position

encoding, the learning in an HD network is to achieve a minimal stability that is

sufficient to perform a task". In so doing, a learnt manifold-with no constraint to

respect the underlying dimensionality of the task relevant variables-tends to occupy

as many dimensions as possible in the state space. The learning trajectory of an HD

manifold in state space is largely at random initially-as illustrated in Figure 3.7(e);

as learning progresses, some trajectories repeatedly revisited become part of the final

"A simpler algorithmic solution for a sequential task would be to encode only the task-relevant
variables but in a subpopulation of cells. In such a case, the algorithm can just allocates another
population of unused cells.

"A balanced initialized network has zero stability-for which all states are stable at first-so that
a tiny perturbation could send a desirable state off track. Under the course of learning, the stability
of manifold grows and then stops growing after reaching desirable performance.

167

manifold. This learnt manifold can thereby be seen as a bundle of various ID trajec-

tories-as shown in Figure 3.11(d)-consequently giving rise to conjunctive tuning

curves of both task relevant and irrelevant variables.

This study demonstrated that it is crucial to take dynamics seriously from the

beginning in order to understand the process of learning in the brain. In terms of

Marr's levels of analysis, one should study the algorithmic and implementation levels

together (See the discussion in Section 1.3.4), or in an interleaving way, such that the

dynamical constraint becomes a major part of the study to guide a discovery of novel

algorithmic solution.

3.4 CA3 recurrent network as a learnable path-integrator

Earlier studies on CA3 cells in the hippocampus led to few theories on functional

roles based on this region's rich recurrent collaterals (recurrent CA3-CA3 synapses)
(Witter and Amaral, 2004). The most studied functions include pattern completion,

pattern separation, and path-integration. While the pattern completion or separation

may be studied separately in a nonspatial task (MacDonald et al., 2011; Rolls, 2013),
a successful path-integration requires that all three functions work together. How-

ever, unlike pattern completion or separation, learning recurrent connectivity in per-

forming path-integration suffers greatly from the catastrophic forgetting (as discussed

in the last section). This issue is largely unresolved because the earlier theoretical

approaches-named representation-first paradigm12 (Hertz et al., 1991)-have been

focusing on the modeling via a hand-crafted RNN that embeds a desirable represen-

tation as point or continuous attractors, and a strong attractor dynamics is the root

cause for an accelerated catastrophic forgetting.

In this section, I will briefly introduce these three hypothesized functions of CA3

place cells with an emphasis on the issue regarding learning recurrent connectiv-

ity that arises from the need for a stable attractor dynamics. I will discuss an

alternative solution for performing path-integration without using the conventional

representation-first model called the multichart attractor network. This novel solution

for path-integration is the high-dimensional (HD) network, discussed in Section 3.3,
which does not have strong attractor dynamics and can learn multiple environments

12The common theme for such an approach is to, first, build a minimal or idealist representation,
and, second, to manipulate the state transition within representation for complete a task or achieving
a function; hence the representation-first paradigm.

168

sequentially. Finally, I will discuss the experimental implications and predictions

made by this novel solution.

3.4.1 Pattern completion, pattern separation, and path-integration

in CA3

In representation-first paradigm, one creates attractor states in an RNN to represent

either certain memory items (an item can be visual, audial, olfactory, etc.), or some

hidden variables that are relevant to behaviors (e.g. representing position for navi-

gation). The reason for using attractor states can be twofold: 1) It is for stability

such that the noise (e.g. stochasticity from poisson spikes) in a circuit does not wash

off the desirable state at a given time. 2) It is for memory recalls from partial cues

(recalling having seen an apple on the desk just by seeing the empty desk). Stabil-

ity, or noise resistance, is required for all three functions of CA3 place cells we will

discuss below, whereas a memory recall from partial cues is most relevant to pattern

completion.

Pattern completion

Pattern completion has been thought as an important function of CA3 because the

hippocampus can store and recall an episodic memory rapidly from only partial or

noisy cues-an ability known as autoassociative memory (Rolls, 2013; Guzman et al.,

2016)----at any time within an episode. The requirement of fast memory retrieval

(Treves et al., 1997) can be fulfilled with an RNN that stores stable point attractors.

It is thus hypothesized that CA3, with recurrent connections, is the main subregion

that performs pattern completion.

In parallel to episodic memory, pattern completion in CA3 can also be considered

as autoassociative memories for all locations within a familiar environment. It is

similar to storing random patterns in a Hopfield network but for a set of continuous

locations. Surprisingly, even when a rat traverses to the region where the sensory

inputs are seriously deprived, stable place fields are still retained (Leutgeb and Leut-

geb, 2007). This ability that requires more than a simple memory recall from sensory

cues is called path-integration which will be discussed later.

169

Pattern separation

In order to store and recall many different memory items in CA3, representations

for the memory as point attractors should be separable under noise and ideally are

orthogonal to each other. To have many orthogonal representations, they have to

be sparse-i.e., only few active cells to represent a memory item. If so, the chance

for two memory items to have overlapping representations is greatly reduced even

when these two memories only differ by a little in perception. This property to

have dissimilar representations for two perceptually similar memories is called pattern

separation (Leutgeb and Leutgeb, 2007; Rolls, 2013). One way to achieve such a

transformation from similar stimuli to sparse representations is to use competitive

learning (Rumelhart and Zipser, 1985) such that only a small subset of cells, being a

winning group, will eventually be excited by a particular stimulus.

There are many variations to implement competitive learning; in the context of

neural networks, one can use mutual inhibitions among all cells while learning the feed-

forward weights from stimuli (input nodes) to individual cells. The overall strength of

mutual inhibitions-implemented as inhibitory recurrent connections-sets the spar-

sity of a representation; the cells thereby are required to compete in a winner-take-all

(WTA) dynamics for representing a stimulus (Rolls et al., 2006). Having the recur-

rent connectivity, CA3 subregion could perform pattern separation on its own. But

from the anatomical evidence (Marr, 1971), CA3 seems to achieve pattern separation

together with dentate gyrus (DG): an upstream subregion in hippocampus.

In the DG-CA3 duo system, DG provides sparse representations that are then

projected to CA3 in a nearly one-to-one fashion though mossy fibers". The activity

pattern in CA3, in response to the DG input, is then engraved as a point attractor

through Hebbian learning on the corresponding CA3-CA3 synapses. With the help of

DG for providing sparse representations of stimuli, CA3 recurrent connectivity is free

for the additional purpose, and the hippocampus in fact accomplishes both pattern

separation and completion at the same time.

Path-integration

The most common functional name for a hippocampal cell is place cell. Not surpris-

ingly, they got this name for their ability to represent the animal's location. In a cue

1 3One CA3 cell out of 300,000 receives roughly only 46 mossy fiber inputs, whereas it receives
inputs from 12,000 other CA3 cells (Rolls, 2013)

170

rich environment, theoretically, place cells can transform sensory inputs at any loca-

tion into a set of sparse representations. This reliable one-to-one mapping between a

(partial or noisy) sensory cue to a sparse spatial representation can be done by com-

bining both pattern separation and pattern completion as discussed above. However,
amazingly, place cells can reliably represent locations even when the sensory inputs

are deprived (O'Keefe and Nadel, 1978). In such a case, the animal needs to rely on

its self-motion cues to perform path-integration.

As discussed in Section 3.3, to perform path-integration, a neural network needs

to represent a continuous variable as its state (activity pattern) and to update the

state using self-motion cues. The conventional approach is to first build a continuous

attractor with each state on it representing a unique position, and then properly

incorporate sensory and self-motion cues by perturbatively modifying feedforward

connections (Samsonovich and McNaughton, 1997). To build a continuous attractor,

one needs recurrent connectivity. It is thus only sensible that CA3 place cells has been

hypothesized to play such a functional role. However, with so many functional roles

an ensemble of CA3 cells could play, it is unclear if CA3 place cells truly perform path-

integration by themselves. An alternative hypothesis could be that CA3 place cells

only receive spatial inputs from another path-integrator-e.g. from the entorhinal

grid cells (Solstad et al., 2006)-such that it appears to be path-integrating.

Without falling into any particular debate regarding how plausible the CA3 cell

ensemble can path-integrate alone, there is nonetheless a fundamental issue for learn-

ing such a path-integrator in an RNN-i.e., the catastrophic forgetting. Because this

issue directly relates to the main functional role of place cells: having a learnable

representation, it has to be resolved before claiming any possibility of CA3 place

cells being a standalone path-integrator. Below, I will discuss how this issue is par-

tially resolved in the multichart attractor network model (McNaughton et al., 1996;
Samsonovich and McNaughton, 1997), what the remaining problems are, and how it

can be resolved based on the results from the learning in an high-dimensional (HD)

network discussed in Section 3.3.

3.4.2 Metastable attractor dynamics enables a learnable path-

integrator

Earlier studies on modeling path-integration in CA3 cells focused on answering these

questions: 1) how to store multiple continuous attractors in an RNN? (McNaughton

171

et al., 1996; Samsonovich and McNaughton, 1997; Tsodyks, 2005), 2) how many such

continuous attractor can be stored? (Battaglia and Treves, 1998), and 3) how to

reconcile both continuous attractors and point attractors (Rolls et al., 2006) such

that a sensory cue can evoke a spatial memory (Leutgeb et al., 2006; McHugh et al.,
2007), or vice versa? Each of these questions has been largely answered by the multi-

chart attractor network model (Samsonovich and McNaughton, 1997). As for the big

question regarding sequential learning of representations in multiple environments,

a partial answer is also given in which a multichart attractor network learns feed-

forward projections that bind sensory inputs to pre-existing continuous attractors in

the network. However, from both biological or theoretical viewpoint, there are still

many important unresolved issues regarding the existence of pre-stored continuous

attractors and the plausibility of only learning feedforward projections. For that, I

will address these issues below and discuss how the HD network model introduced in

Section 3.3 can resolve them.

Remaining Issues on the multichart attractor network being a model for

CA3 place cells

Biological perspectives A multichart attractor network requires a prewiring of its re-

current connectivity that cannot be learnt through experience. The main reason is

the same for that an LD network cannot learn a new continuous attractor without

substantially modifying the earlier learnt ones. As a model for place cells, however, it

is demanded to learn a novel representation continuously. To circumvent this major

problem, McNaugton et al. proposed to keep recurrent connectivity fixed and only

to learn the feedforward projections (McNaughton et al., 1996; Samsonovich and Mc-

Naughton, 1997). In so doing, a new representation is learnt not by creating a new

continuous attractor, but by binding sensory inputs of a given environment to one

of the pre-existing attractors. Despite the fact that the experiment already suggests

that CA3 recurrent connections is plastic (Nakazawa et al., 2002), I will discuss below

three main reasons why multichart attractor network is not biological plausible.

The first issue concerns the plausibility of wiring up such a pre-existing connectiv-

ity. A multichart attractor network has connectivity that appears to be random, yet is

topographical in an individual chart. A simple construction of a K-chart connectivity

matrix is given as
K

WK charts OC ZW, (3.16)
k=1

172

where

Wk oc exp (-(r')2/202

with rk being the distance between i- and j-th cells in the arrangement of k-th

chart. r is designed to be k-th random permutation of r = I - jl2 such that

the total connectivity looks random when K » 1 yet precisely wired in such a way

that the partial connectivity Wk is topographical when cells are arranged according

to k-th chart's indices. It is thereby hard to imagine a biological blueprint capable of

wiring up WK charts even via some unknown developmental processes as mentioned by

McNaughton et al. (1996). However, it is worth to stress that it is still plausible for

such a process to wire up a single chart with the full connectivity to be topographic.

For this reason, the conjecture made in Chapter 2-regarding grid cell circuit being

developed rather than learnt-is still valid because a grid cell ensemble forms only a

single chart such that one can choose rgrid _ _ j12 to be topographically arranged.

The evidence for such a topographical connectivity has been observed in grid cells

(Gu et al., 2018).

The second issue concerns the existence of a necessary controlled switch among

pre-existing continuous attractors, or charts. While it might be easy to imagine a

central control that allocates a recently unused chart when the rat is artificially moved

to a new environment (which explains global remapping) in a laboratory, it is not at

all clear how such a control works in a more realistic (large) foraging environment.

For example, one may ask, what spontaneously triggers a controlled switch when a

chart is used up? How does this central control monitor an unknown environment

such that it knows how to best allocate unused resources'? What happen if a chart

is only half-used; will the other half be reallocated by the central control in another

environment? And if so, how does the central control know not to override the half

that has been used? All these problems are crucial and needed to be addressed

theoretically before claiming plausibility of the multichart attractor network model.

Lastly, without external inputs, all charts should be excited equally likely. This

implies that the cofiring structure of place cells during sleep should not confine to

only the recently used charts. However, most experiments have suggested otherwise,
for which the cofiring structure most resembles only the recent experience but not

prior to that (Wilson and McNaughton, 1994) and decays rapidly during subsequent

sleep (Kudrimoti et al., 1999). These experiment results imply that, not just the

1 4There is no evidence of spontaneous chart switching in a very large environment (Rich et al.,
2014), the place fields equivalently form a large continuous chart.

173

feedforward sensory projections, the underlying attractors and thereby the recurrent

connections are modified throughout experiences.

Theoretical perspectives Theoretically, the first question is what determines the geom-

etry of the pre-stored charts. Should they be either 1D or 2D continuous attractors,

or both? This is a rather important question given that the capacity for a multichart

attractor network is low (Battaglia and Treves, 1998)-e.g. N2D charts , 1- 3Ncers

within a plausible parameter regime-such that available states on each chart are ex-

pensive. It is therefore very much inefficient to map a ID environment (e.g. a circular

track) to a 2D continuous attractor. Even having a multichart attractor network that

stores a mixture of 1D and 2D continuous attractors, a sophisticated controlled switch

is still needed for determining which type of attractor is best allocated for binding an

ongoing environment, which is not plausible as we just discussed above. On the other

hand, the HD network model, to be discussed next, does not pre-store attractors,

but instead it builds necessary geometry (and topology) as the agent explores a novel

environment.

Following the above question with a tentative assumption that all charts are iden-

tical (so that there is no hassle of choosing which), there are still issues regarding

how to handle different size of environments. A chart potentially can adapt to a

range of different environment sizes if the gain of self-motion cues-e.g. as a velocity

input-can be learnt. Unfortunately, in order for a multichart attractor network to

path-integrate precisely and stably, a single common velocity input has to be well

calibrated to be used by all charts and cannot be easily altered without compro-

mising precision (Samsonovich and McNaughton, 1997). The connections regarding

self-motion cues thereby have to be pre-wired along with the pre-existing continuous

attractors . This constraint regarding precise calibration for self-motion cues could

potentially be relaxed if there are many sets of customizable feedforward connections

for individual charts; yet again, a controlled switch is required for jumping from one

set to another.

Taken together, either the biological or theoretical implausibility is from the con-

straint of needing a fixed recurrent connectivity in a multichart attractor network

model. To resolve the issues above, a vastly different network model with learnable

recurrent connectivity is required.

15The reasons that this pre-wiring is not required for sensory cues are that 1) sensory cues are both
allocentric and sparse in time such that there is no accumulation of error in the learning process,
and 2) each sensory cue is high-dimensional and can be environment-specific such that there is no
need to calibrate it for all the charts.

174

Multiple representations can be learnt rapidly in metastable attractor dy-

namics

In a recent study, Kanitscheider and Fiete (2016) trained a network with 256 LSTM

units to simultaneously self-localize in 100 2D environments with nearly optimal ac-

curacy. This result is a clear indication that an ultra-high-capacity solution exists (on

the order of one cell per environment) that must operate in a very different dynamical

regime from a multichart attractor network. It has thus shown a possibility to release

the need for building stable continuous attractors to perform path-integration.

From my results with the HD network introduced in Section 3.3, I have shown that

a sequentially trained HD network does not have any stable intrinsic representation

when external inputs are absent. In spite of that, it can accurately path-integrate with

the presence of sensory and self-motion cues. It is this metastable attractor dynamics

of an HD network that enables a learnable representation via modifying recurrent

connections (See Sections 3.3.3 to 3.3.5 for details). In such a dynamical regime, a

stable manifold can be learnt without ever creating a stable continuous attractor,

and such a manifold can be flexibly adopted for any geometry or topology of an

environment (See Section 3.3.3 for a discussion on learning topological environments).

One critique from (Samsonovich and McNaughton, 1997) regarding learning re-

current connections in CA3 on the fly is the potentially long learning time. From ex-

periments, a new set of place fields in CA3 can be learnt and stabilized very rapidly on

the order of 10 mins in a small environment (Wilson and McNaughton, 1993). While

it is true that it takes a long time to learn a continuous attractor-e.g., It takes 5

hours and 33 mins for an LD network to learn the first ring attractor as shown in Fig-

ure 3.8(a), it only takes 17 mins for an HD networks to learn the first environment as

shown in Figure 3.8(c) because it needs not build an attractor for path-integration.

To sum up, the metastable attractor dynamics enables a rapidly and sequentially

learnable RNN that captures all the essential static or dynamic tuning properties of

CA3 place cells.

3.4.3 Experimental implications and predictions

With the issues regarding learning recurrent connectivity being resolved via the HD

network model, It is now fully plausible that CA3 place cells play a functional role as

a standalone path-integrator. Some important experimental implications and predic-

175

tions about CA3 place cells that come along with this novel network model are listed

below.

Without upstream grid cell inputs, place fields remain stable in a familiar environment

even when sensory inputs are deprived. The prediction comes with the hypothesis

that CA3 place cells can operate as an isolated path-integrator. It also follows the

theoretical stance of this thesis: the function complementarity which assumes that

grid and place cells have complementary coding properties such that a place cell code

cannot simply be a transformation of a grid cell code.

Cofiring structure during sleep resembles recent experience to a certain extent. As

discussed above regarding how a multichart attractor network cannot account for such

an effect, an HD network-despite having no internal stable attractors-still develop

a general region of stronger attraction in state space, which we may tentatively call:

a metastable attractor as shown in Figure 3.10(b). This broad attraction region of a

metastable attractor is where all learnt manifolds lie. In that sense, those states on the

fuzzy manifolds during awake will have higher chance to be reactivated during sleep.

A supporting result in Figure B.4(d,h) in Figure B.4 shows how a tuning memory

gradually degrade as the learning progresses due to an accumulation of small synaptic

overrides. This result indicates that the last learnt manifold will overlap the most

with the territory of the metastable attractor and consequently the states on it will

have the most chance to be reactivated during sleep. In sum, this tuning curve

drifting effect-also observed in experiments (Ziv et al., 2013) -accompanying with

the recent-experience-biased reactivation during sleep can all be well explained by the

learning dynamics of the HD network model.

Conjunctive tuning curves always happen even when the underlying task requires no

such variables. From the tuning-learnability correspondence discussed in Section 3.3.5,

we know that the formation of place fields in a novel environment is highly history

dependent; that is, in the process of learning, all the nudges on the state trajectory

from other task irrelevant sensory inputs (e.g. speed, colors, textures of the floor,

sounds, smells) will shape the final learnt manifold to some extent (See Figure 3.11(d)

as an example of velocity being a task irrelevant variable). As a result, the cells in

an HD network will be tuned to these extra variables regardless of their necessity to

the task.

A global remapping can happen even when a single sensory cue in a familiar en-

vironment is changed. This property has been observed in experiments from very

early on (Muller et al., 1987). And while there are many speculations about the

176

exact function of remapping in various circumstances, I suggest that the dynamical

constraint from CA3 recurrent connectivity causes global remapping when the input

inconsistency in a familiar environment exceeds some threshold. To be more specific,
we now know that an HD network processes a consistent manifold only when both

sensory and self-motion cues are present due to its metastable attractor dynamics.

If, say, one out of five landmark sensory inputs are removed after the HD network

is trained, the state trajectory will start to go off at the location where the sensory

input used to be. If this deviation is not corrected to stay within the basin of the next

sensory cues, the state trajectory will not come back to the previously learnt manifold

and develop a new one that are largely orthogonal; hence a global remapping.

A global remapping can be caused by non-perceptual cues associated with a sudden

change in behavior. It is possible for the hippocampus to receive a non-perceptual sig-

nal during a sudden behavioral change. For example, an internal signal that switches

from a random foraging to a goal-directed searching (Dupret et al., 2010). In such a

case, the HD network model predicts that global remapping will happen because the

agent necessarily learns two manifolds due to the difference in the inputs of the two

behaviors. On the contrary, a model with sensory inputs being the largest driver for

stable place fields would predict such a global remapping to be highly unlikely. For

future studies, quantifying and developing a theory for such dynamics-induced global

remapping could be an important topic that accounts for the role of recurrent dynam-

ical constraints-not just functional constraints-on remapping, which is missing in

the current literature.

3.5 RNN implementation of optimal online learning

algorithm

Having the knowledge that an RNN can sequentially learn like place cells in a sim-

ple landmark prediction task, we are finally ready to fulfill the core constraints in

the optimization principle. The key is to find an RNN learning scheme that can

approximate-as much as it can-an optimal online learning algorithm introduced

in Section 3.2: the online sparse manifold transformation. Specifically the learning

scheme needs to perform 1) optimal random landmark sampling and 2) online similar-

ity matching. In this section, I will discuss a candidate scheme with some variations.

At last, I will demonstrate how such an RNN realization of this optimal learning al-

177

gorithm naturally predicts a biased field propensity across environments (Rich et al.,
2014; Lee et al., 2019)-a result that seems to contradict the optimization principle

for place cells at first glance.

3.5.1 k-winner-take-all RNN as a baseline sequential learner

From Section 3.2.2, we know that an optimal random landmark sampling is both

unbiased and sparse. To achieve this, one can adopt a grid-assist architecture that

uses an innately unbiased grid cell code as a sampler such that every cell can be drawn

with equal probability. Specifically, the recurrent and feedforward connections have

to be translationally invariant so that all cells behave the same way.

A k-winner-take-all RNN can unbiasedly sample a sparse random code-
word

For an RNN to achieve an unbiased and sparse sampling, a k-winner-take-all (kWTA)

network with translationally invariant connectivity is a proper candidate:

WkWTA = (a +3) I - #, (3.17)

such that the place cell activity evolves according to

dsp(t) _

T = -sp(t) + g[WkwTAsp(t) + bp] (3.18)
dt

Despite the simplicity, there are several degrees of freedom to be finefuned for a

desirable behavior of this kWTA network, that includes two hyperparameters: a

and 3, and a nonlinear function: g[u]. The name, kWTA network, I adopt here is

meant to stress that a sampled codewords has more than a single winner; it needs

not have exactly k winners towards convergence. A candidate nonlinear function

can be either sigmoidal (Grossberg, 1973; Majani et al., 1989) or rectified-linear (Xie

et al., 2002; Kriener et al., 2017). As an example, if one uses a rectified linear unit:

0 if U < 0
g[U] = U] + = , the condition a < 1 ensures a bounded solution, and

1 if U ;> 0
a+3 < 1 ensures a convergence of more than one winner (Xie et al., 2002). In practice,
a sampling time interval could be too short to use a asymptotic codeword sp (t --+ oC)

as a random landmark; for which, it is more appropriate to flexibly finetune a and #

178

such that a transient codeword fits into a desirable criteria.

A kWTA RNN can operate near HD dynamical regime

In addition to the finetuning for a desirable sampling sparsity, it is most important

to keep the kWTA RNN operating in the HD dynamical regime in order to maintain

its sequential learnability as discussed in Section 3.3. For doing so, a + # 1 such

that this RNN stay close to the balanced initialization:

WkWTA e I - 0 (3.19)

Uniform grid-to-place projection: an unbiased dimensionality expansion

Lastly, we need to choose the feedforward weight UPG for grid cell inputs {SG(tl) 1
1, 2, ... }, where t, is a series of discrete sampling times. Because of the high-capacity

nature of a grid cell code (See Chapter 2), any two adjacent sampled codewords

are nearly orthogonal: SG(tl) - SG(tl+1) 0, which is a desirable property for optimal

random landmark sampling; namely, for sampling orthogonal codewords. It is thereby

optimal to use UPG = I for preserving all information from grid cell inputs if the

number of place cells sp matches that of grid cells S G . In practice, however, there is

a dimensionality expansion from NG grid cells to NP place cells such that

m =N_ /NG> 1 (3.20)

It is therefore optimal to have one grid cell projects to m place cells in a non-

overlapping and translationally invariant way. For simplicity, one may use:

UPG {fi=fm:(e+1)m, j= 1 = 0,1,-.- ,NG - 1}, (3.21)

which converges to identity matrix when m = 1 or NP = NG. Alternatively, one may

use a smooth version via a gaussian function with slight overlaps between adjacent

cell groups:

UPG = Ui=m:(£+2)m, j=f e (i-(f+1)M)2/2m2 I f = 0, 1, . ,NG - 1 (3.22)

which approximately converges to identity matrix when m = 1. Both feedforward

projects in Equations (3.21) and (3.22) are translationally invariant.

179

Sparse transformation via the MEC-DG-CA3 pathway

The dimensionality expansion proposed above is based on the need for an unbiased

sampling of maximal number of orthogonal codewords. The input to place cells is

therefore not sparse in general; that is, hG - UpGsG has the same sparsity as a grid

cell codeword. To further reach a desirable sparsity in sp, a stronger inhibition 3 and,

potentially, a smaller effective self-excitation a+ 3 is necessary. This condition puts a

certain amount of pressure on an HD network for which it makes all the other states

with less sparsity unstable and thus potentially compromising optimal learnability.

On the other hand, if the amount of orthogonal codewords needed in the sampling

process is relatively small-e.g. learning less environments-it might be better to have

a non-translationally invariant sampler to produce sparse input hG from the beginning

such that an HD network can keep its optimal learnability-i.e. a + 3 = 1 as it was

in a balanced initialization. A variant Hebbian rule in the framework of competitive

learning has been proposed (Rolls et al., 2006) to learn a non-translationally invariant

feedforward projection UDG,G from grid cells to dentate gyrus (DG) for achieving a

sparse transformation:

hG = UDG,GsG, (3.23)

where hG has the desirable sparsity. Importantly, although the learning happens

only in the feedforward connections, it involves a WTA network for ac hiving such

sparsity too. For this, and for not compromising learnability of the HD network,

one needs to introduce an extra layer between the grid cells and place cells-i.e.

DG with mutually inhibitory synapses among cells. For our setup, the full system

consists of three RNNs that are feedforwardly connected corresponding to MEC-DG-

CA3 pathway of the triple system (Witter and Amaral, 2004), where DG is a kWTA

network with strong inhibition and CA3 is an HD network. Having said that, for the

purpose of focusing on the sequential learning property, we shall first keep eyes on the

learning of the recurrent connectivity of CA3 place cells. In the proceeding discussion,

I will thus stick with the earlier place-grid dual system with the assumption that hG

has already a desirable sparsity such that UPG = I for simplicity.

3.5.2 Online similarity matching with BPTT algorithm

Having the baseline sequential learner ready as a kWTA network, I will then discuss

how one can train such a network such that the learning process approximates the

180

online sparse manifold transformation introduced in Section 3.2.2. I will start by

discussing the biological plausibility of using backpropagation through time (BPTT)

algorithm, presenting full setup of the RNN learning scheme, and finally discussing

how such a scheme also resembles learning a graph analogous to what the optimal

learning algorithm does as we discussed in Section 3.2.4

Local BPTT approximates biological synaptic learning with a second-long

STDP

In order to properly perform an online similarity matching, the agent has to "re-

member" all grid cells codewords happened within a short time interval between two

adjacent landmarks. To be more precise, it has to remember all codeword correlations

between t and t' E [ti, t1+1] where the time interval on average is At = t1+1 - ti 1s.

This time interval is also the backprop timestep required for BPTT. At first glance,

the requirement of such a long synaptic memory does not at all seem plausible given

that a cell membrane time constant is as short as 5 to 20ms. In spite of that, remark-

ably, a behavioral time scale synaptic plasticity has actually been observed in place

cells (Bittner et al., 2017) such that a second-long spike timing dependent plasticity

(STDP) rule (Schiller et al., 2018) could be considered as a plausible mechanism in

our learning scheme.

However, even knowing the plausibility of a long synaptic memory, it is still im-

portant to find an alternative to BPTT given the biological implausibility of such

an algorithm (Bengio et al., 2015). Some progress has been made (Scellier and Ben-

gio, 2016; Bellec et al., 2019) in this regard, or regarding learning a long time scale

association under only a short plasticity window (Brea et al., 2016). In the context

with a similarity matching objective, Pehlevan et al. (2015) and Pehlevan et al. (2018)

has shown that backpropagation algorithm can be reduced to hebbian learning for the

feedforward connections and anti-hebbian learning for the recurrent connections; after

learning, the network establishes a one-to-one mapping between inputs and outputs

such that the similarity of the inputs is preserved. In our case, this mapping between

inputs and outputs does not exist, so this hebbian-anti-hebbian learning rule needs

to be modified to emphasize the learning of recurrent connectivity for an autonomous

generation of outputs. Overall, finding an alternative to BPTT is an important future

direction; the focus shall be to discover an appropriate architecture that resembles

characteristics of the hippocampus such that BPTT can be well approximated by a

biologically plausible alternative.

181

Setup of a candidate RNN learning scheme

L Forward propagation and random landmark sampling. The architecture is a simple

RNN that continually modifies its connectivity across multiple environments as shown

in Figure 3.12. The RNN has dynamics of a canonical neural network:

= (1 - n) sp + rJ [Wppst + b + + UPGstG x 6(r(t) - , (3.24)

I0 if u < 0
where A =j 2 ms = . u , and rl's are the landmark sampling

20 s [] + 1 if U ;; 0

locations which specify where the grid cell feedforward input is turned on for sampling

a place cell codeword s' . The recurrent weight are initialized as WPP = WkWTA and

trained subsequently by modifying AW from its initial value: AW = 0. Note that

in order to effectively sample codewords as unbiased as possible (every cell has equal

probability to be selected as a k-winner), a detailed study and finetuning on the

effect of UPG, Uv, WkWTA to the learning dynamics is required. The interval of one

landmark sampling location can also be more flexible than using a delta function,

e.g., 6(r(t) - ri) -+ e (1- .

I. Backpropagation. The two main training objectives are 1) to perform similarity

matching between the local codeword correlation matrix of grid cells and that of

place cells and 2) to maintain a consist place cell codewords at all landmark sampling

locations.

LI sT (t) sP (t') - sT (t) SG(t) 2 (3.25)
It-t'I<T

to+T

L2 = : 6(r(t) - ri) - |sP(t) - sp(t 1) |2, (3.26)
t=to 1

where LI demands two close-by place cell codewords at t and t'-where It - t'| < T

and T Is is the backprop time interval-to have the similarity of the corresponding

grid cell codewords. The similarity matching loss function LI is "online" because the

it is restricted to compare only temporally close-by codewords. L2 attempts to make

the RNN to consistently produce the same activity patterns at the sampling locations.

L2 is important for a repeatable landmark sampling because the grid cell activity SG

is not the only contributor to the sampling process. The recurrent weight Wpp has

to learn in a way such that the current activity at a landmark location is more or less

equal to the last activity at this location sp(tj) sp(ti, 1). In practice, L2 may be

182

replaced by another self-localization type of loss function-similar to the one used in

Section 3.3-for producing stable spatial tuning.

III. Learning an allocentric transformations. This part of learning is not for place

field formation, but rather for a robust reactivation on the learnt place fields in a

familiar environment.

to+T

L3 = (6(r(t) -) - UPGSG(t) - Upx,(k)Xen(t) .)
t=to k,J

Essentially Up,,(k) is trained such that the other sensory inputs of vision, audition,

olfaction, etc. can be a substitute-when the grid cell input is unavailable to pro-

vide a landmark correction-after learning a new set of place fields: Up(k)xen(t)

UPGSG(t). It is important to keep in mind that these learnt feedforward connections

are expensive because they are in general not generalizable. In other words, any

combinations of these cues happen at a certain location has an exclusive feedforward

weight for recreating a desirable landmark input. In doing so, these sensory inputs

are only activated at few sparse sampled locations, and the rest of self-localization

requires path-integration.

IV. Total loss function. The first two loss functions are major part of the optimiza-

tion principle and can be minimized together using backpropagation though time

algorithm (BPTT)

min L1 + L2 (3.28)
AW

The third loss function is optimized separately with backpropagation only on the

feedforward weights as

min L3 (3.29)
Up,(k)

V. A necessary forgetting. Besides the above forward-propagation dynamics on activ-

ity and backpropagation on weight AW, there is a weight decay mechanism necessary

for protecting the overall learnability:

wd AW(t) AW(t), (3.30)
dt

where rw is the decay time-which could be on the order of hours or even days de-

pending on the specific needs-for connectivity reverting back to an unbiased WkWTA.

Note that a more sophisticated weight decay dynamics may be implemented for a bet-

ter performance (Benna and Fusi, 2016). This crucial active forgetting mechanism

183

or a more deliberate version has been recently suggested as an important function of

the sharp-wave ripple event in hippocampus (Norimoto et al., 2018).

(a) 1, 2, ,l (b) sG(t) for

se U.

Wer = ,, A.

-- J44 W + UPG Up.m ... UpT(k)

[SG or .. , or XXn

Sx 6(r() -ri)

Figure 3.12: A plausible neural implementation of the optimal online learning
algorithm. (a) The agent is sequentially exposed in multiple environments. The vertical

posts indicates the location for optimal random landmark sampling. (b) An RNN architec-

ture is used with a trainable recurrent layer that is initialized as a k-winner-take-all network.

The two algorithmic steps are implemented as follows. 1) The RNN only receives a grid cell

input at landmark locations as an approximation of the optimal random landmark sampling.

2) The supervised signal-constructed as a similarity matrix between the grid cell codewords

within one second time interval at different times-is used to approximate online similarity

matching. Finally, the learning of feedforward projections for certain egocentric sensory cues

can be done independently such that they can be a substitute of grid cell inputs for error

correction at landmark locations. Red arrows indicate trainable connections.

Learning in the optimization principle resembles learning of a graph

For the above learning scheme to work properly, the RNN dynamics has to be high-

dimensional as discussed in Section 3.3. The initial energy landscape can be seen as

initially flat with a few local minima as shown in Figure 3.13(d). These local minima

are the states of sampled landmarks each with a small localized basin. Note that these

energy minima are inherently nonautonomous which is only "present" when the corre-

sponding external inputs exist. Over the course of learning, a particular task-relevant

trajectory might be repeatedly taken: Figure 3.13(a-c) with specific conjunctions

among these landmark sampling locations. Crucially, the structure of these conjunc-

tions-forming a graph-is gradually captured during training: Figure 3.13(d-f). For

those paths that have never been taken, e.g. from Location 2 to 4, there will be

no stable states assigned to encode these positions along the way. This illustration

demonstrates not only that a place cell code is fundamentally trajectory dependent,

184

but also that it is more topological than topographical (Chen et al., 2014)-in the

sense that a place cell code is more of learning a task-specific graph but less of learning

a generalizable spatial map (also see Section 3.2.4 for a relevant discussion).

(b)

14~ %

(c)

0r 0
Task trajectory

(d) (e)

Z'S: sampled landmarks

z(xi) *z(3)
similarity matching:

establishing linkages

ZN (_ _ _ _ _

iZ ZX 2)

(f) -Z
I.Z

CC

RNN learning progress: building a graph

Figure 3.13: A RNN implementation of the optimal online learning algorithm

learns the graph that underlies a certain task trajectory. (a-c) An example task

trajectory that requires the agent to run among four corners without ever walking on the

path connecting Location 2 and 4. (d) An initially unbiased kWTA network has a flat energy

landscape everywhere except the four isolated effective fixed points that represent four corner

locations as sampled landmark states. (e-f) A series of energy minima start to be developed

and thus connect the four landmark states which eventually forms a corresponding graph

that underlies the task trajectory. This illustration shows the topological nature of a place

cell code in which the geometry, topology, or dimensionality of the learnt manifold is not

predetermined by the structure of the environment, but emergent as a behavior progresses.

3.5.3 Persistent biased field propensity: an outcome of metastable

attractor dynamics

One important prediction out of the optimization principle is a biased field propen-

sity in a recurrent place cell ensemble. That is, if a place cell has more fields in

one environment, the same cell will also have, on average, more fields in the other

environments. The dense recurrence of CA3 place cells make them likely to be the

candidate source of such a bias. The biased propensity in CA3 is predicted-caused by

185

(a)

metastable attractor dynamics-to be qualitatively similar to a recent experimental

discovery (Lee et al., 2019) in CA1 place cells. The subtle differences regarding place

field statistics between CA1 and CA3 predicted will be discussed in Section 3.5.4.

From the experiments, the field propensity of each cell can persist for months, which

suggests a cause from a systematic bias in the circuit rather than by chance. This

and an earlier result (Rich et al., 2014) seem to suggest a place cell function that

utilizes a biased random landmark sampling-for which some cells are drawn more

than others. However, the optimal learning algorithm we have been discussing so far

demands an unbiased landmark sampling process that has the best chance to sample

an orthogonal codeword. This thus makes a conflict between the theory and exper-

iment. And to resolve it, I ran a simple simulation of an RNN with biased kWTA

recurrent connectivity that captures the main dynamical characteristics of an HD

network. We will see how such a biased field propensity must happen at the level of

RNN implementation.

Setup for the simulation

The architecture is a simple RNN that receives a random input x, every second that

last .1s. The RNN has dynamics of a canonical neural network:

s = (1 -y) sy +,q [Wppst + bp + Upxxt] +, (3.31)

0if u < 0
where y - t - 2 ms = .1, [a]+ = , UPX = I, and c «1 specifies the

T 20ms if u ; 0

strength of a perturbation of a biased weight W(Npatt)-on an otherwise unbiased

k-winner-take-all (kWTA) RNN: WPP = WkWTA. The biased weight is constructed

as
Npatt

W(Npatt) Z xx, (3.32)

where x is a random positive pattern drawn from a gaussian distribution: x =

[g(0, 1)]+. See Appendix B.7 for other simulation details.

Metastable attractor dynamics causes a biased field propensity

Note that because the perturbation term above, EW(Npatt), is much smaller than the

unperturbed weight WkWTA, the overall RNN with Wpp does not behave like a usual

186

stable attractor network with stored patterns x 's. Instead, Wpp behaves mostly like

a kWTA network without attractors, yet perturbed to produce a biased propensity

for each cell. The simulation results are shown in Figure 3.14. One can see that

the stronger the perturbation weight W(Npatt), the more biased the cell propensity

distribution is. The mechanism of the biased propensity can be understand by the

following reasoning:

1. A biased propensity cannot be explained by a biased feedforward input in the

optimization principle: An input from grid cells is unbiased due to an unbiased

feedforward projection (Section 3.5.1) and a uniform average firing rate across

grid cells.

2. Recurrent connectivity between place cells necessarily develop a bias after learn-

ing just one environment. Unlike grid cells, a place cell code is environment-

specific, or contextual. To encode any contextual information in the recurrent

weight, it is necessary to break the translational invariance of the initial kWTA

network, given that the feedforward weight needs to be kept unbiased for max-

imum likelihood of sampling an orthogonal codeword.

3. A landmark sampling is biased in a subsequent learning. After learning one

environment, some place cells naturally fire more frequently than the oth-

ers-because the RNN is no longer translationally invariant. These cells that

fires more has higher probability to be selected as a k-winner.

4. There will be a runaway bias without a weight decay. Over the course of learning

multiple environments, the bias on field propensity accumulates and accelerates

with a tendency towards that only a few cells fire all the time while others being

silent. This runaway bias in propensity will co-occur with the catastrophic

forgetting on the brink of exceeding RNN capacity limit.

5. The biased field propensity can reach an equilibrium with a weight decay. Here

we see an additional function of weight decay other than maintaining learnabil-

ity-i.e., maintaining an unbiased landmark sampling. For a condition with a

certain rate of weight learning and weight decay, the bias on the field propensity

could reach an equilibrium such that it could have a certain distribution.

161t's been observed that the CA1 place cells has a gamma-poisson distribution of the probability
of number of fields (Rich et al., 2014)

187

A

(a)
Sp/

Wpp = WkwTA + EW(Npatts)
up, = I

ZIm

(b) W W_kWTA

200 .i Z7 0.67j- 10 I 0w.4-- _ _ __ _ _ _ __ _ _ _

U 100 0
5 %_L0.2

0 10 20 30 40 50 0 50 100 150 200 250
time Cs) cell i

(C) W WkWA + eps *W(30)

20015 1.5--
200 1 5

10
II*.- r

0 10 20 30 40 50 0 50 100 150 200 250
time (s) cell i

(d) W = WkWTA + eps *W(100)

200 20 10 - _

3 100 5- - - ---__
10 0-

0 10 20 30 40 50 0 50 100 150 200 250
time (s) cell i

Figure 3.14: The observed persistent field propensity of a place cell ensemble
could be a direct consequence of its metastable attractor dynamics during learn-
ing. A simplified simulation is used to demonstrate how a weakly biased recurrent weight

after learning can result in a biased firing rate under a stream of sparse random inputs (a)

A kWTA network with a perturbation in its recurrent connectivity (red) receives unbiased

random inputs simulating the optimal random landmark sampling. (b) With an unbiased

kWTA network, the average firing rate-or propensity-over 50 seconds is mostly uniform

across all cells with only a little bias caused only by undersampling. (c) A larger degree of

bias happens when a recurrent weight is perturbed. Note that the perturbation is weak such

that no stable attractor is formed. The perturbation causes a biased random landmark sam-

pling (suboptimal) such that some cells are picked as a k-winner more frequently over the

course of learning. (d) The bias in recurrent weight will accumulate as learning progresses,
and consequently results in a runaway bias in field propensity. It is therefore necessary to

have an active forgetting mechanism that revert the recurrent weight towards that of an

unbiased kWTA network for protecting the ongoing learnability.

Strong attractor dynamics needs not cause a biased field propensity

From above, one might think that a more conventional continuous attractor network

can also cause such a bias in field propensity. So a continuous attractor network might
188

well be a proper alternative neural implementation that underlies place cells-as long

as one can find a way to store multiple maps in such a network like what place cells

do. It's actually been demonstrated that such a continuous attractor network exists

(Samsonovich and McNaughton, 1997; Battaglia and Treves, 1998; Tsodyks, 2005)

named multichart attractor network.

A multichart attractor network stores multiple stable continuous attractors in

such a way that the states from different attractors has only little overlaps. A simple

example of recurrent weight consists of k identical connectivity profiles but with

randomized cell indices:

Wmultichart =3W(k), (3.33)
k

where the matrix elements wi,j, E W(k) of the k-th maps respect translational sym-

metry:

Wik,jk = fik - jk|) (3.34)

Note that the cells are indiced at different random orders for different environments,

e.g. Z1 = 1, 2, 3,... but i2 = 5, 3, 7,.... For getting a single attractor bump, one can

choose a simple connectivity profile such that a cell effectively inhibit faraway cells

more than its neighbors (Note that these neighbors do not have to be topographically

arranged.)

/(lik - jk|) = a exp (-lk - Jk2 /2 2) + o, (3.35)

where a ; 0 and # ; 0. This construction uses all cells for a maps which accumulates

the overlaps between attractor states very quickly once more and more maps are

stored. A more flexible allocation of resource is to use fraction of cells to construct

a map with a blurry spatial boundary between any two maps (Hedrick and Zhang,

2016). In any cases, the multichart continuous attractor can, in principle, reach its

maximal capacity if every cells contribute equally in constructing the attractor states.

In other words, it is optimal when these cells have an unbiased field propensity for

which it does not predict a biased field propensity as observed in the experiment.

On the other hand, this discussion seems to make a multichart attractor network

more suitable candidate for neural implementation in the optimization principle than

an HD network. However, it is important to keep in mind that a multichart attrac-

tor network dynamics is fundamentally low-dimensional, which means that such a

network would suffer from exacerbated catastrophic forgetting-as discussed in Sec-

tion 3.3, and it thereby does possess sequential learnability.

189

In conclusion, the optimization principle for place cells proposed in this section

with a metastable attractor network as its neural implementation naturally predict

a biased field propensity. The effect is a direct result from 1) a broken translational

invariance in recurrent connectivity after learning and 2) a metastable attractor dy-

namics that biased an otherwise uniform landmark sampling process. A biased field

propensity observed in experiment, therefore, is caused by a dynamical constraint of

an RNN implementation rather than a specific functional need.

3.5.4 Experimental predictions in CA1 and CA3 place field

statistics

If the biased field propensity is originated from CA3 region (due to its unavoidable

biased recurrent circuitry), it is likely that CA1 cells subsequently inherent such a

bias given that CAl place cells receive major inputs from CA3 region (Davoudi and

Foster, 2019). From this simple architectural assumption with each CA1 cell receives

linear input from multiple CA3 cells, one can predict that

1. a CA1 cell must have on average more place fields, and

2. a CA1 cell must have on average less bias in field propensity.

One should expect that for CA1 place cells to preserve the high spatial information

of CA3, each CA1 cell should receive inputs from only a few CA3 place cells coding

for various locations. In such a case, CA1 cells will have a biased propensity only

slightly smaller than that of CA3.

3.5.5 Remarks and outlook

The neural implementation of the optimization principle given in this section largely

realizes the two algorithmic steps in the optimal online learning algorithm introduced

in Section 3.2. I demonstrated, using a simplified simulation, how an RNN dynamical

constraint inevitably causes a biased field propensity. For future studies, it would be

interesting to investigate what kind of distribution of the biased propensity is optimal

under such a dynamical constraint. And it would also be interested to further design

experiments to see whether an active forgetting mechanism in the brain exists because

not only the avoidance of catastrophic forgetting but also the avoidance of biased field

propensity for as much as possible.

190

On the same line of reasoning, there is a sense of tradeoff between learning speed

and memory capacity in an HD network. A fast learning requires also a fast forget-

ting to maintain a desirable memory capacity (e.g., remembering k environments).

However, fast learning and forgetting could potentially cause, on average, a larger

deviation from an unbiased kWTA network, and consequently a larger bias in the

field propensity. Because a larger bias would cause effectively a smaller capacity

(more cells are potentially silent), more cells are required in an HD network to reach

the demanded memory capacity. On the contrary, if one slows down learning, a less

biased field propensity is expected so that less cells are needed for reaching the same

memory capacity. It would be interesting to design relevant experiments or numerical

experiments to test this hypothesis.

Meanwhile, from a theoretical viewpoint, the learning in LD and HD networks

represent two polar extremes of a spectrum of different learning dynamics. On the

one end, LD dynamics fits the conventional representation-first construction in which

the autonomous dynamics dominates with nonautonomous part being merely a per-

turbation to drive the state transitions. On the other end, HD dynamics do not have

any stable representations, and the nonautonomous dynamics dominates as the learn-

ing progresses. An LD network starts learning from the strongest attractor stability,

whereas an HD network starts from the lowest and always learns just enough stability

for the task. It would be an interesting theoretical problem to identify the class of

tasks that requires HD learning dynamics, the class requiring LD learning dynamics,

or any classes lie in between.

3.6 Chapter summary

" The descriptive function hypothesis I adopted focuses on the two properties

of a place cell code: Place cells exist for having a sequentially-learnable and

highly-separable path-integrating code.

* The function hypothesis consists of two functions that are either of a pure coding

property: having a high coding separability within and across environments, or

of a dynamical property: capable of learning a novel environment with ability to

recall learnt ones. And because of this clean separation, the optimization princi-

ple can be broken down into two steps: 1) finding an optimal learning algorithm

within the coding-theoretic framework, and 2) finding a neural implementation

that can realize this optimal learning algorithm.

191

* The optimal online learning algorithm that gives rise to place cells is called the

online sparse manifold transformation. The algorithm consists of two steps: 1)
optimal random landmark sampling and 2) online similarity matching. Both

require the assistance from an allocentric spatial code for which grid cells fulfill

the role. After learning, place cells operate as a complementary code indepen-

dent of grid cells. The algorithm displays a learnability-capacity tradeoff which

leads to the third conjecture in the function complementarity: A place cell cir-

cuit can only learn from experience via synaptic plasticity with a compromise in

its coding capacity.

" The optimal online learning algorithm can be directly extended to include the

higher-level coding features regarding topological codes and predictive maps-both

of which have been hypothesized as functions of place cells. This extension can

be seen as a higher-order learning-after the first-order learning prescribed by

the two algorithmic steps-that could lead to a set of skewed place fields.

* To implement the optimal online learning algorithm in a neural substrate, the

issue of catastrophic forgetting in an RNN needs to be addressed. I discov-

ered that unlike an low-dimensional (LD) network that has a strong attractor

dynamics which exacerbates catastrophic forgetting, an high-dimensional (HD)

network with a metastable attractor dynamics enables a sequential learnability.

The sequential learning mechanism in the HD network reveals a fundamen-

tal principle that relates learnability with conjunctive tuning property, which I

termed: the tuning-learnability correspondence.

* The HD network and its learning dynamics are compared with an earlier CA3

place cell model: the multichart attractor network model. The implausibility and

remaining issues for modeling CA3 place cells as a standalone path-integrator is

resolved. And experimental implications and predictions are discussed including

aspects of 1) stable place fields during awake, 2) cofiring structure during sleep,

3) conjunctive tuning, and 4) global remapping.

" Having the issue regarding catastrophic forgetting been resolved, I proposed an

RNN implementation for the optimal online learning algorithm which analo-

gously implements the two algorithmic steps utilizing the advantage of the HD

network dynamics. I discussed how this neural implementation is impossible to

be a perfect match, especially in the step of optimal random landmark sam-

pling. For which, I ran a simplified simulation to demonstrate this deviation

192

(from the optimal algorithm) causes a bias in the landmark sampling process

which subsequently causes a biased field propensity. The biased field propensity

has been observed in CA1 place cells. I predicted that this bias originates in

CA3 place cells as a direct consequence of an unavoidable biased firing in a

metastable attractor dynamics instead of a specific functional need.

193

Chapter 4

Conclusion

This work attempts to understand what functions the brain needs to perform that ul-

timately lead to the emergence of grid and place cells. In contrast to earlier theoretical

frameworks which mostly focused on either modeling phenomena or demonstrating

how these cells can perform a specific function, the optimization principle framework

I laid out sought for the emergence of grid or place cells as the optimal solution of hy-

pothesized functions. Given that grid and place cells behave qualitatively differently

in both their coding and dynamical properties, It is necessary to start-in the opti-

mization principle framework-by assuming these two types of cells perform different

sets of functions that are complementary to each other such that grid and place cells

are both optimal solutions in their own domains. The specific architecture choice,

i.e., the grid-assist architecture, has two systems operating largely independently so

that their optimization principles can be separately pursued.

To pursue optimization principle for grid cells, I hypothesized that the functions

are of two coding properties: of high-capacity and of path-integration. To start,

I trained a recurrent neural network (RNN) to path-integrate in a large environ-

ment. Although the RNN failed to converge to a desirable performance, the training

schemes bought an invaluable insight that a grid cell ensemble could be a rare island

circuit solution that are generally unreachable via incrementally changing synaptic

connections. It further implied that a grid cell circuit could be a product from some

developmental process rather than learnt from experience via Hebbian rule. To pro-

ceed after RNN training schemes, I adopted a pure coding theoretic approach that

directly searched a solution space of tuning curves. This approach is justified pro-

vided that the earlier works have worked out the circuit solution for an arbitrary set

194

of grid cell tuning curves, and a grid cell circuit is generally rigid.

The coding theoretic approach in a binary neuron scheme revealed that the path-

integration function of grid cells can also be directly evaluated using mere tuning

curves, and the objective is to have a translationally invariant (TI) code. However,

after generalizing the TI coding property to a continuous neuron scheme. It became

clear that an additional biological constraint is necessary for the emergence of grid

cells given that the original two functional constraints only led to aperiodic tuning

curves. I then used Scheme A to explore a biological constraint that targeted a dense

periodic code, and to show that it is necessary to have both an unlikely extra lin-

ear denoiser and an implausibly complex capacity measure for the emergence. To

resolve these issues, Scheme B, instead, used a biological constraint that targeted

a sparse periodic code with only a simple capacity measure-i.e., the coding sepa-

rability-without the need for a denoiser. However, the optimal solutions in such

a scheme turned out to have non-modular and semi-periodic tuning curves. These

results forced me to drop the original assumption on using a simple capacity measure

that is based on just the average Euclidean distance, and to consider a new capac-

ity measure which accounts for a robust long coding line with only a sufficient noise

resistance. In Scheme C with the new capacity measure, I demonstrated, using a

simplified six-neuron code, that the energy landscape of the optimization problem is

extremely rough as well as a preliminary run showing that all optimized solutions

were still far away from the global optimum. The Scheme C is thus the closest to

the optimization principle of grid cells before it is proved or disproved by showing

whether or not its optimal solution is a grid cell code.

The pursuit of the optimization principle for place cells has the focus opposite to

that of grid cells. Unlike grid cells, a place cell circuit is plastic and can change through

experience. The challenge, therefore, lies in finding a plausible neural implementation

for a relatively straightforward online learning algorithm-which can be shown as the

optimal solution at the algorithmic level. To implement such an algorithm, I used an

RNN with a plastic recurrent connectivity; an RNN is required since place cells have to

perform a different path-integration independently of grid cells under the assumption

of their function complementarity. The algorithm consists of two interleaving steps

which either sample or interpolate to form place cell tuning curves online. However,

for an RNN to perform such two algorithmic steps, a well-known issue of catastrophic

forgetting in a sequential learning process needs to be resolved. For that, I investigated

how network dynamics might influence the learning process using a simplified spatial

195

task that demanded an RNN to predict upcoming landmarks. I discovered that

while a strong attractor dynamics exacerbates catastrophic forgetting, a metastable

attractor dynamics enables sequential learnability as well as producing all major place

cell tuning properties. These results resolve the issues of a previous place cell model

called the multichart attractor network model-which failed to predict many place

cell characteristics with issues involving an implausible prewiring, a need for a central

control switch, and a lack of recent-experience reactivation. Moreover, the results

from an RNN with metastable attractor dynamics reveals a fundamental principle

which I termed the tuning-learnability correspondence. This principle subsequently

predicts that conjunctive tuning curves must happen even when a task demands

only position coding. Contrasting to my earlier RNN training results for grid cells,

the success of the RNN in learning multiple smaller environments suggests another

fundamental principle: the capacity-learnability tradeoff. It implies that a grid cell

ensemble compromises its plasticity to gain a high coding capacity, whereas a place

cell ensemble compromises its coding capacity in exchange for an online learnability.

These results clearly showed a complementary coding nature for the dual place-grid

cell system.

Having the issue of catastrophic forgetting finally resolved, I laid out a plausible

neural implementation that analogously implements the two steps in the optimal on-

line learning algorithm. I illustrated how by applying the sampling and interpolation

steps alternately, an RNN could carve a graph in its energy landscape which resem-

bles the essence of topological nature of a place cell code. In the end, I demonstrated

and predicted, based on this implementation and the results of metastable attractor

dynamics, that a biased field propensity discovered in CA1 place cells could have orig-

inated from CA3 as a direct consequence of an inevitable biased landmark sampling

process in an RNN that otherwise does not exist at the algorithmic level.

In this thesis, I have demonstrated how the optimization principle framework can

guide a rigorous theoretical study that bridges the gap between circuits and functions.

I have shown that such a framework can adopt different approaches including various

RNN training or coding-theoretic optimization schemes depending on the nature of a

targeted system. The fact that an optimization principle demands a plausible neural

implementation forces one to find a solution that is simultaneously optimal in both

algorithmic and implementation level. As a result, the potential conflict between the

two levels could bring new insights to a studied system. As I discovered-based on the

fact that place cells exhibit metastable attractor dynamics-that the phenomenon of

196

remapping, conjunctive tuning, or biased field propensity could be, to a large extent,
a result of place cells fulfilling an overall common objective subjected to certain

dynamical constraints of a neural network rather than the need for some other specific

functions.

197

Appendix A

Supplementary Information for

Chapter 2

A.1 Proof: a TI code can only be generated by in-

cremental rotations

Definition. A state matrix Z is constructed by sequence of column vectors (states),
zz, such that

Z = [zo, zi, ... , ZL-_1, (A.1)

where x = 1, 2, ... , L - 1 labels L states in N dimensional spaces.

Assumption 1. The initial state zo is advanced by a constant linear transformation

W resulting in consecutive states:

zx = W zo. (A.2)

Importantly, W is parameterized to be arbitrarily close to identity matrix I.

Assumption 2. The correlation (and therefore Euclidean distance:

2 - 2 c(x, x')) between any two states is translationally invariant:

c(x,)') zW z'z

=c(x - x' T ziWx'-x zo

d(x, x') =

(A.3)

198

Implication. W must be an orthogonal matrix such that

(A.4)

Proof

c(x, x') = z Tx, = zT (Wx)T Wx' z,, (A.5)

If Assumption 2 holds, i.e. c(x, x') = c(x - x'), then

zo'(Wx)Twx'zo = z4Wx'-xzo,

which implies

or equivalently

(Wx)T = (Wx)-1

(A.6)

(A.7)

(A.8)

The above shows that Wx is an orthogonal matrix. To show W is also an orthogonal

matrix. We use the fact that an arbitrary orthogonal matrix A can be decomposed

as A = PBPT, where P is an orthogonal matrix, and B is a block-diagonal matrix:

R1

0

J1

0 J2

(A.9)

where Ri is a 2D rotational matrix:

cos

- sin OB

sin O

cos 0,)I (A.10)

and Ji is a reflection matrix:

Ji = (1

0

0

-1
(A.11)

For our purposes, a path-integrating code has smooth codeword transition such that

B should contains only rotational matrices Ri with small rotation angle O6 -s 0 as

199

(Wx) TWX' = W-XWX', I

stated in Assumption 1. The reflection blocks Ji can be then eliminated. And the

corresponding matrix W' is a subgroup called special orthogonal group SO(N) out

of all possible orthogonal matrices. Assumption 1 therefore leads to a block-diagonal

transfomation matrix W-:

R1

W' = P

..

or

Wx P

PT, if N is even,

RN/2 _

(A.12)

(A.13)PT if Nis odd.

Rfloor(N/2)

Wx can thus be further diagonalized with a constant unitary matrix U such that

WX = P U D Ut PT

1
U = 1

CiZi

-io1

eiON/2

-iON/2

1 1

1 1

(A.14)

and (A.15)

if N is even, (A.16)

200

where

1
U = I

x/-2

io1

ezON/2

I-ON/2

1

11

i1 -i

1

i

1

-2

1

and (A.17)

(A.18)if N is odd.

Note that as long as the matrix W' can be diagonalized to the above form with D

containing unity complex conjugate pairs, W' belongs to special orthogonal group.

We can then use this result to simplify expression of WX:

Wx = P U D Ut pT = P U Ex Ut pT = (P U E Ut pTx, (A.19)

where Ex = D. Thus we have

W = P U E Ut pT (A.20)

with

e l/X

C-i1|x

if N is even, (A.21)

201

or

1

-- iON/21

or

E = N/21 2if N is odd. (A.22)

e-ON/2/x1

Since E also has the form of unity complex conjugate pairs in the diagonal just like

D, W also belongs to special orthogonal group just like Wx. At last, we have proved

that a TI code under the two assumptions can only be generated by a orthogonal

transformation.

A.2 A typical continuous TI code is not strictly pos-

itive

Although strictly positive TI codes exist, they are not typical. Below is a simple 4-cell

example.

1 0 1 0 cos X 1 + cosx

0 1 0 1 sin X 1 + sinx (A.23)

-1 0 1 0 1 1-cosX

0 -1 0 1 1 1 - sinx

Positive TI codes are islands in a much larger group of partially positive TI codes.

An example of partially positive tuning curve out of a TI code is shown in Figure A.1.

Since a positive TI code is an island in solution space, A strictly nonnegativity con-

straint risks a gradient-based optimization to be trapped in a local minimum of the

initial island.

It is for this reason, I used soft nonnegativity constraint in Scheme B for the loss

function, L3. The definition of nonnegativity does not completely eliminate negative

portion of tuning curves, it therefore encompasses more potential solutions that has

sparse large positive rate but dense small negative rate, similar to orange curves in

Figure A.1.

202

1.50
grid cell tuning curve

1.25 fit with tuncated Fourier series:1.25 --- ftwttuctdFuirs ie

1.00-

jg 0.75-

0.50-

0.25-

0.00-

0 200 400 600 800 1000
position

Figure A.1: A typical continuous TI code is not strictly positive. In coding theoretic

approach, a fixed maximal frequency is used-in Fourier basis functions-to implicitly set

an intrinsic noise. A tuning curve, therefore, is a linear sum of a truncated Fourier series.

A.3 Counting modules

For Scheme A-1, the target tuning curves are of single frequency, so that we can count

modules directly from spectrum.

For Scheme A-2, the peaks in the spectrum are no longer single frequencies. In this

scheme, I first used Gaussian smoothing with o = 1/num f reqs (See Appendix A.13

for specific values used in the simulations). Second, I set the spectral density value

smaller than .2 to zero. Finally, I count the remaining maxima with local curvature

larger than 10-.

For Scheme B-2, the target tuning curves are not simple sinusoidal, one cannot

count modules from spectrum. Instead, I measure the similarity between two tuning

curves to decide whether they belong to the same module. The similarity is defined

as the maximum of cross circular convolution function:

Qij = Nmax (Zzi(x)z (x - X') (A.24)

The threshold of Qij > .7 is chosen for grouping zi and z to the same module.

To automatically counting modules from Qij. I interpret Q as an adjacency matrix

for a corresponding graph 9. At last I used standard Depth First Search to count

disconnected components in 9. I.e.

number of modules = number of disconnected components in g (A.25)

203

- - I EM-41

A.4 Analytical capacity upper-bound for unimodal

tuning curves

An approximate upper-bound for separability can be analytically derived given that

there are enough cells for a code with unimodal tuning curves to be an optimal

solution. In this derivation, I ignored the boundary effect of finite coding range. The

tuning curves of N cells are assumed to be gaussian function:

zi (x) exp -XX) (A.26)
7Fr1/4 /a 2o.2

The correlation matrix of a pair of codewords, zi(x) and z (x'), is given as

c(x, x') f zi(x) z (x') dxi

°° ((A.27)

exp (.a2

The corresponding distance matrix is then

d(x, x') = f (zi(x) - z (x')) 2 dxi

= /2 - 2 c(x, x') (A.28)

- 2 - 2 exp (- 2

The last expression can be well approximated by a tanh function:

d(x, x') = 2 - 2 exp ~~ - 2 V2 tanh .x-X,I (A.29)

Separability defined as the average of distance matrix is therefore analytically track-

able:

S j t d(x,x') djx -x| I
1 L

= L V2 tanh _" dlx - 'l (A.30)
L 0 h1x20-

=2 I - log4 - .

204

A.5 Stochastic orthogonal gradient descent

In the stochastic orthogonal gradient descent (SOGD), the update of the coefficient

matrix P is based on a single loss function at a time. Loss function f is chosen at

random at epoch t to compute a gradient that is orthogonal to all other gradients

based on loss functions k # f:

Vt Vk
APV(k) = V, -k, (A.31)

k Vk*'Vk

where Ve = Vp Loss f. The probability of choosing certain loss function is specified

as [pI, ... ,PK] for all K loss functions in total. The update to P is given as

P = P. + A P (f) - lr(f) • Mij(af), (A.32)

where lr(C) is relative learning rate for Loss f and Mi:(at) = 1 or 0 is a mask that

update only a cells at a time.

A.6 Modular solutions must be island solutions to

be optima

Figure A.2 uses a three-cell two-module solution as an example to illustrate how

a smooth transition through a series of high-capacity two-module solutions do not

exist. The two modular solutions are topologically non-equivalent in a sense that

the transition between them must go through a different class (similar to genus in

topology), i.e., a non-modular solution.

205

(a) High-capacity
2-mod solution

(b)

Must be low-capacity
2-mod solution

(d) High-capacity
2-mod solution

(c) LI

Low-capacity
non-mod solution

Figure A.2: Any two high-capacity modular solutions are separated by low-
capacity non-modular solutions. Assuming (a) and (d) are two high-capacity 2-module

solutions, a smooth transformation without breaking the number of modules is performed

by increasing the frequency of one of the modules in (b) until all three cells have the same

frequency in (c) before the bottom cell is allowed to decrease its frequency again to match

the solution in (a). This invariant transformation must go through a non-modular solution

in (c), which is a low-capacity solution by definition.

206

A.7 New capacity measure is a piecewise discrete

function of tuning curves

In Figure 2.23(f), one can see that the definition of new capacity results in a piecewise

discrete function. Figure A.3 below is a pictorial explanation on the origin of this

discreteness of new capacity.

(a) tuning: z(x)
4

3

1

0
0.0 2.5 5.0 7.5 10.0

x

(C) thres. noise = (+ E
1.0-

0.5-

-0.5-\

-1.0

Zl

(b)

Z2 0.0-

manifold
1.0

0.5

-0.5-

-1.0
-1 0 1

Z1

(d) thres. noise=
1.0

0.5

0.0 ,. '

-0.5-

-1.0
-1 0 1

Z1

Figure A.3: New capacity exhibit discrete jump in value when sweeping the

threshold noise. (a) Tuning curves of a high-capacity 4-cell TI code with frequencies:

(fi, f2) = (1, 1/ p). (b) Coding line (1D manifold) of tuning curves of (a). (c) The length of

red segment of the coding line from the yellow star to the red triangle (first collision point

with the noise ball) is defined as the capacity under threshold noise (+ E as the radius of

the noise ball. (d) Decreasing the threshold noise by a small amount results in a discrete

increasing in capacity as depicted by the dashed red segment.

207

-8
0

-6 -

-4

-2

-0

A.8 RNN training hyperparameters for Scheme 1

Table A.1: Scheme 1 - Place cells with WTA dynamics

codename

num_pc

num_gc

dim. value

2000

200

description

Wpp Wpp

W GG

WGp

bp

bG

Wgg

Wgp

Wpg
bp

bg

Np x Np (ap + 3p) I - Op, where

ap = .8 and #Op .4/Np

NG x NG (aG + OG) I - 3G, where

aG =.8 and /G = 0
NG x Np g(0,.1/Np)

Np x NG g(0, 1/Np)

0

.2

WTA RNN

near identity initialization

random initialization

random initialization

const. bias to PCs

const. bias to GCs

cuestrength

velstrength

frac

.1

.1

.3

NG x 1 U, [odd]

a, linspace(1, .5, NG/2);

U, [even]

-a, linspace(1, .5, NG/2)

NP x Ni fNp nonzero entries sam-

pled via g(al , .5 al) trun-

cated at lower & upper

bounds = .5 al and 1.5 al

aim to set fraction of ac-

tive PCs

vel. input weights to GCs

landmark input weights to

PCs

rq eta .1 (At/T = 2.5ms / 25ms)

arand arand

Vmax vmax

a

XV

a

x[1,t]

x[O,t)

.0002

.01 (.1cm/2.5ms

40cm/s)

at+1 = g(O arand)

vt+1

clip (vt + at , V-max, Vmax)

rt+1 _ t + vt) mod L

L env-size

At: discretized time-interval

r: membrane time constant

random acceleration

strength

max. vel.

acceleration

velocity inputs

position on a ring

500 (50m)

Continued on next page

208

name

Np
NG

a,

al

f

U, Uv

U U1

Table A.1 - continued from previous page

name codename dim. value description

NI numlm 50 number of landmarks

lm_width 1

ri im-pos [0, 10, 20, 27, 42, 51, 60,
70, 77, 92, 103, 110, 119,
129, 139, 147, 163, 171,
177, 189, 198, 213, 222,
227, 238, 253, 258, 269,

283, 293, 297, 309, 322,
327, 341, 353, 359, 373,
381, 391, 397, 408, 419,
428, 443, 448, 460, 470,

478, 488]

z1 x [2+i, t] X f= exp [- (Xz - ri) 2 /o] landmark inputs

batchsize 10

numbatches 10

T timesteps 500 (500 * 2.5ms = 1.25s) backprop timesteps

lr learning-rate .0001

A.9 RNN training hyperparameters for Scheme 2

Table A.2: Scheme 2 - Softmax nonlinearity to approximate WTA

dynamics

name codename dim. value description

Np num-pc 1000

NG num-gc 100

WGG Wgg NG x NG (aG + 3G) I - !G, where near identity initialization

aG = .8 and 3G = 0

WjG Wpg Np x NG 9(0, 20/Np) random initialization

bG bg .2 const. bias to GCs

a, cuestrength .05

al velstrength .1

f frac .1 aim to set fraction of ac-

tive PCs

Continued on next page

209

Table A.2 - continued from previous page

name codename dim. value description

U, Uv NG x 1 U, vel. input weights to GCs

U Ul

UG1 Ulgc

rI eta

a, linspace(1, .5, NG2);

U, [even]

-a, linspace(1, .5, NG/2)

Np x N fNp nonzero entries sam-

pled via 9(al , .5 al) trun-

cated at lower & upper

bounds = .5 al & 1.5 al

NG x N uniform(-1, 1)

.1 (At/r - 2.5ms / 25ms)

arand arand

Vmax vmax

a

Xv

a

x [1, t]

.0002

.01 (.1cm/2.5ms

40cm/s)

at+1 = 9 (0,arand)

vt+I-=

clip (vt + at, -Vmax, Vmax)

rt+1 _ W + v) mod Lr x[O, t]

landmark input weights to

PCs

landmark input weights to

GCs

At: discretized time-interval

T: membrane time constant

random acceleration

strength

max. vel.

acceleration

velocity inputs

position on a ring

env_size

numlm

1m_width

im-pos

x [2+i, t]

batchsize

numbatches

500 (50m)

50

1

[0, 10, 21, 30, 39, 47, 59,

65, 72, 86, 96, 107, 117,

124, 133, 145, 158, 168,

176, 190, 200, 209, 213,

226, 238, 251, 258, 271,

280, 286, 295, 301, 307,

316, 327, 343, 355, 363,

371, 381, 389, 408, 415,
419, 429, 440, 452, 461,

471, 4861

X = exp (z - r /o

number of landmarks

I landmark inputs

10

10

Continued on next page

210

L

NI

rxl

Ti

Table A.2 - continued from previous page

name codename dim. value description

T timesteps 500 (500 * 2.5ms = 1.25s) backprop timesteps

Ur learningrate .01

A.10 Optimization hyperparameters for Scheme A-1

Table A.3: Scheme A-1 Ad hoc denoising model

name codename

L num-periods

num-points

U num_freqs

V num-phis

Nb numbasis

N numcells

avar avar

ao init a[j]

P? init_P[i,j]

3 bn

value

40

15

280

8

UV

UV

0, .2, .4,.6,.8, 1

9(1, avar) x RandSgn

g(0,1)

0,...,10 and vN

Ir0 ~ 3 ir O, ir1, ir2, ir3

irA, rP lrA, lrP

T num-epochs

sch3

5, 1,1, 1/12

5e-6, 1

500

1 + exp - T1
IT/40 -

description

coding range

number of discrete points

in a period

number of frequencies

number of phases

number of basis functions

number of cells

first part of the coefficient

matrix

second part of the coeffi-

cient matrix

ad hoc correlated noise

level

baseline and relative

learning rates for three

loss functions

relative learning rate for

Pij and a3

total training epochs

1r3 is scheduled to be on

after T/3

A.11 Optimization hyperparameters for Scheme A-2

211

Table A.4:

tradeoff

name codename

L numperiods

numpoints

U numfreqs

V numphis

Nb numbasis

N numcells

Scheme A-2 - Denoising model that implements correct

value

40

15

280

2

UV

UV

description

coding range

number of discrete points

in a period

number of frequencies

number of phases

number of basis functions

number of cells

a_var .6

init a [j] (1, va -a)

init-p[i,j] g(0,1)
initP [i, j] p ao

bn

lr0 ~ 3 1r0, ir, 1r2, 1r3

1rP

numepochs

d-epoch

s chl

sch3

1~20

5, 1, 1, 1/30

1

5000

500

0 if t mod AT < AT/2

1 if t mod AT ; AT/2

S+ exp -
1 T/100

schl1(t)

only used to initialize P

only used to initialize P

coefficient matrix

threshold noise level

baseline and relative

learning rates for three

loss functions

relative learning rate for

P3 and aj

total training epochs

alternating

irl and 1r2

alternating

1r3

schedule for

schedule for

A.12 Optimization hyperparameters for Scheme B-i

Table A.5: Scheme B-1 - Preliminary of Scheme B-2

name codename value description

L num-periods 20 coding range

num-points 10 number of discrete points

in a period

Continued on next page

212

avar

ao
0

Puj
P9.

tj

lrP

T

AT

Table A.5 - continued from previous

codename

numfreqs

num_phis

numbasis

numcells

initP [i, j]

value

200

2

UV

10~80

g(0, 1)

page

description

number of frequencies

number of phases

number of basis functions

number of cells

coefficient matrix

IrO, irl, lr3

r2zl

w

numepochs

beta

s ch

Po, P1, P3 grad-on [k]

a3 alphamask3

.01, .01, 1

.001

.5-4

le5

.1

11 t -T/4)21 -+ T1

.5, .25, .25

10% of cells

baseline and relative

learning rates for loss

functions

target tuning negativity

intrinsic noise to set max-

imal frequency 1/w

total training epochs

last learning rate in an-

nealing schedule

annealing schedule on
t2
overall learning rate.

probility of choosing a cer-

tain loss function

update only a3 cells' tun-

ing curves at a time

A.13 Optimization hyperparameters for Scheme B-2

Table A.6: Scheme B-2 - Simple scheme without denoiser

name codename value description

U numfreqs 200 number of frequencies

V num-phis 2 number of phases

Nb numbasis UV number of basis functions

N num_cells 20 number of cells
PP initP [i, j] g(0,1) coefficient matrix

23

1r0, I, Ir2, 1r3 irO, irl, ir2, 1r3 .1 .1 .1 .01 baseline and relative

learning rates for loss

functions

<tar r2z1 0 target tuning negativity
Continued on next page

213

name

U

V

Nb

N

P.

rO, I, 1r3

2
rz,tar

W

T

#3

Table A.6 - continued from previous page

name codename value description

Ww 1 intrinsic noise to set max-

imal frequency 1/w

T numepochs 5e4 total training epochs

logL2tar logl2tar -4.6

P1, P2, P3 gradon[k] 1/3, 1/3, 1/3 probility of choosing a cer-

tain loss function when

logL2 ; logL2tar

Pi, P2, P3 gradon2 [k] 1/5, 3/5, 1/5 probility of choosing a cer-

tain loss function when

logL2 > logL2tar

randOl 0: 50% and 1: 50% binary random number

for evenly tuning on and

off the gradient product

terms V1 - V 2 and V3 - V 2

in SOGD.

a3 alphamask3 20% of cells update only a3 cells' tun-

ing curves at a time

A.14 Optimization hyperparameters for Scheme C

Table A.7: Scheme C - Simple scheme with new capacity measure

name codename value description

L num-periods 20 coding range

num-points 10 number of discrete points

in a period

U num-freqs 200 number of frequencies

V num-phis 2 number of phases

Nb numbasis UV number of basis functions

N numcells 10~80 number of cells

P. initP [i, j] g(0, 1) coefficient matrix

lrO, irl, lr3 1rO, irl, 1r3 .01, .01, 1 baseline and relative

learning rates for loss

functions

rz,tar r2zl .001 target tuning negativity

Continued on next page

214

Table A.7 - continued from previous page

name codename value description

w w .5~4 intrinsic noise to set max-

imal frequency 1/w

T numepochs 1e5 total training epochs

13 beta .1 last learning rate in an-

nealing schedule

1 t - T/4 \21 1 1
sch 1 + annealing schedule on

S- 1 T -T /4 t2
- - ~ overall learning rate.

Po, Pi, P3 grad-on [k] .5, .25, .25 probility of choosing a cer-

tain loss function

a3 alphamask3 10% of cells update only a3 cells' tun-

ing curves at a time

215

Appendix B

Supplementary Information for

Chapter 3

B.1 Interpolating codewords are always orthogonal

to the distant landmark codewords

In the step of online similarity matching in the optimal online learning algorithm,

interpolating codewords are generated between two adjacent orthogonal landmark

codewords. To show how these interpolating codewords overlaps only to the each

others and the two landmark codewords, I use a binary neuron example below as a

simple proof of concept for which the sparsity is required to be conserved and the

interpolating codewords are non-orthogonal to the two landmark codewords.

Consider p out of N cells being active for each codewords, without loss of gener-

ality, after re-indexing, two orthogonal landmark codewords can be

z(zi) =- (1,...,1, 0, ...,10, 0, ...,10) (B .1)

has Cell 1 to Cell p being active, and

z(X2) = (0,...,0, 1,...,1, 0,...,0) (B.2)

has Cell p + 1 to Cell 2p being active. Next, find a set of interpolating codewords:

{z(X) | X E (XI, X2)} (B.3)

216

that incrementally connect z(xi) and z(x 2). For which, in a binary neuron scheme, one

can use a permutation matrix that preserves the number of active cells, move only

one active cells out of the current active p cells, and create a locally translational

invariant codeword segment:

z(x + 1) = P z(x) for x E [X1, X2). (B.4)

There are two criteria needed to be satisfied for z(x) to be an interpolating codewords.

First, every interpolating codeword should be nearly parallel to at least one other

codeword within the set: {z(x) | x E [XI, X2]} such that

z(x) . z(x') = p - 1. (B.5)

Second, every interpolating codeword should not be orthogonal to any others within

the set: {z(x) | X E [i, X2]} except z(Xi) z(z2) = 0 such that

z(x) .z(X')1. (B.6)

To satisfy both, the permutation should take exactly p steps to go from one landmark

codeword to the other such that

z(z2) = PPz(zi). (B.7)

Consequently, all codewords generated from the permutation, z(xi+k) = Pkz(xi).where

0 < k < p, must have p active cells only out of the first 2p active cells-which

are the active cells of codewords z(xi) and z(x 2). Below are an example with

z(X 2) = Pq=Pz(Xi), and a counterexample with z(X 2) = pq=p+1z(Xi) for p = 3.

z(Xi) = (1, 1, 1, 0, 0, 0, 0, ... , 0)

z(X1 + 1) = (0, 1, 1, 1, 0, 0, 0, ..., 0) (B.8)
z(xi + 2) = (0, 0, 1, 1, 1, 0, 0, ... , 0)

z(x 2) = z(xi + 3) = (0, 0, 0, 1, 1, 1, 0, ... 0)

From the above, q = p with permuted cell index: 1 - 2 - 3 - 4 - 5 -+ 6- .

217

so that the interpolating codewords satisfies 1 ; z(x) - z(x') <; p - 1.

z(xi) = (1, 1, 1, 0, 0, 0, 0, ... , 0)

z(zi + 1) = (0, 1, 1, 0, 0, 0, 1, ... 0)

z(xi + 2) = (0, 0, 1, 1, 0, 0, 1, ... ,0)

z(xi + 3) = (0, 0, 0, 1, 1, 0, 1, ... 0)

z(x 2) = z(xi + 4) = (0, 0, 0, 1, 1, 1, 0, ... , 0)

(B.9)

From the above, q = p + 1 with permuted cell index: 1 - 2 -±3 - 7 - 4 --+ 5 -

6 -+ ---. Note that z(xi) - z(xi + 3) = 0 and z(x 2) - z(zi + 1) 0 which violate the

non-orthogonality requirement z(x) - z(X')1.

To conclude, a set of interpolating codewords from the process of online similarity

matching only establish a link between two adjacent landmark codewords, and remain

orthogonal to all the other landmark codewords.

218

B.2 Training hyperparameters for the sequential tasks

Table B.1: Sequential landmark-prediction tasks

codename

num-pc

beta

wpp

Wgg

bP

bL

name
Np

3

Wer

Wip

bp

bL

aL

a,

Uv

Uk

eta

arand arand

v_max

a

x_k [1, t]

x_k [0, t]

OL im_width

0pred lmp-width

xk (t) x_k [2:, t]

Xpred(t)

L

y_k [:, t]

env_size

value

256

2/Np

g (--2#, #3) or I -- #

0

1

1

description

two types of initializations

are used

bias of place cell layer

bias of landmark predic-

tion layer

.1

.1

linspace(-.1, .1)

random.uniform(-.5, .5)

.1 (At/T = 2ms/20ms)

.000256

.0128 (.128cm/2ms = 64cm/s)

at+1 = G(0, arand)

vt+1 = clip (Vt + at, -Vmax, Vmax)

rt+1 _ Wr + vt) mod L

1

12

exp | l= 1,. . , N k)

exp - r 2 |1 1, ... , Nik)

preti

[64,101,84,57,115,43,89,87,64,112] x10cm

vel. input weights

landmark input weights

At: discretized time-interval

T: membrane time constant

random acceleration

strength

maximum speed

acceleration

velocity inputs in k-th

env.

position on a ring in k-th

env.

landmark input width

landmark-prediction sig-

nal width

landmark inputs in k-th

env.

landmark prediction sig-

nals in k-th env.

size of ten environments

Continued on next page

219

cuestrength

velstrength

Uv

U_k

7q

Vmax

a

Xv

Table B.1 - continued from previous page

name codename

rl lm-pos

ambilm_idx

batchsize

numbatches

timesteps

learningrate

adapt-rate

value

[[0, 7, 22, 28, 48], [7, 14, 27, 39, 52, 71,
89, 99], 13, 12, 32, 45, 52, 60, 76], [9, 33,
43, 52], [4, 12, 28, 36, 45, 55, 62, 79, 1001,
[1, 10, 191, [13, 20, 40, 48, 56, 73, 86], [6,
17, 24, 39, 60, 74, 83], [6, 18, 38, 46, 57],
[2, 10, 24, 33, 42, 54, 65, 79, 88]] x 10cm

[[1], []]l; [[2, 5, 7], [1]; [[1, 5], []]; [[], []];

[[1, 3], [6, 8]]; [[], [f]; [[2, 5], [f]; [[1], []];

[[J, []]; [[2, 4, 7],[]]

100

10
500 (500 * 2ms

.04

.004

Is)

description

landmark positions of

each environment

index of indistinguishable

landmarks in each envi-

ronment

1 batch has 100 trials

1 epoch = 10 batches

backprop timesteps

B.3 Evaluating performance using the error of esti-

mated position

Cross-validation simulation. In a training or testing session, the trainable weight

matrices are stored every ten epochs for a subsequent cross-validation simulation, in

which the weight are frozen and the agent random walks a different trajectory. The

stored weight matrices are fed in every epoch such that the simulation takes 1/10 of

the time for the original simulation.

Loss-to-error mapping. The landmark prediction error plotted in cm are calculated

from the L2-norm loss function in a cross-validation simulation. The mapping from

the loss function to the error is done by assuming that a displacement Ar from the

ground truth r in Environment k is caused by a simple spatial shift of landmark-

prediction signals, i.e. sf (r(t)) ed(r(t), Ar), where

red (r, Ar) 1 exp ~ - | 1 = 1,..., Njk)
pred

(B.10)

220

T

lrtrain
iradapt

The corresponding loss function is

(B.11)Lk(Ar) S 2 N red(r Ar) Xred(r)

rL

In the training scheme, I used a mapping averaging over ten environments:

L(Ar) L4(Ar)
k

(B.12)

The error can thereby be numerically estimated from the loss from the training

scheme.

Ar(t) L (Lk(t)) (B.13)

The mapping function L-- is plotted in Figure B.1.

120

100

U
1~
0
I..
L.
@3

80

60

40

20

0 "~
10-2 10-1 1 00 101

loss

Figure B.1: Mapping between loss and error of estimated position.

221

-:Ir I

; I '

B.4 LD vs HD manifolds in regular or topological

environments

1 -,2 -3-

LPC

1 -- 2 - 3-

Figure B.2: Manifolds after learning multiple regular environments in the

landmark-prediction task. (a) The manifolds of an LD network when navigating En-

vironment 1,2, and 3 after successfully learning three environments in sequence. (b) The

manifolds of an HD network when navigating Environment 1 to 5 after successfully learning

five environments in sequence.

222

(a)
I -~ 2 -*~

(b)
1 .. 5 -o

.-- . i

1 5 -(Z 5 (A)

AIN

IF %ISLI Nk

(a) 1

LPCI

(b)

LPC2

LPC1

Figure B.3: Manifolds after learning multiple topological environments in the
landmark-prediction task. (a) The manifolds of an LD network show a successful learn-
ing of Environment 1 and then Environment 3, but not Environment 2 (the manifold mis-

takenly connects the states representing multiple locations). (b) Although the learning

of Environment 2 (a topologically complex environment) after learning Environment 1 (a
topologically simple environment) failed to converge, learning Environment 2 directly from
the original random initial connectivity succeeded. After learning a topologically complex

environment, the subsequent learning of Environment 1 or 3 becomes easier. (c) The mani-
folds of an HD network when navigating Environment 1 to 5 after successfully learning five
environments in sequence.

223

B.5 Learning ten environments

Geometrically different environments

(a) HD, training

1- 1 -- -- 3
80 -- --

20- - - 8

0 100 200 300 400 500 600
epoch

(b) HD, testing

1 -.. D-- 1 - .- 10

1- -+1 + --+ 10

- 1

0 100 200 300 400 500 600
epoch

(C) cross-env. correlation

20' 300.2 .08 223 ao o 27

002 WA 03o a 2 o 2 n o n n 000

000n01.00 000000 0

. 20

,2
,,OM 00

I. '" I - " A "

(d) tuning memory

0.s

10.4

Topologically different environments

(e) HD, training M HD, testing (g) cross-env. correlation
I0 to t ~ 0 -1 1- lo10 oO 00 DI 2 3 1* 0.200.3t00

- - 3- 1-. -. 10E-3 "0 "

80-40 4

0C0 11 200 0 0 040 1 2 002

pch 0po 0c0

40~0 00000 8 0 0 4 0

0 100 200 300 400000600 0 100 200 300 400000600
epoch epoch

(h) tuning memory

1 -,1 r ® 0 1 .

104 0eeed enanenad

Figure B.4: An HD network can learn ten geometrically or topologically dif-

ferent environments. (a-d) From right to left are the learning curves, testing curves,
cross-environment correlation matrix, and tuning memory for training in geometrically dif-

ferent environments. The tuning memory of Environment k measures the similarity between

the tuning curves when they were first learnt and then later recalled after learning all ten

environments. (e-h) Same as (a-d) but for the training in topologically different environ-

ments.

224

A

80

40

20

10

B.6 Computing relaxation time

The differential form of autonomous dynamical equation in the relaxation simulation

is

rds(t) = - (t) + [Wppsp(t) + bp]+, (B.14)
dt

0o if u < 0
where [u]+ = . Because the semi-linearity of above equation, it can be

1 if U ; 0
rewritten in a multiplicative form:

dsp(t)
T dt M(t)sp(t) + b(t). (B.15)

dt

The time dependent weight matrix and bias is defined as

M(t) -I + [h(t) ® h(t)] x Wpp (B.16)

b (t) h h(t) bp (t),I (B. 17)

where I is identity matrix, h(t) H[Wppsp(t)+bp] with Heaviside step function H[-],

and 0 and x are operators of tensor product and element-wise multiplication, respec-

tively. By applying eigen decomposition on M(t) - Q-'(t)A(t)Q(t), Equation (B.15)

becomes

d
T -Q(t)sp(t) = A(t)Q(t)sp(t) + Q(t)b(t)

dt (B.18)
=#-T-01a(t) = A(t)a(t) + c(t),dt

where A(t) is a diagonal matrix with eigenvalues: A1 (t) < A2 (t) < . <.. ;AN

a(t) = Q(t)sp(t), and c(t) = Q(t)b(t). The instantaneous relaxation times can then

be defined as the decay time of the transient terms of a(t), i.e. ar"(t) c ea/i; the

relaxation time for i-th mode at time t is

rel (t) -_ r/A (B. 19)

To get a sense of the stability of a continuous attractor, I plotted the k-th largest

relaxation time. In case of a ID continuous attractor, one can use rjel(t)-for which

T1el(t) -+ o is relaxation time for the mode in longitudinal direction of a manifold.

The smaller the rel(t) the more stable the corresponding mode is.

225

B.7 Simulation hyperparameters for demonstrating

persistent propensity

Table B.2: Demonstration of place cells' biased propensity

value

500*50 (50s)

description

total simulation time win-

dt

interjinputduration

input-duration

num_im

x [t]

numcells

numlm_stored

alpha

beta

w_biased_str

W_kWTA

W (numlm_stored)

Wpp

b

eta

2ms

500 (Is)

50 (.1s)

T/Ainter

[9(0, 1)]+

256

10,30,100]

.9

.3/Np

3e-4

(ap + 13p) I - Op

where yN ~X g(0, 1)

WkWTA + EW(Npatts)

Np /p/ 2

.1 (At/T 2ms / 20ms)

dow

discretize time-interval

one input per second.

Each input pulse last for

.1s

positive random inputs

three levels of weight per-

turbation are simulated.

unbiased recurrent weight

symmetric weight matrix

that stores multiple pat-

terns

perturbed recurrent

weight

recurrent layer bias

At: discretized time-

interval; T: membrane

time constant

226

name

T

codename

num-steps

At

Ainter

Apulse

N

tX1

Npa

Npatt

ap

ap
C

WkWTA

W(Npatt)

Wer

bwp

T/

Bibliography

Alme, C. B., Miao, C., Jezek, K., Treves, A., Moser, E. I., and Moser, M.-B. (2014).
Place cells in the hippocampus: Eleven maps for eleven rooms. Proceedings of the
National Academy of Sciences, 111(52):18428-18435.

Babichev, A. and Dabaghian, Y. A. (2018). Topological Schemas of Memory Spaces.
Frontiers in Computational Neuroscience, 12(April):1-16.

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel, A.,
Chadwick, M. J., Degris, T., Modayil, J., Wayne, G., Soyer, H., Viola, F., Zhang,
B., Goroshin, R., Rabinowitz, N., Pascanu, R., Beattie, C., Petersen, S., Sadik, A.,
Gaffney, S., King, H., Kavukcuoglu, K., Hassabis, D., Hadsell, R., and Kumaran, D.
(2018). Vector-based navigation using grid-like representations in artificial agents.
Nature, 557(7705):429-433.

Baram, A. B., Muller, T. H., Whittington, J. C. R., and Behrens, T. E. (2018).
Intuitive planning: global navigation through cognitive maps based on grid-like
codes. bioRxiv, page 421461.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H., and Sil-
ver, D. (2016). Successor Features for Transfer in Reinforcement Learning. (Nips).

Barry, C., Hayman, R., Burgess, N., and Jeffery, K. J. (2007). Experience-dependent
rescaling of entorhinal grids. Nature Neuroscience, 10(6):682-684.

Battaglia, F. P., Sutherland, G. R., and McNaughton, B. L. (2004). Local Sensory
Cues and Place Cell Directionality: Additional Evidence of Prospective Coding in
the Hippocampus. Journal of Neuroscience, 24(19):4541-4550.

Battaglia, F. P. and Treves, A. (1998). Attractor neural networks storing multi-
ple space representations: A model for hippocampal place fields. Physical Re-
view E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics,
58(6):7738-7753.

Behrens, T. E., Muller, T. H., Whittington, J. C., Mark, S., Baram, A. B., Stachen-
feld, K. L., and Kurth-Nelson, Z. (2018). What Is a Cognitive Map? Organizing
Knowledge for Flexible Behavior. Neuron, 100(2):490-509.

227

Bell, A. J. and Sejnowski, T. J. (1995). An information-maximization approach to
blind separation and blind deconvolution. Neural computation, 7(6):1129-59.

Bell, A. J. and Sejnowski, T. J. (1997). The "independent components" of natural
scenes are edge filters. Vision Research, 37(23):3327-3338.

Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., and Maass, W. (2019).
Biologically inspired alternatives to backpropagation through time for learning in
recurrent neural nets. pages 1-37.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep ar-
chitectures. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 7700 LECTU:437-
478.

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., and Lin, Z. (2015). Towards
Biologically Plausible Deep Learning. arXiv preprint arXiv:1502.04156.

Benna, M. K. and Fusi, S. (2016). Computational principles of synaptic memory
consolidation. Nature Neuroscience, 19(12):1697-1706.

Bialek, W. (2012). Photon Counting in Vision. In Biophysics: searching for principles.
Princeton University Press.

Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., and Magee, J. C.
(2017). Behavioral time scale synaptic plasticity underlies CA1 place fields. Science,
357(6355):1033-1036.

Bonnevie, T., Dunn, B., Fyhn, M., Hafting, T., Derdikman, D., Kubie, J. L., Roudi,
Y., Moser, E. I., and Moser, M. B. (2013). Grid cells require excitatory drive from
the hippocampus. Nature Neuroscience, 16(3):309-317.

Bottou, L. (2012). Stochastic gradient descent tricks. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 7700 LECTU(1):421-436.

Brandon, M. P., Koenig, J., Leutgeb, J. K., and Leutgeb, S. (2014). New and Distinct
Hippocampal Place Codes Are Generated in a New Environment during Septal
Inactivation. Neuron, 82(4):789-796.

Brea, J., Gail, A. T., Urbanczik, R., and Senn, W. (2016). Prospective Coding by
Spiking Neurons. PLoS Computational Biology, 12(6):1-25.

Brun, V. H., Solstad, T., Kjelstrup, K. B., Fyhn, M., Witter, M. P., Moser, E. I.,
and Moser, M. B. (2008). Progressive increase in grid scale from dorsal to ventral
medial entorhinal cortex. Hippocampus, 18(12):1200-1212.

Burak, Y. and Fiete, I. R. (2009). Accurate path integration in continuous attractor
network models of grid cells. PLoS Computational Biology, 5(2).

228

Burak, Y. and Fiete, I. R. (2012). Fundamental limits on persistent activity in net-
works of noisy neurons. Proc. Natl. Acad. Sci., 109(43):17645-17650.

Bush, D., Barry, C., Manson, D., and Burgess, N. (2015). Using Grid Cells for
Navigation. Neuron, 87(3):507-520.

Chen, Y., Paiton, D. M., and Olshausen, B. A. (2018). The Sparse Manifold Trans-
form. arXiv, page 1806.08887.

Chen, Z., Gomperts, S. N., Yamamoto, J., and Wilson, M. A. (2014). Neural rep-
resentation of spatial topology in the rodent hippocampus. Neural Computation,
26(1):1-39.

Chen, Z., Kloosterman, F., Brown, E. N., and Wilson, M. A. (2012). Uncovering spa-
tial topology represented by rat hippocampal population neuronal codes. Journal
of Computational Neuroscience, 33(2):227-255.

Chung, S., Lee, D. D., and Sompolinsky, H. (2018). Classification and Geometry of
General Perceptual Manifolds. Physical Review X, 8(3):31003.

Cohen, U., Chung, S., Lee, D. D., and Sompolinsky, H. (2019). Separability and
Geometry of Object Manifolds in Deep Neural Networks. bioRxiv, page 644658.

Colgin, L. L. (2016). Rhythms of the hippocampal network. Nature Reviews Neuro-
science, 17:239.

Colgin, L. L., Moser, E. I., and Moser, M. B. (2008). Understanding memory through
hippocampal remapping. Trends in Neurosciences, 31(9):469-477.

Coop, R. and Arel, I. (2013). Mitigation of catastrophic forgetting in recurrent neural
networks using a Fixed Expansion Layer. Proceedings of the International Joint
Conference on Neural Networks.

Cox, R. T. and Carlton, C. E. (2003). A Comment on Gene Introgression versus
En Masse Cycle Switching in the Evolution of 13-Year and 17-Year Life Cycles in
Periodical Cicadas. Evolution, 57(2):428-432.

Cueva, C. J. and Wei, X.-X. (2018). Emergence of grid-like representations by training
recurrent neural networks to perform spatial localization. ICLR, pages 1-19.

Curto, C. (2016). What can topology tell us about the neural code? Bulletin of the
American Mathematical Society, 54(1):63-78.

Curto, C., Gross, E., Jeffries, J., Morrison, K., Omar, M., Rosen, Z., Shiu, A., and
Youngs, N. (2017). What makes a neural code convex? SIAM J. Appl. Algebr.
Geom., 1(1):222-238.

Curto, C. and Itskov, V. (2008). Cell groups reveal structure of stimulus space. PLoS
Computational Biology, 4(10).

229

Dabaghian, Y., Brandt, V. L., and Frank, L. M. (2014). Reconceiving the hippocam-
pal map as a topological template. eLife, 3:e03476.

Dabaghian, Y., M6moli, F., Frank, L., and Carlsson, G. (2012). A Topological
Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology.
PLoS Computational Biology, 8(8).

Daugman, J. G. (1988). Complete Discrete 2-D Gabor Transforms by Neural Networks
for Image Analysis and Compression. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 36(7):1169-1179.

Davoudi, H. and Foster, D. J. (2019). Acute silencing of hippocampal CA3 reveals a
dominant role in place field responses. Nature Neuroscience, 22(3):337-342.

Dayan, P. (1993). Improving Generalization for Temporal Difference Learning: The
Successor Representation. Neural Computation, 5(4):613-624.

DiCarlo, J. J. and Cox, D. D. (2007). Untangling invariant object recognition. Trends
in Cognitive Sciences, 11(8):333-341.

DiCarlo, J. J., Zoccolan, D., and Rust, N. C. (2012). How does the brain solve visual
object recognition? Neuron, 73(3):415-434.

Dordek, Y., Soudry, D., Meir, R., and Derdikman, D. (2016). Extracting grid cell
characteristics from place cell inputs using non-negative principal component anal-
ysis. eLife, 5(MARCH2016):1-36.

Druckmann, S. and Chklovskii, D. B. (2012). Neuronal circuits underlying persistent
representations despite time varying activity. Current Biology, 22(22):2095-2103.

Dupret, D., O'Neill, J., Pleydell-Bouverie, B., and Csicsvari, J. (2010). The reorgani-
zation and reactivation of hippocampal maps predict spatial memory performance.
Nat. Neurosci., 13(8):995-1002.

Erdem, U. M. and Hasselmo, M. (2012). A goal-directed spatial navigation model
using forward trajectory planning based on grid cells. European Journal of Neuro-
science, 35(6):916-931.

Erdem, U. M. and Hasselmo, M. E. (2014). A biologically inspired hierarchical goal
directed navigation model. Journal of Physiology Paris, 108(1):28-37.

Ermentrout, G. B. and Terman, D. H. (2010). Firing Rate Models ermentrout. In
Mathematical foundations of neuroscience, volume 35, chapter 11. Springer Science
& Business Media.

Fiete, I. R., Burak, Y., and Brookings, T. (2008). What Grid Cells Convey about
Rat Location. Journal of Neuroscience, 28(27):6858-6871.

230

Frank, L. M., Stanley, G. B., and Brown, E. N. (2004). Hippocampal Plasticity
across Multiple Days of Exposure to Novel Environments. Journal of Neuroscience,
24(35):7681-7689.

Fuhs, M. C. (2006). A Spin Glass Model of Path Integration in Rat Medial Entorhinal
Cortex. Journal of Neuroscience, 26(16):4266-4276.

Fyhn, M., Hafting, T., Treves, A., Moser, M. B., and Moser, E. I. (2007). Hippocampal
remapping and grid realignment in entorhinal cortex. Nature, 446(7132):190-194.

Gardner, M. P. H., Schoenbaum, G., and Gershman, S. J. (2018). Rethinking
dopamine as generalized prediction error. bioRxiv.

Gardner, R. J., Lu, L., Wernle, T., Moser, M.-B., and Moser, E. I. (2019). Correlation
structure of grid cells is preserved during sleep. Nature Neuroscience, 22(4):598-
608.

Gershman, S. J. (2018). The Successor Representation: Its Computational Logic and
Neural Substrates. The Journal of Neuroscience, 38(33):7193-7200.

Gil, M., Ancau, M., Schlesiger, M. I., Neitz, A., Allen, K., De Marco, R. J., and
Monyer, H. (2018). Impaired path integration in mice with disrupted grid cell
firing. Nature Neuroscience, 21(1):81-93.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2013). An
empirical investigation of catastrophic forgetting in gradient-based neural networks.
arXiv preprint arXiv:1312.6211.

Grossberg, B. S. (1973). Contour Enhancement , Short Term Memory ,. Studies in
Applied Mathematics, Lii(September).

Grossberg, S. (1988). Nonlinear Neural Networks: Principles, Mechanisms, and Ar-
chitectures. Neural Networks, 1:17-61.

Gu, Y., Lewallen, S., Kinkhabwala, A. A., Domnisoru, C., Yoon, K., Gauthier, J. L.,
Fiete, I. R., and Tank, D. W. (2018). A Map-like Micro-Organization of Grid Cells
in the Medial Entorhinal Cortex. Cell, 175(3):736-750.

Guzman, S. J., Schl6gl, A., Frotscher, M., and Jonas, P. (2016). Synaptic mechanisms
of pattern completion in the hippocampal CA3 network. Science, 353(6304):1117-
1123.

Hafting, T., Fyhn, M., Molden, S., Moser, M. B., and Moser, E. I. (2005). Microstruc-
ture of a spatial map in the entorhinal cortex. Nature, 436(7052):801-806.

Hedrick, K. R. and Zhang, K. (2016). Megamap: flexible representation of a large
space embedded with nonspatial information by a hippocampal attractor network.
Journal of Neurophysiology, 116(2):868-891.

231

Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of Neural
Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Herz, A. V., Mathis, A., and Stemmler, M. (2017). Periodic population codes: From a
single circular variable to higher dimensions, multiple nested scales, and conceptual
spaces. Current Opinion in Neurobiology, 46:99-108.

Hollup, S. A., Molden, S., Donnett, J. G., Moser, M. B., and Moser, E. I. (2001).
Accumulation of hippocampal place fields at the goal location in an annular wa-
termaze task. The Journal of neuroscience : the official journal of the Society for
Neuroscience, 21(5):1635-44.

Hopfield, J. J. (1984). Neurons with graded response have collective computational
properties like those of two-state neurons. Biophysics, 81(May):3088-3092.

Hubel, D. H. and Wiesel, T. N. (1968). Receptive fields and functional architecture
of monkey striate cortex. The Journal of Physiology, 195(1):215-243.

Kanitscheider, I. and Fiete, I. R. (2016). Training recurrent networks to generate
hypotheses about how the brain solves hard navigation problems. arXiv.

Kanitscheider, I. and Fiete, I. R. (2017). Making our way through the world: Towards
a functional understanding of the brain's spatial circuits. Curr. Opin. Syst. Biol.,
3:186-194.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath,
C., Kumaran, D., and Hadsell, R. (2016). Overcoming catastrophic forgetting in
neural networks. arXiv, page 1612.00796v2.

Kjelstrup, K. B., Solstad, T., Brun, V. H., Hafting, T., Leutgeb, S., Witter, M. P.,
Moser, E. I., and Moser, M.-B. (2008). Finite Scale of Spatial Representation in
the Hippocampus. Science, 321(5885):140-143.

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., and Poeppel,
D. (2017). Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron,
93(3):480-490.

Kriener, B., Chaudhuri, R., and Fiete, I. R. (2017). How fast is neural winner-take-all
when deciding between many options ? bioRxiv, pages 1-30.

Kropff, E. and Treves, A. (2008). The emergence of grid cells: Intelligent design or
just adaptation? Hippocampus, 18(12):1256-1269.

Kubie, J. L. and Fenton, A. A. (2012). Linear look-ahead in conjunctive cells: an
entorhinal mechanism for vector-based navigation. Frontiers in neural circuits,
6:20.

232

Kudrimoti, H. S., Barnes, C. A., and McNaughton, B. L. (1999). Reactivation of
Hippocampal Cell Assemblies: Effects of Behavioral State, Experience, and EEG
Dynamics. The Journal of Neuroscience, 19(10):4090-4101.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman, S. J. (2016). Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396.

Langston, R. F., Ainge, J. A., Couey, J. J., Canto, C. B., Bjerknes, T. L., Wit-
ter, M. P., Moser, E. I., and Moser, M.-B. (2010). Development of the Spatial
Representation System in the Rat. Science, 328(5985):1576-1580.

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A Simple Way to Initialize Recurrent
Networks of Rectified Linear Units. arXiv, abs/1504.0.

Lee, J. S., Briguglio, J., Romani, S., and Lee, A. K. (2019). The statistical structure of
the hippocampal code for space as a function of time, context, and value. bioRxiv,
page 615203.

Leutgeb, J. K., Leutgeb, S., Moser, M.-B., and Moser, E. I. (2007). Pattern Separation
in the Dentate Gyrus and CA3 of the Hippocampus. Science, 315(5814):961-966.

Leutgeb, J. K., Mankin, E. A., and Leutgeb, S. (2013). Population Coding by Place
Cells and Grid Cells. In Principles of Neural Coding, pages 300-317. CRC Press.

Leutgeb, S. and Leutgeb, J. K. (2007). Pattern separation, pattern completion,
and new neuronal codes within a continuous CA3 map. Learning and Memory,
14(11):745-757.

Leutgeb, S., Leutgeb, J. K., Moser, E. I., and Moser, M.-B. (2006). Fast rate coding
in hippocampal CA3 cell ensembles. Hippocampus, 16(9):765-774.

Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M.-B. B., and Moser, E. I.
(2004). Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1. Science,
305(5688):1295-1298.

Low, R. J., Lewallen, S., Aronov, D., Nevers, R., and Tank, D. W. (2018). Prob-
ing variability in a cognitive map using manifold inference from neural dynamics.
bioRxiv.

MacDonald, C. J., Lepage, K. Q., Eden, U. T., and Eichenbaum, H. (2011). Hip-
pocampal "time cells" bridge the gap in memory for discontiguous events. Neuron,
71(4):737-749.

Majani, E., Erlarson, R., and Abu-Mostafa, Y. (1989). On the k-winners-takes-all
network. Advanced in Neural Information Processing Systems I, pages 634-642.

Marr, D. (1971). Simple Memory: A Theory for Archicortex. Philosophical Transac-
tions of the Royal Society of London. Series B, Biological Sciences, 262(841):23-81.

233

Marr, D. and Poggio, T. (1976). From understanding computation to understanding
neural circuitry. Neurosciences Research Program Bulletin, 15(3):470-488.

Mathis, A., Herz, A. V., and Stemmler, M. B. (2013). Multiscale codes in the nervous
system: The problem of noise correlations and the ambiguity of periodic scales.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 88(2):1-10.

Maurer, A. P., VanRhoads, S. R., Sutherland, G. R., Lipa, P., and McNaughton,
B. L. (2005). Self-motion and the origin of differential spatial scaling along the
septo-temporal axis of the hippocampus. Hippocampus, 15(7):841-852.

McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist,
J. K., Lowell, B. B., Fanselow, M. S., Wilson, M. A., and Tonegawa, S. (2007).
Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hip-
pocampal Network. Science, 317(July):94-99.

McNaughton, B. L., Barnes, C. A., Gerrard, J. L., Gothard, K., Jung, M. W.,
Knierim, J. J., Kudrimoti, H., Qin, Y., Skaggs, W. E., Suster, M., and Weaver,
K. L. (1996). Deciphering the hippocampal polyglot: the hippocampus as a path
integration system. Journal of Experimental Biology, 199(1):173-185.

McNaughton, B. L., Barnes, C. A., and O'Keefe, J. (1983). The contributions of
position, direction, and velocity to single unit activity in the hippocampus of freely-
moving rats. Experimental Brain Research, 52(1):41-49.

Mehta, M. R., Quirk, M. C., and Wilson, M. A. (2000). Experience-dependent asym-
metric shape of hippocampal receptive fields. Neuron, 25(3):707-715.

Mitchison, G. J. (1977). Phyllotaxis and the Fibonacci Series. Science, 196(4287):270-
275.

Morris, R. G. M., Garrud, P., Rawlins, J. N. P., and O'Keefe, J. (1982). Place
navigation impaired in rats with hippocampal lesions. Nature, 297(5868):681-683.

Moser, M. B., Rowland, D. C., and Moser, E. I. (2015). Place cells, grid cells, and
memory. Cold Spring Harbor Perspectives in Biology, 7(2):a021808.

Muller, R. U., Kubie, J. L., and Ranck, J. B. (1987). Spatial firing patterns of hip-
pocampal complex-spike cells in a fixed environment. The Journal of Neuroscience,
7(7):1935-1950.

Nakazawa, K., Quirk, M. C., Chitwood, R. A., Watanabe, M., Yeckel, M. F., Sun,
L. D., Kato, A., Carr, C. A., Johnston, D., Wilson, M. A., and Tonegawa, S. (2002).
Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Re-

call. Science, 297(5579):211-218.

Norimoto, H., Makino, K., Gao, M., Shikano, Y., Okamoto, K., Ishikawa, T., Sasaki,
T., Hioki, H., Fujisawa, S., and Ikegaya, Y. (2018). Hippocampal ripples down-
regulate synapses. Science, 359(6383):1524-1527.

234

O'Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J., and Maguire, E. A. (1998).
Place cells, navigational accuracy, and the human hippocampus. Philosophical
Transactions of the Royal Society B: Biological Sciences, 353(1373):1333-1340.

O'Keefe, J. and Nadel, L. (1978). The hippocampus as a cognitive map. Oxford:
Clarendon Press.

Pehlevan, C., Hu, T., and Chklovskii, D. B. (2015). A Hebbian/Anti-Hebbian Neu-
ral Network for Linear Subspace Learning: A Derivation from Multidimensional
Scaling of Streaming Data. Neural Computation, 27(7):1461-1495.

Pehlevan, C., Sengupta, A. M., and Chklovskii, D. B. (2018). Why Do Similarity
Matching Objectives Lead to Hebbian/Anti-Hebbian Networks? Neural Computa-
tion, 30(1):84-124.

Poggio, T. (2012). The levels of understanding framework, revised. Perception,
41(9):1017-1023.

Pouget, A., Deneve, S., Ducom, J. C., and Latham, P. E. (1999). Narrow versus
wide tuning curves: What's best for a population code? Neural Computation,
11(1):85-90.

Redish, A. D., Battaglia, F. P., Chawla, M. K., Ekstrom, A. D., Gerrard, J. L., Lipa,
P., Rosenzweig, E. S., Worley, P. F., Guzowski, J. F., McNaughton, B. L., and
Barnes, C. A. (2001). Independence of Firing Correlates of Anatomically Proximate
Hippocampal Pyramidal Cells. Journal of Neuroscience, 21(5):RC134-RC134.

Rich, P. D., Liaw, H. P., and Lee, A. K. (2014). Large environments reveal the statis-
tical structure governing hippocampal representations. Science, 345(6198):814-817.

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2(11):1019-1025.

Rolls, E. T. (2013). The mechanisms for pattern completion and pattern separation
in the hippocampus. Frontiers in Systems Neuroscience, 7(October):1-21.

Rolls, E. T., Stringer, S. M., and Elliot, T. (2006). Entorhinal cortex grid cells can
map to hippocampal place cells by competitive learning. Network: Computation
in Neural Systems, 17(4):447-465.

Rumelhart, D. E. and Zipser, D. (1985). Feature discovery by competitive learning.
Cognitive science, 9(1):75-112.

Sainsonovich, A. and McNaughton, B. L. (1997). Path Integration and Cognitive
Mapping in a Continuous Attractor Neural Network Model. Journal of Neuro-
science, 17(15):5900-5920.

Scellier, B. and Bengio, Y. (2016). Equilibrium Propagation: Bridging the Gap
Between Energy-Based Models and Backpropagation. 11(May).

235

Schiller, J., Berlin, S., and Derdikman, D. (2018). The Many Worlds of Plasticity
Rules. Trends in Neurosciences, 41(3):124-127.

Sengupta, A. M., Tepper, M., Pehlevan, C., Genkin, A., and Chklovskii, D. B. (2018).
Manifold-tiling Localized Receptive Fields are Optimal in Similarity-preserving
Neural Networks. bioRxiv.

Shoval, 0., Sheftel, H., Shinar, G., Hart, Y., Ramote, 0., Mayo, A., Dekel, E.,
Kavanagh, K., and Alon, U. (2012). Evolutionary trade-offs, pareto optimality,
and the geometry of phenotype space. Science, 336(6085):1157-1160.

Solstad, T., Moser, E. I., and Einevoll, G. T. (2006). From Grid Cells to Place Cells:
A Mathematical Model. Hippocampus, 16:1026-1031.

Sompolinsky, H., Crisanti, A., and Sommers, H. J. (1988). Chaos in random neural
networks. Phys. Rev. Lett., 61(3):259-262.

Sreenivasan, S. and Fiete, I. (2011). Grid cells generate an analog error-correcting
code for singularly precise neural computation. Nature Neuroscience, 14(10):1330-
1337.

Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J. (2017). The hippocampus
as a predictive map. Nature Neuroscience, 20(11):1643-1653.

Stemmler, M., Mathis, A., and Herz, A. V. (2015). Connecting multiple spatial scales
to decode the population activity of grid cells. Science Advances, 1(11):1-12.

Stensola, H., Stensola, T., Solstad, T., FrOland, K., Moser, M. B., and Moser, E. I.
(2012). The entorhinal grid map is discretized. Nature, 492(7427):72-78.

Stensola, T., Stensola, H., Moser, M. B., and Moser, E. I. (2015). Shearing-induced
asymmetry in entorhinal grid cells. Nature, 518(7538):207-212.

Tai Sing Lee (1996). Image representation using 2D Gabor wavelets. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 18(10):959-971.

Tishby, N., Pereira, F. C., and Bialek, W. (2000). The information bottleneck method.
pages 1-16.

Trettel, S. (2017). Grid cell co-activity patterns remain stable across different behav-
ioral states and experiences.

Trettel, S. G., Trimper, J. B., Hwaun, E., Fiete, I. R., and Colgin, L. L. (2019). Grid
cell co-activity patterns during sleep reflect spatial overlap of grid fields during
active behaviors. Nature Neuroscience, 22(4):609-617.

Treves, A., Rolls, E. T., and Simmen, M. (1997). Time for retrieval in recurrent
associative memories. Physica D: Nonlinear Phenomena, 107(2):392-400.

236

Tsodyks, M. (2005). Attractor neural networks and spatial maps in hippocampus.
Neuron, 48(2):168-169.

van Vreeswijk, C. (2001). Whence Sparseness? In Leen, T. K., Dietterich, T. G., and
Tresp, V., editors, Advances in Neural Information Processing Systems 13, pages
180-186. MIT Press.

Whittington, J. C. R., Muller, T. H., Mark, S., Barry, C., and Behrens, T. E. J.
(2018). Generalisation of structural knowledge in the hippocampal-entorhinal sys-
tem. (Nips).

Widloski, J. and Fiete, I. R. (2014). A model of grid cell development through spatial
exploration and spike time-dependent plasticity. Neuron, 83(2):481-495.

Wills, T. J., Cacucci, F., Burgess, N., and O'Keefe, J. (2010). Development of
the hippocampal cognitive map in preweanling rats. Science (New York, N. Y.),
328(5985):1573-6.

Wills, T. J., Lever, C., Cacucci, F., Burgess, N., and O'Keefe, J. (2005). Attractor
dynamics in the hippocampal representation of the local environment. Science,
308(5723):873-876.

Wilson, F. (1991). Purpose and Function in Biology. In Empiricism and Darwin's
Science, pages 131-162. Springer Netherlands, Dordrecht.

Wilson, M. A. and McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble
code for space. Science, 261:1055-1058.

Wilson, M. A. and McNaughton, B. L. (1994). Reactivation of hippocampal ensemble
memories during sleep. Science, 265(5172):676-679.

Witter, M. P. and Amaral, D. G. (2004). Hippocampal Formation. In The Rat
Nervous System, pages 635-704. Elsevier Inc.

Xie, X., Hahnloser, R. H., and Sebastian Seung, H. (2002). Selectively grouping neu-
rons in recurrent networks of lateral inhibition. Neural Computation, 14(11):2627-
2646.

Yoo, Y. S. (2014). Multi-scale error-correcting codes and their decoding using belief
propagation. PhD thesis.

Yoon, K., Buice, M. A., Barry, C., Hayman, R., Burgess, N., and Fiete, I. R. (2013).
Specific evidence of low-dimensional continuous attractor dynamics in grid cells.
Nature Neuroscience, 16(8):1077-1084.

Zhang, K., Ginzburg, I., McNaughton, B. L., and Sejnowski, T. J. (1998). Interpreting
neuronal population activity by reconstruction: unified framework with application
to hippocampal place cells. Journal of neurophysiology, 79(2):1017-44.

237

Zhang, K. and Sejnowski, T. J. (1999). Neuronal tuning: To sharpen or broaden?
Neural Computation, 11(1):75-84.

Zheng, C. and Colgin, L. L. (2018). Hippocampal slow and fast gamma rhythms cor-
relate differentially with successful memory performance in a goal-directed spatial
memory task. In SfN.

Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. 0., Ghosh, K. K., Kitch, L. J., Gamal,
A. E., and Schnitzer, M. J. (2013). Long-term dynamics of CA1 hippocampal place
codes. Nat. Neurosci., 16(3):264-266.

238

