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ABSTRACT

The use of cyclic group codes for the correction of
bursts of erasures and randomly spaced errors is
examined. When the digits of short block length burst
erasure correcting codes are separated in time these
codes are useful for a large varlety of radio channel
fadlng characteristics. The decoders for cyclic codes
which are being used to correct long bursts of erasures
and small numbers of errors are much less complex than
decoders for the correction of randomly spaced erasures
or large numbers of errors.
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Chapter I

INTRODUCTION

In this thesis a class of relatively easy to
implement codes for use on high-frequency ionospheric-
scatter radio channels is developed. The approach
taken here is to use cyclic group codes in a cémmunicatiOn
system which corrects both errors and erasures. In
Chapters 2 and 3 it is shown that there are several
classes of codes which are easy to decode, and which can
be used to correct the sets of erasures and errors which

are most likely to occur on these radio channels.

1.1) A Model of the Radio Channel

A general model for the effects of a high-frequency
ionospheric-scatter radio channel on a set of narrow-band,
time-limited waveforms is extremely complicated. The
channels are dispersive, due principally to multipath
propagation, and the received signal amplitude has a
Rayleigh or Rician probability density. Amplitudes for
successive signals are correlated, and the correlation
coefficient depends on both time delay, and difference
in frequency. Noise intensity varies slowly with
respect to the random fading, but the noise is not
white or Gaussian. In this thesis the signaling wave-
forms to be considered are sets of K equal-energy, narrow-

band, time-limited orthogonal signals. The signals must
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be spaced closely enough in frequency so that the
amplitude of the received signal will be approximately
the same, regardless of which signal was transmitted,
and the number of signals per second must be small
enough so that the intersymbol interference due to
multipath propagation effects can be ignored. Under
these conditions the noise may be modeled as approxi-
mately white. A model of the communication system to
be considered is shown in Figure 1-1. The Vn’ which
are defined in Figure 1-1, are correlated Rayleigh or
Ricdan random variables. The time variation of the Vn
is such that the channel produces randomly spaced fades
in the received signal strength, which typically occur .1
to 10 seconds apart.

The receiver shown in Figure 1-1 makes independent
maximum likelihood decisions on the waveforms received
in each time interval. The receiver output is either
the number of the waveform which is most likely to
have been transmiﬁted, or if the maximum of the
energies in each of the K sub-channels is below some
threshold, an erasure. The length of time for which the
Vn are above or below any threshold is approximately
exponentially distributed, which leads, as a rough
approximation, to a Markov model for the erasure
generation process. A simple model for the properties

of the part of the channel of Figure 1-1 between the
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dotted lines, which can account for most of the properties
of the radio link, under the assumptions made above, is
shown in Figure 1-2. A detailed description of the
properties of high-frequency ionospheric-scatter radio

channels is given in references (1) and (2).

1.2) Coding for High-Frequency Radio Channels

Most known codes for the correction of randomly
spaced errors and erasures can correct only relatively
small numbers of erasures and errors. There is,
however, a large class of cyclic codes which can correct
long bursts of erasures, or errors, and small numbers
of randomly spaced errors. In Chapter 2 several techniques
are developed for examining the ability of cyclic codes
to correct the most likely error patterns on the channel
of Figure 1-2. It is shown that codes with a small
block length can efficiently correct a small number of
random errors and long bursts of erasures. In Chapter
3 the effects of interspacing the digits of several
code words to form a set of codes which are useful for
a large range of channel fading characteristics are
examined.

Despite the rather extreme simplification involved
in the model of the high-frequency radio channel
presented above, there are still several rather complex

tradeoffs which must be made in the selection of a



Figure 1-2: Model of a K ary erasure channel

with memory.
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specific code for use on a given channel. Also, due
to the large variation in characteristics that can be
observed on one radio link over time periods of only a
few hours, it is necessary that any code be able to
correct a large variety of error-erasure patterns in
order to be useful. In particular the following four
variables must be determined:

1. Code Alphabet Size: Because of the restriction

on channel symbol rate imposed by multipath propagation
the use of large signal sets may be the only way to
achieve high data rates.

2. Codeword Length: This involves a tradeoff

between short block length and a relatively small number
of correctable random errors, and longer block lengths
which require more complex decoders but can correct much
larger numbers of random errors.

3. The Number of Codewords to be Interspaced: Here

the tradeoff is between the length of bursts which can be
corrected, and the length of the memory required in the
decoder.

4. Receiver Erasure Threshold: The relative numbers

of erasures and errors, and the relative lengths of
erasure and error bursts can be controlled by setting
the erasure threshold. When the code and the number of

interspaced codewords to be used have been determined,
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the erasure threshold will be the only easily varied

parameter which can change the decoder characteristics
and thereby permit the minimization of error probability

for different sets of channel characteristics.
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Chapter 2

BLOCK CODES FOR THE CORRECTION OF RANDOM ERRORS
AND ERASURE BURSTS

2.1) Cyeliec Codes

In this chapter it is assumed that the reader is
acquaanted with most of the material on cyclic codes
presented in references (3) or (4). 1In order to make
the conventions and definitions used in the remainder of
this chapter more explicit, we review a few of the
properties of cyclic codes.

A cyclic code can be defined to be any code with
digits selected from a finite field with Q elements,
which satisfies the following two conditions: (a) any
cyclic shift of the digits of a codeword is a codeword,
and (b) any digit by digit sum of two codewords is a
codeword.

All finite fields with Q elements are isomorphic to
the Galois Field with Q elements, denoted by GF(Q). Such
fields exist only when Q = qm for some prime number p,
and some integer m. Therefore, cyclic codes exist only
with digits selected from sets of qm symbols.

The digits of a codeword can be specified by an N
tuple, (aN—l' aN_or ...ao) and to each such N tuple we can
N-1

= aN~lX +...+aO which

also specifies the digits of the codeword. 1In this thesis

assign a unique polynomial a (X)
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we are dealing with channels with memory, and the order
in which the digits of the codeword are transmitted is
important. We will assume that ag is the first digit
transmitted, and that a,_; is the last digit.

All of the codewords of a cyclic code of length N
can be generated by multiplying some polynomial G(X),
with coefficients selected from GF(Q), and which has
degree N-k, by each of the Qk possible polynomials
= ik_lxk'l o ik_zxk_2 ol b e S +i0. Also every
codeword has a unique representation of the form a(X) =
I(X)G(X). In this chapter we will consider I(X) to
be the polynomial of the data source digits which we
are attempting to transmit.

The length of the cyclic code generated by the
polynomial G(X) will be assumed to be the smallest
number N for which G(X) divides XN—l. Cyclic codes
exist for all N such that G(X) divides XN—l, fonbH, SaLin
G(X) also divides Xj—l, j<N, then Xj—l is a codeword
in the code of length N, and that code cannot correct

any errors. If a code 1s used to correct only erasures,

then this restriction on code length is not necessary.

2.2) Channel Model

The channel model of Figure 1-2 can be further
simplified as shown in Figure 2-1. Here b(t) is the only

time varying quantity, p is a constant: 0 € p < %. The
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conditional probabilities p(j|k,E), where j is an output
digit, k is an input digit, and F signifies that the
output is not an erasure, are the transition probabilities
of a memoryless K-ary symmetric channel. Since we are
considering only cyclic codes we will restrict the values
of K &6 qm for g any prime number, and m any integer.

A cyclic burst of length £ is defined to be either
a set of £ consecutive digits contained in the codeword of
length N, or the first j, and the last £-j digits of the
codeword, for any j:0 € j ¢ £. In the remainder of this
thesis, unless otherwise specified, we will mean, when
we say a burst of erasures of length £, any set of
erasures such that all of the erased digits are contained

in some cyclic burst of length £.

2.3) Codes for Correction of Bursts of Erasures

Assume that no errors occur. If it is possible
to decode correctly all received codewords containing
erasure bursts of length £ or less, then the code can

have at most KN_E distinct codewords, so the dimensionless

code rate must be less than Eﬁé. We now demonstrate a
large class of codes which meet this bound.

Let G(X) be any polynomial of degree £ with co-
efficients from GF(qm), which divides X'-1. The ovialic
code of length N generated by G(x) can correct any

erasure burst of length £ or less.  This is shown by

specifying a possible correction procedure.
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Any cyclic shift of a codeword is also a codeword,
and because of the cyclic symmetry of the code, any
cyclic shift of a correctable pattern of erasures and
errors must also be a correctable pattern. RG(X){f(X)]
is defined to be the remainder of f(X) when divided by G(X).
The erasures in the received codeword, r(X), are replaced
by zeros, and then the digits of the received codeword
are shifted cyclically until the erasure burst is
contained in the £ lowest degree digits. If r'(X) is
the shifted codeword, then the erasures can be filled
in by adding —RG(X)[r'(X)] to r'(X) and then shifting back
to the original position.

A more complicated proof of the same property of
cyclic codes is given below. This proof is included
because it generalizes to an interesting method for
determining other properties of these codes, which will
be developed in sections 2.4 and 2.5,

The transmitted codeword is I(X)G(X) and the
received codeword is denoted by r(X), where the erased
digits are replaced by zeros. We choose as a syndrome

polynomial S(X), which is defined by

gt-1 2

S(X) =SQ+SX+ PR +S:e,_l

i}

Furthermore we define dj(X) by

¢t J
T G (0 SRS 0(.":2_1)( éPG(X)[X ] (2=-2)

T e
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Then dJ(X) is the syndrome polynomial which would
result if the digit -1 were erased in the j+1 th
digit of the codeword.
For any codeword I(X)G(X) we know that RG(X)[IW)G(X)] = 0,

therefore when E(X) is the polynomial of erased digits;

S(X) = Ry iy [T(X)] = Ry oy [T(X)G(X)-E(X) ]

_RG(X) [E(X) ]

(2=3)

To determine E(X) the decoder can solve the equation

Z B, Rg X)[xj Z E, o = -S(X)
(5 T -

where {j} is the set of erased digits. When the set of
erased digits is a burst extending from the ith to the
i + £-1th digit of the codeword, this equation can be

written as

2-1

By %o () = —8(X)

(2-5)

which is equivalent to the matrix equation

o, i X

4,0 jf'g'to El SO
d’a‘;' : . .

. . L)

E.
-dj,£'1 il e (x,'t'\‘.l'{, ﬁ,;_ 23f:1 (2-6)
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This equation has a unique solution if, and only if, the

gi = [ai’o,...,mi,2_11 are linearly independent. We
need only show that gi""'gi+£-1 are linearly independent

for all i, and this can be done by induction. First
[go,gl,...ﬂﬂ_l] = I, where I is the £ x £ identity matrix.
So 50""'@£~1 are linearly independent. Assume that g&,...
g£+£_l are linearly independent. Starting from the

definition of &, we have
i+L

0(.‘- +£(X): RG(X) [X1+£J

= RG(X) [Xi Xﬂ]
= RG(X) [Xi( ~€q -81}{ - ..,-g£_1xﬂ_1 )]

= e e

= '%Rc;(x)[xi] <8,y [x}*1]

“84-1%a(x) [x“iﬂ]

= =B% (X) -gy ((X) - .oo-gy (00, o (X)

(2-6)

or equivalently;

L T T % ;
=iy Bo%i = vvr €5 01 %iugeg
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Since g(X) divides XN—l for some N,go cannot be zero.

Then, since the vectors gi,...gi+£_l span an £
. . d . )
dimensional vector space, the vectors ﬂl+]f..._gl+£

must span the same space, and must therefore be linearly
independent.

There are two particularly interesting sets of
cycliec codes for busst erasure correction. The BCH
codes have been extensively studied and reasonably
simple procedures exist for the simultaneous correction
of erasures and errors; these codes are discussed in

section 2.3. A second class is the set of codes

! N-1
generated by G(X) = <=1 = 1+X+E, .. +X , which consist
of N repetitions of the same digit. It can be seen

that when the code symbols are spaced sufficiently far

apart in time this corresponds to N'ple time diversity,

with a sub-optimum signal combiner. These codes are

useful primarily because of the extremely simple realization
of communication systems using them. However, they suffer

from a very limited ability to correct errors.

2.4) Correction of Erasure Bursts and Errors

There is no loss of generality in assuming that
the erasure burst starts at the first digit of the
received codeword since‘any other error and erasure
pattern is equivalent to one of this form, except for a

cyclic shift. The syndrome is then

S(X) = Rg(x) [-E(X)-e(X)] = -E(X)-R

(2-8)
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where E (X) is the polynomial of erasures, and e(X) is the
negative of the polynomial of errors. If there are £
erasures in the burst, and the degree of G(X) is k, then
there are k-£ linear equations which may be used to
correct errors. This is because each of the first £
digits of S(X) is the sum of a different unknown erased
digit and a function of the errors, but the last k-£
digits are functions of the errors only. This provides
a particularly simple technique for testing the ability
of a code to correct single errors in addition to
erasure bursts. If the coefficients of the k-£ highest
order terms of a&(x) and Nrj(x) are linearly independent,
then the code can distinguish between errors in the ith,
and jth digits after the first digit of an erasure burst.
We examine the properties of the (15, 7) binar? BCH code
to illustrate this technique. From section 2.3 we

know that this code can correct bursts of up to 8
erasures if no errors occur. By using the data in

Table 2-1 we can see that if there is a burst of 4
erasures, then the code cannot distinguish between errors
in the 4th and 11lth, or the 9th and 13th, or the X0th
and 14th positions. If there is a burst of 3 erasures
then the code cannot distinguish between errors in the

9 th and 13th positions. If the burst contains only

two erasures, then the code can correct all single

errers.
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Table 2-1

The coefficlients of RG(X) fxij represented as

column vectors. G(X) is the generator polynomial

4
for a (15,7) binary BCH code; G(X) = x8+x7+x6+x +1.

=0 1 2 3 4 5 6 -8 9 10711 18 13 14
@6 000 BRe Neast i 0 100 a8
g 1 &0 90 g @8 .1 1 ¢ 1. 0 @
2 S R ] & G 0 SR o S o e (S o R T SRR ST o R (R
@ 0. o1t 0 @6 OigEe e 0 1 ¥ g 1
g 0 0o rpt 9 @ ueEg -6 1 1.1r 9
oSS B 8 oI o I R 0 R TG0 S [ R« I (R (A |
g 00 1o e & TageEtsd 100 0 171
g % o9 6 0 1 1 0 1 o @ 0 1

The set of 8ll possible single
error syndrome sequences when
there 1s a burst of 4 erasures.

The set of all possible single
error syndrome sequences when
there 1s a burst of 3 erasures.
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An equivalent technique is to examine the alternate

syndrome polynomial,

S(X) = R N [h{x) x({X)]
X -1
(2-9)
where h(X) is defined by
h(x) = X' -1
G (X)
(2-10)

We have already stated that G(X) must be a factor of

XN—l. Then we have
8(X) = Ruy [I(X) G(X) h(X)-e(X) h(X)-E(X) h(X)]
X -1
==R [e(X) h(X)]-R [E(X) hix) s
o e
(2-11)

As in the previous case we can cycle the received code-
word until all erasures are contained in the smallest
possible burst which starts at the first digit of the
received codeword. If £ digits are erased and the degree

of h{(X) is k, the coefficients s of the

0r SyrccrSpix_q
lowest order terms of S(X) will be functions of the erased
digits, but S£+k’ S paka+l’ " 'SN-1 will not be functions of

the erased digits. Then if s

s differ

i S R AR
for two sets of errors, the code generated by G(X) can
distinguish between those two sets of errors. This

provides another technique for determining the ability of
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a code to correct single errors when a burst of £
erasures has occurred. If a single error occurs in the
ith digit after the first digit of the erasure burst,
then the code can distinguish between all single errors
for which one or more of the N-£-k highest order

coefficients of R N [th(X)] are different. We use
X -1

as an example the binary (31, 21) BCH code. The coefficients

of the polynomials R [XTh(X)] are given in Table 2-2.

ol

Each row of this table is a one-step cyclic shift of

the previous row, and the first row consists of the
coefficients of h(X). If there are 4 erasures, then

the code can distinguish between all single errors

except those which occur in the 19 or 27th and 21 or 26th
positions after the first digit of the erasure burst.

If there are 3 erasures the code can correct all single
errors.

Clearly the determination of the properties of a
code by the examination ef the individual possible
syndrome sequences can become extremely complicated if
any but the simplest information about short codes is
required. We now develop a technique for providing some
insight into the classes of error sequences which a
code can reasonably be expected to handle.

We consider codes with generator polynomials which

can be written in the form Gl(X)Gz(X), where Gl(X) and
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Table 2-2

The coefficlents of the seven highest degree

[n(x) xt] .
-1

Xy = 1 +X3 +X5 +X8 +X11 +X12 +X13 +X14 +X16 +X18 +X20 +X21

terms of R
!

i=z © 0000000
1 0000000 The set of all possible
2 0000000 single error syndrome
) 1000000 sequences when there 1is
4 1100000 a burst of 3 erasures
5 Il 0.0 60
6 el aro The set of all possible
7 G gt 1 0%
8 1010110 single error syndrome
9 Blite ' & T 1 sequences when there 1is
10 1olto1 01 a burst of 5 erasures
1 1 ¥l 1 061 0
12 O [ & (T s T s TR
13 N 8 5 A I
14 o 1 S T o
15 (o) & N B e
16 1T ole 1t 1 1.4
17 gotle 8 1 1 <3
18 ¢ okt oo 1 1
19 1 001 0 0 1
20 g fjfedg 100
21 1011 90 1 O
22 o i e il IS 1 B |
22 ORI AT 6 0)
24 10l 1 01 0
25 gadoe e 101
26 C Ol 001 0
27 6 061 001
28 000|001 00O
29 00lo0O01O0
20 g 0loo O 0 1
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G2(X) are relatively prime polynomials of degree £

and the smallest N for which G (X)Gz(x) divides XN—l

1

is the codeword length. We use two syndrome polynomials;

[r(X)], S,(X) £ R

g’ [ (X) ]

X) G2(X)

l(
(2=~12)

These two syndromes together are equivalent to the single

syndrome, SO(X) =R [r(X)], used above in the sense

G (X)

that either syndrome can be determined from the other.

sl(x) = RGl(X)[SO(X)], SZ(X) = RGz(X) [SO(X)]
(2-13)
And therefore we can write
SO(X) — al(X)Gl(X) + Sl(X)
(2-14R)
= a2(X)G2(X) + SZ(X)
(2-14B)
If we are given Sl(X) and Sz(X) we can solve for al(X) and
az(X) teo find SO(X) by using the equation
al(X)Gl(X)—az(X)Gz(X) = SZ(X)—Sl(X)
(2-15)

If this equation does not have a unique solution for

al(X) and a, (X), both of degree less than or equal to

2(
£-1, then there must be some nonzero a3(X) and a4(X), both

of degree less than or equal to £-1 such that

a3(X)G (X)—a4(X)G2(X) =0

iE
2=16)
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(Og

(2=17}

For equation 2-17 to have a solution G, (X) must divide

1

a4(X) since Gl(X) and G, (X) are relatively prime. But

2

the degree of a,(X) is less than the degree of Gl(X).

n
Therefore al(X) and a2(X) are uniquely determined and
SO(X) must be uniquely determined by Sl(X) and sz(x}.
The same proof requires only minor modification when the

degrees of Gl(X) and G, (X) are not the same.

2
We can now derive an equation which must be satis-
fied by the error polynomial. We again assume that the

erasure burst begins at the first digit of the codeword.

r(X) is given by

r(X) = G;(X)G,(X) I(X)-e(X)-E(X)
(2~18)
The two syndrome polynomials satisfy the equations:
S.(X) = R [E(Z) ] = =R le(X)]_
il Gq (X) Gy (X) RGl(X)[E(X)]
(2-19A)
S,(X) =R = =
2 G, (X) [r(X)] = RGl(X)[e(X)] RGE(X)[E(X)]
(2-19B)

Since we have assumed that the erasures occur in the first
£ digits of the codeword these equations are equivalent
to

-S, (X) Rg, () (@] + B
(2-20A)
{(2-20B)
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Subtracting Sl(X) from SZ(X) we have

SZ(X)_Sl(X) = -R [e(X)] + R [e(X)]

G, (X) Gy (X)
(E-21)
: i 1
If we define di(x) = RGl(X)[X I ﬂi(X) = RG2(X)[X ] then
these equations can be rewritten as
S,(X) -5, (X) = b e, (X, (X)-F.(X)).
i=L
(2-22)

Or equivalently we have the matrix equation

S,.-S i Nt = ] :
[ 21 “11 H,b,o /%}0;--';%_1,0 /BN—l,O [
8,78, = : 7 | ;
_82,2-1—5116—35 dﬂrg.l'ﬂg’g-j _J ey 1
| : |
(2=-23)

The minimum hamming distance between two e which satisfy this
equation is equal to the number of members of the
smallest set of linearly independent (a;f'ﬂj)’ £ < A« N-1s:

Tt Gl(x) has degree £, G,(X) has degree L, £ < L, and

2
a burst of £ erasures occurs at the beginning of a code-
word, then the syndrome polynomials still satisfy

equation 2-22, but the matrix equation becomes

Ear _ - - ¥
% o ﬁK,Oi"'?aN—l,O ﬁN—l,O e
50°81% % 0-17F £ 41 : ¥
0“" P;e"e
: ' e
=B peir 9 Banond | bl
L d

(2-24)
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Equation 2-23 or equation 2-24 can be used to
determine the ability of any code, which is generated
by the product of two relatively prime polynomials, to
distinguish between two sets of errors when a burst of
£ erasures occurs. For example if each of the (_@i—_ﬁi):
i > £ is different , then the code can distinguish
between all single errors. Therefore, the code can be
used to correct all single errors when a burst of £
or fewer erasures occurs. As an example of this technique
we use equation 2-23 to examine the properties of the (15,7)
binary BCH code.

The (jii—iﬁi) are tabulated in Table 2-3. Examination
of this table shows the same result as the previous

example using this code.

Table 2-3

Values of (gi—ﬁi) for the (15,7) binary BCH code gen-
4

erated by G(X) = Gl(X)Gz(X); Gl(X) = X ' +X+1, G2(X) -
gt x4+l
T =T S [ 2 Eh: TR D ISy SR - S8 1 e LS
(0 S TGN+ TR o (R o R SRS PR R R 8 I o s e s
)T N o TR o T ¢ IR SR | R R 5 o T IR G
(51 0SS0 SR o DR AN LS T (S DS | S I o) S R ¢
@80 0 0. & 0 U OEERRRL 0 L e D

[ e
X

erased digits
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If the generator polynomial of a cyclic code is

the product of three relatively prime polynomials of
degree £; Gl(x), G2(X) and GB(X)' then there are three

equations which the errors must satisfy;

Sz—Sl = [Qﬂ- _ﬁgf---r g—N—l_ﬁN-l] =

(2-26A)
8y=84 = [lg‘,dg""'—{m—l‘flv—l] =

(2-26B)
Sy783 = [&p-Bpr-vr Ay 1 Eyal &

(2-26C)

A code of this type can distinguish between any single
errors which can be distinguished between by use of any
one of the three equations above. Each of the three
syndrome pairs will have a set of single errors which it
cannot be used to distinguish between, but since each
of the three syndrome pairs satisfies a different equation
the sets of indistinguishable errors will be different for
each eguation.

Two well-known classes of codes which appear to be
useful for the correction of erasure bursts and errors
are the BCH codes ( 3,4 ) and the fire codes { "33 . In
most cases the generator polynomial of a member of either
of these classes of codes can be written as the product
of two or more polynomials. General methods for correction
of erasures and errors in BCH codes have been described

by Forney (7), Berlekamp (6) and Massey (5). When short
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codes are used, the simplest decoding procedure may be
to generate the syndrome of equation 2-1 or equation 2-9,
and correct all correctable errors on the basis of the
syndrome digits which are not functions of the erased
digits. The erasure burst may then be filled in by use
of the shift register circuit described in section 2.3.
It would be convenient to find a method whereby
erasures can be filled in first, and then the errors
corrected by use of a separate decoder. One approach
to this is to use cyclic codes generated by polynomials
of the form Gl(X)Gz(X). The shift register circuit of
section 2.3 is used with Gl(X) to f£ill in erasures, and
then the errors are corrected using the second polynomial,
GZ(X)' Unfortunately the test given by equation 2-23
indicates that many codes of this form will not even
be able to correct single errors when a burst of £
erasures occurs. The error corrector, which follows
the erasure corrector, cannot be a minimum hamming
distance decoder since most single errors will result
in two or more errors when the erasure correction is
finished. If the correction procedure is to first cycle
the erasure burst to the beginning of the codeword, next
£fill in the erasure burst, then correct errors, and
finally cycle the codeword back to its original position,

then the input to the error corrector is
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Tt (x) [r'(X)]

_RGl(X)

If r'(X) contains a single error, in the ith order term,
then the polynomial of the errors at the input to the
error corrector is

~eixi+RGl(X)[eixi] = —eixj+eidi(X)

(2-27)

The number of errors in the input to the error corrector
is equal to one plus the number of non-zero coefficients
oF di(X).

A generalization of this technique, which leads to
non-cyclic codes, is to transmit £ additional digits
with a codeword of length N. Each of the additional
digits NI 0 € 1 € £-1, is the sum of every £th digit

of the codeword.

(k: Lk+i < N)

A, =
N+1 E
850+i

j =20

(2-28)
The erasure burst can be filled in by using the £ additional
check digits, and then the errors in the N digit codeword
corrected. This type of code suffers from the same
difficulty as the cyclic codes; when an erasure is
filled in, many single errors in the N+{£ digit codeword
will result in two errors in the N digit codeword, so

the decoder cannot be a minimum hamming distance decoder.
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There are at least a few codes of this type which can
correct all single errors in addition to erasure bursts
of length £, for example, the (15,11) cyclic hamming
code generated by X4+X+l with five additional . parity

checks.

2.5) Correction of Two Bursts of Erasures

Assume that the degrees of Gl(X) and G, (X) are both

5

equal to £, and that there are two bursts of £ or fewer
erasures, one of which is at the beginning of the receive
codeword. r(X) is given by

ECH =06 (G (CEREOL) El(x) - EZ(X)

1 2

(2=29)

Using the syndromes defined by equation 2-12, we have

(2-304)
SoMElS El(X)"RGZ(X) [E,(X) ],

(2-30B)
S Kl =8:(x) = RGl(X) [E2(X)]~RG2(X)[E1(X)]

(2-31)

From this we get the matrix equation

SZ(X)_Sl(X) == [Qj_l“ﬁj_l:---:Qj+£_2*ﬂj+£_2]gz

(2-32)

when E2(X) extends from the jth to the j+£-1th digit of
the received codeword. If the matrix above is non-

singular for all j, the code can correct all double bursts
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of £ or fewer erasures. There appear to be very few
codes which satisfy this condition. These codes can
correct one burst of £ erasures and one burst of L

erasures, starting at the jth digit of the codeword if

= Cg - e
[ng_lﬁgjul"""—j+L—2 £gj+LA2]
(2-33)
has degree L. L must be less than or equal to £. If
the degree of Gl(X) is £, and the degree of G2(X) is L,

then the matrix which must be examined is

[ ? ]
Ligifiner 0 Kurez0 P10

Wiy £ P, 41
@

-_- j'f.r L

O et 1 (2-34)

and the code can correct one burst of £ ¢ L erasures, and

one burst of m erasures starting in the jth position where
m is the number of consecutive linearly independent

vectors starting from (Q&j—l—#gj—l)'
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Chapter 3

BLOCK LENGTH AND PROBABILITY OF ERROR

3.1) Channel Model

In this chapter the erasures generated by the channel
of Figure 2-1 are modeled as being generated by a two
state Markov process. When the channel is in state G
no erasures occur, in state B all code digits are erased.

The codes discussed in Chapter 2 can simultaneously
correct long bursts of erasures and a small number of
errors. We now develop a procedure which permits the
use of codes of this type on channels which, with high
probability generate bursts of erasures which are too
long to be corrected by one codeword. The coder forms
n codewords simultaneously and transmits sequentially
the first digit of each codeword followed by the second
digit from each codeword, etc. The effective block
length for this code is nN, and the code can correct
error and erasure bursts n times as long as those
corrected by the individual codewords. The receiver
decodes each of the n component codewords independently
of all other codewords.

When n is too small for a given code and channel
the system will make errors because too many digits have
been erased. If n is too large the erasure probability

for successive code digits becomes independent.



28

Then the erasures will not necessarily be concentrated
in bursts, and the only useful bound on the number of

erasures and errors which can be corrected is 2t + s < dm. z

in
where t is the number of errors, s is the number of
erasures, and dmin is the minimum hamming distance

between two codewords. In general dmin is much smaller
than half of the number of parity checks, so the code
cannot correct as many erasures as it can when the
erasures occur in bursts. Also decoders which can correct
any pattern of erasures in addition to randomly spaced

errors are much more complex than decoders which correct

erasure bursts and only limited numbers of errors.

3.2) Selection of Code Block Length

The state transition matrix for the erasure generating

Markov Process is;

av)
113
e

(=1

When n codewords are interlaced, the effective state

transition matrix for each codeword is the n step

transition matrix of the Markov Process , given by ( 8 );
@(n) - EP b 1 “|1-b 1-a - (a+b—l)n 1-a a—l.
3 2-a-b l1-b . 1=a b=1 1-b

(3-2)
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For the burst erasure channel we have the constraints

1%< acid s Lislibss 1, For convenience we define
2 2

e = aibel

. = 1-b

d 2=a=b

M = l-a

8 d=d=h

We can now derive the probability of a cyclic burst of

£ or fewer erasures. There are four classes of erasure
bursts which must be considered. We list the probability
of a burst of length £ or less, where it is known that
the ith digit of the codeword is erased, and the ith

digit is the first digit of the erasure burst.

[¢ N-£-1 @
= (nﬂ l-a (£n)
G|G s X .G |B
| (3-3)
. i
2 < i« N-F; [ (nq H (l-a) (1-b) (£n)
e SR $oin
(3-4)
—2~1
£ & opg [@ (n) (1=a) (1=b)
‘G| G TS
(3-5)
N-£+1+k € 1, 1 < k € £-1;
-£-2 1-b l-a
[@ un]N (A=a) =t B ey
cle 2-a-b cle 2-a-b
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The@i j(m) are elements of the m step transition matrix

I
of the Markov Process.

The probability of a burst which starts in any
position between the N-£+2 and the Nth is found by

summing the £-1 terms represented by equation 3-6, and

1t s egqual toi:

(£=1) E? (n)

] N-£=2 i ol el =h)

G|G
(3=1)

Then by summing equations 3-3, 3-5, 3-7 and N-£-1 times
equation 3-4, we have the probability that some erasures
occur, and that they are confined to a burst of length £.

If we denote this by PJE then we have

Nef=1
ﬂg+ E nﬂb

" n N=f=dl s
P, = (1-b) ﬂbﬂT;E M) Ty~ € "1 g

+1+(£=1) (1-€ )

(3-8)
The probability that there are no erasures in an N
digit codeword is
N-1 N n s NAL
— = +: T
Py =T (&g e’ =77, (1+€" 1-m)
1I=b
(3=9)

Equations 3-8 and 3-9 can be used to estimate the
probability of error for a communication system of the
form described in section 3.1 when the individual code-
words can correct erasure bursts and simple sets of

errors.
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