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Abstract

Hurricane damage is one of the costliest and most frequent of natural disasters. In total, the
cumulative cost of all 16 hurricanes in the US in 2017 was in excess of $300 billion and by 2075
the average annual damage cost in the US is expected to rise by nearly 40%. In order to mitigate
disaster damage, governments mandate minimum standards for construction depending on
location and building type-standards known as building codes. Yet most codes remain
insufficient as they account only for individual buildings and overlook the influence of city layout
on wind speeds and storm damage. To reinvigorate design codes and better predict hurricane
damage, we propose a new city texture resilience approach, which accounts for local geometric
layouts to predict more accurate building codes. Tested using computational fluid dynamics
simulations for different city textures with common geometrical layouts, we found that the city
texture model, derived using online GIS data of building footprints, predicts with 67% accuracy
damage from 2018 Hurricane Michael in Mexico Beach, FL. Furthermore, we find that ordered
"crystal" cites have higher susceptibility to hurricane damage showing higher proportion of
buildings with upper range values of drag coefficients. Using this approach, stakeholders can
readily identify entire cities (or neighborhoods) with high susceptibility to hurricane damage.
Moreover, they can identify buildings with the highest risk of damage, which will offer targeted
retrofitting, thereby enabling more resilient developments and urban planning to reduce the risk of
hurricane damage and mitigate the kinds of extreme damage experienced by communities with
histories of high speed winds, especially as climate change is going to intensify future storms.

Thesis Supervisor: Franz-Josef Ulm
Title: Professor in Civil and Environmental Engineering and Faculty Director at
the Concrete Sustainability Hub

3





Acknowledgments

Supposedly the easiest, yet to a certain degree the hardest, this section brings pleasure and

sorrow. Being the final part, on the one side brings an end, on the other a commencement. With

many obstacles and turns, it wasn't an easy one to reach, but in the end, the support, help,

encouragement that I have received along that way made it attainable, made it possible. Where

there's a will, there's a way, but too often that will gets only ignited by friends and family. And it

is those few who have been dear to my heart and those few who continue to remain the source of

that inspiration I would like to share my sincerest and deepest gratitude with. More formally, I

wish to extend this to the board of this thesis committee, my advisors, teachers, mentors: Prof.

Marta Gonzalez, Prof. Franz-Josef Ulm and Dr. Roland Pellenq - you played an important role in

my development and I wholeheartedly thank you for your performance.

5



Contents

A . A bstract ............................................................................. . 3

B. Acknowledgments ................................................................ 5

C. Contents ............................................................................ 6

D. List of Figures ....................................................................... 11

E. List of Tables ..................................................................... 13

1. Introduction ....................................................................... 15

1.1 Clim ate Change ...................................................................... . 15

1.2 Consequences of Climate Change ...................................................... 17

1.2.1 R ising Sea Levels ............................................................. . 17

1.2.2 Hurricanes and Storms ....................................................... 18

1.3 Greenhouse Gases ..................................................................... 19

1.4 Climate Change Mitigation ............................................................ 21

1.4.1 Energy Consumption of Buildings .......................................... 22

1.4.2 Urban Heat Island ............................................................ 23

1.4.3 Energy Consumption Models ............................................... 25

1.5 Climate Change Adaptation .......................................................... 26

1.5.1 Building Design Codes ....................................................... 26

1.6 R ole of C ities ......................................................................... . 27

1.6.1 C ity Texture ................................................................... . 29

6



1.7 Research Objectives ................................................................... 31

1.8 T hesis O utline .......................................................................... . 32

1.9 Research Significance ................................................................. 32

1.10 Sum m ary .............................................................................. . 32

2. Data Acquisition and Management ............................................. 33

2.1 A ir Tem perature ....................................................................... . 33

2.2 Energy C ost ........................................................................... . 34

2.3 D egree D ays ........................................................................... . 35

2.4 G IS D ata ................................................................................. . 35

2.4.1 OpenStreetMap (OSM) GIS Data ........................................... 39

2.4.2 OSM GIS Data Validation ................................................... 41

2.4.3 O SM C ities ................................................................... . 43

2.5 Population Change ...................................................................... 43

2.6 Sum m ary ............................................................................. . 45

3. Urban Physics: City Texture .................................................... 46

3.1 Statistical Physics Approach for Texture Characterization ....................... 46

3.1.1 Radial Distribution Function, g(r) ............................................ 49

3.1.2 Local City Texture Parameters ............................................... 54

3.2 Reverse Monte Carlo: Reconstruction of cities ..................................... 60

3.2.1 Sam ple Size .................................................................. . 61

7



3.2.2 Procedure of Error Minimization .............................................. 61

3.2.3 Model Weighing Parameters ................................................... 63

3.2.4 V alidation ...................................................................... . 64

3.3 Computational Fluid Dynamics Models of Cities ................................... 66

3.4 Sum m ary .............................................................................. . 68

4. Urban Heat Island (UHI): Intensity and Cost .................................... 77

4.1 Quantifying Urban Heat Island...................................................... 77

4.1.1 Fourier Transform............................................................. 79

4.2 Role of City Texture in UHI at nighttime ............................................ 82

4.2.1 Heat Radiation Model ........................................................ 83

4.2.2 Urban Surface Temperature from Solar Radiance ......................... 88

4.3 U H I C ost ................................................................................ . 89

4.3.1 Energy Consumption and Degree Days .................................... 89

4.3.2 Energy Expenditure ............................................................ 90

4.3.3 Carbon Emissions ............................................................. 94

4.4 UHI impact on the US Residential Energy Cost and Emissions .................. 96

4.5 Sum m ary .............................................................................. . 99

5. Drag Coefficients and Hurricane Damage ........................................ 100

5.1 Building Design Codes ................................................................... 100

5.1.1 Categories of Hurricanes ....................................................... 102

5.1.2 Flow Regimes in Cities .......................................................... 103

8



5.1.3 W ind Pressure Loads ........................................................... 104

5.2 Fluid D ynam ics of Flow ................................................................. 105

5.2.1 Computational Fluid Dynamics of Flow ..................................... 107

5.3 City Texture Wind Simulation .......................................................... 108

5.3.1 C FD M odel set-up ............................................................... 110

5.3.2 CFD Model set-up Validation ................................................... 111

5.4 City Texture influenced Drag Coefficients ........................................... 112

5.4 .1 V alidation .......................................................................... 120

5.4.2 Case Study: Mexico Beach....................... 121

5.4.3 Risk Assessment of Hurricane Failure ......................................... 122

5.5 Sum m ary ................................................................................... 125

6. C onclusion ............................................................................. 126

6.1 Overview and Significance of the work ................................................. 126

6.2 Controlling Urban Heat Island ........................................................... 127

6.3 Improving Building Design Codes ..................................................... 128

6.4 Future W ork .......................................................................... . 129

7. R eferences .......................................................................... 13 1

8. A ppendix ............................................................................ 146

9



List of Figures

1-1 Global Climate Change patterns ............................................................... 16

1-2 US Hurricane Damage Cost ................................................................... 19

1-3 Correlation between Temperature and Carbon Emissions ................................ 20

1-4 Global Human-Produced Greenhouse Gases ................................................ 21

1-5 Historical Carbon Dioxide Atmospheric Concentration ................................... 23

1-6 Urban Population Growth ..................................................................... 29

2-1 Flowchart for extraction of GIS points from building footprints ......................... 37

2-2 Distributions of Areas of Buildings for GIS 3-mil cities .................................... 38

2-3 g (r) distributions using OpenStreetMap and GIS data .................................... 41

2-4 Visualization of Building Footprints for OSM cities ...................................... 44

3-1 Building area probability distribution for OSM cities ...................................... 48

3-2 Ordered and disordered regular grid and staggered building samples .................... 50

3-3 g(r) distribution for grid and staggered samples ........................................... 51

3-4 g(r) distribution for GIS 3-mil cities ........................................................ 52

3-5 g(r) distribution for GIS OSM cities ....................................................... 53

3-6 g(r) comparison between cities with different city textures .............................. 54

3-7 C, distribution for grid and staggered samples .............................................. 55

3-8 City Texture Parameters ....................................................................... 57

3-9 Flowchart for Reverse Monte Carlo (RMC) procedure ..................................... 62

3-10 RMC Weighing Parameters ................................................................... 64

3-11 Comparison of OSM and RMC data ......................................................... 65

10



3-12 Building area probability distribution for CFD samples ................................... 69

3-13 Reconstructed city CFD samples .............................................................. 70

3-14 g(r) distribution for CFD samples ............................................................ 76

4-1 Distribution of Temperature Differences ..................................................... 78

4-2 Comparison of Temperature Differences .................................................... 79

4-3 Fourier transformed times series of urban-rural temperature difference ................. 80

4-4 Quantifying Urban Heat Island ................................................................. 81

4-5 Relationship between UHI and Population Density ....................................... 82

4-6 Extending Heat Transfer Model to Urban Heat Island Measurements ................... 83

4-7 Relationship between measured and model-predicted ATu-r - .-.--........... ..... 87

4-8 Residential Energy Consumption ............................................................. 90

4-9 UHI Costs + Emissions Flowchart ............................................................ 91

4-10 Residential heating and cooling energy cost and C02 emissions for 48 US states ....... 95

4-11 UHI Impact US Map ............................................................................. 97

4-12 Urban Household Growth Projections in the US ........................................... 99

5-1 US ASCE Building Design Code Wind Speed Map .......................................... 102

5-2 C FD m odel set up ................................................................................. 109

5-3 C FD M esh .......................................................................................... 109

5-4 CFD Approach Verification ..................................................................... 112

5-5 Drag Coefficient Data ........................................................................ 113

5-6 C FD Inlets and O utlets ........................................................................... 114

5-7 CFD Order Parameter Results ................................................................... 115

5-8 Drag Coefficient CFD Results .............................................................. 118

11



5-9 Drag Coefficient City Texture Statistics ....................................................... 119

5-10 Characteristic City Texture ...................................................................... 120

5-11 Mexico Beach Damage Map .................................................................... 122

5-12 Modeled Drag Coefficients for GIS OSM cities ............................................. 123

5-13 Drag Coefficient Hurricane Damage Risk Map for Florida ................................. 124

12



List of Tables

2-1 Sources for Temperature Data ................................................................ 34

2-2 Sources for GIS data obtained from GIS departments ..................................... 36

2-3 GIS and OSM Verification ................................................................... 42

3-1 City Texture values for grid and staggered samples ........................................ 58

3-2 City Texture values for GIS 3-mil cities ...................................................... 59

3-3 City Texture values for GIS OSM cities ...................................................... 59

13



14



Chapter 1

1. Introduction

In this chapter, we introduce the topic of climate change, its causes and consequences. We discuss

common mitigation techniques and relate it to Urban Heat Island effect and energy consumption

of buildings. We then transition to present climate change adaptation approaches focusing

specifically on safety design codes for residential buildings. In the final part of this chapter, we

introduce the role of cities-their history, growth and their function in the lives of humans-and

different textures their buildings demonstrate. Towards the end, we present objectives of this

research, followed by outline and significance of this thesis.

1.1. Climate Change

Extreme heatwaves in Europe during the summer of 2019. Severe tropical storms like Harvey,

Irma, Michael, Maria, or Matthew. The most intense period of drought in California, USA, for

almost a decade. Some of the most extensive and devastating wildfires in Australia. Records of

extensiveness and damage coming from floods across the world. The climate is changing; and all

disastrous events recorded in the second decade of the 21st century are a clear example of that.

What's more, their intensity and quantity has been on the rise and despite the prediction of future

severity of climate change, the effects have already begun to unravel (1-3). The time is to act is

now.

Although our population appears not unified on the topic, there are many among us, ranging from

students to political representatives, who recognize that the severity of the potential long-term

consequences of the climate change (4-6). With its first global climate strike, year 2019 has

become a historic one. Millions of people, kids, students, adults, people of all generations, but

especially the younger ones, all over the world have been coming together to have their voices

heard (7, 8), to have our leaders do something about the climate changing, our planet warming up.

"The clock is ticking", "the time is now", "take it to the streets", are just some of the slogans that
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have been visible on posters and fluctuating through social media. The argument has been that the

crisis isn't going to wait, so neither should we. In more than three quoters of the countries, people

are voting to end the era of fossil fuels. Young people have been leading the climate strike loud

enough to awaken millions of adults. The fight won't be an easy one, as it is not one that history

could guide as through. There are many unknowns in this complex climate equation, which is the

core of the argument, whether or not the climate change is real.

a)

1.0

0.5

0.0

0.5
I)

- - _ I _-__ _

880 1900 12 1 190 1980 200 2020
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FIG.1-1 Global Climate Change patterns.
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1.2. Consequences of Climate Change

Extensive data collected during multiple decades suggests that climate change is happening (1, 9-

14). Thousands of scientists argue that it is (15). The world with its extreme natural disasters is

telling us it is (1, 3, 16, 17). From north to south, from east to west, our planet earth has been

warming up [Fig.1-1]. Earth's temperature goes up and down from year to year, but the fact is that

in the past century the average surface temperature has increased by 1 degree Celsius [Fig.1-1.a,

(18, 19)] and as much as 3 degrees Celsius when compared to 1981-2010 averages [Fig.1-1.b].

However, in many places the temperature has increased even more. If this trend continues, we can

be sure to expect much warmer future. And while this might appear appealing in some aspects,

considering that many of the crops are more fruitful in warmer climates, or that people are more

likely to enjoy living in a warmer climate, (especially those retiring) many research studies find

that the cost of a warmer climate that we expect to occur far outweighs its potential benefits (20,

21).

1.2.1. Rising Sea Level

Warming up climate is accompanied by extreme and often disastrous weather events with both

short- and long-term impacts. Studies conducted by researchers over the recent years document

that rising temperatures are going to lead to shifts in migrating patterns of wildlife, possibly also

resulting in emigration from their natural habitats (22-24). Similar outcomes may the results of

melting ice, especially at the north and south poles with millions of square miles covered with

glacial ice. During the period of 23 years, between 1993 and 2016, experiments show that 286

billion tons of ice melted in the north pole, while 127 billion tons in the south pole with its rate of

the mass loss tripling in the past decade (25-28). Much of that melting ice, in addition to thermal

expansion of water due to increased temperature of water by 0.2 degrees Celsius since 1970s, is

going to contribute to rising sea levels (29, 30). With current predictions for increasing

temperature, it is expected that by the end of the century sea levels will rise by 0.3-1.3 meters (25,

30), although some experts believe that coastal areas should be prepared for the growth of 2 meters

(31, 32). Such rise would lead to an economic damage in excess of trillions of dollars, forcing

millions of people to re-locate and lose their properties (11, 16, 33, 34). Cities like New Orleans
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LA, Miami FL, San Francisco CA, New York NY, Boston MA, and more worldwide, all located

in coastal areas, are highly likely to have some parts of their land affected by sea level rises in the

next century or two - the exact severity remains unknown. However, beyond the sea rising levels

and the damage that comes with it, climate change poses another threat to our society, one that is

going to have its effects visible in this decade with hurricanes and storms, droughts and floods

likely to become more frequent and more severe in the near future.

1.2.2. Hurricanes and Storms

Predictive models for precipitations show an increased risk of severe droughts for many regions

around the world (35), which can be explained by two factors: 1) general declines in climate related

regional-precipitation and 2) increases in surface and air temperatures, which is going to cause

earlier melting of the snow and for many days in the year result in rain instead of snow

precipitation. In addition, precipitation rates are likely to decrease in quantity, but rise in intensity,

which is going to translate to periods of dry weather with heavy and intense storms. These storms

have already been prevailing around the world, causing an especially substantial damage in the

US. According to research conducted by Office for Coastal Management from National Oceanic

and Atmospheric Administration "The cumulative cost of the 16 separate billion-dollar weather

events in the U.S. in 2017 was $306.2 billion, breaking the previous cost record of $214.8 billion

(2005)". In fact, some of the costliest in the American history hurricanes struck the US in the past

15 years [Fig.1-2]. However, the increasing quantity and intensity of storms accompanied by

hurricanes (or their sole presence for that matter) is not a direct outcome of droughts; rather it can

be attributed to an increasing water temperature. The warmer the water temperature, the more heat

energy is available for a tropical cyclone to evolve, and eventually under the right set of weather

conditions, a hurricane may emerge (12, 36). While some studies on this topic suggest that there

isn't enough evidence to link frequency of hurricanes with global warming (11, 12), there is a

consensus among scientist that there is a positive correlation between global warming and intensity

of tropical storms (16, 17, 36). This global warming is believed to be induced by humans (37, 38)

due to an evident relationship between C02 levels and temperature (14, 39) [Fig.1-3].
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The Top Five Costliest
%IjF0 U.S. Hurricanes on Record

Name .............. Year.................... Cost
Katrina ................ 2005 .......... $161 Billion
Harvey ................ 2017 .......... $125 Billion
M aria .................... 2017 .............. $90 Billion
Sandy .................. 2012 .............. $71 Billion
Irm a ...................... 2017 .............. $50 Billion

FIG. 1 -2. US Hurricane Damage Cost (40).

1.3. Greenhouse Gases

Although the amount of energy coming from the Sun has increased slightly over the past century,

most climatic models are unable to reproduce the historical temperature trends without including

an increase in C02 as well as other greenhouse gases (GHG) emissions (9). This is further justified

by the fact that if GHG gases did not play a role in increased temperatures, we would expect to see

temperature rise in all layers of the atmosphere, as opposed to only the lower part (9). This happens

because greenhouse gases block the heat from the Sun that is reflected from Earth's surface.

Increased GHG concentration in Earth's atmosphere leads to a stronger heat trap, which reflects

greater amount of heat back to Earth's surface. These gases are composed of water vapor, carbon

dioxide (C02), methane (CH4), tropospheric ozone (03), nitrous oxide (N20), chlorofluorocarbons,

and carbon monoxide (not a direct GHG, but is able to modulate production of 03 and N20).
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Although water vapor is the most abundant and potent GHG, its quantity increases as Earth's air

temperature warms, but unlike other GHG, it is not generated directly from a human activity.

Therefore, much of the scientific and societal focus has been focused on understanding

6 320
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FIG.1-3 Correlation between Temperature (14) and Carbon Emissions (39).

the mitigation of other gases, especially reducing the amounts of carbon dioxide, which is the most

prominent of the greenhouse gases [Fig.1-4]. Carbon dioxide is released through human activities

ranging from land use changes, deforestation to burning fossil fuels; it is also released through

natural processes, such as respiration or eruptions of volcanos. However, since 1950s the main

cause for the increase in C02 concertation has been humanity burning fossil fuels (41, 42) at a rate

that in 50 years has increased C02 levels by almost one third [Fig.1-5.b] from a level that had

already been higher than the highest previous known C02 concertation over 330,000 years ago

[Fig.1-5.a]. To verify the hypothesis about the impact of human activity, a panel of hundreds of

scientific experts from countries across the globe agreed that we, the people, are solely responsible

for intensified warming climate (15). In order to mitigate the coming consequences of climate

change, to adapt we must find ways to reduce sources of C02 sources and adapt for the future for

more resilient and sustainable infrastructure.

20
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1.4. Climate Change Mitigation

On the mitigation side, there is a wide range of readily available solutions that can help us, both

individually and in larger groups, reduce the rate at which we are burning the fossil fuels. In recent

years, global leaders and legislators have come to recognize the perils of climate change and under

the United Nations Framework Convention on Climate Change, in 2016 the Paris Climate

Agreement was established with the long-term goal of reducing GHG emissions and keeping the

global temperature rise below 2°C above pre-industrial levels. However, in 2017 the second largest

domestic polluter and first in the western hemisphere, United States of America, had its federal

government announce that it would cease its participation in the global climate change mitigation

efforts captured in the charters of the Paris Accord. Moreover, in 2018 under the Section 201 of

the Trade Act, the federal government has imposed new tariffs on solar energy imports, which in

Influence of all major human-produced greenhouse gases (1979-2018)
--------------------------- 43% increase -------------

3 nitrous oxide
CFC-12

SCFC-11
C other minor gases

1.0
.0 Z'2mehne-E2

1 0.5
0 -

yea NOA ClmtCo

0 VA

.0

0

0
1980 1990 2000 2010 2018

year NOAA Chmate.gov
Data: ESRL

FIG.1-4 Global Human-Produced Greenliouse Gases.

the past few years created limited interest in renewable energy growth in the US. However,

encouraged by climate supporters worldwide and recognition of future consequences and potential

benefits of more energy-efficient technology, many business, cities and some states across the US

have voluntarily come together to declare the "We are still in " and "America's Pledge " coalitions
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that will continue to support the climate action plan to meet the Paris Climate Agreement.

Although, US Climate Alliance of this kind has the potential to mitigate the effects of climate

change, majority of the US nation continues to be under no official obligation to reduce carbon

emissions and improve energy efficiency. This poses a great environmental threat to the US and

rest of the world for two reasons: first the effectiveness of energy policies is much higher when

compliance is mandatory as opposed to voluntary (43, 44) and second, US has the second largest

C02 emissions in the world. Unequivocally, establishment of mandatory regulations is a portion

of the challenge to achieve goals of the Paris Agreement; however, the other important portion of

the challenge is selection of the sector and approach that would offer the greatest opportunity for

economic and environmental changes rather than be solely a climate mitigation solution (45, 46).

1.4.1. Energy Consumption of Buildings

According to International Energy Agency, electricity and heat production combined with

buildings make up almost 60% of the world's C02 emissions, which creates a huge opportunity

for reduction of emissions with more sustainable, energy efficient infrastructure (47-49). This

mitigation potential extends to United States where Energy Information Administration (EIA)

estimates that 40% of total domestic energy consumption buildings are the single most energy

consuming source of infrastructure in the US and thus have been the primary focus of energy

policies (50). Space heating and cooling is estimated to contribute to about 20-25% of total energy

consumption (51), which for the US residential stock of about 113 million units translates to about

10% of the total domestic energy consumption. Globally, the impact of the residential sector is

even more significant - it is estimated that its contribution to total energy consumption is 27%,

which translates to 17% of C02 emissions (38).
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1.4.2. Urban Heat Island

One of the main factors that influences energy consumption of residential buildings is outdoor air

temperature (52). That temperature depends on both regional and local climates. With wind, cloud

coverage and seasonality, the former is considered an uncontrollable variable (53). The latter one,

however, is influenced by the humankind and shaped through urban growth (54, 55). This is

because urbanization changes the structure of natural land by replacing open areas and vegetation

with various forms of infrastructure. Buildings and pavements are arranged in different

geometrical layouts (56, 57) and use different types of materials (58), both of which are known to
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influence the amount of solar radiation that is stored during the day and its release rate at nighttime.

In addition to storage and release of radiant energy, ventilation (59), indoor temperatures (60) and

anthropogenic heat (61), all have been listed as factors that lead to thermal changes in the

environment causing formations of UHIs. Although, there is no general consensus on the

magnitude of local temperature changes with different studies estimating its values to be (i) (62)

5-150C, (ii) (55) 1-8°C, (iii) (57) 1.4-4.2°C at nighttime, (iv) (56) 1°C, (v) (63) 3°C. Nighttime UHI

is dominated by two factors: 1) the ability of materials to store solar radiation during the day, and

2) the rate at which this energy is released at night (64). For the day-time UHI, detailed periodic

hourly variations have been found to be related to changes in convection efficiency in the lower

atmosphere between different climate zones (60). It has been estimated that average daytime UHI

causes air temperature to intensify by 1-3°C in the US (65) and 1.72°C globally (66). While it is

well known that the release of solar irradiance heat at night is the inducement of intensified

temperatures in cities (64), detailed quantitative descriptions of correlations with city texture

parameters are mostly limited to single street canyons (67). Changes in material properties (68),

or geometries of infrastructure (69, 70) instigate an alternation of various physical processes at

Earth's surface leading to notable climate effects, such as UHI. These processes reveal

geographical and periodic (i.e. hourly, daily, seasonal) influences on higher temperatures that

come in a form of UHI (71, 72).These higher temperatures, in general, necessitate higher energy

demand, which translates to economic and environmental losses for cities worldwide (50, 66).

Beyond increased energy usage, UHI has been found to create externalities in the forms of

increased air pollution (53, 73) and deteriorated human comfort (74), which during extreme

heatwaves has been attributed to augmented mortality rates (75). Moreover, with global climate

change patterns (76) and urban growth (77), future impacts of UHI are expected to intensify (66).

Because of that, UHI mitigation strategies and techniques-traditionally to include tree and

vegetation (53) cover and reflective pavements (73)-have been studied extensively with their

importance expected to grow in the future (78). Reflective materials, cool and green roofs and

cool pavements have proved to be successful in diminishing negative UHI effects (65, 79). Most

of the UHI studies have been focused on quantifying the impact on the demand for cooling energy

during hot summer months (50, 53, 73), leaving the topic about the influence of UHI on the annual

heating and cooling energy sectors in the need of further investigation. Energy modeling of

buildings and numerical simulation have been used to provide comprehensive assessment of UHI
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mitigation tactics on the building's energy demand. Reductions of outdoor temperate of 1°C during

peak time cooling energy demand could reduce energy consumption by as much 6% (80).

However, during cold winter months, heating energy may be halved in urban areas when compared

to their rural surrounding due to UHI effect (81). It is important to note that while reducing UHI

in areas with high cooling energy demand is beneficial for the economy and environment, in

regions with high heating and low cooling energy demands, alleviating UHI is likely to increase

overall energy costs and pollution. Therefore, in order understand the impact that UHI has on

energy consumption, annual heating and cooling energies, rather than just solely summer or winter

months, must be considered. The outcomes of such studies suggest that in the presence of UHI,

the combined annual heating and cooling energy may decrease (82). However, more regional

energy modeling studies are needed to evaluate the impact of UHI effect and its countermeasures

on the energy consumption of the entire state or country. Above all, any studies should account for

the climate change by using climatic predictions for intensified air temperature (83-85).

1.4.3. Energy Consumption Models

Building energy modeling techniques for regional or national studies for residential energy

consumption can be divided into two types (86): (1) top-down and (2) bottom-up. Top down

models rely on historical aggregate energy consumption data and generally are considered to be

simplistic with small number of input variables providing average estimates of the energy

consumption. As such, they lack the ability to account for new stock of buildings, any advances in

building energy technology or identifying areas for improvements. However, it is their simplicity

and availability of data that makes them an attractive choice for many national building energy

modeling studies. The second category, bottom-up models are known for their high level of detail

and ability to identify areas for improvements and measure their future impact; however, this

comes at the price of increased complexity and necessity for more input data, which oftentimes

requires energy bill data that generally is limited to the local scale. As such, bottom-up models

work best for studies that aim to identify specific areas for improvements and quantify predictions

for future energy consumption.
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1.5. Climate Change Adaptation

The impacts of UHI for the entire energy sector, on average, have found to be negative for the

economy, environment and society (11, 16, 33, 37). In the future of global climate becoming

warmer (84), these effects are only going to magnify. Although, we have policies in place and

public support to adopt mitigation methods to reduce global C02emissions, we should also allocate

our resources to prepare ourselves for the future consequences of climate change, which includes

frequency and intensity of droughts, floods, storms and hurricanes (13, 17, 27, 35). Hurricane

damage is one of the costliest and most frequent of natural disasters. In total, NOAA's figures

show that the cumulative cost of all hurricanes in the US in 2017 was in excess of $300 billion and

by 2075 the average annual damage cost in the US is expected to rise by nearly 40%. Engineers

and scientists have established a set of retrofitting approaches, which have the potential to prevent

damage (87-91).

1.5.1. Building Design Codes

An example of that would be a single building in Mexico Beach, Florida, USA that withstood

damage from hurricane Michael in 2018, a building that was built with elevated steel and concrete

foundations, reinforced joints, glass, roof shingles (92) - a full hurricane proof structure capable

of withstanding speeds beyond greater than the maximum category (cat. 5) hurricanes with speeds

above 75 m/s. That building is a prime example of an appropriate structural specification, a code,

which considering the failure of most buildings, had been selected to be above the minimum

standards required by the local and/or state requirements, whichever one exceeds (93, 94). Despite

extensive and devastating damage in Mexico Beach, Michael isn't the only example of a hurricane

that destroyed residential buildings failing under the code standard during a hurricane cat 3 or 4.

Yet, according to FEMA, "Building codes are sets of regulations governing the design,

construction, alteration, and maintenance of structures." Their purpose is to protect the

inhabitants of a building from natural disasters by specifying the strength of that building. And for

majority of the cases in fact they do. Codes come in a form of guideline with most common

structures (93), which allow the engineer to identify appropriate pressure loads in a specific wind

environment, which is based on historical wind speed maps (93, 95). However, these maps don't
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get updated frequently enough, which with the increasing intensity of storms in the future is going

to become even a bigger problem (16, 34, 37). But there is another challenge, which comes from

the shape of the building. To keep buildings safe from wind hazards, codes stipulate how a building

must interact with the wind, a value known as a drag coefficient. The drag coefficient of a building

determines the amount of air resistance it will experience when exposed to the wind. As a

building's drag coefficient increases, the damage it experiences can as well. Design codes assume

that buildings have a range of drag coefficients, which is composed of exposure, environment and

purpose (93, 95-97), which makes it fixed for specific group of buildings (i.e. residential) - in

some ways makes sense, since the shapes of buildings do not change much (98, 99) and the

variations of drag coefficients with increasing speed is minimal in turbulent regimes (100). Yet

most codes remain insufficient as they account only for individual buildings and overlook the

influence of city layout on wind speeds (101, 102), which has been found to vary depending on

planar (99, 103-105) and frontal density (106, 107), changes depending on wind direction (108,

109), and size of the height to width ratio between buildings (103, 110) - a metric also known as

urban canyon. Such canyons, just like building densities, in some cases can reduce wind loads by

offering shelter to certain buildings, but in other cases they have the potential to magnify wind

speeds (104, 107, 111) by several factors of what the norm requires. To understand the impact of

building heights, it is critical to study variability of heights-a parameter also known as surface

roughness-in city-like environments (109, 112). However, the underlaying challenge with any of

the wind tunnel experiments (113) or wind flow computational fluid dynamics models (109, 114)

used to derive these correlations is that by being predominantly highly ordered, regular grid or

staggered configurations (103, 111), they rarely are able to capture the unique geometrical layouts

that prevail in urban and suburban environments (57, 115).

1.6. Role of Cities

The world as we know it converges to cities. Over 55% of the population lives in urban areas and

urban migration rates have been on the rise with over 75 millions of dwellers annually in the past

five years moving into cities [Fig.1-7]; and although United Nations estimations suggest that the

rate of urban growth is going to decline in the 30 years, medium variant projections conjecture that

each year approximately 9 cities of the size equivalent to the current population of New York City,
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NY [Fig.1-6] are going to have to be built in order to accommodate growth and inflow of new

urban residents. This poses an extreme-of higher than ever before magnitude-challenge on our

society to create even more sustainable, resilient and appealing to live in environments, historically

defined as fundamental reasons for admiration of cites. Of course, it would be wrong to say that

cities are superior in every aspect. In fact, human history and culture did not originate in cities

(116), and it wasn't really until the last century or so that they have become the focal point of our

societal needs and desires (117, 118). A natural instinct of our humanity is to strive for ameliorated

life and it is a reciprocal palpability that cities have the greatest potential to provide foundations

for those vital needs and desires (117). While, it would be contemptuous to undervalue the

significance of non-urbanized land on human life, the spectrum of our interest extends far beyond

the rural areas; urban zones cover a minor portion of the global land, a mere 2% in fact, yet they

form home to greater portion of the population, which for the more developed parts of the world

stands at the mark exceeding 75%. Since the middle of 20th century, the ratio of people living in

cities has almost doubled from 30% to 56% and is expected to reach two thirds by the middle of

21st century (119). In less relativistic terms, the overall numbers of the urban swift are as follows:

urban dwellers are projected to be pullulated from today's 4.3 billion to 6.7 in 2050, and rural

inhabitants are expected to experience a shift in the opposite direction from 3.2 to 3.1 billion.

Moreover, high urbanization rates establish an additional factor of importance to the urban growth

equation magnifying the relevance of cities exclaiming for an augmented input from experts in the

fields of science, engineering and architecture. Unequivocally, in order to accommodate the

profound changes in socioeconomic systems and land usage, exigency for new cities is formed.

And although they will revivify the economy (118) and foster prosperity (117), they will also elicit

imperative environmental and health concerns (120), impacts of which will be significant, yet are

not fully comprehensible by our humanity (121).
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FIG.1-6. Urban Population Growth.

Global historical annual growth of urban population between 1980 and 2015 and future expectations (secondary y-

axis) presented as a number of cities of size equivalent to New York (NY) City (primary y-axis) necessary to be

built in order to accommodate that growth. The data has been derived using 5-year interval projections and 2014 NY

population. Urban population growth data can be obtained from United Nations, Department of Economic and

Social Affairs, Population Division (2015), World Population Prospects: The 2015 Revision, DVD Edition.

1.6.1. City Texture

However, the urban challenge is not just demographic - rather it incorporates the more complex

nature of dynamic and heterogeneous landscapes, ever evolving frameworks that aim to establish

a stable linkage between nature and society. At their zenith, life prospects offered are virtuous -

foundations for the highest form of communities (122). Supported by the expanding concentration

of people, such systems employ socioeconomic magnets that exert an efficacious and dynamic

growth. At first glance, this scaling appears to be a chaotic single cluster emerging from a focal

point, which typically is considered to be the central business district (123). However, in more

depth analysis of city morphology unravels geometrical symmetries and social networks of

interconnected clusters, fractal and molecular patterns (124) that can be studied to develop models

with the potential to unify the efforts of experts from diversified fields of science, architecture and

engineering bridging the gap between the form and function. Emphatically, cities are complex

structures that emerge from a collection of complementary ingredients (infrastructure,
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transportation, economy, social networks etc.), which in isolation and short term can be

understood, but collectively their long-term impact has proven to be unpredictable and lacking

quantitative component (124-126).

In the past century, but most notably in the last decade, urban planners, scientists, economists and

sociologists have demonstrated unified efforts to study form and growth of cities on the path of

deriving the urban equation to create smart, sustainable and resilient cities (125-127). The classical

approach of city planners and architects to shape the urban space has challenged them with

establishing a healthy compromise between what is aesthetically pleasing and functional. With

time, however, novel changes have been incorporated to maximize the efficiency and justice within

the boundaries of the city constrained by the aligned forces of its government and economy. A

Theory of Good City Form was developed (128), which in its underlying essence argues that in

addition to the two earlier mentioned factors (aesthetics and function), city's performance is a

measure of five additional variables: fit, access, vitality, sense and control. A just city is one with

a fair allocation of resources, it provides the means of domiciliating infrastructure with networks

for the urban dwellers (fit), while not suppressing the diversity of age and culture (access). It must

be sustainable and safe (vitality) and allow people to comprehend its purpose (sense), which has a

potential to be adjusted to satisfy the current needs and desires of its occupants (control). A city of

a good form is established when the linkage of these aspects becomes efficient. City planning, thus

has become an eloquent and sophisticated method that aspires urban growth, which accordingly

derives its roots from the interests of the public. For such methodology to function, the spatial

growth must be a reflection of the spatial order, which can be enacted through the spatial discipline;

for instance, functioning of the city can be ameliorated by introducing division of space arranged

into discrete units to facilitate smooth economic and social growth characteristic of the changes in

population and land. Unfortunately, however, perfect order of this kind has not found its way yet

to be transformed from a theoretical utopian dream to a comprehensive restructuring practice

visible in metropolitan zones (129). It is believed that the complex interactions between spatial

arrangements and urban agents are the fundamental obstacles that hold back the transformation of

chaotic and isolated urban space into a smoothly operating totality (115), which consequently may

(and oftentimes do) lead to negative socio-economic and health effects. While, there are many

questions yet to be answered by urban scientists in the context of their existence, form and sprawl,
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herein the focus lies in understanding quantitatively the unique texture of cities and the impact it

has on sustainability and resilience of cities; herein analyzed in the context of UHI and hurricane

damage, especially as climate change intensifies future temperatures and storms.

1.7. Research Objectives

As we have established, climate change is going to have negative impact on our communities.

Moreover, the frequency and intensity of storms and UHIs are going to increase as the climate

becomes warmer in the future. Are our communities ready? How are cities going to prepare? In

order to answer these questions, we begin by quantifying city texture for 43 cities worldwide and

comparing them to 16 regular and staggered grids with disordered and ordered building

configurations. Using local texture parameters, we identify a unique set of parameters that allow

us to categorize cities as gases, liquids and crystals. Furthermore, we utilize these parameters to

reconstruct statistical model of cities, which we use in wind flow simulations. In the end, we

provide an insight on the influence of city texture on the intensity of Urban Heat Islands using a

simplistic radiative heat model and the intensity of wind pressure loads acting on buildings during

hurricanes using an enhanced frontal density model.

1.8. Thesis Outline

Following the 1) introduction part, there are five additional chapters that form this thesis. 2) Data

acquisition and editing lists the raw data required for this study and the preparation process needed

to prepare inputs analyses in chapters 3, 4 and 5. In chapter 3) we provide a detailed description

of the Urban Physics methodology used to quantify local city texture parameters and how to use

them to reconstruct their samples. In chapter 4) we derive a correlation between UHI and city

texture and analyze residential heating and cooling cost of UHI. In chapter 5), we study the impact

that local city texture has on wind building damage and derive a hurricane risk damage model.

Final chapter 6) concludes the preceding work by depicting the potential of individual parameters,

practical utilization strategies and the future research steps.
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1.9. Research Significance

While many climate change mitigation solutions and adaptation techniques for existent cities have

already been established, due to complex nature of urban infrastructure, general and simple to

follow design guidelines for building more resilient to hurricane damage and changes to heat urban

environments are still missing. Here, we show that the complexity of city networks can by

examined with tools borrowed from statistical physics to derive novel urban norms in the form of

city texture. We present that these techniques offer a unique insight on the role that textures of

cities have in Urban Heat Island at nighttime, which from the financial and environmental

perspectives may not always be negative. Moreover, at the local level, we find that the herein

quantified unique geometrical patterns, or textures, can be used to explain changes in local wind

speeds and lead to intensified, to what current design norms predict, coefficients in preventing

building failure during hurricanes.

1.10. Summary

In this chapter we have established the eminence of climate change, while providing a general

overview of its mitigation and adaptation techniques, specifically for Urban Heat Island and

hurricanes. We elaborated on existing safety design norms of buildings and the changing role of

cities in our communities. We have also explained the objectives, outline and significance of this

work.
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Chapter 2

2. Data Acquisition and Management

In this chapter we present the procedure with sources for acquisition of raw input data for the

analyses we conduct in this work, explained in chapters 3-5. We begin with the air temperature

and geographical information system (GIS) data for building footprints from online GIS databases

and online mapping tools. For each process, we explain editing and limits we adopt that allow us

to prepare samples in accordance with model requirements from proceeding chapters. We end this

chapter with a comparison of GIS and online mapping building footprints data for validation

purposes.

2.1. Air Temperature

Data is obtained using National Oceanic and Atmospheric Administration's (NOAA) extensive

database. For major cities in the US, we search for stations located in urban part of the city as well

as their rural surrounding environment used for temperature comparison. While ideal case would

entail a situation with rural station located right outside the city's boundaries, for majority of cities

we had to extend our searches for rural stations to tens of kilometers, which aligns directly with

methods used by others in this field (71, 130).However, to minimize the climatic regional

difference impact on temperature for selecting stations, we applied the following limits as part of

the selection process criteria:

1. Stations should not be separated by more than 100km in the horizontal plane

2. Stations should not be separated by more than 100m in the vertical plane.

3. Stations should not be located at major international airports.

For many cities, the above limitations left us with more than just a single rural station. To select

the most appropriate pair, we compared temperatures for those multiple rural stations with the data

obtained from the reference urban station. If, for a given day 4 or less hourly values had been

missing, we would replace them with daily averages for that day. Days with more than 4 hourly

33



values missing were disregarded from calculations. Furthermore, we disregarded files for which

more than 15% of hourly values were missing. For the remaining stations that for most were

collections of almost 10 years of data for a period between 01/01/2006 and 12/31/2015, we

finalized our selection to rural stations that would result in the highest temperature difference

values for each city [Table 2-1]. In the end, we obtained a sample of twenty-two US urban air

temperature time series for a period of multiple years, which is a sample large enough to provide

us with statistically relevant data, but for the time series not too large to be influenced by global

warming effects during a single decade (84).

Urban Station Rural Station
City Name Start Date End Date Name Start Date End Date

Austin, TX Austin Camp Mabry 1/1/2006 6/30/2015 Largo Vista Rusty Allen 8/25/2008 6/30/2015

Boston

Money Point Va

Calumet li

Chicago/Midway

Dallas Executive

Dallas Love Field

Hartford-brainard

Huston/Dunn Helistop

Manchester

La Usc Downtown Cam

Jack Northrop Fid H

Long Beach/Lb Airp.

Bowman Field

Bergen Point

New York/La Guardia

Wiley Post

Northeast Philadelphia

Philadelphia

Seattle

Seattle Rent

Washington

2/1/2010

1/1/2006

1/1/2006

1/1/2006

1/1/2006

8/1/2010

1/1/2006

1/1/2013

8/14/2012

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

7/24/2008

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

Norwood Memorial

Suffolk

Burlington

Burlington

Grayson County

Grayson County

Norwood Memorial

Beaumont Muni

Beaumont Muni

Marine Corps Air Station

Marine Corps Air Station

Marine Corps Air Station

Bedford 5 Wnw

Dutchess County

Dutchess County

Watonga

Robert J Miller

Robert J Miller

Arlington Municipal

Arlington Municipal

Culpeper

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

1/1/2006

3/10/2011

3/10/2011

1/1/2006

1/1/2006

1/1/2006

10/3/2007

1/1/2006

1/1/2006

1/1/2006

11/14/2007

11/14/2007

1/1/2006

1/1/2006

1/1/2006

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

6/30/2015

TABLE 2-1. Sources for Temperature Data

2.2. Energy Cost

To quantify energy costs, we resort to a regression statistical bottom-up approach to perform a 12-

year financial and environmental analysis of temperature and urban heat island for 48 US states

(due to lack of data Hawaii and Alaska excluded) using annual household space heating and

cooling energy consumption data combined with air temperature values, state prices for heating

and cooling energy sources and carbon emissions associated with production of specific types of
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Boston, MA

Chesapeake, VA

Chicago, IL (1)

Chicago, IL (2)

Dallas, TX (1)

Dallas, TX (2)

Hartford, CT

Houston, TX (1)

Houston, TX (2)

Los Angeles, CA (1)

Los Angeles, CA (2)

Los Angeles, CA (3)

Louisville, KY

New York, NY (1)

New York, NY (2)

Oklahoma City, OK

Philadelphia, PA(1)

Philadelphia, PA (2)

Seattle, WA (1)

Seattle, WA (2)

Washington, DC



energy. Due to limited availability of heating and cooling energy consumption data in the US for

the commercial sector, our study is focused only on the residential stock of buildings. To obtain

building energy consumption, we resort to the EIA's database-available to the public use-

residential energy consumption surveys that were created using bottom-up modeling approaches.

Although, the most recent energy survey was created for year 2015, its geographical resolution is

too low for the purposes of our study - it divides the US into 4 regions. Therefore, we utilize the

most recent version of the energy consumption, which offers the resolution at the state level. The

earliest available dataset that offers that, is 2009 Residential Energy Consumption Survey Data

(131). Using previously established regression models (86), we investigate the correlation between

average annual household heating and cooling energy and annual heating and cooling degree days.

2.3. Degree Days

Degree days are a common metric used in the energy industry for calculating the effect that outdoor

air temperature has on building's heating and cooling energy consumption. They are divided into

two categories: Heating Degree Days (HDD) and Cooling Degree Days (CDD). HDD measure for

how many days and how many degrees the air temperature was below a reference temperature, in

this case (and typically) 65 °F. On the other hand, CDD measure the number of degrees above that

reference value. Regional monthly or annual degree days can be obtained directly from the

National Oceanic and Atmospheric Administration (NOAA) (132).

2.4. Geographic Information System (GIS) Data

Principal input data used in this study used to quantify city texture consists of GIS building

footprints. Building footprints are commonly used by city's or state's GIS departments for network

analysis and visualization purposes of urban geometries. They come in a form of shapefiles, which

in addition to GPS coordinates of buildings' footprints may also store information on building

properties, such as year of construction, number of floors, roof height, etc. However, while all this

information may be useful, it is not necessary for this study - the minimum information required

is merely 2D GPS coordinates of building footprints for an entire city. This type of information

may be obtained directly from a city's GIS department [Table 2-2], where oftentimes they offer
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more than just GPS coordinates. However, this approach generally only works for cities in the US

and few major cities in Europe. For the US, it is also possible to download them directly for each

state using data generated by Microsoft (133). With current accessibility to online data, however,

the best approach to obtain GIS data is to refer to online mapping tools, such as Google or

OpenStreetMap (OSM) maps, which have building footprints embedded as a layer in their maps.

City
Austin, TX

Boston, MA
Chesapeake, VA
Chicago, IL (1)
Chicago, IL (2)
Dallas, TX (1)
Dallas, TX (2)
Hartford, CT

Houston, TX (1)
Houston, TX (2)

Los Angeles, CA (1)
Los Angeles, CA (2)
Los Angeles, CA (3)

Louisville, KY
New York, NY (1)
New York, NY (2)

Oklahoma City, OK
Philadelphia, PA (1)
Philadelphia, PA (2)

Seattle, WA (1)
Seattle, WA (2)

Washington, DC

GIS Source
ftp:/Iftp.ci.austin.tx.us/GIS-Data/Regional/coagis.html#environmental

MIT University GIS Department

https://github.com/jonahadkins/chesapeake-OSM-imports

https://data.cityofchicago.org/Buildings/Building-Footprints/6mpq-sfwi

http://gis.dallascityhall.com/homepage/shapezip.htm

https://www.arcgis.com/homelitem.html?id=243947f01ac94eOl 93tff69b2f6b7090

RICE University GIS Department

http://egis3.lacounty.gov/dataportal/2011/04/28/countywide-building-outlines/

http://portal.iouisvilleky.gov/dataset/buildings-data

https://nycopendata.socrata.com/Housing-Development/Building-Footprints/xe92-
xce7

https://data.okc.gov/Portal/desktop/page/datasets

http://opendataphilly.org/opendata/resource/6/

https://data.seattle.gov/datase/2009-Building-Outtines/y7u8-vad7

http://data.dc.gov/Metadata.aspx?id=59

TABLE 2-2. Sources for GIS data obtained from GIS departments.

Since areas of buildings differ substantially between cities, we adopt a density criterion for

selection of GIS samples:

area _ = 1A 0.1
Pcity Aci -

[2.1]

where Acity is the total area of the sample with N buildings, while A' is the ground area of building

i in the sample of N buildings. Since urban boundaries and areas differ significantly between cities,

in order to have an objective comparison, we have decided to only use buildings that are within

the boundaries of a uniform shape and area. Therefore, for every temperature station located in a
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city, we created circular buffers and extracted buildings for 22 cities in the US [Table 2-2], which

we use in proceeding calculations. At first, it had been unclear what radius size of the buffer would

be appropriate, but after conducting tests with different radii lengths (1, 3 and 5 miles) we decided

that buffers with 3-mil radii would be optimal. This is because, on the one hand, radii sizes < 3-

mil would not be able to provide us with statistically sufficient size samples for proceeding

calculations; on the other hand, radii sizes >3-mil in vast majority of instance would extend beyond

the actual city boundaries, or on occasions would interfere with the density criterion from Eq.

(2.1).

sto 
A

*step 'b' only used for UHI study

iny'

pi~
p.

lb's Yb
e

d

9

.•. .. •0• 0.0•0

0 0 0 0
000 0 0 0

0 00 0 000 0 00 0

.00 0 0.0. 0 0 0

. 0 0.0:.

000 0 0 0 0 00 0 0 00

FIG. 2-1. Flowchart for extraction of GIS points from building footprints. The initial step to requires obtaining

Geographical Information System (GIS) data with (a) 2D building footprints for a city. For each GIS file a local

weather station is identified and a buffer of 3-mile radius is created around it (b) to extract buildings for further

analysis (c). Any buildings that share a wall are merged (d) and any unoccupied buildings (ie garages), which make

negligible contribution to energy heat transfer (e) are identified. Those unoccupied buildings are excluded from

further analysis (f) and the remaining ones are transformed into single points (f) using buildings' centers of mass.
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FIG. 2-2. Distributions of Areas of Buildings for GIS 3-mil cities.
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To extract data for proceeding analyses, we adopt the following procedure, as visualized in Fig.2-

1. To focus on the energy transfer between separated buildings or blocks, we merged all buildings

sharing the same wall. We analyzed areas of merged buildings and found that in a logarithmic

mode probability distribution function of buildings areas can be adequately captured with a bi-

modal fit [Fig.2-2], which forms a clear distinction between unoccupied and occupied buildings,

for instance garages and residential or commercial units, respectively. Unoccupied buildings are

disregarded under the assumption that their contribution to the energy transfer between buildings

is negligible, while the occupied buildings are represented by their two-dimensional center of

mass.

2.4.1. OpenStreetMap (OSM) GIS Data

To analyze cities outside the US, we extend our data search to OpenStreetMap maps, which proves

to be a most effective online platform choice, because it has no academic API restrictions, which

allows researchers to freely download this type of data for any place in the world, assuming that

mapping layers exist for that part of the world. The subsequent sections will explain how to

download building footprints from OpenStreetMap and convert it to a format required for analysis

in this study [Fig.2-1]. While different approaches may be used to obtain the same end results, here

we adopt a city texture approach (57) by using the following software packages: QGIS, ArcGIS

(licensed), Wambacher-osm, XAPI, Ubuntu, and MatLab (licensed).

Samples of data of spatial size 1000 x 1000m can be directly downloaded from OSM

(www.openstreetmap.org/export) website. However, in order to be able to download data for an

entire city, it is advisable to use XAPI server accessible using a terminal, which on most Windows

platforms, it could be accessed using Ubuntu. The user must specify a rectangular region for data

extraction using min and max GPS coordinates [bbox=Lonmin, Latmin, Lonmax, Latmax], which

subsequently provides an OSM file, which later needs to be converted to an appropriate input file

(shape file, .shp). QGIS software converts OSM file into buildings are stored as polygons. The

shape file may contain other layers from the map, such as roads, landscape etc. However, each

feature contains their unique tag. In the context of buildings, a Building Tag is used to mark a
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given object as a building. Once buildings have been extracted, the user needs to identify buildings

within a city's boundaries (which are never rectangular when downloaded as OSM from XAPI),

which can be obtained from Wambacher-osm. Boundaries then are overlaid with polygons using

either QGIS or ArcMap to extract the needed buildings. The next step, while optional, is advisable

as it is going to offer in the proceeding steps an easier input for analysis; by converting GPS

spherical coordinates of building footprints to a planar coordinate system in distance units (meters

or feet), we can accurately depict areas of buildings and distances between them, without the need

of using more time consuming algorithms to extract the same values using spherical degrees. The

projection conversion depends on the geographical location and can be implemented using either

QGIS or ArcMap conversion tools. After this step, to extract points representative of building

footprints, we follow a similar procedure to the one we used to prepare GIS data from Table 2

[Fig.2-1].

Occasionally, buildings may have geometries stored for different parts of a building, which leads

to overlaps and/or invalid polygons. To overcome this problem, we dissolve polygons (a tool in

ArcMap) to create buildings with no inside geometries. In addition, this step allows us to merge

any buildings that share a wall, which for the purposes of wind flow analysis is a necessary step.

This is because in the context of wind flow, if we assume no change in building's properties,

attached buildings can be considered to be a single structure. Before the final extraction of data, it

is important to fill any voids inside polygons (which are the outcome of errors in the .osm data) so

that it is possible to accurately quantify areas of buildings. This can be done directly with a "union"

tool in ArcMap. With such defined .shp file, we can extract building footprints. The final step is

conversion of buildings to points. Such conversion is completed using an ArcMap tool, which

converts features to points. This tool creates a feature class containing points generated from the

representative locations of input features and makes sure that the point is within the building's

boundaries.

It is worth noting that building heights are available for some buildings in OSM data. The

information for building height is either given by the number of levels (floors), or as a number

depicting the actual height that includes the roof. This information is stored inside .shp file.

However, for cities herein analyzed, it has been found that less than 5% of buildings have a positive
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value attributed to the field signifying building height. While with time and increasing accuracy

of OpenStreetMap data this value is very likely to increase, for the purposes of this study, <5% is

inadequate to analyze building heights at the city level.

2.4.2. OSM GIS Data Validation

To validate the accuracy of OSM data, we introduce radial distribution function, g (r) analysis and

compare the results to results obtained using data obtained from cities' GIS departments. g(r) is

a probability density distribution, which captures the variation between a local density of buildings

and the city's average. Here, we utilize the same data to juxtapose g(r)s using a sample of 3-mil

radius cities [Fig.2-3] obtained from cities' GIS departments.
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FIG.2-3. g(r) distributions using OpenStreetMap and GIS data.
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To quantify the error between OpenStreetMap and GIS data, we use a quadratic scoring rule that

measures the average magnitude of the error, Root Mean Square Error (RMSE), using the

following equation:

RMSE = j (g(r) Is - g(r) sM)2

[2.2]

where, N = number of observations, g(r)q's is g(r) measurement obtained from GIS data,

g(r)9sm is g(r) measurement obtained from OpenStreetMap data.

In addition to RMSE, we also consider values derived from g (r), which have been used to quantify

city texture (57), namely distances associated with first peak Rp(e) , and global minimum

Rmin ) average building size (L), local number of neighboring buildings (C"), and order

parameter (p).

City RMSE Rm [m] R [in] L [m] <pCn

New York, NY 0.06 20.4(20.8) 13.1 (12.4) 12.5 (11.4) 0.82 (0.44) 2.3 (2.4)

Chicago, IL 0.10 17.0 (14.2) 9.9(9.4) 11.3(11.7) 0.83(0.50) 2.3(2.0)

Boston, MA 0.12 20.4(20.7) 14.7(15.3) 11.3 (13.1) 0.63 (0.40) 2.7 (2.8)

Los Angeles, CA 0.19 21.2(22.1) 14.8(15.6) 13.4 (13.0) 0.70(0.40) 2.3(2.7)

Table 2-3. GIS and OSM Verification. Results showing differences between GIS and OSM results obtained using

g(r) analysis.

As RMSE values in Table. 2-3 show for all four cities the error is relatively small. This suggests

that in the context of g (r), OSM data provides statistically similar results to GIS. Visualization of

distributions in Fig.2-3 confirms that. To further validate the accuracy of OSM data, we compare

other city texture characteristics. Except for order parameter, all values are very similar; OSM p
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values are generally lower, suggesting greater local disorder. This could be explained by the

variation in g(r) values, which are used as input for calculating cp. In addition, it is possible that

the conversion from polygons to points would results in a slightly differ data for OSM. This is

because in this study we made sure that in order to capture the most accurate location of each

building, we used ArcMap's conversion tool that would make sure that each point is contained

within the boundaries of a building. This is different approach to GIS data, for which points would

be calculated using building's 2D center of mass. However, since majority of g (r) characteristics

of OSM data matches GIS data, we can confirm the validity of OpenStreetMap data acquisition.

2.4.3. OSM Cities

To understand how city texture changes across different parts of the world, we collected building

footprints for major cities from different continents. However, since OSM data doesn't always

provide the full extent of building footprints for a given city (building footprints may be

nonexistent, especially in less economically developed countries), for OSM we adopt the same

selection criterion as for GIS based on the density of buildings using Eq. (2-1). While many of the

buildings have relatively small areas (i.e. garages), they remain relevant for wind flow simulations,

where they might be most vulnerable structures exposed to a potential wind damage. Therefore,

for OSM cities we choose to use all building in the proceeding analysis and identify 21 cities

worldwide with unique city textures [Fig.2-4].

2.5. Population Change

We use population and average household size data (134, 135) to estimate the total, as well as the

urban number of households in each state. We convert estimated values of population for each

year between 2005-2016, to urban (Phurban) and rural (Pural) number of households by

multiplying population values by appropriate urban/rural ratio and dividing it by an average

household size (135).
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2.6. Summary

In this chapter we discussed data acquisition process required for the proceeding analyses. We

presented two ways of extracting GIS data for building footprints using: online GIS databases and

online mapping tools, with an example of OSM due to its user-friendly open licensing. We also

showed sources for obtaining air temperature and building energy consumption data required for

urban heat island and heat and cooling energy cost analysis. Lastly, we verified that OSM GIS

approach, with the right limitations, provides an accurate, fast and easy method for downloading

building footprints for any city in the world.
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Chapter 3

3. Urban Physics: City Texture

This chapter begins with instituting the parallel between molecular physics and urban designs, an

analogy which allows us to utilize tools typically seen being used only in the field of statistical

physics. We explain analysis process needed to capture the unique city characteristics with just a

few local city texture parameters. Next, we provide an approach for reconstruction of cities, which

for the final part of this chapter, allows us to create samples of cities to be used in wind flow

simulations.

3.1. Statistical Physics Approach for Texture Characterization

At the right scale, urban complexity becomes a hallmark of molecular structures that exhibits

universal long- and short-range texture characteristics. Striking resemblance in texture between

urban environments and molecular structure of polycrystalline material at an atomic scale is

established with the help of appropriate visualization techniques. Techniques of this kind are

widely used in identifying geometrical patterns in cities (121, 122). In such semblance, buildings

are counterparts of atoms and neighborhood tesserae can be thought of as analogous to grain

boundaries. To quantitatively explore this similitude, tools from statistical physics can be

employed, which in a conventional sense are used to investigate the atom-scale structure of

condensed matter. In order to extract statistical characteristics of short- and long- range city texture

we employ radial distribution function, also known as pair correlation function. Oftentimes

denoted by g(r), it provides an isotropic homogenous picture of an anisotropic inhomogeneous

medium by averaging the local density at time and space domains. In the context of cities and

buildings, it can be thought of as a mechanism of describing density variation at a given distance

from the reference building (represented by a point). As soon as local density deviates from the

average density of a system, peaks in the distribution eventuate; in statistical particle physics terms

applied to cities, this is explained as the probability of finding a building at distance r from the

reference building relative to randomly distributed system of buildings that at long distance

46



converges to unity. In a closed system of homogenous particles, one would expect the average

density of particles to be defined by the ratio between the number of particles and the area that

they occupy. However, in the context of cities such approach may lead to an underestimation of

density values, which would lead to an incorrect normalization of g(r) and subsequently

inaccurate values derived from it. This is because there may be regions within a city's boundaries,

where buildings could not exist (i.e. water reservoirs). In addition, a variation in building sizes

[Figs.2-2, 3-1] leads to further errors when calculating city average density values. On the contrary,

in a random closed system of homogenous particles, points could in theory occupy any part of

space and their size has no impact on density. Since this is not the case with cities, in order to

quantify accurately average density of buildings, we utilize an average, Pcity, from the distribution

of density values as defined by:

(VN _Rmax

Pcity = exp - log 7rR
I=1 T Rog max)

[3.1]

where N is the total number of buildings, CRax is the total number of buildings in circular area of

radius Rmax, which is the limiting radius for g(r) analysis-distance at which g(r) convergences

to unity-here defined to be 15L for OSM GIS building and 10L for GIS building, where L is the

average building size for a city calculated using the following equation:

L = exp ( Nlog( )

[3.2]

where N is the total number of buildings in the city and Ai is the area of building i. We find that

similarly to 3-mil radius GIS samples, areas of OSM buildings follow a lognormal distribution

[Fig.3-1]. However, for many cities outside the US, we identify much longer tails in city-wide

distributions of areas, which is representative of the fact that in older cities there are more buildings

with larger areas - indicative of terraced housing.
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FIG.3-1. Building area probability distribution for OSM cities.

48



3.1.1. Radial Distribution Function, g(r)

Longer distance, Rmax in g(r) analysis for OSM buildings can be attributed to a greater local

density variation before it is possible for the distribution to converge to unity. On the contrary for

3-mil radius GIS samples, there is a lower local deviation from the average density of the system.

With such defined average density, g (r) captures the local deviation from it in the following form:

=) 1 = N i(r + dr) - ni(r)g (r) =
N i=1 Pcity 2wrr x dr

[3.3]

where ni(r) denotes the number of buildings within the radial distance r from building i, and dr

is distance increment, which for g (r) calculations we chose to be 5% of the average building size,

L:

dr = 0.05L

[3.4]

We found that 5% of the building size, as opposed to other percentage values, provides the optimal

statistical richness in the g(r) distribution; that is, lower values result in too much noise in the

data, while higher values lead to too much smoothing and thus disguises the city texture form. In

order to understand better the physical meaning of g(r) for 22 GIS cities in the US [Table 2-2]

and 21 OSM cities worldwide [Fig.2-4], we choose to create a set of idealistic cities based on

regular and staggered grids [Fig.3-1]. We find that for disordered configurations resemble

characteristics of most OSM cities, which suggests that most cities do not present a regular order

in their city texture.
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FIG.3-2. Ordered and disordered regular grid and staggered building samples.

In fig.3-3 g(r)s for idealistic configuration of buildings are visualized. Regular grid buildings of

different densities have sharp and narrow peaks indicative the high order in the system. Similar

behavior is observed in staggered grid buildings with the exception of wider distances between

peaks, which are reflective of lower density of values. However, for the same density one can see

that both configurations result in the same g(r) [Figs.3-3.a,j,b,l]. As soon as disorder is introduced

to the system and the local density begins to deviate from the average, both grid and staggered
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configuration begin to look more like cities; specifically, wider and smoother peaks (in contrast to

regularly ordered grid) of disordered grid configurations look similar to smooth and outspread

peaks of Los Angeles, CA [Fig.3-4.k-m] resemble g(r) of liquids whose particles present little

structural order. Similar distributions are present in most GIS cities [Fig.3-4]. In turn, sharp and

very distinctive peaks that characterize g(r) of Chicago IL, New York NY, or San Francisco CA

are the hallmark of highly ordered and stable crystalline materials. Although, for US cities we only

identify crystal- and liquid-like textures, for many of the European cities, such as Paris in France,

or Madrid in Spain, we find that g (r) distributions are highly disordered with merely a single peak

and a lack of local minimum, which are close of being gas-like distribution known to exhibit lack

of peaks - that is local density is equal to average density.
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We can conclude that much like molecular structures cities exhibit a distinct long-range texture,

which varies from gas- and liquid- to crystal- like [Fig.3-6.a]. While others have argued that cities

experience strong orders and patterns (124, 136) vital for development and expansion (125, 127,

138), and mobility (77, 137, 139) as part of the process of smooth evolution (115), with our

methodology we establish additional means for such categorization - by considering atomized

buildings. We find that despite similar geographical location, distribution of buildings can exhibit

different characteristics of local order [Fig.3-6.b].

a)
--- CRYSTAL - Vancouver, Canada

4- LIQUID -Panama City, FL, USA
K - GAS - Paris, France

3

2-

0
0 2 4 6 8101

b)

2 F

1

- Lee County, FL, USA
- Sarasota County, FL, USA

I I I - I

2 0 2 4 6 8 10
Distance (r/L) Distance (r/L)

FIG.3-6.g(r) comparison between cities with different city textures.

2

3.1.2. Local City Texture Parameters

To further quantify local texture patterns on the path of exploring meaningful ways of

characterizing city texture, we employ two other quantities from the toolbox of statistical physics:

1) coordination number, C, r, 2) average distance between local buildings, Rpg,) and 3) order

parameter, p. C . is the number of nearest neighbors situated around the reference building. In

the context of g (r), it represents the area under the distribution, with the area under the first peak

being representative of the first shell of neighboring buildings. Distance can be extended to derive
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cumulative distribution of neighboring buildings to see that disordered configurations follow a

smooth distribution, while for ordered configurations we see distinctive step increase for each g (r)

peak [Fig.3-7]. Applied to the two-dimensional city texture, distribution of neighboring building

is generalized to:

C r)R gXT)

Cn(r = 27rpiocal f 9 mi Y() dr

[3.5]
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With piocal being the local density of buildings in the circle defined by the radius, Rg,r) which

for the first shell of neighbors, is the distance where g(r) reaches its first minimum, which in

theory should also be a global minimum. In our analysis, however, this value does not always
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befall as the global minimum. If, Cg' r obtained from the first local minimum is less than 1.5, we

move onto the next minimum, until Cg () > 1.5 is obtained. Gas cities lack the expected g(r)

characteristics used to identify Cg (r) and have no minima. For such cities, we must identify the

distance, Rgeak at which g (r) reaches its first peak - a characteristic distance between one building

and its nearest neighbors. This distance can be identified for all cities and correlates with R2 for

cities where it is possible to identify it [Fig.3-8.a] and can be modeled using the following linear

correlation:

Rg r = 1.35 x Rgrmin peak

[3.6]

Such linear correlation can be explained by the characteristic street width, which on average limits

the local buildings to the nearest 2 neighbors [Fig.3-8.b]. Here, we wind that when combined with

international cities, this scaling factor from Eq. (3.6) reduces from 1.5 (57) to 1.35 showing that

street widths in the US are on average wider than for the rest of the world. With such approach,

we can identify Rg(r) for all cities, subsequently allowing us to derive coordination number formin

the first shell of neighbors. This is an important step, because distance Rg([) is a critical input for

quantifying the local order parameter, p.

The final local city texture parameter is the general Mermin 2D order parameter, designed in

particle physics to quantify the deviation from symmetrical order of two-dimensional crystals with

general close packing number m. Defined by:

NaVPiocal 1/Na 1Zk=exp(imtk4

[3.7]

with m being the number of atoms in the first shell, we are looking for the m-fold orientation

ordering, with Na, the number of independent angles ok between the atom and its neighbors. For
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a perfectly ordered (symmetrical) system, Piocai = 1; and Piocai = .0 for a system with a perfect

rn-fold orientational ordering. Applied at the city scale, we utilize Mermin's two dimensional order

parameter (140) to characterize the average angular distortion of buildings compared to a perfect

angular order ofa city at fixed m = CNa with the first shell distance determined from g(r). In the

context of buildings, at the city scale order parameter, qp becomes:

IVN 1 (Na) W x~~i"

N= = NNaG) 'Zik=1 expUNak)

[3.8]

where, N is the number of buildings and CNa is the actual number of neighboring buildings. So

defined, V = 1 represents a city in which all buildings at short distance have the same number of

neighbors exhibiting angular periodicity, 2wr/Cg1(r); whereas any deviation from unity in this short-

range city order parameter is representative of both local angular distortions of neighboring

buildings, and local variations of number of neighbors that affects the number of independent
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angles Na(j) for each building j = 1, N. Such approach aims at capturing short-range angular

distortion at the city scale. The significance of our approach can be captured when plotting qp

against C,, [Fig.3-8.b], which is calculated using the following equation:

N

C, = Ca
i=1

[3.9]

where, N is the number of buildings and Chais the number of neighbors for building i. As shown

in Fig.3-8.b, qp decays in a power form as city's coordination number, Cn, increases. The result is

significant in several regards, starting from the observation that an increase in number of

neighbors, at constant city density, is necessarily accompanied by a decrease in angular order,

following dtp/dCn = -(A B)(Cn)-(B+l), where A and B are power decay fitting parameters. Such

relationships are abundant in statistical physics of the packing of particles close to jamming (141).

With this analogous background in mind, we suggest that the correlation between p and C,

provides further means of city categorization. Fixing values of C, provides us with more effective

grounds for comparison of cities' order; and establishes 'p as a second texture parameter, defining

a short-range order well distinct of long-range texture, or building density, or population size.

City Rpek [m] R" [m] L [M] C, <p

a Regular Grid, A. = 0.1 30.4 36.1 9.5 4.00 1.00
b Regular Grid, A, = 0.2 21.9 26.6 9.5 4.00 1.00
c Regular Grid, A,, = 0.3 18.1 20.9 9.5 4.00 1.00
d Regular Grid, A. = 0.4 15.2 18.1 9.5 4.00 1.00
e Regular Disordered Grid 1, A, = 0.2 24.5 31.4 9.5 5.90 0.39
f Regular Disordered Grid 2, A, = 0.2 25.8 32.6 9.5 6.43 0.39
g Regular Disordered Grid 3, A,, = 0.2 27.2 36.8 9.5 7.90 0.42
h Regular Disordered Grid 1, A,, = 0.3 20.4 29.9 9.5 7.95 0.47
i Staggered Grid, A, = 0.05 42.8 50.4 9.5 4.00 1.00

Staggered Grid, A = 0.1 30.4 37.1 9.5 4.00 1.00
k Staggered Grid, A,, = 0.15 24.7 30.4 9.5 4.00 1.00
I Staggered Grid, A,, = 0.2 21.9 26.6 9.5 4.00 1.00

m Staggered Disordered Grid 1, A,, = 0.1 25.8 32.7 9.5 2.62 0.60
o Staggered Disordered Grid 2, Ay = 0.1 29.9 36.8 9.5 3.72 0.59

Staggered Disordered Grid 3, Ay = 0.1 25.8 36.8 9.5 3.82 0.61
q Stagerred Disordered Grid, A,, = 0.15 23.1 31.4 9.5 4.06 0.57
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city ATu...r[0C1 Raga [m] Rm in]L[i", ~
1 Austin, TX 1.8 18.1 26.8 14.512.19 0.79
2 Boston, MA 2.7 14.7 21.6 11.3 2.74 0.63
3 -Chesapeake, VA 1.7 24.6 35.9 12.1 3.6010.57
4 Chicago, I L(1) 4.2 9.9 17 11.3 2.28 0.84
5 Chicago, I L(2) 3.5 9.5 16.6 10.9 2.14 0.88
6 Dallas, TX (1) 1.9 19.9 32.5 14.5 2.27 0.851
7- Dallas, TX (2) 1.9 18.3 27.1 14.6 12.25 0.79
81 Hartford, CT 2.6 15.6 25.5 11.8 12.41 0.74
91 Houston, TX (1) 2.1 17 25.9 12.1 12.70 0.66
101 Houston, TX (2) 2.7 17 25.7 11.512.65 0.66
111 Los Angeles, CA (1) 3.1 14.8 21.2 13.4 2.35 0.70
12 Los Angeles, CA (2) 2.9 16 21.9 13 2.47 0.68.
13 Los Angeles, CA (3) 2.8 16.5 25.5 13.2 2.58 0.69
14 Luislouisville, KY 2.8 18.2 27.1 12.6 2.38 0.81
15~ New York, NY (1) 3.8 13.1 20.4 12.5 2.29 0.82
16 New York, NY (2) 4.2 8.3 17.8 10.8 2.51 0.76
17 Oklahoma City, OK 1.4 21.3 30.9 15.8 2.0810.87
18 Philadelphia, PA (1) 2.0 18.1 26.8 12.5 2.*11 0.87
191 Philadelphia, PA (2) 3.0 15.8 21.1 13.9 2.33 0.79

120 Seattle, WA (1) 2.9 14.1 21.7 112.4.2.42 0.6
21 Seattle, WA (2) 2.0 18.3 27.8 112.6 12.42,10.71
221 Washington, DC 2.7 15.9 21.6 113.512.20 0.811

Table 3-2. City Texture values for GIS 3-mil cities.

City Rg(r) i R( [m] L [M]
I__________________ peak Rm - a [m

1 a Athens, Greece 10.9 15.8 12.9 2.44 0.65
2 b Bengaluru, India 10.4 12.3 9.8 2.59 0.68
3 c Bucharest, Romania 33.5 47.9 14.2 9.73 0.36
4 d Chicago, IL, USA 9.4 12.8 9.0 3.41 0.92
5 e Jerusalem, Israel 25.5 36.5 16.8 3.89 0.47
6 f Kansas City, MO, USA 10.4 17.3 12.2 2.17 0.87
7 g Lee County, FL, USA 24.7 37.4 15.9 3.41 0.73
8 h Madrid, Spain 15.4 22.0 16.5 3.36 0.57
9 i Mexico Beach, FL, USA 21.1 27.5 12.2 2.11 0.78

10 j Mexico City, Mexico 9.0 12.9 10.4 3.17 0.66
11 k Montreal, Canada 4.2 10.3 7.3 2.71 0.78
12 I Moscow, Russia 33.8 48.3 18.2 6.95 0.50
13 m New Orleans, LA, USA 10.0 12.0 9.3 2.57 0.83
14 o New York, NY, USA 6.2 10.6 11.8 2.08 0.80
15 p Panama City, FL, USA 23.4 34.8 12.9 2.54 0.72
16 a Paris, France 12.5 17.9 11.4 3.64 0.51
17 r San Francisco, CA, USA 25.0 34.9 11.8 2.11 0.86
18 s Sarasota County, FL, USA 8.0 14.4 14.8 3.40 0.63
19 t Singapore, Singapore 6.6 9.5 17.9 2.24 0.94
20 u Tokyo, Japan 9.2 13.2 9.3 3.56 0.50
21 v Vancouver, Canada 10.3 13.8 10.4 2.10 0.89

Table 3-3. City Texture values for GIS OSM cities.
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3.2. Reverse Monte Carlo: Reconstruction of cities

By obtaining GIS data for any city in the world using online mapping tools and performing g(r)

analysis for entire cities, we established a method for quantifying city texture, which can be

categorized to three distinctive groups: highly disordered gas-like, disordered liquid-like and

ordered crystal-like cities. Thus far, these configurations and their local texture parameters have

been correlated to the intensity of urban heat islands at nighttime (57, 142, 143). The main

objective of this study, however, is to investigate the impact that city texture has on the flow of

fluids with the ultimate objective to understand how it affects the pressure exerted on buildings in

the environments of hurricane-like wind speeds. While, there have been models used to investigate

the impact that different geometrical layouts have on drag coefficients (94, 103-105, 109, 110),

these models are limited to generic or idealistic, ordered structures, which are very different from

configurations of buildings that exist in cities.

Two approaches used widely to quantify the impact of wind are wind tunnels and computational

fluid dynamics simulations (107, 144). Wind tunnel experiment, although is the most accurate

approach to measure the impact that wind has on buildings, it is the most expensive approach. In

additional, it is impractical as it requires a physical model of buildings to be built - this poses many

problems when investigating the flow due to inability to quickly test any structural changes.

However, since this is the most accurate approach, wind tunnel experiments are used to validate

the accuracy of CFD experiments and might be used to test final design before implementing it in

real life (145).

The complexity of networks and large quantity of the building stock in cities is a challenge that

extends to CFD simulations, which require computational power that most organizations do not

have access to in order to simulate flow for hundreds or even several thousands of buildings. In

addition, to understand the impact that direction of the flow has, one would have to simulate flow

in multiple directions (144, 146, 147), which would further increase the computational burden on

the user. This creates the need for creating samples of cities that could be investigated in CFD

experiments. To accomplish this task, we propose an approach based on recreating statistical

characteristics of cities as captured by g(r) using a Reverse Monte Carlo procedure.
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3.2.1. Sample Size

Reverse Monte Carlo (RMC) procedure can be used to create realistic models of cities that could

be tested in CFD simulations. RMC considers experimental constraints, herein namely g(r), to

construct a model that has statistical properties of a city. Density of the city, peity, is used as an

input parameter to define the area of the simulation box based on the number of particles used in

the simulation. The more particles are used the more accurate the model is going to be. However,

more particles would require a greater computational power and intensified time to run CDF

simulations. On the contrary, a lower number of particles is going to reduce the accuracy of the

RMC model. Therefore, it is imperative to identify optimal number of particles (148), a minimal

quantity that would provide an RMC model, which can accurately reconstruct a system with 2-

body interactions that have a unique link between the structure and the g(r) function. Through

trial and error, we have found this number of 225, which when accounting for the periodic

boundary conditions [Fig.3-13], leads to a total number of particles equal to 2025. To begin the

RMC procedure, 225 particles are randomly placed in a square box with the area, Amodel:

Amodel = 2 2 5 /pcity

[3.10]

Then each of those particles is copied 8 times to be placed around the box in every direction to

create the periodic boundary conditions. For such defined system g(r)RMc is calculated and

compared to the g (r) of the city.

3.2.2. Procedure of Error Minimization

To quantify the accuracy of the model a g(r) root-mean square difference, X2r) is calculated:

2 [g(ri) - g(ri)RMc]z
Xr) = -(ri),1c

[3.11]
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FIG.3-9. Flowchart for Reverse Monte Carlo (RMC) procedure.

where, N is the number of points, i used to derive both g(r) functions, and o- is the experimental

(RMC) error. The next steps, as shown in the flowchart in [Fig.3-9] are followed to identify a

model with minimal X 2. The first step is to randomly pick one from 225 particles and replace it

(together with 8 surrounding particles) with a particle placed in a random position within the

boundaries of the box to calculate Xnew. However, since g(r) structure can have many unique

configurations of local parameters, like Cn or p, it is important to also account for these local

distributions when reconstructing the city. We choose to incorporate another error parameter, X2

obtained from the distribution of the first shell of neighbors:

2

N [Pd(cn) - pdf(C)RMC]
XCn =) 2

i=1 RMC

[3.12]
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where, N is the number of points, i used to derive both probability density function (pdf) of local

neighboring buildings C, defined by Rgk) for the city. The second local parameter, (p, is left to bemin

used later to validate the model. During an RMC simulation, in order to identify if the new

configuration should be accepted or rejected, we calculate to total root-mean square error

difference, AX 2, between old and new configurations:

AX 2 = (X.(r),new - Xq(r),old) + (XCn,new - XCn,od)

[3.13]

When AX 2 < 0, a new configuration is always accepted. But, when AX 2 > 0, we introduce

weighing parameters, which may result in either acceptance or rejection of the new configuration

(149). This is done to ensure that the final structure is independent of the initial configuration.

Also, such approach allows us to explore a large set of different configurations (150). First, we

test a single weighing parameter, Tx, so that when AX 2 > 0, a new configuration is accepted with

the probability:

Poanew = min[1, exp(-T, x AX 2)]

[3.14]

3.2.3. Model Weighing Parameters

We have explored a range of different Tx values and found that AX 2 decreases as T, increases

[Fig.3-10.a]. However, as Tx gets large (i.e. >20) the number of accepted configurations decreases.

This creates a challenge because there is not enough variability in configurations with low X 2

values and thus, identifying an RMC model with (p distribution matching one of the city becomes

not possible. Therefore, to identify a large set of RMC models with low X 2 values, we set T, = 10.

However, since there are two error parameters involved in the probability acceptance criterion, we

choose to investigate two additional weighing parameters (149), T1 and T2 so that a new

configuration is accepted with the probability:
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Pold-new = min 1, exp (-Tx X (TlAX(r) + T2 A)X)$

[3.15]

We have investigated different values for both T1 and T2 [Fig.3-10.b] and established that the

optimal configuration for weighing parameters is: Tx = 10, Ti = 2, and T2 = 3.

b)
-- Tx= 1
.... T= 5

Tx= 10

Tx. 25

20 40 60
Error, X2

2

Tx= 10 T1

T1

•, 
Ti

Ti 

= 1,T2 = 1

= 1,T2 = 2

= 1,7T2 =5

= 2,T2 = 3

= 3,T2 = 2
mm......

6 10 14 18
Error, X 2

FIG.3-10. RMC Weighing Parameters. Probability density function distributions for RMC models with a varying
values of a) single weighing parameter Tx and b) three weighing parameters T1 , T2 and Tx = 10.

3.2.4. Validation

With such defined steps and parameters for RMC simulation, we reconstruct samples for 21 cities

[Fig.3-13]. We find that in order to be able to have a large set of samples with low X 2 values, one

should generate establish an RMC simulation with at least 0.5 x 106 steps; but to identify

convergence in X 2 values for all samples we needed 1 x 10.6 steps. As Fig.3-11 shows, initial

values for g(r), C, and p distributions for two RMC samples are very similar, which confirms a

random arrangement of particles. However, for final configuration, it is clear that RMC models

resemble those of cities, whether it is crystalline structure of San Francisco, CA or gas-like

structure for Paris, France. In the context of reconstruction of g(r), RMC simulations at the point
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of minimum error are expected to reach the state of maximum entropy (151-153), which translates

to maximum disorder for the configuration of particles. This type of configuration would not result

in a realistic configuration of cities, which are known to have their order decay with an increasing

number of neighboring buildings [Fig.3-8.a] resulting in a lower entropy than the minimization of

X2 errors would lead to. Therefore, to account for the right order of local neighbors, we resort to

an approach where we identify a probability distribution of cp for the RMC model that most closely

resembles the probability distribution of 'p for an OSM city, that is the root-mean-square error

between two distribution is minimal. To do so, from all possible configurations obtained during

the RMC simulation, we identify the lowest 1% of X2 distribution, which allows us to identify

textures with the lowest root-mean square differences for RMC and OSM city qp distributions. We

find that as X2 converges, the variation in Xp also becomes minimal; we select a distribution with

the lowest error, which we find resembles accurately overall distributions of g (r), C, and cp [Fig.3-

11] for cities of different textures, whether gas, liquid or crystal.

3.3. Computational Fluid Dynamics Models of Cities

We have established a method for reconstructing statistical samples of cities, with points

representing buildings. To be able to test these samples in wind flow experiments, we need to

recreate buildings that are representative of OSM cities. Using RMC points, we establish central

points around which we create building footprints using probability distribution of building areas

from OSM cities [Fig.3-1], to create areas of buildings for 225 points from RMC models. We

randomly assign building areas to RMC points to create square building footprints, so that each

RMC building has the following xi and yj coordinates for building i:

Li Li Li Li _
22 "-2co,C2 +x 2 1

yi = ic, ' tc + Yt,c i

Li Li Li Li
yi = 12 Y'c' 2 ' 2 + yi'c, 2 + yi,c

[3.16]
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where, Li is the average building size derived from the probability distribution of areas of OSM

buildings, and xi,c, yi,c are x, y coordinates for RMC samples. However, random assignment of

areas may result in building overlapping, which we try to minimize. If there is an overlap, we

switch areas between two buildings. However, with a sample of 225 buildings and areas of

buildings ranging from 3 to as much as 100m, sometimes it is not possible to prevent overlaps.

However, since we identify that there are less than 20% in overlaps, we choose to accept the best

possible configurations, given the above constraints.

In order to prepare samples for CFD simulations, we must assign heights to buildings. Since, we

lack information about heights of buildings, we choose a fixed height, H of 9.5m, which is an

average height representative of residential buildings (57). Thus, all buildings in our samples have

the same height. In addition, to avoid issues with meshing configurations, we merge any building

that are separated by a distance of im or less. Considering such distance translates to a very low

ratio between width to building height, which in the context of our study, due to a high skimming

flow (102, 106) can be neglected for the purposes of hurricane flow simulations for samples with

average building sizes of >10m. Because of that we merge such buildings, which in some cases

would reduce the number of buildings by 50%. This creates a challenge because, if we re-calculate

city texture parameters for CFD building configurations with significantly lower number of points,

when compared to RMC samples, we find that g(r)CFDs, although follow the trend of g(r) for

OSM cities, they do not match their unique patterns [Fig.3-14]. In addition, merging of buildings

leads to a variability in the distribution of building areas that is different to the distribution of the

initially assigned building sizes [Fig.3-12]. In the end, although derived using RMC samples that

resemble explicitly texture of OSM cities, CFD models do not. Therefore, for the purposes of the

CFD simulations, these 21 samples are treated as unique disordered configurations of buildings,

as opposed to reconstructed cities.

To increase the testing sample and to understand better validity (and physical meaning) of the 21

disordered configurations of buildings, we prepare an additional set of CFD samples using the set

of previously introduced idealistic cities based on regular and staggered grids [Fig.3-2]. For these

models, we choose building size based on the fixed height of 9.5m, so that L = H = W, where W
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is building's width. With such size, we create samples of varied densities, which resemble

previously studied configurations using wind tunnel and CFD experiments.

As a final step, to minimize the effects of city texture at the boundaries of CFD samples, we create

periodic boundary conditions for each sample of buildings by adding 2 rows of buildings for each

side of the sample, which is done in a similar manner to periodic boundary conditions RMC. The

approach is exemplified in the middle column of Fig.3-13. Similar periodic boundary approach is

utilized for the additional 16 grid and staggered configurations.

3.4. Summary

In this chapter we established an approach that allows us to quantify city texture for any city in the

world. In addition, we developed a model for reconstructing of cities using samples that have a

very low number of buildings, when compared to real city. Samples of this size allow us to study

the impact of city texture in computationally expensive wind flow simulations.

68



a)

U?0.5

0.CL.

p)
0.4F-

-Pg

-0.2

0
s)

Building Area (City)
b)

-Be aluru, India 0

.5- -0

0)

.6 - em, Israel

.4-

.2-

h)

j1jGreece

-

CL . iEi

0

Lee ,FL, USA

0

0

0-

.4 D

City, Mexico

- -0

0 M

Orleans, LA, USA

.- -0

-1.5
rance

0 t

Mad Spain

Building Area (CFD Model)

c)

.6 -

0

.5

1 -

.5 -

Sarasle County, FL, USA

-i -

U)

1

0.5

Si Singapore 0.6- Japan VCana

- -0.4 -0.5 -

0.2

0 - 07 0
0 3 0 9 0 3 e 6 e 9 12 0 3 6 12

Building Area, A (m2) Building Area, A (m2) Building Area, A (m2)

FIG.3-12. Building area probability distribution for CFD samples.

69

0.5

Ay, MO, USA

.4-

.2

01
k)

.

.

CL

;z
Z'-0.
CL

-real, Canada

0.2

0.5

rancisco, CA, USA-SSan

'a'

O

est, Romania

niU Q

6- o, Japan

4

2-

n - O'Jal

n)1 1

York, NY, USA

5 - -

q)

0 . - --- -i)
ico Beach, FL, USA

5--

0
o4

I)
M os ussia

0)
4t*F,USA

0

r)

10.4

.5

.



a)

4)

0
4)
LO

b)

a,

C

C)

- --C

-T

-) -9' .

--...-..--..---- ...-

9'

C)

C no

-N- -

o-'. - ---

d)

cc
Cl)

-F
S
0,
CU
C-,
-C
C)

-- - . 1-

-.-. <In

r. m)

-ft . . a- pg n

drifti 0 FE In 13V
am . a a-

.p AM.re 4.." can= 4
n~fm' ., a a 930t on

• at
.~ Eu..., .LI

-I * X .. -a.
ON am

aiA

w* M .,pu. M.

"w* --. MEt %S'wn

F.

Eta

- -1,* .

*n .

.u-

• .9

p -U

E' .

mW

;U,

EflU.

U.- ..

a r n

I A 0

*• .

* U

O ot

%Nou

.a . .
an M

U ; t4 a

m c

'OF

0 
-

Elit a

70



e)

E

k. W.

A.A

%*~ V

tu --

q. of

Xs *i*~ D

36~

a a 
Inv***

* a

e**'~ u

M''

* a

ON,
a aNo

NO.~*~U
moo

C,)

0

g)

cU

U

9)

C

.a

CL

0o

V

* ~ .. a *- *i

9 sop .. MONO

R*fm.o- .

:..*a

d..

* ' . MO.1

m ... * at map

sg . a
I~ ~~M a*.~*~I

now m
a

ON a

am IF

U.

0m

was aI E r

sorn *a 16*

0 Arm no a

Ima 'a aa3V

jusn

13a ~ *

CA

71

NE al

* mW MOusa E

U. fl. *0*

.3 
a~ 

aon

*lM Up.M

noU

5 Noa

f)

*m E. *1 0 0

*m m.
Em; 16.0 EE



M
os

co
w

, R
us

si
a

N
O

..

-.

.. 
.. 

.
...

 
6I 

e

E
b

l
 
A

b

.*
 

.

e
lf

 .~41

g
r.

 
*.

 
fUe ab

M
on

tre
al

, C
an

ad
a

/.
7

m
 .

*
'p

*
 

a

-.
 

*
0

4 
 

.

V
..^

p
4 I 

.a 
%

a 
U.

 
w

Fa
I.
 .1

' 
1lo

g
0

~
u

 
so

n
 
a
n

a

M
ex

ic
o 

C
ity

, 
M

ex
ic

o

..
- . ,

 
..

4
V

"

NI-

A
m

~
~

~
r
 

U
2
I¶

0
K

'

A
 

C
 

r,
4

M
ex

ic
o 

B
ea

ch
, 

FL
, U

S
A

 
c

-N-

-U
- 

-
.

-
-

b
,a

U
U

U
..

,

* 
* 

U

U
. 

U
.

U5
-m

7
U

; 
~

. 
IU

~

½
U 

U 'U

U 
U

' 
U

U
U

:
U

~

U
'6

-r

-~

-

U
-u

U
m

U
'

U
U

 
P U

U
U

U 
U

~ 
U

 U

U
.U

U
. 

U
 

*U
~

 
'*

U 
U

U
O

U
 

0U

U
'



m)
-C- -

-5 . .• ,.* -

o -- ..

0•

Z 0-

• f

9 • 9

-s- 4 -s-

0

a . pp LI U

*** q .. Im

ON* ok
Now

*oi .% N Nov'

% *a~~k ftm

NO

.m. .P *
moo on aIn a n . "

p ~

a D

a a

a

an* ajf4 all

Em-
%a4w 'a~

* .m *~ U! ,m

- - - ..... •

- -

Vol
- -- -:- - - -A

* ' .. - ... . ..m-

1 •n ••i.. . . .

s .m . .. s e

'U.

mm. oq,

. , •

)M.a.

•i • •
IP ..

Isa.

1.U C m. U..

mum

U; U
3 'm~ *.

mm *~

* -

p.,
U.

No*mu .
UL

in. U

16

* U
* fin

V.

* U

ma

nn

.
m l. M

13 0

an

ElM
fo

73

n)

z )

z

o)

LL

0

E

p)

0

LL

a.

a



To
ky

o,
 J

ap
an

L4 
.9 0

 d
J
l .

a

a.4 
a :'

-

s
t
u
n
 

*
.
d

;
 

I,
n
-
r
~

s
 

a
;~

~W

*..
.~ 

'P
b
.4

-
~ 

.
~

C
U

. 
~

fl
 

a

A
o

C
 

* 
~ 

a

S
in

ga
po

re
, S

in
ga

po
re

 
$n

Ir -
c

F1 
r

1
4

~
V

4
.O

w
e

IL
w

e 
.*

U1

' 
n 

.
se

 
1!

Sa
ra

so
ta

 C
ou

nt
y,

 F
L,

 U
SA

 
.2

t%
 

tA
,.

N
. 

*
 

m
O

r
u
O
r

'h. 
P

. 
w

'

-U
 

6

m
u
m

m
u

 
,

O
W

**
l*

*

so
n"

 
E 

* 
U~

S
an

 F
ra

nc
is

co
, 

C
A

, U
S

A
 

.0

As
 

1
 

$ 
s

" 
r 

' 
o
 

"

tE
 

j
*
U

I

-
.I
m

b
m

m

m
"u

- 
6

'
-
4

E
 

tc
Q

i0
 

a
x
 

i
Ejl a

 
S

 
a 

:
w

o
"

:%
 

o

fl 
0

l 
(
li
a

UO
A



-~

--4
''-

; 
4r

- -- V----~ -.-- .A-

hu ba h

RA. .u 14----- .q

~. ~*.*** .4 ~

U U b

a - - 4r

*.*:,-. 0

'we m .h a.h **

CA r 4o
d .1

oa Q

a 0t a

S a an
aa 7 a

Sp *a

FIG.3-13. Reconstructed city CFD samples.

75

q)

c
C

0

0



O
A

. 
W

f 
I

a 
No 

a

C
) 

**It 
t v.9

o3- 
.... 

R 
oe 

toIf 
48**

W ' C U ) W) 0 
C) Nl 

0 C14 
W) W) 

0 C14 
W) W) 

0 NI W) 
U) 

0 CM U) 
) 

0 0 W) 
(9

 CV3 
N -

0

v
o
 

.
.* 

A
w

* 
..

is

0%
0

.
.
.
.
.
.
 

.
.
.
.
.
.
.
 

0

C4 
W

) 
W

 ) 
0

(
 IN

 
U

) 
W

 ) 
0
 

IN
 

W) 
-

) 
0

 
4r 

(9) 
(1 

-
r) 0 '2 

W) 004 
In

I f

oil 
:aea

I 
I:~.... 

.
.
.
 .
.
.

a

U4 ) 
-

n
 

a
 

i 
O

,V
 

4
 

a
 

M
 

C 
) 

N
 

4
 

9
 

) 
C 

N
 

0
0
 

a
 

W
 

1
0JB

V
:()

(i)B
(J)B



Chapter 4

4. Urban Heat Island (UHI): Intensity and Cost

In this chapter we address the question of what role city texture has on UHI and whether the effect

has positive or negative impact on the energy consumption of buildings. We begin by explaining

the methodology for quantifying UHI, values which we use to correlate with city texture for 22

US cities. In the second part we focus on the economic and environmental analysis of UHI in order

to identify its impact on the residential heating and cooling energy bill and emissions associated

with energy consumption at the state level.

4.1. Quantifying Urban Heat Island

In order to study the impact of city texture on Urban Heat Islands (UHI) at the city scale, we

analyze hourly night-time peaks of UHI for twenty-two US urban air temperature time series

[Table 2-1] for a period of multiple years- a time domain, which is large enough to provide us

with statistically sufficient sample, but not too large to be influenced by global warming effects.

The hourly temperature data unveil large fluctuations due to changing weather conditions that

superimpose UHI. However, Fourier transformed temperature series depict distinct maximal peaks

for the periods of 24 hours. These peaks when added to time-averaged temperatures constitute a

reliable measure of nocturnal UHI, ATu-r. It is imperative to emphasize that the goal of this work

is to measure and model to what extent city texture alone can describe variations among ATu-r.

for different cities (all other important factors influencing nocturnal UHI are captured by a

phenomenological parameter y, which is explained in the later part of this chapter). This type of

approach not only allows us to study the role of city texture in UHIs at nighttime, but it also

provides grounds to estimate the significance of other parameters that influence UHI by observing

discrepancies between the measured data and our model.

For urban and rural temperature datasets, we calculated the median value of temperature

difference. Due to high disparity in signal of temperature variation [Fig.4-1], we concluded that
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median value, which is closer to the peak of signals probability distribution, is more representative

of the whole distribution than an arithmetic average. While this approach is preferred due to its
intrinsic property of minimizing error in calculations, it is worth noting that the median value is

0.61
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FIG.4-1. Distribution of Temperature Differences. Probability Distribution Function (pdf) for hourly temperature
difference between urban and rural areas [Table 2-1] showing weak characteristics of positively skewed normal

distribution
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related to temperature variations obtained from maximum, minimum, and average daily UHI

measuring approaches; in addition to the 4th power of the temperature difference used in radiative

energy calculations [Fig.4-2]. All these methods that all have been used to measures UHI effects

(130). For multiple health and energy related applications, UHI intensity (also known as maximum

UHI) poses a greater concern than the daily, or night-time averages.

We have already established that the maximum UHI is correlated to median UHI [Fig.4-2];

however, a simple arithmetic average of maximum hourly temperature difference during 24h

periods imposes a significant error due to high disparity in the signal wave.
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FIG. 4-2. Comparison of Temperature Differences.

Various modes for quantifying temperature difference, ATs between cities and their rural surroundings, showing that

regardless of the method, various ATs are correlated in a linear manner. In a) median AT is compared with daily

average, minimum and maximum AT, while in b) AT is juxtaposed to the median of fourth power of temperature

difference, (Ai) 4 , which would be used to calculate radiative heat transfer.

4.1.1. Fourier Transform

In order to reduce statistical error severity in temperature calculations, we have utilized Fourier

Transform, a function that is widely used in the analysis of signal waves. The function can be
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employed to study time and frequency domains of the signal. For periodic signals where values
are repeated in regular intervals, the Fourier Transform can be applied to simplify the analysis to
a set of Fourier series coefficients, which is represented by the amplitude spectrum in the frequency
domain. The temperature Fourier Transform can be written as an integral of the temperature

difference, AT signal function:

tf

T(27r/t) = AT(t)e -2xtxdt

0

[4.1]
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FIG. 4-3. Fourier transformed times series of urban-rural temperature difference [Table 2-1]
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where t is corresponding time, x is frequency of the function and 7T and i are constants. The major

advantage of using Fourier Transform to analyze temperature signal is its intrinsic ability to extract

the characteristic sinusoidal wave properties from a noisy set of data. We would expect that due to

UHI cities are on average warmer than areas outside the city meaning that on average ATu-r > 0.

In addition, it is reasonable to conclude that the distribution of T(21r/t) resembles a periodic wave,

which remains constant, since global warming effects may be neglected for a short period of few

years. Using the entire distribution of temperature differences as inputs for Fourier calculations,

we obtained spectral distributions, T(2n/t) in time domain t; we found that period of 24 hours

(h) is most exemplary of the signal presenting highest amplitude [Fig.4-3]. Establishing that daily

temperature difference does indeed coincide with the sinusoidal wave allowed us to proceed with

the analysis of the nighttime UHI temperature difference [Fig.4-4], which we defined as the sum

of Fourier transform [Fig.4-3] and median value of hourly temperature difference [Fig.4-1]:

ATur = T(2w/t2 4 ) + AT

[4.2]

T(2ir/t24)
0

AT

I I I| ' ' I ' '

0 6 12 18 24
Time, t (h)

FIG. 4-4. Quantifying Urban Heat Island. Exemplary visualization of daily temperature difference, AT signal. Urban

Heat Island effect is quantified by adding AT to the amplitude of the 24-hour period temperature difference wave

obtained using the Fourier Transform, T(27r/t2 4 )
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4.2. Role of City Texture in UHI at nighttime

Early UHI studies have established empirically a scaling of UHI with population (55) - a common
hypothesis for the nocturnal UHI (60). While our obtained values for ATu-r are indeed correlated

with the population [Fig.4-5], we find that with the urban geometry encoded in g(r), the
correlation is more evident. A relationship of this kind is consistent with the notion of reduced
efficiency at which street canyons release heat at night (142). However, our detailed analysis of
building footprints supports a more complex dependence of UHI on city texture. When compared

to the ratio of ATu-r/(R-g~)2 we find that this cluster size, Rg(r) scales according to a power law

[Fig.4-6]. To reconcile this type of scaling with the previously established correlation between

UHI and the sky view factor, we utilize a simple heat radiation model.

4.5
4

4.0

5
3.5k

.19,3.0 •12 *-
2. 10 22

9 21 182.0. -' 7 .
3 .6

1.5.
17

1.0K
0.0 0.2 0.4 0.6 0.8

Population x1O'(in drcular areaof 3ml radius)
1.0

FIG. 4-5. Relationship between UHI and Population Density

Relationship between ATu-rs and the population within a 3-mile radius from urban weather stations for GIS cities

[Table 2-1].
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FIG. 4-6. Relationship between ATu-r and the cluster size R = R-. Measured and model-predicted relationship of

city texture [Table 2-1], obtained from the upper limit of the integral of the first peak of g(r), shows a strong

negative correlation captured with a power law.

4.2.1. Heat Radiation Model

We employed a scaling approach to model the dependence of the urban-rural temperature

difference ATu-r on urban texture, described by the characteristic length scales of g (r). We denote

the average temperature of at urban surfaces by T,ftat and the usually different average

temperature of at rural surfaces by Tr. The difference between these two temperatures is due to

material and climate induced processes, which are summarized in the relation:

Tuf lat = YTr

[4.3]
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with a phenomenological coefficient y. Please note that this relation applies to at surfaces and does

not account for urban geometry, i.e., the size, height and shape of buildings and their separation.

The coefficient y hence depends on the difference between thermal admittance and

evapotranspiration properties in the rural and urban areas. To describe the effect of city texture,

we resort to the device of an effective temperature that is often used for a body as an estimate of

its surface temperature when the emissivity is not known (154). The effective temperature Teff,

defined as the temperature of a black body with the same power P radiated as the original body so

that, according to the Stefan-Boltzmann law:

P = uATeff

[4.4]

where, A is the surface area of the body and a is the Stefan-Boltzmann constant. The city texture

can be considered as a rough surface on the length scale of buildings with its effective emissivity

not known. We expect that the effective temperature for the infrared heat radiation of city texture

is mainly determined by the increase in its surface area due to building surfaces (assuming that

multiple reflections of heat radiation between surfaces can be neglected). Following the above

definition of an effective temperature, the effective urban temperature Tu is given by the relation:

Aground = TactualTu riat

[4.5]

where Aground is surface area of the ground covered by city texture and Aactuai its actual surface

area including buildings surfaces like walls and roofs. The scaling of the surface area ratio

Aground = Aactuai can be estimated from the typical distance d = R between buildings, and

their mean linear size L and mean height H. The building wall area is approximately 4LH and the

number of buildings scaling as:

Aground = (d + L)2

[4.6]
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where (d + L) 2 is the typical area of an elementary urban block consisting of a building and the

adjacent open space. Hence the actual urban surface area becomes:

4L H
Aactuai = 1 + (d + L)2 Aground S(L, H, d)Aground

[4.7]

so that the effective urban temperature scales as Tu = Tu,flat(1/ 4 and the amplitude of the UHI,

i.e., the rural-urban temperature difference is given by:

ATur = u- Tr = Tr (YS 1 4  1)

[4.8]

The main assumption of this model is that at nighttime, only long wavelength infrared (IR)

radiation emitted from urban surfaces contributes to UHI (154). Of course, the surface temperature

at night is also partially influenced by the absorption of short wavelength radiation during the day.

However, this day-time absorption is also influenced by the city texture (57, 155). In order to

demonstrate that a simple scaling theory accounts for UHI variations with city texture measured

by g(r), we separate contributions of non-geometric origin from ATu-r. To do that, we assume that

flat urban surfaces have an average temperature Tu,flat, which is different from the corresponding

temperature of rural surfaces, Tr. This is due to increased sensible heat storage, decreased

evapotranspiration, moisture and increased absorption of ultra-violet (UV) radiation in the daytime

(156). The cumulative effect of the urban-rural difference between the latter processes is

summarized by Eq. (4.3) for flat surfaces. For a quantitative description of the reduced nocturnal

heat release from urban areas (due to their increased "roughness"), we resort to the device of an

effective temperature Teff - an approach that is frequently used to estimate surface temperature of

a body when the emissivity is unknown (154). Teff is defined as the temperature of a perfect black

body that radiates the same power P as the actual body according to Eq. (4.4). By analogy, we can

apply this concept to cities. Since the wavelength of IR radiation is much shorter than all relevant

urban length scales, diffraction effects can be neglected and an increase in surface area attributed
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to buildings (when compared to rural areas) determines Teff. Assuming buildings of size L and

mean height H, separated by an average distance d, our model predicts that:

(4L H )1/4
ATu-r = Tr Y(1 + (d + L) 2)1-4

[4.9]

This prediction can be probed by field data in different ways, which is important since the

availability of geometric data for most cities are either incomplete (i.e. building heights are

missing), or only sky view factors are available. For GIS 3-mil cities, there is no information on

building heights, but there is detailed data on building footprints. Therefore, for each city we are

able to compute L and d. We compare these values to our theoretical model by minimizing (with

respect to Tr, y, and H) the squared deviations between the data for Tu-r of all twenty-two cities

[Table 2-1] and the corresponding predictions from Eq. (4.9) with obtained values for L and d

(which are related to the Mermin order parameter p, density p and R). In the end, we find a

convincing agreement yielding a coefficient of determination, R 2 = 0.77 [Fig.4-7.b] for the

following parameters: Tr = 20.5°C, y = 1 and H = 9.5m. Since most of the analyzed urban areas

are mainly residential, we can conclude that the result for the mean building height H is reasonable.

However, we have estimated correction factors for the mean buildings' heights that would yield

an ideal agreement with our model. The relationship suggests that corrections of only ±30% of H

would be needed for a perfect agreement with Eq. (4.9). Information on the building heights would

allow to estimate the volume of built environment and consequently the thermal mass which could

account for these corrections. Knowing the mean height H, building size L, and distances R and

d for all GIS 3-mil cities, Eq. (1) yields a function ATu-r/R 2 that can be compared to the

measured relation between AT_, and the cluster size R- [Fig.4-6]. Using Tr as the sole fitting

parameter, we find a convincing agreement with R 2 = 0.96 for Tr = 24.4°C, which is consistent

with the solar irradiance values (154).
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Further credibility of our model is obtained by its application to the previously collected data of

cities (157), providing an insight into ATu-r dependence on building height. We express the ratio

Hid in terms of the sky view, V),, assuming a canyon geometry (143, 157), which leads to Hid =

1tan[arccos(V5,)] . Our model then predicts:

L 1/4-

ATu..r(lI)s) = Tr [ 1+2 jtan[arccos(0s)]
A~u-($s) Tr 1+ (1+ L/d)2 -

[4.10]

where Tr, y, and L/d are determined from field data. Contrary to the empirical linear relation

between ATu-r and V),, Eq. (4.10), our model provides an expression that is derived from the

fundamental principles of heat radiation. Comparison to the measured field data results in fitting

parameters Tr = 40.4°C, y = 1.024 and L/d = 1 (Fig.4-7.b), which yield a coefficient of

determination of R 2 = 0.88, similar to what has been observed for a linear relation.
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4.2.2. Urban Surface Temperature from Solar Radiance

The surface temperature Tu = Tu,flat obtained from the fit of Eq. (4.9) in the main text with y =

1 to the data shown in Fig.4-6 can be estimated from a simple radiation balance model. A flat

surface is characterized by an emissivity E, a thickness s, and thermal conductivity K. On the inside

of the surface an equilibrium temperature is maintained. Assuming that the surface receives a

homogeneous solar radiant flux Lo from the outside, we can estimate the equilibrium temperatures

Tout on the outside of the surfaces by equating the internal and external net flux densities. The

internal net flux is obtained from the stationary heat conduction equation:

qint = -KnT

[4.11]

integrated across the surface thickness s yielding:

qint = (Tout - Tin)K/S

[4.12]

The external net flux qext is obtained as the sum of the incoming solar flux Lo and the heat flux

Ec-T4ut radiated by the surface where o- is the Stefan-Boltzmann constant. The condition qext =

qint then yields:

(Tout - Tin)K/s = c(Lo - -To~ut)

[4.13]

which determines the outside surface temperature Tout of the surface that can be identified with

Tr. The result Tr = 24.4°C obtained from the fit to our model is reproduced by the typical

parameters E = 0.92, K = 1W/mk, and s = 20cm for an interior building temperature of Tint =

22°C and a solar radiance of Lo = 458W/m2
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4.3. UHI Cost

To be able to understand the influence that local temperature variations (i.e. UHI) have on energy

consumption, we must employ the correlation between temperature and degree days. We find that

the concept of degree days can be generalized to the set of equations based on the correlation

between historical average monthly temperatures, Tm and the number of HDDm and CDDm with

the data obtained from NOAA/NCDC Climate Division for the period between 2005 and 2016.

They can be modeled using the following equations:

(-29.54 x Tm + 1941 Tm < 60°F
H DDM =05x

HDm 1.43 x 102 x T12.8 5  Tm > 60°F

129.58 x Tm - 1905 Tm > 70°F
CDDm = .7~m mm7 0

m 1.07 X 10-18 X T 0 .9 6 , Tm < 70°F

[4.14]

4.3.1. Energy Consumption and Degree Days

Energy responsiveness of buildings due to changes in outdoor temperature is dependent on

multiple factors, such as thermal comfort of residents, efficiency of the buildings, which measures

how much energy is lost through building's envelope, size of the building, number of household

members, or presence and type (i.e. central, window) of air conditioning. However, their

contribution to the overall building energy consumption varies significantly and the outdoor

temperature is considered to be the driving factor (52, 86). Therefore, using just a single input of

outdoor temperature it should be possible to predict the space heating and cooling energy

consumption of residential buildings. The correlations obtained using Eq. (4.14) allow us to

confirm that notion, that changing temperature (i.e. due to global warming or UHI) affects the

number of degree days, which are directly related to state-wide annual residential heating and

cooling energy consumption. More specifically, we find that using a linear regression model, it is

possible to correlate annual state residential heating energy consumption with annual HDD, which
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is captured with the heating energy response of a residential buildings, mh, equal to 2.20 kWh per

HDD [95% CI: 2.05, 2.35] [Fig.4-8.a]. Similarly, annual state residential cooling energy

consumption scales linearly with the annual CDD, which is captured with the cooling energy

response of a residential building, me, equal to 1.80 kWh per CDD [95% CI: 1.62, 1.98] [Fig.4-

8.b]. While neither of these correlations offers a robust relationship that would predict accurately

heat or cooling energy demand with just a single input of temperature or degree days, they both

offer meaningful, statistically significant-with coefficients of correlation, R2 equal to 0.66 and

0.73 for heating and cooling energies, respectively- positive correlations, which we can utilize

to estimate values for heating and cooling energy consumptions.
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FIG.4-8: Residential Energy Consumption. Residential Household Heating and Cooling Energy Consumption

showing (a) linear relationship between annual heating energy consumption and HDD. The inlet shows the fitting

model between monthly HDD and temperature (b) linear relationship between annual cooling energy consumption

and CDD. The inlet shows the fitting model between monthly CDD and temperature. Monthly Degree Days and

Temperature for 2005-2016 were obtained from NOAA/NCDC Climate Division.

4.3.2. Energy Expenditure

To estimate residential space heating and cooling costs, we resort to EIA's annual average retail

residential user prices for non-renewable energy fuels used in the US. Using EIA's guidance for
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residential fuel sources, we limited electricity, natural gas, propane, and heating oil as the only

heating source fuels. Due to availability of data, we assume that fractions of the heating fuel

sources remain unchanged for each of the states within the boundaries of these energy regions:

west, midwest, northeast, south. Due to lack of prices, we disregarded wood and due to their

minimal contribution, we did not include kerosene or any of the renewable sources. For space

cooling, we assumed that all energy is supplied with electricity (due to their minimal contribution

renewable resources were ignored). Lastly, any variables that could influence energy

responsiveness of buildings to changes to outdoor air temperature remain constant over the time.

Electricity and natural gas prices are annual residential averages for each state. For heating oil and

propane, we used weekly prices, which we converted to annual averages. For states with missing

values, we used (when available) regional or national averages.

Space heating and cooling in residential buildings requires a mixture of various energy sources.

While on-site energy usage is an important measure in evaluating performance of a building and

understanding its sustainability rank, it is not representative of how much energy must be generated

to deliver each unit of energy to a building. Therefore, to account for any losses and inefficiencies

Tempersture + Degree Days
2005-2016 data for 48 US states

HDD - IN -AT)HDDUj - J f(T + URI) HDD (/year) - Hog Degree Days (aal 2005-2016)

C -H ( " +URI) DDuN, f/yin) - Urban Had Islad Mullused HDD. UM 1-0- 36 5.4-F
CDDUN, (/year) - Urb atest Isload fU il) iuenced CDD. UM - 1.8. 3.6. 5.4F
Tj" - ava tumperise for moaih j(moibly Jan-Dec: 2005-2016)

3 input groups , - miics, ,acton ioconv,t T toHDD inl,t in i(s)]

Hc jj..O.PPl .r, E = mh -HDD
He = Pf = r, EI - HDDun Pru" = P •r,urlh

HgE 'C,r,- *- CDD '' ,' ''u
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He - Heating Cost(Skh)
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FIG.4-9. UHI Costs + Emissions Flowchart: Visual representation of the methodology employed to calculate annual

UHI state residential heating and cooling energy cost and carbon emissions.
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during the production and delivery processes of energy, we adopted a source energy measure (Si)

from Energy Star Portfolio Manager Technical Reference (158), which traces the on-site energy

back to its raw fuel input, thereby enabling a complete thermodynamics assessment. For US

buildings, to deliver a single unit of energy on-site the following ratios of fuels need to be

produced: electricity (3.14), natural gas (1.05), heating oil (1.01), and propane (1.01). To

exemplify this implies that on-average for each 1 kWh of end-use electricity, 3.14 kWh must be

generated. One or even 5% fuel losses may seem insignificant when compared to 3.14 ratio for

electricity. Although, these statistics are appropriately reflected in higher electricity prices when

compared to other fuels-which on average are 2-2.5 higher- we want to establish how they

affect the amount of carbon dioxide generated to supply residential space heating and cooling

energy across the US. The next step is to quantify the amount of CO2 for each kWh of energy (C).

To quantify CO 2 emissions associated with heating and cooling energy consumption, we obtain

national source values for raw fuels used in electricity generation by year while disregarding any

renewable resources. For residential energy production in the US, there are only three non-

renewable fuels that contribute to most electricity generation (used for space heating and cooling),

while for space heating there are four sources. For natural gas (0.18 kg per kWh), heating oil (0.25

kg per kWh), propane (0.22 kg per kWh) emission levels are assumed to be constant for the 12-

year period. However, for electricity we utilize net generation energy sources (coal, hydroelectric

conventional, natural gas, nuclear, other, other biomass, other gases, petroleum, wood and wood

derived fuels, geothermal, pumped storage, thermal and wind) used for annual total electric power

industry production also obtained from EIA. Based on the ratio of different sources, we obtain

average C02 kg per kWh of electricity for each state for each year.

We utilized preceding steps to establish a methodology to quantify the impact that UHI has on

residential space heating and cooling energy consumption. The flowchart of this methodology is

depicted in Fig.4-9. To derive the equation for state-wide environmental and energy costs

associated with the of impact of UHI three inputs are necessary: 1) residential heating and cooling

energy consumption per building for temperatures with and without UHI [Fig.4-8], 2) heating and

cooling costs and emission levels and 3) the number of households in each state. While, EIA

provides total state energy expenditure values in conjunction with the household ones, but they

come with an error imposed by the averaging approach used for low population states. To depress
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this error, we use population and average household size data (134, 135) to estimate the total, as

well as the urban number of households in each state. We convert estimated values of population

for each year between 2005-2016, to urban (Ph"rban) and rural (Phural) number of households by

multiplying population values by appropriate urban/rural ratio and dividing it by an average

household size (135). With three inputs obtained in such way we were able to quantify for annual

UHI influenced heating and cooling costs (UHI Cost) and C02 emissions (UHI C0 2 ) for 48

individual US states using the following equations [Fig.4-9]:

UHI Cost = purban(Hc EUHI + CcEcuHI) + prurai(Hc E + CcEc) - Ph(HcEh + CcEc)

[4.15]

where, Hc stands for heating cost, EU1HI is UHI influenced heating energy, Cc is cooling cost, EgUHI

is UHI influenced cooling energy, Ph is state's household population, Eh is the heating energy and

Ec is the cooling energy.

UHI CO2 = purban(HEEUHI + CEEUHI) + prural(HE E +CEEc) - Ph(HEEh +CEEc)

[4.16]

where, HE stands for heating CO 2 emissions, CE is cooling CO 2 emissions. Using average monthly

air temperature values for each state, we calculated the annual number of degree days for

temperatures with no UHI effect, as well as three increments of UHI [1°C (1.8°F), 2°C (3.6°F) and

3°C (5.4°F)]. To understand what the absolute state-wide residential energy cost without UHI

effect is, we combined annual energy prices with modeled heating and cooling energy usage

[Fig.4-9] to obtain average heating and cooling residential energy cost per year (averages for years

2005-2016) for each of the US states [Fig.4-10.a]. For UHI calculations, we assume the UHI effect

to be 2°C (3.6°F). Although we restrict our calculations to that average UHI of 2°C, we find that

the impact on cost and C02 of the other two increments of UHI equal to 1°C (1.8°F) and 3°C

(5.4°F) that prevail in the US (65), are linearly correlated with each other [Fig.4-10 inlets]. This

shows that regardless of the magnitude of UHI, for state-wide residential sector in the US, we can

generalize the UHI influence to be either positive or negative. Moreover, we find that increasing
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UHI temperature by 1°C, on average intensifies UHI percentage energy costs by 40%, while

reduction of 1°C translates to UHI percentage energy cost reduction by 46%. Moreover, we

identified UHI influenced excess total and percentage costs and savings (UHI expenses) relative

to the total residential heating and cooling energy expenditure. We categorized US states in terms

of their UHI saving potential starting with regions where UHI of 2°C leads to the greatest absolute

residential energy cost savings. It is worth noting that while absolute savings for a given state may

appear large and significant when compared to the other states, the percentage UHI expense may

act as a more appropriate metric for a evaluating the UHI impact on the residential space heating

and cooling as it conveys more information about the distribution of energy expenditure within a

state.

4.3.3. Carbon Emissions

Energy cost is one of the metrics of evaluating the impact of UHI on the residential sector.

However, because heating fuel sources are different to the fuel sources needed for cooling energy,

higher energy cost does not necessarily imply a proportional change in the levels of emitted carbon

dioxide. This is mainly due to the fact that while energy prices fluctuate, the emissions associated

with a particular source of fuel remain the same. Therefore, for as long as the efficiency of energy

generation and its delivery do not change, while its supply prices do, it is expected that CO 2

emissions will not explicitly follow the pattern of UHI energy costs. This indeed is depicted by the

middle inlet in Fig.4-10, which shows the slight disparity between UHI carbon emissions and UHI

cost. Further, the variation in heating and cooling fuel sources across different states reflects in the

order of states with the highest UHI CO 2 emission savings [Fig.4-10.b], which differs from the

order of UHI energy cost savings. However, a linear regression fitting model shows that for the

US states, on average the UHI cost translates to 4.64 times higher emissions of carbon dioxide.

This means that knowledge of UHI cost allows one to identify associated UHI C02 emissions and

vice versa. In other words, knowing UHI impact on state's residential energy bill allows us to

approximate alteration in state's residential carbon emissions.

94



UHi Cost [\year]
-$800 -$400 S"

UHI C02 [kg\year]
$400 2,500 -2,500 (b)

NY MiNions
PA
CA

WA
MI1

MA
OR
CO
OH
MN
WI
NC
VA
CT
MD
TN
NV
IN

MO
SC
NH
KY
NM

IA
UT
ID

ME
RI

WV
NE
MT
GA
KS

IL
VT
DE

WY
ND
SD
AR
OK

I
=

=- -

=- -

=-

=- -

130%

-------
- 6o0%

-- 30
-- ------ -- -

-=

UH1
UH1

-- = -- ~
= --- UH ''

-4-

20% 0% 20%

UHI(2°C) %Cost

(T=3°C) = 1.39*UHI(2°C)
(T=1°C) = 0.54*UHI(2°C)

=

$200 $2,000 $20,000
Milions

Energy Cost [\year]

20 1

6-
1

UHI
Expense a

-10% 0% 10% 15%

UHI %Cost [\year]

'

Wo

ho
6 L

men

mm

_ a

0%

m

= UHI(2°C) Cost
M UH(2-C) %Cost

UHI(2°C) M
UHI(2°C) %CO2 M

UHI %Cost
-20% 20%

3,000 .- . 20%

d
0 0

-GO

-3,000 --- -20%
-$600 $0 $600

UHI cost monIs

- UHI(CO2) = 4.64*UHI(Cost)
- UHI(%CO2) = 0.99*UHI(%Cost)

'= ''

=
=

=
=

=

=

=

=
=

=

=
=

=
=

=
=
=

=
,=1

=

=
=-

=

6mm -3c% .=
.-20% 0% 20% 1

UHI(2°C)%CO2
- UHI(T=3°C) = 1.40*UHI(2°C) 1

UHI(T=1°C) = 0.53*UHI(2°C)

-15% 200%

UHI %C02 [\year] C02 Emissions [kg\year]

FIG.4-10. Residential heating and cooling energy cost and CO 2 emissions for 48 US states.

(a) on the left average annual non-UHI heating and cooling cost and on the right UHI=2°C annual cost and %

differences relative to non-UHI total cost. The inlet shows linear relationships between different magnitude UHI %

cost differences. (b) on the right average annual non-UHI heating and cooling CO 2 emissions on the right UHI=2°C

annual CO 2 and % emissions differences relative to non-UHI emissions. The inlet shows linear relationships

between different magnitude UHI % CO2 emissions differences. The middle inlet figure represents linear scaling

between UHI cost and CO2 emissions.

The most critical and perhaps impactful part of this analysis, however, is obtained from the visual

depiction of the UHI cost and C02 analyses captured in Fig.4-11 showing the varying effects of

UHI across the US. The maps provide visual representation of parts of the US that are most
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negatively affected by UHI = 20C (red color states) as well as those where UHI has positive effects

(green color states) and areas where UHI has marginal impact on the annual residential energy cost

and emissions (yellow color states). Since there is a linear relationship between different

magnitudes of UHI [Fig.4-10 inlets], with appropriate outdoor air temperature measurements for

cities across a given region, the state-wide results can easily be transformed to more accurate

values.

4.4. UHI impact on the US Residential Energy Cost and Emissions

UHI intensifies air temperature regardless of the season. Therefore, increase in cooling energy

would correspond to decrease in heating energy for states that experience months with

temperatures below 65°F. In fact, more than 80% of US states are located in areas with significant

space heating energy bills suggesting that depending on energy fuels, UHI could have a positive

impact-the reduction in annual residential energy bill cost and carbon emissions-on the overall

energy consumption of the residential sector. Higher contribution of heating over cooling to the

UHI energy bill occurs because energy response of buildings to changes in temperature is about

20% higher for heating than it is cooling, as depicted by Fig.4-8. This can be explained by the fact

that while most heating systems are centralized, air conditioning systems for many US households

are usually restricted to bedrooms and living spaces. We compared impacts of 1°C and 3°C UHIs

with the reference base UHI equal to 20 C. As it is depicted in Fig.4-10, the various magnitudes of

UHI are correlated in a linear fashion, where 1°C UHI depresses and 30C UHI intensifies the

percentage effect on residential state heating and cooling cost and carbon emissions of UHI = 20C

by factors of approximately 50% in both instances. In the context of this study, heating and cooling

energy costs at the household level are affected mainly by regional variations in energy prices and

emission levels by various types of heating and cooling energy generation sources. However, at

the state level variations in energy cost and emissions are predominantly driven by population

density. This is reflected in non-UHI residential energy cost and C02 emissions among the US

states, where the highly populated states such as New York, California, or Texas, each year spend

four times more than the US average, which translates to about $1OB on residential heating and

cooling and about 40M metric tons of CO 2 emissions each year [Fig.4-10]. While total energy

costs and emissions for the residential sector are important metrics to consider, they alone should
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not be regarded as the prioritizing factor for UHI mitigation strategies. By incorporating changing

HDD and CDD due to various levels of UHI, we found that regional climate has a great influence

on the percentage change in UHI driven cost and emissions levels, where states with high

HDD: CDD ratio, such as Washington, Oregon or Colorado experience between 9-12% reduction

in the overall residential heating and cooling energy bill with UHI = 20C.
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FIG.4-1 1. UHI Impact US Map. 12-year average annual state residential heating and cooling expenditure (a-b) and

CO 2 emissions (c-d) for UHI=2°C.

To account for climate and energy price calculations, we analyzed data for a 12-year period

between 2005-2016 and extracted averages. We argue that the impact of UHI should not be

generalized as having solely negative impact on the environment and cost of energy. This is

because it is an outcome of three variables: (1) climate, which constitutes HDD and CDD, (2)
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energy prices, (3) types of fuels used for heating and cooling. Using annual averages, we found

that there are only several states across the US that experience negative effects of UHI in terms of

residential energy consumption. While for most US states UHI has marginal impact on energy

costs and emissions (less than 5%), there are few states where UHI imposes a strenuous impact on

the residential market energy and there are some where UHI offers a major benefit. For cities in

the parts of the US that experience winter seasons, UHI may have a positive impact on residential

buildings, as exemplified for UHI = 2°C in Figs.4-10 and 4-11. At the local level, a typical average

household could save between $75-150 on their annual energy bill, while at the same time making

contribution to reduction of carbon emissions of about 400-500kg, which approximately is

equivalent to emissions produced by a 30mpg vehicle that has travelled 1750 miles. While these

values may seem insignificant, in highly populated states such as New York, Illinois or

Massachusetts they translate to UHI offering a substantial reduction in economic and

environmental burdens with over $200M and as much $500M in annual heating savings and

reduction of approximately 2M tons in C02 emissions. However, for states located in warm

southern parts of the US, regions with high ratio of CDD: HDD would on average increase annual

energy bill by about $50-100, while creating an addition of about 300-600 kg to carbon emissions

from a single household. For highly populated states such as Texas or Florida, these values

translate the UHI equal 2°C to contribution of approximately $400M and 2M tons of C02 in

additional energy costs and emissions. It is important to emphasize that while these values account

for fluctuating climate and seasonality changes averaged out for a 12-year period, these values are

still state-wide averages. However, due to linear relationship between different magnitudes of UHI

it is possible to enhance them with local air temperature measurements for cities. This is especially

relevant for states like California or Nevada whose boundaries extend across different climates

with mountain and dessert regions that impose large errors in average temperature values.

This UHI analysis has been focused on the current state of the US stock of residential buildings,

which neglects building and neighborhood designs as the potential mitigation strategies for

ameliorating energy bill and carbon emissions. However, if we take into consideration changes in

population that are expected to occur by 2030 (134), we can prioritize states for UHI controls and

regulations based on their expected growth of urban number of households. Shown in Fig.4-12,

we find that for most states we should expect at least 100,000 of new residences to be built in
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urban areas, but for the few extreme cases, states such as Arizona, Texas, California and Florida,

we can expect to see an urban household increase in excess of 1 million. Consequently, these are

the states that should examine sustainable building design measures to reduce the environmental

impact of residential buildings.

"DE

* P 2 400,000

P* 2030 projected change in, the udban
population number of households

FIG.4-12. Urban Household Growth Projections in the US.

Projections of changes in the number of urban households between 2010 and 2030 visualized as a map categorized

into four groups with blue color being representative of expected decline in the urban population number of

household, Purban~, while three different shades of red showing projections for increase in Purban.

4.5. Summary

Using a radiative heat model, we demonstrated that UHI scales according to a parameter derived

from a city texture model. We identified that ordered, crystal-like cities experience higher UHI

effects than disordered, liquid cities. We also demonstrated that the financial and environmental

cost of Urban Heat Island effect is closely related to the regional temperature variations making

the cost being either positive or negative. Providing a good overview of the scale of importance of

UHI, when linked with urban population changes this analysis can be applied for prioritizing

policies and regulations for UHI controls.
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Chapter 5

5. Drag Coefficients and Hurricane Damage

In this chapter, we discuss the impact that city texture in magnifying drag coefficients used in

deriving building safety design codes. We begin with a detailed description of building design

codes, different flow regimes in cities and how they impact wind pressure loads. Next, we discuss

the theory of fluid flow and how computational simulations can be used to solve it. In the second

part of this chapter we apply the theory to create CFD simulations using models developed in

chapter 3. We study the results to show that city texture enhanced drag coefficients can be used to

predict more accurately wind loads under extreme wind conditions and ultimately used to create

risk maps for areas prone to hurricane damage.

5.1. Building Design Codes

It is widely known that natural hazards, like hurricanes, cause tremendous levels of damage and

that hazard mitigation can significantly curb natural hazard-induced losses, some of the costliest

in the American history with damages totaling in excess of trillion US dollars during the course of

past 2-3 decades. Moreover, with the predicted increased quantity and intensity of storms

accompanied by hurricanes (2, 17) and thousands of new properties being built in hurricane prone

areas such as Texas or Florida [Fig.4-12], in the upcoming years this damage is expected to only

magnify. To keep buildings safe from wind hazards they must be designed to a specific structural

safety standard, a metric known as a building design code. According to FEMA, "Building codes

are sets of regulations governing the design, construction, alteration, and maintenance of

structures. " One of their purposes is to protect the inhabitants of a building from natural disasters

by specifying the strength of that building. During such extreme wind weather events, buildings

may fail structurally, which occurs when pressure loads acting on a building exceed the norms to

which that building has been build. There are specific guidelines for deriving this pressure

standards, which are obtained using a random-vibration gust loading factor approach (95, 159).
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Different countries use different parameters to define these standards (95), but ultimately, they all

rely on the fundamental pressure load, Pwind, equation:

Pwind = q x Cg X Cp X Ce X Ct X Cdir X Ci x Cotier

[5.1]

where, C. is a gust factor, C, is a pressure coefficient, Ce is an exposure coefficient, Ct is a

topography coefficient, Cdir is a directional coefficient, Ci is an importance factor, Cother is a

factor accounting for other effects such as hurricane zone shielding or return period, and q is a

dynamic pressure obtained using:

12
q = pv2

[5.2]

where, p is a density of air and v is the far field velocity obtained from the wind maps. Design

codes stipulate how a building must interact with the wind, based on different environments that

it is in for a set of probabilistic wind speeds, which may change depending on the selection of

coefficient factors. However, the most impactful variable in Eq. (5.1) comes from the dynamic

pressure in Eq. (5.2), specifically the wind speed, v. The American Society of Civil Engineers'

(ASCE) minimum design loads for buildings (93) derive this speed using various probabilistic

climatic models, which aim to predict development and dispersion of hurricanes based on average

historic wind speeds data [Fig.5-1]. Due to this averaging approach and the probability of the same

extreme event occurring in the same region on two occasions leads to an infrequent update of these

maps. In fact, after one of the most devastating hurricanes of the last decade of the 20th century,

hurricane Andrew in 1992, it took the state of Florida almost a decade to revive the ASCE

minimum design codes. However, the problem also lies beneath the selection of adequate

coefficient for Eq. (5.1). ASCE minimum safety design codes distinguish between low and high

rise buildings with much more emphasis given to understand wind loads for tall buildings (95, 99,

160, 161) and the impact that might have on the surrounding environments of lower rise buildings

(159). For low rise buildings, to identify the right set of coefficients, ASCE codes distinguish

between different types of flow regimes, which can be found in cities, suburban and rural areas
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(93, 94, 159, 162). They also account for different characteristic building sizes, shapes, and

heights. Lastly, depending on the purpose and occupancy of the building, the wind load limits may

be higher or lower; for example, warehouses have lower C than residential houses, which have

lower C than condo/apartment buildings. In the end, the code standards work well for lower and

mid-range category hurricanes, but for the upper range, historical damage data in the US (40) has

showed that for residential houses, recorded hurricane speed measurements, do not always

translate to the damage that hurricane's wind speed should lead to with the ASCE standards. An

example would be 2018 category 4 hurricane Michael that struck the town of Mexico Beach in

Florida leaving many of the low rise, residential detached houses demolished, which is the type of

damage that one would be expect for category 5 hurricane.

FEiS

clii

5. 1.1. Categories of Hurricanes

Saffir-Simpson Hurricane Wind Scale is used to define hurricane categories (163), which are

ranked from 1 to 5:

• Category 1 has wind speeds 119-153 km/h, which results in damaged roofs, shingles, vinyl

siding and gutters.

• Category 2 has wind speeds 154-177 km/h, which results in major roof and siding damage.
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• Category 3 has wind speeds 178-208 km/h, which results in major damage or removal of roof

decking and gable ends.

• Category 4 has wind speeds 209-251 km/h, which results in severe damage with loss of most

of the roof structure and/or some exterior walls.

• Category 5 has wind speeds higher than 252 km/h, which results in total roof failure and wall

collapse.

Residential damage in Mexico Beach, FL exceeds damage expected with Category 4 hurricane,

despite the fact that far field wind speeds were below 251 km/h. This suggests that locally those

wind speeds must have been higher and that current coefficient factors are not adequate for low-

rise residential buildings, which for failure simulations are assumed to have a maximum fixed

value of 2 (93).

5.1.2. Flow Regimes in Cities

The impact of local urban texture on wind flow has been studies for decades with the earliest work

going back to 1970s (101). It is a known phenomenon that different size of urban canyons-

defined by the ratio of building height, H to street width, W-result in different types of flows,

which have been categorized to 3 main ones (101, 102, 106):

• Isolated roughness flow (H/W < 0.3), which assumes to neglect the impact of neighboring

buildings

• Wake interface flow (0.3 < H/W < 0.7), which results in chaotic and unpredictable turbulent

flow in between the buildings.

• Skimming flow (HIW > 0.7), which results in a somewhat predictable turbulent flow with a

dominating primary vortex in between the buildings.

However, urban canyons have another dimension along the street, which can significantly increase

the speed of wind flow for higher ratios of H/W. The local wind flow, although may be very

complex, has been correlated to the impact on the flow has been correlated with 2D planar density,

AP of buildings (104, 105), defined as the ratio between area of building footprints and the total

area of land they occupy. Most cities are known to have 0.1 < A, < 0.63 (106), where the upper

limit seems to be a natural limit for the packing density of buildings; once that limit is reached the
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city's growth is forced in the vertical direction. To account for the vertical impact on the flow,

instead of Ap, which omits the impact of H, it is possible to correlate wind flow with frontal density,

,A (104, 107, 112), which is defined as the ratio between exposed to the flow area of the building's

wall and the area of the land it occupies. Although, wind flow is also known to vary depending on

its direction (109, 164), or variability in heights (103, 109, 165), most of the work in the field has

been associated with studying densities of buildings, whether planar or frontal.

5.1.3. Wind Pressure Loads

These densities are known to influence the flow, which can be quantified using a single flow

coefficient, Cd, which is part of the drag pressure equation:

12
Pwind Pv2 X Cd2

[5.3]

When compared to Eq. (5.1), the drag coefficient thus becomes:

Ca = Cg X Cp X Ce X Ct X Cdir

[5.4]

where, Ci and Cother are ignored as they are dependent on building's purpose and thus independent

of its structure. Drag coefficients are fixed, dimensionless values which capture object's resistance

to a fluid passing around it. Highly aerodynamic objects, streamlined bodies, such as modem cars

or planes have very low Cd values, typically below 0.5. On the contrary, boxy objects with large

frontal surfaces, such cubic buildings, have drag coefficients as much as 1.2. These values,

although may change as the speed of the flow increases, under stable flow conditions generally do

not vary significantly (100). However, they have been found to vary with A, (104) or Af (110) in

the range from 0.5 to as much as 20 (166) for cubes, which resemble the characteristic shape of

buildings, which neglect the impact of roofs, which would make the object more aerodynamic

resulting in a lower Cd. However, most of the models tested in wind tunnel experiments or using
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Computational Fluid Dynamics (CFD) simulations, models used to derive the correlations between

Cd and different density parameters, rely on regular or staggered grid configurations of buildings

(103-105, 167), which do not resemble complex, disordered configurations of buildings in real

cities [Figs.2-1 and 2-4]. Although, some work has been done to study flow in realistic city-like

environments (99, 147), they have been focused on specific parts of cities with low quantities of

buildings insufficient to be able to derive quantitative guidelines that could be applied to predict

drag coefficients of buildings in any city-like environment.

5.2. Fluid Dynamics of Flow

To model flow of air in city-like environments, to understand the flow of air around buildings and

its impact on Pwind, wind flow experiments with scaled realistic structures is going to provide the

most accurate results. However, changes to the direction, shapes, distances between buildings

makes this method inadequate for modeling multiple types of flow in different environments.

Moreover, wind-tunnel experiments are costly and time consuming. However, due to their high

accuracy, wind-tunnel experiments have been widely used to verify the accuracy of numerical

simulations, which in the context of flow of fluids, herein wind, utilize computational fluid

dynamics simulations to solve Navier-Stokes equations.

The Navier-Stokes equations describe the motion of fluid by describing the 3D relationship

between velocity, temperature, pressure, and density through a set of continuity, momentum and

energy equations (168). Continuity equations with the conversation of mass states that:

--P- =-V -(pu) = -u -Vp -pV -uat
[5.5]

where, p is the density of the fluid, t is time, vector u = (u, v, w), and V is divergence. For an

incompressible fluid, Eq. (5.5) can be reduced to:

- = -pV u
at

[5.6]
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Conservation of momentum is defined as:

Ou 1 F
- =(u -V)u - -VP + -+vV 2 uat p p

[5.7]

where, P is pressure, F is the body force, and v is the kinematic viscosity defined as the ratio

between dynamic viscosity, y, and density:

Y

p

[5.8]

When expanded for x, y and z directions conservation of momentum Eq. (5.7) becomes:
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[5.7.2]

[5.7.3]

Conservation of energy equation states that:

as Q- -u - Vs +-
at T

[5.9]

where, T is temperature, Q is the heat transferred and s is the entropy per unit of mass. In practice

these equations are solved using finite difference, element, or volume methods using CFD
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simulations. In order to solve the Navier-Stokes equations, an equation of state is coupled with

them. In addition, stress tensor values must be defined, which depending on the selected approach,

generally are approximated with a CFD turbulence model. To distinguish between different types

of flow: laminar and turbulent, we resort to utilizing a Reynolds number:

Re =

[5.10]

where L is characteristic length scale of the object inside the fluid and u is the velocity of fluid

with respect to the object. Re < 2100 is characteristic of the laminar flow, and Re > 4000 is

generally considered to be turbulent, but for a fully turbulent flow one would expect to see Re >

104. Transient flow occurs when Re number is between those characteristics of laminar and

turbulent flows. In the context of flow of fluid in cities, specifically hurricanes, we identify that

Re » 104 leading to a highly unsteady and turbulent flow. Therefore, for proceeding CFD

simulations we resort to using a turbulent model.

5.2.1. Computational Fluid Dynamics of Flow (168)

There are 3 approaches for solving turbulent flow Navier-Stokes equations using CFD simulation:

• Direct Numerical Simulations (DNS) numerically solve the full set of unsteady fluid flow

equations. Being the most computationally expensive out of the three, this method rarely finds

a practical application.

• Scale Resolving Simulations (SRS) resolve large eddies in time-dependent simulations using

filtered Navier-Stokes equations, where filter is intended to remove eddies smaller the mesh

size. Filter equations vary between different CFD packages. SRS include Large Eddy

simulations (LES) models and after DNS offer the highest level of accuracy (144). This

approach, although not as computationally expensive as DNS, is still too expensive for most

practical applications.

• Reynolds-Averaged Navier-Stokes Simulations (RANS) (144) solve time-average Navier-

Stokes equations with the whole range of the scales of turbulence being modeled. Unlike,
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DNS or SRS, due to its averaging modeling approach RANS can provide steady state

solutions. This leads to less accurate results than SRS, however, it greatly reduces the required

computational resource and therefore, is widely adopted for most practical engineering

applications. The models range from one equation and various two equation models to a most

complete classical turbulence Reynolds Stress model. The main difference between different

RANS models is how they model the Reynolds Stress tensor, which can be done using an

eddy viscosity (very reasonable and highly utilized approach for simple turbulent shear

flows), or through transport equations, which although increase the computational time, lead

to more accurate turbulent modeling. For many general applications, with an appropriate size

of CFD mesh/grid, a method with increased computational cost is likely to lead to greater

accuracy of results.

SRS and RANS models are offered by many CFD software packages, which can be categorized

into four major groups: (1) open-source that allow users to modify the code, (2) CAD CFD-add-

ons, (3) specialty packages focused on specific applications, and (4) comprehensive packages that

have been the industrial standard for CFD simulations, such as Fluent, Star-CCM+, or COMSOL.

While some of the packages may be suited better for specific applications, here, we resort to a

well-established ANSYS Fluent package by obtaining an academic license.

5.3. City Texture Wind Simulation

In preparation for CFD simulations, we adopt an envelope simulation configuration based on

height of buildings (103, 109, 110), which offers sufficient distances between inlet and building,

building and outlet, and buildings and top of the envelope, to allow the turbulent flow to fully

develop and establish its characteristic unique patterns. The approach is exemplified in Fig.5-2.

With defined geometry for buildings, envelope, inlet and outlet, we proceed to create mesh for the

simulation. We use ANSYS Mesh tool to generate an appropriate mesh configuration. To avoid

any issues when generating mesh for a system with buildings that have neighboring buildings at

distances <5m, we use virtual topology with "high" behavior with simplified faces and merged

face edges. However, this still may create overlapping and conflicting regions, which we can

eliminate manually by checking for overlapping regions. Then we can select mesh specifications.

108



10H 1 uH

- tiet

10HI

et

FIG.5-2. CFD model set up. Diagram of the simulation envelope adopted for CFD simulations.

First, we choose the default CFD physics preference and Fluent for solver preference. Element

order is selected to be linear with the default size. We use "mesh defeaturing", "capture curvature",

and "capture proximity" options, all with default sizes, in order to create enough nodes around

edges of the system for the CFD solver to provide accurate results. We use double precision solver

and select a standard ANSYS Fluent viscous turbulent model.

Le
500.00 1mm (m)

FIG.5-3. CFD Mesh. Visualization of example mesh configuration adopted for CFD simulations.
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5.3.1 CFD Model set-up

As previously explained for Large Eddy Simulation (LES) models provide the most accurate

results from CFD simulations (144, 146, 161), however, it is the most computationally expensive

model. In fact, LES can be orders of magnitude longer than other turbulent CFD models.

Therefore, when conducting hundreds of simulations, it might be better to choose a less accurate

model, but one that would still provide adequate results. Yet, in this study because we are using

relatively simple structures with cuboids of different sizes and relatively small number of

buildings, it is worth investigating performance of an LES model and comparing it to a most

accurate RANS approach, that is one with the Reynolds Stress Model for turbulence.

In ANSYS Fluent, for LES we choose a subscript-scale Kinetic-Energy Transport model

treatment, wall boundary conditions and reflection effects for Reynolds-Stress options. We use

default ANSYS Fluent parameters for model constant. We choose SIMPLE pressure-velocity

coupling solution method with the following specifications for the special discretization: least

square cell-based gradient, second order pressure, bounded central differencing momentum and

the second order upwind subgrid kinetic energy. For transient formulation we choose the second

order implicit option.

We choose a Reynolds Stress Quadratic Pressure-Strain Model with enhanced wall treatment and

wall reflection and boundary conditions effects for the RANS model. We use default ANSYS

Fluent parameters for model constant. A SIMPLE pressure-velocity coupling solution method with

the following specifications for the special discretization is selected: least square cell-based

gradient, second order pressure and second order upwind momentum turbulent kinetic energy,

turbulent dissipation rate and Reynolds Stresses.

For the inlet zone, we select standard turbulent intensity of 5% with 10% viscosity ratios for the

turbulence generation in order to generate turbulent flow within the inlet region. Inlet is

investigated on each side of the envelope to allow us to understand the impact that direction of the

flow has pressure and wind speed for different city textures. Outlet is defined to be always

positioned opposite to the inlet. We run the simulation until error residuals are < e - 2 and converge

to a uniform value, which for set of samples is < 10,000 iterations. With average sizes between 9-
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15m building retain the scale of their real size. Therefore, to model high speed hurricane, we select

dynamic viscosity of air, pair = 1.825 x 10-5, density of air, Pair = 1.225 kg/rm3 and inlet

velocity to be 70 m/s (cat. 5 hurricane), which translates to realistic high Reynold numbers, Re

equal to approximately 6 x 10' characteristic of turbulent flows.

5.3.2. CFD Model set-up validation

We test both configurations for a regular grid model that has been previously tested in a wind-

tunnel experiment (113) and using other CFD experiments (103). We compare the results from

LES and RANS simulations m and find that they resemble results from previous studies [Fig.5-4].

In particular, we find that streamwise velocity for both LES and RANS follow closely the

distribution obtained from wind tunnel experiments [Fig.5-4.a]. Above building height, vertical

velocities are also close to wind tunnel experiments, but below the building height (z/H<1), both

LES and RANS deviate slight from wind tunnel measurements, which suggests that mesh

configuration could be improved (144, 147, 167), however, overall both flows lead to the

distributions that follow the correct trend. On the contrary, for the turbulent kinetic energy (TKE),

below the building height herein tested LES model captures well turbulent energy fluctuations like

those in a wind tunnel experiment, but above the building height decreases when compared to

them. This can be explained by the mesh defeaturing option, which optimizes the mesh inside the

envelope by increasing the space between nodes where there are object around, thus averaging out

TKE values. Here, however, the focus is on capturing high accuracy of the flow between buildings

to derive pressure and velocity for z/H<1, which the current LES model does sufficiently. For the

RANS simulation, we identify that TKE distribution is underestimated when compared to LES for

z/H<1, while for the heights above the building, it matches LES distribution. Although, LES

resembles more closely wind tunnel experiment, RANS model provides sufficient accuracy for the

purposes of this work, which aims to identify average wind pressure loads acting on buildings in

different city-like environments. Finer mesh, or different mesh model, could improve the accuracy

of results for both LES and RANS, it would significantly intensify the computational time (6-10

times) for 148 simulations (37 configurations with 4 separate locations of inlets/outlets) we choose

to continue with the previously explained methodology.
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FIG. 5-4. CFD Approach Verification. Comparison of CFD ANSYS Fluent (169) LES and RANS Reynolds Stress

(RS) Method setup with a Wind Tunnel experiment (113) and RANS RNGK-E and Standard K-E (103) CFD

simulations for a) streamnwise and b) vertical velocities, as well as c) turbulent kinetic energy.

5.4. City Texture influenced Drag Coefficients

We export CFD pressure and velocity values to calculate drag coefficients for buildings. For each

building we calculate average velocity of air surrounding that building using each value obtained

from the simulation by using scaled by a factor of 2 area of that building, excluding velocity values

for that building (103, 164, 166). We limit our sample to the heights of building, that is values for

heights !! H, as depicted in Fig.5-5 and average all the time-spatial values for velocity, extracted

directly from simulation results (169). Then we proceed to calculate average pressure difference,

APf -b, between the upwind and downwind surfaces of the buildings where, pf and pb are average

pressure on the frontal and back walls [Fig.5-5], respectively, of the building, extracted from CFD
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simulation results. We calculate these values for each of the buildings in each simulation to derive

drag coefficients Cd (166) using the drag force, Fd equation:

PairCdV2

2A
[5.11]

where, Pair is the density of air assumed to be 1.225 kg/m3, A is the frontal area of the object

exposed to the flow, as v is the velocity of fluid around the object of reference (107, 166). In order

to account for the directional impact of the flow on the local building pressure, we define Cd to be

the maximum from all tested sides [Fig.5-6]. Such defined Cd is captured using the following

equation:

Cd = max 2
1:4 [Pair X V 2

[5.12]

where, Cd is selected to be the maximum value from a sample of 4 measurements, each one with

different inlet direction: north, south, west, east.

b)

Pfront

K20O
H

velocity node Q pressure node

FIG.5-5. Drag Coefficient Data. Diagram of simulation results for a) velocity and b) pressure nodes used in

derivation of drag coefficients.
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FIG.5-6. CFD Inlets and Outlets. Visual depiction of directional flow simulations.

In order to be able to identify if there is the local order captured by the local parameter, p, has any

influence on individual drag coefficients, Cd, we look at CFD samples with fixed average area

densities for grid and staggered configurations [Fig.5-7]. We find that there is no direct relationship

between p and Cd neither for regular grid disordered configurations with p"ea = 0.2, nor

staggered grid configurations with p"ga = 0.1 for fixed building sizes. It appears, however, that

is a correlation between the peaks in p distributions [Fig.5-7.c] and peaks in the Cd distributions

[Fig.5-7.d], where higher proportion of p values leads to a higher proportion of Cd values. While

it is difficult to obtain similar conclusion for the regular grid disruption, it is noticeable that two

peaks in the p distributions [Fig.5-7.a, models 1 and 3] translate to two peaks in the distribution

of Cd [Fig.5-7.b, models 1 and 3]. However, more CFD simulations for different p are needed in

order to be able to conclusively correlate Cd with p.

We are unable to identify any type of relationship between Cd and area density for individual

buildings, as in previous studies that would correlate average Cd with average area density of the

sample (107, 166). However, we are able to recover previously studied relationships between Cd

and frontal density, A, but in the format the incorporates local texture parameters:
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FIG.5-7. CFD Order Parameter Results. Diagram of simulation results for a) velocity and b) pressure nodes used in

derivation of drag coefficients.

Cd = C. 1 + Cd,0

[5.13]

where, Cd,o is a drag coefficient of a cubic box (100), assumed to be 1 and Af is calculated using

the following equation:

(Cn + 1) x Liocat X H

[5.14]

115

b)

Disordered Configuration

0.8 --

0 0.6-
L

e0.4 -

0.2-

0

0.2 F

0.

0.15

0.1

0.05,

0

c)
0.5

0.4 E

0.3 1

Grid

0.

Staggered

0.5

0.2

0.1

0
0

I I I

12

4

0O



where, Liocai is the local building size averaged for all building found within distance R from the

center point of the building of reference; R is the radius obtained using g(r), specifically using

Eq. (3.6). Thus, for fixed building size, drag coefficient for individual buildings becomes:

1/2

1/2 (Cn + 1) X Liocal X H
Cd = Cn A/ + Cd,o = Cn X 2 + Ca,o

[5.15]

But, using the integral of the first peak of g(r) disturibiton we can approximate Cn and

subsequently derive an average Cd for a city using in the following form:

RminRM~n1/2

_Rmicity mn rg(r) dr + 1 x L x H
Ca = 2 Rpcity rg(r) dr x f nRmin 2  + ,O

0

[5.16]

where, L is average building size derived using Eqs. (3.2) and (3.6). However, in these forms Eqs.

(5.15) and (5.16) the correlation only holds true for configurations with fixed building sizes. For

CFD samples with log normally distributed building sizes, we find that using the first peak to

identify Rmin and ultimately Cd does not work. This is because Rmin for samples with different

building sizes leads to average C, < 4 (the expected value for the first shell of neighboring

buildings for an ordered configuration of buildings [Fig.3-7]), leading to underapproximating

values for Cd due to incorrect local texture parameters. To overcome this challenge, instead of

using Rmin to obtain R, we use a 3.5 multiplication factor of L (which leads to average C" = 4) to

obtain:

(Cn + 1) X Liocai x H

=(3.5L)2

[5.17]
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We incorporate this to the modeled drag coefficient equation to derive:

1/ 2 + ((C, + 1) X L X H)1/ 2 +CdO aCnX(Cn+1)X H 1/2+Cd
Cd=Cn; +CdO= nn(3.5L)2 L)

[5.18]

where, a = 3.5-17-1/ 2 = 0.16. At the city scale this translates to an average Cd equal to:

3.stL 3.sL 1 /2
[27Tpet, f .S rg(r) dr + 1 x L x H

Cd = 2JTpcity frg(r) dr x w(3.5L) 2  + Cd,o

[5.19]

Using the scaling relationship between Cn and p [Fig.3-8], we could replace the coordination

number with the local order parameter. Since p decreases as Cn increases, we would expect that

for more disordered cities with lower p, we would expect to see higher Cd values. However, at the

same time, for a highly ordered sample of buildings, we find that more neighboring buildings can

be found for a fixed Rmin. This suggests that higher ordered cities, due to their higher local packing

density of neighboring buildings, we would expect to see higher Cd values.

Using the city texture drag coefficient model captured with Eq. (5.13), we can re-define the wind

pressure drag equation:

Pwind = 2 Pairv2(Cn 1 + Cd,O)

[5.20]
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where the C, component of CaL of the equation is obtained using local city texture parameters

of neighboring buildings that are within a specific distance to the reference building; if there are

none neighboring buildings, CjtAl = 0 and Cd,o is the sole, single building drag coefficient.

Using a sample size of 2,935 buildings, we identify that using Eqs. (5-15) and (5-18), we derive

modeled drag coefficients Cd and compare them to measured Cd using CFD experiments [Fig.5-

8]. We find that the model has many outliers, which are lognormally distributed. Using the

distribution [Fig.5-8 inlet], we identify points outside the zone defined by the distance of one

standard deviation, a from the mean of the distribution, to find that 2,012 (68% of data) measured

and modeled points have the coefficient of correlation of R 2 = 0.65 for the direct relationship of

Cd = Cd. If we increase the range to 1.5a away from the mean, we increase the sample size to

2,534 (86% of data), we find that the correlation reduces to R 2 = 0.42.
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FIG.5-8. Drag Coefficient CFD Results. Results showing a) linear correlation between measured and modeled drag

coefficients with an inlet showing the distribution used to identify the correlation; b) comparison between

distributions of CFD measured and city texture modeled drag coefficients.

The variability in modeled and measured results can be explained for several reasons. First, there

is a significant variation in the distribution of building sizes, L, density, p and number of neighbors
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C,, which for tails of the distributions [Fig.5-9] leads to inaccurate Cd values. Furthermore, due to

the simplicity of the model, normalization area needed to obtain A4 on occasions may be

underestimating the real area with averaged L extending buildings-assumed to have a square

footprint-to be outside of boundaries of the circle imposed by the radius Rmin. On the other

hand, a specific Rmin may also have parts of buildings present, without them being counted as

neighboring buildings, since their center of mass wouldn't be inside the circle. However, there is

another challenge, which is the accuracy of the mesh. Although, for most buildings CFD

simulations provide (almost) symmetrical mesh, for some cases issues non-symmetrical mesh may

lead to inaccurate values and thus increased Cd values (Eq. (5.12) wouldn't lead to lower values).
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FIG.5-9. Drag Coefficient City Texture Statistics. Derived model parameters for 2,935 buildings showing

probability density functions for a) density, b) building length, c) number of neighbors and d) the relationship

between building length and number of neighbors, and density and number of neighbors (inlet).
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Results visualized in Fig.5-9 can be analyzed further to recognize that the characteristic cluster

size of 4 neighbors [Fig.5-10] can be used to define the city texture effect for building Cd values.

Density and building length values act as limits for the model, for which it has been validated. We

find that building length L and neighboring buildings C,, are independent variables by quantifying

their covariance:

cov(L, Cn) = E[(L - E [L])(C, - E [Cn])]

[5.21]

which for 2,935 values is very low, equal to -2.9. With two independent variables that are needed

to quantify Af, we can conclude that Eqs. (5-16) and (5-19) can be derived with solely g(r).

Reference
Building

Wind

H |

L

FIG.5-10. Characteristic City Texture.

Visualization of a typical local cluster of 4 neighbors for modeled buildings.

5.4.1. Validation

The validation process, first and foremost begins by identifying the relationship between modeled

and measured drag coefficients. We find that a simplistic statistical model that accounts for local

geometries can accurately predict drag coefficients obtained using a comprehensive ANSYS
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Fluent CFD software package by adopting previously established tools in quantifying drag

coefficients Cd, frontal densities Af, as well as the local number of neighboring buildings C,. In

addition, both modeled and measured values of Cd in their range are comparable to previously

established drag coefficients for buildings in different grid configurations, which on average are

1.8-2, but can reach as much as 20 (107, 166), which is within the same range as herein obtained

values derived using CFD simulations [Fig.5-8.b].

5.4.2. Case Study: Mexico Beach, FL

To identify the accuracy of the model in a physical setting, we utilize damage data from 2018

Hurricane Michael for 416 buildings at Mexico Beach in Florida. We study the distribution of Cd

modeled using local city texture parameters, to identify that more than 55-70% of buildings in

Mexico Beach had higher than the expected drag coefficients [Fig.5-11]. 77% of buildings have

been severally damaged or destroyed, while 23% of building experienced minimal or no damage.

Using the city texture model, we are able to identify damage with 67% accuracy by using a single

parameter, Cd, derived with approximated building sizes, uniform heights and the quantity of local

neighboring buildings (on average equal to 4 [Fig.5-11 inlet]), without any information about

building heights, roof types, materials or landscape. We assume that building with Cd > 2 are

under the risk of city texture local pressure magnification effect and thus experience a severe

damage.

This approach can be extended to predicting damage over time as the local city texture is changing,

which may be done so by removing the building with the highest drag coefficient and recalculating

the local city texture. We would repeat this process until every remaining building no longer has

any local neighbors and thus all buildings have the same drag coefficients. However, beyond the

necessity to incorporate building materials into the model (for more accurate wind load failure

limitations), we would need to redefine Eq. (5-12) in order not to account for maximum drag

coefficient values, but rather for average values not to overestimate the directional impact of the

flow.
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FIG.5-11. Mexico Beach Damage Map with inlets showing cumulative distribution function of modeled drag

coefficients and probability distribution function of local number of neighbors.

5.4.3. Risk Assessment of Hurricane Failure

In order to create a method for assessing vulnerability of building failure during hurricane for any

city, we need to make sure that we incorporate the right limits for selecting appropriate limits for

two variables, which can influence the magnitude of drag coefficients. Due to relatively low

number of buildings, CFD samples have much lower absolute (not relative) variability in two

critical parameters L and Ap. Average L is used to derive Rmin, but for a city with 100s of thousands

of buildings, the distribution of L is going to vary between suburban and more urban parts of the

region, which could make selection of fixed Rmin inaccurate for different neighborhoods in the

same city. Thus, we propose a dynamic selection of Rmin based on the limits of g (r) equal to 15L,

where we define Rmin for each building based only on the sizes of local buildings. In addition, we

adopt a density limit for A, < 0.63 (106), to minimize overestimation of drag coefficient values

with building sizes estimated based on their areas and assumptions that buildings have square area
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footprints. In addition, due to unavailability of building heights data, we assume a fixed roof height

equal to 9.5m as for CFD samples. With such approach we quantify drag coefficients for 21 OSM

cities worldwide [Fig.5-12] and find that depending on the variability in density there are

significant differences between different city textures. On average, we find that higher density

cities, have average drag coefficients above the ASCE minimum design norms (if all buildings are

treated as residential buildings). More interestingly, we identify that in the sample of 21 cities, the

only 5 cities that have clear crystalline characteristics based on their g(r) distributions are ranked

in the top 8 greatest upper range Cd distributions and thus would have the highest risk of hurricane

damage assuming that their buildings were built to the same norms and exposed to the same

potential wind speeds. While these assumptions would not translate to real-life conditions, herein

we present the theoretical model that quantifies the impact that city texture has on hurricane

damage.
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FIG.5-12. Modeled Drag Coefficients for GIS OSM cities.

To identify potential risk factors for residential buildings in areas with high risks of hurricane

occurrence we use the same approach as for 21 OSM cities to identify drag coefficients for

5,970,242 buildings in the state of Florida [Fig.5-13]. We assess a maximum damage risk level,

which accounts for any wind direction, by using 3 levels:
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• Low: C 5 2

• Moderate: 2 < Cd 3

• High: C > 3

The risk assessment of this kind leads to over 40% of buildings in the entire state with drag

coefficients exceeding current safety design norms using various coefficients [Eq. (5.1)] of

residential buildings (93). This offers an easy and fast tool for people not only to identify buildings

with the highest risk of failure, but also to build more resilient infrastructure by accounting for

impacts of city texture locally with a standard safer than the current ASCE residential norms

currently require.

Risk LevelA

Moderate

High

Evorgisdos
Nauonal Prk)

CITY TEXTURE Hurricane Building Damage Risk Map

FIG.5-13. Drag Coefficient Hurricane Damage Risk Map for Florida.
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5.5. Summary

In this chapter, we established a method for enhancing prediction of drag coefficients with local

city texture values. We found that with the right set of limits, this method finds its applicability to

predict more accurate drag coefficient for residential buildings, which could be applied to any city

in the world. With more than 50% of buildings exceeding the safe design norm limits, we identified

that the city texture model can be used to explain the severe damage in Mexico Beach during 2018

hurricane Michael. It could also be used to prevent damage with city or state-wide building

hurricane damage risk maps.
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Chapter 6

6. Conclusion

6.1. Significance and Impact

It is important to recognize that herein obtained values, which we used to derive city texture

parameters, are averages obtained from GIS information for thousands of buildings with their

shapes generalized to regular 3D cuboids (sometimes merged to form more complex shapes) with

fixed heights. In real life, these shapes, while may not differ much on the fagade side of a building,

vary in terms of heights and roof shapes. In addition, since urban designs focus on various

pragmatic aspects of sustainability, resilience and living comfort, they have components besides

buildings that may affect flows in urban environments, whether is that of water during flooding,

heat in the context of UHI, wind during hurricanes, or the spread and growth of fire. Cities are

dynamic systems that rarely, if ever, are truly reflective of their designs done by a team of planners,

engineers and architect. Rather, they are living communities that aim to optimize the equation

composed of, aesthetics fit, access, vitality, sense, control and function (128) that evolve over the

time. Unequivocally, the equation is of a complex form and solving it is a task that we are going

to continue working on for generations to come. Interactions between spatial arrangements and

urban agents that act as fundamental nodes of urban networks may be chaotic and isolated, smooth

and connected, or be a combination of the two. Whatever the form they may take, they are always

supported by a ring of externalities, some which are inevitable, but some that may well be

controlled. Yet, however complex the urban form equation may be, by isolating building footprints

from the equation, we were able to identify unique city texture for different cities world-wide, with

gas-, liquid- and crystal-like textures. The last type of cities is only found in the North America

(US and Canada [Figs.3-4 and 3-5]), where cities have history of grid-like streets (i.e. Chicago),

which are not found on other continents, where historical growth of cities created more disorder

(i.e. Paris). Beyond g(r) calculations, we found that local texture characteristic can be used to

provide further means of characterizing cities, necessary for their reconstruction in the form of
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synthetic models with only a fraction of buildings that cities have, which may find their purpose

in heat or fluid flow simulations.

6.2. Controlling Urban Heat Island

The Urban Heat Island phenomenon that intensifies urban air temperature when compared to their

rural surroundings falls into the latter category. Our UHI analysis suggests that city texture plays

a key role in determining its response to heat radiation phenomena and points to urban design

parameters that can be modulated to mitigate UHI in planning and retrofitting of cities (52, 170,

171). In a broader context, our work suggests that tools and methods from statistical physics, at

the right scale can provide means to quantitatively address the response of cities to climate. Our

results complement previous studies on factors influencing day-time UHI (63). Observation that

the causes of day- and night- time UHIs are fundamentally different corroborates that ATu-rS at

day- and night- time are uncorrelated (172). According to our findings, the increase of radiating

surface area of cities is the main contributor to the nocturnal UHI. While large scale changes to

already existing urban textures appear unrealistic, efforts of UHI mitigation in the development of

future urban structures should aim at minimizing the enveloping surface of urban structures. The

resulting reduction in the release of stored heat during night-time is expected to have a positive

impact on energy consumption and health (173).

Furthermore, we demonstrated that costs of UHI are closely related to regional temperature

variations, which can shift financial and environmental costs from positive to negative, and vice

versa. By quantifying environmental impact that UHI-imposed temperature changes have on

energy consumptions in residential buildings, we are in a unique position to help cities and states

tackle climate change with executable and concrete measures. Projection of financial benefits and

carbon emission reductions appeal not only to legislators and policy makers, but also to voters and

private investors who recognize the value in sustainable design. When linked with urban

population changes this analysis can be applied to prioritizing energy policies and regulations for

UHI controls. Current cities where UHI has negative effects should seek to utilize sustainability

retrofitting strategies (79) such as green and cool roofs, or reflective pavements, while future cities

should focus their efforts on minimizing the envelope structure of buildings and considering non-
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regular layouts for streets. On the other hand, cities that seek to maximize benefits of UHI through

lowered heating energy demand should concentrate on forming high density building clusters

arranged on a regular grid (57). As a result, controlling UHI becomes a method for partially

managing space heating and cooling energy consumption and a tool for helping cities, states and

countries achieve their greenhouse gas emissions reduction goals. States of Florida and Texas are

currently the most negatively influenced by UHI states in the US and in consideration of their

future population growth, they should be prioritized for any future environmental building energy

regulations and UHI mitigation strategies. They should also consider adopting street layouts and

sky view factors that minimize UHI in their future urban expansion. We are confident that the

negative impacts of UHI from the residential sector outlined in this study, will translate directly in

the form of intensified energy bills among the commercial sector, which contributes to about 10%

of the US total energy consumption (51). However, before making any policy recommendations

for states with high ratio of HDD: CDD, where for the residential sector UHI has positive effects

on energy costs and CO 2 emissions, we strongly recommend investigating impacts of UHI on the

commercial sector, which has much higher cooling costs relative to heating expenditure when

compared to residential buildings. Above all, urban planners and legislators should not neglect

common UHI mitigation techniques simply because UHI significantly lowers the energy bill. UHI

mitigation techniques that increase green space in cities have the potential to reduce the severity

of summer heatwaves (174), as well as improve comfort, health and safety of local communities

(175), which are benefits that extend far beyond the monetary energy savings. Therefore, we

believe that UHI mitigation techniques should always be incorporated into planning methods for

optimizing UHI in cities.

6.3. Improving Building Design Codes

To reinvigorate design codes and better predict hazard damage, we identified that city texture,

specifically unique local geometric layouts affect the flow and thus pressure acting on buildings

captured in the form of drag coefficients. This urban resilience model created using computational

fluid dynamics models of different city textures with common geometrical layouts as well as

idealistic regular and staggered grids of different densities shows that on average current building

design codes, which assume Cd 2, capture less than 50% expected maximal damage, which may

128



partially explain why we buildings during hurricanes of categories 3 or 4, experience damage

expected to be seen during hurricane of category 5. Verified using CFD experiments and tested for

the case study of damage in Mexico Beach, FL in 2018 for Hurricane Michael, city texture

approach is able to predict damage with over 67% accuracy with just a single easy to obtain-

using online maps, here exemplified for OpenStreetMap-input of building footprints, which are

analyzed to derive two, critical for Cd, local parameters: 1) commonly used in wind flow studies

frontal density f and 2) a number of local neighboring buildings C,. Furthermore, we find that

crystal-like cites have higher susceptibility to hurricane damage showing higher proportion of

buildings with upper range values of drag coefficients. Using this approach, stakeholders not only

can readily identify entire cities' textures and their vulnerability to hurricane damage, but also (and

more importantly) can identify buildings with the highest risk of damage. This will ease the process

of targeted retrofitting thereby enabling more resilient developments and urban planning to reduce

the risk of hurricane damage and mitigate the kinds of extreme damage experienced by

communities like Mexico Beach, FL. This comes in time for the uncertain future of changing

climate and the intensified extreme weather conditions, especially in regions likes Texas or

Florida, places that are expected to have tens of thousands of residential buildings build in the next

decade to accommodate some of the highest population growths in the US [Fig.4-12].

6.4. Future Work

The city texture drag coefficient model relies on two main assumptions: 1) buildings have the same

heights and 2) there are no object between buildings. The model also ignores any changes in

elevation, by assuming a flat landscape. In real-life these assumptions are not always true and

therefore should be tested under hurricane conditions using CFD simulations, to improve its

accuracy. Moreover, incorporating information about building materials is going to be critical in

predicting accurately damage during the storm as collapsing buildings are going to change the

local city texture. Ultimately, with an enhanced approach of this kind, with current availability of

GIS and wind speed data from climatic models, we could create accurate hurricane risk maps for

any city or building in the world. In addition, to understand the influence of order of buildings, we

suggest conducting a large sample, controlled study, which accounts for various distributions of

local order parameters, while keeping average density and building sizes fixed. In addition, we
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suggest that exploring a multi-size particle g (r) could offer valuable insights on cities with a high

variability in building size and possibly lead to better prediction in UHI and drag coefficient

modeling.

Beyond the scope of hurricane damage and Urban Heat Islands, we believe that utilizing city

texture approach for quantifying the intrinsic complexity of building networks have the potential

to be applied to study amenities, transportation, as well as other urban functions to create new

urban models that focus on all aspects of a livable and vibrant smart city of the future.
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8. Appendix

Matlab code for calculating drag coefficients

function citytexture cdmodel (loadname, savename)

clear
clc
% load LON LAT and AREA
% units for LON, LAT are decimal degrees
% units for AREA is m2
% load('FL points.mat', 'A', 'X', 'Y')
load(loadname, 'A', 'X', 'Y')
% save-name = damage-data.mat';

varx = 10000;
% tranform LON and LAT (var x may need experimenting for optimal
performance)
cx = abs(X)*varx;

cy = abs(Y)*varx;

xmax = max(cx);
xmin = min(cx);
ymax = max(cy);
ymin = min(cy);
% find average building size
avgarea = exp(nanmean(log(A)));
avglength = sqrt(avgarea);
% avglength = nanmean(sqrt(A));

% calculate box size (may need experimenting with the constant)
alpha = avglength*l0;
%move all the coordinates by xmin and ymin, such that (xmin, ymin)-
>(0,0)

cx new = cx - xmin;

cynew = cy - ymin;

Nx = ceil((xmax-xmin)/alpha);
Ny = ceil((ymax-ymin)/alpha);
avail = zeros(Nx, Ny);

% distribute buildings into a 3D matrix
counter = length(cxnew);
for h = 1:length(cxnew)

if (rem(cxnew(h),alpha) == 0) && (cxnew(h)-=0)
NNx = floor((cxnew(h))/alpha);

else
NNx = floor((cxnew(h))/alpha)+1;
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end
if (rem(cy_new(h),alpha) == 0) && (cynew(h)~=0)

NNy = floor((cynew(h))/alpha);
else

NNy = floor((cynew(h))/alpha)+1;
end
avail(NNx,NNy) = avail(NNx,NNy)+l;
resv(NNx,NNy,avail(NNx,NNy)) = h;
counter = counter -1;

disp(counter);
end
% calculate cut off radius based on average L

timer = 0;
counter = length(cx);

radius=6371;
damage = ones(length(cx), 1);
den = zeros(length(cx), 1);
L = nan(length(cx), 1);

Cn = nan(length(cx), 1);

LAT = zeros(length(cx), 1);
LON = zeros(length(cx), 1);
A_b = nan(length(cx), 1);
for h = 1:size(avail, 1)

for j = 1:size(avail, 2)
if avail(h,j) > 0

for k = 1:avail(h,j)
lati = Y(resv(h,j,k))*pi/180;
lon1 = X(resv(h,j,k))*pi/180;
% reference building size
B_ref size = sqrt(A(resv(h,j,k)));
B_neighbor size = nan(1000, 1);
distlocal = nan(1000, 1);
nsur = 0;

for 1 = -1:1

ii = h + 1;
for m = -1:1

jj = j + m;
if (ii>0) && (ii<=size(av

(jj<=size(avail,2)) && (avail(ii,jj)>0)
for n = 1:avail

cx(resv(ii,jj,n))) == 0)...

cy(resv(ii,jj,n))) == 0)

GPS

ail,l)) && (jj>0) &&

n = lavai(ii, jj)
if (isequal(cx(resv(h,j,k)),

&& (isequal(cy(resv(h,j,k)),

% calculate distance between two

% points
lat2 = Y(resv(ii,jj,n))*pi/180;
lon2 = X(resv(ii,jj,n))*pi/180;
deltaLat=lat2-latl;
deltaLon=lon2-lonl;
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a=sin((deltaLat)/2).^2 +

cos(latl).*cos(lat2) .* sin(deltaLon/2).A2;

c=2*atan2(sqrt(a),sqrt(1-a));

% distance in meters
dist=radius*c*1000;
nsur = nsur + 1;

B_neighbor_size(nsur) =

sqrt(A(resv(ii,jj,n)));
distlocal(nsur) = dist;

end
end

end
end

end
% avg size for buildings within distance alpha

avglength = nanmean([Brefsize; B_neighbor size]);
rcut = avglength*3.5;
areacircle = pi(*rcutA2;
var distlocal<=rcut;

nsur = sum(var);

timer = timer + 1;

% allocate X to LON and Y to LAT

LAT(timer) = Y(resv(h,j,k));
LON(timer) = X(resv(h,j,k));
A_b(timer) = A(resv(h,j,k));
% calculate drag coefficient

density-planar =
((BrefsizeA2)+sum(B_neighbor size(var).A2))/(area circle);

if nsur>0 && densityplanar < 0.63 % Ref (108)
densitylocal = (1+nsur)/(areacircle);

density-length =

(Bref size+sum(B neighbor size(var)))/(nsur+l);

damage(timer) =
nsur*(9.5*density_local*densitylength)AO.5+1; % Eq. (5.18), H=9.5

[Ref (57)]
den(timer) = densitylocal;
L(timer) = densitylength;

Cn(timer) = nsur;

else
L(timer) = B ref size;

den(timer) = (1)/(area circle);

Cn(timer) = 0;

end
counter = counter - 1;

disp(counter);
end

end
end

end
A = A_b;

% % % save matlab file
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save(save name, 'damage', 'LON', 'LAT', 'A', 'den', 'L', 'Cn', 'A')

% % save CSV file
Cd = damage;

Cd(damage<=2) = 2;

Cd(damage>2 & damage<=3) = 3;
Cd(damage>3) = 4;

Cdactual = damage;

% % defines columns to save in the table
T = table(LAT, LON, Cd, Cdactual);
writetable(T, [savename(1:end-3), 'csv']);

end
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