
NuFloW: A Programming Environment for the NuMesh Computer

PL. 1 ppe P. Laffont

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment for the degrees of

Bachelor of Science
and

Master of Science

at the

Massachusetts Institute of Technology
September 1, 1991

© Massachusetts Institute of Technology 1991
All rights reserved

Signature of Author: S Ig n atu re red acted LL
Department of Electrical HGineering and Computer Science

September 1, 1991

Certified by: Signature redacted
. |
E

Stephen A. Ward
Professor, Department of Electrical Engineering and Computer Science

Thesis Supervisor

Acceptedby: i Sighature redacted
= Y
x

Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

RASSAGHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 0 4 1991
LIBHARIES

|

NuFloW: A Programming Environment for the NuMesh Computer

FI

Phiiippe PP. Laffont

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment for the degrees of
Bachelor of Science

Master of Science

Abstract

The NuMesh project is an attempt to develop packaging, interconnect, and
communication technologies that will enable to connect multiple processing
elements together. Performance will be achieved through very high
communication bandwidth. The motivating philosophy behind NuMesh is
to provide very simple but extremely fast hardware, and manage the
complexity of the system through a set of sophisticated software protocols
and tools. Currently, the NuMesh uses a static routing model.

Writing programs on the NuMesh is a complicated process. The goal of this
thesis is to present NuFloW, a graphical programming language/user
interface, which lets users build programs by assembling graphical blocks
together and connecting them with streams.

Acknowledgments

First and foremost, I would like to thank my advisor, Steve Ward, for

numerous helpful conversations, both with respect to my thesis, and a

multitude of other subjects. I am not sure I would have found the

inspiration and energy to finish without his help

I would also like to acknowledge Olivier Blanchard, who made me realize

there was at least another field as interesting as Computer Science. In

addition, without him, I would not have found another person willing to

sign all my petitions.

Finally, I would like to thank a few good friends, Krin, José, Edan, Leo, and

Manuel, and of course my family, who must still wonder what is so

fascinating about computers.

3

The Scholars

Bald heads forgetful of their sins,
Old, learned, respectable bald heads
Edit and annonatate the lines
That young men, tossing on their beds,
Rhymed out of love’s despair
To flatter beauty’s ignorant ear.

All shuffle there; all cough in ink;
All wear the carpet with their shoes;
All think what other people think;
All know the man their neighbour knows.
Lord, what would they say
Did they Catullus walk that way?

/Vilillam Butler Yeats, 1915

4|

Contents

1 NuMesh

1.1 Introduction

1.2 NuMesh Hardware Overview

1.3 NuMesh Software Overview

1.4 Limitations of the Current Software

1.4.1 Hardware Limitations

1.4.2 Software Limitations

1.5 The Role of NuFloW

2 NuFloW Language Specification
2.1 Introduction

2 28Blocks

2.2.1 Block characteristics

2.2.2 Port characteristics

2.3 Streams ne

2.3.1 Stream characteristics

2.3.2 Stream Type-checking
NIE =. . .2.4

2.4.1 NIFT syntax

2.4.2 NIFT header

2.4.3 Node Blocks

2.4.4 Leaf Blocks

-~We
5

11

13

14

14

15

1~/f

19

22

22

22

23

24

24

26

26

27
aL;

25-~

29

5

2.4.4 Leaf Blocks

2.5.5 Root Block

3 The Spectogram Example
3.1 Introduction. .

3.2 NuFloW Editor

3.2.1 Block Editor

3.2.2 Port Editor

3.3.3 Streams

3.3.4 Text Editor

3.3.5 Matching Inputs and Outputs to Sub-blocks
3.3.6 Libraries . .

3.3 Spectrogram . .

3.3.1 Spectrogram Pseudo-Code

3.3.2 NuFloW Code

3.3.3 Source Code

3.4 NIFT Output

29iy&

r

4.294

30

31

31

32

34

34

34

35

35

35

35

39

44

4 Making it all work
4.1 Introduction

4.2 Run-Time Environment

4.3 Compile-Time Environment

4.3.1 Connectivity Checker

4.3.2 Block manipulators
4.4 Future Work . .

4.4.1 Compile-time parameters

42ir

43

44

44

45

CN4%

46

4.4.2 Run-time parameters

4.4.3 Reporting messages

4.4.4 Control Panel Toolkit

4.5 Conclusions

48

49»

49i >

50

Chapter 1

NuMesh

1.1 Introduction

Backplane buses [10], such as NuBus, have enjoyed much popularity as an

engineering discipline to build modular systems: bus interconnection

techniques allow system components to be designed independently, without

affecting the rest of the modules. However, the limitations of the backplane

bus are well-known: Multiple transactions cannot happen concurrently, the

size of the bus affects the maximum clock rate at which it can be timed, and

buses offer finite expansion since they are not scalable. As a result, large-scale

multi-processor machines (BBN Butterfly [2], Cosmic Cube [15], Connection

Machine [4], iWarp [13]) have developed their own multi-dimensional buses

to support high-bandwidth communications between processors. However,

these buses are specific to the hardware they run on, make a number of

routing policy decisions at the hardware level, and thus are not of much use

8

to the digital designer.

The NuMesh project [18, 19] is an attempt to provide a standardized

communication substrate that permits connecting an arbitrary amount of

processing elements together. NuMesh proposes to decouple the

communication interface from the processing elements, allowing the design

of a highly optimized, modular and cost-effective system. In this way, the

digital designer can interface a module of his choice to NuMesh, without

needing any prior knowledge of the gestalt of other modules which may

populate the mesh.

m=
ae

Se—

Fm,
|

oe ——

05

E HE Dot UD

1m,—

g
MmI————

2
4 ID A

fir... —————

Eh RE =
L

Figure 1.1: Artist's Conception of a NuMesh Computer.

The motivating philosophy behind NuMesh, much like that of RISC

computers, is to provide very simple but extremely fast hardware, and

manage the complexity of the system through a set of sophisticated software

protocols and tools. In a sense, NuMesh is just a network of wires and

registers, a very large data-path which connects multiple elements.

Absolutely no routing policies are embedded in the hardware. The software

is free to choose one of numerous routing models.

NuMesh uses a static routing model. Static routing offers an enormous

speed-up potential: (1) Processors do not idle for data because they know the

exact time of arrival of each message. (2) No time is spent decoding/encoding

messages; the messages are smaller (no headers) and all of the network’s

bandwidth is used to carry useful information. (3) Without dynamic routing,

the messages can potentially travel at the speed it takes an electrical signal to

travel from the source to the destination node. (4) Static routing avoids

dealing with deadlock. Because all the data transfers are predicted at compile

time, the scheduler can reorder messages to avoid deadlock. NuMesh makes

provisions to allow for some dynamic routing, but emphasizes predicting

most of the communication patterns at compile-time and scheduling them

statically.

The multi-grid algorithm was tested on NuMesh and Alewife [1, 12] (a

scalable, shared memory multi-processor machine being built at MIT).

Preliminary results show that the static routing of the NuMesh out-

performed the dynamic routing of the Alewife machine by a factor of up to 40.

10

The comparaison was biased in many ways, and NuMesh does not expect to

outperform other machines by such a factor.

1.2 NuMesh Hardware Overview

Conceptually, the NuMesh is a 3-dimensional lattice which connects nearest

neighbors. Each module, of approximately two cubic inches, communicates

directly with all six of its neighbors (figure 1.1). Data paths are unidirectional;

two neighbors can exchange information in both ways during a clock cycle.

Power and cooling are also provided through each of the cube’s sides.

The current prototype is built from off-the-shelf TTL parts and is two-

dimensional (to sidestep cooling and layout issues). Each node is made up of

two separate components: a Communication Finite State Machine (CFSM)

and a Processing Element (PE). CFSMs run at 25 Mhz, and route the data

around the network. Routing is pre-programmed into each CFSM. The

processing element uses a Texas Instrument TMS320C30 digital signal

processing chip running at 27 or 33 Mhz and contains 8 Kwords of SRAM.

The PE does all the computing and receives/sends data to the CFSM through

two FIFOs which reside on the CFSM. The FIFOs enable the PE to run

asynchronously from the mesh. Each processing element generates its own

clock. The mesh (i.e. CFSMs) uses a globally synchronous clock. The method

to deal with clock skew and fan-out is primitive: the clock is distributed to all

CFSMs by matching wires of the same length and impedance. A Macintosh II

workstation drives the NuMesh and service I/O requests.

11

edd
L

SOUTH | \
45

WEST

ZEEE DRL ERE
FREER hi

id Jataratater arr

har 2
7 FT mms ry ITT

TnL

>4

ir

=
o 1

A £ ;

&EAST
A a »

br

NORTH

Figure 1.2: CFSM and PE of a current NuMesh module.

Clock skew and fan out should not be an issue in the next NuMesh prototype.

NuMesh will use an adaptive clock synchronization scheme, where each

CFSM generates its own clock, and synchronizes it by comparing its skew with

its immediate neighbors [9]. Redesign of the CFSM [5, 14] and processing

element [16] should provide a NuMesh computer running close to 150 Mhz,

and processing elements using a 40 Mhz SPARC chip, with 16 Megs of

DRAM.

12

1.3 NuMesh Software Overview

The current programming environment lets users write code for the

NuMesh in a high-level language, C. But producing executable binaries is a

complicated process involving several host computers [8]. A compiler must

generate code for each of the processing elements. A scheduler then maps

and pre-compiles the communication between all the nodes.

The C programs must adhere to a specific format composed of an

initialization loop and a main loop which is repeated forever. The code is

compiled down using Texas Instrument’s C30 compiler. The C30 compiler

was chosen because it is highly optimized to take advantage of the C30

capability to execute instructions in parallel. The compiled result is then fed

through a linker, which maps the various segments to the appropriate

memory locations of the C30.

The CFSM code is automatically generated by a scheduler. Internode

communications are word based. Nodes refer to each other by names. All

communication must be predictable: Flow Control statements must contain

the same communication patterns for all possible outcomes, and cannot

depend on any variable. In the first step of the scheduler, the C modules are

simulated and all of the communications paths are recorded. In the second

step, the scheduler maps all of the communications in a way that prevents

resource contention.

A Macintosh computer, serving as a front-end to the NuMesh, is able to sense

13

the topology of the mesh. During the loading process, a tree of all nodes is

formed, and appropriate CFSM code is generated to load a CFSM and a DSP

file for each node involved in the process. The nodes are loaded from the

back to the front. When all nodes are finished loading, execution starts.

1.4 Limitations of the Current Software

The previous discussion highlights several problems with the current

NuMesh prototype, both at the hardware and software level. These

limitations are important to understand because they affect the programming

model in several ways. The next two sub-sections examine these problems,

and section 1.4 introduces NuFloW, a new language/user interface,

specifically tailored to the NuMesh environment, to alleviate the problems

discussed below.

1.4.1 Hardware Limitations (from a software designer's view)

Currently, a CFSM cannot wait for a number of cycles before resuming

execution. CFSMs frequently need to wait for a datum from one of their

neighbors, possibly for a few cycles. Indeed, data communications cannot be

perfectly pipelined. As a result, a large number of CFSM states are consumed

by NOOP instructions. In fact, simulating the multi-grid algorithm on large

NuMesh configurations, over 90% of the CFSM states where NoorPs [12].

Adding a counter to the CFSM would enable it to wait for a fixed number of

cycles. The counter should be addressable from the CFSM and hopefully from

14

the PE.

The CFSM should also be able to make some basic flow control decisions,

such as if and goto. This would further contribute to diminishing the

number of states required by each CFSM program. Again, a counter would

probably be sufficient, which would also offer the PE the possibility to control

CFSM state of execution. These problems will be solved in the next CFSM

revision.

1.4.2 Software Limitations

Writing code for the NuMesh is a difficult process. The hardware limitations

are reflected in the software:

* The mechanism to send and receive data from one element to another

reflects the word-based data transfers between all CFSMs. High level

procedures should let the user send messages of arbitrary length. The

message could be sent in consecutive cycles or could be typed with some

ordering information and sent in chunks, a decision left to the scheduler. It is

even possible to envision providing the user with a wide class of messages:

compressed, encrypted or acknowledged. In addition, messages could be sent

point-to-point, broadcasted, or diffused.

* When the user writes code which involves a control flow decision, he must

insure that all branch outcomes generate the same pattern of communication.

Although padding the various branches may be inevitable (until dynamic

routing at least), the user should not have to enforce these conditions. The

compiler could easily generate this information.

* A traditional language like C does not reflect Numesh'’s static routing

15

limitations. Flow [17] was an initial attempt to embed in the language certain

constructs that would underline Numesh’s strengths and weaknesses.

Unfortunately, Flow was difficult to use; it tried to replicate much of the

functionality of traditional textual languages, and few programs were written

using it.

* A large class of applications well suited to multiprocessor machines like

NuMesh, replicate the same code among many nodes. It is thus of vital

importance to be able to run the same code on every node. With the current

set-up, identical tasks running on different processors cannot share the same

source code. At best, through the repeated use of clever pre-processor macros,

the user can avoid writing code for each module. This method is self-

defeating because it requires in-depth knowledge of the CFSMs.

* There is no easy way to specify compile-time and run-time parameters. In

many real-time applications, the user needs to tweak some parameters on the

fly, without having to recompile.

* Current NuMesh C code is written as a whole, on a per-processor basis. It is

thus very difficult to split this code into modules which can be run

independently on separate processors

16

1.4 The Role of NuFloW

The above discussion presents compelling evidence for designing and

implementing a new language/user interface tailored to the NuMesh. The

rest of this thesis introduces NuFlow, a graphical language and user interface,

which lets users build programs by assembling graphical blocks together and

connecting them with streams. The role of NuFloW is to abstract out the

communication details from the PE code. A user will write blocks of code in

the same manner, whether they run on same or separate processors.

NuFloW will restrict the user from writing code which is difficult for the

NuMesh to run, and will also provide libraries of pre-compiled optimized

code, which the user can easily incorporate into his program. Finally,

NuFloW will let the user rapidly prototype code in a unified environment.

NuFlow does not try to supercede a language such as C. Rather, it

complements C by offering various mechanisms to solve some of the

problems previously identified. NuFloW is not a universal language, and it

is as much a user interface as a language. NuFlow is a front-end, and as such,

it will rely on compilers and schedulers to produce executable code. NuFloW

will not provide timing information to the various compilers. As a result,

CFSM code will still need too be hand-tuned for real-time applications which

require enormous throughput. Indeed, the scheduler needs to make very

conservative decisions because it is not provided any timing information

during the I/O traces and the CFSM code it generates is not very efficient.

Eventually, the NuMesh compiler technology will be sophisticated enough to

provide traces which include timing estimates [3].

17

Chapter Two provides a detailed description of NuFloW. Chapter Three

shows how to use NuFloW to build a complex program. Chapter Four

discusses some of the important issues concerning the NuMesh

programming environment, and contains recommendations for future work.

18

Chapter 2

NuFloW: Language specification

2.1 Introduction

NuFloW is a pictorial language where tasks are depicted by graphical symbols,

called blocks. Blocks are hierarchical; complex blocks can be assembled from

simpler ones. Blocks exchange information through ports and streams. A

stream connects two blocks through ports, and carries information between

them. A block can have any number of ports. It is important not to think of

streams as physical or even virtual (in the sense of being a multiplexed

physical connection) channels between blocks. A stream displays internal as

well as external communication among processing elements.

NuFlow was designed as a pictorial language for several reasons. First, it is

intuitive to manipulate and assemble blocks together, much like playing with

Legos or TinkerToys. Second, moving from a one-dimensional space with

textual languages to a two-dimensional space with a graphical language tends

19

to make the parallelism more explicit. Third, the NuMesh is well modeled by

a block + stream based paradigm. Indeed, streams create a fairly controlled

flow of communications, well-suited to the static routing of the NuMesh.

Fourth, and most important, at the user interface, streams abstract away

communication details from the contents of a block. Consider the following

trivial computation, y = f(g(x1), g(x2)), represented alternatively in C and

NuFloW code.

int main ()

ing xl, x2, v=
int templ, temp2;

x1 = readNuMesh().,
%2 = readNuMesh(}:
templ = g(x1):
temp2 = g(x2);
y.o= Eixl, 22);
return y:

/* read values from the mesh */

G2

Figure 2.1: NuFloW sample code

20

The C code is perfectly functional, but assumes it runs on a single processing

element. Thus, it needs a re-write to run on two or more processors. The

NuFloW code uses C to provide primitive operations, but does not make any

assumption on the number of processors which might be used in the

computation of £. As a result, f, g, and h could be mapped onto one, two or

three different processors, without having to re-write a single line of code.

NuFloW relies on external textual languages to perform all of the

computation. Many graphical languages/user interfaces supply all the

functionality of the processor at the graphics level, and alienate the

programmer by cluttering his worksheet with icons, and making him learn

all the intricacies of yet another language. Text is a more efficient medium to

manipulate constants and primitive operations. NuFloW, however, does not

make any assumption on the language used. The above example uses C for

illustrative purposes. But in fact, every block defined in NuFlow could

contain a module written in a different language. In addition, external

languages let the user benifit from the installed base of tools written for that

language.

Section 2.2 through 2.5 give precise definitions of blocks, ports, and streams

respectively. Section 2.6 introduces NIFT (NuMesh Interchangeable Format

for Text), which provides a standardized representation of text between

NuFloW and the NuMesh compilers and schedulers.

a

2.2 Blocks

A block corresponds to a sequence of tasks to be performed on the NuMesh

and does not specify the hardware it runs on. For instance, CFSM and PE

tasks are just blocks expressed in different source languages. A block can even

represent a specialized module (I/O board, microphone, speaker etc..) which

performs a task at the hardware level.

2.2.1 Block characteristics

* A block has a name. Each block must have adifferent name.

* A block has a code definition, which is a file that contains the definition of

the task represented by the block. The code definition could be a NuFloW

file, in which case the block is hierarchical, or a source language file. The code

definition implements the instance/class distinction. All blocks which share

the same code definition are instances of a particular class.

* Finally, a block contains some textual information, describing the use of

each port within the block (the NuFloW user is encouraged to use this field

profusely, especially if he plans to incorporate blocks into a library).

2.2.2 Port characteristics

A block imports and exports data through ports. A block contains as many

ports as necessary.

* Ports can be read-only, write-only, or read-write. At the user interface, all

ports appear similar. The read-write privilege information is meant to be

used by a type-checker (see section 2.3.2). In C for example, a user could send

data to another block with the construct:

22

writeport(port cut, &foo, sizeof(struct £oo)):

and receive data wit

read wort {portin, &foco, sizeof (struct fool);

» Each port is identified by a port number, which is unique to the block but not

the whole set of blocks. Not only is the space for port number local, but it is

fixed. This enables instances of a same block to share the same code without

the intervention of a post-processor to bind ports to the appropriate names.

To fix the name space, NuFloW enforces that blocks be numbered in a

sequence from 1 to n, where n = total number of ports. The user can add,

delete or renumber ports, but blocks must always be numbered consecutively.

* A port has a name, but it is optional and only used at the user interface

level.

2.3 Streams

Two blocks exchange data through streams. Streams are mostly a user-

interface artifact. They remind the user how blocks interact with each other.

Two streams cannot connect to the same port. If streams need to be merged,

split or interleaved, the programmer should use a block (CFSM code) to

perform the required function, and connect the resulting streams

appropriately. However, one stream could connect to two ports of a same

23

block, in effect forming a recursive block. Recursion is difficult to implement

in a static routing model. Some recursions, such as an iterative process which

converges to an answer and then halts, can be computed by the NuMesh, and

therefore NuFloW does not forbid recursive blocks.

a=Bacurse

Figure 2.2: Recursive block with 3 inputs and 2 outputs.

2.3.1 Stream Characteristics

» A stream has a name, but it is optional, and only used at the user interface

level.

° A stream is composed of 2 endpoints and a number of articulations in

between. The purpose of articulations is visual. Endpoints connect to ports.

* One endpoint is labeled source, the other destination. Yet, the labeling does

not imply a direction of flow of data. The port's read-write information

specifies the data flow.

2.3.2 Stream type-checking

In theory, stream could carry different data types through the course of a

computation. This flexibility, however, would lead to serious type-checking

problems. Consider the following trivial pseudo-C scenario:

24

/* block 1 */
writeport{portout, &foo, sizeof(foo)):
writeport(portout, &bar, sizeof(bar}):

[* block 2 */
readport{portin, &bar, sizeof (bar)):
writeport (port in, &foo, sizecf(foo)):

Block 2 reads information sent by block 1, but in the wrong order. Such code

would undoubtedly cause errors, and methods must be designed to prevent

such problems. NuFloW’s philosophy is to embed as few constraints as

possible at the user-interface level, and to let a variety of software tools do the

type checking. This solution does have drawbacks. If block 1 and block 2 are

written in the same source language, writing a type-checker is easy. But if

block 1 and block 2 are written in different languages, it would be very

difficult to deduce any type-checking information. Furthermore, catching

these errors is vital, because a type-checking error in one block may propagate

through a whole series of blocks, and cause bugs far from the original location

of the error. Another reason to add some type-checking information to

NuFloW stems from the fact that different NuMesh modules may have

separate internal representations for primitive types (little vs. big endian),

and the compiler need not derive this information from the streams. This

problem could actually be solved by stipulating that all messages on the

NuMesh follow a little or big-endian convention, but it would be inefficient.

The above argues for NuFloW to act as a common denominator type-checker,

raising the question of writing a universal type-checker, without hindering

the programmer.

NuFloW’s solution is a compromise. A user can choose to add type

25

information to a port, but it is not mandatory. Each type is represented by a

string. A default type library is loaded when NuFloW is executed. For

instance, the C type library would contain: “int”, “long”, “void”, “double”..

To declare a type for struct foo, the user would just add the string “struct foo”

to the port information. A user could add more types to a port if he needed

the corresponding stream to carry multiple types of data.

2.4 NIFT

NIFT [11] (NuMesh Interchangeable Text Format), provides a standardized

representation of text between NuFloW and the NuMesh compilers and

schedulers. NIFT is designed to keep files as compact as possible. A NIFT file

is composed of two parts: a header, which provides information to the

compilers and scheduler, and a second part, which describes of all the

NuFloW blocks. There are three types of NuFloW blocks: node blocks, leaf

blocks, and a root block. The next sections contain a detailed description of

each component of a NIFT file.

2.4.1 NIFT syntax

* Strings are enclosed by double-quotes.

* The @ character is a special character and cannot be used in any source file,

or as part of a block, stream or port name. To use the @ character, use \@

instead.

* A sequence of ;;; is used to add comments to a NIFT file.

26

» Information is indented in a LISP-like (parentheses) format.

2.4.2 NIFT Header

The header provides programming paradigm information, NIFT version
number and other useful information. All text files used in the NuMesh

world should adopt the UNIX convention to use the first line to describe the

file.

+r? = this is a NIPT file ~

(header
(paradigm “stream”)
(NIFPT-version 0.1)
(date <date>)
(blocks <total block number>)
<optional information>

wn)

2.4.3 Node Block

A node block contains sub-blocks and is defined as follows:

(block
(name <block name>)
(ports

{<portl rw-priv> <child-block name> <child-block port>)
el)

(sub-blocks
(<block—-name> <code-definition>)
ol bY

(streams
((<block-source> <port-source>)

(<block-dest> <port-dest>))
it)

» The name field contains the block name. Each block must have a different

name.

* The ports field contains a list of all of the node block’s ports and a

7

description of how they “hook-up” to the streams in the code definition file.

Because ports are automatically numbered by NuFloW, it is unecessary to

include their name and number.

e The sub-blocks field contains a list of all sub-blocks’” name and code

definition. The code definition field insures that only one copy of the code

definition file will ever be referenced. Indeed, if a block contains multiple

instances of a particular function, then although each instance may have a

different name, it has the same code definition. All blocks use a single global

name space, which easily leads to block name aliasing. This problem,

however, can be solved by using blocks’ pathanmes instead of names (a block

pathname is defined as the name of a blocks preceded by the name of all of its

ancestors back to the root block). In fact, the name space of blocks should

mirror that of the file system which NuFloW runs on top. For technical

reasons (the Macintosh’s unconventional and opaque file system), the current

implementation of NIFT uses a single, flat, global name space. Also note that

a block could have no code-definition, in which case it would be assumed that

the processing element/CFSM the block eventually gets mapped to NuMesh

nodes that will automatically produce/consume data.

* The stream field is a list of all streams connecting sub-blocks. The source

and destination are specified by a block and port number. Streams which

connect to argument blocks are not included in this section, since that

information is conveyed in the ports field.

28

2.4.4 Leaf block
A source block contains source code instead of NuFloW code.

(block
(name <block name>)
{ports (<portl rw—-priv> <port2 rw-priv> ..))
(source <code-definition>))

The first two fields of a leaf block are identical to a node block. The third field

contains the code-definition filename.

2.4.5 Root Block

The root block is a syntactic construct that groups information about the

NufloW project to let the compiler know where to start. The root block is

build from the top-level NuFloW file supplied by the user.

(block
(name Q@root-block@)
(ports)
(sub-blocks <namel> .. <name n>)

(streams ((<block source> <port source>)
(<block dest > <port dest>)
iw

The root block has no ports, and the name is fixed. At the user interface level,

the root block is never displayed.

Finally, NIFT files could be made significantly smaller by replacing all names

with integers. The strings are used for debugging purposes, and the NIFT

format will change when the compilers are running.

29

Chapter 3

NuFloW Programming Example

3.1 Introduction

This chapter serves as a case study of the NuFloW language. It shows the

feasibility of NuFloW as a programming environment for the NuMesh, and

will be referenced by other chapters to illustrate both important design

decisions and problems/improvements with the current NuFloW

implementation. The next section gives a brief overview of the NuFloW

editor. Section 3.3 contains NuFloW code for a spectrogram demo running

on the NuMesh. Section 3.4 describes the NIFT representation of the

spectrogram code.

30

3.2 NuFloW editor

The current NuFloW editor runs on the Macintosh computer. The

Macintosh platform is used because of its user interface, and because it serves

as the front-end to the current NuMesh prototype. Undoubtedly, a UNIX

workstation will be used to drive NuMesh computers in the future.

Therefore, the editor was designed to be as modular as possible, and should be

readily portable to another graphical interface such as X Windows. td

NuFloW, much like a conventional text editor, does not work on a particular

project. All files are independently edited. Files can be compiled at any time.

All work is done on worksheets. An unlimited number of worksheets can be

opened (RAM is the only limiting factor).

3.2.1 Block editor

Blocks are created using a block editor. The block editor contains a list of

blocks loaded from a default library. Each newly created block is an instance

of the corresponding block in the library. Of course, it must be possible to

create new blocks in addition to instances of pre-defined blocks, and the user

has two choices: 1) the user can edit an instance, and change its attributes. 2)

the user can load a new icon (from a resource file), and create a new block

depicted by that icon.

31

Block Name:

a polearee

Processor Number:

Block Type: [code]

Code Definition: (_ Fite 3
—

Block Library:

Icon:

a(ports)[50]

split2
comb4
split4
scale
time-rev
butterfly
bit-rev
IFFT
FFT

>
fF
af

New Icon]
X Display Name

(Concer) (Cox)
Figure 3.1: Block Editor

* Each block in a worksheet must have a different name. NuFloW will not

permit two blocks with identical names to be displayed in the same

worksheet.

* The code definition field specifies the file to open when the block is

“double-clicked”. The file could be a text or graphics file.

* The processor number field specifies which processor the block should run

on. The number is made of four digits, the first two specify the horizontal

coordinate of the processor in the mesh, and the next two the vertical

coordinate. Eventually, the NuFloW and NuMesh loader will be merged,

and the user will drag blocks onto NuMesh nodes to specify processor

numbers. Only top-level blocks contain processor information. All other

blocks run on the processor assigned to their top-level ancestor. In the long-

run, the user will not need to specify this information, as the NuMesh

32

compiler will automatically figure out the best configuration to run on.

* The new icon and load button are used respectively to load new icons from

a resource file, and blocks from a NuFloW graphics file.

3.2.2 Ports editor

Streams connect blocks through ports. A block contains as many ports as

desired. All streams must connect to different ports though. The port editor

lets the user:

—

(clear)

" Show # |
ee Ti

‘Renumber)
(cancel) i

Figure 3.2: Port Editor

* add ports by clicking on the desired location of the port.

* delete ports by clicking on the location of the port to remove.

* renumber ports: All ports are consecutively numbered. Instead of moving

streams around to change argument bindings, the user can simply renumber

ports to achieve the same result.

33

3.3.3 Streams

Streams remind the user how blocks communicate to each other. Streams are

only present at the user-interface, and are not included in the NIFT

representation of a project. Streams can be routed around blocks by adding

articulation points.

3.3.4 Text Editor

The current NuFloW text editor is primitive and should only be used to

verify the contents of text files references by leaf blocks. As the new

Macintosh system 7.0 gains popularity, it will be possible to interface a better

text editor through the Apple-event mechanism. For the present time, users

are encouraged to use a word processor suited to editing programs.

3.3.6 Matching Inputs and Outputs to Sub-blocks

Streams join blocks within the same worksheet and cannot reference external

blocks. At the user interface though, a mechanism must be provided to

match inputs and outputs to the appropriate ports of the parent block. A

special class of blocks, called argument blocks, is used for this purpose. An

argument block has no code definition, and exactly one port (the user can

change its location). In addition, the argument block has an extra field, which

indicates the parent’s port number it is supposed to represent.

34

3.3.6 Libraries

When the NuFloW application is launched, an default library of blocks is

loaded in memory. Once a block is loaded, it cannot be modified. To add a

block to a library , simply open the library file, add the block, and save the file.

Changes in a library are not reflected until the next NuFloW session. In fact,

library files are no different from regular graphic files, and any file can be used

as a library. Finally, the user can load multiple libraries in memory, and

change the default library.

3.3 Spectrogram

The purpose of this section is to show how to use NuFloW to build a

spectrogram that could run on the NuMesh. Spectrograms are an important

component of voice recognition systems. The spectrogram demo converts a

sound stream from time to frequency domain, using a iterative FFT

algorithm. Spectrograms are well-suited to the NuMesh because they

repeatedly perform the same computation, which accelerates linearly with the

number of processors employed.

35

3.3.1 Spectrogram Pseudo-Code

The spectrogram code is based on an iterative FFT:!

ITERATIVE-FFT (a)

LO
11
12
13
14

BIT-REVERSE (a, A)
n := length[A]
for 's := 1 to lgn

dom := 2”s
wm := e2;ri/m
w = 1

for J = 0 tom/2 ~- 1
do for k := j ton - 1 by m

dot :=w. A[k + m/2]
u := A[k]
Alk] :=u + t
Alk + m/2] =u - t

W i= W . Wm

return A

3.3.2 NuFloW Code

The top level view of the NuFloW code is shown below:

1Cormen Thomas, Leiserson Charles, Rivest Ronald , “Introduction to Algorithms”, MIT
Press 1991, p794

36

FIT | —
FET

HH
= FFT2 ~{

100]Dh 0 —ap
microphone splitq

-/ |

7 my
’ FFT + =z comb4

FET3

7
Re

FFT - 2

[al]
nhac

Figure 3.3: Top-level view of a four node Spectogram

The code is designed to run on 5 NuMesh nodes, 4 DSP nodes computing

FFTs and 1 node serving as the I/O board. The splitter module takes a stream

of data from the I/O board and splits it in a sliding window fashion, to the

four FFT modules. The output of the four FFT modules is combined and

send to the Macintosh, which is used to display the spectrogram.

Each FFT module shares the same code definition file which is shown below:

E
fft—init

(- ~ BIT{ REV N
bi t—-reverse

a

I~ fe
Do-Butterfly

output

rigure 3.4: rFT module

In the first step, the array of inputs is bit-reversed, and some initial values are

computed by the fft-init module. Note that the length of the input array is

fixed, which ensures predictable communication patterns. The Do-Butterfly

block corresponds to the nested do-loops of the pseudo-code and executes the

butterfly:

38

a Is

ini t-values

- - Bry
butterfly

Figure 3.5: Butterfly module

The init-values block provides initial values to the butterfly block, which

performs a standard butterfly operation on the input array. Input and output

blocks can have the same name, since they are not included in the NIFT file.

3.3.3 Source Code

The definition of leaf blocks are written in C. These files are not appended to

the NIFT output for 2 reasons: 1) A file might include other files as header

definitions etc.. which would also need to be appended. 2) NuFloW is

designed to edit graphic files, and provides a minimum of text editing

functions. It is hoped that NuFloW will be integrated to emacs, when it is

ported to UNIX. In fact, code definition files of source level blocks should

reference the make file for that block. In this way, the compiler could follow

the directives specified in the make file.

39

3.4 NIFT output

A partial NIFT listing for the spectrogram example is included below:

(header
(paradigm “stream”)
(NIFT-version 0.1)
(date “8/29/91”)
(blocks 20)
(creator “PPL"))

(block
(name @root-blockQ@)
(ports)
(sublocks

(“microphone” “microphone”)
{(“split4” “splitcd”)
(NEfEN EEE)
{Eft 2” weft 2)
(SEELE37 EEE)
(SERELY Nerney
(“comb4” “comb4”)
“mac” “mac”))

(streams ;;; only local streams are listed
{Mmicrophone’” 1) (‘splitd4” 1}))
((Nsplitd” 2) W(fft1” 1)
((splitd” 3) WMFfr27 13)
{(Bsplitd” 4) (“fft3” 1}))
((splicd”Z Sys“ fft4” 1))
{fet 2) W(Ncombd” 1)

((Sconbd” 2) (mac? 1)))

(block
(name “microphone”)
(ports (wo))
(source)) - oo

rr J no source code

(block
(name “split4d”)
(ports (ro) (wo) (wo) (wo) (wo))
{source V'split4.cfsm”))

block
(name “fft”)
(ports

(ro (“bit-reverse” 1))
(wor Nout” 13))

:::; matching of ports between
37; parent and child

40

(sub-blocks
{(SEft-init” “Ifft-init?}
(“bit-reverse” “bit-reverse”)
(“do-butterfly” “do-butterfly”)

(streams
((“bit-reverse” 2) (“do-butterfly” 1))
{(Nfft-init”nlY (Ydo-butterfly” 2))
SA

(block
(name “bit-reverse”)
{ports

(ro)
(wo))

(source “bit-reverse.c”))

NIFT files could become more compact by replacing all strings (except for

filenames) with numbers. Strings are only included for debugging purposes.

41

Chapter 4

Making it all Work!

4.1 Intoduction

The NuFloW programming environment is just one of the many

components of the NuMesh front-end. The last chapter showed that it was

possible to create applications using NuFloW. A lot of work still needs to be

done though, before NuFloW becomes fully operational. The NuFloW

interface lets the user assemble tasks together and produce a textual

representation of a project. But compilers are needed to generate binary code

for the source language blocks, and a scheduler needs to be designed to

support the stream paradigm. Section 4.2 and 4.3 discuss some of the changes

which the run-time and compile-time environment of the NuMesh must

undergo. Section 4.4 offers some ideas for future work while section 4.5

concludes.

42

4.2 Run-Time Environment

A run-time support program, (ambiguously) called NuMesh, is used to load

programs onto the NuMesh hardware, and service the mesh’s I/O requests.

The NuMesh program senses a particular NuMesh configuration, which is

then displayed on the screen. Each NuMesh node is depicted by a particular

icon. The user is able to specify both a CFSM and PE binary file to be loaded

on a node. A natural extension to NuFloW would be to interface it with the

NuMesh loader program. A user could drag a NuFloW block to the NuMesh

topology window, thereby assigning the computation of that task. In fact, the

topology window would become the root block, which is synthesized during

the compilation of NIFT files. At first, only top-level blocks would be dragged

onto the topology window. But as the compiler and scheduler technology get

better, the user should be able to assign every NuFloW block to a node.

The distinction between CFSM and processing element code is eliminated.

Tasks are dragged onto NuMesh nodes to indicate where they should execute,

and the compiler figures out which task should be serviced by the CFSM or

processing element part of the node, or both. The user should not think of

CFSM code as being any different from processing element code. In fact,

when a user connects two blocks with a stream, some CFSM code is

automatically generated to support the read port and write port

operations between the blocks. Because the compiler and scheduler manage

the allocation of tasks on the mesh, the user does not need to specify any

“glue” CFSM code.

43

4.3 Compile-Time Environment

The current compiler and scheduler technology is inadequate for the

NuFloW programming paradigm. In the short-run, it may be possible to

modify the scheduler to support NIFT. In the long-run though, a new

compiler and scheduler will need to be designed and implemented. The

compiler must be able to provide some timing information to the scheduler.

A new language, Bil [3], may be used as an intermediary, hardware

independent language to provide timing estimates. Bil is designed to provide

very accurate upper-bound estimates on execution times and is well suited to

the NuFloW environment. Indeed, it assumes that code is written in blocks,

which are then mapped to NuMesh nodes. The scheduler is the heart of the

NuMesh system. It allocates tasks among the various processors and

programs the CFSMs to support their communications. The following two

sections describe tools aimed at facilitating the interactions of the compiler

and scheduler with the NuFloW environment.

4.3.1 Connectivity Checker

Type-checking dramatically reduces development time. NuFloW provides

mechanisms to perform some type-checking for node blocks: If a stream

connects two node blocks, NuFloW will check that both ports have

compatible read-write privileges. Furthermore, if the user has specified

additional type information (see section 2.3.2), NuFloW will check that the

44

types match. NuFloW is not able to check typing information for leaf blocks,

since it cannot parse source languages. A NuFloW tool could assist the

compiler in the initial stage of compilation. Such a tool would read a NIFT

file, parse the leaf blocks’ text files, and check the typing information. This

connectivity checker! is invoked by the compiler, but should be

implemented as a stand-alone module. This tool is language specific, and

checks that:

* every write port is balanced by a readport and vice versa.

* all ports all valid and referenced.

e the read/write privilege of every port is not violated

» if the user has specified additional typing information, the typing is

matched

4.3.2 Block manipulators

NuFloW does not address the issue of block granularity. A leaf block could

contain a few lines of code as well as a few thousand lines. In the short term,

the scheduler will require the NuFloW user to indicate where each block

should run. In the long run, however, the scheduler will allocate blocks of

code on the Mesh. Because the scheduler must accommodate blocks of

different granularity, it will need to split, combine, and move blocks within a

project to balance the computational load of each node. The splitter and

combiner work to decrease/increase the computational demands of a block.

The mover is called by the scheduler to move a block to a new hierarchical

position. These tools will be called by the scheduler.

IThe pre-compiler tools were proposed by Chris Metcalf in: “NIFT...”, NuMesh Memo #8.

45

4.4 Future Work

The last two sections focused on ways to interface NuFloW with the rest of

the NuMesh software. The following section proposes some changes to

improve the current implementation of NuFloW.

4.4.1 Compile-time parameters
In NuFloW, all blocks which share the same code definition perform

identical tasks. There is no mechanism to let blocks share the same code

definition, save a number of modifications. It would be very useful to allow

blocks to be parameterized. For instance, in the spectrogram program, the

node connected to the I/O board may perform a slightly different

computation than the rest of the nodes. Thus, the user should be able to

declare labels at the user interface label that the compiler could then test for.

Generalizing the idea of labels, it should be possible to specify a set of compile

time constants. Changing a compile time constant would change the

behavior of the program once it is recompiled and executed.

Another drawback with the current implementation of NuFloW is that

although NuFloW abstracts out the communication details, it makes

assumption on the number of NuMesh nodes that will be used to perform

the computation. In the spectrogram example included in Chapter Three, the

four FFT blocks imply that four (or less) DSP nodes will be used. The four

nodes could be arranged in any topology: square, linear of T shaped. But to

run the spectrogram on five or more nodes, the user would have to create a

new NuFloW program containing five or more instances of the FFT block. A

46

NuFloW program should be able to abstract out the number of processors

used as well as the topology of the NuMesh configuration. The spectrogram

code should depend on a parameter specifying the number of processors

required:
.

2

Processor Number =n

|00|DP iio
microphone HhPe

| aTmLl
spectogram

figure 4.1: Processor independent spectrogram demo.

Given a number n of processors, the NuFloW editor should be able to

produce a NIFT file containing n instances of the same code. The difficulty

with replicating blocks automatically stems from the fact that a scheme must

be used to formally describe how stream connections within the

parameterized block scale with the replicating factor. Specifying the stream

connections for the spectrogram block is straightforward. Each of the n-inputs

of the splitter goes to an instance of the FFT block. The output of each FFT

block goes to one of the n-inputs of the combiner. In other cases, however,

specifying stream connections may not be as simple. Because the spectrogram

uses a sliding window algorithm to feed the FFT blocks with data,

parameterizing a combiner or splitter block is difficult. The programmer

47

must specify how each of the input and output stream connect to the blocks.

Thus to successfully parameterize blocks, research will need to be conducted

to design a formal textual language that permits the programmer to specify

stream connections algorithmically. Even if the language closely resembles C,

an interpreter will be needed to execute the replicating code.

4.4.2 Run-time parameters

So far, we have discussed the need for various kinds of compile time

parameters. A block should also contain a set of run-time parameters. Run-

time parameters differ from compile-time parameters in that they can affect

the course of a computation in its progress. At the compiling stage, variables

which might be changed by the user during the computation should be

declared specially. When the compiler encounters such a variable, it could

include some glue code that could set the variable to its new value. A

protocol would also need to be designed to let the NuMesh host send data to a

particular node at specified intervals. The scheduler could, for example,

reserve a number of cycles every so often to let NuMesh nodes read messages

from the host, and process them. Each message would contain a

change/ignore order, possibly followed by the identification number and

value of the variable to modify. Of course, the user should be able to specify

the frequency at which nodes check to see if they must modify these pre-

defined run-time parameters.

48

4.4.3 Reporting messages

The above protocol can be augmented to permit communications from the

nodes to the NuMesh host. At regular pre-defined intervals, nodes could

send status information back. The host could then alert the user if a node

encountered a system or user-defined error. Other types of messages could be

defined to report the state of a computation. Note that applications that make

intensive use of the host's I/O cannot use this protocol for all

communications, as it is assumed that this reporting mechanism will be

active for a small fraction of NuMesh cycles.

4.4.4 Control Panel Toolkit

To support the above protocol, the user must have access, at the user interface

level, to a standard set of tools that will permit him to easily interact with the

appliaction running on the NuMesh. A control panel toolkit could be

included with NuFloW, which would enable the user to assemble in a

window various controls to send and receive information from the mesh.

Each block could be linked to a panel, which would control the various

compile-time and run-time parameters.

49

E[I== Spectrogram Control Panel ===

Compile-time Parameters:
mg

Processor Number: 5 |

FIT method: | iterative ¥ =r
it

Run-time information:

Filter: | J oo

Load: Lk (Abort)

Status: [No Errors filignany

Figure 4.2: Spectrogram control panel

4.5 Conclusions

NuFloW was designed to serve as a complete programming environment for

the NuMesh computer. First, NuFloW needed to assist the programmer

writing code for the NuMesh. The current implementation of NuFloW

achieves this goal by supporting a stream based programming paradigm using

50

a pictorial language. The pictorial language represents tasks by graphical
blocks, and lets blocks communicate through streams. The stream based

paradigm was chosen because it mirrors the range of communications that

can be supported by the NuMesh static routing policy. In addition, using

blocks and streams abstracts out communication details from the user, who is

not required to understand the details of the NuMesh hardware.

A second goal of NuFloW was that it should allow the NuMesh to be

programmed using any textual language. Currently, NuFloW does not make

any assumptions on the source language used. In fact, blocks within a same

project could be written with a combination of languages. Using textual

languages in addition to blocks and streams is a key attribute of NuFloW.

Text is an efficient and common medium to perform actual calculations.

Providing all primitive operators graphically would have resulted in an

incomplete and inefficient language.

Finally, NuFloW was to serve as a central user interface to the various

components of the NuMesh software. A specific file format, NIFT, was

designed to facilitate the compilation of NuFloW programs into executable

NuMesh binaries. NIFT is compact, flexible, and disassociates source text files

from the graphical blocks. Thus, the user is able to connect blocks and

streams graphically, but work on each source (textual) block completely

independently.

51

References

1]

12]

3]

4]

5;

[6]

7

7)3

J5

[10]

Agarwal, Chailken, Johnson, Kranz, Kubiatowicz,
Kurihara, Lim, Maa and Nussbaum: “The MIT Alewife
Machine: A Large Scale Distributed-Memory Multiprocessor.”
To appear in “Scalable Shared Memory Multiprocessors”,
Kluwer Academic Publishers, 1991

Crowther, Goddhue, Starr, Milliken and Blackadar:
“Performance Measurements on a 128-Node Butterfly Parallel
Processor.” BBN Laboratories.

Fetterman, Michael: “BIL: an Intermidiate Language for
NuMesh.” Master's thesis. MIT Department of Electrical
Engineering and Computer Science, January 1991.

Hillis, Daniel: “The Connection Machine.” Doctoral
dissertation, MIT Department of Electrical Engineering and
Computer Science, June 1986.

Honoré, Frank: “Redesign of a Prototype NuMesh Module”.
Bachelor's Thesis, MIT Department of Electrical
Engineering and Computer Science, May 1991.

Laffont, Philippe: “NuMesh: a Software Overview.”
Document.

ternal

Nguyen, John: “CFSM Assembler Description.”
Memo #2.

vaMesh

Nguyen, John: “A C Interface for NuMesh.
Memo #3.

7” NuMesh

Nguyen and Pratt: “Synchronization of Hardware Oscillators
in a Mesh-Connected Parallel Processor”. Forthcoming.

NuBus Data Book Products. Texas Instruments, 1990

52

[11]
Rr

Iz71
no

r="| 12,i\

re a[14]

[15°.

[1571 <]

717]

[18]

119]

Metcalf, Christopher: “NIFT: NuMesh Interchange Format
for Text.” NuMesh Memo # 8.

Metcalf, Christopher: “Running Multigrid on a NuMesh.”
NuMesh Memo # 5.

Peterson, Sutton and Wiley: “iWarp: A 100-MOPS, LIW
Microprocessor for Multicomputers.” IEEE Micro, June 1991.

Pezaris, John: “CFSM Revision 2: Progress to Date”.
Numesh Hardware Memo #9 & #12, Spring 1991

Seitz, Charles: “The Cosmic Cube.” Communications of
the ACM, Volume 28, Number 1. January 1985

Tessier, Russel: “Sparc Based Processing Element | LPI
Redesign”. NuMesh Hardware Memo #10, May 1991

Trowbridge, Sean: “A Programming Environment for the
NuMesh Computer.” Master's thesis. MIT Department of
Electrical Engineering and Computer Science, May 1990.

Ward, Stephen: “NuMesh, a Scalable, Modular, 3D
Interconnect.” MIT Laboratory for Computer Science's
Computer Architecture Group. Internal document.
February 89.

Ward, Stephen: “Towards LegoFlops, RecognizingSpace in the
Digital Abstraction.” MIT Laboratory for Computer
Science’s Computer Architecture Group.” Internal
document. January 1991.

53

