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Abstract

Hurricane damage is one of the costliest and most frequent of natural disasters. In total, the
cumulative cost of all 16 hurricanes in the US in 2017 was in excess of $300 billion and by 2075
the average annual damage cost in the US is expected to rise by nearly 40%. In order to mitigate
disaster damage, governments mandate minimum standards for construction depending on
location and building type—standards known as building codes. Yet most codes remain
insufficient as they account only for individual buildings and overlook the influence of city layout
on wind speeds and storm damage. To reinvigorate design codes and better predict hurricane
damage, we propose a new city texture resilience approach, which accounts for local geometric
layouts to predict more accurate building codes. Tested using computational fluid dynamics
simulations for different city textures with common geometrical layouts, we found that the city
texture model, derived using online GIS data of building footprints, predicts with 67% accuracy
damage from 2018 Hurricane Michael in Mexico Beach, FL. Furthermore, we find that ordered
“crystal” cites have higher susceptibility to hurricane damage showing higher proportion of
buildings with upper range values of drag coefficients. Using this approach, stakeholders can
readily identify entire cities (or neighborhoods) with high susceptibility to hurricane damage.
Moreover, they can identify buildings with the highest risk of damage, which will offer targeted
retrofitting, thereby enabling more resilient developments and urban planning to reduce the risk of
hurricane damage and mitigate the kinds of extreme damage experienced by communities with
histories of high speed winds, especially as climate change is going to intensify future storms.

Thesis Supervisor: Franz-Josef Ulm
Title: Professor in Civil and Environmental Engineering and Faculty Director at
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Chapter 1

1. Introduction

In this chapter, we introduce the topic of climate change, its causes and consequences. We discuss
common mitigation techniques and relate it to Urban Heat Island effect and energy consumption
of buildings. We then transition to present climate change adaptation approaches focusing
specifically on safety design codes for residential buildings. In the final part of this chapter, we
introduce the role of cities—their history, growth and their function in the lives of humans—and
different textures their buildings demonstrate. Towards the end, we present objectives of this

research, followed by outline and significance of this thesis.
1.1. Climate Change

Extreme heatwaves in Europe during the summer of 2019. Severe tropical storms like Harvey,
Irma, Michael, Maria, or Matthew. The most intense period of drought in California, USA, for
almost a decade. Some of the most extensive and devastating wildfires in Australia. Records of
extensiveness and damage coming from floods across the world. The climate is changing; and all
disastrous events recorded in the second decade of the 21% century are a clear example of that.
What’s more, their intensity and quantity has been on the rise and despite the prediction of future
severity of climate change, the effects have already begun to unravel (/-3). The time is to act is

now.

Although our population appears not unified on the topic, there are many among us, ranging from
students to political representatives, who recognize that the severity of the potential long-term
consequences of the climate change (4-6). With its first global climate strike, year 2019 has
become a historic one. Millions of people, kids, students, adults, people of all generations, but
especially the younger ones, all over the world have been coming together to have their voices
heard (7, 8), to have our leaders do something about the climate changing, our planet warming up.

»” €« ” ‘«“

“The clock is ticking”, “the time is now”, “take it to the streets”, are just some of the slogans that
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have been visible on posters and fluctuating through social media. The argument has been that the
crisis isn’t going to wait, so neither should we. In more than three quoters of the countries, people
are voting to end the era of fossil fuels. Young people have been leading the climate strike loud
enough to awaken millions of adults. The fight won’t be an easy one, as it is not one that history
could guide as through. There are many unknowns in this complex climate equation, which is the

core of the argument, whether or not the climate change is real.
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FIG.1-1 Global Climate Change patterns.
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1.2. Consequences of Climate Change

Extensive data collected during multiple decades suggests that climate change is happening (1, 9-
14). Thousands of scientists argue that it is (15). The world with its extreme natural disasters is
telling us it is (I, 3, 16, 17). From north to south, from east to west, our planet earth has been
warming up [Fig.1-1]. Earth’s temperature goes up and down from year to year, but the fact is that
in the past century the average surface temperature has increased by 1 degree Celsius [Fig.1-1.a,
(18, 19)] and as much as 3 degrees Celsius when compared to 1981-2010 averages [Fig.1-1.b].
However, in many places the temperature has increased even more. If this trend continues, we can
be sure to expect much warmer future. And while this might appear appealing in some aspects,
considering that many of the crops are more fruitful in warmer climates, or that people are more
likely to enjoy living in a warmer climate, (especially those retiring) many research studies find
that the cost of a warmer climate that we expect to occur far outweighs its potential benefits (20,

21).

1.2.1. Rising Sea Level

Warming up climate is accompanied by extreme and often disastrous weather events with both
short- and long-term impacts. Studies conducted by researchers over the recent years document
that rising temperatures are going to lead to shifts in migrating patterns of wildlife, possibly also
resulting in emigration from their natural habitats (22-24). Similar outcomes may the results of
melting ice, especially at the north and south poles with millions of square miles covered with
glacial ice. During the period of 23 years, between 1993 and 2016, experiments show that 286
billion tons of ice melted in the north pole, while 127 billion tons in the south pole with its rate of
the mass loss tripling in the past decade (25—-28). Much of that melting ice, in addition to thermal
expansion of water due to increased temperature of water by 0.2 degrees Celsius since 1970s, is
going to contribute to rising sea levels (29, 30). With current predictions for increasing
temperature, it is expected that by the end of the century sea levels will rise by 0.3-1.3 meters (25,
30), although some experts believe that coastal areas should be prepared for the growth of 2 meters
(31, 32). Such rise would lead to an economic damage in excess of trillions of dollars, forcing

millions of people to re-locate and lose their properties (11, 16, 33, 34). Cities like New Orleans
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LA, Miami FL, San Francisco CA, New York NY, Boston MA, and more worldwide, all located
in coastal areas, are highly likely to have some parts of their land affected by sea level rises in the
next century or two — the exact severity remains unknown. However, beyond the sea rising levels
and the damage that comes with it, climate change poses another threat to our society, one that is
going to have its effects visible in this decade with hurricanes and storms, droughts and floods

likely to become more frequent and more severe in the near future.

1.2.2. Hurricanes and Storms

Predictive models for precipitations show an increased risk of severe droughts for many regions
around the world (35), which can be explained by two factors: 1) general declines in climate related
regional-precipitation and 2) increases in surface and air temperatures, which is going to cause
earlier melting of the snow and for many days in the year result in rain instead of snow
precipitation. In addition, precipitation rates are likely to decrease in quantity, but rise in intensity,
which is going to translate to periods of dry weather with heavy and intense storms. These storms
have already been prevailing around the world, causing an especially substantial damage in the
US. According to research conducted by Office for Coastal Management from National Oceanic
and Atmospheric Administration “The cumulative cost of the 16 separate billion-dollar weather
events in the U.S. in 2017 was $306.2 billion, breaking the previous cost record of $214.8 billion
(2005)”. In fact, some of the costliest in the American history hurricanes struck the US in the past
15 years [Fig.1-2]. However, the increasing quantity and intensity of storms accompanied by
hurricanes (or their sole presence for that matter) is not a direct outcome of droughts; rather it can
be attributed to an increasing water temperature. The warmer the water temperature, the more heat
energy is available for a tropical cyclone to evolve, and eventually under the right set of weather
conditions, a hurricane may emerge (12, 36). While some studies on this topic suggest that there
isn’t enough evidence to link frequency of hurricanes with global warming (/1, 12), there is a
consensus among scientist that there is a positive correlation between global warming and intensity
of tropical storms (16, 17, 36). This global warming is believed to be induced by humans (37, 38)
due to an evident relationship between CO2 levels and temperature (14, 39) [Fig.1-3].
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The Top Five Costliest
U.S. Hurricanes on Record

Name Year Cost
., Katrina ... 2005 ..ovciiee $161 Billion
N Harvey ... 2017 s $125 Billion
Maria isissssios . i Ir ORR $90 Billion

$71 Billion
$50 Billion

FIG.1-2. US Hurricane Damage Cost (40).

1.3. Greenhouse Gases

Although the amount of energy coming from the Sun has increased slightly over the past century,
most climatic models are unable to reproduce the historical temperature trends without including
an increase in COz as well as other greenhouse gases (GHG) emissions (9). This is further justified
by the fact that if GHG gases did not play a role in increased temperatures, we would expect to see
temperature rise in all layers of the atmosphere, as opposed to only the lower part (9). This happens
because greenhouse gases block the heat from the Sun tha't is reflected from Earth’s surface.
Increased GHG concentration in Earth’s atmosphere leads to a stronger heat trap, which reflects
greater amount of heat back to Earth’s surface. These gases are composed of water vapor, carbon
dioxide (CO2), methane (CHs), tropospheric ozone (O3), nitrous oxide (N20), chlorofluorocarbons,

and carbon monoxide (not a direct GHG, but is able to modulate production of O3 and N20).
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Although water vapor is the most abundant and potent GHG, its quantity increases as Earth’s air
temperature warms, but unlike other GHG, it is not generated directly from a human activity.

Therefore, much of the scientific and societal focus has been focused on understanding
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FIG.1-3 Correlation between Temperature (/4) and Carbon Emissions (39).

the mitigation of other gases, especially reducing the amounts of carbon dioxide, which is the most
prominent of the greenhouse gases [Fig.1-4]. Carbon dioxide is released through human activities
ranging from land use changes, deforestation to burning fossil fuels; it is also released through
natural processes, such as respiration or eruptions of volcanos. However, since 1950s the main
cause for the increase in CO> concertation has been humanity burning fossil fuels (47, 42) at a rate
that in 50 years has increased CO; levels by almost one third [Fig.1-5.b] from a level that had
already been higher than the highest previous known CO: concertation over 330,000 years ago
[Fig.1-5.a]. To verify the hypothesis about the impact of human activity, a panel of hundreds of
scientific experts from countries across the globe agreed that we, the people, are solely responsible
for intensified warming climate (/5). In order to mitigate tﬁe coming consequences of climate
change, to adapt we must find ways to reduce sources of CO: sources and adapt for the future for

more resilient and sustainable infrastructure.
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1.4. Climate Change Mitigation

On the mitigation side, there is a wide range of readily available solutions that can help us, both
individually and in larger groups, reduce the rate at which we are burning the fossil fuels. In recent
years, global leaders and legislators have come to recognize the perils of climate change and under
the United Nations Framework Convention on Climate Change, in 2016 the Paris Climate
Agreement was established with the long-term goal of reducing GHG emissions and keeping the
global temperature rise below 2°C above pre-industrial levels. However, in 2017 the second largest
domestic polluter and first in the western hemisphere, United States of America, had its federal
government announce that it would cease its participation in the global climate change mitigation
efforts captured in the charters of the Paris Accord. Moreover, in 2018 under the Section 201 of

the Trade Act, the federal government has imposed new tariffs on solar energy imports, which in

Influence of all major human-produced greenhouse gases (1979-2018)

---- 43% increase -----------¢

3 . .
Bl nitrous oxide
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Data: ESRL

FIG.1-4 Global Human-Produced Greenhouse Gases.

the past few years created limited interest in renewable energy growth in the US. However,
encouraged by climate supporters worldwide and recognition of future consequences and potential
benefits of more energy-efficient technology, many business, cities and some states across the US

have voluntarily come together to declare the “We are still in“ and “America’s Pledge” coalitions
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that will continue to support the climate action plan to meet the Paris Climate Agreement.
Although, US Climate Alliance of this kind has the potential to mitigate the effects of climate
change, majority of the US nation continues to be under no official obligation to reduce carbon
emissions and improve energy efficiency. This poses a great environmental threat to the US and
rest of the world for two reasons: first the effectiveness of energy policies is much higher when
compliance is mandatory as opposed to voluntary (43, 44) and second, US has the second largest
CO- emissions in the world. Unequivocally, establishment of mandatory regulations is a portion
of the challenge to achieve goals of the Paris Agreement; however, the other important portion of
the challenge is selection of the sector and approach that would offer the greatest opportunity for

economic and environmental changes rather than be solely a climate mitigation solution (45, 46).

1.4.1. Energy Consumption of Buildings

According to International Energy Agency, electricity and heat production combined with
buildings make up almost 60% of the world’s COz emissions, which creates a huge opportunity
for reduction of emissions with more sustainable, energy efficient infrastructure (47—49). This
mitigation potential extends to United States where Energy Information Administration (EIA)
estimates that 40% of total domestic energy consumption buildings are the single most energy
consuming source of infrastructure in the US and thus have been the primary focus of energy
policies (50). Space heating and cooling is estimated to contribute to about 20-25% of total energy
consumption (51), which for the US residential stock of about 113 million units translates to about
10% of the total domestic energy consumption. Globally, the impact of the residential sector is
even more significant — it is estimated that its contribution to total energy consumption is 27%,

which translates to 17% of COz emissions (38).
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FIG.1-5 Historical Carbon Dioxide Atmospheric Concentration

1.4.2. Urban Heat Island

One of the main factors that influences energy consumption of residential buildings is outdoor air
temperature (52). That temperature depends on both regional and local climates. With wind, cloud
coverage and seasonality, the former is considered an uncontrollable variable (53). The latter one,
however, is influenced by the humankind and shaped through urban growth (54, 55). This is
because urbanization changes the structure of natural land by replacing open areas and vegetation
with various forms of infrastructure. Buildings and pavements are arranged in different

geometrical layouts (56, 57) and use different types of materials (58), both of which are known to

23



influence the amount of solar radiation that is stored during the day and its release rate at nighttime.
In addition to storage and release of radiant energy, ventilation (59), indoor temperatures (60) and
anthropogenic heat (67), all have been listed as factors that lead to thermal changes in the
environment causing formations of UHIs. Although, there is no general consensus on the
magnitude of local temperature changes with different studies estimating its values to be (i) (62)
5-15°C, (i1) (55) 1-8°C, (iii) (57) 1.4-4.2°C at nighttime, (iv) (56) 1°C, (v) (63) 3°C. Nighttime UHI
is dominated by two factors: 1) the ability of materials to store solar radiation during the day, and
2) the rate at which this energy is released at night (64). For the day-time UHI, detailed periodic
hourly variations have been found to be related to changes in convection efficiency in the lower
atmosphere between different climate zones (60). It has been estimated that average daytime UHI
causes air temperature to intensify by 1-3°C in the US (65) and 1.72°C globally (66). While it is
well known that the release of solar irradiance heat at night is the inducement of intensified
temperatures in cities (64), detailed quantitative descriptions of correlations with city texture
parameters are mostly limited to single street canyons (67). Changes in material properties (68),
or geometries of infrastructure (69, 70) instigate an alternation of various physical processes at
Earth’s surface leading to notable climate effects, such as UHI. These processes reveal
geographical and periodic (i.e. hourly, daily, seasonal) influences on higher temperatures that
come in a form of UHI (71, 72).These higher temperatures, in general, necessitate higher energy
demand, which translates to economic and environmental losses for cities worldwide (50, 66).
Beyond increased energy usage, UHI has been found to create externalities in the forms of
increased air pollution (53, 73) and deteriorated human comfort (74), which during extreme
heatwaves has been attributed to augmented mortality rates (75). Moreover, with global climate
change patterns (76) and urban growth (77), future impacts of UHI are expected to intensify (66).
Because of that, UHI mitigation strategies and techniques—traditionally to include tree and
vegetation (53) cover and reflective pavements (73)—have been studied extensively with their
importance expected to grow in the future (78). Reflective materials, cool and green roofs and
cool pavements have proved to be successful in diminishing negative UHI effects (65, 79). Most
of the UHI studies have been focused on quantifying the impact on the demand for cooling energy
during hot summer months (50, 53, 73), leaving the topic about the influence of UHI on the annual
heating and cooling energy sectors in the need of further investigation. Energy modeling of

buildings and numerical simulation have been used to provide comprehensive assessment of UHI

24



mitigation tactics on the building’s energy demand. Reductions of outdoor temperate of 1°C during
peak time cooling energy demand could reduce energy consumption by as much 6% (80).
However, during cold winter months, heating energy may be halved in urban areas when compared
to their rural surrounding due to UHI effect (87). It is important to note that while reducing UHI
in areas with high cooling energy demand is beneficial for the economy and environment, in
regions with high heating and low cooling energy demands, alleviating UHI is likely to increase
overall energy costs and pollution. Therefore, in order understand the impact that UHI has on
energy consumption, annual heating and cooling energies, rather than just solely summer or winter
months, must be considered. The outcomes of such studies suggest that in the presence of UHI,
the combined annual heating and cooling energy may decrease (82). However, more regional
energy modeling studies are needed to evaluate the impact of UHI effect and its countermeasures
on the energy consumption of the entire state or country. Above all, any studies should account for

the climate change by using climatic predictions for intensified air temperature (83-85).

1.4.3. Energy Consumption Models

Building energy modeling techniques for regional or national studies for residential energy
consumption can be divided into two types (86): (1) top-down and (2) bottom-up. Top down
models rely on historical aggregate energy consumption data and generally are considered to be
simplistic with small number of input variables providing average estimates of the energy
consumption. As such, they lack the ability to account for new stock of buildings, any advances in
building energy technology or identifying areas for improvements. However, it is their simplicity
and availability of data that makes them an attractive choice for many national building energy
modeling studies. The second category, bottom-up models are known for their high level of detail
and ability to identify areas for improvements and measure their future impact; however, this
comes at the price of increased complexity and necessity for more input data, which oftentimes
requires energy bill data that generally is limited to the local scale. As such, bottom-up models
work best for studies that aim to identify specific areas for improvements and quantify predictions

for future energy consumption.
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1.5. Climate Change Adaptation

The impacts of UHI for the entire energy sector, on average, have found to be negative for the
economy, environment and society (11, 16, 33, 37). In the future of global climate becoming
warmer (84), these effects are only going to magnify. Although, we have policies in place and
public support to adopt mitigation methods to reduce global CO2 emissions, we should also allocate
our resources to prepare ourselves for the future consequences of climate change, which includes
frequency and intensity of droughts, floods, storms and hurricanes (13, 17, 27, 35). Hurricane
damage is one of the costliest and most frequent of natural disasters. In total, NOAA’s figures
show that the cumulative cost of all hurricanes in the US in 2017 was in excess of $300 billion and
by 2075 the average annual damage cost in the US is expected to rise by nearly 40%. Engineers
and scientists have established a set of retrofitting approaches, which have the potential to prevent

damage (87-91).

1.5.1. Building Design Codes

An example of that would be a single building in Mexico Beach, Florida, USA that withstood
damage from hurricane Michael in 2018, a building that was built with elevated steel and concrete
foundations, reinforced joints, glass, roof shingles (92) — a full hurricane proof structure capable
of withstanding speeds beyond greater than the maximum category (cat. 5) hurricanes with speeds
above 75 m/s. That building is a prime example of an appropriate structural specification, a code,
which considering the failure of most buildings, had been selected to be above the minimum
standards required by the local and/or state requirements, whichever one exceeds (93, 94). Despite
extensive and devastating damage in Mexico Beach, Michael isn’t the only example of a hurricane
that destroyed residential buildings failing under the code standard during a hurricane cat 3 or 4.
Yet, according to FEMA, “Building codes are sets of regulations governing the design,
construction, alteration, and maintenance of structures.” Their purpose is to protect the
inhabitants of a building from natural disasters by specifying the strength of that building. And for
majority of the cases in fact they do. Codes come in a form of guideline with most common
structures (93), which allow the engineer to identify appropriate pressure loads in a specific wind

environment, which is based on historical wind speed maps (93, 95). However, these maps don’t
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get updated frequently enough, which with the increasing intensity of storms in the future is going
to become even a bigger problem (16, 34, 37). But there is another challenge, which comes from
the shape of the building. To keep buildings safe from wind hazards, codes stipulate how a building
must interact with the wind, a value known as a drag coefficient. The drag coefficient of a building
determines the amount of air resistance it will experience when exposed to the wind. As a
building’s drag coefficient increases, the damage it experiences can as well. Design codes assume
that buildings have a range of drag coefficients, which is composed of exposure, environment and
purpose (93, 95-97), which makes it fixed for specific group of buildings (i.e. residential) — in
some ways makes sense, since the shapes of buildings do not change much (98, 99) and the
variations of drag coefficients with increasing speed is minimal in turbulent regimes (100). Yet
most codes remain insufficient as they account only for individual buildings and overlook the
influence of city layout on wind speeds (101, 102), which has been found to vary depending on
planar (99, 103-105) and frontal density (106, 107), changes depending on wind direction (108,
109), and size of the height to width ratio between buildings (103, 110) — a metric also known as
urban canyon. Such canyons, just like building densities, in some cases can reduce wind loads by
offering shelter to certain buildings, but in other cases they have the potential to magnify wind
speeds (104, 107, 111) by several factors of what the norm requires. To understand the impact of
building heights, it is critical to study variability of heights—a parameter also known as surface
roughness—in city-like environments (109, 112). However, the underlaying challenge with any of
the wind tunnel experiments (//3) or wind flow computational fluid dynamics models (109, 114)
used to derive these correlations is that by being predominantly highly ordered, regular grid or
staggered configurations (103, 111), they rarely are able to capture the unique geometrical layouts

that prevail in urban and suburban environments (57, 115).

1.6. Role of Cities

The world as we know it converges to cities. Over 55% of the population lives in urban areas and
urban migration rates have been on the rise with over 75 millions of dwellers annually in the past
five years moving into cities [Fig.1-7]; and although United Nations estimations suggest that the
rate of urban growth is going to decline in the 30 years, medium variant projections conjecture that

each year approximately 9 cities of the size equivalent to the current population of New York City,
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NY [Fig.1-6] are going to have to be built in order to accommodate growth and inflow of new
urban residents. This poses an extreme—of higher than ever before magnitude—challenge on our
society to create even more sustainable, resilient and appealing to live in environments, historically
defined as fundamental reasons for admiration of cites. Of course, it would be wrong to say that
cities are superior in every aspect. In fact, human history and culture did not originate in cities
(116), and it wasn’t really until the last century or so that they have become the focal point of our
societal needs and desires (117, 118). A natural instinct of our humanity is to strive for ameliorated
life and it is a reciprocal palpability that cities have the greatest potential to provide foundations
for those vital needs and desires (/17). While, it would be contemptuous to undervalue the
significance of non-urbanized land on human life, the spectrum of our interest extends far beyond
the rural areas; urban zones cover a minor portion of the global land, a mere 2% in fact, yet they
form home to greater portion of the population, which for the more developed parts of the world
stands at the mark exceeding 75%. Since the middle of 20th century, the ratio of people living in
cities has almost doubled from 30% to 56% and is expected to reach two thirds by the middle of
21st century (/19). In less relativistic terms, the overall numbers of the urban swift are as follows:
urban dwellers are projected to be pullulated from today’s 4.3 billion to 6.7 in 2050, and rural
inhabitants are expected to experience a shift in the opposite direction from 3.2 to 3.1 billion.
Moreover, high urbanization rates establish an additional factor of importance to the urban growth
equation magnifying the relevance of cities exclaiming for an augmented input from experts in the
fields of science, engineering and architecture. Unequivocally, in order to accommodate the
profound changes in socioeconomic systems and land usage, exigency for new cities is formed.
And although they will revivify the economy (I 18) and foster prosperity (/17), they will also elicit
imperative environmental and health concerns (/20), impacts of which will be significant, yet are

not fully comprehensible by our humanity (/217).
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FIG.1-6. Urban Population Growth.

Global historical annual growth of urban population between 1980 and 2015 and future expectations (secondary y-
axis) presented as a number of cities of size equivalent to New York (NY) City (primary y-axis) necessary to be
built in order to accommodate that growth. The data has been derived using 5-year interval projections and 2014 NY
population. Urban population growth data can be obtained from United Nations, Department of Economic and

Social Affairs, Population Division (2015), World Population Prospects: The 2015 Revision, DVD Edition.

1.6.1. City Texture

However, the urban challenge is not just demographic — rather it incorporates the more complex
nature of dynamic and heterogeneous landscapes, ever evolving frameworks that aim to establish
a stable linkage between nature and society. At their zenith, life prospects offered are virtuous —
foundations for the highest form of communities (/22). Supported by the expanding concentration
of people, such systems employ socioeconomic magnets that exert an efficacious and dynamic
growth. At first glance, this scaling appears to be a chaotic single cluster emerging from a focal
point, which typically is considered to be the central business district (/23). However, in more
depth analysis of city morphology unravels geometrical symmetries and social networks of
interconnected clusters, fractal and molecular patterns (/24) that can be studied to develop models
with the potential to unify the efforts of experts from diversified fields of science, architecture and
engineering bridging the gap between the form and function. Emphatically, cities are complex

structures that emerge from a collection of complementary ingredients (infrastructure,
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transportation, economy, social networks etc.), which in isolation and short term can be
understood, but collectively their long-term impact has proven to be unpredictable and lacking

quantitative component (/24—126).

In the past century, but most notably in the last decade, urban planners, scientists, economists and
sociologists have demonstrated unified efforts to study form and growth of cities on the path of
deriving the urban equation to create smart, sustainable and resilient cities (/25-127). The classical
approach of city planners and architects to shape the urban space has challenged them with
establishing a healthy compromise between what is aesthetically pleasing and functional. With
time, however, novel changes have been incorporated to maximize the efficiency and justice within
the boundaries of the city constrained by the aligned forces of its government and economy. A
Theory of Good City Form was developed (128), which in its underlying essence argues that in
addition to the two earlier mentioned factors (aesthetics and function), city’s performance is a
measure of five additional variables: fit, access, vitality, sense and control. A just city is one with
a fair allocation of resources, it provides the means of domiciliating infrastructure with networks
for the urban dwellers (fit), while not suppressing the diversity of age and culture (access). It must
be sustainable and safe (vitality) and allow people to comprehend its purpose (sense), which has a
potential to be adjusted to satisfy the current needs and desires of its occupants (control). A city of
a good form is established when the linkage of these aspects becomes efficient. City planning, thus
has become an eloquent and sophisticated method that aspires urban growth, which accordingly
derives its roots from the interests of the public. For such methodology to function, the spatial
growth must be a reflection of the spatial order, which can be enacted through the spatial discipline;
for instance, functioning of the city can be ameliorated by introducing division of space arranged
into discrete units to facilitate smooth economic and social growth characteristic of the changes in
population and land. Unfortunately, however, perfect order of this kind has not found its way yet
to be transformed from a theoretical utopian dream to a comprehensive restructuring practice
visible in metropolitan zones (129). It is believed that the complex interactions between spatial
arrangements and urban agents are the fundamental obstacles that hold back the transformation of
chaotic and isolated urban space into a smoothly operating totality (/15), which consequently may
(and oftentimes do) lead to negative socio-economic and health effects. While, there are many

questions yet to be answered by urban scientists in the context of their existence, form and sprawl,
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herein the focus lies in understanding quantitatively the unique texture of cities and the impact it
has on sustainability and resilience of cities; herein analyzed in the context of UHI and hurricane

damage, especially as climate change intensifies future temperatures and storms.

1.7. Research Objectives

As we have established, climate change is going to have negative impact on our communities.
Moreover, the frequency and intensity of storms and UHIs are going to increase as the climate
becomes warmer in the future. Are our communities ready? How are cities going to prepare? In
order to answer these questions, we begin by quantifying city texture for 43 cities worldwide and
comparing them to 16 regular and staggered grids with disordered and ordered building
configurations. Using local texture parameters, we identify a unique set of parameters that allow
us to categorize cities as gases, liquids and crystals. Furthermore, we utilize these parameters to
reconstruct statistical model of cities, which we use in wind flow simulations. In the end, we
provide an insight on the influence of city texture on the intensity of Urban Heat Islands using a
simplistic radiative heat model and the intensity of wind pressure loads acting on buildings during

hurricanes using an enhanced frontal density model.

1.8. Thesis Outline

Following the 1) introduction part, there are five additional chapters that form this thesis. 2) Data
acquisition and editing lists the raw data required for this study and the preparation process needed
to prepare inputs analyses in chapters 3, 4 and 5. In chapter 3) we provide a detailed description
of the Urban Physics methodology used to quantify local city texture parameters and how to use
them to reconstruct their samples. In chapter 4) we derive a correlation between UHI and city
texture and analyze residential heating and cooling cost of UHI. In chapter 5), we study the impact
that local city texture has on wind building damage and derive a hurricane risk damage model.
Final chapter 6) concludes the preceding work by depicting the potential of individual parameters,

practical utilization strategies and the future research steps.
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1.9. Research Significance

While many climate change mitigation solutions and adaptation techniques for existent cities have
already been established, due to complex nature of urban infrastructure, general and simple to
follow design guidelines for building more resilient to hurricane damage and changes to heat urban
environments are still missing. Here, we show that the complexity of city networks can by
examined with tools borrowed from statistical physics to derive novel urban norms in the form of
city texture. We present that these techniques offer a unique insight on the role that textures of
cities have in Urban Heat Island at nighttime, which from the financial and environmental
perspectives may not always be negative. Moreover, at the local level, we find that the herein
quantified unique geometrical patterns, or textures, can be used to explain changes in local wind
speeds and lead to intensified, to what current design norms predict, coefficients in preventing

building failure during hurricanes.

1.10. Summary

In this chapter we have established the eminence of climate change, while providing a general
overview of its mitigation and adaptation techniques, specifically for Urban Heat Island and
hurricanes. We elaborated on existing safety design norms of buildings and the changing role of
cities in our communities. We have also explained the objectives, outline and significance of this

work.
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Chapter 2

2. Data Acquisition and Management

In this chapter we present the procedure with sources for acquisition of raw input data for the
analyses we conduct in this work, explained in chapters 3-5. We begin with the air temperature
and geographical information system (GIS) data for building footprints from online GIS databases
and online mapping tools. For each process, we explain editing and limits we adopt that allow us
to prepare samples in accordance with model requirements from proceeding chapters. We end this
chapter with a comparison of GIS and online mapping building footprints data for validation

purposes.

2.1. Air Temperature

Data is obtained using National Oceanic and Atmospheric Administration’s (NOAA) extensive
database. For major cities in the US, we search for stations located in urban part of the city as well
as their rural surrounding environment used for temperature comparison. While ideal case would
entail a situation with rural station located right outside the city’s boundaries, for majority of cities
we had to extend our searches for rural stations to tens of kilometers, which aligns directly with
methods used by others in this field (77, 130).However, to minimize the climatic regional
difference impact on temperature for selecting stations, we applied the following limits as part of
the selection process criteria:

1. Stations should not be separated by more than 100km in the horizontal plane

2. Stations should not be separated by more than 100m in the vertical plane.

3. Stations should not be located at major international airports.

For many cities, the above limitations left us with more than just a single rural station. To select
the most appropriate pair, we compared temperatures for those multiple rural stations with the data
obtained from the reference urban station. If, for a given day 4 or less hourly values had been

missing, we would replace them with daily averages for that day. Days with more than 4 hourly
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values missing were disregarded from calculations. Furthermore, we disregarded files for which
more than 15% of hourly values were missing. For the remaining stations that for most were
collections of almost 10 years of data for a period between 01/01/2006 and 12/31/2015, we
finalized our selection to rural stations that would result in the highest temperature difference
values for each city [Table 2-1]. In the end, we obtained a sample of twenty-two US urban air
temperature time series for a period of multiple years, which is a sample large enough to provide
us with statistically relevant data, but for the time series not too large to be influenced by global

warming effects during a single decade (84).

Urban Station Rural Station

City Name Start Date  End Date Name Start Date  End Date

1 Austin, TX Austin Camp Mabry 1/1/2006 6/30/2015  Largo Vista Rusty Alien  8/25/2008 6/30/2015

2 Boston, MA Boston 2/112010 6/30/2015 Norwood Memorial 1/1/2006 6/30/2015

3 Chesapeake, VA Money Point Va 1/1/2006 6/30/2015 Suffolk 1/1/2006 6/30/2015

4 Chicago, IL (1) Calumet li 1/1/2006 6/30/2015 Burlington 1/1/2006 6/30/2015

5 Chicago, IL (2) Chicago/Midway 1/1/2006 6/30/2015 Burlington 1/1/2006 6/30/2015

6 Dallas, TX (1) Dallas Executive 1/1/2006 6/30/2015 Grayson County 1/1/2006 6/30/2015

7 Dallas, TX (2) Dallas Love Field 8/1/2010 6/30/2015 Grayson County 1/1/2006 6/30/2015

8 Hartford, CT Hartford-brainard 1/1/2006 6/30/2015 Norwood Memorial 1/1/2006 6/30/2015

9 Houston, TX (1) Huston/Dunn Helistop 1/1/2013 6/30/2015 Beaumont Muni 3/10/2011 6/30/2015

10 Houston, TX (2) Manchester 8/14/12012 6/30/2015 Beaumont Muni 3/10/2011 6/30/2015
1" Los Angeles, CA (1) La Usc Downtown Cam 1/1/2006 6/30/2015  Marine Corps Air Station ~ 1/1/2006 6/30/2015
12 Los Angeles, CA (2) Jack Northrop Fid H 1/1/2006 6/30/2015  Marine Corps Air Station  1/1/2006 6/30/2015
13 Los Angeles, CA (3) Long Beach/Lb Airp. 1/1/2006 6/30/2015  Marine Corps Air Station  1/1/2006 6/30/2015
14 Louisville, KY Bowman Field 1/1/2006 6/30/2015 Bedford S Wnw 10/3/2007 6/30/2015
15 New York, NY (1) Bergen Point 1/1/2006 6/30/2015 Dutchess County 1/1/2006 6/30/2015
16 New York, NY (2) New York/La Guardia 1/1/2006 6/30/2015 Dutchess County 1/1/2006 6/30/2015
17 Oktahoma City, OK Wiley Post 1/1/2006 6/30/2015 Watonga 1/1/2006 6/30/2015
18 Philadelphia, PA (1) Northeast Philadelphia 1/1/2006 6/30/2015 Robert J Miller 11/14/2007 6/30/2015
19 Philadelphia, PA (2) Philadelphia 1/1/2006 6/30/2015 Robert J Miller 11/14/2007 6/30/2015
20 Seattle, WA (1) Seattle 1/1/2006 6/30/2015 Adington Municipal 1/1/2006 6/30/2015
21 Seattle, WA (2) Seattle Rent 1/1/2006 6/30/2015 Arington Municipal 1/1/2006 6/30/2015
22 Washington, DC Washington 7/24/2008 6/30/2015 Culpeper 1/1/2006 6/30/2015

TABLE 2-1. Sources for Temperature Data

2.2. Energy Cost

To quantify energy costs, we resort to a regression statistical bottom-up approach to perform a 12-
year financial and environmental analysis of temperature and urban heat island for 48 US states
(due to lack of data Hawaii and Alaska excluded) using annual household space heating and
cooling energy consumption data combined with air temperature values, state prices for heating

and cooling energy sources and carbon emissions associated with production of specific types of
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energy. Due to limited availability of heating and cooling energy consumption data in the US for
the commercial sector, our study is focused only on the residential stock of buildings. To obtain
building energy consumption, we resort to the EIA’s database—available to the public use—
residential energy consumption surveys that were created using bottom-up modeling approaches.
Although, the most recent energy survey was created for year 2015, its geographical resolution is
too low for the purposes of our study ~ it divides the US into 4 regions. Therefore, we utilize the
most recent version of the energy consumption, which offers the resolution at the state level. The
earliest available dataset that offers that, is 2009 Residential Energy Consumption Survey Data
(131). Using previously established regression models (86), we investigate the correlation between

average annual household heating and cooling energy and annual heating and cooling degree days.

2.3. Degree Days

Degree days are a common metric used in the energy industry for calculating the effect that outdoor
air temperature has on building’s heating and cooling energy consumption. They are divided into
two categories: Heating Degree Days (HDD) and Cooling Degree Days (CDD). HDD measure for
how many days and how many degrees the air temperature was below a reference temperature, in
this case (and typically) 65 °F. On the other hand, CDD measure the number of degrees above that
reference value. Regional monthly or annual degree days can be obtained directly from the

National Oceanic and Atmospheric Administration (NOAA) (132).

2.4. Geographic Information System (GIS) Data

Principal input data used in this study used to quantify city texture consists of GIS building
footprints. Building footprints are commonly used by city’s or state’s GIS departments for network
analysis and visualization purposes of urban geometries. They come in a form of shapefiles, which
in addition to GPS coordinates of buildings’ footprints may also store information on building
properties, such as year of construction, number of floors, roof height, etc. However, while all this
information may be useful, it is not necessary for this study — the minimum information required
is merely 2D GPS coordinates of building footprints for an entire city. This type of information

may be obtained directly from a city’s GIS department [Table 2-2], where oftentimes they offer
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more than just GPS coordinates. However, this approach generally only works for cities in the US

and few major cities in Europe. For the US, it is also possible to download them directly for each

state using data generated by Microsoft (/33). With current accessibility to online data, however,

the best approach to obtain GIS data is to refer to online mapping tools, such as Google or

OpenStreetMap (OSM) maps, which have building footprints embedded as a layer in their maps.

City GIS Source
1 a Austin, TX ftp:/Mitp.ci.austin.tx.us/GIS-Data/Regional/coa_gis.htmi#environmental
2 b Boston, MA MIT University GIS Department
3 c Chesapeake, VA hitps://github.com/jonah ke-OSM-imports
g g g::zgg: :IE g; hitps://data.cityofchicago .org/Buildings/Building-Footprints®mpg-sfwi
(73 ; g:::::: P; 8; http://gis.dallascityhall. com/homepage/shapezip.htm
8 h Hartford, CT https://www.arcgis.com/homefitem.htm|?id=243947f01ac94e0193fff69b2f6b7090
9 i Houston, TX (1) N
RICE U GIS Departt it
10 j Houston, TX (2) niversity GIS Departmen
1" k Los Angeles, CA (1)
12 | Los Angeles, CA (2) http:/fegis3.lacounty.gov/dataportal/2011/04/28/countywide-building-outiines/
13 m Los Angeles, CA (3)
14 n Louisville, KY http://portal.louisvilleky.gov/datasetbuildings-data
15 0 New York, NY (1) https:/inycopendata socrata.com/Housing-Development/Building-Footprints/xe92-
16 p New York, NY (2) xce?
17 q Oklahoma City, OK https://data.okc.gov/Por /page/d
18 r Philadelphia, PA (1) .
i ly.org/ dat /6.
19 s Philadelphia, PA (2) http://opendataphilly.org/opendata/resource/6/
3(1) :I :::g:z: ax 8; https://data.seattle.gov/dataset/2009-Building-Outiines/y7u8-vad7?
22 v Washington, DC http://data.dc.gov/Metadata.aspx?id=59

TABLE 2-2. Sources for GIS data obtained from GIS departments.

Since areas of buildings differ substantially between cities, we adopt a density criterion for

selection of GIS samples:

area _
pcity

N i
i=1Ab

> 0.1
Acity

[2.1]

where A, is the total area of the sample with N buildings, while Af, is the ground area of building

i in the sample of N buildings. Since urban boundaries and areas differ significantly between cities,

in order to have an objective comparison, we have decided to only use buildings that are within

the boundaries of a uniform shape and area. Therefore, for every temperature station located in a
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city, we created circular buffers and extracted buildings for 22 cities in the US [Table 2-2], which
we use in proceeding calculations. At first, it had been unclear what radius size of the buffer would
be appropriate, but after conducting tests with different radii lengths (1, 3 and 5 miles) we decided
that buffers with 3-mil radii would be optimal. This is because, on the one hand, radii sizes < 3-
mil would not be able to provide us with statistically sufficient size samples for proceeding
calculations; on the other hand, radii sizes >3-mil in vast majority of instance would extend beyond
the actual city boundaries, or on occasions would interfere with the density criterion from Eq.

(2.1).

*step ‘b’ only used for UHI study
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FIG. 2-1. Flowchart for extraction of GIS points from building footpripts. The initial step to requires obtaining
Geographical Information System (GIS) data with (a) 2D building footprints for a city. For each GIS file a local
weather station is identified and a buffer of 3-mile radius is created around it (b) to extract buildings for further
analysis (c). Any buildings that share a wall are merged (d) and any unoccupied buildings (ie garages), which make
negligible contribution to energy heat transfer (¢) are identified. Those unoccupied buildings are excluded from

further analysis (f) and the remaining ones are transformed into single points (f) using buildings’ centers of mass.
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FIG. 2-2. Distributions of Areas of Buildings for GIS 3-mil cities.
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To extract data for proceeding analyses, we adopt the following procedure, as visualized in Fig.2-
1. To focus on the energy transfer between separated buildings or blocks, we merged all buildings
sharing the same wall. We analyzed areas of merged buildings and found that in a logarithmic
mode probability distribution function of buildings areas can be adequately captured with a bi-
modal fit [Fig.2-2], which forms a clear distinction between unoccupied and occupied buildings,
for instance garages and residential or commercial units, respectively. Unoccupied buildings are
disregarded under the assumption that their contribution to the energy transfer between buildings
is negligible, while the occupied buildings are represented by their two-dimensional center of

mass.

2.4.1. OpenStreetMap (OSM) GIS Data

To analyze cities outside the US, we extend our data search to OpenStreetMap maps, which proves
to be a most effective online platform choice, because it has no academic API restrictions, which
allows researchers to freely download this type of data for any place in the world, assuming that
mapping layers exist for that part of the world. The subsequent sections will explain how to
download building footprints from OpenStreetMap and convert it to a format required for analysis
in this study [Fig.2-1]. While different approaches may be used to obtain the same end results, here
we adopt a city texture approach (57) by using the following software packages: QGIS, ArcGIS
(licensed), Wambacher-osm, XAPI, Ubuntu, and MatLab (licensed).

Samples of data of spatial size 1000 x 1000m can be directly downloaded from OSM

(www.openstreetmap.org/export) website. However, in order to be able to download data for an

entire city, it is advisable to use XAPI server accessible using a terminal, which on most Windows
platforms, it could be accessed using Ubuntu. The user must specify a rectangular region for data
extraction using min and max GPS coordinates [bbox=Lonmin, Latmin, Lonmax, Latmax], which
subsequently provides an OSM file, which later needs to be converted to an appropriate input file
(shape file, .shp). QGIS software converts OSM file into buildings are stored as polygons. The
shape file may contain other layers from the map, such as roads, landscape etc. However, each

feature contains their unique tag. In the context of buildings, a Building Tag is used to mark a
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given object as a building. Once buildings have been extracted, the user needs to identify buildings
within a city’s boundaries (which are never rectangular when downloaded as OSM from XAPI),
which can be obtained from Wambacher-osm. Boundaries then are overlaid with polygons using
either QGIS or ArcMap to extract the needed buildings. The next step, while optional, is advisable
as it is going to offer in the proceeding steps an easier input for analysis; by converting GPS
spherical coordinates of building footprints to a planar coordinate system in distance units (meters
or feet), we can accurately depict areas of buildings and distances between them, without the need
of using more time consuming algorithms to extract the same values using spherical degrees. The
projection conversion depends on the geographical location and can be implemented using either
QGIS or ArcMap conversion tools. After this step, to extract points representative of building
footprints, we follow a similar procedure to the one we used to prepare GIS data from Table 2

[Fig.2-1].

Occasionally, buildings may have geometries stored for different parts of a building, which leads
to overlaps and/or invalid polygons. To overcome this problem, we dissolve polygons (a tool in
ArcMap) to create buildings with no inside geometries. In addition, this step allows us to merge
any buildings that share a wall, which for the purposes of wind flow analysis is a necessary step.
This is because in the context of wind flow, if we assume no change in building’s properties,
attached buildings can be considered to be a single structure. Before the final extraction of data, it
is important to fill any voids inside polygons (which are the outcome of errors in the .osm data) so
that it is possible to accurately quantify areas of buildings. This can be done directly with a “union”
tool in ArcMap. With such defined .shp file, we can extract building footprints. The final step is
conversion of buildings to points. Such conversion is completed using an ArcMap tool, which
converts features to points. This tool creates a feature class containing points generated from the
representative locations of input features and makes sure that the point is within the building’s

boundaries.

It is worth noting that building heights are available for some buildings in OSM data. The
information for building height is either given by the number of levels (floors), or as a number
depicting the actual height that includes the roof. This information is stored inside .shp file.

However, for cities herein analyzed, it has been found that less than 5% of buildings have a positive
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value attributed to the field signifying building height. While with time and increasing accuracy
of OpenStreetMap data this value is very likely to increase, for the purposes of this study, <5% is

inadequate to analyze building heights at the city level.

2.4.2. OSM GIS Data Validation

To validate the accuracy of OSM data, we introduce radial distribution function, g() analysis and
compare the results to results obtained using data obtained from cities” GIS departments. g(r) is
a probability density distribution, which captures the variation between a local density of buildings
and the city’s average. Here, we utilize the same data to juxtapose g(r)s using a sample of 3-mil

radius cities [Fig.2-3] obtained from cities” GIS departments.
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FIG.2-3. g(r) distributions using OpenStreetMap and GIS data.
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To quantify the error between OpenStreetMap and GIS data, we use a quadratic scoring rule that
measures the average magnitude of the error, Root Mean Square Error (RMSE), using the

following equation:

N

1 2

RMSE = —NZ(g(r)iG’S — g(r)?sM)
i=1

[2.2]
where, N = number of observations, g(r)¢’S is g(r) measurement obtained from GIS data,

g()?5M is g(r) measurement obtained from OpenStreetMap data.

In addition to RMSE, we also consider values derived from g(r), which have been used to quantify

g

9t ). and global minimum

city texture (57), namely distances associated with first peak (R

(Rg(r)), average building size (L), local number of neighboring buildings (C,), and order

min

parameter ().

City RMSE | RS (m] | Rém (m] L [m] @ Cn
[New York, NY | 0.06 | 20.4(20.8) | 13.1(12.4) | 12.5(11.4) | 0.82(0.44) | 2.3 (2.4)
Chicago, IL 0.10 | 17.0(14.2) | 9.9(9.4) | 11.3(11.7) [0.83(0.50)|2.3(2.0)
[Boston, MA 0.12 | 20.4(20.7) | 14.7(15.3) | 11.3(13.1) [ 0.63(0.40)[2.7 (2.8)
Los Angeles, CA| 0.19 | 21.2(22.1) | 14.8(15.6) | 13.4(13.0) [0.70(0.40) | 2.3 (2.7)

Table 2-3. GIS and OSM Verification. Results showing differences between GIS and OSM results obtained using
g(r) analysis.

As RMSE values in Table. 2-3 show for all four cities the error is relatively small. This suggests
that in the context of g(r), OSM data provides statistically similar results to GIS. Visualization of
distributions in Fig.2-3 confirms that. To further validate the accuracy of OSM data, we compare

other city texture characteristics. Except for order parameter, all values are very similar; OSM ¢
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values are generally lower, suggesting greater local disorder. This could be explained by the
variation in g(r) values, which are used as input for calculating . In addition, it is possible that
the conversion from polygons to points would results in a slightly differ data for OSM. This is
because in this study we made sure that in order to capture the most accurate location of each
building, we used ArcMap’s conversion tool that would make sure that each point is contained
within the boundaries of a building. This is different approach to GIS data, for which points would
be calculated using building’s 2D center of mass. However, since majority of g(r) characteristics

of OSM data matches GIS data, we can confirm the validity of OpenStreetMap data acquisition.

2.4.3. OSM Cities

To understand how city texture changes across different parts of the world, we collected building
footprints for major cities from different continents. However, since OSM data doesn’t always
provide the full extent of building footprints for a given city (building footprints may be
nonexistent, especially in less economically developed countries), for OSM we adopt the same
selection criterion as for GIS based on the density of buildings using Eq. (2-1). While many of the
buildings have relatively small areas (i.e. garages), they remain relevant for wind flow simulations,
where they might be most vulnerable structures exposed to a potential wind damage. Therefore,
for OSM cities we choose to use all building in the proceeding analysis and identify 21 cities

worldwide with unique city textures [Fig.2-4].

2.5. Population Change

We use population and average household size data (134, 135) to estimate the total, as well as the
urban number of households in each state. We convert estimated values of population for each
year between 2005-2016, to urban (P{"P%™) and rural (P;*"*) number of households by
multiplying population values by appropriate urban/rural ratio and dividing it by an average

household size (735).
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FIG. 2-4. Visualization of Building Footprints for OSM cities.
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2.6. Summary

In this chapter we discussed data acquisition process required for the proceeding analyses. We
presented two ways of extracting GIS data for building footprints using: online GIS databases and
online mapping tools, with an example of OSM due to its user-friendly open licensing. We also
showed sources for obtaining air temperature and building energy consumption data required for
urban heat island and heat and cooling energy cost analysis. Lastly, we verified that OSM GIS
approach, with the right limitations, provides an accurate, fast and easy method for downloading

building footprints for any city in the world.
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Chapter 3

3. Urban Physics: City Texture

This chapter begins with instituting the parallel between molecular physics and urban designs, an
analogy which allows us to utilize tools typically seen being used only in the field of statistical
physics. We explain analysis process needed to capture the unique city characteristics with just a
few local city texture parameters. Next, we provide an approach for reconstruction of cities, which
for the final part of this chapter, allows us to create samples of cities to be used in wind flow

simulations.

3.1. Statistical Physics Approach for Texture Characterization

At the right scale, urban complexity becomes a hallmark of molecular structures that exhibits
universal long- and short-range texture characteristics. Striking resemblance in texture between
urban environments and molecular structure of polycrystalline material at an atomic scale is
established with the help of appropriate visualization techniques. Techniques of this kind are
widely used in identifying geometrical patterns in cities (/21, 122). In such semblance, buildings
are counterparts of atoms and neighborhood tesserae can be thought of as analogous to grain
boundaries. To quantitatively explore this similitude, tools from statistical physics can be
employed, which in a conventional sense are used to investigate the atom-scale structure of
condensed matter. In order to extract statistical characteristics of short- and long- range city texture
we employ radial distribution function, also known as pair correlation function. Oftentimes
denoted by g(r), it provides an isotropic homogenous picture of an anisotropic inhomogeneous
medium by averaging the local density at time and space domains. In the context of cities and
buildings, it can be thought of as a mechanism of describing density variation at a given distance
from the reference building (represented by a point). As soon as local density deviates from the
average density of a system, peaks in the distribution eventuate; in statistical particle physics terms
applied to cities, this is explained as the probability of finding a building at distance r from the

reference building relative to randomly distributed system of buildings that at long distance
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converges to unity. In a closed system of homogenous particles, one would expect the average
density of particles to be defined by the ratio between the number of particles and the area that
they occupy. However, in the context of cities such approach may lead to an underestimation of
density values, which would lead to an incorrect normalization of g(r) and subsequently
inaccurate values derived from it. This is because there may be regions within a city’s boundaries,
where buildings could not exist (i.e. water reservoirs). In addition, a variation in building sizes
[Figs.2-2, 3-1] leads to further errors when calculating city average density values. On the contrary,
in a random closed system of homogenous particles, points could in theory occupy any part of
space and their size has no impact on density. Since this is not the case with cities, in order to
quantify accurately average density of buildings, we utilize an average, pc;t, from the distribution

of density values as defined by:

1 N CRmax
ity = exp| = lo "—H—))
pClty p(N 2[___1 g <T[R$nax

[3.1]

where N is the total number of buildings, C,Iffl‘” is the total number of buildings in circular area of
radius R,,q,, which is the limiting radius for g(r) analysis—distance at which g(r) convergences
to unity—here defined to be 15L for OSM GIS building and 10L for GIS building, where L is the

average building size for a city calculated using the following equation:

1 N
L =exp (ﬁz 1log(./ll-))
i=

[3.2]

where N is the total number of buildings in the city and 4; is the area of building i. We find that
similarly to 3-mil radius GIS samples, areas of OSM buildings follow a lognormal distribution
[Fig.3-1]. However, for many cities outside the US, we identify much longer tails in city-wide
distributions of areas, which is representative of the fact that in older cities there are more buildings

with larger areas — indicative of terraced housing.
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3.1.1. Radial Distribution Function, g(r)

Longer distance, R4, in g(r) analysis for OSM buildings can be attributed to a greater local
density variation before it is possible for the distribution to converge to unity. On the contrary for
3-mil radius GIS samples, there is a lower local deviation from the average density of the system.

With such defined average density, g(r) captures the local deviation from it in the following form:

9(r) = %ZN n;(r +dr) —n;(r)

i=1  Peciy2mr X dr

[3.3]

where n;(r) denotes the number of buildings within the radial distance r from building i, and dr

is distance increment, which for g(r) calculations we chose to be 5% of the average building size,

L:

dr = 0.05L
[3.4]

We found that 5% of the building size, as opposed to other percentage values, provides the optimal
statistical richness in the g(r) distribution; that is, lower values result in too much noise in the
data, while higher values lead to too much smoothing and thus disguises the city texture form. In
order to understand better the physical meaning of g(r) for 22 GIS cities in the US [Table 2-2]
and 21 OSM cities worldwide [Fig.2-4], we choose to create a set of idealistic cities based on
regular and staggered grids [Fig.3-1]. We find that for disordered configurations resemble
characteristics of most OSM cities, which suggests that most cities do not present a regular order

in their city texture.
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FIG.3-2. Ordered and disordered regular grid and staggered building samples.

In fig.3-3 g(r)s for idealistic configuration of buildings are visualized. Regular grid buildings of
different densities have sharp and narrow peaks indicative the high order in the system. Similar
behavior is observed in staggered grid buildings with the exception of wider distances between
peaks, which are reflective of lower density of values. However, for the same density one can see
that both configurations result in the same g(7) [Figs.3-3.a,j,b,1]. As soon as disorder is introduced

to the system and the local density begins to deviate from the average, both grid and staggered
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configuration begin to look more like cities; specifically, wider and smoother peaks (in contrast to
regularly ordered grid) of disordered grid configurations look similar to smooth and outspread
peaks of Los Angeles, CA [Fig.3-4.k-m] resemble g(r) of liquids whose particles present little
structural order. Similar distributions are present in most GIS cities [Fig.3-4]. In turn, sharp and
very distinctive peaks that characterize g(r) of Chicago IL, New York NY, or San Francisco CA
are the hallmark of highly ordered and stable crystalline materials. Although, for US cities we only
identify crystal- and liquid-like textures, for many of the European cities, such as Paris in France,
or Madrid in Spain, we find that g(r) distributions are highly disordered with merely a single peak
and a lack of local minimum, which are close of being gas-like distribution known to exhibit lack

of peaks — that is local density is equal to average density.

Regular Grid Staggered Grid

b) ‘ _“ B

L il 1
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FIG.3-3.g(r) distribution for grid and staggered samples.
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We can conclude that much like molecular structures cities exhibit a distinct long-range texture,
which varies from gas- and liquid- to crystal- like [Fig.3-6.a]. While others have argued that cities
experience strong orders and patterns (124, 136) vital for development and expansion (125, 127,
138), and mobility (77, 137, 139) as part of the process of smooth evolution (/15), with our
methodology we establish additional means for such categorization — by considering atomized
buildings. We find that despite similar geographical location, distribution of buildings can exhibit

different characteristics of local order [Fig.3-6.b].

a) b)
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——— CRYSTAL - Vancouver, Canada = | ee County, FL, USA
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FIG.3-6.g(r) comparison between cities with different city textures.

3.1.2. Local City Texture Parameters

To further quantify local texture patterns on the path of exploring meaningful ways of

characterizing city texture, we employ two other quantities from the toolbox of statistical physics:

1) coordination number, C,f (T), 2) average distance between local buildings, Rggzi, and 3) order

parameter, @. C; ™) is the number of nearest nei ghbors situated around the reference building. In
the context of g(7), it represents the area under the distribution, with the area under the first peak

being representative of the first shell of neighboring buildings. Distance can be extended to derive
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cumulative distribution of neighboring buildings to see that disordered configurations follow a
smooth distribution, while for ordered configurations we see distinctive step increase for each g(r)
peak [Fig.3-7]. Applied to the two-dimensional city texture, distribution of neighboring building

is generalized to:

g
Rmin

Crf(r) = 2MPiocal f TQ(T) dr

0

Regular Grid
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FIG.3-7.C,, distribution for grid and staggéred samples.

With pyocq: being the local density of buildings in the circle defined by the radius, Rfr’l(i;), which

for the first shell of neighbors, is the distance where g(r) reaches its first minimum, which in

theory should also be a global minimum. In our analysis, however, this value does not always
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Cr‘?(r)

befall as the global minimum. If, obtained from the first local minimum is less than 1.5, we

move onto the next minimum, until C? () > 1.5 is obtained. Gas cities lack the expected g(r)

characteristics used to identify C? ) and have no minima. For such cities, we must identify the

Rg €9)]

peak At Which g (r) reaches its first peak — a characteristic distance between one building

distance,

and its nearest neighbors. This distance can be identified for all cities and correlates with Rgl(i;) for
cities where it is possible to identify it [Fig.3-8.a] and can be modeled using the following linear

correlation:

RIM = 135 x RID

min peak

[3.6]

Such linear correlation can be explained by the characteristic street width, which on average limits
the local buildings to the nearest 2 neighbors [Fig.3-8.b]. Here, we wind that when combined with
international cities, this scaling factor from Eq. (3.6) reduces from 1.5 (57) to 1.35 showing that

street widths in the US are on average wider than for the rest of the world. With such approach,

am

we can identify R~ for all cities, subsequently allowing us to derive coordination number for

Rg(r)

the first shell of neighbors. This is an important step, because distance R ..~ is a critical input for

quantifying the local order parameter, @.

The final local city texture parameter is the general Mermin 2D order parameter, designed in
particle physics to quantify the deviation from symmetrical order of two-dimensional crystals with

general close packing number m. Defined by:

Ng
Plocal = 1/Na Zk_lexp(imﬁk)

[3.7]

with m being the number of atoms in the first shell, we are looking for the m-fold orientation

ordering, with N,, the number of independent angles ¥, between the atom and its neighbors. For
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parameter and number of local neighbors for 21 cities obtained from OSM. CFD models and idealized

grid/staggered cities are shown for comparison.

a perfectly ordered (symmetrical) system, @;ocq; = 1; and @cq; = 0 for a system with a perfect
m-fold orientational ordering. Applied at the city scale, we utilize Mermin’s two dimensional order
parameter (140) to characterize the average angular distortion of buildings compared to a perfect

angular order of a city at fixed m = Cy_ with the first shell distance determined from g(r). In the

context of buildings, at the city scale order parameter, ¢ becomes:

72, | Lo )
== . exp(l
qo N J|=1Na(]) k:'l p Na k)

[3.8]

where, N is the number of buildings and Cy,, is the actual number of neighboring buildings. So

defined, @ = 1 represents a city in which all buildings at short distance have the same number of

neighbors exhibiting angular periodicity, 27 /C;] ™. whereas any deviation from unity in this short-
range city order parameter is representative of both local angular distortions of neighboring

buildings, and local variations of number of neighbors that affects the number of independent
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angles N, (j) for each building j = 1, N. Such approach aims at capturing short-range angular
distortion at the city scale. The significance of our approach can be captured when plotting ¢

against C,, [Fig.3-8.b], which is calculated using the following equation:

N

c =12c,5

n N - a
i=

[3.9]

where, N is the number of buildings and C, ,‘;,ais the number of neighbors for building i. As shown

in Fig.3-8.b, ¢ decays in a power form as city’s coordination number, C,, increases. The result is
significant in several regards, starting from the observation that an increase in number of
neighbors, at constant city density, is necessarily accompanied by a decrease in angular order,
following de/dC, = —(A B)(C,)~®*Y, where A and B are power decay fitting parameters. Such
relationships are abundant in statistical physics of the packing of particles close to jamming (/41).
With this analogous background in mind, we suggest that the correlation between ¢ and C,
provides further means of city categorization. Fixing values of C, provides us with more effective
grounds for comparison of cities’ order; and establishes ¢ as a second texture parameter, defining

a short-range order well distinct of long-range texture, or building density, or population size.

Staggered Disordered Grid 1, 4, = 0.1 258 327 |95 ]262]0.60
Staggered Disordered Grid2, 4, = 0.1 29.9 36.8 | 9.5 ]3.72]0.59
Staggered Disordered Grid 3, 4, = 0.1 25.8 36.8 9.5 13.82]|0.61
Stagerred Disordered Grid, 4, = 0.15 23.1 314 9.5 14.06]/0.57

City RE o Im)[RED [mi|L [m]| € | @
a Regular Grid, 4, = 0.1 304 36.1 9.5 14.00/1.00
b Regular Grid, 4, = 0.2 21.9 26.6 9.5 14.00]1.00
c Regular Grid, 4, = 0.3 18.1 20.9 9.5 14.00}1.00
d Regular Grid, 2, = 0.4 15.2 18.1 9.5 14.00{1.00
e Regular Disordered Grid 1,4, = 0.2 24.5 314 |95 |5.90/0.39
f Regular Disordered Grid2, 1, = 0.2 25.8 326 9.5 16.43/0.39
g Regular Disordered Grid 3,4, = 0.2 27.2 368 |95 17.90/0.42
h Regular Disordered Grid 1, 4, = 0.3 20.4 29.9 9.5 |7.95]0.47
i Staggered Grid. 1, = 0.05 42.8 50.4 9.5 14.00§1.00
i Staggered Grid, 4, = 0.1 304 37.1 9.5 14.00}1.00
k Staggered Grid, 4, = 0.15 24.7 304 9.5 14.00/1.00
) Staggered Grid, 4, = 0.2 21.9 26.6 9.5 14.00{1.00
m
o
p
q

Table 3-1. City Texture values for grid and staggered samples.
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City AT, ["CIRZE [m]|RED [m)[L [m)| Ca | @

1 Austin, TX 1.8 18.1 26.8 14.5 |12.19]0.79

2 Boston, MA 2.7 14.7 21.6 11.3 ]2.74]0.63

3 | Chesapeake, VA 1.7 246 35.9 12.1 |13.60]0.57

4 Chicago, IL (1) 4.2 9.9 17 11.3 [2.28]0.84

5 Chicago, IL (2) 35 9.5 16.6 10.9 |2.14]0.88

6 Dallas, TX (1) 1.9 19.9 32.5 14.5 12.27]0.85

7 Dallas, TX (2) 1.9 18.3 27.1 14.6 |2.25]0.79

8 Hartford, CT 2.6 15.6 25.5 11.8 |2.41]0.74

9| Houston, TX (1) 2.1 17 25.9 12.1 ]2.70/0.66

10] Houston, TX(2) 2.7 17 25.7 11.5 |2.65]0.66

11jLos Angeles, CA (1) 3.1 14.8 21.2 13.4 |2.35]0.70

12]Los Angeles, CA (2) 2.9 16 21.9 13 |2.47]0.68

13]Los Angeles, CA (3) 2.8 16.5 25.5 13.2 |2.58]0.69

14| Luislouisville, KY 2.8 18.2 27.1 12.6 [2.38]0.81

15] New York, NY (1) 38 13.1 20.4 12.5 |2.29]0.82]

16] New York, NY (2) 4.2 8.3 17.8 10.8 |2.51]0.76

17] Oklahoma City, OK 1.4 21.3 30.9 15.8 |2.08]0.87

18] Philadelphia, PA (1) 2.0 18.1 26.8 12.5]12.11]0.87

19} Philadelphia, PA (2) 3.0 15.8 21.1 13.9 |2.33§0.79

20] Seattle, WA (1) 2.9 14.1 21.7 12.4 |12.42}0.69

21} Seattle, WA (2) 2.0 18.3 27.8 12.6 |2.42]0.71

22] Washington, DC 27 15.9 216 |13.512.20]0.81

Table 3-2. City Texture values for GIS 3-mil cities.
City Reem [MI|RSS [my|L (m]| €. | @

1 a Athens, Greece 10.9 15.8 12.912.44|0.65
2 b Bengalury, India 10.4 12.3 9.8 |2.59{0.68
3 c Bucharest, Romania 33.5 47.9 14.2 19.73]0.36
4 d Chicago, IL, USA 9.4 12.8 9.0 {3.41]0.92
5 e Jerusalem, Israel 25.5 36.5 16.8 13.89]0.47
6 f Kansas City, MO, USA 10.4 17.3 12.212.17]0.87
7 g Lee County, FL, USA 24.7 374 15.913.41]0.73
8 h Madrid, Spain 15.4 22.0 16.513.36/0.57
9 i Mexico Beach, FL, USA 21.1 27.5 12.212.1110.78
10 i Mexico City, Mexico 9.0 12.9 10.413.1710.66
11 k Montreal, Canada 4.2 10.3 7.3 }12.7110.78
121 | Moscow, Russia 33.8 48.3 118.216.95/0.50
13] m New Orleans, LA, USA 10.0 12.0 9.3 ]2.57]0.83
14 o New York, NY, USA 6.2 10.6 11.8 ]2.08{0.80
15 P Panama City, FL, USA 234 34.8 12.912.5410.72
16 q _Paris, France 12.5 17.9 11.4 | 3.64]/0.51
17 r San Francisco, CA, USA 250 34.9 11.812.11]0.86
18 S Sarasota County, FL, USA 8.0 144 |14.8]3.40]0.63
19 t Singapore, Singapore 6.6 9.5 17.912.2410.94
20 u Tokyo, Japan 9.2 13.2 9.3 |13.56}0.50
21 v Vancouver, Canada 10.3 13.8 10.412.10{0.89

Table 3-3. City Texture values for GIS OSM cities.
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3.2. Reverse Monte Carlo: Reconstruction of cities

By obtaining GIS data for any city in the world using online mapping tools and performing g(r)
analysis for entire cities, we established a method for quantifying city texture, which can be
categorized to three distinctive groups: highly disordered gas-like, disordered liquid-like and
ordered crystal-like cities. Thus far, these configurations and their local texture parameters have
been correlated to the intensity of urban heat islands at nighttime (57, /42, 143). The main
objective of this study, however, is to investigate the impact that city texture has on the flow of
fluids with the ultimate objective to understand how it affects the pressure exerted on buildings in
the environments of hurricane-like wind speeds. While, there have been models used to investigate
the impact that different geometrical layouts have on drag coefficients (94, 103-105, 109, 110),
these models are limited to generic or idealistic, ordered structures, which are very different from

configurations of buildings that exist in cities.

Two approaches used widely to quantify the impact of wind are wind tunnels and computational
fluid dynamics simulations (107, 144). Wind tunnel experiment, although is the most accurate
approach to measure the impact that wind has on buildings, it is the most expensive approach. In
additional, it is impractical as it requires a physical model of buildings to be built — this poses many
problems when investigating the flow due to inability to quickly test any structural changes.
However, since this is the most accurate approach, wind tunnel experiments are used to validate
the accuracy of CFD experiments and might be used to test final design before implementing it in

real life (145).

The complexity of networks and large quantity of the building stock in cities is a challenge that
extends to CFD simulations, which require computational power that most organizations do not
have access to in order to simulate flow for hundreds or even several thousands of buildings. In
addition, to understand the impact that direction of the flow has, one would have to simulate flow
in multiple directions (144, 146, 147), which would further increase the computational burden on
the user. This creates the need for creating samples of cities that could be investigated in CFD
experiments. To accomplish this task, we propose an approach based on recreating statistical

characteristics of cities as captured by g(r) using a Reverse Monte Carlo procedure.
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3.2.1. Sample Size

Reverse Monte Carlo (RMC) procedure can be used to create realistic models of cities that could
be tested in CFD simulations. RMC considers experimental constraints, herein namely g(r), to
construct a model that has statistical properties of a city. Density of the city, p;ty., is used as an
input parameter to define the area of the simulation box based on the number of particles used in
the simulation. The more particles are used the more accurate the model is going to be. However,
more particles would require a greater computational power and intensified time to run CDF
simulations. On the contrary, a lower number of particles is going to reduce the accuracy of the
RMC model. Therefore, it is imperative to identify optimal number of particles (/48), a minimal
quantity that would provide an RMC model, which can accurately reconstruct a system with 2-
body interactions that have a unique link between the structure and the g(r) function. Through
trial and error, we have found this number of 225, which when accounting for the periodic
boundary conditions [Fig.3-13], leads to a total number of particles equal to 2025. To begin the

RMC procedure, 225 particles are randomly placed in a square box with the area, Apoger:

Amodel = 225/pcity
[3.10]

Then each of those particles is copied 8 times to be placed around the box in every direction to
create the periodic boundary conditions. For such defined system g(r)gmc is calculated and

compared to the g(r) of the city.
3.2.2. Procedure of Error Minimization

To quantify the accuracy of the model a g(r) root-mean square difference, )(S(r) 1s calculated:

2 i [9() — 9(r)ruc]?

Y0 T LT o) me

[3.11]
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Calculate g(r)g8d. and x4

New structure: randomly
displace a point

y

Calculate g(r)R% and xZ.w
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NO:
reject move

NO: Pick a random number
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!

Is 1 < p®¢¢

Final g(r) gmc structure

FIG.3-9. Flowchart for Reverse Monte Carlo (RMC) procedure.

where, N is the number of points, i used to derive both g(r) functions, and o is the experimental
(RMC) error. The next steps, as shown in the flowchart in [Fig.3-9] are followed to identify a
model with minimal y2. The first step is to randomly pick one from 225 particles and replace it
(together with 8 surrounding particles) with a particle placed in a random position within the
boundaries of the box to calculate y2.,. However, since g(r) structure can have many unique
configurations of local parameters, like C,, or ¢, it is important to also account for these local

distributions when reconstructing the city. We choose to incorporate another error parameter, )(gn,

obtained from the distribution of the first shell of neighbors:

, i[pdfwa)—pdf(ca)m]z
Aen = = a(Cimc

[3.12]
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where, N is the number of points, i used to derive both probability density function (pdf) of local

neighboring buildings C,, defined by Rgl(i:l) for the city. The second local parameter, ¢, is left to be
used later to validate the model. During an RMC simulation, in order to identify if the new
configuration should be accepted or rejected, we calculate to total root-mean square error

difference, Ax?, between old and new configurations:

AXZ = (X.;(r),new - X;(r),old) + (X(.z‘n,new - Xgn,old)
[3.13]

When Ay? < 0, a new configuration is always accepted. But, when Ay? > 0, we introduce
weighing parameters, which may result in either acceptance or rejection of the new configuration
(149). This is done to ensure that the final structure is independent of the initial configuration.
Also, such approach allows us to explore a large set of different configurations (150). First, we
test a single weighing parameter, Ty, so that when Ay? > 0, a new configuration is accepted with

the probability:

pglcdcénew = min[1, exp(—T, X AXZ)]
[3.14]

3.2.3. Model Weighing Parameters

We have explored a range of different T, values and found that Ay? decreases as T, increases
[Fig.3-10.a]. However, as T, gets large (i.e. >20) the number of accepted configurations decreases.
This creates a challenge because there is not enough variability in configurations with low x?
values and thus, identifying an RMC model with ¢ distribution matching one of the city becomes
not possible. Therefore, to identify a large set of RMC models with low y? values, we set T, = 10.
However, since there are two error parameters involved in the probability acceptance criterion, we
choose to investigate two additional weighing parameters (/49), T; and T, so that a new

configuration is accepted with the probability:
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pgfdcqnew = min [L exp (_Tx X (Tlﬁ)f;(r) + Tzﬂxgn))]
[3.15]

We have investigated different values for both T; and T, [Fig.3-10.b] and established that the

optimal configuration for weighing parameters is: Ty = 10,T; = 2, and T, = 3.

a)
05— = -
| e T, = 1 Ty=1Ty=1 |
- — - .|
~ 04 seen T = il o2
5 03r_5.: _Tx—lo --------
= : |: «T, =25 T, =1T,=5
o 02 =2T,=31
0.1‘ T, =37, =21

0 :
0 20 40 60 2 6 10 14 18
Error, x? Error, x?

FIG.3-10. RMC Weighing Parameters. Probability density function distributions for RMC models with a varying

values of a) single weighing parameter T, and b) three weighing parameters Ty, T, and T, = 10.

3.2.4. Validation

With such defined steps and parameters for RMC simulation, we reconstruct samples for 21 cities
[Fig.3-13]. We find that in order to be able to have a large set of samples with low y? values, one
should generate establish an RMC simulation with at least 0.5 X 10® steps; but to identify
convergence in y* values for all samples we needed 1 X 10° steps. As Fig.3-11 shows, initial
values for g(r), C, and ¢ distributions for two RMC samples are very similar, which confirms a
random arrangement of particles. However, for final configuration, it is clear that RMC models
resemble those of cities, whether it is crystalline structure of San Francisco, CA or gas-like

structure for Paris, France. In the context of reconstruction of g(r), RMC simulations at the point
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FIG.3-11. Comparison of OSM and RMC data. OSM city texture values and results of RMC simulations for g(r)
with final RMC configurations (inlets) for a) San Francisco, CA and b) Paris, France; probability distributions of C,,
for ¢) San Francisco, CA and d) Paris, France; probability distributions of ¢ for e) San Francisco, CA and f) Paris,

France.
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of minimum error are expected to reach the state of maximum entropy (/57-153), which translates
to maximum disorder for the configuration of particles. This type of configuration would not result
in a realistic configuration of cities, which are known to have their order decay with an increasing
number of neighboring buildings [Fig.3-8.a] resulting in a lower entropy than the minimization of
x? errors would lead to. Therefore, to account for the right order of local neighbors, we resort to
an approach where we identify a probability distribution of ¢ for the RMC model that most closely
resembles the probability distribution of ¢ for an OSM city, that is the root-mean-square error
between two distribution is minimal. To do so, from all possible configurations obtained during
the RMC simulation, we identify the lowest 1% of x? distribution, which allows us to identify
textures with the lowest root-mean square differences for RMC and OSM city ¢ distributions. We

find that as y? converges, the variation in )(3, also becomes minimal; we select a distribution with

the lowest error, which we find resembles accurately overall distributions of g(r), C,, and ¢ [Fig.3-

11] for cities of different textures, whether gas, liquid or crystal.

3.3. Computational Fluid Dynamics Models of Cities

We have established a method for reconstructing statistical samples of cities, with points
representing buildings. To be able to test these samples in wind flow experiments, we need to
recreate buildings that are representative of OSM cities. Using RMC points, we establish central
points around which we create building footprints using probability distribution of building areas
from OSM cities [Fig.3-1], to create areas of buildings for 225 points from RMC models. We
randomly assign building areas to RMC points to create square building footprints, so that each

RM(C building has the following x; and y; coordinates for building i:

L; L; L; L;
X = E - xi,c'? + xi,c'? + xi,c'? — Xic

'Li Li Li Li ]
Yi = 2~ Yie > = Yoy + Yier> + Vic

[3.16]
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where, L; is the average building size derived from the probability distribution of areas of OSM
buildings, and x; ., y; . are x,y coordinates for RMC samples. However, random assignment of
areas may result in building overlapping, which we try to minimize. If there is an overlap, we
switch areas between two buildings. However, with a sample of 225 buildings and areas of
buildings ranging from 3 to as much as 100m, sometimes it is not possible to prevent overlaps.
However, since we identify that there are less than 20% in overlaps, we choose to accept the best

possible configurations, given the above constraints.

In order to prepare samples for CFD simulations, we must assign heights to buildings. Since, we
lack information about heights of buildings, we choose a fixed height, H of 9.5m, which is an
average height representative of residential buildings (57). Thus, all buildings in our samples have
the same height. In addition, to avoid issues with meshing configurations, we merge any building
that are separated by a distance of 1m or less. Considering such distance translates to a very low
ratio between width to building height, which in the context of our study, due to a high skimming
flow (102, 106) can be neglected for the purposes of hurricane flow simulations for samples with
average building sizes of >10m. Because of that we merge such buildings, which in some cases
would reduce the number of buildings by 50%. This creates a challenge because, if we re-calculate
city texture parameters for CFD building configurations with significantly lower number of points,
when compared to RMC samples, we find that g(r)cpps, although follow the trend of g(r) for
OSM cities, they do not match their unique patterns [Fig.3-14]. In addition, merging of buildings
leads to a variability in the distribution of building areas that is different to the distribution of the
initially assigned building sizes [Fig.3-12]. In the end, although derived using RMC samples that
resemble explicitly texture of OSM cities, CFD models do not. Therefore, for the purposes of the
CFD simulations, these 21 samples are treated as unique disordered configurations of buildings,

as opposed to reconstructed cities.

To increase the testing sample and to understand better validity (and physical meaning) of the 21
disordered configurations of buildings, we prepare an additional set of CFD samples using the set
of previously introduced idealistic cities based on regular and staggered grids [Fig.3-2]. For these

models, we choose building size based on the fixed height of 9.5m, so that L = H = W, where W
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is building’s width. With such size, we create samples of varied densities, which resemble

previously studied configurations using wind tunnel and CFD experiments.

As a final step, to minimize the effects of city texture at the boundaries of CFD samples, we create
periodic boundary conditions for each sample of buildings by adding 2 rows of buildings for each
side of the sample, which is done in a similar manner to periodic boundary conditions RMC. The
approach is exemplified in the middle column of Fig.3-13. Similar periodic boundary approach is

utilized for the additional 16 grid and staggered configurations.

3.4. Summary

In this chapter we established an approach that allows us to quantify city texture for any city in the
world. In addition, we developed a model for reconstructing of cities using samples that have a
very low number of buildings, when compared to real city. Samples of this size allow us to study

the impact of city texture in computationally expensive wind flow simulations.
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FIG.3-12. Building area probability distribution for CFD samples.
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FIG.3-13. Reconstructed city CFD samples.
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Chapter 4

4. Urban Heat Island (UHI): Intensity and Cost

In this chapter we address the question of what role city texture has on UHI and whether the effect
has positive or negative impact on the energy consumption of buildings. We begin by explaining
the methodology for quantifying UHI, values which we use to correlate with city texture for 22
US cities. In the second part we focus on the economic and environmental analysis of UHI in order
to identify its impact on the residential heating and cooling energy bill and emissions associated

with energy consumption at the state level.
4.1. Quantifying Urban Heat Island

In order to study the impact of city texture on Urban Heat Islands (UHI) at the city scale, we
analyze hourly night-time peaks of UHI for twenty-two US urban air temperature time series
[Table 2-1] for a period of multiple years— a time domain, which is large enough to provide us
with statistically sufficient sample, but not too large to be influenced by global warming effects.
The hourly temperature data unveil large fluctuations due to changing weather conditions that
superimpose UHI. However, Fourier transformed temperature series depict distinct maximal peaks
for the periods of 24 hours. These peaks when added to time-averaged temperatures constitute a
reliable measure of nocturnal UHIL, AT,,_,.. It is imperative to emphasize that the goal of this work
is to measure and model to what extent city texture alone can describe variations among AT,,_,.
for different cities (all other important factors influencing nocturnal UHI are captured by a
phenomenological parameter y, which is explained in the later part of this chapter). This type of
approach not only allows us to study the role of city texture in UHIs at nighttime, but it also
provides grounds to estimate the significance of other parameters that influence UHI by observing

discrepancies between the measured data and our model.

For urban and rural temperature datasets, we calculated the median value of temperature

difference. Due to high disparity in signal of temperature variation [Fig.4-1], we concluded that
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median value, which is closer to the peak of signals probability distribution, is more representative
of the whole distribution than an arithmetic average. While this approach is preferred due to its

intrinsic property of minimizing error in calculations, it is worth noting that the m