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Chapter I

INTRODUCTION

In this thesis a class of relatively easy to

implement codes for use on high-frequency ionospheric-

scatter radio channels is developed. The approach

taken here is to use cyclic group codes in a communication

system which corrects both errors and erasures. In

Chapters 2 and 3 it is shown that there are several

classes of codes which are easy to decode, and which can

be used to correct the sets of erasures and errors which

are most likely to occur on these radio channels.

1.1) A Model of the Radio Channel

A general model for the effects of a high-frequency

ionospheric-scatter radio channel on a set of narrow-band,

time-limited waveforms is extremely complicated. The

channels are dispersive, due principally to multipath

propagation, and the received signal amplitude has a

Rayleigh or Rician probability density. Amplitudes for

successive signals are correlated, and the correlation

coefficient depends on both time delay, and difference

in frequency. Noise intensity varies slowly with

respect to the random fading, but the noise is not

white or Gaussian. In this thesis the signaling wave-

forms to be considered are sets of K equal-energy, narrow-

band, time-limited orthogonal signals. The signals must
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be spaced closely enough in frequency so that the

amplitude of the received signal will be approximately

the same, regardless of which signal was transmitted,

and the number of signals per second must be small

enough so that the intersymbol interference due to

multipath propagation effects can be ignored. Under

these conditions the noise may be modeled as approxi-

mately white. A model of the communication system to

be considered is shown in Figure 1-1. The Vn, which

are defined in Figure 1-1, are correlated Rayleigh or

Rician random variables. The time variation of the V
n

is such that the channel produces randomly spaced fades

in the received signal strength, which typically occur .1

to 10 seconds apart.

The receiver shown in Figure 1-1 makes independent

maximum likelihood decisions on the waveforms received

in each time interval. The receiver output is either

the number of the waveform which is most likely to

have been transmitted, or if the maximum of the

energies in each of the K sub-channels is below some

threshold, an erasure. The length of time for which the

Vn are above or below any threshold is approximately

exponentially distributed, which leads, as a rough

approximation, to a Markov model for the erasure

generation process. A simple model for the properties

of the part of the channel of Figure 1-1 between the
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dotted lines, which can account for most of the properties

of the radio link, under the assumptions made above, is

shown in Figure 1-2. A detailed description of the

properties of high-frequency ionospheric-scatter radio

channels is given in references (1) and (2).

1.2) Coding for High-Frequency Radio Channels

Most known codes for the correction of randomly

spaced errors and erasures can correct only relatively

small numbers of erasures and errors. There is,

however, a large class of cyclic codes which can correct

long bursts of erasures, or errors, and small numbers

of randomly spaced errors. In Chapter 2 several techniques

are developed for examining the ability of cyclic codes

to correct the most likely error patterns on the channel

of Figure 1-2. It is shown that codes with a small

block length can efficiently correct a small number of

random errors and long bursts of erasures. In Chapter

3 the effects of interspacing the digits of several

code words to form a set of codes which are useful for

a large range of channel fading characteristics are

examined.

Despite the rather extreme simplification involved

in the model of the high-frequency radio channel

presented above, there are still several rather complex

tradeoffs which must be made in the selection of a
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specific code for use on a given channel. Also, due

to the large variation in characteristics that can be

observed on one radio link over time periods of only a

few hours, it is necessary that any code be able to

correct a large variety of error-erasure patterns in

order to be useful. In particular the following four

variables must be determined:

1. Code Alphabet Size: Because of the restriction

on channel symbol rate imposed by multipath propagation

the use of large signal sets may be the only way to

achieve high data rates.

2. Codeword Length: This involves a tradeoff

between short block length and a relatively small number

of correctable random errors, and longer block lengths

which require more complex decoders but can correct much

larger numbers of random errors.

3. The Number of Codewords to be Interspaced: Here

the tradeoff is between the length of bursts which can be

corrected, and the length of the memory required in the

decoder.

4. Receiver Erasure Threshold: The relative numbers

of erasures and errors, and the relative lengths of

erasure and error bursts can be controlled by setting

the erasure threshold. When the code and the number of

interspaced codewords to be used have been determined,
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the erasure threshold will be the only easily varied

parameter which can change the decoder characteristics

and thereby permit the minimization of error probability

for different sets of channel characteristics.



Chapter 2

BLOCK CODES FOR THE CORRECTION OF RANDOM ERRORS
AND ERASURE BURSTS

2.1) Cyclic Codes

In this chapter it is assumed that the reader is

acquainted with most of the material on cyclic codes

presented in references (3) or (4). In order to make

the conventions and definitions used in the remainder of

this chapter more explicit, we review a few of the

properties of cyclic codes.

A cyclic code can be defined to be any code with

digits selected from a finite field with Q elements,

which satisfies the following two conditions: (a) any

cyclic shift of the digits of a codeword is a codeword,

and (b) any digit by digit sum of two codewords is a

codeword.

All finite fields with Q elements are isomorphic to

the Galois Field with Q elements, denoted by GF(Q). Such

fields exist only when Q= qm for some prime number p,

and some integer m. Therefore, cyclic codes exist only

with digits selected from sets of qm symbols.

The digits of a codeword can be specified by an N

tuple, (aN-1, aN- 2, .. .ao) and to each such N tuple we can

assign a unique polynomial a(X) = aN-lXN-1 +.. .+a 0 which

also specifies the digits of the codeword. In this thesis
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we are dealing with channels with memory, and the order

in which the digits of the codeword are transmitted is

important. We will assume that a is the first digit

transmitted, and that aN-1 is the last digit.

All of the codewords of a cyclic code of length N

can be generated by multiplying some polynomial G(X),

with coefficients selected from GF(Q), and which has

degree N-k, by each of the Qk possible polynomials

I(X) = ikl k-1 + i k-2xk-2 + ... +i Also every

codeword has a unique representation of the form a(X) =

I(X)G(X). In this chapter we will consider I(X) to

be the polynomial of the data source digits which we

are attempting to transmit.

The length of the cyclic code generated by the

polynomial G(X) will be assumed to be the smallest

number N for which G(X) divides XN-1. Cyclic codes

exist for all N such that G(X) divides XN-1, but if

G(X) also divides X -l, j<N, then Xj-l is a codeword

in the code of length N, and that code cannot correct

any errors. If a code is used to correct only erasures,

then this restriction on code length is not necessary.

2.2) Channel Model

The channel model of Figure 1-2 can be further

simplified as shown in Figure 2-1. Here b(t) is the only

time varying quantity, p is a constant: 0 < p < 1. The
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Figure 2-1: Simplified model of a K ary

erasure channel with memory.



conditional probabilities p(j~k,Z), where j is an output

digit, k is an input digit, and Y signifies that the

output is not an erasure, are the transition probabilities

of a memoryless K-ary symmetric channel. Since we are

considering only cyclic codes we will restrict the values

of K to qm for q any prime number, and m any integer.

A cyclic burst of length Z is defined to be either

a set of Z consecutive digits contained in the codeword of

length N, or the first j, and the last e-j digits of the

codeword, for any j:O 4 j £. In the remainder of this

thesis, unless otherwise specified, we will mean, when

we say a burst of erasures of length t, any set of

erasures such that all of the erased digits are contained

in some cyclic burst of lengthZ.

2.3) Codes for Correction of Bursts of Erasures

Assume that no errors occur. If it is possible

to decode correctly all received codewords containing

erasure bursts of length £ or less, then the code can

have at most K N- distinct codewords, so the dimensionless

code rate must be less than N-. We now demonstrate a

large class of codes which meet this bound.

Let G(X) be any polynomial of degree Z with co-

efficients from GF(q m), which divides XN-1. The cyclic

code of length N generated by G(x) can correct any

erasure burst of length Z or less. .This is shown by

specifing a possible correction procedure.
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Any cyclic shift of a codeword is also a codeword,

and because of the cyclic symmetry of the code, any

cyclic shift of a correctable pattern of erasures and

errors must also be a correctable pattern. R [f(x)]G(x)

is de.fined to be the remainder of f(X) when divided by G(X).

The erasures in the received codeword, r(X), are replaced

by zeros, and then the digits of the received codeword

are shifted cyclically until the erasure burst is

contained in the Z lowest degree digits. If r'(x) is

the shifted codeword, then the erasures can be filled

in by adding -RG(X) [r'(X)] to r'(X) and then shifting back

to the original position.

A more complicated proof of the same property of

cyclic codes is given below. This proof is included

because it generalizes to an interesting method for

determining other properties of these codes, which will

be developed in sections 2.4 and 2.5.

The transmitted codeword is I(X)G(X) and the

received codeword is denoted by r(X), where the erased

digits are replaced by zeros. We choose as a syndrome

polynomial S(X), which is defined by

S(X) =so + S X ... +s_ X RG(X) [r(x)]

(2-1)

Furthermore we define d.(X) by

(X) + x (2-2

j'O j I *. -1 f X I
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Then 0((X) is the syndrome polynomial which would

result if the digit -l were erased in the j+1 th

digit of the codeword.

For any codeword I(X)G(X) we know that R G(X) [I(X)G(X)] = 0,

therefore when E(X) is the polynomial of erased digits;

S(X) = RG(X)'[r(X)] = RG(X) [I(X)G(X)-E(X)]

= -R G(X) [E(X)]

(2-3)

To determine E(X) the decoder can solve the equation

E RG(X) [Xi] = Z
jij

E ( 0 (X) = -S(X)

where { is the set of erased digits. When the set of

erased digits is a burst extending from the ith to the

i + Z-lth digit of the codeword, this equation can be

written as

2-1

Ei+k i+k(X) -S(X)
k=O

which is equivalent to the matrix equation

M-1A lt-1,O100

cc,

z
IjI (2-4)

(2-5)

S0
E.

E

B.p
(2-6)
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This equation has a unique solution if, and only if, the

C.=[ [ ,.' ] are linearly independent. We

need only show thatc,... are linearly independent

for all i, and this can be done by induction. First

[ I, where I is the Z x Z identity matrix.

So' '. ' ' - are linearly independent. Assume that o...

-1i+-1 are linearly independent.

definition of

1+E (X)

Starting from the

f1. we have

RG(X) Ix i+1I

R G(x)

R G(x)

=-g G(X) X[

IIX 1

Ex'(

xi+1 J

= -0 1(X) 1 1+ 1 * -1 i+-1)

(2-6)

or equivalently;

*' ~+t -4 --
(2-7)

-. +

-gO - 1 ~ ' * 0~-1x ]

- RG(X)I 1+4+11



19

Since g(X) divides XN-1 for some N,g0 cannot be zero.

Then, since the vectors 1 , ,+ span an

dimensional vector space, the vectors _ .

must span the same space, and must therefore be linearly

independent.

There are two particularly interesting sets of

cyclic codes for burst erasure correction. The BCH

codes have been extensively studied and reasonably

simple procedures exist for the simultaneous correction

of erasures and errors; these codes are discussed in

section 2.3. A second class is the set of codes

_XN-l = ~+ +N-l
generated by G(X) = X-1 1+X+...+X , which consist

of N repetitions of the same digit. It can be seen

that when the code symbols are spaced sufficiently far

apart in time this corresponds to N'ple time diversity,

with a sub-optimum signal combiner. These codes are

useful primarily because of the extremely simple realization

of communication systems using them. However, they suffer

from a very limited ability to correct errors.

2.4) Correction of Erasure Bursts and Errors

There is no loss of generality in assuming that

the erasure burst starts at the first digit of the

received codeword since any other error and erasure

pattern is equivalent to one of this form, except for a

cyclic shift. The syndrome is then

S (X) = RG (X) [-E (X) -e (X)] = -E (X) -RG(X) [e(X)]

(2-8)
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where E(X) is the polynomial of erasures, and e(X) is the

negative of the polynomial of errors. If there are Z

erasures in the burst, and the degree of G(X) is k, then

there are k-£ linear equations which may be used to

correct errors. This is because each of the first Z

digits of S(X) is the sum of a different unknown erased

digit and a function of the errors, but the last k-£

digits are functions of the errors only. This provides

a particularly simple technique for testing the ability

of a code to correct single errors in addition to

erasure bursts. If the coefficients of the k-t highest

order terms of C (X) and (X) are linearly independent,

then the code can distinguish between errors in the ith,

and jth digits after the first digit of an erasure burst.

We examine the properties of the(15, 7) binary BCH code

to illustrate this technique. From section 2.3 we

know that this code can correct bursts of up to 8

erasures if no errors occur. By using the data in

Table 2-1 we can see that if there is a burst of 4

erasures, then the code cannot distinguish between errors

in the 4th and 11th, or the 9th and 13th, or the IQOth

and 1.4th positions. If there is a burst of 3 erasures

then the code cannot distinguish between errors in the

9 th and 13th positions. If the burst contains only

two erasures, then the code can correct all single

errors.



Table 2-1

The coefficients of RG(X) [X') represented as

column vectors. G(X) is the generator polynomial

for a (15,7) binary BCH code; G(X) = X8 +X 7 +X6 +x4 +

i= 0 1 2 3 4 5 6 7 8 9 10 11 121314

1 0 0 0 0 0 0 0 1 1 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 1 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0 0 0 0 0 0 1 1 0 1

0 1 0 0 0 1 1 0 1 1 1 0

0 0 1 0 0 0 1 1 0 1 1 1

0 0 0 1 0 1 1 1 0 0 1 1

0 0 0 0 1 1 0 1 0 0 0 1

The set of all possible single
error-syndrome sequences when
thereis a burst of 4 erasures.

The set of all possible single
error syndrome sequences when
there is a burst of 3 erasures.



An equivalent technique is to examine the alternate

syndrome polynomial,

S (X) = RN [h (X) r (X)]
X -i

(2-9)

where h(X) is defined by

h(X) =XN-
G(X)

(2-10)

We have already stated that G(X) must be a factor of

XN-1. Then we have

S(X) = R XN [1 (X) G (X) h (X) -e (X) h (X) -E (X) h (X)]

=-RN [e(X) h(X)]-RN [E(X) h(X)].
X -l X -1

(2-11)

As in the previous case we can cycle the received code-

word until all erasures are contained in the smallest

possible burst which starts at the first digit of the

received codeword. If Z digits are erased and the degree

of h(X) is k, the coefficients s0 ' s ,l .. . ,s£+k-l of the

lowest order terms of S(X) will be functions of the erased

digits, but S£+k ' s£+k+l' *'sN-1 will not be functions of

the erased digits. Then if s£+k' s£+k+l'...sN- 1 differ

for two sets of errors,the code generated by G(X) can

distinguish between those two sets of errors. This

provides another technique for determining the ability of



a code to correct single errors when a burst of Z

erasures has occurred. If a single error occurs in the

ith digit after-the first digit of the erasure burst,

then the code can distinguish between all single errors

for which one or more of the N-£-k highest order

coefficients of R N [Xlh(X)] are different. We use
X -1

as an example the binary (31, 21) BCH code. The coefficients

of the polynomials R N [Xlh(X)] are given in Table 2-2.

Each row of this table is a one-step cyclic shift of

the previous row, and the first row consists of the

coefficients of h(X). If there are 4 erasures, then

the code can distinguish between all single errors

except those which occur in the 19 or 27th and 21 or 26th

positions after the first digit of the erasure burst.

If there are 3 erasures the code can correct all single

errors.

Clearly the determination of the properties of a

code by the examination of the individual possible

syndrome sequences can become extremely complicated if

any but the simplest information about short codes is

required. We now develop a technique for providing some

insight into the classes of error sequences which a

code can reasonably be expected to handle.

We consider codes with generator polynomials which

can be written in the form G 1 (X)G2 (X), where G 1 (X) and
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Table 2-2

The coefficients of the seven highest degree

terms of R
N-1

[h(X) X

h(X) = 1 +x3 +x5 +x8 +x 1 +12 +X13 +X14 +X16 +X18 +X20 +X21+x1 +xl +x +x1 +x1 +x2 +x2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1|1 0 0 0 0

1 1 0 0 0
0 1 1 0 0
1 0 1 1 001 0100
10 1010

The set of all possible
single error syndrome
sequences when there is
a burst of 3 erasures

The set of all possible
single error syndrome
sequences when there is
a burst of 5 erasures

i= 0
1
2
3
4

5
6
7
8
9

10

11
12
13
14

15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

110 1 0 1 0
1 0 1 0 1
1 1 0 1 0

0 1 1 1 1 0 1
0 0 1 1 1 1 0

1 0 0 1 1 1 1
0 1 0 0 1 1 1
0 0 1 0 0 1 1
1 0 0 1 0 0 1
0 1 0 0 1 0 0

1 0 1 C 0 1 0
0 1 0 1 0 0 1
0 0 1 0 1 0 0
1 0 0 1 0 1 0
0 1 0 0 1 0 1

0 0 1 00 0 i
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

,



G 2 (X) are relatively prime polynomials of degree t,

and the smallest N for which G 1 (X)G2 (X) divides XN_l

is the codeword length. We use two syndrome polynomials;

S (X) = RG (X) [r(X)], S 2 (X) = RG 2(X) [r(X)]

(2-12)

These two syndromes together are equivalent to the single

syndrome, S0 (X) = R G(X)[r(X)], used above in the sense

that either syndrome can be determined from the other.

S 1 (X) = RG (X) [SO(X)], S 2 (X) = RG2(X) [S 0 (X)]

(2-13)

And therefore we can write

S0 (X) = & 1 (X)G1 (X) + S (X)

(2-14A)

= a2 (X)G2 (X) + S 2 (X)

(2-14B)

If we are given S (X) and S2 (X) we can solve for a 1 (X) and

a2 (X) to find S0 (X) by using the equation

a 1 (X)G (X)-a2 (X)G2 (X) = S2 (X)-S 1 (X)

(2-15)

If this equation does not have a unique solution for

a 1 (X) and a2 (X), both of degree less than or equal to

Z-1, then there must be some nonzero a 3(X) and a4 (X), both

of degree less than or equal to £-l such that

a 3 (X)G 1 (X)-a4 (X)G2 (X) = 0

(2-16)
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or

a 3 (X) = G2 (X) a4 (X)

(2-17)

For equation 2-17 to have a solution G 1 (X) must divide

a 4 (X) since G 1 (X) and G2 (X) are relatively prime. But

the degree of a4 (X) is less than the degree of G (X).

Therefore a 1 (X) and a2 (X) are uniquely determined and

S 0 (X) must be uniquely determined by S 1 (X) and S2(X)

The same proof requires only minor modification when the

degreesof G 1 (X) and G2 (X) are not the same.

We can now derive an equation which must be satis-

fied by the error polynomial. We again assume that the

erasure burst begins at the first digit of the codeword.

r(X) is given by

r(X) = G 1 (X)G2 (X)I(X)-e(X)-E(X)

(2-18)

The two syndrome polynomials satisfy the equations:

S 1 (X) = RG (X) [r(X)] = -RG (X) [e(X)R [E(X)]

(2-19A)

S 2 (X) = RG2 [r (X)] = -RG (X) [e(X)]-RG (X) [E(X)]

(2-19B)

Since we have assumed that the erasures occur in the first

Z digits of the codeword these equations are equivalent

to

-S (X) = RG (X)[e(X)] + E(X)

(2-20A)
-S2 (X) = RG (X) [e(X)] + E(X)

(2-20B)



Subtracting S 1 (X) from S2 (X) we have

S2 (X)-S 1 (X) = -RG (X) [e(X)] + RG (X) [e (X) ]

(2-21)

If we define (X) = G (X) [X ] (X) = G2(X) [X ] then

these equations can be rewritten as

N-i
S 2 1X - lX i i(X)- ( ).

(2-22)

Or equivalently we have the matrix equation

S 2,1~ 1,1) 4- -,- N 10 - l e.

(2-23)

The minimum hamming distance between two e which satisfy this

equation is equal to the number of members of the

smallest set of linearly independent ( Q' -,), Z 4 i 4 N-l.

If G1 (X) has degree £, G2 (X) has degree L, £ < L, and

a burst of Z erasures occurs at the beginning of a code-

word, then the syndrome polynomials still satisfy

equation 2-22, but the matrix equation becomes

0'z0 PZ1, 01' N -1,0o PN-1,0O z

0-

'2'-'JZ~ N-1, L-l N-l
00-

(2-24)
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Equation 2-23 or equation 2-24 can be used to

determine the ability of any code, which is generated

by the product of two relatively prime polynomials, to

distinguish between two sets of errors when a burst of

Zerasures occurs. For example if each of the (( . - )A :

i > t is different , then the. code can distinguish

between all single errors. Therefore, the code can be

used to correct all single errors when a burst of t

or fewer erasures occurs. As an example of this technique

we use equation 2-23 to examine the properties of the (15,7)

binary BCH code.

The (i- A) are tabulated in Table 2-3. Examination

of this table shows the same result as the previous

example using this code.

Table 2-3

Values of (__(X4 ) for the (15,7) binary BCH code gen-

erated by G(X) = G 1 (X) G 2 (X); G 1 (X) = X +X+l, G2 (X) =

X +X +X +X+1

i =0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 1 0 1 1 1 0 0 1 1 0

0 0 0 0 0 1 l 1 0 0 1 0 1 0 1

0 0 0 0 1 1 l 1 1 1 1 1 0 1 1

,0 0 0 0, 1 0 1 1 1 0 0 l 1 0 0

erased digits
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If the generator polynomial of a cyclic code is

the product of three relatively prime polynomials of

degree Z; G (X),, G2 (X) and G3 (X), then there are three

equations which the errors must satisfy;

S2-O ~ $£ N-l~1 -

(2-26A)

S2 S3 ' 'N- e

(2-26B)

S -S3 [£g4 "LN-l- N-1 e

(2-26C)

A code of this type can distinguish between any single

errors which can be distinguished between by use of any

one of the three equations above. Each of the three

syndrome pairs will have a set of single errors which it

cannot be used to distinguish between, but since each

of the three syndrome pairs satisfies a different equation

the sets of indistinguishable errors will be different for

each equation.

Two well-known classes of codes which appear to be

useful for the correction of erasure bursts and errors -

are the BCH codes ( 3,4 ) and the fire codes ( 3 ). In

most cases the generator polynomial of a member of either

of these classes of codes can be written as the product

of two or more polynomials. General methods for correction

of erasures and errors in BCH codes have been described

by Forney (7), Berlekamp (6) and Massey (5). When short
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codes are used, the simplest decoding procedure may be

to generate the syndrome of equation 2-1 or equation 2-9,

and correct all correctable errors on the basis of the

syndrome digits which are not functions of the erased

digits. The erasure burst may then be filled in by use

of the shift register circuit described in section 2.3.

It would be convenient to find a method whereby

erasures can be filled in first, and then the errors

corrected by use of a separate decoder. One approach

to this is to use cyclic codes generated by polynomials

of the form G 1 (X)G2 (X). The shift register circuit of

section 2.3 is used with G 1 (X) to fill in erasures, and

then the errors are corrected using the second polynomial,

G2(X). Unfortunately the test given by equation 2-23

indicates that many codes of this form will not even

be able to correct single errors when a burst ofZ

erasures occurs. The error corrector, which follows

the erasure corrector, cannot be a minimum hamming

distance decoder since most single errors will result

in two or more errors when the erasure correction is

finished. If the correction procedure is to first cycle

the erasure burst to the beginning of the codeword, next

fill in the erasure burst, then correct errors, and

finally cycle the codeword back to its original position,

then the input to the error corrector is
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r'(X)-RG ( [r'(X)]

If r'(X) contains a single error, in the ith order term,

then the polynomial of the errors at the input to the

error corrector is

-e.X +R [eX ] = -e X +ed (X)G 1 (X) i 1 i

(2-27)

The number of errors in the input to the error corrector

is equal to one plus the number of non-zero coefficients

of Cc..(X).

A generalization of this technique, which leads to

non-cyclic codes, is to transmit Z additional digits

with a codeword of length N. Each of the additional

digits aN+i: 0 < i < Z-1, is the sum of every £th digit

of the codeword.

(k: £k+i < N)
aN+i 

a
j = 0

(2-28)

The erasure burst can be filled in by using the Z additional

check digits, and then the errors in the N digit codeword

corrected. This type of code suffers from the same

difficulty as the cyclic codes; when an erasure is

filled in, many single errors in the N+ digit codeword

will result in two errors in the N digit codeword, so

the decoder cannot be a minimum hamming distance decoder.



There are at least a few codes of this type which can

correct all single errors in addition to erasure bursts

of length Z, for example, the (15,11) cyclic hamming

code generated by X4+X+l with five additional .parity

checks.

2.5) Correction of Two Bursts of Erasures

Assume that the degrees ofG 1 (X) and G2(X) are both

equal to £, and that there are two bursts of Z or fewer

erasures, one of which is at the beginning of the receive

codeword. r(X) is given by

r(X) = G 1 (X)G2 (X)I(X) + E 1 (X) + E 2 (X)

(2-29)

Using the syndromes defined by equation 2-12, we have

From this

when E 2 (X)

the receiv

singular I

S(X) = -E 1 (X) -RG (X) [E2 (X)] I,

(2-30A)

S2 (X) = E (X) -RG2 (X) E2 (X)

(2-30B)

S2 1 (X) = RG (X) [E 2 (X)] -RG2 (X) [E 1 (X)]

(2-31)

we get the matrix equation

S2 (X)-S(X) = [ - _ ,S . . . , j+6 2 j+£-2 --2

(2-32)

extends from the jth to the j+Z-lth digit of

ed codeword. If the matrix above is non-

or all j, the code can correct all double bursts



33
of Z or fewer erasures. There appear to be very few

codes which satisfy this condition. These codes can

correct one burst of Z erasures and one burst of L

erasures, starting at the jth digit of the codeword if

- 2j-14j-l'''''- j+L-2~ Aj+L-23

(2-33)

has degree L. L must.be less than or equal toZ. If

the degree of G 1 (X) is t, and the degree of G2 (X) is L,

then the matrix which must be examined is

' ~IkL22,0

~ (2-34)

and the code can correct one burst of£ 4 L erasures, and

one burst of m erasures starting in the jth position where

m is the number of consecutive linearly independent

vectors starting from (_X - ).
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Chapter 3

BLOCK LENGTH AND PROBABILITY OF ERROR

3.1) Channel Model

In this chapter the erasures generated by the channel

of Figure 2-1 are modeled as being generated by a two

state Markov process. When the channel is in state G

no erasures occur, in state B all code digits are erased.

The codes discussed in Chapter 2 can simultaneously

correct long bursts of erasures and a.small number of

errors. We now develop a procedure which permits the

use of codes of this type on channels which, with high

probability generate bursts of erasures which are too

long to be corrected by one codeword. The coder forms

n codewords simultaneously and transmits sequentially

the first digit of each codeword followed by the second

digit from each codeword, etc. The effective block

length for this code is nN, and the code can correct

error and erasure bursts n times as long as those

corrected by the individual codewords. The receiver

decodes each of the n component codewords independently

of all other codewords.

When n is too small for a given code and channel

the system will make errors because too many digits have

been erased. If n is too large the erasure probability

for successive code digits becomes independent.
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Then the erasures will not necessarily be concentrated

in bursts. and the only useful bound on the number of

erasures and errors which can be corrected is 2t +.s < d mi

where t is the number of errors, s is the number of

erasures, and dmin is the minimum hamming distance

between two codewords. In general d min is much smaller

than half of the number of parity checks, so the code

cannot correct as many erasures as it can when the

erasures occur in bursts. Also decoders which can correct

any pattern of erasures in addition to randomly spaced

errors are much more complex than decoders which correct

erasure bursts and only limited numbers of errors.

3.2) Selection of Code Block Length

The state transition matrix for the erasure generating

Markov Process is;

SG BIG a 1-a

GIB B B 1-b b

&- .0(3-1)

When n codewords are interlaced, the effective state

transition matrix for each codeword is the n step

transition matrix of the Markov Process, given by ( 8

(n) = Pn 2l-b 1-a + (a+b-l) n l-a a-l

2-a-b 1-b .1-a b-1 1-b

(3-2)



For the burst erasure channel we have the constraints

1 < a < 1, 1 < b < 1. For convenience we define

= a+b-l

iT
S

= 1-b
2-a-b

ITb =1-a
2-a-b

We can now derive the probability of a cyclic burst of

or fewer erasures. There are four classes of erasure

bursts which must be considered.- We list the probability

of a burst of length Z or less, where it is known that

the ith digit of the codeword is erased, and the ith

digit is the first digit of the erasure burst.

N-£-
i = 1;

RG G (n)
1-a §G B (Zn)

2-a-b

(3-3)

2 < i < N-t;

i = N-£+1;

[GIG(n) N-Z-2 (1-a) (1-b) GIB(n)
2-a-b

(3-4)

G|G(n)N-Z-l
(1-a) (1-b)

2-a-b

(3-5)

N-L+l+k < i, 1 < k ( t-l;

G(n) N--2 (1-a) ab G((k-l)n) +1aL GIGI 2 ab GIG +2-a-b

G|B((k-1)3n)

(3-6)1



The ii (m) are elements of the m step transition matrix

of the Markov Process.

The probability of a burst which starts in any

position between the N-+2 and the Nth is found by

summing the t-l terms represented by equation 3-6, and

it is equal to:

(£-1) GJG(n)] N--2 (1-a)(1-b)

(3-7)

Then by summing equations 3-3, 3-5, 3-7 and N-Z-l times

equation 3-4, we have the probability that some erasures

occur, and that they are confined to a burst of lengthZ.

If we denote this by P zthen we have

P - (1-b) 'i/b g+n b) N- g-l _ nt) l + _N-l

TTg+ 6 b

+1+(Z-1) (1-E

(3-8)

The probability that there are no erasures in an N

digit codeword is

PO g G(n) )N-1 I N (+ .n _. N-1
0=Tg GI131G g1-b

(3-9)

Equations 3-8 and 3-9 can be used to estimate the

probability of error for a communication system of the

form desc-ribed in section 3.1 when the individual code-

words can correct erasure bursts and simple sets of

errors.
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