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Abstract

Efficient operation and control of modern day urban systems such as transporta-
tion networks is now more important than ever due to huge societal benefits. Low
cost network-wide sensors generate large amounts of data which needs to processed
to extract useful information necessary for operational maintenance and to perform
real-time control. Modern Machine Learning (ML) systems, particularly Deep Neural
Networks (DNNs), provide a scalable solution to the problem of information retrieval
from sensor data. Therefore, Deep Learning systems are increasingly playing an im-
portant role in day-to-day operations of our urban systems and hence cannot not be
treated as standalone systems anymore. This naturally raises questions from a secu-
rity viewpoint. Are modern ML systems robust to adversarial attacks for deployment
in critical real-world applications? If not, then how can we make progress in securing
these systems against such attacks?

In this thesis we first demonstrate the vulnerability of modern ML systems on
a real world scenario relevant to transportation networks by successfully attacking a
commercial ML platform using a traffic-camera image. We review different methods of
defense and various challenges associated in training an adversarially robust classifier.

In terms of contributions, we propose and investigate a new method of defense to
build adversarially robust classifiers using Error-Correcting Codes (ECCs). The idea
of using Error-Correcting Codes for multi-class classification has been investigated in
the past but only under nominal settings. We build upon this idea in the context of
adversarial robustness of Deep Neural Networks. Following the guidelines of code-
book design from literature, we formulate a discrete optimization problem to generate
codebooks in a systematic manner. This optimization problem maximizes minimum
hamming distance between codewords of the codebook while maintaining high col-
umn separation. Using the optimal solution of the discrete optimization problem as
our codebook, we then build a (robust) multi-class classifier from that codebook.

To estimate the adversarial accuracy of ECC based classifiers resulting from dif-
ferent codebooks, we provide methods to generate gradient based white-box attacks.
We discuss estimation of class probability estimates (or scores) which are in itself
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useful for real-world applications along with their use in generating black-box and
white-box attacks. We also discuss differentiable decoding methods, which can also
be used to generate white-box attacks.

We are able to outperform standard all-pairs codebook, providing evidence to
the fact that compact codebooks generated using our discrete optimization approach
can indeed provide high performance. Most importantly, we show that ECC based
classifiers can be partially robust even without any adversarial training. We also show
that this robustness is simply not a manifestation of the large network capacity of
the overall classifier. Our approach can be seen as the first step towards designing
classifiers which are robust by design. These contributions suggest that ECCs based
approach can be useful to improve the robustness of modern ML systems and thus
making urban systems more resilient to adversarial attacks.

Thesis Supervisor: Saurabh Amin
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

There is an ever increasing need for intelligent operation of today's resource-constrained

urban-systems to cater to the need of growing population. Transportation, water, gas

and electricity distribution networks are primary examples of such urban systems.

These urban systems need to be intelligently monitored and controlled. Transporta-

tion networks pose an interesting challenge due to the spatial limitation for expansion

(limited land), high cost associated with expansion (if possible), increasing usage due

to rising population and continued growth in private vehicle ownership (especially

in growing economies). This mismatch of highly constrained supply and rising de-

mand, exacerbates the problem of traffic congestion on a daily basis. Therefore, it is

imperative to utilize the existing infrastructure in an optimal manner. This critical

need to mitigate congestion by effective utilization of existing infrastructure is one of

the main motivations behind the (now prominent) vision of Intelligent Transportation

Systems (ITS) or smart-cities.

In recent years, many urban systems are increasingly relying on data-driven op-

erations in an effort to achieve faster response to emergency situations and real-

time control in day-to-day nominal situations. These capabilities is largely enabled

by the network-wide deployment of a variety of low-cost, high resolution sensors

and remotely controllable actuators (or control devices/ mechanisms). Transporta-

tion networks operationally rely on heterogeneous data collected through a variety

of sources such as traffic-cams, loop-detectors, in-vehicle GPS devices, etc. Sen-

sors provide multi-resolution heterogeneous data to the network operators, who are
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responsible for implementing control (via actuators) to regulate the state of trans-

portation systems. Ramp-meters, traffic-lights, toll-gantries and speed limits (and

other alerts) implemented through Variable message signs (VMS) are common for

controlling transportation networks. With sensors and actuators in place, the opera-

tion of a transportation network can be viewed as a closed-loop (or feedback) control

of a dynamical system. Security of control systems for critical infrastructure is an

important problem because of huge societal losses associated when the security of

such systems is compromised.

Automated handling and processing of raw data, especially for real-time control

becomes challenging due to following reasons:

1) Heterogeneity in data collected through different sensors.

2) Lack of scalability and low accuracy of classical pattern recognition systems.

3) Inability to develop resilient systems in the face of random failures of certain

sensors.

4) High setup and operational costs.

5) Privacy

In most cities, the system operators in Traffic Management Centres (TMCs) have

access to a large amounts of real-time traffic-camera data. However due to above

outlined reasons, a lot of this data is often discarded and not directly used in real-time

decision making. Instead, low resolution noisy data collected through loop-detectors

is commonly used for estimating vehicle-counts and link flow speeds. On the other

hand, camera data is mainly used by human operators for monitoring and maintaining

situational awareness.

Fortunately, modern Machine Learning (ML) tools have the potential to solve the

problem of information retrieval from large scale heterogeneous raw data. In recent

years, the field of machine learning (particularly Deep Learning) has seen significant

advancements. Numerous success stories have been reported on achieving human level

performance on various image classification tasks, object detection, speech transla-

tion, reinforcement learning etc. For a detailed discussion on these advancements, see

the Nature article by LeCun et al. [22]. Human-level performance, high scalability
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and ability to learn from multiple heterogeneous data sources makes deep learning an

attractive ML tool for extracting valuable information from sensor-data to improve

the operation of urban transportation systems. While this can be a major advance-

ment in the field of ITS, naive adoption of deep learning models without having a

complete theoretical understanding of their behavior can lead to many undesirable

consequences. Given that we currently lack a systematic theory for these models, we

need to be prudent to have some operational guarantees, or at least be aware of the

situations where these models may fail. Importantly, incorporating Deep Learning

models in operational control of transportation systems raises new questions from a

security viewpoint.

Are modern deep learning systems robust enough to be deployed in real-world urban

systems? If not, how can we train deep learning models which are adversarially ro-

bust?

1.1 Motivating example

We provide a real-world example to highlight the lack of robustness of the state-of-the-

art ML systems. Consider an image taken from a road traffic camera in Cambridge,

Massachusetts, shown in figure 1-1. We pass this image through a commercial ob-

ject detection service provided by Google through their Google Cloud Vision (GCV)

platform'. GCV correctly identifies "car" as an object in the image, see figure 1-2.

We now as attacker, perturb this image in a specific manner such that the added per-

turbations 2 are almost imperceptible to human eye. GCV now instead of identifying

"car", identifies "ladder" as an object in the image, see figure 1-2. Missed-detection

of car is in itself undesirable; however identifying "ladder" is by all means erroneous

and unacceptable. This is one of the several examples which signify that despite their

high nominal accuracy commercial ML systems are not adversarially robust. This

limits their trustworthiness for safety-critical applications such as traffic control and

ihttps://cloud.google.com/vision/
2In chapter 2, section 2.4 we will discuss on how to generate such attacks in detail.
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incident management.

Figure 1-1: A traffic-cam image

We note some key aspects of the above mentioned attack: Firstly, we did not use

any information about the underlying classifier(s) such as the GCV model architecture

and corresponding parameter values. Secondly, GCV does not provide a full list of

objects (or classes) from which it chooses the final object(s). Indeed, these unknowns

make attacking GCV harder (from the viewpoint of an attacker) than a regular multi-

class classifier for which the total number of classes and the probability estimates for

each class is typically known. The fact that even with little to almost no-information,

we are able to successfully orchestrate an attack clearly demonstrates the vulnerability

of modern ML systems.

We believe that the contextual nature of the above example makes the broader

problem of robustness of ML systems even more intriguing. One can reason as to

why GCV would classify pavement markings as a ladder. Geometrically, pavement

markings in the image indeed share the same structure or form as that of a ladder.

Also, the bounding box provide by GCV shown in figure 1-2 is quite well-positioned

covering the region correctly under the assumption that its a ladder. Thus, the

example also highlights how current ML systems do not account for the contextual

information in decision-making and typically do not provide appropriate reasoning

or interpretation with their predictions. This limitation provides another reason to

study the adversarial robustness of modern ML systems.
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Figure 1-2: Successful demonstration of an adversarial attack on GCV using a traffic-
cam image from Massachusetts Department of Transportation

We now briefly discuss how the brittleness of ML systems to adversarial perturba-

tions can comprise the security of the overall system. As mentioned earlier, network

operators in Traffic management centres (TMCs) often depend on image data from

Closed-Circuit Television (CCTV) cameras for remote monitoring and situational

awareness. However, various TMCs are contemplating the use of modern ML meth-

ods for automatic monitoring and real-time estimation of road network conditions.

Based on these estimates, TMC operators aim to provide real-time control in the

form of ramp-metering, tolls and traffic lights. There is an ever increasing effort

to streamline and automate this process in order to reduce human effort. However,

due to limited financial resources and lack of in-house ML expertise, TMC operators
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out of choice may end up relying on using commercial services like GCV or using

out-of-the-box pre-trained classifiers provided by a third party.

Thus, we need to pro-actively consider and address all security related concerns

arising from the brittleness of ML systems, even if they may appear to be unlikely. For

example an adversary (external hacker or malicious insider) can manipulate the vehi-

cle count estimates of a network operator (obtained via processing the feed of a traffic

camera) by placing an adversarial patch or object on the road. Even manipulating a

single camera in a strategic manner can have network wide effects due to disturbance

propagation characteristic of congested transportation networks. We conjecture that

post-hoc detection of such an attack can be very difficult as one may need to first

localize the spatial origin of disturbance and then manually review hundreds of hours

of regional camera footage. To make things even worse, in many TMCs, camera data

is either not stored or often discarded after a certain period of time, typically in few

hours or a week. For further details on the operational guidelines regarding storage

of traffic camera data we refer the reader to the report [21] from US Department of

Transportation (DOT).

From a system's viewpoint, one can approach the above problem in two ways

1. In anticipation of such attacks, one can aim to design and operate urban systems

under the worst case scenarios or provide improved resiliency guarantees for

well defined class of attacks. For a gentle introduction to secure control see

Cirdenas et al. [9]. However, including resilience generally comes at the cost

of reduced system performance under nominal conditions. Furthermore, this

approach may not provide any operational guarantees in terms of thwarting

all possible attacks. Robust and secure control continues to be an active and

growing field of research (see Cirdenas et al. [10]) and more progress is needed

in improving the trade-off between security and efficiency.

2. A complementary approach to secure control would be to fix the vulnerabilities

at their source; for example, by designing ML systems with robustness guaran-

tees against a large class of adversarial perturbations. In some applications this
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approach might be easier and more beneficial. One can view this as the first

line of defense on an individual sensor level in the overall cyber-physical sys-

tem. Given the success and wide adoption of Deep Neural Networks (DNNs) in

solving a variety of complex tasks it is imperative to design robust ML systems.

Making progress on this problem is important because a large number of ML

applications are open-loop in nature, where recovery from an adversarial attack

may not be possible without incurring instantaneous harm. For instance, Sharif

et al. were able to bypass face recognition systems using eyeglass frames as an

accessory. Carlini et al. [111 demonstrated the spoofing of a voice recognition

system. In such open-loop scenarios it is necessary to have a robust ML system

in place.

1.2 Problem Formulation

A classification system is a prototypical example of a ML system that is useful in a

variety of operational situations in transportation networks. A highly relevant exam-

ple to our discussion would be of high-occupancy vehicle (HOV) lanes, where vehicles

only with a certain number of passengers (generally two or more) are allowed to drive

in order to encourage car-pooling. For enforcement, vision systems are commonly

used to classify whether a vehicle qualifies as an HOV or not. There have been mul-

tiple reports [2], [3] where the drivers use inflatable dolls or cardboard cutouts to

bypass detection. The driver in such situations can also be viewed as an attacker.

Strict and fair compliance can only be ensured with a robust vision system in place,

otherwise single drivers tend to misuse the system 11]. A machine learning system

which classifies vehicle as a car, bus, motorbike etc. would be another example of

classification system being used as a part of ITS.

In this thesis we aim to train a multi-class classifier which is robust over some

predefined uncertainty set S. We first briefly outline the general setup associated

with a classification problem and then introduce the robust version.

Typically we are provided with N training data samples {(xi, y1),..., (XN, YN)}
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drawn from some unknown underlying distribution P. The goal is to learn a func-

tion f parameterized over 0 which minimizes the expected risk E(x,y)~p[L(f(x, 0), y)],

where L(., -) denotes some loss function. This can be written as:

0* = arg min E(x,y)-p[L(f (x, 0), y)] (1.1)
0

Since the underlying distribution is unknown and we only have access to N i.i.d

training examples, the expectation is generally replaced with a simple average over

the training examples. This is commonly referred to as the Empirical Risk Minimiza-

tion (ERM). Traditionally, this approach has been extremely successful in training

classifiers with high prediction accuracy. However, numerous studies 130] [16], have

show that the resulting classifier, particularly Deep neural networks are not robust

to adversarial noise.

Before proceeding further, we first define what do we mean by robust? Suppose

Q2 be the correct class predicted by classifier f over some input x. An adversary adds

some noise 6 e S to perturb the input x a-+ x + 6 in a manner that the classifier now

predicts a different class. A robust classifier should be resilient to such perturbations.

The allowed set of perturbations from which the adversary can choose is referred to as

the uncertainty set S. To train a classifier which is robust to such perturbations for

a given uncertainty set S is the main problem which we aim to study in this thesis.

The robust version of the optimization problem in eq. (1.1), i.e. the problem of

adversarial learning can be written as:

0*robust = arg min E(,,yy-p[maxC(x + , y, 0)] (1.2)0 6eS

In the above formulation, the inner constrained optimization problem aims to

maximize the loss around a given x and the outer unconstrained optimization problem

aims to minimize the loss over all possible perturbations or equivalently, over worst-

case perturbations. Following [16] 123], the set of allowed perturbations S is usually

defined as the -radius norm ball (12 or loo) around a given x. As P is unknown,

expectation is again replaced by a simple sample average over the i.i.d training data
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points. The resulting min-max problem (1.3) is solved by minimizing the loss over

the adversarial examples which are generated by solving the inner problem.

N

Orobust - arg min [max £(xi + 6, yi, 0) (1.3)0 k

Solving the inner optimization problem is equivalent to generating an adversarial

attack, therefore, for a fixed set of model parameters 0, attacker (or the adversary)

aims to solve this problem, while the defender aims to solve the outer problem as a

defense. In chapter 2, we will discuss different methods from literature [23] [33] [26]

for training a robust model.

1.3 Proposed Approach

In this thesis we investigate a new method of defense to build an adversarially robust

classifier using Error-Correcting Codes (ECCs). The idea of using Error-Correcting

Codes for multi-class classification was proposed by Dietterich and Bakiri in [13]. We

revisit this idea in the context of adversarial robustness. Following the guidelines of

codebook design from [13], we formulate a discrete optimization problem to generate

codebooks in a systematic manner.

Using the optimal solution of the discrete optimization problem as our predefined

codebook, we then build a multi-class classifier using that codebook. To evaluate the

adversarial accuracy of ECC based classifiers resulting from different codebooks, we

provide methods to generate gradient based white-box attacks to rigorously estimate

the adversarial accuracy. Most importantly, we show that ECC based classifiers can

be robust without any adversarial training. This can be seen as the first step towards

designing classifiers which are robust by design. We also investigate the effect of

adversarial training on the overall accuracy of the codebook. We also show that the

robustness achieved without adversarial training is simply not because of the network

capacity of the resulting classifier.
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Chapter 2

Background and Literature review

In this chapter we discuss different methods of training a robust model and some

nuances associated with correctly estimating the adversarial accuracy of a model

including Certification and Verification techniques. For the ease of discussion in

subsequent chapters, we enumerate different types of threat model.

2.1 Adversarial Training

In this section we briefly discuss the adversarial training methods of Mqdry et al. [23]

and Goodfellow et al. [16] to train a robust model. Recall the min-max formulation

from previous chapter:

N

6robut = arg min - [max L xi + 6 y, 0).
o N _-'es

To solve the above min-max formulation, adversarial training methods generate

adversarial examples by solving the inner maximization problem and then solves

the outer minimization problem over these examples essentially treating them as

training data points. The inner problem being a constrained optimization problem

is generally solved to generate adversarial training examples using gradient based

methods particularly, Projected Gradient Descent (PGD), to maintain feasibility.

Solving the inner problem using PGD is also referred to as PGD-attack [23]. Another
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popular variant known as Fast-Gradient-Sign Method (FGSM) proposed in [16] is

basically a single step PGD attack. Using the adversarial examples (generated via

solving the inner problem) as training data points, solving the outer problem is same

as standard training but with adversarial examples. Mqdry et. al [23] highlights

that stronger attacks used to generate adversarial examples for training, lead to more

robust networks. These attack based adversarial training methods try to explicitly

solve the inner problem without being discouraged by the non-concave nature of the

problem.

Recently other methods have been proposed which do not make use of adversarial

examples during training. Two such methods proposed by Aditi et al. [261 and Wong

& Kolter [33] fall under this category. These methods do not solve the inner max-

imization problem explicitly, instead they bypass solving the inner problem by find

an upper bound on the optimal value of the inner maximization problem. They do

so by first forming the convex relaxation of the inner problem and then writing the

dual of the relaxed (convex) problem. They then try to solve the outer minimization

problem over the model parameters 6 by minimizing the upper bound. An important

practically useful characteristic associated with these defense methods is that they

are certifiably or provably robust. We will subsequently discuss this in more detail.

Before proceeding further, we would like to take a detour to discuss the evaluation

of the adversarial accuracy of a given model. This detour will help us to better

understand the certifiable /provable nature of the aforementioned training methods.

2.2 Estimating Adversarial Accuracy

Evaluation of natural or clean accuracy over an example (generally from test-set)

is straightforward, and can be easily done by a simple forward pass through the

neural network to compute the class scores and then simply predict the class as the

one with the maximum score. However, calculation of the adversarial accuracy is

not straightforward as it involves solving a non-concave constrained maximization

problem. Recall that since we are in the domain of worst-case analysis, if the model
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correctly predicts over all allowed perturbations in S or equivalently if the model

correctly predicts for the worst-case perturbation, only then we can correctly conclude

that the model is robust for that particular example. Due to highly non-convex

nature of neural networks, solving the non-concave constrained maximization problem

remains the main challenge in correct evaluation of the adversarial accuracy.

We now mathematically define the problem of evaluating the adversarial accuracy.

Suppose c be the true class associated with a given input x and let i E 1, ... , kJ/{c}

be the target class for which the attacker is trying to generate an adversarial pertur-

bation. Attacker aims to solve the following non-convex problem:

f*(x) = max fi(x + 6) - fc(x + 6) (2.2)
6eS

For a valid' adversarial perturbation, the objective function value of this problem

would be strictly positive for some target class i. Note that for the purposes of

calculating adversarial accuracy, we do not really care about the exact maximizer of

(2.2). Instead we are mainly interested in determining one of the following two things:

1. Can we find a feasible solution of (2.2) for which the objective function value is

positive? (Category I)

2. Whether the optimal value of the maximizer is strictly positive or not? (Cate-

gory II)

Different attacks including gradient-based PGD or FGSM attempts to solve the

above outlined problem (2.2). Given the non-concave nature of the problem, these at-

tacks do not provide any gaurantee in terms of finding the optimal solution, and hence

simply aims at finding a feasible solution to (2.2) with positive objective function

value. These attacks therefore fall in Category I. If these attacks fail in generating an

adversarial perturbation (especially if the attack is weak), we can only conclude that

the model is merely robust against that particular attack. The efficacy or strength

of a certain attack (or an adversary) is empirically estimated by the number of ex-

amples (from the test-set) for which the adversary is able to generate an adversarial

1an adversarial perturbation does not necessarily need to be the arg max of (2.2)
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perturbation or fool the model. However, failure of any particular attack(s) on a

given example does not guarantee the absence of an adversarial perturbation.

From the above discussion we can conclude that since different attacks do not

provide any guarantee in case of a failure, therefore, such (non-optimal) attacks can

only provide an upper bound on the true adversarial accuracy, implying that the true

adversarial accuracy potentially could be much lower. The strength of the attack will

govern the tightness of this upper bound. Therefore: First, to avoid having a false

sense of security it is imperative to evaluate against strong adversaries. Second, more

importantly we need methods using which we can safely compute the true adversarial

accuracy or atleast get a good lower bound. Interestingly, the need to estimate true

adversarial accuracy of a model has given rise to various Certification and Verification

methods.

2.2.1 Certification

Certification methods provide an alternative way of approaching problem (2.2) by

determining the sign of f* (the optimal value of the maximizer of (2.2)). Instead of

solving (2.2) explicitly, if we can upper-bound f* and show that if f* < 0 (strictly),

for all target classes, then we can safely conclude that the model is robust to any

allowed perturbation for a given x. Equivalently, we can say that we have generated

a certificate of robustness. These methods fall in Category II.

The upper bound on f* is generated using the convex relaxations of (2.2). Sub-

sequently, either the convex relaxation (as primal) is directly solved for optimality or

its dual is considered. Recall that any feasible dual solution provides a valid upper

bound to the primal. Therefore, if we can easily find a feasible dual solution for which

the objective function value is negative or if the optimal dual (or primal) solution has

negative objective function value, then we have essentially established that f* < 0.

However, if the optimal value of the dual is positive, then we cannot conclude any-

thing useful. In such cases we cannot provide a certificate of robustness even though

the model may actually be robust for that input x. In practice, depending upon

the tightness of the convex relaxation and the size of the uncertainty set S, the up-
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per bound can be loose. Therefore, certification methods, although mathematically

elegant and useful in practice, are still incomplete.

2.2.2 Verification

We now discuss Verification methods which are complete in the sense that they can

solve problem (2.2) exactly for DNNs with ReLU non-linearity. An important step in

this direction was made by Katz et al. in [20] as ReLUplex. In this method the authors

formulate the problem under the Satisfiability Modulo Theories (SMT) framework and

extend the Simplex method to incorporate ReLU constraints to optimally solve (2.2).

Their work was motivated by a critical real-world application to verify neural networks

used in airborne collision avoidance system for unmanned aircrafts. Subsequently

many other works followed based on Mixed Integer Linear Programming (MILP)

formulations of ReLU non-linearity [31]. Note that these formulations provides an

exact representation of the ReLU network and hence the problem (2.2) can be solved

as a MILP. Despite the discrete nature of MILPs, we can still optimally solve them

by either using Cutting plane methods or Branch and Bound methods.

Verification methods can also potentially help in training more robust networks.

Recall that in the min-max formulation (2.1), the inner maximization problem is

solved using gradient based attacks like PGD or FGSM, however due to non-optimality

of these attacks, one can only expect to get a good candidate solution. Verification

methods can alternatively be used to solve the inner problem optimally or generate

attacks stronger than PGD or other attacks. Training against a stronger adversary

can lead to more robust networks. To highlight this connection was part of our mo-

tivation to digress from our initial discussion on adversarial training. However, given

the lack of scalability of current verification methods, it remains to be seen whether

these methods will ever be useful in training more robust models.

25



2.3 Robust Training

After providing a high-level overview of different Certification and Verification meth-

ods we now come back to our original problem of understanding robust training

methods proposed by Aditi et al. [26] and Wong & Kolter [33]. Both these methods

form a convex relaxation of the non-convex DNN, thus generating a differentiable

certificate and subsequently optimizing the model parameters over this certificate.

2.3.1 Aditi et al. [261

Aditi et al. in [261 first upper bound eq. (2.2) by maximum of the 1 1 -norm of the

gradients over S. For a two layer network, this is further upper bounded by a non-

convex Quadratic Program(QP). Subsequently, a convex relaxation of this QP in the

form of a Semi-definite program is formed using the famous MAX-CUT result of

Goemans and Williamson [15]. Finally, the upper bound is of the form:

f() + max q(y,0) (2.3)
-, yT2O,diag(yyT)(1

fi W)- fc W %.)
Regularizer

where x is the input (or the training data) and y is the set of decision variables of the

second part of the upper bound (which is a Semi-Definite program). Note that the

second part q(.), is independent of x (input from training-set) and only depends on

model parameters 9(i.e. the weights of the DNN) and a set of variables y, therefore

can be treated as a regularizer.

The second part of the upper bounds requires solving a semi-definite program

which can be computationally expensive. To bypass this, Aditi et al. [26] takes the

dual of q(-) such that the resulting form involves computation of the top eigenvalues

which is fast. Finally, this is optimized over model parameters 0 and variables y using

stochastic gradient based methods.

After the training of the model parameters is completed, for further discussion the

model parameters O's are therefore assumed to be fixed. To generate a certificate of
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robustness on a new x (from the test-set), one needs to optimally re-solve the second

part of eq. (2.3) involving a SDP. However, as this is independent of x, therefore,

needs to be solved only once (for every pair of classes). Note that the above method

is limited to two layer networks and lw-norm based uncertainty set, although it can

handle different non-linearities like ReLU, Sigmoid, etc.

2.3.2 Convex outer polytope method of Wong and Kolter [33]

We now discuss the convex-outer polytope approach of training a robust model (par-

ticularly a DNN with ReLU non-linearity) proposed by Wong and Kolter in [33]. This

method although limited to ReLU nonlinearity however, can handle networks with

more than two layers and can be extended to other convex l,-norm based uncertainty

sets and not just lo-norm. Consider a Deep neural network with L layers and ReLU

as the activation function for all L - 1 hidden layers. Let 0 = {W 1 , b 1,... , WL, bL}

be the set of weights and biases. The following set of equations correspond to the

layer-wise transformation of any input z:

zo = z (2.4)

si = zi_1Wi + bi for i = 1, 2, ... , L (2.5)

zi = max(ii,O) for i= 1,2,...,L- 1 (2.6)

The final output f(z,) is simply the vector L. Hence, the score of jth class, i.e.

fj(z ) = £. In above, eq. (2.5) represents a simple linear transformation, eq. (2.6)

represents elements wise non-linearity. This non-linearity is the main reason due to

which we end up with a non-linear non-convex program for problem (2.2). To deal

with this ReLU non-linearity, Wong and Kolter [33] proposed a convex-relaxation

using only linear inequalities. Suppose that for any particular ReLU we know the pre-

activation input lower and upper bounds, i.e. 1, u. Given these bounds, we can now
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represent the convex region shown in fig. 2-1 using the following set of inequalities:

z > 0 (2.7)

Z > i (2.8)

-uz + (u - l)z -ul (2.9)

We can now use the above set of linear inequalities to replace the non-linear ReLU.

z

U £ U

Bounded ReLU set Convex relaxaton

Figure 2-1: Bounded linear relaxation of ReLU non linearity (Image adapted from
[33])

We will therefore end up with a linear program. This is commonly referred to as the

LP-relaxation of the ReLU network.

Wong and Kolter [33] shows that the dual of the LP-relaxation takes a very special

form which is similar to a deep neural network and therefore is much easy to work

with. Identifying this is one of their important contributions and allowed them to

work with large networks. Also, note that one needs to compute the pre-activation

bounds to ReLU's, authors provide a method for that as well. Recall that any dual

solution gives a bound on the primal, therfore instead of optimizing the dual, authors

construct a feasible solution to this dual. This feasible solution gives a bound on the

inner-problem. Finally, authors optimize this bound over the network parameters 6

to obtain a robust model. Once the training is complete and the model parameters

are fixed, we can then solve the convex LP-relaxation (or its dual) to generate a

certificate of robustness depending on the optimal objective function value of the LP.

2.3.3 Summary

In our discussion so far, we have covered different methods of training a robust model,

including how some of these methods are certifiably/provably robust. In principle a
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particular certification method can be used to estimate the adversarial accuracy of a

model which was trained against certificates generated via some other method. For

instance, we can use the method of Aditi et al. [26] to certify a network trained using

Wong and Kolter's [33] approach. However, Aditi et al. [26] showed that when doing

so, vacous bounds are achieved, therefore, it is important to use the same certificates

against which the network was trained.

For a better understanding, we discussed Certification and Verification methods in

the context of training a robust model. However, given the need to correctly determine

the adversarial accuracy of a model, there have been other independent studies which

aim to propose new certification methods, for example Dvijotham et al. [14], Aditi

et al. [27]. As this is a very popular and growing field of research, it is not possible

to cover everything in detail. However, we would like to point out that, most of the

recent studies like [14], [27] build upon the ideas of Aditi et al. [26] or Wong and

Kolter [33]. Most importantly, all these studies including [26] and [33] make use of

standard techniques from convex optimization, particularly robust optimization. For

details on robust optimization refer to Ben-Tal et al. [7].

2.4 Different Threat Models

In order to study the robustness of a model against a particular adversary (or an

attack), it is important to have a precise threat model in place or the information

which an attacker can use to its own advantage. This becomes particularly important

since the defender may inadvertently reveal some information which may appear to

be innocuous but is still sufficient to compromise security. Moreover, since adversarial

robustness of Deep learning models 2 is in itself a new and developing field, therefore

the notion of a threat model provides a principled way to make progress. In this

section we outline different threat models or the various type of attacks which are

most commonly used to evaluate the robustness of a model. These attacks can be

2We acknowledge that robustness of different ML models has been extensively studied in the past,
our discussion here is mainly concerning Deep Neural Networks, which have regained popularity and
adoption in recent years.
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broadly categorized into white-box attacks, black-box attacks and partial-information

attacks. Futher, each attack can have a different set of allowed perturbations S such

as norm based perturbations.

In black-box setting, only the output of the classifier i.e. the class probabilities or

score of each class is known to the attacker. No model information is available to the

attacker, i.e. the network architecture and the weights of the network. In this setting,

since only class probability estimates are available, therefore analytical computation

of gradients is not possible. The problem is generally solved using off-the-shelf black-

box optimizers mainly evolutionary algorithms such as Particle Swarm Optimization

(PSO), Genetic Algorithms (GAs) etc. However, given the efficacy of gradient based

attacks, one can also try to compute an estimate of the gradient and then use this

estimate to run gradient-based attacks, for details see Ilyas et al. [19]. SPSA proposed

by Spall in 129] is another black-box optimization method which is based on gradient

estimation, see [28] for an overview.

In white-box setting, the class probability estimates along with the model archi-

tecture and weights are known to the attacker. White-box setting can also be referred

to as complete information setting. In white-box setting, the projected gradient de-

scent or the PGD-attack proposed in Mqdry et al. [231 has emerged as one of the

strongest known attack. Another very popular gradient based attack known as Fast-

Gradient-Sign method (FGSM) was proposed by Goodfellow et al. in [16] and is still

commonly used for benchmarking. FGSM can be viewed as simply a single step PGD

attack.

In the previously described black-box setting class, probabilities or scores are

available for all output classes of the classifier. Therefore, attacker can easily define

a loss function and then maximize it. Since all possible output classes are known,

generating targeted attacks is also straightforward. However, there can be a case

where the attacker only has access to a sub-set of classes and a confidence score

associated with each class in this subset. Since only a subset of output classes are

known, introducing a target (adversarial) class is not straightforward as one does

not even know what are the remaining classes. This setting is known as partial-
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information setting. Google Cloud Vision (GCV) platform falls in this category. Our

motivating example of successfully attacking GCV in chapter 1, shows that even in

such setting, adversarial attacks are possible. For more details refer to Ilyas et al. [19].

We now discuss Transfer attacks or the phenonmenon of transferability 132]. In

this setting the attacker does not have access to the actual weights or the class prob-

abilities of the trained network. But instead, has access to the training data and the

network architecture. The attacker may also not have complete information about

the network architecture. Numerous studies [16] [32] have shown that adversarial ex-

amples generated using one model can also fool other independently trained models.

However, adversarial training and network capacity can significantly reduce transfer-

ability [23] [16].

Another important aspect of a threat model is the space of allowed perturbations,

i.e. the set S. Most commonly, norm based perturbations around the input such

as 12 or 1oc are considered. These perturbations although visually imperceptible, but

are not semantically meaningful. For instance, recall from section 1.2, bypassing the

HOV classifier on highways using inflatable dolls or cardboard cutouts would be one

such real-world example.
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Chapter 3

Error Correcting Codes based Robust

Classification

In previous chapter, we discussed different methods of training a robust classifier.

Most of these methods mainly approach to directly solve the min-max problem (1.2) by

either explicitly solving the inner maximization problem using gradient based attacks

such as PGD/FGSM or by upper-bounding it by forming its convex relaxation and

then using duality. In this chapter, we introduce our approach of training a robust

classifier using Error-Correcting Codes (ECCs).

Our goal is to train a classifier which achieves low adversarial loss, i.e we aim to do

well on the inner problem of (1.2), but we do not directly optimize model parameters 0

over the maximum loss(or its upper bound) by solving the inner problem. Instead, we

rely on the error-correcting property of Error-Correcting Codes (ECCs). Therefore,

corresponding to a given codebook, we train separate binary classifiers (or optimize

their network weights O's) and finally combine them into a single multi-class classifier.

We first provide the motivation of using ECCs based on the adversarial robustness of

binary classifiers, and we then introduce the idea of using error-correcting codes to

compose multi-class classifiers from binary classifiers.
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3.1 Robustness of binary Classifiers

The main motivation of our proposed approach arises from the observation that binary

Deep Neural Networks (DNNs) exhibit high adversarial robustness. There can be two

ways in which one can establish the robust of a classifier:

1. Adversarial accuracy for a given E

2. The average maximum adversarial distortion for which the classifier predicts

the correct class.

3.1.1 Adversarial Accuracy based comparison

On CIFAR1O dataset, Mqdry et. al. [23] achieves an adversarial accuracy of around

45 - 50% for lc = 8/255. However, if we adversarially train all two class pairs on

CIFAR10 dataset, i.e. (12) = 45 binary classifiers, the average adversarial accuracy

of these binary classifiers is around 75%. Therefore a natural question arises: Can we

build a robust multi-class classification system composed of (robust) binary classifiers?

Given the high accuracy of these binary classifiers, we aim to construct a multi-class

classifier by intelligently combining several robust binary classifiers (not necessarily

two class pairs). Our final goal would be to outperform the multi-class system of

Mqdry et. al [23]. However, even if this is not possible, this new and interesting way

of error-correcting codes based defense is in itself worthy of thorough investigation.

3.1.2 Adversarial distortion based comparison

Another way of evaluating the robustness of a model would be to find the maximum

perturbation E for which the classifier still predicts the correct class. Mathematically,

this corresponds to the following optimization problem:

Let c be the correct class and fi(x) represent the output score of class i e {1,... k},
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then:

max E
X /,E

fc(x') > fi(x'), V i e {1, ... k}\{c

x - x e (3.1)

x' - X E

Solving the above optimization problem optimally may not possible due to non-convex

nature of neural networks, instead we can try to form a convex-relaxation using

methods enumerated in chapter 2 and then solve the relaxed version. For ReLU

networks, the above problem will again simplify to a MILP. Solving the above problem

for ReLU networks can be computationally expensive, even for smaller networks [31].

And since tightness of the convex-relaxed version would be heavily dependent on the

size and the architecture of the network, therefore it may not provide us with an

accurate way to compare with a multi-output network as used in Mqdry et al. [23].

For these reasons, we mainly rely on adversarial accuracy based comparisons.

Before discussing the idea of using ECCs for classification, we would like to high-

light one key observation made in Mqdry et. al. [23]. Authors in [23] highlight that

network capacity helps in achieving higher adversarial accuracy. For instance on

CIFAR10 dataset, authors increase the width of the layers of their network by a fac-

tor of 10, and achieve higher adversarial accuracy against single-step FGSM attack

and also against transfer-attacks. Apart from the error-correcting property of ECCs,

this further provides support for our hypothesis of achieving robustness with ECCs.

Combining the output of multiple classifiers, where each classifier solves some dif-

ferent classification problem, in a way increases the overall system (model) capacity

and therefore can potentially have higher accuracy. Although, for our approach, we

believe that this should provide only a second order effect on the overall performance.
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3.2 Error-Correcting Codes (ECCs) for multi-class

Classification

Consider that we are solving a k class classification problem, where |kl > 2 and our

goal is to solve the k-class problem by only using binary classifiers. The two well

known and commonly used methods of reducing multi-class problems to binary clas-

sification problem are one-vs-all (also known as one against all) and one-vs-one (also

known as all-pairs).

In the one-vs-all case, k binary classifiers are trained, one for each class such that

training examples from that class are considered positive (+1) and training examples

from rest of the k - 1 classes are considered negative (-1). This system can be rep-

resented by a k x k matrix as shown in the figure 3-la .

In the one-vs-one or all pairs method, ( ) binary classifiers are trained. For each dis-

tinct pair (i, j) e 1, 2,. .. , k 2 | i # j, examples from class i are considered as positive

+1 and examples from class j are considered negative -1 and all other examples are

ignored. The examples ignored can be represented by 0. The final system can be

represented by kx (k) matrix' as shown in the figure 3-1b .

At test time, a new example can be classified by majority voting, where final pre-

diction of each hypothesis provides a vote for a particular class. The final predicted

class is the one with the most votes (ties are broken at random).

f1 f2 f3 f4 f1 f2 f3 f4 f5 f6

Cl +1 -1 -1 -1 Cl +1 +1 +1 0 0 0

C2 -1 +1 -1 -1 C2 -1 0 0 +1 +1 0

C3 -1 -1 +1 -1 C3 0 -1 0 -1 0 +1

C4 -1 -1 -1 +1 C4 0 0 -1 0 -1 -1

(a) one-vs-all (b) one-vs-one or all-pairs

Figure 3-1: Two different codebooks for a 4-Class problem. Image adapted from [25]

'From henceforth, we will use coding matrix and codebook interchangeably.
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The above two schemes although intuitive are in fact two special cases of a gen-

eralized framework of Error Correcting Output Codes proposed by Dietterich and

Bakiri [131. In this paradigm, each class is encoded with a unique codeword or a

string composed of length 1 resulting in a coding matrix M of size k x 1 . The entries

of the coding matrix M are either taken from the set {+1, -1} or {+1, 0 - 1}, i.e.

M e {+1, -l}kxl or M e {+1, 0, -1}kxl.

Binary Coding: M e {+1, -1}kxl

Ternary Coding: M e {+1, 0, -1}kxl

Each column in the matrix M, represents a binary learning problem. Training

examples belonging to different classes Cl ... Ck with entries { 1} are partitioned

into two classes where all {+ 1} entry examples constitute the positive class and {-1}

examples constitute the other class. In case of ternary coding, training examples with

entry 0 are not incorporated in the training set and are considered irrelevant. Let

fi(x), ... , fz(x) represent the 1 binary hypotheses learnt for each column of M. For a

new sample x, after evaluation on all I hypotheses we get an encoding f(x) of length

I which we denote as:

f W) = [f1( ,.. fzi )]

For a binary deep neural network, let f,,+(x) denote the output of the logit corre-

sponding to class +1 and f,(x) for class -1. Then,

fS { = 1 if f",1 (z) > f () V s E{1,...,l} (3.2)
1 otherwise

Finally we need to associate f(x) with any one of the rows of the coding matrix

M or correspondingly a class. This is commonly done by using Hamming decod-

ing. Hamming distance dH(-, •) between f(x) and each row or codeword M(r, -) is

computed and the one with the minimum hamming distance dH is chosen. Ham-

ming distance, in case of binary vectors measure the number of places in which the
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two vectors disagree. However, in case of ternary codes if M(r, s) is zero, 1/2 is

contributed to the sum for that component.

Q argmin dH(M (r, ),f )
r

1 1 - sign(M4 (r, S) X f,(W))

s=1

sign(z) = +1 if z > 0, -1 if z < 0 and 0 otherwise.

3.2.1 Binary Codes

For Binary codes, as mentioned before the coding matrix is M e {+1, -1}kxI. As the

final accuracy of the classifier depends on the error-correcting ability of the coding

matrix M, it is important to choose a coding matrix carefully to have low test error.

Mathematically, if each codeword or row of the coding matrix M has a hamming

distance of at-least d with every other row, then such a code can correct at-least [2J
errors. Equivalently, the closed Hamming balls of radius [Jj around each codeword

are disjoint.

Lets now consider a 3 class problem 2 for which we want to find a valid binary cod-

ing matrix M. All the possible columns are shown in table 3.1. Note that columns

f5 to fs are simply complements of columns fi to f4, therefore we can simply ignore

them. Moreover, fi has all zeros, therefore does not represent a valid classifier. Fi-

nally, f2, f3, f4 will constitute our coding matrix.

2We borrow this example from Dietterich and Bakiri 1131.
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Table 3.1: Different binary hypothesis possible for a 3 class problem.

For a code of fixed length 1, as highlighted in [13], it is desirable to choose a code

with the following two properties:

Row Separation: Hamming distance between any two pair of codewords should be

large or the two codewords should be well separated.

Column Separation: Every column hi should be uncorrelated with all other columns

hj, i # j. This can be achieved by having large Hamming distance between columns

as well. Note that maximum Hamming distance would be achieved if the two columns

are complementary to each other, however this would result in essentially learning the

same discriminant function, therefore, to avoid this, every column including its com-

plement should be uncorrelated with all other columns.

Requirement for large row separation follows from the error-correcting property.

A codebook with large hamming distance among its rows can correct for more errors,

therefore in order to have a high prediction accuracy it is desirable have to large row

separation. However, the need for large column separation is not so straightforward.

To understand this we need to discuss an important assumption of Error-correcting

codes from the perspective of communication over a noisy channel. The whole idea

of encoding a signal and then transmitting the code over a noisy channel is useful

only if the noise or the error made during transmission due to this noise is random.

Then by having a sufficiently large encoding we can recover the original signal at the

receiving end with very high accuracy.

For our case if the two columns or classifiers make errors in their predictions

on the same inputs, i.e. their outputs are correlated then such columns will defeat
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f1 f2 f3 f4 f5 f6 f7 f8

C1 0 0 0 0 1 1 1 1

C2 0 0 1 1 1 1 0 0

C3 0 1 0 1 1 0 1 0



the purpose of encoding. Therefore, in order to avoid correlated hypotheses, it is

important to have large column separation. Also note that since maximum column

separation is achieved for complementary columns, which correspond to the same

classification problem or hypothesis, therefore, column separation should not be too

high as well. Because if the column separation is too high then a column may be

correlated to the complement of the other column. In subsequent section 3.2.3, we

will formalize these concepts mathematically to formulate a discrete optimization

problem to generate codebooks.

3.2.2 Ternary Codes

For Ternary codes, the elements of the coding matrix are chosen from a larger set

{-1, 0, +1}, or M e {-1, 0, +1}kxI. One-vs-one or all-pairs codebook is one example

of ternary codes, see figure 3-1b for a 4-class problem. We will discuss more about

ternary codes in section 3.2.4 under tree based classifiers.

3.2.3 Codebook generation

In our discussion so far, we have provided an overview of how EECs can be used for

classification including different categories of codes such binary and ternary codes.

Now the question arises: How to select a particular codebook for which the resulting

k-class classifier has high accuracy (both nominal and adversarial)?

For the discussion of codebook generation in this section, we limit ourselves to binary

codes. Following the guidelines of Dietterich and Bakiri in [13], we formulate a discrete

optimization problem and solve it using Integer Programming (IP) solvers to generate

a codebook.

Recall our 3 class example from section 3.2.1 where in table 3.1 we highlight all

the possible columns which are part of the final codebook. This enumeration of

columns can be easily generalized to k classes, and the final coding matrix will have

(2 k - 2)/2 - 2k-1 - 1 columns. This can be categorized as Exhaustive Coding [13].

For 2 < k < 7, using an exhaustive code can be feasible as the number of binary
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classifiers needed are small, however for large k the number of columns required grow

exponentially. For a 10 class problem, there would be 511 valid columns. Therefore,

it is necessary to select only a subset of columns while maintaining high row and

column separation.

The column subset selection can be either formulated as a propositional satisfi-

ability problem and then solved using an off-the-shelf SAT solver, or equivalently it

can be formulated and solved as an Integer Programming problem. The SAT formu-

lation for 8 < k < 11 proposed in [13], aims to attempt a solution to the following

problem: For a predefined number of columns L and some value d, is there a solution

such that the Hamming distance between any two columns is between d and L - d?

Instead, we modify this to find a solution which maximizes the minimum Hamming

distance between any two rows. Let xi, i e 1,... 2 -1 - 1 be a boolean variable asso-

ciated with each column of the exhaustive code, and let zij be the boolean variable

which represents the outcome of AND operation between variables xi and xz for all

(i, j) e {1, . .. , 2k-1 - 12|i # j. Basically, the variable xij = 1 ensures that columns

i and j in the final solution satisfy the column separation criteria. We now provide

the IP formulation to generate a codebook.
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max min {d' 2 , d 3, ... , d k- '} (3.3)

2 k-1 -1

Z xi L (3.4)
i=1

d ij < dH( (,),(j)ij < (L -d)zij V (i,j)ce {,..., 2-- 2i# j (3.5)

zij _ Xi (3.6)

zij < zy (3.7)

xi + X - 1 x y (3.8)

2-1 1

dHt = 2 ' ' ' zi V (s,t) e {1,.. ., k} 21 s # t (3.9)
i=12

zi e- {0, 1} V i e {1,.I_., 2 k-1_1 ( 10

ije {, 1} V (i, j) e {1,..., 2k1 - 1}21 i # j (3.11)

In the above formulation, max-min can be easily simplified by introducing an

auxiliary variable t, where t = min {d' 2 I d' 3, ... , dkTl'k } and corresponding

constraints t < d' 2 ; t d' 3 ; ... t dk-". Eq. (3.5) ensures large column

separation if xij = 1. Equations (3.6) and (3.7) ensure that if xij = 1 then both

columns i and j are included in the solution, i.e. xi = 1 and x= 1. Conversely,

Equation (3.8) ensures that if columns i and j are selected then xi= 1.

Some discussion regarding the dimensionality of the above problem:

There are 2 k-1 - 1 0( 2 k-1) binary variables for each column and for each pair of

columns there are (2k1) O( 2 2k-3) binary variables. Therefore, the total number

of binary variables are of the order of 0 (2 2k-3). The total number of constraints

are of the order of 0(22k-1). For a 10 class problem, i.e. k = 10, there would be

around 130, 000 variables and 650, 000 constraints. Modern, IP solvers like Gurobi

and CPLEX can handle such large problems, however for k > 10, solving the above

optimization problem may not be tractable. Note that Dietterich and Bakiri in [13],

only aims to find a feasible solution using a SMT solver but not the optimal solution.

This is reasonable and can be attributed to the fact that their study was done almost
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two and a half decades ago. Since then IP solvers have made significant advances.

The above proposed IP, although easy to follow, becomes intractable for k > 10.

The main reason is that we introduced a binary variable for every pair of columns to

ensure that in the final solution eq. (3.5) (corresponding to large column separation)

is satisfied. We now propose an alternative formulation in which we do not need

to introduce variable xii for every pair of columns. Let 9P represents the set of all

pairs of columns, i.e. 9, = {(i,j) e {1, ... , 2k1 - 121 i # j} and 19,1 = (2-11).

We can now divide the set 9p into two disjoint subsets gfe". and ginf, such that

9 = {gea g n}. The set gfeas contains only those i, j pairs which satisfy the

column separation criteria in eq. (3.5) and set g If contains the i, j pairs which do

not satisfy the column separation criteria.

g, = {(i,j) e {1,... ,2k-1 - 1121

gfeas = {(i,j) E {1,... 2 k-1 _ 1}21 i j;d < dH(M(.i) 4 (L d)

gnf = g\{gfeas}

The interesting thing to note is that for any pair i, j e gf,eas we do not need

impose the column separation constraint (eqn 3.8) as this we have already ensured

while constructing the set gfeas. Therefore, we do not need to introduce variable xij

for these pairs, and hence correspondingly we also do not need to include equations

(3.6), (3.7) and (3.8). Now lets consider the i,j pairs in set G "/. We know that these

pairs do not satisfy the column separation criteria, therefore for any pair at-most only

one of the two columns can be included in the final solution. For these pairs we know

the variable xij has to be 0 in any feasible solution. For these pairs since we only

need to ensure that at-most one column is selected, this can be achieved by setting

zij = 0 in eq. (3.8). Finally, for every i, j pair in G ", we only need to include one

constraint: x + x - 1 < 0 for every pair.

The final IP reduces to the following form:
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max min {d' , d'j, df k'} (3.12)

2 k-1-1

Zi < L (3.13)

xi + x < 1 V (i,j) e ginf (3.14)

d S' = 2k-11 I-sign(M(s, -), M(t, -)) i VstC1 -)12S=At(15

x e {0, 1} Vie {,... , 2k-1 } (3.16)

The above formulation does not contain any xij term. This significantly reduces

the number of variables along with the number of constraints in the previous formu-

lation. The total number of constraints will now mainly be decided by the size of the

set gn f, corresponding to eq. (3.14). We would like to point out that in case if the

IP solver does not terminate for larger k, i.e. k > 11, it will still provide us with a

feasible solution and moreover it will also provide us with an upper-bound on our ob-

jective function value. This will provide us with some idea on how far we are from an

optimal solution if a feasible solution with the same value as that of an upper-bound

exists. This is another major benefit of our IP based approach compared to the SMT

based approach of Dietterich and Bakiri [13].

We now discuss some aspects of the codebook design which the above formulation

does not take into account. The above IP based method of codebook generation for

binary codes tries to ensure high row and column separation, however these are simply

guidelines to design codebooks which could potentially result in good classifiers. This

procedure does not take into account the hardness of the resulting hypotheses or

the prediction accuracy of the individual hypotheses. Therefore, it cannot ensure

optimality of the resulting multi-class classifier. For instance, a classifier resulting

from a sub-optimal solution (or codebook) to the above IP could have higher final

accuracy in comparison to the optimal solution (codebook). Ideally one would like to

formulate the problem of codebook design as a learning algorithm which incorporates
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the final accuracy of the resulting classifier and hence can iteratively improve upon it.

The final codebook should be decided from the data (or the training set) and should

not be simply pre-defined.

Crammer and Singer [12] showed that the problem of optimal discrete codebook

design is intractable and NP-complete. Instead of designing discrete codes, they made

progress in the design of continuous codes. Pujol et al. in [25], proposed a method

based on hierarchical partition of the classes resulting in a binary tree or a ternary

code book. We will discuss tree based classifiers in section 3.2.4. Martin et al. in [51,

recently proposed a new method called Error Correcting Factorization. The problem

of optimal codebook design is still an open problem.

We note that random codes is another way of arbitrarily generating codebooks as

done in Allwein et al. [4] for the purpose of benchmarking. If the elements are chosen

uniformly at random from {+1, -1}, then the resulting codebooks are called dense

codes and if the elements are taken from {-1, 0, +1} then the resulting codebooks are

called sparse codes. In sparse codes, 0 is chosen with probability 1/2 and ±1 are each

chosen with probability 1/4. Generally, 10, 000 random matrices are generated and

after discarding the invalid matrices, the one with the largest minimum Hamming

distance among rows is selected. Allwein et al. [4] used codebooks of length [1010g 2 k]

and [1510g 2 k] for dense codes and sparse codes respectively.

3.2.4 Tree based Classifiers

Tree based classifiers are another way to reduce a k class problem to different binary

(or smaller class) classification problems. Each node of the tree is a binary (or ternary)

classification problem. Starting at the root node, one moves down the tree based on

the outcome at each node untill a leaf node is reached.

A binary tree based classifier can be represented as a ternary code [25]. This can

be easily verified from the schematic shown in figure 3-2. However, note that every

ternary code may not have a corresponding binary tree structure, one-vs-one would

be one such example.
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IC1, C2,C3.C4,C5.C8,C7]

fi

[C1. C3,C4 [ C2,C5C6,C7 I

f2 3
{C1] C3,C4] [C2] [C5,C6,C7j

C1 f4 C2 f5

IC3] [C41 [C6C7] IC5

C3 C4 f6

f1 f2 f3 4 f5 f6

Cl +1 +1 0 0 0 0

C2 -1 0 +1 0 0 0

C3 +1 -1 0 +1 0 0

C4 +1 -1 0 -1 0 0

C5 -1 0 -1 0 -1 0

C6 -1 0 -1 0 +1 +1

C7 -1 0 -1 0 + -
C6 C7 _ _

Figure 3-2: A binary Tree and its corresponding coding matrix

We briefly overview the method of Pujol et al. in [25] as their method (known as

DECOC 3) is relevant to our discussion on codebook generation in previous section

3.2.3. Authors in [25] proposed a method of generating a ternary codebook which

involves using training data to decide the columns of the final codebook, thus making

progress towards optimal codebook design. Using the fact that any k-class problem

can be reduced to a binary tree as shown in figure 3-2 and every such binary tree

corresponds to a ternary codebook, authors in [25], tries to generate one such binary

tree. Note that each node of the binary tree in figure 3-2 corresponds to a column in

the codebook. Also, any such binary tree will have k - 1 columns corresponding to

its internal nodes. At each parent node, starting at the root node, authors try to find

the partition of the classes (into two sub-sets) which has the maximum discriminative

power. Finding the best partition at each node requires searching through an expo-

nential number of candidate partitions. To deal with this, authors resort to Floating

search methods [24], with Mutual Information as the criteria to decide on the quality

of a partition. Finally, for a new example at test tinie, authors used Euclidean dis-

tance instead of Hamming distance for decoding to assign a particular class to that

example.

In the above outlined DECOC approach, in contrast to our IP based approach,

there is no emphasis on the error-correcting capability, therefore, in some sense the

3DECOC: Discriminant Error Correcting Output Code
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DECOC approach trades error-correcting capability with classifier performance for

each hypothesis. In terms of experimental results, Pujol et al. [25] compare their ap-

proach on nine datasets from the UCI database and on traffic sign dataset. Authors

used Adaboost and Decision Tree as the classifier for each hypothesis. Authors bench-

mark their approach against predefined codebooks such as one-vs-one, one-vs-all and

randomly generated sparse and dense codes. On the UCI datasets, DECOC although

outperforms all other predefined codebooks, however, the gain in performance over

one-vs-one is not very high. One-vs-all performs poorly and is easily outperformed

by randomly generated dense and sparse codes. This clearly indicates that one-vs-

one although a predefined codebook still provides high accuracy therefore a good

candidate to benchmark against our own codebooks generated via the IP based ap-

proach in chapter 5. On the traffic sign dataset with 32 classes, DECOC outperforms

one-vs-one by around 3 - 4% with only using 31 hypotheses in comparison to the

496 hypothesis used by one-vs-one. This shows that it is possible to find a compact

codebook with high prediction accuracy.

3.3 ECC based Robust Classifiers

In this section we put everything together, mainly extending the discussion of section

3.1 and 3.2 to form a k-class classifier using ECCs, however now we finally focus on the

adversarial robustness of the final classifier. The two main components of our ECC

based approach are, first solving the IP to generate a codebook and then training

a classifier for every column of the pre-defined codebook. In all our subsequent

discussion including results in chapter 5, we will adhere to this approach.

Ideally we would like to achieve robustness by only training each of the classifiers

nominally, and hoping that error-correcting property of the codebook along with the

inherent robustness of binary classifiers will provide resistance against adversarial at-

tacks. We will put this hypothesis to test in our experiements in chapter 5. Although,

this maybe a lot to ask given the issue of error-correlation among resulting hypothe-

ses which plagues most codebooks in nominal setting as highlighted by Dietterich
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and Bakiri in [13]. It will be interesing to see if the same issue persists in adversar-

ial setting as well. However, a natural extension would be to robustify each of the

hypothesis using any one of the methods outlined earlier in chapter 2. We will also

test this in chapter 5 using PGD based adversarial training for each of the column

hypothesis.

An important aspect, which we have not discussed in this chapter is that of eval-

uating the robustness of ECC based classifers. From our discussion in chapter 2, this

mainly depends on the threat model and the strength of the attack. In chapter 4, we

will discuss about this aspect in detail.
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Chapter 4

Adversarial Evaluation of ECC based

Classifiers

In previous chapter, we proposed a method to train a (robust) multi-class classifier

using Error Correcting Codes (ECCs). In this chapter, we propose methods to evalu-

ate the adversarial accuracy of different ECCs based classifiers resulting from various

codebooks. We first highlight the challenges associated in evaluating the adversarial

accuracy of these classifiers for different threat models which we discussed in chapter

2. We also provide solutions to these challenges by building upon existing literature.

The primary goal of this thesis is to build a classifier that is robust against all

allowed perturbations (or attacks) by an adversary. Therefore, for a given input x+ 6

and allowed set of perturbations, i.e. 6 e S, we need to determine the adversarial

accuracy of the trained classifier. It is pertinent to evaluate against the strongest

possible adversary, as a false sense of robustness can lead to major security related

incidents as already outlined in chapter 1. There is a growing body of literature for

both defense and attacks almost reminiscent of an arms race. Most importantly, it is

often easy to overestimate the adversarial accuracy of a classifier or a defense method.

Athalye et al. in [6] circumvented several defense methods which relied on gradient

obfuscation.

In this chapter we mainly focus on black-box and white-box attacks as other

attacks under different threat models can be derived from these two type of attacks.
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We aim to evaluate the robustness of ECC based classifiers against state-of-the art

attacks or strongest possible adversary in both black-box and white-box setting. We

particularly aim to do a rigorous evaluation in white-box setting as it provides a upper

bound (potentially not too loose) on the true adversarial accuracy of the classifier.

In the space of white-box attacks, gradient based PGD-attack proposed by Mqdry et

al. in [23] has emerged as one of the strongest attack. The success and wide adoption

of PGD-attack, apart from being a strong adversary, can also be attributed to the

fact that most of the modern deep learning models are easily differentiable. With the

advent of modern GPUs and frameworks like pyTorch and Tensorfiow which support

automatic differentiation, computation of gradients wrt to model parameters w and

input x is extremely efficient.

The main requirements for both black-box and white-box attacks can be reduced

to the following:

1. Class probability estimates to compute the loss function.

2. Gradients of the loss-function with respect to (w.r.t.) the input x.

For ECC based classifiers computation of both, the class probability estimates

and the gradients is not straightforward. This is due to the discrete nature of decod-

ing (such as Hamming decoding) scheme involved when deciding on the final class.

Discrete encoding of classes to make use of the error-correcting property comes at the

cost of losing differentiability. However, in subsequent discussion we show that we can

come up with alternative techniques to generate strong attacks while still enjoying

the benefits of encoding.

We first try to identify the issues associated with Hamming decoding. Two main

issues to note are:

1. It does not provide us with class probability estimates.

2. It does not take into account the magnitude of the predictions of the individual

hypothesis which in many cases correspond to a "confidences-score".
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Both of the above issues need to addressed, however the requirement of class

probability estimates (or class scores) is absolutely necessary for running black-box

attacks. The second issue is important as it can significantly improve the final accu-

racy (both nominal and adversarial) of the classifier [4].

4.1 Class Probability Estimates

In chapter 3, we described Hamming decoding as a way to associate a final prediction

class with the output vector obtained after passing the input x through each of the

individual hypothesis. This procedure does not provide us with class membership

probability estimates. Apart from our need to run black-box attacks, class probabil-

ity estimates can be useful in many applications areas where the final classification

rule is designed based on these estimates. Neyman Pearson classifier would be one

such example. In anomaly detection or automated monitoring of critical infrastruc-

ture, even a low probability or indication of disturbance warrants manual inspection.

Generally in these situations cost of missed detection is very high compared to false

alarm. Recall our car-ladder adversarial example from chapter 1. For a parking-lot

operator or a traffic monitoring agency, cost of missed-detection may lead to financial

losses or may compromise the security of a facility under surveillance.

Hastie and Tibshirani in [17] proposed a method to estimate class membership

probabilities for all-pairs. This was later generalized by Zadrozny [34] for arbitrary

codebooks. Hastie and Tibshirani's motivation in 117] was twofold:

1. To solve the problem of getting calibrated estimates for all-pairs codebook in

itself.

2. To use these estimates to make predictions in order to achieve better classifica-

tion accuracy over the majority voting rule.

Our motivation of getting probability estimates is driven by the need to compute

a loss function from these estimates to generate an attack. With these estimates

we can easily run different black-box attacks. Moreover if it turns out that we can
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differentiate this loss function' with respect to x, then we can also extend this to

gradient-based white-box attacks.

It is important to note that we don't aim for highly calibrated estimates. Instead

we are simply interested in getting a crude estimate of the loss function. For code-

books like all-pairs and one-vs-rest, we can do something quite intuitive and simple.

For all-pairs, we can simply add the output of each hypotheses to its corresponding

class to get a score for each class. We can then use these scores to compute a loss

function. Importantly, we maintain differentiability through each operation. Figure

4-1 shows the whole procedure.

Loss func. £(9 1 .92'.93;Y)

Class Y Yit Y3y122 Y2 y3 = yj3+ y3ClasY1 = Y112 + Y13 Y2 72 +723 3 23
scores

Output of Y12 2 1 3 .23 3
Y2 y12 Y10 y13 Y2 Y3

individual
hypothesis

1vs 2 1vs 3/ 2vs 3

66 66o E66 6

Input x 0000

Figure 4-1: Combining output of individual hypotheses of all-pairs to generate class
scores while maintaing differentiability.

1 It might be the case that in the process of calculating probability estimates one may loose
differentiability even before computing the loss function from these estimates
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We now describe the method of Hastie and Tibshirani in [17] to compute estimates

for all-pairs. Let rij (x) be the output of the classifier trained over examples from class

i as positives and class j as negatives. Mathematically we can write class membership

probabilities pj(x) = P(C = cilX x) in terms of rij(x) as:

ri3(X) = P(C = cilC= i v C =j, X = X) = ( (4.1)
pA z + pyjz)

As we have k(k - 1)/2 pairs, correspondingly we will have k(k - 1)/2 equations of

the above form. Additionally we will have another constraint of p(x) = 1. To

simplify notation, we drop x and rewrite the equations as:

rij = V i, j pairs where i # j (4.2)
pi + pj

k

pi= 1 (4.3)
i=1

We need to solve the above set of of equations where rij's are known constants

and pi's are the unknown variables. Using the summation in eq. (4.3) we can reduce

the number of variable to k - 1 and the final number of constraints to k(k - 1)/2.

However, for such a system of equations there may not exist a feasible solution. To

solve this problem, Hastie and Tibshirani proposed fitting the Bradley-Terry model [8]

for pairwise comparisons by minimizing the weighted KL-divergence between ri3 and

rij. Let nij denote the total number of training examples in class i and j. The KL

divergence can be written as:

KL = ni rilog + (1 - rij)log(1  (4.4)

To now minimize the above (eq. (4.4)) while maintaining consistency between fij

and Pi, Hastie and Tibshirani proposed the following algorithm:
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Algorithm 1 Pairwise Coupling for all-pairs (Hastie and Tibshirani [17])
1: Initialize with some random guess for Pi and compute the corresponding fij

2: for t= 1,2,...Tdo

3: for i =1,2,...kdo

4: A jinji

5: end for

6: p <- Re-normalize Pi

7: Recompute fij
pi + p3

8: end for

We now describe the generalized version of the above algorithm was proposed by

Zadrozny in [34] for arbitrary code books. For an arbitrary codebook M, we have

an estimate rb(x) for each column b of M. Let I denote the set of classes for which

M(, b) = 1 and J denote the set of classes for which M(., b) = -1. We can now

write :

rb(X) = P(V C = CV \ C = c, X = x) = °* (X°
cGI cEIUJ c-IoJPC( )

We have I constraints for each column of the above form along with the pi(x) =1

constraint. We drop x to simplify notation and then rewrite the system of equations

as:

r C E=°IPC V b { 11, 2,... l} (4.5)
ZcerIoJ Pc

k

pi 1 (4.6)
i=1

From eq. (4.5) & (4.6), we have 1 + 1 set of equations and k variables. Our

aim is to estimate unknown pi's such that the above system of equations is satis-

fied. Generally, for any codebook, the total number of columns I is larger than the

number of classes k, hence there may not exist a feasible solution to (4.5) and (4.6).

Therefore, analogous to Hastie-Tibshirani, Zadrozny in [34] proposed minimizing the
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KL divergence between rb and Tb. Let nb denote the number of training examples on

which each column hypothesis is trained. Zadrozny proposed the following iterative

algorithm:

Algorithm 2 Pairwise Coupling for arbitrary codebooks (Zadrozny [341)
1: Initialize with some random guess for Pi and compute the corresponding Tb

2: for t=1,2, ... T do

3: for i= 1 2 ... k do

4: 2b s.t. M(i,b)=1 nbrb + Zb st. M(i,b)=-1nb(1 - rb)

Zb st. M(i,b)=1 nbrb + b s.t. M(i,b)=-1 nb(1 - b)
5: end for

6: Re-normalize Pi
=1 Pi

EcE-I PC7: b cer C Recompute T b

8: end for

For black-box attacks we can compute the estimates using the above described

algorithms, however because of the iterative nature of these estimates differentiability

is not maintained. Therefore, we cannot use them to run white-box attacks. For

white-box attacks we can resort to non-iterative estimates proposed by Zadrozny.

The non-iterative estimates are given as:

b s.t. M(i,b)=1 b s.t. M(i,b)=-1

For all-pairs codebook, the non-iterative estimates (roughly) corresponds to the

same estimates which we obtain previously shown in figure 4-1. Equation (4.7) ex-

tends this to arbitrary codebooks.

4.2 Differentiable decoding methods

In the previous section we tried to get around the problem of non-differentiability of

Hamming decoding by estimating class probabilities. Using non-iterative probability
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estimates we can even run white-box attacks. For the sake of completeness, in this

section we discuss alternative methods to generate white-box attacks by substituting

Hamming decoding with some other differentiable decoding methods. We mainly

discuss loss-based and L1 /L 2 decoding.

4.2.1 Loss-based decoding

Loss-based decoding was proposed by Allwein et al. in [4], to take into account the

loss function and the magnitude of predictions of individual hypotheses when making

the final predictions. The magnitude of predictions of individual hypotheses often

corresponds to a "confidence-score". Hamming decoding does not take into account

this information, i.e. the "magnitude" of predictions but instead simply rely on the

sign of predictions.

Allwein et al. [4] mainly worked with margin-based classifiers and showed that

loss-based decoding is superior to Hamming decoding in terms of bounds on the

training error. A margin-based binary classifier is a real valued function or hypoth-

esis f (x) : X - R. It is trained on examples (xi, y1), . . . , (xmI-, ym), where xi e X

and y, e {+1, -1}. Generally the quantity yf(x) is referred to as the margin of the

classifier for an input x. The training error can be written as 0-1 loss function:

IZ11{-yif(xi) >- 0} (4.8)
i=1

where 1{} is the indicator function. Minimizing the above 0-1 loss function or the

training error is hard due to the discrete nature of the function, therefore usually some

other non-negative smooth and continuous loss function is used. Some commonly used

loss functions for binary classification which can be written in terms of the margin of

the classifier, z = yf(x) are:

Hinge loss: (1 - z)+

Logistic loss: log(1 + e-z)

Exponential loss: e-z
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Figure 4-2: Different margin-based loss functions

The main requirement of loss-based decoding is that for a given input x, the

output of each of the binary classifiers should represent a score, i.e. for positive class

examples the classifier should output positive values and for negative class examples

the classifier should output negative values. However, as pointed out by Zadrozny

in [341, if the binary classifier outputs values which represent probability estimates

rb(x), then these can be easily converted to margin scores by subtracting 1/2 from

these estimates.

Mathematically, loss-based decoding can be represented as:

Q= argmin dL(M(r, -),f(x))
r

dL (M (r, )f (x)) L X~(M (r, b) fb(x))
b=1

where f(x) represents a real-valued vector of length 1. Each element of this vector

fb(x) e R represents the output of the binary classifier. £(.) is the non-negative

loss function, for example £(z) = e-, see figure 4-2 for different loss functions.

To maintain consistency of notation, a small recap. In chapter 3 while introducing

Hamming decoding, f(x) denoted a binary-valued vector of length 1, i.e. f(x) E

{+1, -1}' and each element fb(x) of the vector f(x), represented the class label, i.e.

2 As ye {+1, -1}, therefore(y - f(X))2 y2 (y _ f(X))2 (y 2 _ yf(x)) 2
- (1 _ Z)2
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+1 or -1 for the bth hypothesis.

Most importantly, we observe that this alternate method of decoding is differen-

tiable and therefore can be used to generate white-box attacks. Moreover, it could

be the case that loss-based decoding empirically provides better prediction accuracy

than Hamming-decoding, then we can even replace Hamming decoding altogether.

4.2.2 L1 /L 2 decoding

Dietterich and Bakiri in [13] proposed using Li decoding for classifiers which output

class probability estimates and have been trained on examples (xi, yi), . . . , (Xm, YmI),

where xi e X and yj e {0, 1}, where 1 represents positive class examples and 0 rep-

resents negative class examples. Since they only worked with binary codes, therefore

instead of using {-1, +1} encoding, they used {0, 1} encoding. They define Li de-

coding as:

y=argmin L I (M (r, -,fx))
r

L1 (A1(r, .), f(x)) = I M(r, b) - fb(x)
b= 1 1-_ --

{,1} [o 1]

We now show that this Li-decoding is equivalent to loss-based decoding with hinge

loss as the loss function. We can convert probability estimates to scores by subtracting

1/2, i.e. f(x) = f(x) - 1/2. Therefore, with our usual encoding of {-1, +-1} for binary

codebooks, we have:

Li = |y - f (x)I

= |y(y - f(x))| as y e {+1, -1}

= 1Y2 - yf(x)|

= I1 - yf(x)I

= |1 - zI
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Also, as 0 f (x) < 1 ==> -1/2 < f (x) < 1/2 == -1/2 < yf (x) < 1/2

Therefore L1(z) = 11 - zj = |1 - zl+ when -1/2 < z < 1/2 , i.e. same as hinge loss.

Similarly, one can also use L2 norm instead of Li norm. Recall our discussion

from section 3.2.4, the DECOC approach of learning ternary codebooks proposed by

Pujol et. al. [25]. In [25], authors use L2 -norm or Euclidean decoding instead of

Hamming decoding, highlighting the fact that at the time of decoding, zero entries in

ternary codebooks can cause ties due to equal Hamming distances for multiple classes.

To avoid this, authors preferred Euclidean decoding. Also, squared L2 norm based

decoding is equivalent to loss-based decoding with squared loss as the loss function.
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Chapter 5

Experiments

In this chapter we finally train and evaluate the robustness of ECCs based classifiers.

This can be divided into three main steps:

1) Generation of a codebook by solving the IP proposed in chapter 3 using appropri-

ate values of the IP parameters.

2) Training each hypothesis of the resultant codebook (generated in step 1) to form

a multi-class classifier.

3) Run PGD based white-box attack using methods outlined in chapter 4, to estimate

the adversarial accuracy of the multi-class classifier (from previous step).

5.1 Estimating Error-Correlation between individ-

ual hypotheses of a codebook

In our earlier discussion in chapter 3, section 3.2.1, we highlighted that in commu-

nicating over a noisy channel, Error-Correcting Codes are powerful only when the

errors made due to noise are random. For classification setup like ours, this implies

that any two hypotheses (or classifiers) should not make errors on the same inputs.

To avoid this, we ensured large column separation (eq. (3.5)) in our IP formulation.

Large column separation reduces correlation by ensuring that the underlying decision
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boundary of each hypothesis is sufficiently different from all other hypotheses in the

codebook. However, due to the fact that IP formulation does not take into account

the underlying data distribution (or the training data), we may still end up with

hypotheses whose final predictions (or errors) are correlated. Therefore, measure-

ment of such pairwise correlations between hypotheses can provide us with insights

to better understand the final performance of a particular codebook. Moreover, it

also will provide us with corroborative evidence to the fact that correlation between

hypotheses should be avoided.

For now we assume that we have already trained each of our individual hypotheses

for a given codebook (say I71). Also, let Ntest denote the number of images in our

test-set. For every binary classifier (corresponding to a column) in the codebook, we

can compute the 0-1 loss (eq. (4.8)) for all images in the test set so that we have a

vector h, e {0, 1}Nest V I E {1,. .. , L}. We can now compute the error-correlations

between these binary vectors hi & hj V (i,j) e {1, . . . , L}2 |i # j. This can be

represented as a L x L matrix, which we will refer to as the correlation matrix C in

our subsequent discussion.

Note that simply computing the correlations between binary vectors hi and hj

will not be a true indicator of error-correlation. If two hypothesis have high accuracy,

then examples for which the two hypotheses makes correct prediction will contribute

to a high correlation value which is undesirable. High accuracy of the two hypotheses

should definitely have a say in the error-correlation measure, and more importantly,

should inversely contribute to the error-correlation measure. The number of examples

in the test set for which both the hypothesis of a particular pair makes an error can

be calculated as follows:

1 Ntest
N = N 1{hi[n] = 1 A hj [n] =1} (both wrong) (5.1)

n=1

Similar to equation (5.1), we can also compute the the number of examples for
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which both the hypotheses makes a correct prediction. This can be calculated as:

Ntest

Cj- 1 , 1{hi[n] = 0 A hj[n] = 0} (both correct) (5.2)
Netn=1

We can now combine eqn: (5.1) and (5.2) to form our error-correlation measure

as follows:
ZN'et I1{ h.[n] = 1 Ah h[ni] = I}

Cj = 1 (5.3)
ENte t 1{h.[n] = 0 A hj[n] = 0}

The above measure can attain values greater than one but more importantly it takes

into account the correct predictions made by individual hypotheses as well. The mag-

nitude of this error-correlation measure (or the values in the error-correlation matrix

C) will help us in understanding the accuracy of the overall classifier or codebook. In

subsequent sections we will show that if the ECC based classifier has relatively higher

accuracy then indeed error-correlation matrix has entries with lower values.

5.2 Experimental Setup

For all our experiments, we use CIFAR10 image dataset. This dataset comprises of

10 classes with 50000 images in the training set and 10000 images in the test set.

In terms of computation resources, we run all our experiments on a system with

a single 1080Ti Nvidia GPU, Intel Core i7-6800K CPU and 24 GB RAM. We use

ResNet-18 [18] (as our Deep Neural Network architecture) as our binary classifier for

all individual hypotheses. We use non-iterative probability estimates (eq. (4.7)) to

compute our final class probabilities. We use these probability estimates to make

predictions (as a substitute to Hamming or L1 /L 2 decoding). Furthermore, we use

these estimates to compute a loss function (Cross-Entropy Loss) and then generate

white-box PGD-attacks to evaluate the robustness of the overall classifier (see figure

4-1). We work with loo norm as our set of allowed perturbations S with = 8.

S(x') = {x e R' | I - x'I < c - < x < u

For CIFAR10, all images are of size d = 32 x 32 x 3 and for a valid image the pixel
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values should be between I = 0 and u = 255.

We solve the IP formulated in chapter 3 (in Julia using Gurobi) with k = 10, L

20 and d = 4, to generate our codebook. After solving the IP, we get the following

optimal codebook shown in table 5.1. We denote this codebook by F1.

Sf2 M f4 M f6 f7 f8 f9 f1On 1f12 3n4 f15 n6 n7 f18 n9 fO
C1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
C3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
C4 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1
C5 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1
C6 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0
C7 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0
C8 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1
C9 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1
C10 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 0

Table 5.1: Codebook F1 corresponding to th
parameters k = 10, L = 20 and d = 4.

5.3 Evaluating codebook I

e optimal solution of the IP solved with

1

We now work towards training and estimating the nominal and adversarial accuracy

of the codebook L1 generated in the previous section. For the training part of the

individual hypotheses, there can be two cases, first we can adversarially train each of

the hypotheses on their individual classification problem and second we only perform

nominal (or natural) training of each hypothesis. We investigate both of these cases

for codebook l.

5.3.1 Evaluating codebook ri with adversarially trained hy-

potheses

We adversarially train each individual hypothesis using the min-max approach [231.

The natural and adversarial accuracy of the resulting individual hypotheses is shown

in table 5.2 .

We can now combine the above trained classifiers to form our multi-class classifier.

Using non-iterative probability estimates (eq. 4.7) we can compute the class scores
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Table 5.2: Adversarial and Natural accuracy
trained) in codebook IL

Hypothesis Binary classes Adv. Accuracy Natural Accuracy
fl {1,6,7,9,10} , {2,3,4,5,8} 0.620 0.589
f2 {1,5,9} , {2,3,4,6,7,8,10} 0.799 0.755
f3 {1,5,7,8,10} , {2,3,4,6,9} 0.5 0.5
f4 {1,4,7,8,9} , {2,3,5,6,10} 0.587 0.552
f5 {1,4,5,6,10} , {2,3,7,8,9} 0.519 0.509
f6 {1,3,7} , {2,4,5,6,8,9,10} 0.739 0.720
f7 {1,3,6,8,9} , {2,4,5,7,10} 0.655 0.594
f8 {1,3,4,8,10} , {2,5,6,7,9} 0.5 0.5
f9 {1,3,4,5,7,9,10} , {2,6,8} 0.709 0.700

flO {1,3,4,5,6,7,8} , {2,9,10} 0.915 0.805
fl1 {1,2,8} , {3,4,5,6,7,9,10} 0.735 0.705
f12 {1,2,5,6,8,9,10} , {3,4,7} 0.701 0.7
fl3 {1,2,4,9,10} , {3,5,6,7,8} 0.823 0.727
f14 {1,2,4,6,7,8,10} , {3,5,9} 0.7 0.7
f15 {1,2,4,5,7} , {3,6,8,9,10} 0.602 0.548
f16 {1,2,3,7,8,9,10} , {4,5,6} 0.735 0.704
f17 {1,2,3,5,10} , {4,6,7,8,9} 0.609 0.526
f18 {1,2,3,5,6,7,9} , {4,8,10} 0.738 0.701
f19 {1,2,3,4,6} , {5,7,8,9,10} 0.562 0.532
f20 {1,2,3,4,5,8,9} , {6,7,10} 0.699 0.7

to make predictions and we use these estimates to run PGD attack. We achieve an

overall nominal accuracy of around 42.27% and an adversarial accuracy of around

30.66%.

The reason for low natural accuracy of the overall classifier is due to low natural

accuracy of each individual hypotheses. And low natural accuracy of individual hy-

potheses is due to adversarial training. Our next experiment will provide us with a

better understanding of the effect of adversarial training of each hypothesis on the

overall accuracy. In passing, we also compute the error-correlation matrices using the

natural test-set images (table 5.3) and also for the adversarial examples generated

for the overall classifier (table 5.4). We will discuss these matrices in next section

once we have computed these matrices for the non-adversarially trained hypotheses

as well.
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fl f2 M f4 5 fB f7 fs f9 nO nl fl2 3 f4 f15 f16 7 f18 fl9 f20
fl - 0.152 0.642 0.480 0.599 0.270 0.355 0.517 0.256 0.063 0.145 0.261 0.108 0.143 0.346 0.187 0.289 0.158 0.428 0.453
f2 0.152 - 0.325 0.187 0.311 0.068 0.133 0.163 0.017 0.034 0.088 0.018 0.048 0.222 0.177 0.152 0.252 0.032 0.119 0.015
f3 0.642 0.325 - 0.743 0.936 0.408 0.466 1.000 0.319 0.097 0.423 0.331 0.144 0.333 0.635 0.307 0.632 0.384 0.556 0.500
f4 0.480 0.187 0.743 - 0.591 0.297 0.414 0.743 0.265 0.066 0.311 0.413 0.235 0.161 0.479 0.230 0.226 0.359 0.488 0.287
f5 0.599 0.311 0.936 0.591 - 0.210 0.443 0.936 0.290 0.097 0.231 0.311 0.278 0.318 0.635 0.496 0.587 0.393 0.746 0.471
f6 0.270 0.068 0.408 0.297 0.210 - 0.210 0.396 0.006 0.044 0.120 0.302 0.050 0.175 0.283 0.023 0.254 0.024 0.335 0.185
f7 0.355 0.133 0.466 0.414 0.443 0.210 - 0.574 0.314 0.046 0.228 0.204 0.076 0.249 0.321 0.186 0.316 0.204 0.467 0.215
f8 0.517 0.163 1.000 0.743 0.936 0.396 0.574 - 0.320 0.107 0.428 0.498 0.303 0.333 0.667 0.284 0.625 0.501 0.798 0.334
9 0.256 0.017 0.319 0.265 0.290 0.006 0.314 0.320 - 0.023 0.286 0.002 0.043 0.001 0.271 0.143 0.176 0.159 0.396 0.189

fno 0.063 0.034 0.097 0.066 0.097 0.044 0.046 0.107 0.023 - 0.051 0.019 0.041 0.041 0.076 0.017 0.071 0.033 0.085 0.030
f11 0.145 0.088 0.423 0.311 0.231 0.120 0.228 0.428 0.286 0.051 - 0.010 0.067 0.019 0.312 0.018 0.216 0.152 0.338 0.007
f12 0.261 0.018 0.331 0.413 0.311 0.302 0.204 0.498 0.002 0.019 0.010 - 0.160 0.198 0.331 0.170 0.227 0.185 0.401 0.199
f3 0.108 0.048 0.144 0.235 0.278 0.050 0.076 0.303 0.043 0.041 0.067 0.160 - 0.046 0.188 0.127 0.109 0.152 0.235 0.044
f14 0.143 0.222 0.333 0.161 0.318 0.175 0.249 0.333 0.001 0.041 0.019 0.198 0.046 - 0.233 0.189 0.430 0.020 0.267 0.000
f15 0.346 0.177 0.635 0.479 0.635 0.283 0.321 0.667 0.271 0.076 0.312 0.331 0.188 0.233 - 0.262 0.425 0.235 0.617 0.182
f16 0.187 0.152 0.307 0.230 0.496 0.023 0.186 0.284 0.143 0.017 0.018 0.170 0.127 0.189 0.262 - 0.233 0.161 0.342 0.143
f7 0.289 0.252 0.632 0.226 0.587 0.254 0.316 0.625 0.176 0.071 0.216 0.227 0.109 0.430 0.425 0.233 - 0.144 0.504 0.150
f18 0.158 0.032 0.384 0.359 0.393 0.024 0.204 0.501 0.159 0.033 0.152 0.185 0.152 0.020 0.235 0.161 0.144 - 0.259 0.144
f19 0.428 0.119 0.556 0.488 0.746 0.335 0.467 0.798 0.396 0.085 0.338 0.401 0.235 0.267 0.617 0.342 0.504 0.259 - 0.244
f20 0.453 0.015 0.500 0.287 0.471 0.185 0.215 0.334 0.189 0.030 0.007 0.199 0.044 0.000 0.182 0.143 0.150 0.144 0.244 -

Table 5.3: Correlation matrix over Natural Examples in the Test Set

f1 f2 f3 f4 f5 f6 f7 f8 f9 fo fn 11f2 13 f14 f15 f16 f17 f18 f19 f20
fl - 0.198 0.676 0.540 0.640 0.296 0.421 0.564 0.275 0.154 0.185 0.276 0.208 0.163 0.415 0.221 0.348 0.201 0.488 0.464
f2 0.198 - 0.367 0.253 0.355 0.088 0.189 0.210 0.032 0.077 0.117 0.027 0.092 0.251 0.226 0.170 0.299 0.057 0.163 0.030
f3 0.676 0.367 - 0.790 0.950 0.432 0.532 1.000 0.325 0.227 0.457 0.332 0.257 0.333 0.697 0.327 0.679 0.435 0.629 0.500
f4 0.540 0.253 0.790 - 0.660 0.328 0.491 0.791 0.288 0.167 0.356 0.430 0.323 0.196 0.551 0.263 0.301 0.402 0.561 0.308
f5 0.640 0.355 0.950 0.660 - 0.242 0.516 0.950 0.303 0.224 0.270 0.317 0.371 0.325 0.691 0.524 0.644 0.436 0.794 0.477
f6 0.296 0.088 0.432 0.328 0.242 - 0.242 0.421 0.010 0.096 0.143 0.309 0.094 0.185 0.313 0.034 0.283 0.036 0.368 0.192
f7 0.421 0.189 0.532 0.491 0.516 0.242 - 0.635 0.346 0.126 0.272 0.226 0.156 0.278 0.386 0.223 0.380 0.253 0.537 0.244
f8 0.564 0.210 1.000 0.791 0.950 0.421 0.635 - 0.328 0.239 0.463 0.498 0.399 0.333 0.708 0.312 0.676 0.540 0.835 0.334
f9 0.275 0.032 0.325 0.288 0.303 0.010 0.346 0.328 - 0.077 0.308 0.005 0.096 0.004 0.300 0.162 0.208 0.185 0.420 0.193

flo 0.154 0.077 0.227 0.167 0.224 0.096 0.126 0.239 0.077 - 0.114 0.059 0.131 0.093 0.176 0.058 0.175 0.088 0.198 0.085
f11 0.185 0.117 0.457 0.356 0.270 0.143 0.272 0.463 0.308 0.114 - 0.017 0.120 0.031 0.360 0.028 0.270 0.185 0.386 0.014
f12 0.276 0.027 0.332 0.430 0.317 0.309 0.226 0.498 0.005 0.059 0.017 - 0.198 0.198 0.343 0.183 0.245 0.194 0.415 0.199
f13 0.208 0.092 0.257 0.323 0.371 0.094 0.156 0.399 0.096 0.131 0.120 0.198 - 0.093 0.260 0.172 0.208 0.200 0.326 0.098
f4 0.163 0.251 0.333 0.196 0.325 0.185 0.278 0.333 0.004 0.093 0.031 0.198 0.093 - 0.247 0.198 0.446 0.032 0.283 0.000
f15 0.415 0.226 0.697 0.551 0.691 0.313 0.386 0.708 0.300 0.176 0.360 0.343 0.260 0.247 - 0.298 0.489 0.277 0.664 0.214
f16 0.221 0.170 0.327 0.263 0.524 0.034 0.223 0.312 0.162 0.058 0.028 0.183 0.172 0.198 0.298 - 0.262 0.182 0.379 0.160
f17 0.348 0.299 0.679 0.301 0.644 0.283 0.380 0.676 0.208 0.175 0.270 0.245 0.208 0.446 0.489 0.262 - 0.189 0.572 0.165
f18 0.201 0.057 0.435 0.402 0.436 0.036 0.253 0.540 0.185 0.088 0.185 0.194 0.200 0.032 0.277 0.182 0.189 - 0.297 0.169
f19 0.488 0.163 0.629 0.561 0.794 0.368 0.537 0.835 0.420 0.198 0.386 0.415 0.326 0.283 0.664 0.379 0.572 0.297 - 0.262
f20 0.464 0.030 0.500 0.308 0.477 0.192 0.244 0.334 0.193 0.085 0.014 0.199 0.098 0.000 0.214 0.160 0.165 0.169 0.262 -

Table 5.4: Correlation matrix over Adversarial Examples for the overall classifier
generated from Test Set using PGD-attack

5.3.2 Evaluating codebook I, with nominally trained hypothe-

ses

We now nominally train each of the individual hypotheses in codebook Fi. Natural

and adversarial accuracy of each resulting hypothesis is reported in table 5.5. Its

no suprise that the adversarial accuracy for all hypotheses is zero, however note

the increase in the natural accuracy of individual hypotheses in comparison to the

previous case (table 5.2).

We now combine the nominally trained classifiers to form the multi-class classifier.

Identical to previous case, we use non-iterative probability estimates (eq. 4.7) to com-

pute the class scores to make predictions and use these estimates to run PGD-attack.
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Table 5.5: Adversarial and Natural accuracy
trained) in codebook IF,

of individual hypotheses (nominally

We now achieve an overall nominal accuracy of around 76.25% and an adversar-

ial accuracy of around 16.48%. High nominal accuracy is in itself impressive, but

achieving adversarial accuracy of 16% is quite suprising given the fact that adversarial

accuracy of all individual hypotheses (classifiers) is zero.

This result clearly shows the potential of our proposed approach. Using this

result we can now clearly explain the poor performance in previous case. In the

previous case we achieved a higher adversarial accuracy of around 30%, but a very

low natural accuracy of around 42%. We conjecture that in the previous case we

took an extremely conservative approach by independently robustifying each classifer.

Implying that instead of underscoring the robustness of individual classifier, we should

have ideally generated the adversarial examples for the overall classifier (jointly using

all hypotheses) and then should have used these examples for independent adversarial

training.
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Hypothesis Binary classes Adv. Accuracy Natural Accuracy
fl {1,6,7,9,10},{2,3,4,5,8} 0.0 0.786
f2 {1,5,9},{2,3,4,6,7,8,10} 0.0 0.873
f3 {1,5,7,8,10},{2,3,4,6,9} 0.0 0.817
f4 {1,4,7,8,9},{2,3,5,6,10} 0.0 0.785
f5 {1,4,5,6,10},{2,3,7,8,9} 0.0 0.794
f6 {1,3,7},{2,4,5,6,8,9,10} 0.0 0.858
f7 {1,3,6,8,9},{2,4,5,7,10} 0.0 0.819
f8 {1,3,4,8,10},{2,5,6,7,9} 0.0 0.762
f9 {1,3,4,5,7,9,10},{2,6,8} 0.0 0.850

flO {1,3,4,5,6,7,8},{2,9,10} 0.0 0.942
fl1 {1,2,8},{3,4,5,6,7,9,10} 0.0 0.862
f12 {1,2,5,6,8,9,10},{3,4,7} 0.0 0.797
fl3 {1,2,4,9,10},{3,5,6,7,8} 0.0 0.864
f14 {1,2,4,6,7,8,10},{3,5,9} 0.0 0.816
f15 {1,2,4,5,7},{3,6,8,9,10} 0.0 0.78
f16 {1,2,3,7,8,9,10},{4,5,6} 0.0 0.853
fl7 {1,2,3,5,10},{4,6,7,8,9} 0.0 0.822
f18 {1,2,3,5,6,7,9},{4,8,10} 0.0 0.824
f19 {1,2,3,4,6},{5,7,8,9,10} 0.0 0.813
f20 {1,2,3,4,5,8,9},{6,7,10} 0.0 0.830



17 12 M3 f4 M f6 f 9 10 fl 12 13 4 5 16 M7 18 f19 f20
fl - 0.055 0.087 0.111 0.098 0.057 0.087 0.129 0.083 0.019 0.064 0.105 0.079 0.088 0.113 0.067 0.085 0.088 0.092 0.099
f2 0.055 - 0.051 0.065 0.061 0.041 0.058 0.051 0.026 0.014 0.033 0.039 0.030 0.066 0.067 0.042 0.063 0.035 0.053 0.023
f3 0.087 0.051 - 0.082 0.095 0.061 0.073 0.104 0.053 0.024 0.059 0.084 0.053 0.072 0.094 0.061 0.072 0.068 0.110 0.061
f4 0.111 0.065 0.082 - 0.098 0.063 0.099 0.124 0.069 0.022 0.064 0.111 0.086 0.093 0.114 0.070 0.092 0.101 0.086 0.071
f5 0.098 0.061 0.095 0.098 - 0.079 0.084 0.125 0.067 0.026 0.070 0.088 0.060 0.089 0.106 0.094 0.086 0.081 0.089 0.065
f6 0.057 0.041 0.061 0.063 0.079 - 0.056 0.074 0.031 0.025 0.038 0.080 0.035 0.063 0.065 0.060 0.067 0.045 0.066 0.041
f7 0.087 0.058 0.073 0.099 0.084 0.056 - 0.104 0.074 0.018 0.045 0.087 0.060 0.075 0.118 0.071 0.075 0.075 0.079 0.061
f8 0.129 0.051 0.104 0.124 0.125 0.074 0.104 - 0.078 0.028 0.069 0.123 0.088 0.090 0.121 0.085 0.091 0.127 0.107 0.083
f9 0.083 0.026 0.053 0.069 0.067 0.031 0.074 0.078 - 0.011 0.057 0.054 0.046 0.049 0.082 0.043 0.053 0.066 0.059 0.066

f1O 0.019 0.014 0.024 0.022 0.026 0.025 0.018 0.028 0.011 - 0.020 0.011 0.017 0.020 0.031 0.008 0.025 0.016 0.027 0.016
f11 0.064 0.033 0.059 0.064 0.070 0.038 0.045 0.069 0.057 0.020 - 0.029 0.030 0.049 0.072 0.037 0.051 0.052 0.064 0.030
f12 0.105 0.039 0.084 0.111 0.088 0.080 0.087 0.123 0.054 0.011 0.029 - 0.086 0.075 0.104 0.075 0.068 0.086 0.076 0.066
f13 0.079 0.030 0.053 0.086 0.060 0.035 0.060 0.088 0.046 0.017 0.030 0.086 - 0.046 0.074 0.044 0.045 0.068 0.051 0.043
f14 0.088 0.066 0.072 0.093 0.089 0.063 0.075 0.090 0.049 0.020 0.049 0.075 0.046 - 0.093 0.057 0.107 0.056 0.073 0.049
f15 0.113 0.067 0.094 0.114 0.106 0.065 0.118 0.121 0.082 0.031 0.072 0.104 0.074 0.093 - 0.070 0.089 0.086 0.101 0.074
f16 0.067 0.042 0.061 0.070 0.094 0.060 0.071 0.085 0.043 0.008 0.037 0.075 0.044 0.057 0.070 - 0.057 0.061 0.060 0.047
f17 0.085 0.063 0.072 0.092 0.086 0.067 0.075 0.091 0.053 0.025 0.051 0.068 0.045 0.107 0.089 0.057 - 0.057 0.076 0.045
f18 0.088 0.035 0.068 0.101 0.081 0.045 0.075 0.127 0.066 0.016 0.052 0.086 0.068 0.056 0.086 0.061 0.057 - 0.072 0.070
f19 0.092 0.053 0.110 0.086 0.089 0.066 0.079 0.107 0.059 0.027 0.064 0.076 0.051 0.073 0.101 0.060 0.076 0.072 - 0.065
f20 0.099 0.023 0.061 0.071 0.065 0.041 0.061 0.083 0.066 0.016 0.030 0.066 0.043 0.049 0.074 0.047 0.045 0.070 0.065 -

Table 5.6: Correlation matrix over Natural Examples in the Test Set

17 f2 3 f4 M f6 f7 18 M ft0 n71 f12 3 f14 f15 f16 7 f18 f19 200
fl - 0.653 1.279 1.224 1.399 0.667 1.003 1.490 0.864 0.251 0.799 0.804 0.666 0.883 1.430 0.666 0.924 0.898 1.239 0.989
f2 0.653 - 0.634 0.665 0.712 0.366 0.539 0.733 0.355 0.150 0.361 0.418 0.301 0.537 0.729 0.338 0.519 0.377 0.608 0.411
f3 1.279 0.634 - 1.211 1.250 0.668 0.938 1.365 0.759 0.325 0.766 0.734 0.562 0.840 1.328 0.626 0.870 0.841 1.114 0.925
f4 1.224 0.665 1.211 - 1.345 0.626 0.949 1.456 0.781 0.280 0.727 0.773 0.647 0.850 1.368 0.633 0.883 0.849 1.179 0.924
f5 1.399 0.712 1.250 1.345 - 0.778 1.055 1.512 0.866 0.352 0.846 0.825 0.626 0.930 1.492 0.761 0.970 0.927 1.266 1.027
f6 0.667 0.366 0.668 0.626 0.778 - 0.511 0.815 0.352 0.220 0.370 0.488 0.294 0.501 0.760 0.425 0.526 0.375 0.673 0.456
f7 1.003 0.539 0.938 0.949 1.055 0.511 - 1.143 0.666 0.226 0.533 0.615 0.506 0.655 1.066 0.510 0.698 0.662 0.917 0.734
f8 1.490 0.733 1.365 1.456 1.512 0.815 1.143 - 0.958 0.375 0.906 0.913 0.732 1.021 1.596 0.768 1.066 1.014 1.352 1.110
f9 0.864 0.355 0.759 0.781 0.866 0.352 0.666 0.958 - 0.152 0.533 0.493 0.394 0.500 0.920 0.373 0.550 0.606 0.764 0.655

f10 0.251 0.150 0.325 0.280 0.352 0.220 0.226 0.375 0.152 - 0.227 0.116 0.187 0.221 0.371 0.112 0.279 0.148 0.319 0.177
f1 0.799 0.361 0.766 0.727 0.846 0.370 0.533 0.906 0.533 0.227 - 0.326 0.307 0.533 0.870 0.334 0.531 0.539 0.764 0.536
f12 0.804 0.418 0.734 0.773 0.825 0.488 0.615 0.913 0.493 0.116 0.326 - 0.448 0.520 0.868 0.440 0.524 0.503 0.686 0.581
f13 0.666 0.301 0.562 0.647 0.626 0.294 0.506 0.732 0.394 0.187 0.307 0.448 - 0.389 0.697 0.298 0.399 0.468 0.532 0.449
f14 0.883 0.537 0.840 0.850 0.930 0.501 0.655 1.021 0.500 0.221 0.533 0.520 0.389 - 0.963 0.430 0.711 0.501 0.812 0.600
f15 1.430 0.729 1.328 1.368 1.492 0.760 1.066 1.596 0.920 0.371 0.870 0.868 0.697 0.963 - 0.683 1.006 0.964 1.288 1.068
f16 0.666 0.338 0.626 0.633 0.761 0.425 0.510 0.768 0.373 0.112 0.334 0.440 0.298 0.430 0.683 - 0.457 0.417 0.619 0.485
f17 0.924 0.519 0.870 0.883 0.970 0.526 0.698 1.066 0.550 0.279 0.531 0.524 0.399 0.711 1.006 0.457 - 0.565 0.856 0.644
f18 0.898 0.377 0.841 0.849 0.927 0.375 0.662 1.014 0.606 0.148 0.539 0.503 0.468 0.501 0.964 0.417 0.565 - 0.819 0.707
f19 1.239 0.608 1.114 1.179 1.266 0.673 0.917 1.352 0.764 0.319 0.764 0.686 0.532 0.812 1.288 0.619 0.856 0.819 - 0.900
f20 0.989 0.411 0.925 0.924 1.027 0.456 0.734 1.110 0.655 0.177 0.536 0.581 0.449 0.600 1.068 0.485 0.644 0.707 0.900 -

Table 5.7: Correlation matrix over Adversarial Examples (generated using PGD) from
the Test Set

In table 5.6 and 5.7, we compute the error-correlation matrices for the nominally

trained individual hypotheses. Note that the gap between natural and adversarial

accuracy is almost around 60%, which is quite substantial. Can we understand this

gap using error-correlation matrices? It turns out that indeed this gap is quite clearly

reflected in the error-correlation matrices. With a simple bird's-eye view, one can infer

that the values in the two tables (5.6 and 5.7) differ by atleast an order of magnitude.

Therefore, low error-correlation between hypotheses is synonymous to high accuracy.

Note that this behavior is also reflected in error-correlation matrices of the previous

experiment, however since there the gap between natural and adversarial accuracy is

only around 12%, therefore the difference in the values of the corresponding error-
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correlation matrices (table 5.3 and 5.4) is not stark, but with a close inspection one

can definitely notice the difference.

5.4 Evaluating All-pairs (1-vs-1) Codebook

We now do a similar analysis on all-pairs codebook (figure 3-1b). This experiment

is important for the purposes of benchmarking as all-pairs codebook has shown good

performance in many independent studies [251 [13] in the nominal setting. However,

to the best of our knowledge, its performance in the adversarial setting has not been

investigated in the literature. We report the accuracy of the individual classifiers

resulting from nominal and adversarial training in table 5.8.

Hypothesis Pairs

fl {10},{1}
f2 {10},{2}
f3 {10},{3}
f4 {10},{4}
f5 {10},{5}
f6 {10},{6}
f7 {10},{7}
f8 {10},{8}
f9 {10},{9}

flo {9},{1}
fl1 {9},{2}
f12 {9},{3}

f13 {9},{4}
fl4 {9},{5}
f15 {9},{6}
f16 {9},{7}
fl7 {9},{8}
f18 {8},{1}
f19 {8},{2}
f20 {8},{3}
f21 {8},{4}
f22 {8},{5}
f23 {8},{6}
f24 {8},{7}
ff25 {7},{1}
f26 {7},{2}
f27 {7},{3}
f28 {7},{4}
f29 {7},{5}
ff30 {7},{6}
f31 {6},{1}
f32 {6},{2}
f33 {6},{3}
f.34 {6},{4}
ff35 {6},{5}
f36 {5},{}
f37 {5},{2}
f38 {5},{3}
f39 {5},{4}
f40 {4},{1}
f41 {4},{2}
f42 {4},{3}

Mf43 {3},{1}
f44 {3},{2}
f45 {2},{1}

Average:

Adv. Accuracy Natural Accuracy 1 Adv. Accuracy
My Trained
'Natural Accuracy

0.9215
0.8885
0.9485
0.956
0.9685
0.964
0.976

0.9585
0.951
0.908

0.9465
0.9495
0.954

0.9635
0.965

0.9745
0.97

0.9505
0.969
0.8895
0.8905
0.8705
0.8635
0.951

0.9645
0.9725
0.875

0.8725
0.8905
0.9205
0.9485
0.9725
0.841
0.7325
0.861
0.943
0.975
0.836

0.8335
0.943

0.9535
0.8115
0.8905
0.954

0.95150
.9922.

0.0

0.0

0.0

0.0

0.0

0.0

0.001

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.002
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0005
0.0005

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0005
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0005
0.0001

Table 5.8: Accuracy of individual hypotheses for All-pairs codebook
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Nornin Adversarially Trained

00 0.9065 0.775

00 
0.6525 

0.619

0.848 1 0.750

' NominallyTrhe Adversarially TIrained

0.9065
0.6525
0.9115
0.9205
0.9275
0.9245
0.954

0.9185
0.8735
0.6895
0.8595
0.922

0.9305
0.9565
0.9595
0.9725
0.959
0.933
0.9755
0.8535
0.7835
0.781

0.6955
0.897
0.94

0.9705
0.618

0.7105
0.5425
0.8025
0.9135
0.961

0.7445
0.5

0.7625
0.9015
0.957
0.591
0.767

0.9115
0.951
0.734
0.863
0.944
0.938

0.775
0.619
0.816
0.8

0.8385
0.84

0.8625
0.7905
0.7455
0.631
0.756

0.8115
0.826

0.8625
0.874

0.9035
0.8505
0.8375
0.874
0.6785
0.635
0.69

0.6205
0.7285
0.8725
0.87

0.5805
0.629

0.5225
0.6875
0.833

0.8615
0.624

0.5
0.661
0.825
0.855
0.55

0.6215
0.822
0.8245
0.5915
0.756
0.826
0.778



For the case when all the hypotheses are adversarially trained the classifier result-

ing from all-pairs codebook achieves a nominal accuracy of 51.49% and an adversarial

accuracy of 25.5%. On the other hand, when all the hypotheses are nominally trained,

the resulting classifier achieves a nominal accuracy of 68.76% and an adversarial ac-

curacy of 0.0%.

These results clearly indicates that adversarial accuracy of 16.48% achieved by

codebook F1 is by no means trivial. In exactly the same setting, all-pairs achieves

no robustness (0.0%). Also, F1 achieves a higher nominal accuracy of 76.25% in

comparison to 68.76% achieved by all-pairs. Apart from the benefit of achieving higher

accuracy, codebook F1 uses only 20 classifiers in comparison to the 45 classifiers used

by all-pairs. This compactness significantly reduces the computation burden when

doing predictions. In the adversarially trained case, all-pairs achieve a higher nominal

accuracy but at the cost of lower adversarial accuracy in comparison to F1.

5.5 Role of Network Capacity in IF,

In section 5.3.2, using only nominally trained classifiers, codebook r1 achieved an

adversarial accuracy of 16.48% and nominal accuracy of 76.25%. Without any adver-

sarial or robust training, robustness of 16% is significant and shows the potential of

our proposed methodology. However, given that we are combining the output of 20

classifiers, each of which is a ResNet-18, a natural question arises:

Is network capacity (of the overall classifier) the main reason for this robustness?

Recall that to evaluate the robustness we combine the outputs of each of the

hypotheses (individually trained before) and form a multi-class classifier using non-

iterative probability estimates. We then do a PGD based evaluation of the resulting

classifier. To investigate the role of network capacity, we now in the same manner,

combine untrained hypotheses (ResNet-18) to form a multi-class classifier (say .F(x)),

see figure 4-1. We now nominally train this 10-class classifier T(x) end-to-end over

the training data (CIFAR10). F(x) has exactly the same network architecture and

capacity as our classifier resulting from codebook F1 .
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We now evaluate the nominal and adversarial accuracy of T(x) using the same

PGD attack which we used for T1. F(x) achieves a nominal accuracy of around 78%

and an adversarial accuracy of 0.27%. The lack of robustness of F(x) shows that

network capacity alone in itself is not the reason for robustness of TI1. Note that

this does not imply that we cannot improve the performance of F1 using individual

classifiers of higher capacity. Exploring the effect of network capacity of individual

hypotheses on the robustness of the overall classfier will be an interesting direction

for future work.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

In this thesis, we investigated the vulnerability of modern Machine Learning (ML)

systems to adversarial perturbations. As a motivating example we showed the brit-

tleness of ML systems using a commercial computer vision service. From an urban-

system's perspective we discussed how these vulnerabilities can impact the operation

and security of modern transportation networks, which for efficient maintenance and

control are increasingly moving towards data-driven solutions. Rapid adoption of ML

systems in such critical real-world applications, provides enough reason to study and

improve the robustness of modern ML systems.

We discussed different methods of training an adversarially robust model including

the challenges associated in correctly estimating the adversarial accuracy of Deep Neu-

ral Networks (DNNs). These challenges have given rise to the new field of verifiable-

Al. In terms of novel contributions, we have proposed and investigated a new method

of defense to train adversarially robust DNNs for classification problems. Our pro-

posed approach builds upon the idea of Error-Correcting Codes(ECCs) for classifica-

tion tasks to achieve robustness. Using our approach we provide evidence to the fact

that DNNs can be robust even without adversarial training. This unique and supris-

ing outcome of our proposed method provides affirmation that ECCs can particularly

be useful in the adversarial setting.
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We first provided an efficient Integer Programming (IP) formulation to generate

codebooks following the guidelines of codebook design from literature [13] [25]. This

IP based method provides a systematic and optimization driven method of codebook

generation. Furthermore it can be useful to study the effect of different guidelines,

by generating new codebooks by simply adjusting the parameters of the IP. We then

used the codebook (solution of the IP) to train a ECC based (robust) classifier. To

rigorously estimate the adversarial accuracy of the resulting ECC based classifier, we

also provided methods to perform white-box attacks.

We supported our claim with experiments on CIFAR10 dataset using lo-norm

based perturbations with c = 8. Our IP generated codebook substantially outper-

formed one-vs-one codebook, both in terms of natural and adversarial accuracy, par-

ticularly for the case when the individual hypotheses were nominally trained. To

further discern the benefit of using ECCs from network capacity, we showed that the

robustness of our ECC based classifier (resulting from the IP generated codebook) is

not a manifestation of high network capacity of the overall ECC based classifier.

6.2 Future Work

The experiments discussed in chapter 5 are encouraging and warrant further analysis

and more exhaustive experiments. These include:

1. In the experimental setup in chapter 5 we used a threat model with C = 8, which

results in large uncertainty sets. We should also evaluate our approach against

smaller uncertainty sets (lower values of c) and on simpler datasets including

MNIST.

2. The role of the number of columns in the codebook should also be studied in

more detail, although our current codebook is compact in comparison to one-

vs-one, but there could be potentially more compact codebooks with similar

robustness. Also, the effect of high column separation on the performance

should be investigated. In summary, a sensitivity analysis with respect to the
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parameters of the IP should be conducted.

3. We performed experiments by training all the hypotheses either nominally or

adversarially, however there could be a case where only some of the hypotheses

are adversarially trained and remaining hypotheses are nominally trained. This

can significantly improve the adversarial accuracy (over the nominally trained

case) with minimally reducing the natural accuracy.

4. Finally, for the purposes of benchmarking, one can advance the DECOC (Dis-

criminant Error Correcting Output Codes) approach [25] discussed in chapter 3

section 3.2.4 to account for adversarial perturbations. Furthermore, influenced

by DECOC approach, one can propose an iterative procedure which takes into

account the accuracy of the resulting codebook (or even the individual classi-

fiers) from the IP and then using this information to solve a new IP or generate

a new codebook.
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