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ABSTRACT

COMPUTER SIMULATION OF MACROSEGREGATION IN

ESR INGOTS

ROBERT JOSEPH FURLONG, Jr.

Submitted to the Department of Materials Science and Engineering on
January 21, 1977, in partial fulfillment of the requirements for the
degree of Master of Science.

Macrosegregation in ingots made by the electroslag remelting process
(ESR) in small-scale laboratory molds at M.I.T. is compared with
simulated composition profiles generated by an IBM 370 digital computer.
Since adverse effects of macrosegregation upon ingot structure and
mechanical properties are well documented, the ability to accurately
predict macrosegregation ingots and castings is therefore practical.
Feedback from computer-experiment interactions should expedite control
of alloy composition leading to ingots and castings of more uniform
and improved mechanical properties.

A macrosegregation model based upon the Local Solute Redistribution
Equation and the application of D'Arcy's law to the mushy region in
cylindrical coordinates is used as the basis of the computer program.

The pressure field within the mushy zone is determined by a relaxa-
tion technique. Interdendritic velocity and fraction liquid are subse-
quently computed. Updates of fraction liquid are recycled until devia-
tions between successive cycles are insignificant. This final relaxed
pressure field yields the appropriate values of interdendritic velocity
and fraction liquid utilized in the approximate integral form of the
Local Solute Redistribution Equation for generating into composition
profiles.

An auxiliary heat balance routine for determining temperature
distributions within the mushy zone is not attempted. Thermal data
including temperature distributions must be determined by experimental
measurements.

The specific permeability, K, is the process variable which is
key to the investigation of interdendritic fluid flow. Two models are
discussed. A new model directly linking specific permeability to the
process variable known as cooling rate, £, is explored. The Karman
Kozeny relationship is also focused upon as an alternative method of
describing the specific permeabilitv.
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Surface to center compositional variations (composition profiles)
of five Al-4% Cu ingots are computer simulated on an IBM 370. Considering
the large number of variables involved, calculations agreed remarkably
well with experiments. The program predicted modest surface to center
compositional variations for four ingots and no segregation for the
fifth which solidified unidirectionally.

Severe-localized segregates, as sometimes found in large commercial
ingots, are not pronounced using Al-47 Cu cast in the small-scale ESR
molds (6.8 cm diameter). "Shrinkage induced" convection predominates
due to a high cogling rate, and computer outputs correctly indicates that
the rate ratio, vVT/e, is positive throughout the mushy zone.

In order to study a wider range of segregation problems encountered
in ESR ingots, calculations were compared to the macrosegregation in a
Sn-15% Pb alloy. Simulation results gave a substantial range for the
rate ratio: =-2&lt;¥VT/« 0.8, with values of VVT/« -1 occur between radius
of 1.3 Cu and the center. Freckling is therefore predicted by the
computer simulation which agrees with the actual structure of the ingot.
It is evident that "gravitational induced" convection predominates in
this ingot. The accuracy of simulated predictions to experimental
measurements in both cases of Al-4% Cu and Sn-15% Pb alloys infers
correctness of the underlying macrosegregation theory.

Finally, continuously cast ingot (30 cm in diameter of composition
Al-4.57% Cu) is simulated using the same program. Radial increment
spacings are varied. Mushy zone shape and other pertinent data are
selected from the literature. A composition profile, which upon
comparison to literature findings shows indisputable similarity,
is generated.

Thesis Supervisor: Merton C. Flemings
Title: Ford Professor of Engineering
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: INTRODUCTION

The phenomenon of macrosegregation and its subsequent problems have

been with man for thousands of years. Only within the last few decades

has there been analytical work on macrosegregation; prior to about 1960,

the work reported on macrosegregation in alloys was empirical. The more

recent research on the microstructure of metallic crystals and the effects

of heat flow and fluid flow within the mushy zone and other fundamental

investigations have led us closer to better definition of this problem.

Macrosegregation has many forms such as the "V" and "A" segregates

in large, killed, steel ingots. Transverse and even longitudinal

segregation is often observed in industrial ingots. It seems that with

so many forms that numerous mechanisms must be involved; yet, today the

better informed researcher and theorist are beginning to evince similari-

ties between the types. A common mechanism or a joint coupling of

mechanisms may be detected in the future.

Industry never waits for detailed philosophies to develop but

continues to plunge ahead seeking processes which appear qualified to do

the job. One such process is the electroslag remelting (ESR) process

which is commercially used for the "specialty" alloys. The main advantages

are the refining capabilities derived from melting through a slag of

controlled composition and the superior solidification structures obtained.

Finer dendritic arm spacings and less porosity along with the reduction

of nonmetallic inclusions result in a product with less segregation and

better mechanical properties. The ESR process is not however, the panacea

to the production of large alloy ingots. Segregation does occur and even

12



significantly.

This thesis deals with macrosegreation in ESR ingots in a quantita-

tive manner. This new process, ESR, is examined using the analytical

approach set forth by Flemings and Nereo?’ and later refined by Mehrabian,

Keane, and Flemings 3’. A model is constructed from basic principles of

fluid flow and next solved by numerical methods on a computer. The

computer simulation yields solute composition distributions of the ingot.

This distribution is then compared with actual distributions resulting

from ESR castings solidified under controlled laboratory conditions. The

ultimate aim is to establish control of solute redistribution in "large-

scale" commercial ingots. This will lead to ingots of "optimum"

homogeneity and therefore uniformity of mechanical structure.

Ingot structure substantially affects the properties of a cast

material. This structure depends mainly on the heat flow pattern within

the mushy zone during solidification. Fluid flow within the interden-

dritic region is a consequence of this heat flow pattern.

The experimental work concerns small laboratory ingots of 3 to 4

inches in diameter of both the Al-4.4% Cu and Sn-15% binaries whereas

there are commercial ingots approaching two meters in diameter produced in

Germany. Scale-up is not considered at this stage. Compositional

variations are examined for various profiles of the solid-liquid region

of the ingot.

13



II. LITERATURE REVIEW

In this chapter literature on macrosegregation and related topics are

presented. Of interest are:

A. dendrite morphology,

B. permeability of dendritic networks,

C. macrosegregation in alloy ingots,

D. segregation types,

E. effects of macrosegregation on mechanical properties, and the

F. electroslag remelting process.

Of chief interest are the mechanisms of macrosegregation in alloy

ingots. Some mechanisms are emphasized while others are in the process

of being discounted or modified. It appears that several types of macro-

segregation may to a large extent be governed by a single dominant mechan-

ism which is the flow of interdendritic liquid. Solute is rejected from

solidifying dendrites and is carried away by the liquid seeping through

the dendritic arrays.

A. Morphology of Dendrites and Grains

During alloy solidification three zones distinguished by their grain

morphologies, frequently occur. Coarse equiaxed grains often occur within

the central ingot region while fine equiaxed grains are found at the mold

wall. In between these zones is the columnar structure. All three zones

are not always seen within the same ingot or casting. The grains, themselves,

are made up of dendrites whether or not they are equiaxed or columnar. We

are concerned with the morphology of dendrites because, as related to

macrosegregation, the permeability of the dendritic network is a control-

14
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(3)

ling factor of the convection within the mushy zone which leads to

macrosegregation.

The primary and secondary dendrite arm spacings are related to tem-

perature gradients of the liquid at the liquidus, Gy» and the growth

velocity of the dendrite tips, R. The primary dendrite arm spacing, Ags

has the following empirical relationship: ¢%)

A =k 60 RP 1)

where kis a, and b are constants. The secondary dendrite arm spacing,

Xo» is proportional to the time spent within the liquid-solid zone, 0,

such that

ye kyo"

where k, and n are constants. Often Eq. (2) is written in terms of average

cooling rate, e, so that

A, =k, ge |

For aluminum copper alloys Bower et a1. ® determined that the exponent

n is approximately 0.39 whereas more recently Young and Kirkwood have

established a value of 0.33.

Dendritic spacings have been related to ripening kinetics, and the

coarsening of dendrites has been explained by considering the reduction of

surface area and curvature of the solid-liquid dendritic interface.

Coalescence, according to Chien and Yatwamis is the fusion of impinging

dendrite arms. It is the final act of the coarsening phenomena. Again

surface free energy diminishes. Alloy concentration also affects the

coarsening or ripening of dendrites. Chien ® and Young 4) agree that the



effect of increasing the composition is to increase the width of liquid

grooves reducing the curvature at the dendrite roots. The ultimate result

is that dendrites in dilute alloys coarsen faster for a given cooling rate

than do concentrated alloys. The arms become dendritic cells.

Jacobi and Schwerdtfeger and Tadayoshi and Hagiwara ‘® have

observed interesting alignments of dendrites in carbon steels. The expe-

rimental work of Jacobi and Schwerdtfeger ’) on 0.59 and 1.48% C steels

show two arrays of primary dendrites. One is the aligned primary

dendritic array. The other is the closer packed staggered arrangement.

B. Permeability of Dendritic Networks

In the mid 1960's Piwonka and Yientngs determined that the specific

permeability within the two phase zone is proportional to the fraction

liquid raised to a power. Their work was on Al-4.5% Cu alloy. With

fraction liquid less than 0.3, the specific permeability, K, is

K =v 8 “3

where y is a constant and 8, is fraction liquid. With greater amounts of

liquid, the permeability was found to vary as

Eo g. 0" Cs

Since most of the mushy zone has a fraction liquid less than 0.3 for this

particular alloy, Eq. (4) was applied in a study of macrosegregation’

Flemings and Pivouka’d and Apelian, Mehrabian, and Plemings 1Y

demonstrated that D'Arcy's Law is applicable to flow through the dendritic

zone since it is a porous network. Therefore, the interdendritic velocity

is directly proportional to the pressure gradient at any liquid position

16
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within this region. This has been seconded by Streat and Weinberg (11) in

their studies on Pb-Sn alloys. Agreed upon by both groups is the specific

form of the permeability expression after modifications are taken into

account. The equation is:

K=- '— }
8m n 2?

n = number of flow channels per unit area, Whe 3

T = tortuosity factor, and

gr = volume fraction liquid

The specific permeability is assumed to be isotropic. Streat and Weinberg

show that the specific permeability is proportional to the square of the

primary dendrite spacing. Thus

2 2
] A 1,
= gr

Qur -’

n= A, 3

if the capillary model is used to describe flow through the interdendritic

array. In experiments using Pb-20wt% Sn alloy Streat and Weinberg determined

a value of 4.6 for the tortuosity 117,

Apelian and Flemings (10) speculate that the Karman-Kozeny relationship

may be a possible method of investigation for future work. The implicit

-2
influence of dendrite surface resistance is clearly suggested by the S,

term of the Karman-Kozeny Equation stated as:

17
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(6)

with
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2
2.

(b,

here:

since

(9:

(1

R=- 2 ”
c (1-g;) S,

-

S = surface area of the porous medium exposed to the fluid

divided by volume of the solid in the medium, and

c =4"

&amp;

S, Ca ” "
Eq. (8) may be written as: .

— nN

’ c-2(1-g)”
Equation (10) is derived in Appendix B, Der. (1). The constant ca? of

Equation (10) is m/4-150/¢_* in Eq. (1.8) of Appendix B. Since &amp; = 4 then

¢ is approximately V/1-150/¢_

CZ. Macrosegregation in Alloy Ingots

Many theories have been proposed to explain macrosegregation. Four

of the most prominent mechanisms are:

1. mixing or flow of the diffusion layer ahead of the growth interface

into the bulk liquid,

2. precipitation of a solid phase from the bulk liquid,

?. fluid flow within the semisolid region due to volume contraction,

and 4. natural convection within the dendritic zone.

The first mechanism of mixing of the diffusion layer into the bulk

liquid 12) has met with considerable opposition in recent years. The charac-

teristic distance is the thickness of the boundary layer ahead of an



advancing solidification front. Since it is only about 1073 cm, many

researchers have argued that very little solute is contributed to the bulk

liquid by mixing with the turbulent currents within the pul? The

characteristic thickness is simply D/U where D is a liquid diffusion coef-

ficient and U is dendrite tip velocity. The mechanism has less validity

if the growth front is not planar but rather cellular or dendritic. Most

researchers, however, agree that this mechanism is likely for segregation

in single crystal growth, (e.g., normal freezing).

The second mechanism of precipitation of the solid in the bulk liquid

is based uponthe recent theory of Jackson, et a1. (13) Turbulent currents

within the bulk liquid produce temperature fluctuations at the dendrite

tips causing them to melt from the main dendrite tree and be swept into the

bulk liquid to nucleate solid grains. Heterogeneous nucleation occurs with

the result of a "raining action" whereby the solid particles precipitate

into the central region of the mushy zone resulting in the equiaxed

structure and these grains settle to the bottom of the ingot or casting.

If the partition ratio is less than unity a region depleted of solute

composition forms the so-called "negative cone of segregation."

The contraction mechanism was discussed in the late fifties by

Kirkaldy and Youdelis 1%’. Volume contraction of the alloy causes

"flow-back'" of enriched fluid within dendritic channels, and this was used

to explain inverse segregation. A decade later a more general model was

constructed by Flemings and Nereo (2) Use of a differential element (large

enough to include both solid and liquid phases such that the fraction solid

is at all times the local average) they modified the earlier analysis of

19
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Kirkaldy and Youdelis and derived the "local solute redistribution

equation." Both shrinkage terms and interdendritic velocity are considered

making the analysis more general. Nereo and Flemings also pointed out the

importance of the dimensionless group vVT/e where v is the velocity of the

interdendritic liquid, VT is the temperature gradient and € is the cooling

re!

Later work by Mehrabian et al. ® showed how to apply the local solute

redistribution equation to even more situations. Specifically, their main

contribution was to combine D'Arcy's law for flow through porous media

(with gravity acting as a body force on the interdendritic liquid) with the

local solute redistribution equation. With this approach, a two-dimensional

flow field was solved and the authors demonstrated how in some situations

(depending upon the value of V-VT/e) there is flow of interdendritic liquid

from colder to hotter regions within the mushy zone. In fact, if

v+VT/e &lt;-1 Mehrabian et al, 3 explain the formation of "freckles."

Briefly then the model of Kirkaldy and Youdelis (1%) could be used to

explain inverse segregation whereas the model of Flemings and co-

workers (223&gt;15) was derived to define all segregation types which could be

explained by interdendritic fluid flow. They do not, however, "couple" the

bulk liquid convection with that of the two phase zone.

Of the four mechanisms the most popular to date is gravity flow

primarily dependent upon density differences of the liquid within the two

phase zone. Based upon experiments, McDonald and Hunt (16) inaugurated the

idea of continuous convective loops which sweep from the bulk liquid,

through the mushy zone. Hebditch and funt 37) emphasized the influence of



the gravity effect while Fisher 13 maintains that the gravity flow occurs

in castings of all nominal alloy compositions to roughly the same extent.

The strongest effects of gravity occur small distances from the dendrite

tips since this is the region of large liquid channels. For a Sn-5 wt%

Pb is determined the distance to extend 0.4 cm. into the mushy zone.

Szekely and Chen 1D formulated a model of flow based upon natural

convection within the two phase zone. The unsteady state system convection

within the two phase zone. The unsteady state system incorporates the

equations of continuity and motion in the liquid portion of the two phase

region and also the liquid pool. Stream function distributions are

ultimately determined by the computer. Numerical values of the velocity are

of the order of 1073 cm/sec at the wall where velocities are found to be

the highest. A more detailed analysis of this method is in Chen's Ph.D.

thesis (20)

D. Segregation Types

Inverse '"V" segregates ('"A" segregates) have been studied by McDonald

and Hunt (19), Better channel formation results if the growth rate is low.

Their system is ammonium chloride with a potassium permangate tracer for

direct observational studies. Pipes or channels are formed only by

ascending fluid and can be destroyed by mechanical mixing within the

equiaxed region.

Narita and Mori (21) observed on "A" segregates in their studies on

twenty ton ingots of steel statically frozen. Two important observations

are:

1. there is a very close relationship among the freezing rate, its

21
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distribution, and the solidification structure; and

2. "A" segregates appear in the region where the acceleration of the

freezing rate is positive.

If condition two is satisfied it is observed that "A" segregates are

likely to occur in the granular crystal region also. Acceleration of the

freezing rate implies that rejected solute is not able to escape into the

bulk liquid quickly enough to avoid being frozen into the local crystal

structure. Freckles are extended trails of macrosegregation enriched in

the normally segregated elements and depleted of the inversely segregated

elements. Such well defined jets are the result of fluid instabilities.

Flemings et a1. (? derived a dimensionless number v-VT/e which defined the

freckling behavior and quantitatively predicts its occurrence. A freckle

should emerge if ¥-VT/e&lt;0 with excessive melt back as this number approaches

-1. A freckle is formed if the liquid jet erodes the dendrite forest

by dissolution and dendrite dismemberment as enriched fluid traverses the

mushy zone. However, it is not specified that a density inversion be

required. Copley and Giamei (2) seconded the instability criteria by

noting that suppression of both G and R "favors jet formation'.

Copley and Giamei proposed that this suppression of G and R would

occur longitudinally as the solidification front is displaced from the

chill plate. Their research on the nonmetallic 30NH, C1-H,0 system indicates

that density inversion was the driving force for upward solute flow in

unidirectional solidification. An interesting development is that the mushy

zone orientation effected the critical radius where freckles appeared to

congregate. A mushy zone which is convex upwards will have a concentric



ring of jet cross-sections towards the ingot center whereas a mushy zone

concave upwards will have its jets at the mould wall periphery. This

of course supports the density inversion mechanism.

Gould developed a hypothesis on segregation mechanisms (23) As

solutes are rejected during solidification, gases in the form of bubbles

would also nucleate. These bubbles would migrate upwards leaving blow-

hole traces behind them. Upon migrating upwards, however, these bubbles

would absorb CO. Thus, the gaseous phase migration would be a mechanism

of segregation. This came from Gould's work on A-286 series steels.

Burns and Beech (#4) examined this hypothesis. From their work on iron

base alloys containing CO gases they found:

1. the blowhole advances at the same rate as the dendritic solid/

liquid interface. In their experiments they determined a value of

1.8 x 1072 cm/sec for blowhole migration while the freezing rate was

found to be 2.0 x 1072 cm/sec}

2. the availability of oxygen is the controlling factor;

3. outward flow of solute from the bubble is small compared to

influx; and

4. there is no evidence of solute flow in terms of macrosegregation

in the ingot.

Oeters and Ruttiger'®S) support Gould's hypothesis stating that new

phases can form in the enriched layer in front of the solidification zone.

This corresponds to statement one from Burns and Beech. The amount of

precipitated new phases (bubbles of CO) depends upon the rate of solidifi-

cat’
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Another form of segregation is axial segregation. Some of the

earliest works on segregation and its reduction are based upon the process

of zone remelting studies. The main proponent of this work is pfann (20)

who calls it zone refining. The characteristic term found in zone refining

expressions is the effective distribution coefficient, Kogge Further work

has been conducted by Fizcher(2D and Gaba 22),

Zone refining is fundamentally based on mechanism one. Oeters and

Ruttiger 2) have quite recently described the method as being responsible

for marked macrosegregation of the dissolved elements across horizontal

ingot sections.

E. Effects ofMacrosegregation on Mechanical Properties

In eliminating segregation, mechanical property variations with an

alloy are greatly reduced. These aberrations are frequently responsible

for high rejection rates during production. They also contribute to the

failure of structural components throughout a broad spectrum of the alloy

making and alloy fabrication industries. Heterogeneous distributions of

chemical elements in solution along with nonmetallic inclusions are

responsible for the transverse ductility of forgings being lower than

longitudinal ductility.

Ductility is profoundly influenced by nonmetallic inclusions and small

volume fractions of intermetallic compounds. Joy and Nut ting 22) produced

a series of experimental steels with all the EN39B specifications met with

the exception of sulphur content. This was allowed to vary between 0.005

and 0.44%. Results of Izod impact tests determined that sulphur content

influences the impact value of significantly. Little and Henderson)
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also made a study of the effect of sulphur on the Charpy shelf energy (CSE)

of steel. From Fig. (1), reduction of sulphur content from 0.026 to

0.007% results in a marked increase in both longitudinal and transverse

CSE of about 86% and 103% respectively 2, Fig. (2), illustrates the

adverse effects of inclusions upon impact strength in En39B.

Variation of Charpy shelf energies throughout the ingot indicates

variations of the sulphur content. If CSE is influenced predominantly by

sulphur concentration then it is possible to determine the sulphur

distribution within an ingot by testing for CSE distributions. This

correlation of a physical property, CSE, to the impurity concentration

(in this case sulphur) allows for direct identification of the segregation

pattern of the ingot. Both Figures (1) and (2) show inverse relationships

of Izod impact results to content of impurities. Weaker ingot sections

correspond to greater than nominal concentration of impurity whether this

is sulphur content or inclusion particles per unit area. If significant

differences in physical properties occur within the ingot macrosegregation

is the likely cause.

Thornton and Colangelo 1) examined the effects of forging reductions

and the subsequent effects of carbon segregation upon the variation of

mechanical properties of low alloy steel. The nominal compositions are

approximately 0.35 to 0.4% carbon. They report that heterogeneous

distribution of chemical elements in solution is responsible for the

transverse ductility in forgings being lower than longitudinal ductility.

Two ingots were examined. Longitudinal segregation of carbon in both ingots

resulted in mechanical properties varying with position. Chemical tests
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were used for the carbon analysis. They concluded that the upper ingot

exhibited "noticeably different" mechanical behavior than the lower portion

when forged to the same reduction (10:1).

Transverse carbon distributions are well documented by Thornton and

Colangelo). Chemical analysis at a total of seven radial test locations

on 24 ingot disks were made. Prior to forging reductions the carbon dis-

tributions were generally concave upwards at the centerline and convex

upward at the midradius. Upon mechanically working these ingot sections,

it was found that the segregation profile was altered but that segregation

was not eliminated.

Therefore, it is established that macrosegregation is a major con-

tributor to mechanical property variation in steel and other alloy products

of the metals industry. Chemical homogeneity in transverse sections is

difficult if impossible to achieve even for large forging reductions (10:1)

following ingot solidification. It is realized that the solution is that

of modifying solidification mechanisms.

F. Electroslag Remelting Process

Electroslag remelting (ESR), is a secondary remelting of alloys.

Current is carried along a consumable electrode to a slag bath. Within the

slag an ohmic resistance is generated. Due to the effects of resistance

slag temperatures several hundred degrees above the melting point of the

alloy occur causing the electrode tip to melt. A thin film of molten

metal forms a droplet at the tip of the electrode which is then detached

by gravity forces. It drops through the slag layer to the metal pool

beneath. Ingot formation is the result of the cooling effects of the water
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cooled mold upon the metal pool.

The purpose of ESR is to produce materials which are more homogeneous.

ESR is both a refining mechanism, and a casting technique. For steel,

refining is carried-out at the electrode tip where sulphur, oxygen and

nonmetallic impurities are preferentially dissolved at the slag/metal

interface. As a casting process ESR offers unusually good control of the

solidification process. Control of the melting rates and heat balances

allows the metallurgist to 'tailor-make' the solidification geometry of

the two-phase zone. This affects the microstructure and ultimately the

radial segregation profile of the ingot.

The thermodynamic aspect of nonmetallic inclusion dissolution in the

slag has been studied by Kay et 21.83% It was determined that synthetic

inclusions are dissolved on the electrode tip. The section of electrode

in contact with the slag, melts forming a thin film of molten metal at

the tip of the electrode. The thickness of the film varies with melt

rate, electrode size, and nominal alloy composition. It was demonstrated

theoretically by Kluyev et 2, 52 that film thickness decreases from

2500 ym in small lab furnaces to 30 um in large industrial furnaces.

Fredriksson and Jurleborg PY also investigated the dissolution mechanisms

of inclusions. Nonmetallic inclusions are rolled into "string like"

structures upon formation of the electrode. Upon entering the molten zone

they spheroidize. At the completely molten zone of the thin film they

dissolve.

Another advantage of the ESR process is the control one has of the

solidification zone of the ingot. It is well documented that the



inclination between the solidification front and the mold wall decreases

with increasing melt rate 3%) Sun and Pridgeon 3) determined that the

depth of the liquid pool is proportional to electrode melting rate.

Several "disturbance" experiments were conducted by Medovar,

Fredriksson 0%) and others. Interruptions in electrode dipping, current

flow, and electrode ''change over" caused noticeable deviation of concen-

tration profiles and crystal microstructures.

Since temperature gradients and cooling rates are more uniform in

the transverse direction of ESR grown ingots than those of conventionally

cast ingots similar of crystal morphology will exist transversely. This

results in a reduction of anisotropy. Gulya and swift &gt;) in their

studies of 2.25% Cr, 17% Mo steel cast by the ESR process maintain that

mechanical isotropy is greatly increased; especially, in the through-gage

direction. Mechanical property data exhibited improvements in toughness

and tensile properties in all conditions (annealed, normalized and

tempered, quenched and tempered). Other improvements noted are superior

fracture toughness as measured by Keo resistance to slow crack growth

(da/dN), and resistance to bending fatigue. Heat resisting steel EI835 was

melted by both the ESR process and the electric-arc melting technique in

experiments by Maslenkov and gorova 73. An equiaxed morphology occurs in

ingots at the central zone when grown by the latter method while a contin-

uous columnar morphology results from the ESR method. It was found that

segregation of Mn changed more abruptly with increasing thickness of the

crystallized layer in the electric arc ingot. At the columnar to equiaxed

transition zone, the segregation profile changes sharply. This is seen in

29
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Fig. (3). They concluded, statistically, that chemical heterogeneity of

the rolled product is 25-30% higher in arc-furnace steel than in ESR steel.

Due to this higher inclusion contents, arc-furnace steel shows twice as

much property anisotropy as ESR steel. In Fig. (3) a plot of the

"segregation coefficient", K,, versus ingot radius is given. The seg-

regation coefficient is the dimensionless ratio c./c, where C, is the

composition at a given radius, r, and C, is the nominal composition. It

is evident from the Russian study on EI835 that:

a. the segregation coefficient is linear for a given crystal

morphology, and

b. the slope of RK /r for the ESR ingot is less than the slope for

the arc-furnace grown ingot.

The segregates of concern are chromium, nickel and manganese.

In the axial direction some researchers treat the ESR process as a

zone refining technique. The final concentration distribution is influ-

enced by pool depth. Many researchers explicitly argue the case in terms

of mechanism one. This is evident when they speak in terms of distribution

coefficients. Mechanisms three and four, however, are more realistic.

Edwards and I in their work on small Al-4.5% Cu ingots of 3.8 cm.

diameter concluded that inverse segregation resulted at the ingot base for

ESR grown ingots. Since columnar grains were maintained throughout the

solidification process both mechanisms one and two were disqualified.

The literature contains good examples of solute profiles for transverse

sections. Such transverse plots are found in the works of Fredriksson &gt;",

melberg 39, and saslenkovtS?, Heterogeneity is augmented upon increasing

33



melt rates. If cooling rates as a function of radius are known it is

possible to then define the dendrite morphology and size in a radial

sense. Subsequent solute concentration profiles are then related to this

morphology and size.

32.
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III. ANALYSIS OF MACROSEGREGATION

In this chapter the aspects of fluid flow within the mushy zone are

dealt with analytically in cylindrical coordinates. The model is for

steady state. Using the work of Flemings and Nereo‘?) Kou derived the

basic form of the partial differential equation (PDE), for the mushy zone

tnterior 89 This exact formulation is then transformed to the finite

difference approximation in Section Bj; boundary conditions are also for-

mulated in Section B. Section C elaborates upon the finite difference

approximation of the local solute redistribution equation, LSRE, and the

radial composition equation. Computer notations for the variables in these

equations are found in Chapter IV, Section C and summarized in Appendix A.

A Fluid Flow within the Interdendritic Region

In analyzing the flow within the mushy zone certain assumptions must

be made. The general assumptions embodied in the Flemings Nereo model (1-3)

along with other possibilities (4-5) are mentioned below.

1. The volume element within the mushy zone is large enough so that

the fraction solid within it at any time is exactly the local average, but

small enough that it can be treated as a differential element. The volume

element has the coordinates (x, y, z, t).

2. Solute enters or leaves the element by liquid flow to feed

shrinkage. Metal contraction induces solute flow.

3. Liquid composition and temperature within the element are uniform

(within a differential amount) at any time.

4. Changes in convection affect thermal conditions in the liquid-

solid region of a solidifying ingot.
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5. Mass flow is also induced by the diffusion mechanism.

In the system presented in this work assumptions 4 and 5 are also neglected.

Extra restrictions are presented.

a. Since the mold was a tube cylindrical coordinates were considered

whe»o

Z.15
r= {x - v7)7°

-1
6 = tan ~(y/x) ”

z =z

b. Symmetry is also specified so that r = x resulting in y = 0. The

final results ® = 0 indicates that the coordinates are for a two-dimensional

system (r, z).

c. The specific case of steady state was assumed.

d. Only binary systems were treated in this study.

e. The ‘solute fluid of the mushy zone is considered to be a Newtonian

flo,

A general outline of the procedure of deriving the pressure equations

is now presented.

A . (40) . . .

The continuity equation for the differential element is

= (pg, +p 8) = - Vp g 1
ot s®s "LPL L°L ~

Since the relationship g te = 1 must hold and since the density of the

solid phase, Ps is assumed constant within the interdendritic region

Eq. (11) reduces to:

0 0
(or =p ) —L 4 OL _ Veo. g.
Ls ot pt L®=L
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In order to solve this expression all time dependent terms r 5o° and
ap

L y .

yp must be transformed to time-independent relationships.

The first step is met if D'Arcy's Law for porous media is utilized so

thot -

te “&gt;
Vv = — = (VP +. 13ig, ( P 8) )

From Chapter II Section B two separate relationships for specific per-

meability are expressed. "Equation (4)"

K=v.g
used by Mehrabian et a1. 3 to study macrosegregation based upon the

experimental work of Piwonka and Flonings'® is used in this study.

Step two is completed once time-independent expressions are found

98; 9p
which equal the time-dependent terms —5p and —T Since Cy is a function

only of temperature the following is true:

Pr _ Lar _e |
ot dT 5t m

where m is the liquidus slope from the equilibrium phase diagram, and ¢

is the cooling rate of the differential element. Based upon many of the

same assumptions already outlined, the local solute redistribution equation

has been derived. It gives volume fraction liquid as a function of the

local composition of the interdendritic liquid (and hence, as a function

of temperature during solidification); it is:

BL d=By [pave EL .
oC, 1-K € C

T P L
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P=p1
where: B = a and

Bs = partition ratio

From the chain rule multiply Eq. (14) times the LSRE, Eq. (15) to arrive

og &gt; g
LL _ 8, [1 + Ih “LE \

at 1-k € C m
L

The density of the interdendritic liquid, Py is a function of concentration

and temperature. Since the liquid composition and the liquid density are

both functions of the temperature an exact derivative, dp; /dC, , the slope

of the plot of py versus Co is obtainable. Thue:

AY ")
Jot dC, m

completing step two.

Upon inserting the three expressions from steps one and two into

Eq. (12) a time independent expression of the continuity equation is

arrived at: ; _ J &gt;
Y&amp; P v3 p g

Vv enn VP + - L ery =
u

Y8 g1-8 L &gt; L €
-— = Eel... - —— (VP + VL] = —(ppp) GIL Te ( p 8) VII = =

P L

+ g 91 BD
L dc. m

For a given location within the mushy zone all of the physical terms of

Eq. (18) are defined except pressure, P, which is the independent variable.

The final step, then, is to unravel the difficult form of Eq. (18) making

it more tenable. This form is:
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and

DR, GRRL AT a
ar .

where: A = i + e TC + — a i

Loz 1 L2G
81. dz PL. doz dz

5

C = gop { = TP, Ths LT
L L 1. L L

| A

(1-k)C;
The coefficients A, B, and C are referred to as the "primary" coefficients.

Notice that A deals with the radial gradients of the physical terms. It

is associated with 3P/5r. Likewise, coefficient B dealing with the

vertical gradient terms is linked with 9P/3z in the PDE. Term C deals

again with the vertical gradients similar to that of B.

The coefficient we/myg, of the second term of coefficient C represents

resistance to fluid flow within the interdendritic region. The viscosity,

U, represents the resistance due to fluid properties while the e/g Y term

is resistance due to dendrite morphology. The cooling rate, e€, if high

indicates that the interdendritic region will be composed of morphologies

having large surface area to volume ratios. Alloys of higher nominal

composition will have larger average values of fraction liquid if the

partition ratio is less than unity. The effect is that the resistance to

flow is lowered.
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The (1/n)(dn/dL) form of the individual terms of the primary coeffi-

cients implies an exponential effect for incremental variations of

property with respect to space. For instance, a tendency for liquid

density to change upon freezing has very noticeable effects upon the fluid

flow. The shrinkage potential is embodied within the a term and is found in

all three primary coefficients. This concludes the brief analysis of the

primary coefficients.

B. Finite Difference Approximations for the PDE and Boundary Conditions

One of the basic functions of the program is to determine the inter-

dendritic velocity distribution within the mushy zone. The solute compo-

sition distribution follows. The velocity distribution, however, can only

be found after the pressure distribution is computed. In this section

boundary conditions and the partial differential equation for the interior

of the mushy zone are defined in terms of finite difference pressure

gradients.

1. Interior Nodes

Equation (19) is a second order partial differential equation (PDE),

of elliptic type. The primary coefficients, A, B and C have been defined

above and are also listed in Appendix B, Der. (2) in their finite

difference forms in computer notation. The gradient oC. [oz in algebraic

form is:

Cp (i,3+1) - ¢; (1,3-1)
TTR,
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In expanded form the first and second derivatives are:

AP _ P(i,j+l1) - P(i,j-1)
Az 2Az

2_ : A : z 2

AP — P(i,j+1) + P(i,j-1) — 2P (4,3)

rz? ha
The same treatment applies to the radial gradient counterparts. The only

assumptions are that the pressure distribution is continuous and that the

vertical and radial increments, Az and Ar, respectively are constant.

The finite difference form of the PDE is given in Appendix B Der (3). The

effects of unequal increment spacings for first and second order finite

difference forms are listed in Appendix B, Der (4).

In the iteration sequence the step-by-step solution routine requires

that one pressure value be computed at a time. At any given time all

surrounding nodes contain values of pressure. Equation (19) is written as:

P(i,j) = a*P(i+l1l,j) + b-P(i,j+1)

+ ¢-P(i-1,j) + d4-P(i,j-1)

+ e )

Discussions on the composite coefficients: a, b, c, d, and e are given

in Chapter IV, Section (C.3).

2. Liquidus Boundary Condition

From experimental measurements the mushy zone geometry is determined

and recourse to heat transfer for definition of the liquidus is not
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necessary. This simplification alleviates the necessity of a "coupling"

model and the pressure at the liquidus surface is calculated by the

metallostatic height of the liquid pool. Therefore,

= + .

where P, is the atmospheric pressure and h is the liquid pool depth. Since

the liquid density term, Pio is a function of the liquidus temperature,

T it is evident that the pressure gradient is only a function of the

nominal alloy composition, C,: There is a unique liquidus temperature for

each value of C,- The main assumptions for the liquidus boundary are:

1. the average temperature of the bulk liquid melt above the

two phase zone is a constant, T

2. the slag head affects only the absolute value of pressure and

therefore is neglected; and

3. a flat top profile is assumed for the liquid metal pool.

3. Solidus-Interior Boundary Points

At the solidus boundary the last bit of liquid is freezing. This is

of eutectic composition, Cp and volume fraction 8p This fraction of

liquid eutectic is not constant except for the case of unidirectionally

grown ingots. A mass balance yields:

e&gt; SE &gt;
V=-(—=-1)1U M)

PLE
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and

(2.

(z.

and

(26.

(27°

and

(28)

(29

and

(30)

The components of Eq. (22) are

P &gt;
Jv Ba = - DU ™
= PLE

p SE
V,., = - (—= 1)U 4)

ZE Pig z

Since D'Arcy's law for laminar flow is applied to the two-phase region,

the velocity components can also be written as

I E oa _K . ” °K)
Y Wer uw or

K oP v
Vo = — [= + po. 8] ~)

ZE HE &amp; 0Z LE

By equating like velocity terms the following results:

P(i,j) - P(-1,)| ~ "%.1E PsE
ig =x G - DU_g )

E ! LE

P(i,i+1) - P(i,1)1 v '°LE PSE _ 10... - go -
AZ . K PLE ZE LE

It is in finite difference form. Also known is that the isotherm veloci-

ties Uy and Uk can be described in terms of the centerline velocity,

Us,» and the solidus isotherm slope, mp, such that:

U
U,. = Er ™)

ZE 14m; ’

my Uy
U., = - —=

TE 2
I+m,
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and

oo

~ogult.

A major problem is found at this boundary. The eutectic shrinkage for

some alloys is considerable. However, expansion is occurring small

distances away within the interior. Due to this singular behavior it was

necessary to solve for pressures directly above the solidus isotherm and

not on it. In this manner the gradients of pressure are "weighted" accord-

ing to dominance. The radial pressure gradient at this "buffer" isotherm

is approximated as:

ap 142 1p -
Ar 2 Ar 2 Ar I

S-I E

In a similar manner the vertical pressure gradient is likewise written:

AP] 1 AP] 1p "3
AZ 2 bz], 2 AZ); .

S-1

Each gradient along the solidus-interior isotherm, S-I has two components.

One is the eutectic portion subscripted E and the other is the contribu-

tion from the interior, subscripted I. Equations (27) and (28) are

therefore substituted into Eq. (31) and (32) such that:

ug p g : .Pp E SE 1 P(i -P(i-1Ral 3E (Ey yy) eg (HEALD) oy)
Ar 2 K 0 TE 2 ArLE E I

S-TI

uv 1. "8p PsE 1 P(i,j+1)-P(i,1)2 as EE ony +g] +s [2 ]AAZ S—T 2 K OLE ZE LE o 2 Z :

24)
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4, Centerline and Ingot Radius Boundary Points

By symmetry, v_=0 or 9P/3r = 0 at the centerline. At the ingot

circumference, v_=0 so along this boundary 9P/9r=0 is again implied. These

boundary conditions are incorporated into the program by setting pressure

at the centerline nodes equal to the pressure of the nodes directly

adjacent to the centerline nodes. Similarly, the pressure at a node along

the ingot radius is set equal to its connecting node. In finite difference

form the boundary condition for the centerline is:

P(1,J) = P(2,J) ~)

For the wall boundary:

P (IMAX,J) = P(IMAXN,J) 3}

is the appropriate form where IMAX is the column representing the wall

and IMAXN = IMAX-1l. Notice that both forms are written in computer

notation (CN).

C. Macrosegregation Calculations

1. Local Solute Redistribution Equation

The LSRE in exact form is seen in Eq. (15). In finite difference

form it is:

MI
g (i,j) =, &amp; === [C (1,3) - C (i,5+D)]1- [ ] 7)
L Imax Es 1 2p L L

co Cy OT C.y OT
Vv (1,3) -= (1,3) + V, (4,3) wr (1,3)r ar Z dZ

[]l=1+—"—"" — Ly TESemn  wre——
£i,3)

$ al oT . . . 3 oT ,., .

V_(i,3+1) == (i,j+1) + V, (1,541) =&gt; (1,3+1)

e(i,j+1)
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The integration is directed from the liquidus to the solidus in a single

pass. This is because the fraction liquid at the liquidus is always

unity by definition whereas the value of fraction liquid eutectic, Br p&gt;

is unknown. New values of fraction liquid are attained at each node in

the column as the integration proceeds. The final value in the column

is the revised value of the eutectic fraction liquid.

2. Radial Average Solute Composition

Macrosegregation in an ingot is given in terms of the local average

composition of solid after solidification is complete. This is:

1-g “+4
5 (x) = PK, go LE Cpdgg PsEBLECE ”

8 Ps(1-8 pg) + Pops

In finite difference form it is

TMIN oy +e GoD x [.G-D) -8,(5)TC= 1 [s J s J Bg \J Eg PSE“ECLECc) =ge. ITTToOteas.ToL. Ss LE SE®LE fy
a :N)

In the above equations 8k is the volume fraction of eutectic, and Co is

the eutectic composition. The integration in the numerator can be carried

out by picturing a fixed unit volume in which C. continuously changes in a

known manner as the alloy solidifies. For an ESR ingot, when the isotherms

move at a steady velocity, the integration can be carried out by integrating

from the liquidus (g.=0) down to the solidus (8 =1-g 5) at a given radius
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in a similar fashion to that of the LSRE. By doing this for different

radial positions within the ingot, Cg (x) versus radius is determined which

can be plotted to give the pattern of macrosegregation.

3. Average Ingot Composition

Occurring at the conclusion of the program is a method of determining

the average solute content of the ingot. In exact form the integration

appears as:

27 C (r) r dr
C (ingot) = — BGremem 7)

Ss EE

In approximate form it is:
imax-1 _

= 2-34» Csi i Ar
Cg (ingot) = ==1%" mm ieee )

so long as the radial increments are equal.
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IV. COMPUTER SIMULATION OF MACROSEGREGATION

This chapter has three sections. Section A examines both models for

defining an appropriate grid for a mushy zone. Section B centers about

Flow Chart I, Fig. (7) which is an overview of the entire program. Within

this section major operations of the program are outlined. Section C

contains each of the operations and details many of the sequences outlined

in Section B. In Section C a very detailed flow chart, Appendix C, is

given supplementing the presentation.

£ Grid Formation

Two versions of the program for predicting macrosegregation are

constructed for use on the IBM 370. The nodal grid is an essential part

of the program and is discussed here.

1. Model 1 (Three Zone Model)

Figure (4a), illustrates the superposition of nodes on a mushy zone.

Observe that nodes actually delineate the boundaries. This is characteris-

tic of the three zone model. Notice also that nodes tend to cluster in

certain regions. Equations of the type:

z = a, (r-n) 3)

z = 2a,r(r-n) 24)

are used to define linear and parabolic isotherms, respectively. The

vale

ne a %
1L "1S

is a constant term for the linear case where:



47

: (46)

(47

(4p

d = the depth of the mushy zone at the centerline,

aj = the slope of the liquidus isotherm, and

a gq = the slope of the solidus isotherm

For the parabolic case:

lr) = an)
2L 2S

defines variable n(r) where:

ay = the coefficient of the second degree term for the liquidus;

ayg = the coefficient of the second degree term for the solidus;

and d(r) = the depth of the mushy zone at radius. r

The simple equations are therefore:

z = a 4 ar 2

for the linear case: and

z=a_- 7 3 °)

for the parabolic. It is apparent that Az is a function of the radial

increment, Ar. This is especially pronounced for the parabolic case where:

Az « Ar”

This means that regions of steep slopes will have large values of Az which

will diminish accuracy.

Model 1 is called a three zone type because each of the three zones

is constructed separately. The first zone extends from the bottom of the

grid at point 1 to point 2. Within this region, if Ar is a constant then

Az varies if the isotherms are not linear. Zone 2 extends from 2 to 3. A

constant value of Az is chosen for this region. Both Ar and Az are constant
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in this zone. Zone 3, from 3 to 4, is similar to zone 1.

2. Grid Features of Model 1

a. The liquidus and solidus isotherms form boundaries.

b. The z increments are functions of the isotherm shape and the

value of Ar.

c. There is a major stipulation that point 3 must lie above point 2

due to grid construction techniques. If both points are at the same height

the computer will automatically by-pass zone 2.

d. The number of nodal points lying in the mushy zone is

(2*IMAX+NPTS) *IMAX where NPTS is the number of rows in zone 2.

e. Only certain basic polynominal types are allowed for describing

isotherms. It is not possible to have

Z =a - a, nn

3. Model 2 (Single Zone)

A simpler model for grid construction is Model 2. Two methods are

permissible for defining the liquidus and solidus boundaries:

1. A polynomial with radius as the independent variable will define

a boundary. The polynomial is determined by at least square approxima-

tions once the boundary is confirmed by experiment.

2. The "discrete linear segment' approach is a technique of defining

linear approximations to the curve representing the solidus or liquidus.

Linear segments of the actual curve are determined between neighboring

vertical grid columns. The closer the columns, the more accurate the
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approximations. This technique is described in Section (C).

As in Model 1 the centerline and wall boundaries are delineated once

IMAX is determined. IMAX is the column representing the wall boundary.

The centerline is always along column 1.

Constant radial and vertical increments, Ar and Az, are utilized in

this model for grid set-up. It is infrequent that a nodal point will

define the liquidus or solidus boundary. An interpolation process is

therefore carried-out at these isotherms. The node closest to the boundary,

either above or below it, becomes the boundary. Observe Fig. (4b) for

reference (where the dashed lines represents the true isothers and the solid

curves denote the computer approximations). For this reason the depth of

the mushy zone at a particular radius can be expanded or contracted slight-

ly. The smaller the value of Az the less significant is the distortion.

These assignments of boundaries are implemented by "logical if" statements

once the computer has stepped above a boundary in a given column. This is

given in Oper. A, Loop 50 of Flow Chart II. The liquidus point for column

I has a J value of NT(I) while the solidus point has a value of MT (I).

4. Grid Features of Model 2

a. The liquidus and solidus are seldom endpoints of the grid in the

vertical direction. Interpolation is necessary.

b. The z increments are independent of the isotherm shape and the

value of Ar.

c. There is no stipulation that one point of the grid must lie above

or below another.
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d. It is no longer so simple to specify the total number of grid

points within the grid. Unlike the three zone model the number of. nodes

within a column is no longer constant but instead is NT(I)-MT(I) for the

Ith column.

e. Any type of isotherm function is permissible. Any curve that is

monotonically increasing can be represented in terms of the discrete

linear segments.

5. Contrast of Models 1 and 2

A major advantage of Model 2 over 1 is that it can handle complex

mushy zone geometries whereas Model 1 relies upon simplicity of shape.

Both steep and flat isotherm profiles are difficult to handle with Model

1. For example, if the isotherms are parallel then

Limit n 0

a - 4) .dr dr
E LIQ

and since

Z &lt;n

limit z = « 7)

The expression for z becomes meaningless in such cases. A less explicit

difficulty is that there is uncertainty as to the relative amounts of

error generated in different grid regions due to truncation. This is due

to variations of Az spacings in different regions as the isotherms slopes

change. Thus, the final value of C, are less consistent due to variations

at different radii. This is not true in the case of Model 2 since values



of Az and Ar are constant throughout the grid. The truncation error

variations are not regional.

The one difficulty that can be encountered in Model 2 is that of

expansion or contraction of mushy zone depth due to the two interpolations

on each column at the liquidus and solidus boundaries. The maximum error

can amount to

2Az .
EL ?e(r) 300) )

max

where d(r) is the depth of the mushy zone at radius, r. The effect is

that this leads to inaccuracies in temperature gradients, dT/dz, which

will detrimentally affect the finite difference form of the PDE. It will

show up in the cooling rate term, e, since:

dT
E = - # me ~&gt;Yyvu, dz

However, this error is controllable sinze Az is chosen by the operator.

Difficult geometries of the mushy zones of continuous castings have

been successfully simulated with satisfactory results with regards to

composition distributions. Altogether, Model 2 is a more versatile model.

6. Direct Comparison of Models 1 and 2

A direct computer comparison was made of the two models for the

Al-4.47% Cu of Ingot 1. Figure (5) shows the results of a 700 iteration

- 2run of both models. In these results y = 10 3 cm . Though Model 2 uses

46% more nodal points than Model 1 the comparison is justified. The

greatest variation occurs beyond a radius of 2.6 cm. However, to choose
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which is more correct is not an easy task since an exact solution is not

available and both simulation curves inscribe the experimental points in

this region. Therefore, it appears that the results obtained from the

models are comparable.

7. Coarseness of Computer Generated Profiles

An interesting feature of Model 2 is that it is possible to determine

the correct z spacings in a step-wise manner. Figure (6) shows results

of calculating the composition profile for two separate values of this

increment. When a large spacing of 0.2 cm. is used an irregular pattern

results from the interpolation method occurring at the liquidus and

solidus. The value of e(r) is substantial.

A more regular profile is attained upon inputing a z spacing of

0.1 centimeters . This is half the former value. It is possible to

determine the proper profile by adjusting the grid spacing. In Fig. (6)

the 0.1 cm z increment necessitated 684 nodes whereas the coarser

increment of 0.2 required half as many, 342 nodes.

B. Program Overview

This section is included to provide an overview of the operation

of the computer program. A grasp of the overall system allows one to

approach the detailed sections with an understanding of objectives. The

flow chart of Fig. (7) embodies the most apparent sectors of the program

The following procedures are executed by the program. For each topic

in Section B the program location (appropriate loop) is assigned in
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parenthesis. The number within parenthesis identifies the location of

the process within Fig. (7). The loop specified is the actual placement

within the program. Refer to Appendix E.

1. Storage (2, 3: Prior to Loop 10)

There are several items and properties which must be indexed and

stored in memory. The mesh is composed of intersecting orthogonal lines.

Each intersection is referred to as a node which is coded by two indices,

I and J. For example if the operator wishes to invoke a certain fraction

liquid he need only know its depth in the mushy zone and the corresponding

radial position. Since I corresponds to radial position and J to vertical

position, fraction liquid at a particular node is easily accessible to the

operator by addressing its symbolic name GL(I,J).

2. Grid Formation (4: Loop 50)

Next encountered is the construction of the grid containing the two

phase region. Once the liquidus and solidus contours and the vertical

separation at the centerline, HTE, are specified, values of MT(I) and

NT(I) are computed and stored by the computer. MT(I) is the J index for

the lowest point for a given column with I corresponding to a given value

of radius. NT(I) is the maximum point or liquidus point in the column.

All intermediate points are located and specified for storage.

3. Temperature Field (5: Loop 70)

With the grid formed, the temperature, T(I,J) is determined at each

nodal position within the grip. Values of T(I,J) are specified according
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to experimental measurements of temperature.

Next identified are those physical properties which are temperature

dependent such as density and liquid composition. These are filed

individually within the appropriate memory arrays. The fraction liquid

also is determined according to the Scheil equation as a first approxima-

tion. Section A of the flow chart of Fig. (7) has been reached.

4. Coefficient Determination (6: Loop 150)

At this stage the computer calculates the primary coefficients for

the partial differential equation, Eq. (19). Once computed the primary

coefficients A, B, and C are combined to form the "composite" coefficients

a, b, ¢, d and e. The computer notation for these two sets of coefficients

ar

A(I,J) = A

B(I,J) = B

C(I,J) =¢C

For the primary coefficients; and

ONE(I,J) = a

TWO(I,J) = b

TRE(I,J) = ¢

FOR(I,J) = d

KONST(I,J)= e

for the composite coefficients of the PDE, Eq. (20). Along with these

values the cooling rate, ee, is designated EPPS(I1,J), and the specific
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permeability, K, is PERMI(I,J). These are used in calculations in later

sections of the program.

5. Boundaries (6: Loops 200, 250, 300, 340)

There are four boundaries of the two phase zone. At each node along

the boundaries, EPPS(I,J), PERMI(I,J) and other indexed properties are filed

for later use in a manner similar to their counterparts within the interior

sect".

6. Pressures at Boundary and Interior Nodes

(6: Loops 410, 430, 450, and 530)

Pressures are calculated by iterative calculations. The iteration

sequence entails two processes:

1. the solving for new pressures at the boundaries; and

2. the solving for pressures at nodes within the grid interior

Each node within the interior is surrounded by four adjacent nodes. Every

node contains three primary coefficients and five composite coefficients.

The inherent properties of the given binary investigated and the peculiar

geometry of the mushy zone are contained within these few terms. Location

6 of Fig. (7) has been identified.

7. 1Interdendritic Velocities (8: Loop 790)

At the conclusion of the above loop (pressure iteration) the program

determines the pressure gradients at all nodes in finite difference form.

This accomplished, the algorithm based on D'Arey's law is applied and



both components of the interdendritic velocity are calculated, numerical-

ly. Additionally, the dimensionless ratio, v-VT/e, called the ''rate ratio"

herein, is calculated for all nodes.

8. Local Solute Redistribution Equation (8: Loop 810)

The local solute redistribution equation (LSRE), Eq. (37), is

integrated numerically along a given column using the components of veloc-

ity. This process yields updated values of fraction liquid, GL(I,J), at

all nodes in the two phase zone except at the liquidus nodes where fraction

liquid equals unity.

9. Radial Solute Composition Equation (8: Loop 850)

A simple series of equations follow the macrosegregation sequence.

For each column, the computer determines the accumulation of solute

through the radial solute composition equation (RSCE), Eq. (40). This

value of radial composition coded as LOCCOM(I) in the program is found

at each discrete radial column.

10. Average Ingot Composition (8: Loop 1020)

Another integration occurs after evaluation of the radial compositions.

This is the determination of the overall average solute composition for the

ingot. This is terms SUUM in the program. Values of SUUM should approach

the nominal solute composition of the alloy as a limit.

60.
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11. Cycling the Program "UPDATE" (9: Loops 1030, 1040, 1050)

There is an outside loop which encompasses the entire program

except the grid setup and introduction of memory arrays. A decision is

made at the terminal of the program which returns the operation to point A

of Fig. (7) immediately preceding the coefficient sector. Since the

primary coefficients are functions of fraction liquid they too are updated.

The iteration sequence to calculate pressures is again activated, Fig. (7).

Thus, in a completed run several updates of the fraction liquid are made

and the final evaluation of solute composition culminates in the

prediction of yet another more recent set of fraction liquid values.

C. Investigation of Operations

1. Method of Inputing

An operator with little computer training will have no difficulty in

"running" this computer program. This section deals with the general

procedure a researcher undertakes in preparing the computer model to handle

a given binary. More details related to this section are in Appendix GC,

Flow Chart II.

Input Data

There are four types of data to be inputed to the computer prior to

loop 10. They are:

: composition,

2. thermal,

3. physical, and
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4. geometric data statements.

The composition parameters in wt 7% are:

liquid eutectic composition hx

solid eutectic composition, and CSE

alloy composition 0

The thermal parameters are:

melting temperature of pure solute (°C) TM ot

eutectic temperature hl i

Other related articles are:

liquids slope (phase diagram, °C/wt%) EM + 1

partition ratio FAY

Next, there are the physical properties related to temperature. They are:

density of solid (grams/cm&gt;) RS

density of solid eutectic RSE

density of liquid at TL RO

density of liquid at TE RLE

Viscosity is not a function of temperature in the program. It is repre-

sented as MU and has the dimensions of poise. The density of the primary

solid throughout the two phase zone is also assumed to be constant.

The geometric shape of the two phase zone along with related geometric

functions are next represented as:

ingot radius (cm) R

radial spacing increment (cm) HC

depth of the mushy zone at the centerline (cm) ZILIQ

isotherm velocity at the centerline (cm/sec) UZCL
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~vhere:

To determine a value of NTOP which is the maximum number of nodes for a

given column the operator must determine (external to the program) the

difference of the highest z coordinate of the liquidus and the lowest value

of the z coordinate of the solidus. The former is the value of z found at

the junction of the liquidus and wall boundaries. The lowest point in the

mushy zone is the centerline solidus. Then, the operator decides upon a

reasonable value of vertical increment, KC, and divides it into this

difference such that:

NTAP = ZL (IMAX) - ZS(1) )
KC

ul.

NTOP = maximum number of rows, and

KC = the vertical increment spacing

In order to define the mushy zone the liquidus and solidus must be

specified. On graph paper the operator traces the mushy zone as it is

defined by experiment. The columns are superimposed on the trace. To

determine the slopes of the liquidus and solidus isotherms at the inter-

sections of the columns is the objective. In order to do this he merely

divides HC, the incremental spacing, into the rise of adjacent intersections.

This resultant slope is for the column to the left. In this single step

operation the slopes of both the solidus and liquidus are determined. In

computer notation slopes are defined as:

MLIQ = liquidus slope, and

MSOL = solidus slope
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For the matrix containing the mushy zone which is NTOP*IMAX in size the

operator needs to list IMAX slopes for the solidus and the same number for

the liquidus where:

IMAX = RADIUS/HC + 1.00001

and RADIUS is the radius of the ingot. The number 0.00001 is added since

the IBM 370 rounds numbers down. IMAX is an integer number representing

the total number of columns from centerline to wall.

Cycling Inputs

A decision must be made as to the number of iterations made for

calculating pressures in the relaxation process and the number of "updates"

of fraction liquid. This is done by assigning values to the indices

MAXIT1, MAXIT2, MAXIT3, etc. The indices TRIGl, TRIG2, TRIG3, etc.

correspond to these values and are used for transferring the program into

new "updates". For the nth update which is registered as TRIG(N),

MAXIT(N) — MAXIT(N-1) iterations are performed (with a given distribution

of volume fraction liquid) .N of course is some integer value. In this

manner the pressures within the mushy zone are relaxed.

At present the program is set for a total of three updates. The first

update always corresponds to pressure distributions related to Scheil values

of fraction liquid. All updates thereafter correspond to fraction liquid

values which are determined by the interaction of adjusted velocity

distribution due to the local solute redistribution equation, Eq. (37).

The number of cycles is arbitrary and must be amenable to the particular
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alloy under study.

2. Temperature Fields

To determine temperature dependent parameters within the two phase zone

it is essential that temperature be known. In this section the assumptions

for temperature distributions and the mechanisms by which the computer

executes this step are examined. This is Operation B, Loop 70 of Flow

Chart II.

Vertical and Orthogonal Trajectories

Linear temperature distributions in the z direction have been detected

during experimental runs. Therefore, the relationship:

- Za A y
T- Ig Ze, 0 “g

is programmed where Zp is the depth at the eutectic and Zy is the liquidus

endpoint for a given value of radius, r.

Also there is a section within the program in which orthogonal

trajectories are evaluated. At present, however, this is by-passed but can

be activated upon command. The formulation is:

TOTS
ER Ser

where Sp is the length of the arc extending from the solidus to the point

of interest. This is a partial length. Sip is the total length of the arc

having endpoints at both solidus and liquidus. The approximate method of

determining values of Sp and St at a given node within the mushy zone is

derived and illustrated in Appendix B, Der (5).
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3. Coefficient Sequence and Pressure Determination

The pressure equation,Eq. (19) ,used at all interior nodes has the

simple finite form:

AP APAED) AG)Az Ar AP AP
—— 22. ==. = ~7%

Az Ar +A Ar TB Az tC 0

which approximates a second order partial differential equation of eliptic

type. Individually, listed within Appendix B Der (2) are the primary

coefficients in their finite difference form. Operation C of Flow Chart II,

Appendix C shows their placement within the program.

The primary coefficients are composed of the finite difference forms

of several gradients. These gradients are of properties such as the liquid

density, RHO(I,J), the liquid composition, CL(I,J) and the fraction liquid,

GL(I,J) to mention a few. These values are determined with Loop 70 of

Operation B. Operation C contains the finite difference forms and the

primary coefficients all of which are found in Loop 150.

As mentioned in Section B.1l, Chapter III the composite coefficients

a, b, ¢c, d and e permit the unwieldy form of Eq. (19) to be simplified

so that the independent variable, P(I,J), can be determined. The algebraic

expression for this is Eq. (20). In computer notation it is written as:

P(I,J) = ONE(I,J) *P(I+1,J) + TWO(I,J) *P(I,J+1)

+ TRE(I,J) *P(I-1) + FOR(I,J) *P(1,J-1)

+ KONST (I,J)



67

Hb HA

JO (56

These five composite coefficients are functions of:

1. the peculiar geometry of the grid; and

2. the primary coefficients already discussed.

All five values are calculated within Sequence (8) as the final part of

Loop 150. A simple version of Appendix B Der (16) is:

ONE(I,J) = GEOM(HB) + GEOM(KA) *A(I,J)

TWO(I,J) = GEOM( ) + GEOM(HA) *B(I,J)

TRE (I,J) = GEOM(HA)-GEOM(KA) *A(I,J)

FOR(I,J) = GEOM( ) - GEOM(HM) *B(I,J)

KONST (I,J = GEOM *C (I,J)

Assumed is that the horizontal spacings are unequal. Each term is

"weighted" linearly. If three colinear nodes have spacings HA and HB

 ,

property Y will require an HA/ (HA+HB) contribution from property X and an

HB/ (HA+HB) contribution from property Z. The first term of coefficients

TWO and FOR appear not to be so influenced but this is due to increment

KA equaling KB. The sum of the above ratios is unity. Thus, each of

the four surrounding nodes contain pressures which are weighted according

to the composite coefficients. The following relationship must hold:

ONE + TWO + TRE + FW = 1 © 2)
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To determine the appropriate pressure distribution for the two phase

zone refer to Flow Chart II, Oper. D. Once the iteration portion is

initiated an ordered sequence takes place. Firstly, the program addresses

the separate discrete boundaries as follows:

1. solidus-interior boundary Loop 410

2. centerline boundary Loop 430

3. wall boundary Loop 450

For the same iteration a second sequence follows which is the determination

of pressures at the interior nodes. A single pass is made for each

column in a liquidus to solidus pattern, sweeping from the column adjacent

to the centerline to that of the column next to the wall boundary. This

two step procedure continues until the "stepping" mechanism addresses the

appropriate value of MAXIT for the given cycle. That is ITER = MAXIT. At

the conclusion of this iteration the loop is dormant until the command is

given later in the program to reactivate this operation. Statement number

530 has been reached on Flow Chart II.

4. Boundary Conditions (Solidus-Interior)

Although Sections B.2, 3, and 4 of Chapter III dealt specifically with

the boundary equations, further discussion is resumed in this section for

the solidus-interior boundary. The slope of the solidus affects the final

form of the finite difference equation at this boundary.

Examine the density versus liquid composition charts for both the

aluminum—-copper and tin-lead binaries of Fig. (8) and Fig. (9), respectively.

Sharp jumps in solid density occur at the eutectic and the shrinkage,
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(0 /og, - 1), is strikingly affected. A change in sign as well as

magnitude occurs.

The most tenable situation is not to solve for pressure along the

solidus boundary but to solve for those pressures directly above them.

This is the subtle change of tactics decided upon for assaulting this

boundary dilemma. Direct reconciliation of the two differing gradients

occurs only when both are assigned weights for a given nodal position.

Discontinuity is thereby avoided.

The form which evolved is composed of both the vertical and radial

pressure gradients along the solidus boundary. Refer to Appendix E. The

radial component is represented as:

22) _ HB (P(I#1,J) - PI, 0); , HA |P(L,J) = P(I-1,J); (5g)Ar HA+HB HA HA+HB HB
S-1

The abbreviation S-I is notation for solidus-interior. The interior nodes

will always have pressures assigned to them. The solidus is made-up of

pressure gradients and pressures need not be assigned. For the radial

component Eq. (27) describes the gradient. If the solidus has a slope

greater than zero it will have a radial pressure gradient described by

Eq. (28) and this term is therefore substituted for the radial gradient of

Eq. (59) such that

£ | _ HB RSE, URKMU*GLE HA (BP(LJ)  PI-1,B), (40Ar HA+HB "RLE PERMI(I,J) HA+HB HB
5-1

This has already been defined by Eq. (33); however, Eq. (60) above allows
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for unequal radial spacings. This is generally the case at the solidus

boundary. The computer notation for the radial and vertical gradient

substitutions, Eqs. (27) and (28) are SOLHZ and SOLVE, respectively.

Equation (60) is in computer notation.

It is possible to solve for a single algebraic expression used for

finding the pressures along the solidus-interior boundary. When completed,

the final form is similar in type to that of the standard differential

equation, Eq. (20) of the interior. The final form is:

P(I,J) = TART (I,J)*P(I+1,J) + TATOP(I,J)*P(I,J+1)

+ TALEFT(I,J)*P(I-1) + TABOT (I,J)*P(I,J-1)

+ TAKONS(I,J) )

Coefficients TATOP and TALEFT will on all occasions be identified as the

values associated with the interior whereas TABOT and TART can be associated

with the solidus. That is, the value of SOLHZ or SOLVE can be substituted

for the pressure gradients in these coefficients. Within derivation (7)

are the three possible cases commonly occurring in ingot solidification.

Equation (61) is altered for the three following cases of Sequence (7) of

Flow Chart II:

1. flat and nearly flat isotherms (Loop 121);

2. steep isotherms, (Loop 123); and

3. moderate isotherms (Loop 125).

Flat and Nearly Flat Isotherms (Loop 121)

There are cases where the isotherms are flat as in the case of

unidirectionally grown ingots. Notice the position of the solidus interior
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nodes (S-I) to that of the solidus boundary nodes (S) in Fig. B.7(a).

For this case the parameter SOLHZ does not appear within the final

pressure expression. That is: TART(I,J)=0.

Steep Isotherms (Loop 123)

If much heat is extracted from the sides, the solidus will have a

steep slant. In Fig. B.7(b) notice the extra positions along the solidus.

These are "pseudo-nodes" (PS), extra nodes along the solidus boundary,

present to accommodate adjacent interior nodes. This situation evolves

when KC is less than HA and the solidus slope is significant. The SOLHZ

term dominates in this situation making the term, TART(I,J) influential.

Notice that SOLVE is not to be found in this situation. This is because

the node under consideration is not immediately above a boundary node.

Moderate Isotherms (Loop 125)

Moderately sloped isotherms result if the heat extracted from the

ingot is not biased to either the sides or the bottom to the extent of

the two preceding cases. Both SOLVE and SOLHZ are displayed in this

situation. This implies that coefficients TART(I,J) and TABOT (I,J) are

of equal significant. Refer to Fig. B.7(c) for illustration.
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5. Computer Simulation of Macrosegregation

This section is concerned with those sequences and operations which

culminate in the determination of the radial composition profile of solute

wihin the ingot.

Interdendritic Velocity Determination

The two phase region is a packed bed where the packing is dendrites.
&gt;

Equation (13) is D'Arcy's law which related the interstitial velocity, Vv,

to the linear pressure gradient, AP/L. In computer notation the equations

for fluid flow within the interior of the muzhy zone are written as:

PERMI(I,J)*Z2(1,J) = - 24 [PDZ+ *RHO (I,J 7)VZ(I,9)=-irc)|EDZHGRAVARHO(T,)]for the vertical component, and as

PERMI(I,J) ,
= a e222 XPDRVR{T, J) MU*GL (I,J) D Lh

for the radial component. PERMIT(I,J) is the value of specific permeabi-

lity; MU is the viscosity; and GRAV represents the gravity force term.

From these two components of velocity the quantity:

ANG = VZ(I,J)/VR(I,J) A

is computed. The angle, TTHETA, in degrees is then calculated:

TTHETA = (180/PI) * DATAN (ANG) AS)

where PI equals m and DATAN is the arc tangent in double precision. The

&gt; “y

rate ratio, v-VT/e is:

_ VR(I,J)*GR(I1,J) + VZ(1,J)*GZ(1,J) .
RARS. = EPPS (I,J)
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where

(37

(67

GR(I,J) = the radial temperature gradient;

GZ(I,J) = the vertical temperature gradient; and

EPPS(I,J) = the cooling rate.

This completes the determination of the interdendritic velocities. On

Flow Chart II this is represented as Operation E of major loop 790. Within

it the radial and vertical pressure gradients (PDR and PDZ respectively) are

computed prior to solving Eqs. (62) and (63). This is a single pass

operation in which all interior nodes are assigned velocities.

Local Solute Redistribution Equation

Operation F within Loop 810 is the column by column solving for new

values of fraction liquid. This is the local solute redistribution

equation. Previously expanded in algebraic form in Chapter III, Section C

it is shown here in computer notation:

_ ,CL(I,J) - CL(I,J+1) , 1 I an
GL(L,J) = { 2. KAY-1. RS [1D

where

[ 1= 1 + VR(I,J)*GR(I,J)+VZ(1,J)* GZ(l,J)
ePPS (I,J)

| 4 VR(I,J+1)*GR(I,J+1)+VZ(1,J+1)*GZ(1,J¥1)
ePPS(1,J)

Integration is carried out from the liquidus, J=NT(I), to the solidus,

J=MT (1), in a single sweep along a given column, 1. In a more manageable

compact form:

COEFT1 = —- KON4 * RHO(I,J)/(CL(L,J)*RS) )
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(74°

(79

RATERL = VR(I,J)*GR(I,J) + VZ(I,J)*(GZ(1,J) 1 4R)

. RATERL
EN = * A oe rit + 3)FN(J)=COEFT1*[1PPS(1.7).where KON4 = 1/1-K

Similar terms: COEFT2, RATER2 and FN(J+1) require J+1 instead of J. The

natural log of the fraction liquid is written:

NLGL(J) = 0.5% (CL(I,J)-CL(I,J+1))* (FN(J)+FN(J+1)) + SuM (70)

where SUM is the total value of the integral from NT(I) to J. The fraction

liquid is found upon taking the exponential form of this such that:

GL(I,J) = EXP(NLGL(J)) (71)

Radial Average Solute Composition

Firstly, the integration term of Eq. (38) is computed. In computer

notation this is:

SUMMS = 0.5%(CS(J) + CS(J-1))*(GS(J-1)-GS(J)) + SUMMS 72)

This is Sequence (10), Loop 850 of Flow Chart II. Next, the new values of

eutectic fraction liquid are taken care of:

GEE = 1.-GS(J) )

The numerator of Eq. (38) is therefore equal to

TNT = RS*SUMMS + RSE*CE*GEE "1

and the denominator is

DDD = RS*(1.-GEE) + RSE*GEE 3
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The radial composition for column I is symbolically termed LOCCOM(I),

instead of c (x). It is:

LOCCOM(I) = T= 4)

This terminates Operation G. The profile of the radial compositions

versus radius for the ingot is available once the column at the wall, IMAX,

has been solved.

Average Solute Content of the Ingot

Sequence (11) is now arrived at. This sequence carries out an

approximation of the ingot composition as the values of LOCCOM(I) are

registered column by column. From Eq. (41) the exact method was shown.

In the computer, DELRAD is the average of radial spacings separating the

columns for which values of LOCCOM(I) are known. It is computed. The

value of radius is written as ROR(I) for the given column I. SUUM is the

computer symbol equaling C (INGOT) of Eq. (41). This is the running

tally of average ingot composition as the integration proceeds from the

ingot centerline, I = 1 to the wall of the mold, I = IMAX. In computer

notatinp-

suo = Z+OFROR(SROL)DELRAIL)+SUUM (77)

From this value of SUUM, values of SUUM from previous cycles, and a

knowledge of nominal composition, CO, the operator is able to tell upon

comparison whether the ingot composition is satisfactory. If the relative

error (CO-SUUM)/CO is too large it may mean that:
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lL. not enough cycles were used (relaxation has not occurred); or

?. the phenomenon known as freckling is occurring to a major

degree such that solute rich fluid is being rejected into

the bulk liquid in large amounts

For case 2 the liquid pool continuously becomes enriched in solute

throughout solidification. Axially, the ingot becomes solute rich at the

top most section subject to transient solidification. This is not dealt

with in this steady state model.



COMPUTER INTERACTION WITH EXPERIMENTS

Small ESR laboratory ingots of 6.8 centimeters diameter were cast

within water chilled molds. Thermocouples inserted within the mold

recorded the isotherm behavior as the ingot solidified. Figure 10 (a)

is the mushy zone profile of Ingot 1 if a longitudinal section is taken.

The uppermost curve is the liquidus while the lower curve is the solidus.

Figures 10 (b) through (f) are similar profiles. The temperature dis-

tributions of Ingots 1, 2 and A are known to be linear within the mushy

zone during steady state conditions.

Ingots 1 through 5 (Fig. 10 (a) through (e)) are of Al-4.47% Cu

composition with the exception of Ingot 3 which is of 4.18% Cu composi-

tion. Ingot A is a Sn-15% Pb binary. Experimental details are given

in Ref. D. R. Poirier, S. Kou, R. Furlong, and M.C. Flemings,"Electroslag

Remelting,' Interim Technical Report, Contract No. DAAG46-74-C-120, AMMRC,

December 1976.

A. Analysis of Al-47% Cu Ingots

1. Determining vy

The first step is to vary y over a broad range of values with the

purpose of determining the value satisfying the experimental results.

The term y from Eq. (4) is a proportionality constant referred to here

as flow factor. Upon analyzing Fig. (11) it is seen that in varying Y

over two orders of magnitude from 1070 to 1078 — that a transformation

occurs. The segregation of solute at the ingot center transforms from

79
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the positive to negative type. Figure (11) results from using values

of HC=0.2 and KC=0.1l cm in Model 2.

The experimental results (obtained through X-ray fluorescence) are

also shown in Fig. (11). Negative segregation occurs at the centerline.

A flow factor of appropriate magnitude lies between 1077 on and 5.1077

anit. Therefore, the proper range of flow factor allowing the simulation

results conform to experimental measurements is identified. Figure (12),

a plot of C versus radius, shows a small displacement of the composition

profile if vy is varied by two orders of magnitude from 1078 a to we

iy Figure (12) is the product of Model 1 if HC=0.2 and KC=0.1l cm.

2. Optimizing the Number of Iterations

Values of the average solute compositions corresponding to specific

radii for given updates are compared with each other till the operator

is satisfied that the solute composition distributions have relaxed.

In the case of Ingot 1, for a constant value of y equal to 6 x 1078 on

Fig. (13) shows the effect of this relaxation process. Again HC=0.2 and

KC=0.1 cm for Model 1. The compositions tend to be high for the first

25 iterations. For the next few hundred iterations they drop as

exemplified by the curve representing 400 iterations. From 400 to 700

iterations the compositions are climbing but at a diminishing rate.

The difference of values between 500 to 700 iterations is consider-

ably less than between 400 to 500 iterations. Due to this behavior it

was decided that the ceiling on iterations ought to be approximately

600 for the Al-4.47 Cu binary in the case of Ingot 1.
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In this example updates are made at iterations 25,400, 500 and 700.

It is evident that updating the values of fraction liquid throughout the

mushy zone is required. At least 2 updates are necessary for relaxing

the pressure field so that the fraction liquid distributions are app-

roximated. Martin Keane in his Ph.D. thesis at MIT asserts that

deviations between fraction liquid determined by the Scheil Equation

and those approximated by the relaxation process are insignificant.

Therefore, he proposed that for the Al-4.57 Cu alloy the Scheil Equation

determined the proper fraction liquid distribution within the mushy zone.

This conclusion is countered by the results of Figure (13) of this thesis.

3. Pressure Distributions within the Dendritic Region

Of basic importance is the distribution of pressures within the two

phase zone. Refer to Fig. (14) Model 1 corresponding to a value of

Yy = 2 X 10° / "a Negative pressure gradients are associated with non-

frictional regions. These are the regions of high fraction liquid.

The free flow gradient is a characteristic of the given liquid alloy at

temperatures equal to the liquidus temperature. It is the common

Bernoulli relationship:

= 0 (Cg °)

Upon examining Fig. (14) it is not surprising to see pressure distri-

butions of entirely negative slope for so high a flow factor, 2 x 1077

es. Frictional effects are minimal. The gradient at the liquidus and

throughout most of the mushy zone is:
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~~ 1990 Symes
cm

For the liquid pool it is

= 2401 See
cm

assuming the pool to be calm.

Figure (14) Model 1 corresponds to a value of y equal to 6 x 1078 cn

Notice that the pressure bars for specified radii have maxima. At the

solidus region the gradient is positive but gradually becomes negative

upon traversing the dendritic zone towards the liquidus. The dendritic

array becomes more open as the liquidus is approached.

Comparing Figures (14) and (15) it is evident that a transformation

of gradients from negative to positive values results as Yis diminished

from 2 x 10” to 6 x wt 3 This trend is indicative of the friction

effect. The dominance of the friction effect (directly related to

positive gradients) is increasing.

In Fig. (14) notice the orderly arrangement of the pressure bars

according to radii. This indicates that the metallostatic head of the

metal pool above the two phase zone influences the pressure distribution

of the muzhy zone. The head above the mushy zone decreases linearly for

Ingot 1 upon moving radially to the wall from the center for the free

flow situation only. A better test for cases of parallel isotherms

and large y values would be to adjust the metal pool surface so that it

lies parallel with the mushy zone isotherms. In this situation the
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pressure bars for all radii would be equal. This is a good asymptotic

solution check on the validity of the program.

4, Deflection of Streamlines

Observe Fig. (16). This is a plot of the steamlines for inter-

dendritic fluid flow for Ingot 1 with y = 8 x 1078 em? using Model 1.

In this case flow throughout the mushy zone is downward and towards the

eutectic isotherm. The shrinkage pressure is substantial. Proximity

of streamlines indicates velocity along them. Those which are close

together are traveling the fastest. The scale coefficient, k is 0.005

an [sen for the equality:

")

where s is the spacing between flow lines and v equals interdentritic

velocity.

There is a very slight deflection of incoming streamlines towards the

centerline. This is due to the attenuation of shrinkage forces almost

immediately upon penetrating 15% of the depth of the mushy zone (approx.

0.57 cm). Half of the Al-4.4% Cu alloy solidifies within the first 15°C

decrease below TI, . At the eutectic another deflection is observed due

to the eutectic liquid (approximately 8-10%) solidifying with 5.625%

shrinkage. The amount of eutectic solidifying is not necessarily the

Scheil value. It can be considerably more or less. This would give even

greater deflections at the solidus. One important realization is apparent

from Fig. (16). Wherever substantial amounts of volume shrinkage occur

the flowlines intersect the isotherms perpendicularly.
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A graphical interpretation of the flow is next investigated. Figure

(17) has both velocity components v. and v, plotted versus the depth

within the mushy zone at a radius of 0.8 centimeters from the centerline.

Calculations were done using Model 2. Since the shrinkage term outweighs

the metallostatic effect in the radial direction for 1078 al through

1077 ol, v_ is positive. Notice that in all cases oV_/9Z is steepest

at the liquidus and solidus regions and v, is always greatest at the

liquidus. The central zone from Z=Z_ = 1 through 3.3 cm is concave

upwards. The values of Vv. diminish between Yy = 1078 cn to 107 on with

a substantial drop between y = 1077 ont and 5 x 107 anit. An order of

magnitude drop from 3.0 x 107% cm/sec to 2.1 x 107° cm/sec occurs at

mid depth. The dashed line indicates negative radial velocities. For

Y = 107% cn? a reversal occurs and flow is towards the centerline. This

indicates that free flow conditions are prevalent since friction is

greatly reduced. The expansion forces exist in the central region of

the mushy zone. There is no pull towards the wall. Note that shrinkage

forces dominate at the eutectic and liquidus.

5. The Rate Ratio

The rate ratio, v-VT/e, with respect to depth within the mushy zone

of Ingot 1 is now examined. Figure 18 (a), (b) and (c) consists of plots

of this ratio as a function of the depth in the mushy zone for three

different radii of Ingot 1 in which vy = 1078 and 107° on. Referring

to Figs. 11 and 18, simultaneously, a trend is noted. Going from Fig.

18 (a) to (c) the curves "flip-flop'". At approximately the first moment

radius (2.26 cm) both curves overlap each other as illustrated in
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Fig. 18 (b) at a radius of 2 cm. Upon looking at Fig. (11) it is noticed

that all four curves converge at about this same location of 2.2 cm.

A simple relationship is derived in Appendix B. Der. (8) from the

local solute redistribution equation (LSRE). It is found that any solute

composition is inversely proportional to the rate ratio plus unity. Thus,

in Fig. 18 (a) the lower value of y yields a higher average value of rate

ratio at one centimeter radius than the high flow factor. Using the simple

form of the LSRE:

Cow 1 .
1 + CYT

£€

it is realized that low values of y yield low composition at one centi-

meter radius. The reverse is true for the high value of y. Large y

produce positive segregation in the central region due to the correspond-

ing low average values of v.VT/e. This behavior is graphically depicted

in Fig. (11).

In Fig. 18 (b), both rate ratio curves corresponding to high and

low flow factor have approximately the same value and therefore yield

near equal solute compositions at this first moment radius, Fig. (11).

With this method of analysis Fig. 18 (c), predicts positive segregation

for vy of 107° em? and negative segregation for the flow factor of 107° om

This is in agreement with the two curves of Fig. (11).
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6. Velocity Distributions

Figure (19) relates the interdendritic velocity to Z-Z for radii

equal to 0, 0.4, 1, 2, 3 and 3.4 centimeters for Ingot 1. Figure 19 (a)
, -8 2 . -6 2 .
is for vy = 10 cm and (b) is for Y = 10 cm~. Since:

3Z

where 3T/3Z and Us are constant for Ingot 1, the rate ratio is dictated

solely by the interdendritic velocity. Therefore, the cooling rate, €,

is constant. Since aT __aT;or "az )

where m = 0.75 for Ingot 1, 3T/3r is also constant. Notice that an

average value of V for each radius is easily determined since the curves

are smooth and without much variation. The average velocity is composed

of two averaged components v_ and Vs

_ 4 _ 9 1/2

v=" "Vv

dT/3r/e = cq (positive)

9T/3Z/e = c, (negative)

Equation (80) is now

C «x — - ™)

i 1 . TT
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Since products cq V_ and cv, are predominantly positive in Ingot 1

the composition is inversely proportional to the interdendritic velocity.

For Figure 19 (a) v decreases with increasing radius so the composition,

Cc. is increasing. The reverse is true for Fig. 19 (b). This behavior

is illustrated in Figure (11). The analysis is not always so illuminating

as it is in this special case.

/. Effect of Increasing Composition

Presumed is that an Al-15% Cu alloy has the same two phase geometry

as Ingot 1 with the exception of the depth being 3.6 cm. instead of 3.8

centimeters. The average fraction liquid of the entire mushy zone is

0.5 whereas for Al-4.47 Cu the average is 0.25. y = 107° cin for this

simulation.

The cooling rate, ¢€, is permitted to vary in order to determine

the effect of this parameter upon the final solute profile. It is seen

from Fig. (20) that substantial accumulation of solute at the centerline

results if the absolute value of the cooling rate is decreased. For a

value of User of 0.0053 cm/sec, Cg is 28% Cu at the centerline whereas a

value of 16.17% Cu is attained if User equals 0.053 cm/sec. The relation-

ship of the cooling rate to the centerline velocity is:

© =~ Upp a

where 9T/3Z is a constant since the temperature is a linear function of

the mushy zone depth. This derivation is found in Appendix B, Der (9).

The information from Fig. (20) indicates the significance of cooling

rates upon macrosegregation.
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R Ingot 2

The special case of an Al-4,47 Cu ingot solidifying unidirectionally

is simulated on the computer. Though it may appear to be a trivial case

since no macrosegregation occurs in unidirectional ingots; it was analyzed

because it does represent a limiting case against which the program could

be tested.

The depth of the mushy zone is 2.18 centimeters with an isotherm

velocity of 0.0239 cm/sec. A total of 230 iterations were specified with

updates at iterations 30, 130 and 230. Both simulation and experiment

agree. It was decided that to get the best results large z increments of

0.2 centimeters should be used for the bulk of the two phase region with

the exception of the top 0.2 cm border extending to the liquidus. Spacings

of 0.04 cm were chosen in this region. A more precise depth of the mushy

zone is therefore achieved so that 9T/9Z is more accurate.

C. Al-Cu Alloy (Ingots 3, 4 and 5)

For these three ingots, thermal data was not obtained directly.

However, all three ingots were 'doped'" with approximately fifty grams

of molten Al-49% Cu during the steady state solidification. The three

shapes of the mushy zone are in Fig. 10 (c, d and e).

1. Calculating the Depth of the Mushy Zone

Flemings et al. (5) have shown that the secondary dendrite arm

spacing, Ays and the average cooling rate, e€, are related according to

~ -n =2
Cc € ,)



For steady state conditions the average cooling rate is:

d(x);
z = [Saki )

ZCL

where d(r) is the mushy zone depth at a given radius, r, and User is the

isotherm velocity at the centerline. Therefore, the relationship for

steady state conditions is:

0.39
=A) y

ZCL

which when transposed is:

A, 2.564
= ett =)d(r) User [—]

c

The above is found in Appendix B, Der (10). Knowing the secondary DAS

as a function of radius for all three cases it is possible to calculate

the depth of the mushy zone. The fact that the DAS did not vary with

radius indicates that the isotherms were parallel. Table A lists the

DAS and the depths calculated using Eq. (86).

The value of c was calculated to be 848 versus the 1333 found in

the literature. Having recorded the driving velocity of the electrode,

Vy, it was possible to "back calculate the velocity of the liquid metal/
: : (41)

slag interface, User According to Basaran :

A

|Uzcr|= A 5 v
I E

where Ap is the cross sectional area of the electrode and Aq is that of

ingot. Values of vy and User are also found in Table A.

100.

(85.

(86,

(87 .



TABLE A
Measured and Calculated Parameters of the Al-Cu Ingots

Ingot Number LL (Dimension) E _

Centerline Velocity ir cm/sec 0.053 0.028 0.025 0.024 0.024

Secondary DAS 5 microns 61.0 61.0 62.0 62.0 51.0

Mushy Zone Depth d(r) cm 3.80 2.18 1.76% 1.74% 1.00%

1st Degree Coefficient a ** 0.75 0.00 0.00 0.00 0.00

2nd Degree Coefficient a,** 0.00 - 0.00 0.163 0.120 0.065

Comments:

“These are values of the mushy zone depth calculated by Eq. 8.7.

dr) = vz [2 /c177%
k%

- The equation for describing isotherms composing the muzhy zone is:

Z =a + a.x {
0 A

n
£3
—

LCL
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All three composition profiles show substantial amounts of positive

segregation at the wall. For ingots 4 and 5 this is not experimentally

verified. The value of y used for all three cases is 10” I since

there is little variation of secondary DAS. .It is constant in a radial

sense due to a constant depth of the mushy zone (parallel isotherms).

It must be noted that the agreement between experiment and simulation

results is not overwhelming for Ingots 3, 4 and 5. This is due to:

1. lack of thermal data during solidification; and

2, lack of mushy zone symmetry during solidification.

Values of HTE, UZCL, MSOL and MLIQ are therefore only approximate.

However, it is very likely that the isotherms were in all cases parallel

since the secondary dendrite arm spacings are independent of radial

position. Profiles for the three ingots are found in Fig. (21).

D. Analysis of the Sn-157 Pb,

The methods employed in Section A are those utilized in Section D

for analysis of a similar alloy: Sn-15% Pb. The main difference is

that the Al-4.4% Cu alloy rates as a lean alloy whereas the Sn-15% Pb

binary is a rich alloy. One of the most noticeable facts is that the

average fraction liquid for the rich alloy is 0.59 and only 0.25 for the

lean. The method of determining these averages is outlined in Appendix

B, Der. (11). The Sn-Pb binary has a more "open" dendritic structure

and so the specific permeability is also greater. The isotherm velocity

at the centerline for the Sn-Pb binary. is also 7.57 times slower than

the case of the Al-Cu binary of Ingot 1.



1. Determination of vy

Scanning of a broad spectrum of flow factors was required as a

routine step in determining the correct value of y. For values of vy from

107° an to 107’ - there was no noticeable effect upon the composition

profile. It remained virtually flat from the centerline to the wall.

The dramatic change occurred upon increasing the flow factor from

5 x 1077 to 107° ol, Three cycles of 150 iterations per cycle were used

for these calculations. Figure (22) depicts two curves approximating

the true composition profile. Experimental data points are also evident.

Comparing the two curves to the experimental points it was decided that

the actual flow factor lies closer to the high value of 107° cil. A

high value of vy = 107° on indicated that the central ingot core would

be of nearly eutectic composition upon freezing.

The result of this routine ''scanning' procedure is that an appropriate

value of flow factor was determined as approximately 107° an. Again, this

indicates that the dendritic packed bed is more open than the leaner

alloy of Al-4.47 Cu binary.

2. Variable y

From the Karman Kozeny Equation, Eq. (8) it was seen that specific

permeability was proportional to 1/8“ where:

A, = c/s, Rh

This is true if the fraction liquid is low and the predominant fraction

volume of solid packing within the mushy zone is composed of secondary
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(8%

4)

and

dendrites. Otherwise the relationship is:

A= es, Y
and resistance to flow is controlled by primary dendrites. Using

the relationship

K = ve,”

in which

oo 3

the specific permeability was permitted to vary according to secondary

DAS of the ingot through 7Y. From the inset in Figure (23) the secondary

DAS is illustrated to vary from a maximum of 60 ym at the centerline to

30 um at the wall. Therefore, the proportionality

Bohm a
Yer Mo) 1

exists for this system. The dendrite distribution was programmed as a

linear relationship. Since y = 107° cnt (Fig. 23) gave a good approximate

profile of composition, the centerline value of vy, Yq» Was set to 107° ain

Yy = 2.5 x 107’ a is appropriately the wall value, TY,

In computer notation this linear relationship is:

ZAT (I) = GADSCL - ((GADSCL-GADSWL)/RADIUS)*ROR(I)

where ZAT(I) = v(x),

GADSCL = Yq»

GADSWL = Yo

ROR(I) = r, the radial location.
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Figure (23) represents the composition profile generated after 450

iterations for Model 2. Updates are at iterations 150, 300 and 450. The

trend is accurate and experimental measurements of composition are closely

approximated by the simulation. This, I believe supports the premise that

in castings in which interdendritic flow is controlled by secondary

dendrite arms that resistance is inversely proportional to the square of

these dendrite arm spacings. If this is true, then simulations can be

made more amenable to direct experimental measurements. This is not the

case for the model in which tortuosity factor, T, and channel number, n,

are utilized.

3. Iteration Ceiling and Frequency of Recycling

Since the eutectic fraction liquids in the Sn-15% Pb alloy as well

as most fraction liquid distributions within the two phase region were

markedly different from the Scheil approximation by the end of the first

cycle, it was possible to have a eutectic fraction liquid of 0.77 at

the centerline and less than the Scheil value of 0.39 at the ingot wall.

Values of 0.25 were common. Therefore, it was decided that more cycles

(updates) should be incorporated with a reduction in total iterations per

cycle as a strategy. The main emphasis is that several updates are

required for rich alloys having low values of isotherm velocity since

the fraction liquid is expected to vary considerably in cases of low

freezing rate whereas the fraction liquid has a narrower range of values

for the lean alloys. A lean alloy is one which yields an average fraction

liquid of less than 0.3 with a Scheil approximation. Figure (24)
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demonstrates the need for high cycle, frequency-low iteration per cycle

design.

4. Deflection of Streamlines

Within Figure (25) are the streamlines of the interdendritic fluid

for the mushy zone of Ingot A. Since this is an alloy rich metal having

an average fraction liquid of 0.59 the flow resistance is reduced substan-—

tially over the Al-4.47 Cu system. Nearly an order of magnitude difference

in y exists between the systems. Whereas Ingot 1 had flow lines essential-

ly downward and toward the solidus those shown in Fig. (25) are downward

and towards the ingot center. In the central core, flow is towards the

liquidus.

Incoming streamlines are not perpendicular to the isotherms. This

is due to lesser amounts of metal solidification in this region than in

the Al-4.47 Cu system. Good streamline deflection occurs at the solidus

due to substantial metal solidification. Approximately 397% of the metal

solidifies in this zone.

Since velocity is inversely proportional to streamline proximity it

appears that relative flow at the central core is significant. If it is

faster than the isotherm velocity at the liquidus isotherm as indicated

by Fig. 26 (a), solute is escaping the interdendritic region and flowing

into the bulk liquid. The ingot composition was predicted to be 13.7%

Pb for this example. This is noticeably less than the nominal ingot

composition of 157 Pb.
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5. Rate Ratio and Average Radial Composition

Plots veVT/e versus depth in the mushy zone for the Sn-15% Pb alloy

of Ingot A are plotted in Fig. (26). In Fig. 26 (a), notice that each

of the three curves has a definite relationship to the others. It is

either entirely above or below its neighbor. It is important to realize

that even though the curve for radius of zero goes as low as -2 its

average falls well above -1. This will always be true. These curves

of Fig. 26 (a) and (b) indicate that the compositions steadily decrease

upon moving away from the centerline. This agrees with Fig. (22).

The trend of diminishing solute compositions continues out to a radius of

approximately two and a half centimeters.

By now it is understood that the analysis concerns itself with the

average value of the rate ratio for a specific radius. Thus, the operator

is concerned only with the integral:

A Roy
e |, : .

holding radius constant. Summing the areas between curve and axis (z-2)

for both positive and negative regions it is possible to determine the

total net area for each radius. This value divided through by the total

depth of the mushy zone at this radius gives the average value of rate

ratio for the particular column.

Insert the average value of rate ratio into the simple approximation:
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to get a relative value of local solute content for the given radius.

After this is done the operator compares these relative values for each

curve (w/r to a constant radius) and notes the total relationship. This

informs him in advance what the final composition trend will be.

The difficulty of giving an immediate approximation of trend when

comparing Fig. 26 (b) and (c¢) for curves corresponding to radii of 2, 3

and 3.5 cm indicates that their compositions are not too different.

This is shown best in Fig. (23) where the radial composition curve

appears as a gentler sloping curve than that of the slope for radii less

than two centimeters. The analysis can of course be made without

rigorous manipulation.

For Fig. 26 (a) and (b) notice that the rate ratio is negative out

to a radius of 1.5 centimeters from the center. This indicates channeling

within the mushy zone at the central ingot core. From Fig. (25) notice

that flow is upwards in this region. Severity of channeling appears

marked such that "frecklingd'might occur. Stability criteria, Appendix F,

indicates that freckling occurs if veVT/e&lt;-1. This is the case of radii

from r=0.0 to 1.0 cm as shown in Figure 26 (a). Further investigation

reveals that freckling continues beyond 1 cm but doesn't occur at

r=1.5 cm where v-VT/e= -0.5 is the lowest value. Experiments conducted

by Sindo Kou on Sn-15% Pb ingots reveal severe '"freckling" within a

radius of 1.5 centimeters of the center line. The central ingot core
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contains a high liquid content as reported from output. Fig. 24 (a) shows

values of fraction liquid eutectic within a radius 1.3 cm as being high.

Values as high as 0.78 at iteration 450 are predicted. The Scheil value

is 0.39; half the actual value.

Figure (22) and (26) are from the same simulation output. The

composition profile is accurately simulated within the first 1.3 cm of

the centerline. Freckling is predicted correctly for this region.

Beyond this radius the results of Fig. (26) have less credibility. Since

the trend is good, however, analysis is continued. From radius 1.5 cm

to 2.0 cm, Fig. 26 (b) shows increasing values of v.VT/¢e at mid depth.

Positive values of v-VT/e are seen at the solidus and liquidus zones.

This trend continues out to 3 cm as illustrated in Fig. 26 (c) as the

pronounced negative dip at mid depth within the mushy zone. v-VT/e

is positive above and below this "channeled" region. The value of veVT/¢e

for this region is -0.8. Freckling criteria is approached. From Fig (25)

marked solute flow is directed through this hollowed corridor originating

at about 1 cm from the ingot wall and extending to the central ingot core.

At r = 3.5 cm the value of v-VT/e is positive.Thehollowed region is thus

sealed.

Computer simulation results for Ingot A concur with experimental

measurements in the following ways:

1. composition profiles from centerline to approximately 1.3 cm from

center for the case of a constant y of 107° cm (Fig. 22). Thereafter,

the trend is decent but the relative error of simulation to experiment

is sifnificant except at the wall where order is again restored.
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2. prediction of freckling phenomena within a radius of 1 em and

possibly as far as 1.3 cm from the centerline.

3. a significantly better composition profile from centerline to

wall is achieved if y is varied according to the square of the secondary

DAS. This is shown in Fig. 24.

The agreement of simulation computations to experimental measurements

indicates the predictive ability of the model. The accuracy of the joint

prediction suggests the correctness of the models treatment of underlying

fluid flow phenomena. Also the accuracy indicates that the discrete

linear segment method of Model 2 is satisfactory in approximating mushy

zone isotherms.

6. Comments on Both Systems

Comments on both the Al-4.47% Cu system and the Sn-15% Pb system are

addressed in this section. The instrument used for discussion is the rate

ratio with attention given to Appendix E.

For the Al-4.4% Cu system, Ingot 1, notice in Figure (18) that

0.125v-VT/e&gt;0.03 is the range for the rate ratio. This is a case (1)

class (a) type (Refer to Appendix E). In Figure 26 (a) of the Sn-15% Pb

system, Ingot A, the range is ~1.8&lt;v-VI/e20.1. At radii r=0.0, 0.05 and

1.0 cm, v yT/e&lt;-1 in the liquidus zone. This is an example of case (3).

Freckling is predicted.

In contrasting the systems the following are observed:

&gt;
1. The magnitudes of the absolute value of v VT/e for the Al-4.4Y%

Cu system are substantially smaller than those of the Sn-15% Pb system.
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The low values of v yI/e for Al-4.4% Cu convinced Martin Keane that the

relaxation and Scheil methods of predicting fraction liquid were

synonymous.

2. The Al-4.47% Cu system is a case (1) class (a) type throughout

the mushy zone; whereas, for the Sn-15% Pb system, regions exist within

the mushy zone representing all three cases. The Al-4% Cu system is

entirely stable whereas the Sn-15% Pb system has a central crater

containing nearly twice the Scheil predicted value of fraction liquid at

the eutectic. This region is unstable and freckling is predicted out

to 1 cm and perhaps to 1.3 em from the center.
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VI. CONTINUOUS CASTING

The continuous casting (CC) method is similar to the ESR method in

that it is a steady state process. Commercially, it is more suited to

production than is ESR. Onthe average it is about five to ten times

faster than the ESR method which derives its importance from its "refining"

capabilities. The ESR method is employed where specialty products of

high quality are needed.

Lewis in 1958 documented some work on the CC grocery. 4) He

determined the isotherms for a CC aluminumalloy for two different casting

speeds: 3 and 9 inches/minute for an ingot diameter of 8 inches during

steady state solidification.

Due to the heat extraction methods and melting velocities employed

in the CC process, solidification profiles differ markedly from ESR

profiles. This is due to the two modes of heat extraction. There is a

primary extraction unit followed by a secondary extraction unit. The

basic shape occurring in ingots produced by CC are comprised of:

1. a steep solidification front at the mold wall (it is nearly

parallel to the wall); and

2. a region of lesser sloped isotherms in the central core. A

distinct nexsus where both types meet is observed.

Work has been done on the isotherm velocity as related to the crystal

structure (secondary DAS) within the ingot cast as described by

Altenpohl et a1. 43)
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since

and

(90°

(91

where:

&lt;

ge = — U-VT

‘ax = 1/e

then approximately A, (1) « 1/d(r)

Therefore, the secondary DAS is inversely proportional to the isotherm

velocity at a given radius. On page 582 of Ref. 43 a graph of DAS versus

ingot radius and one of isotherm velocity versus radius are shown (Bild 12)

Secondary DAS is the "mirror image" of the isotherm velocity. Important

to note is that both graphs have sharp curves. Significant differences of

d and Ay exist along the radius. This is a distinct feature of the CC

process.

Non-uniform coarsening occurs in the CC process due to differences of

the heat extraction modes. Again consider equation (85) for Al-Cu alloys.

Since

(x) oo, (0)
then Eq. (86) squared is:

in } =2 dw, 78
- zk

This variable y situation causes the computer program to invoke the

specific permeability relationship:
z 2

K(r) = A, (r)-g ")

When Eq. (90) is substituted into Eq. (91) the form in computer notation

is:

PERMI(I,J) = ZAT(I)*(GL(I,J)**2)

o ZAT(I) = (DEPMZ(I)/UZCL)**0.78



Also ZAT(I) = vy(r)

DEPMZ (I) = d(r)

Figure (27) shows the mushy zone shape used for the simulation study.

The radius is fifteen centimeters. Notice that depth of the mushy zone

varies with radius as shown by the dashed curve in Fig. (27). The maximum

depths occur at the center and within two centimeters of the mold wall.

It is not surprising that large values of A, occur in both regions. This

is verified by both Altenpoh (43) and Peel and Pengelly (#4) in studies

done on Al-Cu ingots of this size at equal isotherm velocities

(2 inch/minute).

Results of computer simulations for an alloy of Al-4.5% Cu composition

are illustrated in Fig. (27). Updates are at iterations 130 and 260;

spacings are KC = 0.1 cm and HC = 1.0 cm through to radius 13 cm. There-

after, HC = HCC = 0.25 cm. Thus, the radial increment is allowed to vary

in this case. Similarity between this simulation profile and that of the

profile for an Al1-4.5% Cu C.C. ingot measured by Peterson as presented

by Flemings (1 is indisputable. There is a very sharp peak at the mold

wall followed by a trough. This trough corresponds to the region of

deep mushy zone near the wall. Upon closer examination of Fig. (27)

it is noted that the depth of mushy zone is roughly a "mirror image" of

the composition profile.

An approximate prediction expression for composition can be derived

from Eq (80) if the following hold:

ca. em dr)

+ aw + 2
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dT/dr = - mAT/d(r)

The expression is:

or a
- 1+ c+d (xr) (14m)

where m = dz/dr and c¢ is some constant. Thus, diminishing the slope of

isotherms has the effect of increasing the composition. If d(r) and m are

simultaneously large than Eg will increase significantly. This is apparent

from Fig. (27). The assumption that v. is positive, however, is not

always legitimate. If flow is towards the center than m&lt;O.

Results of the computer simulation in this chapter indicate the

following:

1. The fluid flow model is applicable to other steady state processes

{it correctly predicts the composition profiles of CC processes).

2. It satisfies criteria for larger-than-lab sized ingots (at least

in the cases of lean alloy types).

3. Specific permeability for lean alloys of variable cooling rates

is proportional to A and ultimately to depth of mushy zone squared.

4. The discrete linear segment feature of Model 2 is well suited

for treatment of complicated mushy zone shapes. Model 1 could not be

pee
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VII. CONCLUSIONS

1. A macrosegregation model for steady state ESR casting has been developed.

Simulated profiles of composition versus radius in laboratory-scale ESR

ingots are attained. The model applies to CC under steady state conditions

as well. A continuously cast ingot was simulated. The ingot had a radius

of 15 cm meaning that larger than laboratory-sized ingots can be simulated

also.

2. Computer calculations are successful in determining macrosegregation

profiles for laboratory sized ingots. Accurate composition profiles for

Al-4% Cu ingots of 6.8 cm diameter have been simulated. Temperature

distribution, mushy zone shape and depth,symmetry as well as solidification

rate are pertinent input. Simulation accuracy depends on these measure-

ments. The method of determining the mushy zone shape by ''doping' methods

yields questionable simulation results . since definition of liquids and

solidus regions is not correlated to thermal measurement.

For the Sn-15% Pb ingot of 8.0 cm diameter "freckling' was predicted

within the central 1.3 cm radius. A constant value of y = 1076 on’ was

utilized in the program. Experimental, measurements indicated "freckling"

to extend from the ingots central axis to Tr = 1.5 cm. Composition profiles

of simulation and experimental measurements correlate well from r=0 to

r=1.3 cm. From r=1.3 to T=4 cm comparison is satisfactory. This joint

concurrence of simulation calculations to experimental measurements suggests

the correctness of the model's treatment of underlying fluid flow phenomena.
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3. Varying the conductivity term, Y, according to the relationship

v = tA,

yielded a slightly better composition profile for the Sn-15% Pb system.

Since secondary DAS is proportional to the depth of mushy zone, d,

- ,2
Y =c¢d

was the explicit relationship programmed for the €u ingot. The CC mushy

zone utilized illustrates an example of significant variations of mushy

zone depth. Thus "non-uniform" coarsening prevails.

4. A 30 cm diameter Al-4.5% Cu ingot continuously cast has been simulated

for macrosegregation assuming a mushy zone profile similar to those found

in literature for equivalent casting rates . The composition profile

generated is indisputably similar to profiles found in literature. The

profile is not a simple type.

5. For small ingots the operational parameter, eg, (cooling rate) is

significant in its role in macrosegregation determination. It affects

y through DAS such that

~ jle

for instance. The creation of a large surface area to volume ratio by

augmenting e impedes gravitational seepage of solute enriched fluid within

the mushy zone. Small ingots which are alloy lean can have negative

centerline segregation. In large ingots this characteristic is far less

likely. For large ingots € is relatively small and the surface area to

volume ratio of the mushy zone packing material (primary or secondary)
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dendrites is diminished correspondingly. Resistance to flow decreases.

In large ingots Ay rather than Ay is the resistance controlling parameter .

Since cooling rate is low there is more time ‘for the seeping fluid to

travel . For large ingots "gravity induced" convection predominates due

to low e. In small ingots € is high and convection is "solidification

induced"

6. Expansion of metal above the solidus isotherm and shrinkage at the

eutectic defines a discontinuity situation. A buffer boundary was

necessitated which "weighted" pressure gradients from the solidus and

interior regions. A solidus-interior boundary evolved.

7. The condition VVT/e&lt;-1 occurring at nodes adjacent and along the

liquidus implies that interdendritic fluidYscescaping the mushy zone and

feeding the bulk liquid. For the Sn-15% Pb system in which UZE = 0.007

cm/sec this occurrence was evident. The average ingot composition was

given as 13.7% Pb instead of the nominal value of 15% Pb. This may imply

non-steady state conditions since nominal composition is continuously

changing. Increment spacings were HC = 0.25 cm and KC = 0.14 cm.

8. Due to the overall satisfactory correlation of simulated profiles to

experimental measurements it is acknowledged that the discrete linear

segment approach of approximating isotherms is itself satisfactory. This

characteristic of Model 2 is especially appreciated when difficult isotherm

shapes are encountered.



9. The absolute value of vVT/e in the Al-4% Cu system is considerably

lower than that of the Sn-15% Pb system. More updates per computer run

are necessary for the latter. The effect of v.VT/e on the Al-47 Cu

system does, however, cause significant alteration of the fraction liquid

distributions within the mushy zone. Martin Keane's conclusion that the

Scheil Equation could be substituted for the relaxation process inthe

case of Al-47% Cu is therefore contended.
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VIII. FUTURE WORK

1. The assumption that the metal pool is calm is not realistic.

Coupling of the flow within the metal pool (45) to that of the flow within

the mushy zone ought to be incorporated into the program. The pool flow

may influence the interdendritic flow pattern significantly and thereby

affect the macrosegregation profile. This therefore should be investigated.

2. Since magnetic forces can be used to alter the flow within the

metal pool and mushy zone this subject deserves special attention also.

Control of fluid flow within sizeable ingots by this method would result

in ingots of more uniform composition.

3. The physical basis of parameter y must be revealed. The earlier

interpretation involving tortuosity factor, tT, and channel number, n

is difficult to correlate to experimental measurements. The latest

approach involves a single parameter, Ess Qualitatively, 5. can be related

universely to Aq or Ay depending upon which is the predominant resistance

controlling factor.

4. The Karman-Kozeny Equation should be used to derive a relation-

ship for the specific permeability. This is:

p 8 &gt;
E = —

g 1l-g.

From experimental work done, the 8 */lg, relationship holds in the region

g; &gt;0.4 whereas the relationship

K =vg, °

holds for the region g;&lt;0.3 for the case of alloy lean Al-4% Cu. In « .eT
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to make the proper investigation the partial differential equation (PDE)

must be re-derived in terms of the former relationship.

5. Work on orthogonal trajectories is sometimes justified in cases

of steep solidification fronts. Temperature distributions are then related

to these trajectories. In lab sized ingots this situation is not so common.

6. The basic structure of the program is complete. In order to

expedite future computer investigations of the steady state ESR or CC

processes I suggest that more emphasis be placed upon graphical displays of

computational results. Topography charts of v.VT/€ and fraction liquid

superimposed on the mushy zone map at the completion of each cycle would

greatly aid the researcher. With a different symbolsalso superimposed on

the same map would be the Scheil values of fraction liquid for instantaneous

comparison. Maps of flow lines (streamlines) such as those in this thesis

could be easily be generated. One dimensional data printout plots of

these parameters should also be generated. The emphasis of upcoming

research on the computer investigation level must be on outputing techniques.

Much time was lost previously due to tedious plottings of output data

and mistakes made therein.
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APPENDIX A

LIST OF SYMBOLS

(Single Terms)

Computer Algebraic Explanation of Symbols
Notation Notation_ }

A1L (I) all, Coefficient of first degree polynomial
(liquidus)

A1S(I) ce Coefficient of first degree polynomial
(solidus)

AY mt FF First coefficient of polynomial

expansion (liquidus)

rT oe First coefficient of polynomial

expansion (solidus)

CL Sq Composition of liquid eutectic

CL(I,J) C, Composition of liquid

co C, Composition of liquid (liquidus)

CSE Cop Composition of solid eutectic

CS(J) Cg Composition of solid

DELKA (J) Az Vertical spacing increment

DEPMZ d(r) Depth of mushy zone

DTT Depth of metal pool

GADS Constant value of flow factor

GE,GLEUT (I) g Fraction liquid at eutectic Scheil;
LE .

2nd--non-Scheil

GL(I,J) 8, Fraction liquid

GRAV g Gravitational acceleration

GIT) g, Fraction solid
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Computer Algebraic Explanation of Symbols
Notation Notation } }

HC ,HCC : Radial spacing increment

HEIT(I) Maximum depth of metal pool

HTE Depth of mushy zone at the center

I Column designation

IMAX Column at wall

ITER Iteration step

J Row designation

E fa Vertical spacing increment

KA(T,J) - Vertical spacing increment

KAY Partition ratio

KC Vertical spacing increment (critical)

LOCCOM(I) C(x) Average composition of column I

MAXIT1 Number of iterations in the lst cycle

MLIQ mr 1Q Slope of liquidus

MO (I,J) m Slope of isotherm at node (I,J)

MSOL Mgr. Slope of solidus

MT (I) Lowest row for column I

MU u Viscosity

NLGL (J) In(g,) Natural log of fraction liquid

NTOP Maximum number of rows

NT (I) Top row of column I

P(1,J) &amp; Pressure at node (I,J)

Lid ' Atmospheric pressure
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Computer Algebraic
Notation Notation Explanation of Symbols

PDR dP/dr Radial pressure gradient

PDZ dP/dz Vertical pressure gradient

R(L,J) v Radius at node (I,J)

RADIUS R Radius of ingot

RHO (I,J) PL Liquid density at node (I,J)

RLE Pig Density of liquid eutectic

ROR (I) - Radius at column I

RS © Solid density

RSE Psp Density of eutectic solid

T(I,J) ™ Temperature at node (I,J)

TE To Eutectic temperature of alloy

TL I Liquidus temperature of alloy

™ Ty Melting temperature of alloy

TRIGl, 2 ...N Cycling command (trigger)

UR u. Radial isotherm velocity

UZ (I,J) u, Vertical isotherm velocity at node
(I,J)

Z(I,J) Z coordinate

ZILIQ Z coordinate of liquidus center line

ZISOL Z coordinate of solidus (cntr 1)

ZL (1) Z1.1Q Z coordinate (liquidus) at column I

ZS (1) ZgoL Z coordinate (solidus) at column I
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Py &amp;

(Composite Terms)

computer Algebraic Composite
Notation Notation Expression Explanation of Symbols

Al,A2, Ae Components of AX

ANC VZ(1,J)/ Flow line direction
VR(I,J) (radians)

AX L A1+A2+A3 Primary coefficient

B B B1+B2 Primary coefficient

B1,B2 Components of B

C ” C3-C4*C5 Primary coefficient

CONTR pgp/Prpt RSE/RLE-1 Eutectic shrinkage

CRAT C=C CO-CE Composition difference

DECLR dc, /dr finite diff. Radial gradient of CL

DECLZ dc, /dz Vertical gradient of CL

DEGIR dg, /dx Radial gradient of GL

DEGLZ dg, /dz Vertical gradient of GL

DERHOR dp,/dr Radial gradient of RHO

DERHOZ dp, /dz Vertical gradient of RHO

EM m (TE-TIM) /CE Phase Diagram slope of the
Liquidus

EPPS(1,J) © -UZCL*GZ(1,J) Cooling rate

FOR(IL,J) Coefficient of the PDE

GAMMA (I,J) Flow factor

GR(I,J) dT/cx finite diff. Radial gradient of T

GZ(I1,J) dT/dz Vertical gradient of T



Computer Algebraic Composite
Notation Notation Expression Explanation of Symbols

HM (HA+HB/ 2) Average value of r
increment

HORAT 0 “Pig RO-RLE Density difference

HTT (I) ZL(I)-2S(I) Depth of mushy zone at the
centerline

ONE (I,J) Coefficient of the PDE

PERMI(I,J) v+VT/ £ GADS* (GL(I,J)*%*2) Specific permeability
ZAT* (GL(I,J)*%2)

RARA Rate ratio

SOLHZ (dP/dr) pip finite diff. Pressure gradient (eut.)

SOLVE (dP/dz) ip Pressure gradient (eut.)

tart Coefficient for the solidus-
interior boundary

TATNP Coefficient for the solidus-
interior boundary

TRAT TL-TE Temperature difference

TRE (I,J) Coefficient of the PDE

TTHETA £180 /m)*TAN (ANG) Streamline angle: degrees

TWO (I,J) Coefficient of the PDE

U w? + uZ)*x1/2 Isotherm velocity
vTaT ‘.,. (v +v )**1/2 Interdendritic velocity

Ww w Angular velocity of mold

ZAT (I) y(r) GADS (HTT (TI) / Specific permeability
UZCL)*%*0.78) (variable)
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APPENDIX B

DERIVATIONS AND DETAILED FORMULATIONS

1.Alternative Form of the Specific Permeability

For flow through packed beds the Ergun equation of the

P = -e)”&amp;. 150(1-e)“ uv + Turbulent Term (1.1)
o&gt; (gd )?

relates the pressure gradient to the superficial velocity, vg,

In the case of the mushy zone the void space,e,is in fact the

fraction liquid(volume) ,g;.The turbulent term is ignored . gg

is the shape factor

g = @
3 1.2)

The particle diameter, a is related to the secondary DAS

_— 2

dy=_4 x (1-e1) (1.3)m

Inserting 1.2 and 1.3 into Eq. (1.3)

Te gy ~
v = 4 = aP L x r

0 F150 LT — (1.4)
(1-g1)
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{1.0

{.

(1

(1.6

The interdendritic velocity, v -

rr = Vv I -4
7 LL (1.5)

Equation (1.5) inserted into Eq.(1.4) yields

SE
pl— AP

m “1-gp Ra " 4)

D'Arcy's law holds for the mushy zone region and is of the form :

-K aP_ 1.7)

The specific permeability can thus be specified as :

a £ &gt;
K= Lo pr] Fo

T 150 1-21, z ~.8)

The flow factor is therefore :

/o &amp;

¥ =4 _- 1)T 150 2
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2, Primary Coefficients A,B and C

The three primary coefficients are written in their ex-

panded form in computer notatiocn

A(I,J) =1 + 1 RHO(I+1,J) -RHO(I-1,J)
R{T,JY RHO(T,J) THA + HB)

2 GL(I+1,J) - GL(I-1,J)
CLT, i Tus

1 RHO(I,J) _ 1 1 CL(I+1,J )- CL(I-1.J)KAY -1 | RS bret HA + HBB(I,J) = __1____RHO(I,J+l)-RHO(I,J-1)RHO(I,J) * 2%KA

2 % GL(I,J+1)-GL(I,J-1)
cL(T,J) 2%KR

1 RHO(I,J) -1 1 CL(I,J+1) -CL(I,J-1)arr TRU outa « 2FRE
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and

C(I,J) = GRAVHRHO(I,J)* 2 RHO(L,dv1)-RHo(7,J-1)

2 * GL(I,J+1) -GL(I,J-1)
GL(T, J) 2KA

BHO(I, J)-1% 1 CL(I,J+3) -CL(IJ-1)KAY -1 RS CL(I,J) 2%KA

EPPS(I,J)*MU 1 RHO(I,J+1)-RHO(I,J-1)ENRCRRVAROTTT, 7) RIOTT, J) CL{T,J+1)-CLIT,J-T1)
|

1 RHO(I,J) - 1 = 1 :tr ad
)

3. FINITE DIFFERENCE FORM OF THE PARTIAL

DIFFERENTIAL EQUATION (PRESSURE TERMS)

The pressure gradients for the mushy zone are examined

Exact gradientshre approximated by finite difference forms .Refer

to Fig.(g7) for nodal arrangement .The first order term in al-

gebraic form for node (i,j) are

dP = AP = P(i,4+1) -Pyi, 3-1)
dZ az (J k., Ky

dr ari a Thy



The second order terms are now investigated .Let

I # rn ~A
k

? r~

YP SP - ep = P(i, j+1)+p(i, §j-1)-2P¢d, j)dz* z j+3 12],
AZ

oP 2 )ap(  - Jap =P(4+1,§)+PLi-1,4)-2P(4, ])
or&gt; |ar(i+% Yar [i-%

The simple form of the PDE of elliptic type is °

ap f° rar BAP4+C =0
Ar . i An,

In expanded form(algebraic notation) it is :

P(i+1,3) +P(i-1,3j) -2P(i,j) + P(i,3+1)+P(i, j-1)=-2P(i,])

JP(i+1,4) -P(i-1,4) Bx [P(i,3+1) -P(i,§-1) |
' 24 &lt; J

~ = Q
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lL, Finite Difference Form of Pressure

Derivatives Having Unequal Grid Spacings

Since the program is written so that unequal grid spacings

are possible the form of the finite difference approximations for

the 1 . and 2 4 order derivatives will be more involved than those
Ss n

found in Derivation 3 .Ultimately, the form of the pressure equation

is altered .This is seen in Derivation 6 .

The le order derivative in finite difference form (FD) is
now written

AP = h [PLi+1,§) - PUL, f+ h P(1,j)-Pli-1,41)|

(4.1)
In expanded form it is :

2 . —- 2_.2 —

AP = h%P(i+1,j)-h_.P(i-1,§)+(h =h }P(i, 3)
b a b

AT UT" h_+h_Jh_.h To
- b a b (4.2)

In (FD) form the Z_, derivative is written as

A hy(P(L+1, §)PUs Lh (ets, ypd)a , a he a
Ar - } I

(4.3)
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In expanded form it is

. 2 : : Ty 2 2 .

heP(i+1, 3) +h, P(i-1,3) -(h’ +hy )P(i, 1)
-_b - (Lh)

2
“m h, hy

Bo =n . hy,
mr

5. Segmented Orthogonal Trajectories

Within the program there is a sequence which allows for

temperature distributions to be determined along orthogonal tra-

jectories .The orthogonal tr=iectories are spproxim=te .For 2

given node two linear segments are couvled Each is linesr One

is orthogonal to the solidus isotherm and the other is orthogo-

nal to the liquidus isotherm

Examine Fig.{s5 ) a point Py .Segment Sp joins Py to the

liquidus and segment sy joins the solidus to Py -If the slope of

the liquidus ,m,, is

m= c/a 5,1)

where c¢ and a are the lengths shown in Fig (B5) a then angle 8p

144
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-1 ’
= t a6, an ~( m, ) 2)

This angle is shown in Fig. (B5) b .The segment leng-n s.

sy; = c.cos| oL ) "Z 3)

Likewise, since
m, = d/b (5.4)

S

. Qe. = tan~1( m ) (5 5)
S S ’

s =4d cos( © IrS s ) 8)

The total length of the approximated arc LL

Ss. «8. Cg 5.7)

If the temperature distribution 2long the arc length S,. is
linear then -

0 i )rr Ty « T
Sg+Sy L E

is the temperature at point P .If the slope of the isotherm passing

through point P, need be calculated ym, then the following expressions
are used .Refer to Fig.(BS) c¢ .

S./) tan®
= H - = = e%x {sendy | and mJ tan X-.%an 65 /(b+x) (5.9.10)
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6 .Composite Coefficients in Expanded

Algebraic Form

The composite cnefficients in algebraic form are referred to

as :a2,b,c,d and e .The first four are composed of two separate terms

The first term is an arrangement of the spatial increments of the grid

The second is a geometrical term multiplied times a primary coeffic-

ient A,B or C .Notice that all the terms except e include Q ¥pich is
given ac - |

8 = 2%( h_&lt;hp.p +k +hi, J a m = = n’ 5.1)

The five composites are listed -

ali, i) =k. hy . a *A(1, 7)

. 4 2

b(i, i) = h +h sh to +h. h *B(i, 1)
~ m = m

= k- “3.h oh, *A(4, ic(i,j)=k;.h_eh«hy*A(1,1)r 29
Eh 3

; = , £ *B (id(i, Jj) hgh. npek = koho hy hy (i,3)



e(i.j) = 2 h *C(1i,jJ ah, hh y 3)

The terms simplify considerably if

h = h
a 3

Equivalent terms in computer notation for the composite coefficients

are

ONE(I,Jd) = a(i,j) , TRE(I,J) = c(i, }j)

TWO(I,J) = bli, J) . FOR(I,J) = d(i, {)

wo pe KONST(I,J) = e(i. 1)

woos THETA(I,J) = 6(1, i)

The final form of the pressure equation (PDE) in computer notation

is written as :

P(I,J) = ONE(I,J)*P(I+1,J) + TWO(I,J)*P(I,J+1)

+ TRE(I,J)*P(I-1,J) + FOR(I,J)*P(I,J-1)

+ KONST(I,J)
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7. Solidus - Interior Boundary

The solidus-interior boundary needs special boundary con-

ditions .In finite difference form the pressure equation is com-

posed of two parts

1) terms including pressures from the interior of the

mushy zone , and

2) the pressure gradient equivalents at the eutectic

Both parts are essential for defining the pressure distribution in

this region of the mushy zone

Also it is realized that the shape of the isotherms plays an

important role .Three cases are presented for the 3 possible geom-

etries .Refer to Figures (B7) a,b and c¢ .

a.(Flat &amp; Nearly Flat Isotherms)

The pressure gradient at the eutectic as symbolized by k

for the vertical component is

v = P(1,3) - P(i, j-1)

_ . tr 1)MELE [psp _4|VzE TFC 1k
kK |PLE



a = a ‘ C + B + -N °

nh th +h) hy (hgy+hy) 2k 'h, +h, )

then the final form of the pressure equation at the solidus-interior

incorporating both Eq. 's(7.1) and (7.2) is written ==

P(i,j) = 1 | 2 +_h +A
8, tn — * P(i+1, 3)a a*hy) h, (h_ +h)

a + B jira)| k2 2

__2 -_ho.n puss
h, (h_ +h) hy, (hy +h, X

B - 1 = 0 13)
v)IT2 Tk

- |

b.( Steep Isotherms )

If on the other hand the isotherms are steep then the solidus-

interior equation for pressure involves the radial pressure gradient

of the eutectic ,» Ky , which i=

k,, = P(i+1,3) -P(i,])H ’ ’ = S_ —— ug CSE - | Ung (7.4)

I = Cir

150.

If :

1 :

pr



151

(7.2
Also the term 8; ==: __ Po.=the cA

£ fra 5)

hy(h +h) hy (hg+hy)

Both Eq. (7.4) and (7.5) are incorporated in the final pressure

expression :

P(1,5) = 1 (1 + B.k )P(1, +1)
0 &gt;|
[ 7". -h «kA fron|

HB REYIm 7

k o2.k la JKA ° (7.5)
h +h ( h, )th +h) hy * hy )

c.(Moderate Isotherms )

For moderate isotherm geometries at the solidus it is nec-

essary to incorporate both gradients,Eq.'s (7.1) and (7.4) along

with the following expression .

3 | ©. + B _. h.A (7.7)

” 2 . +hgh +h ) 2k hth, hy)

to attain the following expression :



P(i,3) = 1 + B MP(i, j+1)+ | =|
[_2 h A |P(i-1,3)

—aT

b, (hy +h) h, (hy+h, )

A) + - + C\ky (2 + hg ) a 1
(th +h ) ! 7.2)

Notice that the term containing ky should be visualized as a

P(i+1,j) term as the ke term ought to be recognized as the P(i, j-1)
term .

In computer notation the following equivalents exist

SOLVE COFO = 8. |

SOLHZ = «, 0OF1 = 6; ;

rPAFR = 9

Likewise the pressure expression in computer notation is :

P(I,J) = TART(I,{XX)*P(I+1,J) +TATOP(I,IXX)*P(I,J+1)

TALEFT(I,IXX)*P(I-1,J) +TABOT(I,IXX)*P(I,J-1)

TAKONS(I,IXX)

The five terms :SOLVE,COFQ , etc. are found in the TA

coefficients ,.Notice the similarity of this expression with

that of the partial differential equation (in expanded alge-

braic form ) for the interior
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Figure B 7
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Fig.B7 illustrates the three possible =
geometries for the solidus-interior I,J-1

boundary . The flat geometry is (a)

while (b) is steep and (c) is moder-

ate
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8. Simple Device for Approximating

Solute Composition Trends

The local solute redistribution equation is

Q - 1-8 1 + v-2T gi += e ; L * 3]
P Cc L

Since RB and ky are constants let :

c=1-8_  n 2)

1-ky

Let R= V.¥'T for convenience also .Rearranging Eq.(8.1) and inserting
£

(8.2)

3Cy, 1
—_— = = 1 QE

c 41 + L * 2)
C. 2 L

The integral E
] de. ¢ O
2 L tL)

A L

is always negative .For simplification assume that R is inde-

pendent of fraction liquid. Though not strictly true since velocity

is a function of gp this allows Eq.(8.3) to be integrated .The

result is ln C_1L € I77R 5)
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In other words

C. &lt; exp 1 _=o | ir)
ee

o = l+x+xS/21 + |

oo 5. 1 iT+ 2 \T+7XR

For small values of 1/(14R) -

c 1
LL 5x Lom

and therefore :

C_ 1
5 1+ R 8.9)

Assuming an average value of R JR, the ingot composition at dis-

crete radii ,C_ , can be determined .For a given column the final

form i&lt;

Tr) — oo

1 +Vv NT (r)
€

where ¥.W T(r) is the average value of the rate ratio for a given
Ned

radius .&gt;
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9. Cooling Rate in Terms of UZCL

and dT/dz

The major assumptions are : 1)steady state ,and
2)linear temperature distributions

hold for the mushy zone during solidification .If m is the slope of

an isotherm then the following h~i~

U =U /(1+m°) ced UY = -meU (9.1,2)
2 ZCL } = Z

dT/dz = AT/d(r) and dT/dr =-m.dT/dz (9.3,L4)

The cooling rate in this 2D situation is :

ly, dT /dz a or 1 2.5)

Upon inserting Equations (9.1 - 9.4) into (9.5) the following

result+-

E(r)=- Uzcl AT
d(r) - 7)

where d(r) is the depth of the mushy zone at radius r and

In computer notation (CN) Eq.(9.6) is:

EPPS(I,J) =-UZCL*GZ(I,J) To)
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10. Relationship of the Secondary DAS to UZCL

and the Depth of the Mushy Zone (DEPMZ)

Ic )
From Bower et al the relationship :

in. =¢ 0_(r) © 1)

was determined for secondary DAS, Mg, where 6¢(r) is the local

solidification time at radius,r .The exponent ,n, is experiment-

ally determined .The relationship

Oplr) = = aT/g (r) (~n.2)

is the local solidification time expressed in terms of the cooling

rate at the given radius .Recalling Derivation (9.6) for ¢ (r) in-

sert it into (10.2) to get .

- (8,(r) a(r)/u,.. (10.3)

Upon inserting (10.3) into (10.1) the form :

n

3p =. gir) 4)
~ ZCL
c

emerges .This says that the secondary DAS, A\,, is proportional to

the depth of the mushy zone .The depth is allowed to vary as a

function of radius .Assuming the specific permeability to be pro-
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portional to A by

K = constant ' "N.5)

This is written in the program as :

PERMI(I,J) = nO.*(( DEPMZ/UZCL)**2%n))

* (GL(T,J)%%2) £2n.6)

11. The Average Fraction Liquid, FL
for a Given Nominal Composition

The fraction liquid average is a function of the temperature,

T such tha+* |

E. -

£2 (11.1)2 L(t) ar/ ) aT
E ‘E

Assume that a good approximation of this temperature relationship

is the Scheil equation : ‘

€&amp;;(T) = _-mC_ Tek, (11.2)
T .

M T

Inserting Eq.(11.2) into (11.1) and carrying out the integration

yield - ) T

i} rl peg (T)= -mC T, -T 1 -k,°
L —wo » 21 (11.4)

I (2)1 - - p——

P (v1 TE



where : T = m( C,- Cg) + To (11.4)

and m is the slope of the liquidus on the phase diagram .It is

important to realize that the functional relationship of fraction

liquid to temperature is ultimately tied to the nominal composition,

C, which is evinced in Eq.(11.4) .If kj &lt; 1 then g;(T) or g (Co)
increases as Cy increases .The limiting value of unity occurs at

the eutectic composition .
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APPENDIX C
7

© START
- 7

COMPUTER FLOW CHART IT

PD IMENSION'| This is a two dimensional
system and therefore para-

I. NDEX \ meters within the grid will
* have 1 or 2 indices for ID

Storage is based upon size
"Ener ;

MARY L : Input Region
:

TRIE12,3 / Within this zone specified
~ are

r osNioT fteration requirements ’ 4
g eometric stipulations an

/ Cn Physical-thermal data
rr CoMPOSITION

© INPUT

composite |
TERMS i

(10 Sequence 110) The solidus and liquidus are
DEF constructed of joined linear

! segments.
SE¢MENTS ( solidus A1S(I)
SOL {Lia Slopes !

| liquidus A1L(T)
r R1IS(T)zMS0L

eto Tentative coordinates are as-ZS(I): .
2 LD): signed

Liquidus point--(ROR(TI),
ZL(TI))

bee .
op

bone 160.

5 s =
“iy

Ap

eC



Operation A
. DETERMINE

—\ ores Determination of columnz COLUMNS / endpoints :
“AE . liquidus--NT (I)

ny solidus --MT(I)

no I
" for nodes ZL(I) andZS(T)

a0 se 7(1,7)= KC +1 (EI respectively .The depthRT) iye Monin R (1,3)=ROR(T)ofthemushyzoneislabel-= » 2

ND =o } ed HTT(I) .

veo ~ or

ne
TFRALT =

EE . ed umes) $
TT - | BFRASCY = B

: Ply | 10-2653) V

Zs) = a),

Mi(y=Jy-1r =.
i EE. RSS(3-)= Raa) -

ZLHIeH ne] | nn | |
_ L— — J cy

— TE) =

NT (3) = "NT (D) x Y=; M J
RL(I) = RG) RL(-D=R (1,3 Rss (H=R(I,{)
HTT) = HIT (TD)
2003) = 215(D) LUD -75 (D

1

L ta
-_ N1Op&lt; |

30 | (60 10 X)
50

161.

195



50 |

” Sequence 2

| HEIT(D=ZLHIGH-ZLD| The depth of the liquid
metal pool above the 2-phase
region is determined .

- : Aepth = HEIT(T)

51

TR

cpm

NUMPTS = NT(L) = MT(D sequence &gt;
NSTH = NuMPTS/s :

0.78 For formatting convenience
T = ~

Lar GRADS #{ (HTTT1)/U2eL) 1 each column is divided into
1) =nT(I) + NSTH 5 equally spaced segments .

The secondary DAS term, ZAT(I)
JTS(D =MT(T) + S¥NSTH J is evaluated for use in the

a specific permeability term ,
Jl PERMI(I,J)

MOO Sequence
NSTI (TI) =MT(D) +?
NSIMAX(T)= MT(T+1) + The pseudo-solidus boundary

points are determined

| NSIMAX (I)= NST (T) |

(88)

162

Jo a.

oes sy
“ir

‘£5

YES
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IES

NEC

L- £Q
TOP [a

[ne

a,

3 Sequence §

The thermal-physical parameters
for the liquidus (Division 77)
and the goLidygand pseudo-soli-dys boundary (Division 75 ) are

- 6Stablished .

s - A dummy value of pressure is list-
ed for the solidus .

DIFF * GLEUT(I) - GLEUT(z-1)

NO

¥o¢ ‘ 4
- &lt;3 ¥E3 75)

J
R(1,J) =

Rss(I) = R(L,T)
MO(I,3) = A1S(1)
T( I.7) = TE
GLI J) = GLEVT(Z-D + §
CL(zsD=cE
RHO(Z.3)= RLE
P(x.T) = DumMMmY

{60 To 88,

(29)
JES wer Yes 77,

YES 3 MND ill
Ste NT(I4)

R(I-1,7) -
NO

RLIXY = R(z-1,T)
| T(I-1,LY) =TL

” GL(I- LN =1

- CL(I-hT)=(O
Lo . RHO (2-1.3)&lt;RO

80) Co P(1-17) (heh - 2(1.3))*
~ RO %#GRAV + PA

(29) {GOT 80)



2G al / = }

~ 60 1089 ,

Operation B

The thermal physical para-
meters for all nodes com-
posing the grid interior

to are established .A 1st guess
value for pressure,P(I,J),
is made at each node

NY

NT (D « _ aTiTy

, T32k T(zs7) = TRAT*HTFRAC +TE
Roos | DIFTEM = T(I I) -TE
BOTSRE RHO(IsM):RHOLT (1.7)

eo CL(I.D=CLL T(x. 7]69)— GL(I.=6LL T(z. ]]
MO (X+3)=MoL HTFRAC]

60: - P(1.3) =P LDEPMZ sHEIT(I)]!
: _____ ___

(70)
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YES

Sequence 6

CE PE VEL SS There are three updates for
Cre ae | fraction liquid .For the first
\peFINED / cycle Scheil values of fraction

/ liquid are used .For the ensueing
-- cycles macro-corrected values

are utilized .They are deter-
. mined by the LSRE -

NSTRART = 1

-= MAXiT  ERANTL ! Operation C

All first order finite dif-
NSTART = ferentials w/r to z and r areha 5 Mh (85) | calculated for the physical

_ ~ a and thermal parameters at all
. interior nodes .Next,b they are

incorporated into the primary
NSTART = MAYIT2 +41 (89) ~~ coefficients :A,B and C .
MAXIT = MAXITS

L — : oe =

HA (1.3) = FINITE
KR (Is7) = DIFFERENCE
GL I(T) = FORMS
EPPS (1,7)=
GAMMA (1.7):
PERNL (TD) = RSYRDERA fy CL.9

Tar, i DERIVATIVES -

A =! !

B = E : J) : dx

ok I SeC A
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YES LE

RT “SIME
NO

a ol Cx

“ or TE

YES

YEE ”

free

. Sequence

Co Cm The composite coefficients
are evaluated for the pseudo-

solidus boyndery (Div, 123) 3¥ : Yes! an e solidus-interior bound-
86 3130 ary (Div.121 and 125 °

( 20
CO IXX 2 T-NST(I) +1 i 3
-_ _ !

 rw D SOLVE = Dipr TB SOLHZ= 125)
. arr COF3 = |

y ] } TART: TATOP

i gr TALEFT, TABOT | NORMAL |
G0 TOl21 TRAKONS _ 1

J \ GOTO 130)
 YES LL

SOLVE= iy 3]
SOLHZ:= 123)

: COF2 =

: TART, TATOP STEEP

TALEFT,TABOT L.—
TAKONS J
4

SOLVE =SoLHZ = (21)
COF1L = '

YES TJ ART, TATOP | FLAT
TALEFT.TRBOT tr
TAKONS

| _ Go T0130

130)
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7ES$

are YE: 14
AAW a. sa

Sequence &amp;
ONE(1.7) = GEOM +GEOM®*A The vrimary coefficients

| TWO(L3) = GEoM +GEOM¥xB Aare inserted into the com-
: TRE(T.T) = CEOM —GEOMNA posite coefficients (Inter-

FOR (1.7) = GEOM - GEOM«R

~~ KONST(xJ) = GEOMaC

~ ee 45) Sequence 9
| i The necessary terms for
- the boundaries are eval-

—_ «50 uated ,

i
DEFINING /

PARAMETE
AT THE
8NDRYS

| SoLiDLS | | bWAL |
i — -|4c=0TMA - NMT 7

62.EPP.Peri| |6z.6PPs Perm |

fog 1250)
| Liauious | . |

_FA ; :
CF VIL NNT

|ez, epps.peani| |, pps, penn|

— 6a G2
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V4 5

NEE)

Zi
Lat -

4

Oe TERMINA- _—,
TION OF 10—\PRE SSURES|Sous-zwresEe

| hizo —VES|vo;&amp;BOUNDARY|TTA

450 TT

"ARYM wo

- p | TART, TATOP |

| P(1.7)= TALEFT ABST | PLD) =P (2,D))
1000 ( -

ooo) —fa10 —- hs Operation D
- (Iteration )

. 1-Pressures at the bound-
- 4 aries are determined(ex-

cept for the liquidus )
- 1 2-The iteration proper (in-|PIMA-PanAnG)|teriornodes)getsunder-: way concluding only when

MAXIT is reached .

= ITERATION
hath PROPER

4

) &lt;4

AY

P(I 7) = , ONE %¥Prey + TWO* Py, .
{ TRE # P7_ | + FOR Py. + KONST |

2)
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sla
Tat

Yge
—— .. 3

T

YEE

JE

Operation E
(Interdendritic Vel-

ocities )
. S$ NE

Goro 000 &lt;I .- Both components of MONITORING |
ITERATIONSvelocity :v_ &amp; v —— J

v- are determifed 2

via D'Arcy's Law .

| ~-g - = zk dP SoLIpus —
®, dr INTERIOR

v= =-K (dP py 8) PSEUDOoo, CEE [sexo
re Llavipus

. vz|YRvTOT&lt; A Vi ANG -
[RARA : LFY | (coo 775 /

CI, Cos UTS IVR VTeTNS IMRX(T) vi ANG
NT =[RarA-LEE (5 v0775)

CL VR VToT

YZ ANG
VT .

RARA= € Go To 775

vi. vTOT
VI ANG |

IRARA = LIT INTERIOR
* ODES |]

: ~179)

{199



Operation F

( Local Solute Redistribution Eq.)
. } ES

\60T0 1020 JE
- Updated values of the inter-

dendritic velocities are now
inserted into the LSRE .New
values of the fraction liquid
at each node are determined .

al
Ld

GLLD=F{ L SRE 5

CS(M= KAY # CL( I,J)
IL @SQN=1.0 -GL(IL,T) Co

1810)
i Sn Sequence 10

NNT (Segregation Discriminant)

SUMMS = If th f this 1 1
i the area of this integra
2 [sm + CS (J-] [GID - 653) is greater than the Scheil

+ SUMMS value positive segregation
— TT results .*f less than the

type is negative .No segre-
gation results if the two
are equal

mm i}
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Operation G

{ RSCE)

2 The value of C_(r) is com-
J=nT(1) puted at this S stage of
GEE=1-GS(T) the program .For each column
GLEUT(T)=GEE I a value can be determined

LOCCOM(I) = TNT
— D200

Sequence 11

-- The average ingot composi-
HA +HB tion is determined| SUM = Roxx L" J LoccomySwn

fio,

(lod Sequence 12
This is the terminal which
regulates all "updating "
of fraction liquid by re-

¥4 cycling the program back to
(09 - the pressure iteration op-

eration (Oper.D) .This is
the outer-most loop .

TRIG: eros)
. TRIG2 ~~

- Le enn
_

y -——(END)
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Operation G

{ RSCE)
© The value of C (r) is com-

J=nT(D puted at this 5 stage of
GEE=1-GS(T) the program .For each column
GLEUT(I)=GEE I a value can be determined

LOCCOM(T) = TNT
DDD

Sequence 11

: The average ingot composi-
tion is determined

| SUM = Rorezyx L#*#8le Loccomtayesun|

“520

\ o Sequence 12

This is the terminal which
regulates all "updating "
of fraction liquid by re-

YEs cycling the program back to
(050- the pressure iteration op-

-t eration (Oper.D) .This is
| the outer -most loop

Ny _ TRIG3

rm wt

Co TRIG2 —=.

. © ] ( GOTO 73)i

—(END)



APPENDIX D

SOLIDUS PRESSURE GRADIENTS

The effect of flow factor on the pressure gradients at the solidus

is shown in Fig. (28). For each alloy there are two curves. One

represents the radial component which is negative while the vertical

component passes from positive to negative as y increases.

At "free flow" conditions (no resistance due to dendrite obstructions)

3P/5Z approaches its Bernoulli limit asymptotically. 3P/2r tends to zero

as y increases. The other extreme is when y produces the limiting

gradien*-

= = 1 atmosphere

where L = depth of mushy zone. For the Al-4.4% Cu alloy as Y approaches

1077 cm? the limiting gradient is reached and pressure approaches the

"negative pressure’ region. This occurs at y = 1011 cm? for the Sn-15% Pb

binary. This violates the assumption that pore formation cannot exist

within the mushy zone. Negative pressures are ficticious.

The value of such plots is that they give information about the

magnitude of the limits of &lt;y. It is easier to ''scan' for the proper values

of y and confirm their validity if they concur with the range of y dictated

the solidus boundary conditions of Fig. (28). Computer instabilities

result if y is within the range of the '"megative pressure'' zone.

173

aloe



Id ~ rrrtvrrrov+-.
;

- 28)
LO = —100k SPs
ul FREE FLONASYM~ ©
= W Al Cv5
3 . _

Ar oo P [

: 9 a7 fr
&gt; I - CL
DF
a = Sn Pb AIC
a -ll eday]0" 010 0° 08 07 0°

2
VALUE OF ¥, c™

Fig. 28 - Influence of y on the radial and vertical pressure gradients at the eutectic. |

dP/dr increases to zero and dP/dz approaches an asymptotic limit as y increases.
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APPENDIX E
Lr

, INTEGER PTY Computer Program Printout 0001
INTEGER NPARAM 0002
INTEGER*L4 N 0003
INTEGER PPPMAX 0004
INTEGER PPP 0005
INTEGER NSTI (25) , NSIMAX (25) ,MT (25) ,NT (25) 0006
INTEGER JJ1(25) ,J3J2 (25) ,dJ3(25) ,JJU (25) 0007
INTEGER JJ5 (25) ,JJ6 (25) ,JJI7 (25) ,JI8(25) 0008
REAL*8 KAE,KAC 0009
REAL *8 ANG 0010
REAL*8 GADS 0011
REAL*8 MSOL, MLIQ 0012
REAL*8 LEFT,KC,KAY,KAWALL 0013
REAL*8 KSCL,KLIQ,K,KB,KM,KT 0014
REAL*8 KON1,KCN2,KCN3,KON4 0015
REAL*8 GAMO1,GAMC2,CONSTT D016
REAL*4 SLOLIQ,SLCSOL 0017
REAL*4 LTSEG 0018
REAL *8 RSS (82), RL (82) 0019
REAL*8 DELKA (82) 0020
REAL*8 HHA (25) 0021
REAL*8 HMM (25) 0022
REAL*U4 RCR (25) 0023
REAL*S8 HTT (25) HEIT (25) ,GRAV, EM, DTT 0024
REAL *8 HTE,TL,TE,HORAT,CRAT,TRAT, RADIUS 0025
REAL*8 RC, RLE,RSE,RS,GE,MU,CO,CE 0026
REAL*8 H,HA,HB,HC,HM,HT 0027
REAL*8 DABS 0028
REAL*S8 UR,U% (22,82) ,21 (25) ,25 (25) 0029
REAL*8 DP} 0030
REAL*8 SCLVE,SCLHZ 0031
REAL *4 21S (25) ,A1L (25) ,DEL21 (25) 0032
REAL*S TABOT (22,15) ,TAKCNS (22,15) 0033
REAL%S TART (22,15) ,TATOP (22,15), TALEFT (22,15) 0034
REAL#*8 GCPS 0035
REAL *8 KMM (22,82) ,KA (22,82) D036ou



REAL *8 T (22,82) ,RHC (22,82) ,M0 (22,82) 0037
REALS cL(22,82),6GL(22,82),2(22,82),R (22,82) 0038
REAL#*8 NZURRO,UZURBRCL,DERHOR,DERHOZ,DECLR,DECLZ, DEGLR, DEGLZ 0039
RFAL*8 DFNOM1,DENOM2,THETA 0040
REAL*8 ONE (22,82),TwW0(22,82),TRE(22,82),F0R(22,82) 0041
REAL*8 PERMI (22,82) ,GAMMA (22,82) 0042
REAL*8 GR (22,82) ,GZ(22,82),EPPS(22,82) 0043
REAL*8 A1,A2,A3,B1,B2,C1,C2,C3,CH DouY
REAL#*8 AX,B,C 0045
REAL*8 VR{(22,82),VZ (22,82) 0046
REAL*4 OMEGAS,CMEGAL 0047
REAL*U4 NLGL(82),FN(82) 0048
REAL*4 GS (82) 0049
REAL*8 P (22,82) ,KONST (22,82) 0050
REAL*8 ZAT (22) 0051
REAL*8 1 (82) ,X1,X2 0052
REAL *4 LOCCOM(22),CS (82) 0053
REAL*8 PDR,PDZ 0054
REAL*8 GLEUT (25) 0055
POWNUM=1.618 0056
POWDEN=2. 0057
CONSTT=0,022 D058
GADSCL=1.0D-6 0059
GADSWL=2.5D-7 0060
GADS=5.0D-7 0061
MAXIT1=150 0062
MAXIT2=300 0063
MAXIT3=450 0064
MAXITU=600 0065
MAXIT5=750 0066
UZCL=0.053 0067
MU=.013 0068
PA=1.0D6 0069
TRIG=1 0070
NTOP=70 0071
KC=0,15 0072



HC=0, 2 0073
RADIUS=3.4 0074
IMAX=RADIUS/HC+.007 i 0075
IMAX=IMAX #1 0076
Co=4,40 0077
Z1I501L=0.0 0078
wW=0,0 0079
2ILI0=3.8 0080
AQS=2ISOL 0081
AOL=2ZILIQ 0082
A25=0.0 0083
A2L=0.,0 0084
DELAO=AO0L-A0S 0085
HTE=DELAO 0086
DELA2=A21L-A2S 0087
DTT=0. 0088
GRAV=980. D089
RLE=3.2 0090
RSE=3,38 0091
RS=2,62 0092
RO=2.45 0093
PI=3.14156 0094
CE=33. 0095
CSE=5.565 0096
TM=660. 0097
TE=548, 0098
KAY=CSE/CF 0099
KON1=(1.0D0/CO) ** (1./(KAY-1.)) 0100
KON2=1.0D0/(KAY-1.0D0) 0101
KCN3=KCN2-1,0D0 0102
KON4=-KON2 0103
KAY=CSE/CE 0104
GE=(CE/CC) ** (1./(KAY-1,)) 0105
EM= (TE-TM) /CE 0106
TL=EM% (CC~CE) +TE 0107
CONTE=RKSE/RLE-1. 0108

01



CONTRL= (RS/R0O=-1.) 0109
HORAT=RO-RLE 0110
TRAT=TL-TE 0111
CRAT=CO-CE 0112
IMAXN=IMAX-1 0113
IMAXP=IMAX+ 0114
DO 8 I=1,IMAX 0115
GLEUT (I) =GE 0116

8 CONTINUE 0117
WRITE (6,8565) 0118

8565 FORMAT (8X, 'LIQUIDUS TEMP',3X,'EUTEC FR LIQ',3X,'SLOPE CF LIQ' 0119
1,2X,'PARTIT RATIO',2X,'COMP SOL EUT',2X,'EUT TEMP'///) 0120
WRITE (6,8888) TL,GE,EM,KAY,CSE,TE 0121

8888 FORMAT (5X,6E15.6///) 0122
WRITE (6,9059) 0123

9059 FORMAT (6X, 'PERMEABILITY',5X, 'PERCENTAGE SOLUTE', 5X, 0124
1'CNTL ISCTHERM VELOCITY',5X,'HEIGHT OF MUSHY ZONE AT CNTL'//) 0125

WRITE (6,8059) GADS,CC,UZCL,HTE 0126
8059 FORMAT (4E23.6////) 0127

WRITE (6,9000) 0128
9000 FORMAT (12X,'Z-SOLIDUS',10X,'Z-LIQUIDUS',12X,'I'///) 0129

DO 10 I=1,IMAX 0130
H=HC 0131
IP(I.EQ.1) MSCL=0.0 0132
IF (I.GT.1) MSCL=0.25 0133
IF(I.EQ.1) MLIQ=0.0 0134
IF(I.GT.1) MLIQ=0.25 0135
IF(T.EQ.1) A1S(1)=0.0 0136
IF(I.EQ.1) A1L(I)=0.0 0137
A1S(I)=MSOL 0138
A1L(I)=MLIQ 0139
IF(I.EQ.1) GO TC 22 0140
Go TO 23 0141

Zw CONTINUE 0142
ROR(1)=0.0 0143
72S (I)=A0S oun



ZL (I)=A0L 0145
GO TD 19 01486

23 CONTINUE 0147
ROR (I)=RCR{I-1) +H D14R
ZL(I)=ZL(I-1)+A1L (I) *H 0149
2S(I)=ZS(I-1) +A15(I)*H D150

19 CONTINUE 0151
WRITE (6,6000) ZS(I),2L(I),I 0152

6000 FCRMAT(1X,2E20.6,I10//) 0153
10 CONTINUE 0154

pO 25 I=1,IMAX 0155
DELA1T(I)=A1L(I)-A15 (1) D156

25 CONTINUE 0157
DC 20 I=1,IMAX D158
IF(I.EQ.IMAX) GO TC 20 0159
HHA (I) =RCR (I+1) -ROR (I) 0160

20 CONTINUE 0161
DO 24 J=1,NTCP 0162
DELKA (J) =KC 0163

24 CONTINUE 016
0165

CCNSTRUCTICN CF THE GRID MESH¥*k®kkkkkkkk 016¢
0167

THIS PARTICULAR SECTICN DEALS WITH THE SETTING UP CGF THE GRID 0168
MESH FOR THE MUSHY ZONE NOTICE THAT BOTH THE SPACING INCREME 0169
FOR BOTH THE VERTICAL AND RADIAL DIRECTIONS ARE VARIABLE . 0170

0171
DO 50 I=1,IMAX 0172
Z(I,1)=2ISCL 0173
R{I,1)=ROR(I) 0174
MT (I) =0.0 017%
NT(I)=0.0 0176
DO 40 J=2,NTOP 0177
Z(I,J)=DELKA(J-1)+Z(I,Jd-1) 0178
R(I,J)=RCR (I) 0179
IP(Z2(I,d).GT.ZL(I)) GC TO 37 0180



IF(Z2(I,J).GT.25(I)) GC TO 33 0181
GO TC 40 0182

2? IF(MT(I).GT.0) GO TC 40 0183
BFRACT= (2 (I,J)-2S(I))/(Z(1,J)-2(I,d-1)) 0184
IF(BFRACT.LT.0.5) ZS(I)=2(I,J) 0185
IF (BFRACT .GT.0.5) GO TC 35 0186
MT (I) =d 0187
RSS (J) =R (I,J) 0188
GC TO 40 0189

38 ZS(I)=2(I,J-1) 0190
MT (I)=J-1 0191
RSS (J-1)=R(I,J=1) 0192
GC To 40 0193

37 IF(NT(I).GT.0) GO TC uO 0194
0195
0196

INTERPOLATION APPROXIMATIONS AT THE LIQUIDUS*X%%kx% 0197
0198

THERE IS SCME INTERPCLATION APPROXIMATINNS BEING MADE AT THE 0199
LIQUIDUS DUE TO THE VARIABLE SPACING INCREMENTS (CARTESIAN) D 0200
CUSSED BEFORE .THE SMALLER THE VALUES °F THE SPACING THE GREA 0201

THE ACCURACY ATTAINED FOR VALUES OF THE GRADIENTS USED 0202
IN THE COEFFICIENTS SEQUENCE 0203

0204
TFRACT=(2 (I,J) =-2L(I1))/ (2(I,J)-2(I,J-1)) 0205
IF(TFRACT.LT.0.5) ZL(I)=2(I1,Jd) 0206
IF{TFRACT.GT.0.5) GU TO 39 0207
IF(I.EQ.IMAX) ZLHIGH=ZL (I) 0208
NT(I)=d 0209
RL (J)=R (I,J) 0210
HTT (I)=ZL(T)-2S (I) 0211
GO TO 40 0212

39 Z2L{I)=2(1,3-1) 0213
IF(I.EQ.IMAX) ZLHIGH=ZL (I) 0214
NT(I)=J-1 0215
RL (J-1)=R(I,Jd-1) 0216



HTT (I) =Z1(T)-2S (I) 0217
40 CONTINUE 0218
50 CONTINUE 0219

DO 51 I=1,IMAX 0220
HEIT (I)=ZLHIGH-ZL (I) 0221
WRITE (6,5555) HTT(I),HEIT(I),2S(I),2L{(T),I 0222

5555 FORMAT (3X,4E20.6,110) 0223
51 CONTINUE 0224

DO 52 I=1,IMAX D225
NUMPTS=NT (I) -MT (I) 0226
N8TH=NUMPTS/S. 0227
ZAT (I) =GADSCL- ( (GADSCL-GADSWL) /JRADIUS) *ROR (I) 0228
ZAT (1)=1.0 0229
ZAT (2) =1.0 0230
ZAT(3)=1.0 0231
ZAT (4)=1.0 0232
ZAT (5)=1.0 0233
ZAT (6)=1.0 0234
ZAT (7)=1.0 0235
ZAT (8)=1.0 0236
ZAT (3) =1.0 0237
ZAT (10)=1.0 0238
ZAT (11) =1.0 0239
ZAT(12)=1.0 0240
ZAT (13)=1.0 0241
ZAT (14) =1.0 0242
ZAT (15)=1,0 0243
ZAT (16) =1.0 0244
ZAT (17)=1.0 0245
ZAT (18) =1.0 0246
JJ1(I)=MT (I) +N8TH 0247
JJ2 (I) =MT (I)+2.*N8TH 0248
JJ3 (I)=MT(I)+3.*N8TH 0249
JIU (I) =MT (I) +4. *NSTH 0250
JJ5 (I) =MT (I) +5.*N8TH 0251
WRITE (6,8125) JJ1(I),JJ2(I),JJ3(I),IJu(1),JI5(1),zZAT(I),I 0252



8125 FORMAT (10X,5I10,E20.6,I10/) 0253
52 CONTINUE 0254

WRITE (6,9010) 0255
9010 FORMAT(10X,'VALUE GF NSI',u4X,*NSIMAX',U4X, 0256

1' VALUE OF MT!,4X,'VALUE OF NT',8X,'I'///) 0257
DO 88 I=1,IMAXN 0258
NSI(T)=MT(I)+1 0259
NSIMAX (I)=MT(I+1) 0260
IF (MT (I). EQ. MT (I+1)) NSIMAX(I)=NSI(I) 0261
WRITE (6,8010) NSI(I),NSIMAX(I),MT(I),NT(I),I 0262

8010 FORMAT (1X,5I15/) 0263
88 CONTINUE 0264
73 CONTINUE 0265

DO 90 I=2,IMAX 0266
DIFF=GLEUT (I) -GLEUT (I-1) 0267
DC 80 J=1,NTCP 0268
IF(J.LE.MT(I-1)) GC TO 80 0269
IP(J.LT.MT(I)) GO TC 75 0270
IF{TRIG.NE.1) GO TC 80 0271
IF{(J.GE.MT(I)) .AND., (JLLE.NT(I-1))) GO TO 80 D272
IF(J.LT.NT(I)) GO TC 77 0273
IF(J.GE.NT(I)) GO TC 80 0274
GO TN 80 0275

7% R(I,J)=R(I-1,J)+((2(I,J)-25(I-1))/(2S(T)-2S(I~-1))) *HHA (I-1) 0276
RSS (J) =R (I,J) 0277
MO (I,J)=A1S(I) +A2S*2,0%R (I,J) 0278
T(I,J)=TE 0279
GL(I,J)=GLEUT(I-1)+((2(I,J)-2S(I-1))/(2S(I)~-2S(I-1)))*DIFF 0280
CL(I,J)=CE 0281
RHO (I,J) =RLE 0282
P(I,J)=10000. 0283
GO To 80 0284

. R{I-1,J)=R(I-1,3)+((2(I,I)-2ZL(I-1))/(2L(I)-2L(I-1))) *HHR (I-17) 0285
RL (J) =R{I-1,J) 0286
T (I-1,J)=TL 0287
GL(I-1,J)=1. 0288



CL{I-1,J)=C0 0289
RHO (I-1,J) =RC 0290
P(I-1,J)=(ZLHIGH-Z (I,J)) *ROXGRAV+0,5%RO* (N**2) %x (R(I-1,J) **2) 0291
P(I-1,J)=P(I-1,J)+PA 0292

80 CONTINUE 0293
30 CONTINUE 0294

IF(TRIG.EQ.2) GO TC 85 0295
IF(TRIG.EQ.3) GO TO 89 0296
IF(TRIG.EQ.U4)GN TO 93 0297
IF(TRIG.EQ.5)GC TC 95 0298

0299
TEMPERATURE AND TEMP RELATED ITEMS PNR EACH NODE 0300

0301
NOW WE BEGIN TC FILL-IN THE VALUES OF COMPOSITION ,DENSITY, AN 0302
FRACTION LIQUID(SCHEIL) AS WELL AS THE INDEPENDENT VARIABLE 0303
TEMPERATURE POR ALL NODES WITHIN THE NEWLY CONSTRUCTED GRID , 0304

| 0305

NMT=NT (1) = 1 0306
DO S55 J=2,NHT 0307
RL(J)=0.0 0308

" CONTINUE 0309
I=IMAX 0310
PPP=MT (I)~-1 0311
NMT=NT (I) -1 0312
JMAXUM=MT (I) 0313
DO 70 I=1,IMAX 0314
MNT=MT (I) 0315
NNT=NT (I) D316
DO 60 J=MNT,NNT 0317
KA (I,J) =DELKR2 (J) 0318
DEPMZ=2ZL(I)-2(I,J) 0319
HTMZ=HTT (I) -DEPMZ 0320
HTFRAC=HTMZ /HTT (I) 0321
IF(J.EQ.¥T(I)) HTFRAC=1.0 0322
IF(J.EQ.MT (I)) HTFRAC=0.0 0323
SLOLIQ=A1L (I) 0324



SLOSOL=A1S5(1I) 0325
IF ((J.EQ.NT(I)) .OR. (J.FQ.MT(I))) SLOLIQ=ATL(I)+2.0%A2L*R (I,J) D326
IP ((J.EQ.NT(I)) «CR (J.EQ.MT(I))) SLOSOL=RA1S (I) +2.0%A2S*R (I,J) 0327
MO (I,J) =SLOSCL+HTFRAC* (SLOLIQ-SLNSOL) 0328
T(I,J)=TRAT*HTFRAC+TE 0329
DIFTEM=T (I,J) -TE 0330
RHC (I,J) =(HORAT/TRAT) *DIFTEM+RLE 0331
CL(I,J)=(CRAT/TRAT)*DIFTEM+CE 0332
GL (I,J)=KCN1* (CL (I,J) **KON2) 0333
GAMMA (I,J) =GADS* (ZAT(I)) **2 0334
IF(I.EQ.1) MC(I,J)=0.0 0335
P(I,J)=.5D0%* (RHO (I,J) +R0) *GRAV*DEPMZ+GRAV¥*RO*XHEIT (I) 01336
P(I,J)=P(I,J)+0.5%RO% (Wx*2)* (R (I,J) **2) 0337
P(I,J)=P(I,J)+PA 0338

60 CONTINUE 0339
70 CONTINUE 0340

NSTART=1 0341
MAXIT=MAXITI 0342
GC TC 91 0343

85 CONTINUE 0344
NSTART=MAXTIT1+1 01345
MAXIT=MAXIT2 0346
GO TO 91 0347

89 CONTINUE 0348
NSTART=MAXIT2+1 D349
MAXIT=MAXIT3 0350
GO TO 91 0351

93 CONTINUR 0352
NSTART=MAXIT3+1 0353
MAXIT=MAXITU D354
GC TO 91 D355

95 CONTINUE D356
NSTART=MAXITU4+] 0357
MAXIT=MAXITS 0358

91 CONTINUE 0359
0360



THE COEFFICIENT SEQUENCE 0361
’ 0362

’ THIS SECTION DEALS WITH THE DETERMINATION OF THE PARAMETERS 0363
DEALING WITH THE CCEFFPICIENTS OF THE SECOND ORDER PARTIAL 0364
DIFFERENTIAL EQUATION USED TO FIND THE VALUES OF PRESSURE 0365

| AT ANY GIVEN NCDE WITHIN THE MUSHY ZONE. 0366
0367

DC 150 I=2,IMAXN 0368
PPP=MT (I) +1 0369
NMT=NT (I)-1 0370
DO 145 J=pPPP,NMT 0371
HA=R (I+1,J)-R (I,J) 0372
IF(MT (IT) .EQ.MT(I+1)) GO TC 100 0373
IF(J.LT.MT(I+1)) HA=((Z2(I,J)=25(I))/(ZS(I+1)-2S(I))) *HHA (I) 0374

100 CONTINUE 0375
HB=R (I,J) -R{I-1,J) 0376
IF(NT(I).EQ.NT(I-1)) GC TC 101 0377
IF{J.GT.NT(I-1)) HB=((ZL(I)-2(I,J))/(ZL(I)=-2ZL (I-1))) *HHA (I-11) 0378

101 CONTINUE 0379
HM= (HA+HB) /2. 0380
HMM (I)=HM 0281
HT= (HA*HB*HM) 0382
A1=1.0D0/R (I,J) 0383
KB=Z (T,J)-Z(I,d~1) 0384
KM= (KA (I,J) +KB) /2. 0385
KMM (I,J) =KM 0386
KT= (KA (I,J) *KB*KM) 0387
THETA=2, 0DO* (HT *KM+KT* HM) 0388
GR(I,J)=(T(I+1,J)-T(I-1,J))/(2.0D0*HM) 0389
GZ (I,d)=(T(I,J+1)~-T(I,J=1))/(2.0D0*KHM) 0290
UZ(I,J)=UZCL/ (1.440 (I,J) **2) 0391
UR==-MD (I,J) *UZ (I,J) 0392
EPPS (I,J)=- (UZ (I,J) *GZ (I,J) +UR¥GR(I,J)) 0393
FACT1=1.0 0394
FACT 2=GL (I,J) **2 0395
PERMI (I,J) =GAMMA (I,J) * (GL (I,J) **2) 0396



DERHOR= (RHO (I+1,J) -RHC (T-1,J))/ (2. 0DO*HM) 0397
DERHOZ= (RHO (I,J+1)~-RHC (1,J-1)) /(2.0DO*KM) 0398
DECLR=(CL(I+1,J)~-CL(I-1,J))/(2.0D0*HN) 0399
DECLZ=(CL(I,J+1)-CL(I,J-1))/(2.0D0*KM) 0400
DEGLR=(GL(I+1,J)~-GL(I-1,J))/(2.0DO*HM) 0401
DEGLZ=(GL(I,J+1)-GL(I,J-1))/(2.0D0*KHN) D402
UZURCL=UZ (I,J) *DECLZ+UR*DECLR 0403
UZURRN=UZ (I,J) *DERHCZ+UR*DERHOR Duoy
ALFA= (RHC (I,J) /RS-1.) *KON2/CL (I,J) 0405
A2=2,*DEGLR/GL (I,J) +DERHCOR/RHO (I,J) 0408
A3=ALFA*DECLR 0807
B1=2.*DEGLZ/GL (I,J) +DERHOZ/RHC (I,J) 0408
B2=ALFA*DECLYZ 0409
C1=2.*DEGLZ/GL (I,J) +2.*DERHOZ/RHO (I,J) 0610
C2=ALFA* (DECLZ~ (W*%*2) *DECLR*R (I,J) /GRAYV) 0411
C3=GRAV*RHN (I,J) * (C14C2) 0812
Cl= (DERHCZ/DECLZ) /RHC (I,J) +ALFA 0413
C5=EPPS (I,J) *MU/ (EM*GAMMA (I,J) *GL (I,J)) 0414
Co=(W**2) * (2, *RHO (I,J) +2. *RHD (I,J) *R(I,J) *DEGLR/GL (I,J) +2.*R (I,J) * 0415

1 DERHOR) 0416
AX=A1+22+A3 0417
B=B1+B2 0418
C=C3-Cu*C5-Cé¢ 0419
IF ((J.GE.NSI(I)).AND. (J.LE.NSIMAX(I))) GO TC 120 0420
GO TO 130 ou21

120 CONTINUE ou22
IXX=J=-NSI(I)+1 0423
IF(MT(I-1).EQ.MT(I+1)) GC Tn 121 oy2u
IF ((MT (I+1).GE.MT(I)+1).AND. (J.EQ.MT(I)+1)) GO TC 125 ou2s5
IF ((MT(I+1) .GE.MT(I)+1).AND, (J.GT.MT(I)+1)) GO TC 123 0426
IF (MT(I+1).EQ.MT (I) +1) GO TO 125 0427
IF(MT (I) .EQ.MT(I+1)) GO TC 121 0428
GC TO 130 D429

{12° CONTINUE 0430
SOLVE=MUCONTR*UZCL/ (GAMMA (I,J) *GLEUT (I) * (1.+M0O (I,J) *x¥2)) 0431

1-RLE*GRAV 0432



SOLHZ==-MU*CONTR*UZCL*MC (I,J) / (GAMMA (I,J) *GLEUT (I) * 0433
1 (1.+MO (I,J) *%2) )+RLE*R (I,J) ¥(W**2) 0434
COFO0=1,/(KC%%*2) +2. / (HA* (HA+HB) ) +2. / (HB* (HA+HB)) +B/ (2. *KC) 0435
COFO=COF0+AX*HB/ (HA+HB)-AX*HA/ (HA+HB) 0436
TART (I,IXX)=(1./COF0)* (2,/ (HA* (HA+HB))+HB*AX/ (HA* (HA+HB))) ou37
TATOP (I,IXX)=(1./COF0) *(1./(KC**2)+B/ (2.*KC)) 0438
TALEFT(I,IXX)=(1./CCF0)* (2./ (HB* (HA+HB)) -HA*AX/ (HB*(HA+HB))) 0439
TABGT(I,IXX)=0.0 0440
TAKONS (I,IXX)=(1./CCF0) * (SOLVE*(B/2.-1./KC) +C) ouy1
GC TO 130 ouu?

123 CONTINUE ouu3
SOLVE=MU*CONTR*UZCL/ (GAMMA (I,J) *GLEUT (T) * (1. +M0 (I,J) ¥%*2)) ouuy

1-RLE*GRAV ouus
SOLHZ=-MU*CONTR*UZCL*MO (I,J) / (GAMMA (I,J) *GLEUT (I) * Que

i (1. #MD (T,J) *%2) ) +RLE*R (I,J) ¥(W**2) ouu7y
COF1=2./(KC**2) +2, / (HB* (HA+HB) ) ~HA*AX/ (HB* (HA+HB)) Ouyn
TART (I,IXX)=0.0 o449
TATCP(I,IXX)=(1./COF1) *(1./(KC%X*2) +B/ (2. *KC)) 0us50
TALEFT(I,IXX)=(1./CCF1)* (2./ (HB* (HA+HB)) -AX*HA/ (HB* (HA+HB))) 0us51
TABOT (I,IXX)=(1./COF1) *(1,/(KC*%*2)-B/2.% (1, /KC)) 0452
TAKONS(I,IXX)=(1.,/CCF1)* (2.*%SCLHZ/ (HA+HB)+AX*HB/ (HA+HB) +SOLHZ+C) D453
G0 TO 130 0454

125 CONTINUE puss
SOLVE=MUXCONTR*UZCL/ (GAMMA (I,J) *GLEUT (I) * (1.+M0 (I,J) **2)) 0456

1-RLE*GRAV ous?
SOLHZ=-MU%CONTR*UZCL*MC (I,J) / (GAMMA (I,J) *GLEUT (I) * 0us8

1 (1.+M0 (I,J) *%2) ) +RLE*R (I,J) * (W¥*2) 0us9
COP2=1./ (KC**2) +2,/ (HB* (HA+HB) ) ~AX*HA/ (HB* (HA+HB) ) +B/ (2 .*KC) 0u60
TART (I,IXX)=0.0 0461
TATOP(I,IXX)={(1./COF2)* (1./(KC**¥2)+B/ (2.%KC)) 0462
TALBPT(I,IXX)=(1./COF2)*(2./ (HB* (HA+HB))-AX*HA/ (HB* (HA+HB))) 0463
TABOT(I,IXX)=0.,0 ous
TAKONS (I, IXX)=(1./CCF2)* (SOLHZ* (2. +HB*AX) /(HA+HB) +C D465

14+SOLVE* (B/2.-1./KC)) 0466
130 CONTINUE ous?

DENCM1=2.0DO*KM*THETA 0468



DENOM2= (HM/KM) *DENOM? 0469
ONE (I,J) =(KT*HB) /THETA+ (KT*HT*AX) /DENOM2 0470
TWO (I,J) =(HT*KB) /JTHETA+ (KT*HT*B) /DENOM1 0471
TRE(I,J)=(KT*HA) /THETA- (KT*HT*AX) /DENOM2 0472
FOR(I,J)=(HT*KA(I,J))/THETA- (KT*HT*B) /DENCM1 0473
KONST (I,J) = (KT*HT*C) /THETA ou7u
IF(I.EQ.16) GC TO 141 047s
IF(I.EQ.11) GO TC 141 0476
IF(I.EQ.6) GC TO 141 0477
IF(I.EQ.3) GO TO 141 D478
GO TD 145 0479

141 CONTINUE 0480
IP(J.EQ.JJ1(I)) GC TO 143 ous
IF(J.EQ.JJ2(I)) GC TC 143 0482
IF (J. BQ. JJ3(I)) GO TO 143 ous83
IF(J.EQ.JJU(I)) GC TC 143 ously
IF(J.EQ.JJ5(I)) GO TO 143 0485
GO TO 145 0486

143 CONTINUE 0487
WRITE (6,8001) 0488

8001 FORMAT (7X,'AX*,11X,'B*,10X, "HEIGHT", 12X,'U-2',7X,*ISO-T-SLOPE", 0489
19%, 'EPS*,5. ,YI',3.,'J',8%,'PERMI',7L,"FRACT LIQ") 0490
WRITE (6,7001) T(1,J),CL(I,3),Z2(,d),U0Z(,d),n0(1,d),BPPS(1,J),1,4d, 0491

1PERMI (I,J) ,GL (I,J) 0492
7001 FORMAT (1X,6E14,.5,2I5,2E14.5/) 0493

145 CONTINUE ous
150 CONTINUE 0495

0496
i NECESSARY PARAMETERS FOUND AT THE GIVEN BCUNDARIES 0497
. 0498

SET-UP CF THE SOLIDUS FOR THE MACROSEGREGATINN SEQUENCE 0499
“ 0500

DO 200 I=2,IMAX 0501
MNT=MT (I) 0502
J=MNT 0503
GR(I,IN=(T(I,Jd)-T(I-1,J))/ (HHA (I-1)) 0504



GZ (I,3)=(T(1,J+1)-T(I,J))/KA (I,J) 0505
UZ (I,J)=UZCL/(1.4MC (I,J) **2) 0506
UR==-MO (I,J) *¥UZ (I,J) 0507
EPPS (I,J) =~-(UZ (I,J) *GZ (I,J) +UR*GR(I,J)) 0508
FACT1=1.0 0509
FACT2=GL (I,J) **2 0510
PERMI (I,J) =GAMMA(I,J)* (GL (I,J) **2) 0511
VE (I,J)=-UR*CONTR 0512
Vz (I,J)=-UZ (I,J) *CONTR 0513

200 CONTINUE 0514
; 0515
., SET-UP CF THE WALL BCUNDARY FC THE M.Z. FOR THE MACRO-SEQUENC 0516
~ 0517

I=TMAX 0518
PPP=14MT (I) 0519
NMT=NT(I)-1 0520
DC 250 J=PPP,NMT 0521
KMM (I,J) =(2(I,J+1)-2(I,3-1))/2. 0522
GR(I,J)=(T(I,J)-T(I-1,J))/ (HHA (I-1)) 0523
GZ(I,d)=(T(I,J3+1)~-T(I,J=-1))/R¥M(T,]) 0524
UZ (I,J)=UZCL/(1.+M0 (I,J) **2) 0525
OR=-MD (I,J) *UZ (I,J) 0526
EPPS (I,J)==~ (UZ (I,J) *GZ (I,J) +UR*XGR(T,J)) 0527
FACT1=1.0 0528
FACT2=GL (I,J) ¥*2 0529
PERMI (I,J) =GAMMA (I,J) *(GL (I,J) **2) 0530

250 CONTINUE 0531
I=IMAX 0532
NNT=NT (I) 0533
GZ(I,N=(T(I,J)-T(I,J-1))/Kr(I,J-1) 0534
GR(I,J)=-MD (I,J) *GZ (I,J) 0535
UZ (I,J)=UZCL/(1.+M0 (I,J) **2) 0536
UR=-MD (I,J) *UZ (I,J) 0537
EPPS (I,J)=-{UZ (I,J) *GZ (I,J) +UR*GR (T,J)) 0538
FACT1=1.0 0539
FACT2=GL (I,J) ¥*2 0540



PERMI (I,J) =GAMMA (I,J) *(GL (I,J) **2) 0541
a 0542
z SET-UP OF THE LIQUIDUS FOR THE MACROSEGREGATICN SEQUENCE 0543
C 0544

DO 300 I=2,IMAXN 0545
NNT=NT (I) 0546
J=NNT 0547
GR(I,J)=(T(I+1,J)-T(I,J))/HHA (I) 0548
GZ (I,J)=(T(TI,J)-T(I,J-1))/KA(I,J-1) 0549
UZ (I,J)=UZCL/(1.+M0O (I,J) **2) 0550
UR=-M0 (I,J) *UZ (I,J) 0551
EPPS (I,J) == (UZ (I,J) *GZ (I,J) +UR*GR (I,J)) 0552
FACT1=1.0 0553
FACT2=GL (I,J) **2 0554
PERMI (I,J) =GAMMA (I,J) *(GL (I,J) *x*2) 0555

300 CONTINUE 0556
0557

k SET-UP CF THE CENTER LINE REGION FOR THE MACRO-SEQUENCE 0558
: 0559

I=1 D560
NNT=NT (I) 0561
DO 340 J=1,NNT 0562
GR (I,Jd)=0.0 0563
MO(I,J)=0.0 0564
GZ (I,J)=TRAT/HTT (I) 0565
UZ (I,J) =UZCL 0566
UR=0,0 D567
EPPS (I,J)=-UZ (I,J) *GZ(I,4) 0568
FACT1=1.0 0569
FACT2=GL (I,J) ¥*2 0570
PERMI (I,J) =GAMMA(I,J)* (GL (I,J) **2) 0571
IF(J.EQ.NNT) GC To 339 0572
IF(J.EQ.I) GO T2 338 0573
KM= (KA (I,J) +KA(I,Jd-1))/2. 0574
KMM (I,J) =KM 0575
GC TO 340 0576



338 CONTINUE 0577
VR(I,J)=0.0 0578
VZ({I,J)=-UZ (I,J) *CONTR 0579
GO TO 340 0580

339 CONTINUE 0581
340 CONTINUE 0582

0583
THE ITERATION SEQUENCE 0584

0585
THE ITERATION SEQUENCE NOW IS INITIATED sees.IT IS IMPORTANT 0586
TC REALIZE THAT THE SEQUENCE IS ACTUALLY EXECUTED TWICE 0587
DURING A GIVEN RUN---THE FIRST TIME IT,S EXECUTED FOR THE 0588
VALUES OF PRACTION LIQUID CORRESPONDING TO THE SCHEIL EQUATIO 0589
THE SECOND TIME IT IS RUN FOR FRACTION LIQUID AND THE CONCONMI 0590
GRADIENTS CORRESPONDING TO REVISED VALUES FOUND DURING THE 0591
MACROSEGREGATICN SEQUENCE ) 0592

i 0593

DO 1000 ITER=NSTART,MAXIT 0594
: 0595

FIRSTLY,THE INDIVIDUAL BOUNDARIES ARE TAKEN CARE OF 0596
: 0597

DO 410 I=2,TIMAXN 0598
PPP=NSI (I) 0599
PPPMAX=NSIMAX (I) 0600
DO 408 J=PPP,PPPMAX 0601
IXX=J=-NSI (I) +1 0602
P(I,J)=TART(I,IXX)*P(I+1,J)+TATOP(T,IXX)*P(I,J+1) +TALEFT (I,IXX) 0603

1%p (I-1,J) +TABOT (I,IXX) *P (I,J-1)+TAKONS (I,IXX) 0604
IF(P(1,J),LE.0) P(I,J)=0,0 0605

408 CONTINUE 0606
410 CONTINUE 0607

NNT=NT (1) 0608
NMT=NNT-1 0609
I= 0610
DO 430 J=3,NMT 0611
P(1,J)=P (2,0) 0612



IF(P(I,J).LE.O0) P(I,J)=0.0 0613
430 CONTINUE 0614

P(1,2)=(2(1,3)-Z(1,2)) *{RLE*GRAV-CNNTR*MU*UZCL/ (GAMNA (1,2) 0615
1*GE) ) +P (1,3) 0616
I=1 0617
3=2 0618
IF(P(I,J).LE.0) P(I,J)=0.0 0619
I=IMAX 0620
NMT=NT (I) -1 0621
MNT=MT (I) 0622
DO 450 J=MNT,NMT 0623
P(I,J)=P(I-1,J) +RHC (I,J) * (W**2) *RADIUS*HC 0624
IF(P(I,J).LE.0) P(I,J)=0.0 0625

450 CONTINUE 0626
0627

SECONDLY, THE INTERIOR NODES ARE ATTENDED TC IN A COLUMN-WISE 0628
: FASHION. (WE ,R GOING FROM SOLIDUS TC LIQUIDUS AND FROM 0629
- CENTERLINE TO WALL) 0630

0631
DO 530 I=2,IMAXN 0632
ITI=NSIMAX (I) +1 0633
NMT=NT (I) -1 0634
CCC=NMT+IIT 0635
DO 515 ITS=III,NMT 0636
J=CCC-ITS 0637
RIGHT=ONE (I,J) *P (I+1,J) 0638
TOP=THO (I,J) *P (I,J+1) 0639
LEFT=TRE (I,J) *P (Z-1,J) 0640
BOTTOM=FCR (I,J) *P(I,J-1) 0641
P(I,J)=RIGHT+TOP+LEFT+BOTTOM+KONST (I,J) 0642
IF(P(I,J).LE.0) P(I,J)=0.0 0643

515 CONTINUE o64l
530 CONTINUE 0645

. 0646

SELECTION SEQUENCE---WHICH ITERATIONS DO WE WANT TC 0647
MONITOR FOR LATER EXAMINATION 06u8



IF(ITER.FQ.MAXIT) GC TO 600 0649
GO TO 1000 0650

600 CONTINUE 0651
0652

INTERDENDRITIC VELOCITIES ARE DETERMINED AT EACH NODE 0653
IN THE MUSHY ZCNE OF TH E INGOT 0654

: 0655

0656
DO 790 I=1,IMAX 0657
NNT=NT (I) 0658
PPP=MT (I) +1 0659
DO 775 J=PPP,NNT 0660
FDR=1.0 0661
IF(J.EQ.PPP) GO TO 710 0662
IF(I.EQ.IMAX) GO TC 709 0663
IF((J.GT.PPP).AND. (J.LE.NSIMAX(I))) GO TO 723 0664

709 CONTINUE D665
IF{(J.EQ.NNT) GO TO 720 0666
GO TO 730 0667

716 PDZ=(P(I1,J+1)~-P(I,J))/KA (I,J) 0668
VZ(I,J)=-PERMI (I,J)/(MU*GL (I,J)) *(PDZ+GRAV*RHO (I,J)) 0669
YW=(W**2) *R (I,J) *RHC (I,J) 0670
IF(I.EQ.1.0R.I.EQ.INMAX) PDR=YW 0671
IF (PDR.EQ.YW) GC To 711 0672
PDR=(P(I,J)-P(I-1,J))/HHA (I-1) 0673

711 CONTINUE 0674
VR(I,J)=-PERMI(I,J)/ (MU*GL (I,J))*(PDR-RHO (I,J) *(W**2)*R(I,J)) 0675
VIOT= (VR (I,J) **2+VZ (I,J) **2) *%x0,5 0676
IF(VR(I,J) .EQ.0.0) VR(I,J)=1.0D-6 0677
ANG=VZ (I,J) /VR (I,J) 0678
TTHETA=(180.,0/PI) *DATAN (ANG) 0679
RARA= (VR (I,J) *GR (I,J) +V2 (I,J) *GZ(I,J)) /EPPS (I,J) 0680
WRITE (6,9400) 0681

9400 FORMAT (3X, *RAD-TEMP GRAD',3X,'THE PRESSURE',4X,'VELCCITY-Z', 0682
16X,'THE VEL-R',5X,'VEL-TOT', 8X, 'THETA',8X,'RATE-RATIO? 0683
17%, 'I J: 0684



WRITE (6,7400) GR(I,J),P(I,J),VZ(I,J),VR(I,J),VT0T, TTHETA,RARA,TI,J DEBS
7400 FORMAT (1X,7E15.6,2I5) 0686

GO TO 775 0687
720 PDZ=(P(1,Jd)-P(I,J-1))/KA(I,J-1) 0688

VZ(I,J)=-PERMI (I,J) /(MU*GL(I,J))*(PDZ+GRAV*RHO(I,J)) 0689
YW= (W*%*2) *R (I,J) *RHO (I,J) 0690
IF(I.EQ.1.0R.I.EQ.IMAX) PDR=YW 0691
IF (PDR.EQ.YW) GO TO 72% 0692
PDR=(P(I+1,J)-P(I,J))/HHA (I) 0693

7 * CONTINUE 0694

VR(I,J)=-PERMI(I,J)/(MU%*GL (I,J))* (PDR-RHO (I,J) *(W**2)*R (I,J)) 0695
VTOT= (VR (I,J) *¥*%2+4VZ (I,J) ¥*2) *%0,5 0696
IF(VR(I,J) .EC.0.0) VR{(I,J)=1.0D-6 0697
ANG=VZ (I,J) /VR (I,J) 0698
TTHETA=(180.0/PI) *DATAN (ANG) 0699
RARA= (VR (I,J) *GR (I,J) +VZ (I,J) *GZ(I,J))/EPPS (I,J) 0700
WRITE (6,7500) GR(I,J),P(I,d),vZ(I,Jd),VR{(I,J),VI2T,TTHETA,RARRA,I,J 0701

7500 FORMAT(1X,7E15.6,2I5//) 0702
GO TO 775 0703

723 PDZ=(P(I,J+1)-P(I,J=-1))/(2.0DO*KMM (I,J)) 0704
VZ(I,J)=-PERMI (I,J)/ (MU*GL(I,J)) *(PDZ+GRAV*RHD (I,J)) 0705
YW= (Wx*2) *R (I,J) *RHO (I,J) 0706
IF(I.EQ.1.0R.I.EQ,IMAX) PDR=YW 0707
IF (PDR.EQ.YW) GO TOC 725 0708
PDR=(P (I,J) -P(I-1,J))/HHA (I-1) 0709

72° CONTINUE 0710
VR(I,J)=-PERMI(I,J)/(MU*GL (I,J))* (PDR=-RHO (I,J) *(W**2) *R(I,J)) 0711
VTOT= (VR (I,J) **2+VZ (I,J) **2) ¥%x0.5 0712
IF(VR(I,J) .EQ.0.0) VR(I,J)=1.0D-6 0713
ANG=VZ (I,J) /VR (I,J) 0714
TTHETA=(180.0/PT) *DATAN (ANG) 0715
RARA= (VR (I,J) *GR (I,J) +VZ (I,J) *GZ(1,J))/EPPS (I,J) 0716
GC TO 775 0717

730 PDZ=(P(I,J+1)-P(I,J-1))/ (2.0DO*KMM (I,J)) 0718
VZ(I,J)=-PERMI(I,J)/(MU*GL(I,J)) *(PDZ+GRAV*RHC (I,J)) 0719
YW=(W**2) *R (I,J) *RHO (I,J) 0720



IF(I.EQ.1.0R.I.EQ.IMAX) PDR=YW 0721
IF(PDR.EQ.YW) GO Tn 731 0722
PDR=(P(I+1,J)-P (I-1,J))/ (2.0DO*HMM(I)) 0723

731 CONTINUE 0724
VR(I,J)=-PERMI(I,J)/(MU*GL(I,J))* (PDR-RHO (I,J) *(W**2) *R(I,J)) 0725

0726
r HEIGHT SELECTION**x% 0727
~ 0728

IF(J.EQ.JJ1(I)) GO TC 735 0729
IF(J.EQ.JJ2(I)) GO TO 735 0730
IF (J.EQ.JJ3(I)) GO TC 735 0731
IF(J.EQ.JJU(I)) GC TC 735 0732
IF{J.EQ.JJ5(I)) GC TO 735 0733
GC TO 775 0734

735 CONTINUE 0735
. 0736

~ COLUMN SELECTION*x 0737
: 0738

IF(I.EQ.16) GO TO 740 0739
IF(I.EQ. 14) GO TC 740 0740
IF(I.EQ.11) GO TC 740 0741
IF(I.FQ.9) GC TO 740 0742
IF(I.EQ.6) GC TO 740 0743
IF(I.EQ.3) GC TO 740 074
IF(I.EQ.1) GC TO 740 0745
GO TO 775 0746

740 CONTINUE 0747
VIOT= (VR (I,J) **2+4VZ (I,J) **2) ¥*0,5 0748
IF{VR(I,J).EQ0.0.0) VR(I,J)=1.0D-6 0749
ANG=VZ (I,J) /VR(I,J) 0750
TTHETA=(180.0/PI) *DATAN (ANG) 0751
RARA= (VR (I,J) *GR (I,J) +VZ (I,J)*GZ(I,J))/EPPS (I,J) 0752
WRITE(6, 7300) GR(I,Jd),P(I,J),V2(1,J),VR(I,J),VTOT,TTHETA,RARA,I,J 0753

7300 FORMAT (1X,7E15.6,215/) 0754
775 CONTINUE 0755
790 CONTINUE 0756



805 CONTINUE 0757
0758

MACROSEGREGATION SEQUENCE 0759
0760

INTEGRATION OF THE LOCAL SOLUTE DISTRIBUTION EQUATION IS 0761
FOLLOWED-THRCUGH COLUMN-WISE STARTING FROM THE LIQUIDUS. 0762

0763
VOILCFD=0. 0764
SUUM=0.0 0765
DO 1020 I=1,IMAX 0766
NMT=NT (I) -1 0767
SUM=0, D768
MNT=MT (I) 0769
DO 810 IT=MNT,NMT 0770
NN=NMT-IT 0771
J=NN+MNT 0772
IF (J. EQ. NMT) NLGL(J+1)=0.0 0773
COEFT1=-KON4*RHO (I,J) / (CL (I,J) *RS) 0774
COEFT2=-KONU*RHO(I,J+1)/(CL(I,J+1) *¥RS) 0775
RATERI=VR(I,J) *GR (I,J) +VZ (I,J) *GZ (I,J) 0776
RATER2=VR (I,J+1) *GR(I,J+1) +VZ(I,J+1) *GZ (I,J+1) 0777
FN (J)=COEFT1*(1.+RATER1/EPPS(I,J)) 0778
FN (J+1)=COEFT2%* (1, +RATER2/EPPS(I,J+1)) 0779
NLGL (J) =.5%(CL(I,J) ~CL(I,J+1))%(FN(J) +FN(J+1))+SUM 0780
SUM=NLGL (J) 0781
GL (I,J)=EXP(NLGL(J)) 0782
GS (J)=1.0-GL (I,J) 0783
CS (J) =KAY*CL (I,J) 0784
GC TC 810 0785

809 CONTINUE 0786
810 CONTINUE 0787

i 0788

LOCAL SCLUTE CCMPGCSITION FOR DESIGNATED RADII WITHIN 0789
THE INGOT IS INITIATED. 0790

; 0791

SUMMS=L. 0792ey



NNT=NT (I) 0793

GS (J)=0.0 0795
CS (J) =KAY*CL (I,J) 0796
PPP=NT (I) +1 0797
DO 850 J=PPP,NNT 0798
SUMMS=.5% (CS (J) +CS(J-1)) *(GS(J-1)-GS (J) ) +SUMMS 0799

850 CONTINUE 0800
J=MT (1) 0801
GEE=1.-GS (J) 0802
GLEUT (I) =GEE 0803
TNT=RS*SUMMS+RSE*CE*GEE 0804
DDD=RS* (1. -GEE) +RSE*GEE 0805
LOCCOM(I)=TNT/DDD 0806

0807
FINALLY, WE TAKE A READING ON THE AVERAGE COMPOSITION OF THE 0808
INGOT FOR A GIVEN INGOT HEIGHT.HOWEVER,SINCE WE,RE ASSUMING 0809
STEADY STATE WE NEGLECT TRANSIENT ZONES-INGOT BOTTOM AND TOP 0810

~ 0811

IP(I.EQ.1) GC TO 880 0812
IF{I.EQ.IMAX) GO TO 885 0813
DELRAD= (HHA (I) tHHA(I-1)) /2. 0814
GO TO 890 0815

880 DELRAD=HHA(I)/2.0 0816
GO TO 890 0817

885 DELRAD=HHA (I-1) /2.0 0818
B90 CONTINUE 0819

SUUM=2,0%ROR (I) *DELRAD¥LOCCCHM (I) +SOUM 0820
CSINGT=SUUM/(RADIUS**2) 0821
WRITE (6,9900) 0822

9900 PORMAT (5X, 'LCCAL SOLUTE COMP! ,U4X,'ESTIMATE CN INGOT COM',UuX,'FRACT 0823
1 LIQUID EUTECTIC',4X,'RADIUS OFINGOT',2X,'CCLUMN NO',8X,'ITERAT') 0824
WRITE(6,7900) LOCCOM(I),CSINGT,GEE,ROR(I),I,ITER 0825

7900 FORMAT (1%,4E23.6,2110//) 0826
1020 CONTINUE 0827
1000 CONTINUE 0828



IF(TRIG.EQ.5)GD TO 1070 0829
IF (TRIG.EQ.4)GO TO 1060 0830
IF(TRIG.EQ.3) GO TO 1050 0831
IF (TRIG. EQ.2) GO TO 1040 0832
IF (TRIG.EQ.1) GO TO 1030 0833

1030 CONTINUE 0834
TRIG=2 0835
GC TO 73 0836

1040 CONTINUE 0837
TRIG=3 0838
GO TO 73 0839

1050 CONTINUE 0840
TRIG=4 0841
GO TO 73 0842

1060 CONTINUE 0843
TRIG=5 0844
GC TO 73 0845

1070 CONTINUE 0846
STOP 0847
END 0848

SENTRY 0849
$STOP 0850



APPENDIXFSTABILITY CRITERIA

Fluid flow through the interdendritic network is fundamental to studies

on segregation. When flow is from hotter to cooler regions flow is ''stable"

However, "unstable" flow can result in highly segregated channels called

"freckles". It occurs when the interdendritic fluid travels from cooler

to hotter regions of the mushy zone. The equation:

ne - (-8°L or (1+ v IL
oT 1-K °L oT €’

in which the quantity within brackets is always negative is simplified

to the proportionalitv:

28L &gt;

The three cases are:

case (1) pg, /eT &gt; 0 if WT/e&gt;-1

case (2) eg AT =0 if YyT/e = -1

case (3) 2g;/eT&lt; 0 if V+VT/e&lt;-1

Several subclasses of case (1) are:

&gt;
class (a) v*'VT/e&gt;0

&gt;
class (b) vVT/e = 0

class (c) =-1&lt;¥VT/e&lt;0

Case (1) is the stable situation stating that upon traversing the

volume element towards warmer regions the tendency is ''to see’ more

liquid. Class (b) is a condition of the Scheil Equation. Perturbations
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and



of passage diameter within the volume element occur such that a single

passage may become slightly larger than surrounding passageways. In class

(b) the flow has no effect on this localized passage and it returns to

normal size.

For class (a) less liquid "is seen' relative to class (b) though

8g /3T&gt;0 still holds. Fluid flow has therefore caused an enhancement of

solidification rate. The localized passageway has shrunk in diameter

relative to surrounding passages. In class (c) the flow has retarded the

solidification rate relative to (b). More liquid "is seen' meaning that

localized passageways are swollen.

Case (2) states that flow within a perturbed interdendritic passage is

great enough to completely: retard solidification. This can result in

severe channeling since the perturbation remains throughout solidification.

Case (3) is the extreme case. The solidification rate within the

perturbed passage is negative. Remelting is occurring causing the

passage to evolve into a severely localized channel called a "freckle".

This channel actually grows during solidification of the volume element.

The enlarged channel is optically visible.
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