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ABSTRACT

DYNAMIC RESPONSE OF STRUCTURES

IN LAYERED SOILS

by

VICTOR CHANG LIANG

Submitted to the Department of Civil Engineering on January 16,
1974, in partial fulfillment of the requirements for the degree
of Doctor of Science.

The dynamic response of a strip footing resting
on or embedded in a soil stratum is studied. The cases
investigated cover the excitation of the footing by
horizontal forces and rocking moments, and the motion
due to a specified displacement at bedrock.

The study is based on an extension of a method
originally developed by G. Waas. It is a finite ele-
ment formulation, with appropriate energy absorbing
boundaries, which consist of semi-infinite layered
regions extending to the left and right of the finite
element region.

The effect of layer thickness and the convergence
towards the half-space solution are investigated first.
The effect of embedment is then considered, comparing
the response of an embedded footing to that of the same
footing at the surface. The interaction between adjac-
ent footings is finally studied.

The results obtained suggest that some of the ef-
fects studied might be reasonably well reproduced by
applying simple correction factors to the half-space
solutions.

Thesis Supervisor: Jose Manuel Roesset

Associate Professor of Civil EngineeringTi tle:
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NOTATION

Note: Only the symbols often used are shown in this list.

a = = frequency ratio (with respect to layer thickness)Cs

a o U 77 frequency ratio (with respect to footing half-width)

A (A) amplification function

B = half-width of strip footing

B a = mass ratio for horizontal translation
pB

B= pB4 c a s 2= inertia ratio for rocking

c = phase velocity

C dilatational (P) wave velocity
p

Cs   = shear (S) wave velocity

d = D/H = embedment ratio (with respect to layer thickness)

D * embedment of footing

e a E/B = height, center of gravity ratio; or base of natural
logarithms = 2.718......

E = height of center of gravity of rigid structure

f = frequency in cycles per second

f ,f ,fx = normalized Fxx, F0, Fx with respect to their

static values, respectively

F = horizontal (sliding,swaying)compliance function

F0= rocking compliance function

F 0 cross-compliance function

[F] * compliance matrix
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G * shear modulus

h * thickness of jth layer in a layered soil stratum

H = height of soil stratum

[j] inertia matrix

K = wave number

K, • horizontal (sliding, swaying) stiffness function

Kg 0 rocking stiffness function

K •0 cross-stiffness function

[K] * stiffness matrix

[K*] * reduced stiffness matrix for structure - soil -
structure interaction

L = distance between center-lines of two footings

M = mass of rigid structure

P = horizontal force

P z vertical force

P * rocking moment

r,e,z = cylindrical coordinates for axisymmetric systems

s = radius of gyration ratio

S = radius of gyration of rigid structure

t time

u = horizontal displacement

w = vertical displacement

x,y,z = rectangular (Cartesian) coordinates for plane strain
systems

oSs • participation factor for sth mode in layered system

8 = percentage of hysteretic damping
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C a strain

n * viscosity coefficient

X= Lame constant

v = Poisson's ratio

7* 3.14159.....

p * density of soil

Pst • density of homogeneous structure

a • normal stress

* shear stress

$ rotation (rocking)

on nth natural frequency

AI =frequency of excitation
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CHAPTER 1 - INTRODUCTION

1.1 General Considerations

The design of foundations to resist dynamic loadings, either

from supported machinery or from external sources, e.g. earthquakes,

must meet certain performance criteria. These usually relate to the

dynamic response of the foundation, as expressed in terms of a limit-

ing amplitude of vibration at a particular frequency or a limiting

value of peak velocity or peak acceleration. It must also be en-

sured that the vibrations transmitted through the ground will not

affect other structures or humans in the neighborhood.

Since a foundation is resting on, or embedded in, the ground,

the characteristics of the soil will affect its behavior. If the

soil foundation system vibrates with small amplitudes, it can be con-

sidered to behave linearly; and then the response to periodic loads

can be obtained by superposition of the harmonic response at different

frequencies. Transient loads can also be dealt with, by using the

Fourier transformation techniques.

The evaluation of the structure's response considering soil-

structure interaction is a complicated problem. Even if the struc-

ture is considered rigid (e.g. a rigid footing for machinery, a

nuclear reactor containment vessel), the problem is quite involved

from a mathematical point of view. It is a wave propagation prob-

lem with boundary conditions of the mixed type, i.e., both displace-

ment and force boundary conditions arise. Displacements must be com-

patible in the area of contact of the structure with the soil, and
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the free surface of the ground is stress-free. There may be rock

underlying the soil stratum, which may itself consist of different

layers with different properties.

For these reasons, the mathematical model must be a very

idealized one. Most of the research done on this subject assumes a

perfectly elastic half-space, where the only existing boundary for

the soil is the free surface. Besides, the footing is usually con-

sidered axisymmetric, thus reducing the number of spatial dimensions

to two, instead of three.

In this work, a rigid strip footing is considered as the model

of the structure. Therefore, this is also a two-dimensional problem

of plane strain. This model is adequate if the actual footing is

comparatively long with respect to its width. Instead of assuming

a half-space, a soil stratum of limited depth overlying a rigid rock

from which waves are totally reflected is considered here.

To obtain numerical solutions to this problem, finite elements

were used, using as a starting point the model developed by Waas

[56], as summarized in Chapter 2.

1.2 Review of Past Work

There are numerous studies on-the vibrations of a rigid circu-

lar footing supported by a homogeneous, isotropic and perfectly

elastic half-space. The excitation by a harmonic vertical force

was studied first by Reissner [43] in 1936. He assumed a uniform

stress distribution under the footing. Bycroft [ 9] assumed the
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static stress distribution as valid for the dynamic case in the low

frequency range. Lysmer and Richart [35], and Awojobi and Grooten-

huis [ 5] derived solutions for this problem taking into considera-

tion the frequency dependence of the stress distribution under the

footing. Robertson [46] used a series solution valid in the low

frequency range. Lysmer and Kuhlemeyer [34] used a finite element

method with an energy absorbing boundary (consisting of lumped dash-

pots) to analyze this problem, with capabilities to study the effect

of embedment.

When rock or hard layers are encountered at relatively shallow

depths, the half-space theory does not provide a good solution to

the "real" situation. Warburton [57] studied the vertical vibration

of a rigid circular footing supported by a homogeneous elastic layer

that extends to infinity in the horizontal direction, and rests on

a rigid base. He assumed a stress distribution and considered a

frictionless contact between the soil and the rigid base. Kuhlemeyer

[29) used the energy absorbing boundary mentioned above to study the

vertical motion of a footing supported by a stratified half-space,

but found that the results were inconclusive when the deeper layers

were stiffer than the surface layer, which is a usual case in founda-

tion vibration problems. Waas [56] studied this problem using also

finite elements, and developed dynamic stiffness matrices for the

layered regions of infinite horizontal extent, adjoining the finite

element irregular region, thereby accounting for dissipation of waves

through the layered media.
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The study of the horizontal and rocking vibrations of circu-

lar footings has received considerable attention recently. Arnold,

Bycroft and Warburton [ 3 ], Bycroft [ 9 ], and Warburton [7 ] con-

sidered all four modes of vibration. They assumed a uniform shear

stress distribution for horizontal vibration and a linear variation

of stress for rocking vibration. Gladwell [16] considered the actual

mixed boundary-value problem, but introduced simplifying assumptions

with regard to the conditions of contact at the footing-soil inter-

face. Luco and Westmann [30] used a similar method, and covered a

wider range of frequencies. These solutions neglected the coupling

between sliding and rocking. Wei [60] found an "exact" solution,

without making an a priori assumption concerning the distribution

of contact pressure, covering a wide range of frequencies.

By a reorganization of Reissner's equations, Hsieh [19] devel-

oped expressions for frequency-dependent stiffness and damping func-

tions. Utilizing Bycroft's solutions and the force-displacement

relationships given by Hsieh, Hall [18] determined a solution for

the rocking and sliding oscillations of a circular plate on the sur-

face of an elastic half-space. Ratay [42] used a similar approach

to obtain the simultaneous rocking and sliding motion of a rigid mass

with a circular base. Whitman and Richart [61] presented useful ex-

pressions for the determination of the spring and dashpot constants

and the equivalent mass of soil to represent the dynamic properties

of the soil. Veletsos and Wei [55] presented results for an equival-

ent spring-dashpot representation of the disk-foundation system. Meek
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and Veletsos [37) considered a semi-infinite truncated cone of cir-

cular cross section as effective in transmitting the energy from a

dynamically loaded circular footing, and developed expressions for

frequency-independent spring and dashpot constants for the horizon-

tal motion, whereas the rocking expressions are frequency-dependent.

Veletsos and Verbic [54] found simple approximate solutions for the

steady-state response of a massless circular rigid disk supported

on the surface of a linear viscoelastic half-space, idealized as

either a standard Voigt solid or as a constant hysteretic solid.

Less research has been done on the vibrations of strip footings.

Karasudhi, Keer and Lee [22] presented an approximate analytical solu-

tion for the vertical and coupled horizontal and rocking vibration

of an infinitely long rigid footing resting on the surface of an

elastic half-space; and showed that the coupling effects are quite

significant. Luco and Westmann [31] also studied this problem and

found an exact analytical solution when the Poisson's ratio-of the

soil is 1/2, and a first approximation for other values of this ratio,

valid in the range of low frequencies. Awojobi [ 4] considered the

high frequency range, but did not cover the case of horizontal mo-

tion. Ang and Harper [2 ] developed a lumped-parameter consisting

of mass-points and stress-points to simulate the semi-infinite,

linearly elastic, homogeneous, isotropic medium for plane strain

problems. This model was modified by Agabein, Parmelee and Lee_[1

to include finite boundaries, and developed a fairly general two-

dimensional scheme for the study of seismic soil-structure inter-
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action problems. Gupta, Parmelee, and Krizek [17] used this ex-

tended model to examine the coupled sliding and rocking of a strip

footing resting on the surface of an elastic half-space.

Rectangular foundations have been studied by Elorduy, Nieto

and Szekely [13] for vertical loading. Kobori, Minai, Suzuki

and Kusakabe [25] have obtained numerical solutions for the four

modes of vibration of rectangular bases on an elastic half-space.

In another paper [26] they considered the same problem, but includ-

ing material damping in the soil. Later on, Kobori and Suzuki [27]

considered a viscoelastic multi-layered medium, while Kobori, Minai

and Suzuki [24] determined the solutions for a viscoelastic stratum

of soil overlying a rigid base.

The effect of embedment of footings has been recently consid-

ered. No rigorous analytical solution of embedded footings is avail-

able because of the obvious mathematical difficulties.

An approximate analytical approach was formulated by Baranov

[6], who assumed an elastic half-space under the footing base and

a series of thin independent elastic layers between the force-surface

of the ground and this half-space. Novak and Beredugo [40] have used

this model to compute series solutions for stiffness and damping

functions for vertical vibrations of a circular footing in either a

half-space or a stratum. Also, in another paper, Beredugo and Novak

[7] considered the case of coupled horizontal and rocking vibra-

tions of the same system studied above. Krizek, Gupta and Parmelee

[28] used the extended model of Ang and Harper to study the coupled
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sliding and rocking vibrations of a rigid strip footing embedded

in an elastic half-space, and made a parametric study of the effect

of embedment. Lysmer and Kuhlemeyer [34] used the energy absorbing

boundary mentioned before to study this effect; and Waas [56] also

used the finite element method with appropriate boundaries to simu-

late the layered systems. Both studied in detail the case of ver-

tical vibrations for axisymmetric systems. Recently, Urlich and

Kuhlemeyer [53] studied the effect-of embedment for coupled rocking

and lateral vibrations of circular footings in a half-space, using

a viscous boundary. Novak [39] suggested an approximate method to

get corrections to the solutions of circular footings on the surface

of a soil stratum, for any vibration mode.

There has been evidence that soil-structure interaction affects

the response of structures subjected to seismic loadings. Several

approximate models have been used to take care of the foundation flexi-

bility [10, 14, 32, 38, 50, 52, 61]. The common method of separating

this dynamic problem into two parts, with a one-dimensional soil am-

plification of the input motion considered first and the resulting

motion at the soil surface applied next as input to the structure,

will not be exact if there is embedment.

It has also been recognized that the structures in a neighbor-

hood affect each other through the soil. If they are close enough,

it may not be appropriate to study each one separately. When one

structure is excited by forces like those produced by machinery, waves

are generated, and these disturb other structures in the vicinity [20.
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The response to seismic motions is also modified by the presence of

neighboring bodies. Several authors [41, 45, 51] have considered

the motion of a rigid footing due to waves travelling along the

ground surface. Richardson [50] and Warburton, Richardson and
Webster [58] considered two circular cylinders on the surface of a

half-space and used an averaging procedure for the free surface mo-

tion to find the effect of the mutual interaction of the two struc-

tures. Other approaches to this problem have been suggested by

Kobori and Minai [23], who studied the statistical properties of a

random flow of energy between structures on a viscoelastic soil;

Sakurai and Minami [49], who used a truss as a model of the build-

ings and the soil, and determined the response to earthquake motions

and pulse waves by modal superposition; and MacCalden and Matthie-

sen [36) who used Bycroft's compliances for the half-space to study

the transmission of surface vibrations from one circular footing

to another in an analytical form.

1.3 Scope of this Work

The problems considered here are the steady-state harmonic vi-

brations of one or two strip footings due to exciting forces applied

to them, or to motions of the soil stratum due to a specified dis-

placement at the soil-rock interface. The soil is considered homo-

geneous, isotropic and linearly elastic with hysteretic damping.

Poisson's ratio has been kept as v = 0.30 throughout the whole study.

The rock is considered as a rigid half-space. The structure is
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idealized as a rigid strip footing.

The theory pertaining to these problems is presented in Chap-

ter 2. The starting point to this work was given by Waas [56].

In Chapter 3, a strip footing on the surface of the soil stra-

tum is considered. Compliance and stiffness functions are deter-

mined for a range of layer thickness to footing width ratio, from

relatively shallow to relatively deep strata. Comparison is made

with some available solutions for the half-space. The amplification

of the motion of the soil is then studied, for footings with differ-

ent masses. The effect of the soil-structure interaction is then

isolated.

Embedded strip footings are considered in Chapter 4. Studies

similar to those of Chapter 3 are conducted. The variation of static

compliances for different embedment ratios gives an insight into

the effect of embedment. Summary curves giving the maximum amplifi-

cation of the soil motion for different mass and embedment ratios

are given.

Chapter 5 considers the interaction of two parallel strip foot-

ings through the soil. Both the cases of excitation of one of the

footings by external forces and of soil motion are considered. The

number of parameters involved in this problem is very large; but

the cases presented give a picture of the phenomenon of structure -

soil - structure interaction.

Conclusions and recommendations are finally given in Chapter 6.
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CHAPTER 2 - THEORETICAL CONSIDERATIONS

2.1 Introduction

The majority of studies on foundation vibrations have dealt with

the case of a circular footing on a homogeneous, isotropic and per-

fectly elastic half-space. This has often been adopted as a typical

foundation-ground model.

Karasudhi , Keer and Lee [22) have studied the vibratory motion of

a rigid strip-footing on an elastic half-plane. The present work also

deals with an infinitely long strip footing, but under more realistic

conditions, by including material dissipation properties (internal

damping) and limiting the thickness of the soil to a finite stratum

with one or more layers of different properties. These studies have

concentrated on a homogeneous soil, while the computer program used

has the capabilities to deal with a horizontally layered system, con-

sisting of a series of homogeneous, isotropic and viscoelastic layers,

perfectly connected at the interfaces. The region in the neighborhood

of the footing can be irregular. The whole system is limited at the

bottom boundary by a rigid half-space, which will be referred to as

"rock." Fig. 2-1 depicts the coordinate system and significant dimen-

sions.

This work presents the response of the foundation to harmonic

exciting forces on the rigid footing, and also the response of a struc-

ture represented by the footing, to a harmonically varying prescribed

displacement in the rock. Finally, it presents the dynamic inter-

action of two structures through the soil.
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2.2 Soil Properties

The soil is represented by a homogeneous, isotropic and visco-

elastic material. The stress-strain relationship of most soils sub-

jected to symmetric cyclic loading conditions is of the form shown

in Fig. 2-2. The hysteretic stress-strain behavior can be represented

by the secant modulus, which is determined by the extreme points of

the hysteresis loop, and by the damping capacity, which is proportional

to the area inside the loop. These-parameters depend on the magnitude

of the strain except for very- small strains,-where the soil response

Is approximately linear.. The modu-lus and damping factor used in

analyses of foundation vibration problems are assumed, however, to be

independent of the strain amplitude, leading to what is called a linear

hysteretic model.

For loads varying harmonically in time, the stress-strain behavior

of a linear hysteretic material can be represented by complex moduli.

Then, if

ac = al + 102 (2.1)

Ec = CI + iC2 (2.2)

are, respectively, the complex-stress and strain, and i = /-T (the

superscript c denotes a complex quantity, and will be dropped when no

confusion might arise), the complex modulus relating stress and strain

is generally frequency dependent. The moduli that characterize the

soil are the complex Lame's constants,

Gc = GI (w) + i G2 (w) (2.3)

c = XI(w) + i X 2 () (2.4)
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where w is the circular frequency.

It is clearer to use the shear modulus Gc and the Poisson's ratio

v (taken as a real quantity) to represent the stress-strain behavior.

The parameter XC is related to Gc and v by

Ac= vM(2.5)1-2V

The imaginary part of the shear modulus is associated with an

energy loss due to hysteretic damping. The ratio

tan$ (2.6)

is called the "loss tangent." The loss angle, $L, is the angle (in

terms of wt, where t denotes time) by which the strain response lags

behind the corresponding stress at any given time. The loss tangent

is related to the fraction of critical damping, $, and to the logarith-

mic decrement, D, by
tan 8L ~ T (2.7)

for small damping, which is the usual case in foundation vibration prob-

lems. Thus, the complex shear modulus can be written as

Gc* G(l + 12s) (2.8)

The symbol G will be referred to simply as "shear modulus."

In wave propagation problems, the velocity of shear waves (S-waves,

distortional or equivoluminal waves) and the velocity of dilatational

waves (P-waves, compression or irrotational waves) are of great impor-

tance. They are:
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Cs = [Re

C = Re
P I

XC+ 2GCj

where P is the mass density of the soil. For small damping,

CS Re

C Re XC+- 2GC X+2G
p p

(2.11)

(2.12)

where G = Re(Gc) and X = Re(xc). Both Cs and C vary with frequency,

but are nearly constant for small damping.

2.3 Basic Equations.

As shown in Fig. 2.1, the displacements in the x, y, z directions

are respectively uc, vc, wc. For plane strain problems, all deriva-

tives with respect to y vanish. When there are no external forces,

the differential equations of motion are:

+ (c+Gc) - + -2WC P c (2.13a)
ax 2 axaz / at

+ 2c + (Xc+Gc) _gc+ -P, 2Lwc- (2-.13b)
az 2 / \ axaz az2 / at2

(2.9)

(2.10)

+ a2uc
az2

2 c

ax2

32wc

ax2

Gc(

G c

iToc -1
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which are coupled equations governing motion in the x-z plane, and

GC + 2 (2.13c)
@X2 az2  at2

governing motion in the y-direction.

For axisymmetric conditions, when all derivatives with respect

to the angular direction 0 vanish, the motion can be described by dis-

placements uc, u z, u c corresponding to the coordinate directions r

(radial), z (vertical), e(angular) respectively. The equations of

motion are: 2u c D2uc D2uc a2uc
aur au c urL+ z c ur D2uz

(Xc+ 2GC) + + G
(ar2 r. -r r+ )+G--%ra MI

a2uc
P r (2.14a)

at 2

a2 uc au 2 32 c auc
c + 2Gc) + +r+ + Gc z + z

a--- r-z 2/ @rK r ar

a2u C u 3 a2u
-ur 1a r a P (2.14b)

at
which are coupled equations governing motion in the r-z plane, and

a2u u U a2uc 2uc
G + 1 6 - P (2.14c)

(ar 2  r B rr2  aZ2  at/

The plane strain case is of main interest here. For harmonic

excitation varying as e , the steady state displacement response

will also vary as eit. That is,

uc = 0(x,z) eit (2.15a)

w (x,z) e (2.15b)
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Assuming that

G(x,z) = u(z) g(x) (2.16a)

and
w(x'z) = W(z) g(x) (2.16b)

the displacements in the soil can be expressed as

uc = u(z) exp (int - ikx) (2.17a)

wc = w(z) exp (i t - ikx) (2.17b)

since g(x) = exp (-ikx) is found after introducing eqs. (2.16a).and

(2.16b) into eqs. (2.14a) and (2.14b). The parameter k is called the

wave number, and is related to the circular frequency and the phase

velocity, c, by

k2c2 = Q2 (2.18)

This assumption considers then a plane wave travelling in the

x-direction. Eqs. (2.17a) and (2.17b) define a plane generalized

Rayleigh wave motion, since Rayleigh waves in layered media are de-

scribed mathematically in the same way, but usually with real wave

numbers. Here, k can be either real, imaginary or complex, and de-

pends on the frequency of the wave; so, the medium is dispersive.

The mode shapes u(z) and w(z) are, in general, complex.

2.4 Mathematical Model

The mathematical model used in this study was developed by G.

Waas [56]. Following is a summary of the basic features of this model,

and then, an extension of it is presented.

Waas used the well-known finite element method to analyze plane
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strain and axisymmetric vibration problems for footings resting on

the surface of or embedded in a layered stratum of soil. Fig. 2-3

shows this model. It consists of an irregular region I subdivided

into subregions which form the finite elements of arbitrary quadri-

lateral cross-sections. The displacements are assumed to vary lin-

early along the boundaries of the elements, which are themselves con-

nected at the nodal joints. Each joint j has two degrees of freedom,

u and w

By using the principle of virtual work applied to viscoelastic

media and specialized for harmonic motion, stiffness and mass matrices

for the elements can be computed, and then assembled by the direct

stiffness method [62 to get a complex stiffness matrix [K] and a real

mass matrix [M].

Since-loads vary harmonically with time at a circular frequency A,

the equations of motion are:

([K]- 22 [M]){u} = {b} (2.19)

where {u} is the vector containing the nodal displacements, and {b}

is the vector of nodal forces.

Attached to the irregular region I, there are two layered regions

R and L, to the right and left, respectively. They must be considered

in the stiffness and mass matrices of eq. (2.19). The displacements

in the layered region are considered to vary linearly within each

layer along the z-direction, and exponentially in the x-direction,

according to eqs. (2.17a) and (2.17b). The details of the derivation

of the corresponding matrices are shown in Waas' thesis.
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For free harmonic Rayleigh wave motion under plane strain condi-

tions, the result is a set of equations of the form

(k2[A] - ik[D] + ikED]T + [G] -S2 [M]) {v} W {0} (2.20)

where the vector'{v} contains 2n complex displacements vj, j=l, ... ,

2n for the n layers, each having two degrees of freedom uj and w . The

2n x 2n matrices [A],E D], EG] and [M] consist of the contributions

from the individual layers, and can therefore be assembled by addition

of layer submatrices as indicated in Fig. 2-4. The submatrices to be

substituted for [x] tn that figure are:

2(2G + ) 0 (2G0 ) 0

0 2G 0 G
[A] ) hj

ED] -

1[G] = -

(2G +X)

0

r 0

G

0

G

G.

0

-G

0

0

0

X i

0

0.

0

0

(2G +

0

-(2G3+

2(2G +X )

0

0

-G

0

-G

-Xi

0

-0

0

-G

0

G

0

J

0

2G

(2.21a)

(2.21b)

0

- (2G +)i J
0

(2G + X.)

(2.21c)

X)
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submotrices [XJ] of order (4.x4)

adde etements
where submatereesX•

over lap

this part not used4
wheh rock is jf xed

Figure 2-4 Form of Matrices in Eq. (2.20)
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1/3 0 1/6 0

0 1/3 0 1/6
[M] =P hj 1/6 0 1/3 0 (2.21d)

o 1/6 0 1/3

where j = 1,... , n; and h is the thickness of the th layer, p its

mass density, and G andX its complex Lams's constants, which reduce

to real values in the undamped case.

The matrices [A], [D] and [G] are related to the stiffness of the

layers, and the matrix [M] is a consistent mass matrix.

The solutions to eq. (2.20) satisfy equilibrium in the layered

region between the vertical planes = 0 at the right (or left) boundary

of the finite element region, andx = X, where is arbitrary, and can

then be taken as infinitely large.

For any given circular frequency 2,let

[C]= [G] - S2 [M] (2.22a)

and [B]= [D]T _D] (2.22b)

Introducing these into eq. (2.20),

([A]k2 + i[B]k + [C]) {v} ={0} (2.23)

is obtained. The matrices [A] and [C] are symmetric and the matrix

[B] is skew symmetric. Eq. (2.23) constitutes a set of 2n linear homo-

geneous equations which have non-trivial solutions only if the deter-

minant of the coefficient matrix vanishes. Hence, for any given fre-

quency Q, the secular equation
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[A] k 2 + i[B] k + [C I a 0 (2.24)

defines the possible wave members for generalized Rayleigh waves in

the layered region. Eq. (2.23) is thus an eigenvalue problem which

has 4n generally complex roots ks, s = 1,... , 4n. The corresponding

eigenvectors {v}s are the mode shapes.

Each eigenvalue ks and its corresponding eigenvector'{v}s define

a Rayleigh wave mode which can exist in the layered region and has the

displacements {6)s given by

{6}S {vs} exp (int - ik, x) (2.25)

where a is the participation factor for the sth mode. If

{v}= -viv 2 - v v 4 .... - v2n-l v2n> (2.26)

is the "adjoined" of {v}, obtained by changing the sign on all hori-

zontal displacements (odd elements) in {v}, and W, {v} and {7} are

the complex conjugates of k, {v} and{}, respectively; then the eigen-

value problem, eq. (2.23) has the property that if

(a) k with {v}

is a solution, then

(b) -k with {V}

is another solution, and, in the undamped case,

(c) rwith{7} and

(d) -T with {v'}

are also solutions.
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These solutions are linearly independent with the exception that the

solutions (c) and (d) depend on (a) and (b) if k is purely real or

purely imaginary. The eigenvectors are orthonormal in the sense that

they satisfy the matrix equation

[K][V]T[A][V][K] - [V]T[C][V] = 2 [K] 2  (2.27)

in which [K] is a 2n x 2n diagonal matrix containing one of each of

the eigenvalues + ks, s=1,..... , 2n, and [V] and [V] are 2n x 2n

modal matrices containing the corresponding mode shapes {vs} and {vs'
S

s=l,..... , 2n, columnwise. So, the eigenvectors are orthogonal for

kr 0 ks; and the case of kr = ks is used to normalize them.

However, since the motion is generated by external forces acting

in the irregular region, and the layered regions R and L are open in

the positive x-direction and negative x-direction, respectively (see

Fig. 2-1), energy considerations dictate that the transmission of

energy must be positive-that is, away from the source-so that energy

density does not increase with distance. Then, from the 4n solutions,

only 2n wave numbers ks must be selected, which are those which decay

or propagate energy away.

Then, a dynamic stiffness matrix for the infinite layered region

R can be found, given by

[R] = i[A][V][K][V]m' + [D] (2.28)

where [A] and [D] are determined from eqs. (2.21a) and [2.21b). Matrix

[R] relates the modal forces at the boundary of the finite element

region with the layered region R, with the corresponding nodal displace-
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ments. This matrix is symmetric, according to the dynamic reciprocal

theorem [12].

The dynamic stiffness matrix EL] for the left layered region L may

be computed as in eq. (2.28) just by changing the sign of all coef-

ficients that relate horizontal forces to vertical displacements or

vertical forces to horizontal displacements.

These matrices [R] and EL] are added to the matrices in eq. (2.19)

and the system of equations is solved, giving as solution the displace-

ments {ul. Representing by u}R the displacements in the boundary

nodes, the mode participation factors {a} to be used in eq. (2.25) are

given by

{} = [V]~ 1 {u}R (2.29)

The analysis of axisymmetric Rayleigh wave motion in a layered

system is similar to that for plane Rayleigh wave motion described

above. This analysis leads to the determination of the pertinent dy-

namic stiffness matrix [R] for the layered region R around the finite

element region I, as

[R) = r0(i[A][$][K[]~ 1 + ED] + [E]) (2.30)

where r 0 is the radius of the region I. Matrices [A] and ED] have

already been defined. The matrix [0] contains the vectors {$}s, s=1,

.... , 2n columnwise, which in turn are found from the eigenvalues

k and eigenvectors {v}s as in eq. (2.23). The elements of {$}s are

$ = vS a j = 1, 3,... , 2n-l (2.31a)
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and = v bs j = 2,4,... , 2n (2.31b)

(2) (2)
with as• HI   (ksro) and bs = i H (ksr ) (2.31c)

where odd values of j refer to radial displacements and even values

to vertical displacements. The matrix [p] consists of the column

vectors{$}s= 1,... , 2n, which have the elements

s = v as=2,4,... , 2n (2.32a)

and $ = vS a   j= 2, 4,... , 2n (2.32b)

The functions H (2  and H 2) are the Hankel functions of order

zero and one of the second kind, respectively.

The matrix [E] is assembled from matrices [E],j= 1, ... , n

given by
2 0 1 0

G. 0 0 0 0 (.3
[E] = al (.3

j ro 1 0 2 0

0 0 0 0

as shown on Fig. 2-4, by substituting [X] by [E] J.

Matrix [R] is symmetric, and relates the nodal forces per radian

to the simultaneous nodal displacements at the boundary r = r .
The equations and the procedure described above for both plane

and axisymmetric Rayleigh wave motion were developed and programmed

by G. Wass [56. The result is a program called PLAXLY (University of

California at Berkeley, June 1972) written originally for a CDC 6400
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computer. Since then, PLAXLY was revised to run in an IBM 370 and ex-

tended to include rock motion, either horizontal or vertical for the

plane strain case, and only vertical for the axisymmetric case. This

originated the PLAXLY2. A Users' Manual is provided in the Appendix.

2.5 Rock Motion

The determination of the transfer functions of the soil due to

harmonic base motion (at the rock level) is of importance for earth-

quake studies. These functions can be found by prescribing either a

horizontal or vertical displacement, harmonically varying with time,

at the bottom boundary of the soil stratum. Then, the resulting mo-

tion at a point of the structure resting on the soil, or the displace-

ments at any point of it can be determined. Of particular interest

are the free-field displacements at the surface of the stratum and

the motion of the base of the structure, the latter defined by the

horizontal and vertical displacements at its bottom and the rocking

about an axis perpendicular to the x-z plane.

The inclusion of rock motion is described below, first for the

plane strain case, and then for the axisymmetric case, which has as

limitation the analysis of vertical motion only.

(i) One-dimensional amplification.

This will be referred to as 1-D amplification. This simple theory

considers a horizontally layered soil,,extending to infinity at both

left and right. Its motion can then be analyzed from a vertical slice

of the stratum. This method is well understood [48] and will be de-
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scribed only briefly. Refer to Fig. 2-5.

Let uR be the motion at the rock, z = H; and

u(o)- uR be the relative displacement of the soil.

The differential equation of motion for a one-layered system is

P = G - n - P (2.34)

where P = mass density

G = shear modulus

n = coefficient of viscosity

If the base motion is harmonic,

UR = Ce (2.35)

the steady state solution is of the form

i Pt
u = U(z) e (2.36)

Now, letting G___ (2.37)

and applying the boundary conditions

U(H) = 0, U' (0) = 0 (2.38)

where H is the thickness of the layer, the amplification function

A() is obtained as

A() u cospH (2.39)

R
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Calling

1 + (nQ/G) 2

T + (n/G)- 1

1 + (rG/G)2

the amplification function can be written as

1

Vcos 2 ci cosh2 C2

If there is no viscosity, i.e., n= 0,

A(Q) = 1
cos c2

and A() = if cos 2 = 0, which implies

+ sin2 Fi sinh 2 2

(2.41)

(2.42)

-=T = Wn (2.43)

the nth natural frequency of the layer.

The critical value of the viscosity, above which no harmonic

motion can occur, is given by

(2.44)crit =

Consider the case when the viscosity is inversely proportional

to the frequency (hysteretic damping), that is

tan 6 =n = constant (2.45)G

/f 1 I
c2 =

(2.40a)

(2.40b)YI

IA(A)|

HSI P
YT

HG
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and small. Then, the amplification at Q = wn will be

4
In' = (2n-1 )7tan6

In this case,

tan 6= 2 ( 1Wt
(wcri t

giving

|A(owndI (2n-1)iT- 268

which implies that the successive peaks are in the relation 1, 1/3,

1/5 ....

For this case of considering a constant percentage of (hysteretic)

damping $ at all frequencies, the maximum amplification occurs when

cl sin 2 cla = c 2 sinh 2 c2 a

C1 ; l-1+ 4 1
ci-l +1

S1 + 421

c= 1 1+482 _
rT 1+ 4 a2

a = SH =
V~f C5

giving, for the value of a which satisfies eq.

Amax

(2.49)

(2.50a)

(2.50b)

(2.51)

(2.49),

1
(2.52)

/cos" cia-cosh'c2a + sin' cla-sinh' c2a

(2.46)

= 28 (2.47)

(2.48)

where
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It is worthwhile to note that, when $ > 0, the maximum amplifica-

tion Amax is finite, and occurs at a value a > 7r/2. The value a = i/2

corresponds to infinite amplification in the undamped case, for the

first natural frequency.

A multi-layered medium can be considered as a discrete closed-

coupled model of masses, springs and dashpots, as shown in Fig. 2-6,

where

Mi 2 Pi h i

M - (P, h _

K G

C =

(2.53a)

+ P h), j 2,... , n (2.53b)

(2.53c)

(2.53d)

Considering a harmonic base motion,

uR a ER , 6R = iQER e it, UR 0 _Q2ER ei~t (2.54)

the steady state solution, assuming that all the masses are vibrating

with the same frequency Q is, for the Jth layer,

u1  E e t, %= iE ei t, . . n 2 E e i t (2.55)

and noting that

K. + iQC.= a 1Gi~~
KH+17 (G i + in

= -(1+ 120)

• GJ

where GC is the complex shear modulus of layer , j = 1,... , n, the

dynamic equations of motion can be written as

(2.56)
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-M i 2 El + Gc (Ei - E2) = 0

-M2Q2E 2 - GI (Ei - E2) + G2 (E2 - E3) = 0

-M3 2Es - GS (E2 - E3) + G3 (E3 - E4) = 0 (2.57)

-Mng 2E - G m(E - En) + G (En - ER) =0

from which the values of E , j=l, ... , n can be found, defining the

shape of the vibrating system. And, particularly,

A -() = Ei (2.58)
ER

This method has been slightly improved for programming in PLAXLY2,

by considering a set of consistent masses, thus giving, for horizontal

motion due to S-waves propagating vertically,

a, bi   u 0

bI a2 b2  u 0

b2 a3  b3  u 0
- - - - - - - (2.59)

b 0bi-_ a bj u 0

bn-i an un pn

where the elements a and b are the ones resulting from the assem-
blage of

[C] = [G] - 02 [M]j (2.60)
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wi th G c -G

[G] = [-](2.61a)
3 -G G c

[M] = Ph (2.61b)
1/6 1/3

j 1,... , n, where n is the number of layers, and

Gc

p ) + hn % uR (2.62)

is known.

For vertical motion caused by a harmonic vertical prescribed

displacement wR at the rock, the analysis is essentially the same

as above, the only difference being the use of (2G + Xc) instead of

G c in the preceding equations, and that

2G c + Ac

p G h n + 2 hnPn wR (2.63)

is used in eq. (2.59)

(ii) The problem of including base motion in the system shown in

Fig. 2-6 can be formulated as follows:

- differential equations:

L (uw) = 0 , Lz(u,w) = 0 (2.64)

- boundary conditions:

u(x,H) = uR , w(x,H) = wR (2.65a)
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az(x,0)= 0 ,

u(x 0,z)= f(z) ,

Txz(x,0)= 0 , x > x

w (x05z)• g(z)

where x = x 0 corresponds to the boundary between the finite element

region and the layered system; and az and Txz are the vertical nor-

mal stress and shear stress, respectively. The derivations will be

made for the right layers.

This problem can be split in two parts, as follows:

A. Consider the homogeneous boundary conditions, with solution

(u,w) • (U, '). Then

L= 0
u (xH)= 0

z x90) 0

u (x0,z)= f(z)

S z() = 0

, '(x,H) = 0

xz(x,0) = 0 , x > x0 (2.67b)

w (x0,z) = §(z)

These partial displacements ' and ' can be written as linear

combinations of modal shapes u and , j= 1,... , n, respectively,

u (x,z) = a U (x,z) (2.68a)

w (x,z) = w (x,z) (2.68b)

where
0 (x0,z)= i (x0,z) = f(z) (2.69a)

w (x0,z)= E (x,z)= §(z) (2.69b)

B. Now, take the actual boundary conditions, and obtain a particu-

lar solution (u,w) = (G~w),

(2.65b)

(2.65c)

(2.66)

(2.67a)

(2.67c)
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L(,Q)=0 ,Lz(u,) = 0 (2.70)

Q(x,H) = uR , (x,H) = wR (2.71a)

6e(x,=O)= 0 xz (x,0) = 0 , x >x0 (2.71b)

G(x0,z)= f(z) , ^(x~z) = ^(z) (2.71c)

and then
G(x,z) = G(z)= f(z) (2.72a)

^(x,z) = ^(z)= ^(z) (2.72b)

satisfy eqs. (2.70) and (2.71a) through (2.71c), where f(z) and a(z)

are the displacements caused at x a x0 due to the base motion as in

the 1-D theory.

Superimposing solutions (A) and (B),

u = u + 9, w = w + w (2.73)

f = f + f , g= g + g (2.74)

eqs. (2.64) and (2.65a) through (2.65c) are satisfied.

Therefore, for x > x

u= u(x,z)= Eai(x,z) + 6(z) (2.75a)

w = w(x,z)= Eag w(x,z) + w(z) (2.75b)

The participation factors a , j = 1, ...,2n are found from

eq. (2.29), where fu}R is the vector representing (xoz) and G(xotz).

The boundary nodal forces at x = x 0 acting on the right layered

system are given by

{fP} = [R]{} ((2.76)
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for displacements i and w, where the matrix [R] is found from eq.

(2.28), and

}T K <U/ w 2 W2 .....Un9Wn> (2.77)

where n is the number of right layers. And for the displacements

u and w, these forces are

{P} = [T]{ } (2.78)

where the matrix [T] is of order 2n x (2n + 2), which will be deter-

mined by eq. (2.83), and the vector {}is

{6}T = u1 'i wa 2 +2 0 n+1> (2.79)

has (2n + 2) displacement components. The vector {P} is the force

vector which has to be applied on the layered region at x= x 0 to pre-

serve the one-dimensional motion. The elements u and are

clearly the prescribed horizontal and vertical displacements at the

rock level, respectively.

The forces {P} must be statically equivalent to the stresses

at x= x0; the stresses are obtained from the strains at that boundary,

which in turn are obtained from the displacements,

= = 0 (2.80a)

z = . (wj+ 1 - w j) (2.80b)

x (j+- J) (2.80c)

z+1 3 (2.81a)



-51-

?x= Gjz ( - t ) (2.81b)

for the jth layer. Therefore

A

p2j-1 0 4 0 V2j-1

AA

~2j , 1 - 0 G 0 v2j (2.82)

23+2 -G 0 G 0 v2j+2

and, after assembling the n submatrices, it is found that

{P) [DDR]{6 [T] }6 (2.83)

where the submatrix [D] is determined from eq. (2.21b), and the sub-

matrix [DR] relates the displacements and forces at the rock level.

Considering now the finite element region I, where external

forces (P may be acting, the equations of equilibrium are

([K] - 2 [M]){6} a {p} I- {P}R (2.84)

where

P}R ) + (P)

[R]{6)} + [T] {6} (2.85)

with the convention that the forces {P}R are put in the proper posi-

tion according to the 2m-element vector 6, where n is the number

of nodes in the finite element region, and that the matrix [R] and

the displacement vectors {6 and {6}are extended to order 2m by fill-

ing with zero elements the positions not corresponding to the boun-

dary. So,
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{P} R = [R] {}- [R] {} + [T]{} (2.86)

([K-2[M]+ [R]) {6 }={P} + [R]{ }- [T]{g} (2.87)

Eq. (2.87) then gives the desired equations of equilibrium if

only the right layer system exists, with equivalent forces given by-

{P) {P} + ([R]- [T]){}

= {P} + ([R]- ED DR]){ } (2.88)

where it must be remembered that the elements of the matrices and vec-

tors have to be positioned properly. The vector {6} is clearly the

solution of eq. (2.59) of the 1-D theory.

For the left layered system, due to the antisymmetry of signs,

the boundary forces are

{P} EL]{}- ([L] + ED DL]) {} (2.89)

where matrices [L], ED] and [DL] have a similar meaning as above.

Adding the two layered systems, a complete set of equations of

equilibrium is obtained as

([K] -S2[M] + [R] + [L]){6}

- {P}I + ([L] + ED DL){6}L + ([R] - ED 'DR 6 R (2.90)

where {6}L and {6}R are the 1-D solutions for left and right layered

regions, respectively.
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(iii) For the axisymmetric case, with boundary of the layered

system at r = ro, an analysis parallel to the one described in sec-

tion (ii) gives the equivalent forces

{P} • {P} 1 + ([R] - rE [D DR)){&} (2.91)

with [R] given now by eq. (2.30), and where only vertical forces

exist due to the one-dimensional motion, since only vertical pre-

scribed displacements at the rock are considered in this case. Then,

the equilibrium equations are

([K] - Q2[M] + [R]{6} a {P} + ([R] - r [D IDR){f} (2.92)

Eqs. (2.90) and (2.92) must be modified to account for the

prescribed displacements in the bottom of the finite element ele-

ment region. To avoid obvious complications, all the interface of

the soil with the rock is assumed to vibrate with the same amplitude

and phase.

2.6 Compliance Functions

By dynamic ground compliance is understood the ratio between

the response of the (rigid) footing, in the sense of displacements

or rotations produced, and the exciting force. If there is a har-

monic force P applied on the footing in Fig. 2-1, there will be

displacements uk(j,k = x,zO) at a given reference point on the foot-

ing, such that if

P J PI eit (2.93)
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then uk = ukeit-6kj) 
(2.94)

where Okj is the "phase angle" by which the response uk lags the

excitation P .
Therefore, for a given frequency Q, the dynamic ground compli-

ance relating uk and Pg is

uk u ~ iekjIFe ie
uk uk kj ~QkFkj = P = P e =IF | e (2.95)

which can be expressed as

Iil

Fkj = Fkj + i Fkj (2.96)

where F I= Re (Fk j)= IFk jI Cos ekj (2.97a)

Fkj Im (Fkj) = - IFkj Isin ekj (2.97b)

If k = j, the dynamic ground compliance will be referred to sim-

ply as "compliance." Otherwise, it will be called "cross-compliance."

The functional relation between the compliance (or cross-compli-

ance) and the frequency is called the "compliance function," It de-

pends on Poison's ratio V of the soil. Then

Fkj = Fkj (v ,t) (2.98)

It will be useful to introduce dimensionless parameters

a H
a 71 2 99)

S .
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a B (2.100)
s

F
f Qk, (2.101)

kjFkj(0)

where

Cs a velocity of S-waves in the medium

H = stratum thickness

B = half-width of (rigid) footing

F k(0)= Re(Fkj) for 2= 0, i.e. static

These parameters are adequate for a uniform stratum. Otherwise,

reference variables have to be chosen.

Three kinds of exciting forces are considered:

(1) A vertical force Pz

(2) A horizontal force P

(3) A rotational moment P about the y-axis.

The system used has a vertical axis of symmetry. Therefore,

the vertical motion w is an independent and uncoupled motion. How-

ever, the horizontal translation u (swaying), and the rotational

motion $ (rocking) are coupled motions.

The relationships between forces and displacements (in the gen-

eralized sense) can then be written

Fz Pz = w (2.102)

for the vertical motion, and



-56-

F F Px u

(2.103)
F xF P $

for the coupled swaying and rocking, where F = F

Energy considerations dictate that the imaginary part of the

compliance functions has to be always negative. The external energy

(work rate) for harmonic motion is

E= Im ({6}*{p}) (2.104)

where {6} designates either w or{u, }Tand {P} designates either

Pz or {PxPO}T. The vector {6}* is the conjugate transpose of {6}.

To haveE> 0, it is necessary to have

Im ({6}*{P}) > 0 (2.105)

giving the conditions

F1 P < 0 (2.106a)

and

F P + 2 F P P + F P < 0 (2.106b)

by virtue of eqs. (2.102) and (2.103), respectively.

This implies then, that

F < 0 (2.107a)

F <0 (2.107b)

F < 0 (2.107c)

< F F#*   (2.107d)

since eqs. (2.106a) and (2.106b) have to hold true for arbitrary values

of Pz P and P independently. Note that, however,-the imaginary part
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of the cross-compliance function F can be either positive or nega-

tive, but with the restriction given by the inequality (2.107d).

The compliance functions can also be thought as the Fourier

transform with respect to time t, i.e., a complex transfer function,

of displacement components-to an exciting force associated with the

dynamic problem of a massless foundation-ground system considered

here. That is, if

U(N). F[{w,u,$}] = F[u(t)] (2.108a)

and F(Q)= F[{Pz' x'P$ }] 2 F[P(t)] (2.108b)

where F is the operator indicating the Fourier transform with re-

spect to time t, the compliance functions F(Q) are the output-input

ratio

F(Q) = T)(2.109)

in the frequency domain.

The dynamic ground compliance converges to a finite value as

the stratum thickness H increases, and for any frequency Q, except

that in the case of the half-space (or more properly, half-plane),

the static solution, Q = 0, is undefined within an arbitrary con-

stant [ ] .

The compliance functions are affected by the percentage of crit-

ical damping,8. If these functions are known for the purely elas-

tic case, FkjE, the solutions for a given a > 0 can be found [ 8]

approximately by setting
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F + F •

(FkjE + 28 Fkj E) + i(Fkj E - 28 FkjE)
1+ 4a2

(2.110a)

Therefore, the relation between elastic and viscoelastic compli-

ances are ' "

F Q 28 kj•* (2.110b)
1+ 48

if

F -F jE 28 FkjE (2.110c)kj 1 + 4$2

This approximation neglects the coupling between sliding and
I I

rocking, and is undefined when either FkjE or FkjE tends to + o

at resonance frequencies, since the presence of damping limits the

compliance functions to finite values. In the elastic case, there

is no radiation damping until the first resonant frequency of the

layer is reached.

The inverse of the dynamic ground compliance gives the displace-

ment-force transfer function of a massless foundation-ground system,

which means the complex stiffness-of the system. Then-, denoting by

Kkj the stiffness relating a displacement uk to a force P ,

K - (2.111)
fz

for the vertical motion, and

K K F F

a (2.112)
KO K 00F OxF0
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for the coupled sliding and rocking, where K = K *

The knowledge of the compliance functions offers the basic data

for estimating the effects of soil-structure interaction. These

functions have applicability to various dynamic problems of struc-

tures founded on or embedded in soils; for example, in foundations

for machinery or in seismic response.

2.7 Response of Structures with Mass

The present study assumes a rigid structure represented by a

rigid strip footing resting on or embedded in a soil stratum for

either horizontal or vertical excitation; and the possibility of hav-

ing a circular rigid footing is provided also for vertical excitation.

It is of interest to know the response of a structure with mass due

to a prescribed harmonic motion of the rock underlying the soil stra-

tum, as well as to compare this response with the free-field motion

induced at the ground surface.

(i) Vertical Motion

Let M be the mass of the structure, wA its vertical displacement,

and wAo the response of the structure without mass. These responses

are related to the stiffness function Kz given by eq. (2.111) as

K (wA - W Ao £ 2 M WA (2.113a)

Then, w= K~
hWA K -z2M WAo (2.113b)

z
which can be expressed in terms of the compliance function Fz as
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WA = 1 WAO
1 - nNF oz

(2.114)

ii) Coupled swaying and rocking

The equations of equilibrium for the structure shown in Fig. 2-7

can be written as

[KA({6A} - {6Ao}) = [JA]{6A} (2.115)

where
[KA] = stiffness matrix at point A

[JA] = inertia matrix at point A

{6A} = displacement vector at point A, for struc-
ture with mass

{6Ao}= displacement vector at point A, for masslessstructure

The stiffness matrix [KA] is the same stiffness matrix [K] given

by eq. (2.112), since the stiffness (and compliance) functions are

referred to point A. The inertia matrix for point A can be found from

that at the center of gravity C, [JC],by the following transformation:

1 0

[C = M (2.116)
0 S2

where M is the mass of the structure, and S is its radius of gyration

about the center of gravity. From Fig. 2-7, it is seen that

PX{L

PO A -E

0 P

1P Pc

(2.117a)
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1 -E u

0 1

{; n2 M

= C 2M0

Then

=42M
PO -E

$ A

and calling

0

0

S2

0

[A]=
-E

the result is

1

[JA] = [A] [JC [A]T = M
-E

To simplify notation, the subscript A wi

will be understood, unless explicitly noted.

librium for a structure with mass can be put

by setting Lf

[f] = L xx x$

fx f$

-E

(2.119)
E 2+S 2

11 be dropped, which

The equations of equi-

in a dimensionless form

(2.120a)

as the normalized compliance matrix, where any element f is

[u

1 fJ

But

(2.117b)

u

J u 2[ C CPC
(2.117c)

0

ij (2.118)

= Q2 [iA fA} (2.ll7d)

1 $A
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f (F.) R (0) = F.(Q) • (2.120b)

where li is a pseudo-static stiffness, equal to the reciprocal of

the real part of the static compliance function, which in turn can

be written as

xxo K G (2.121a)

7 T O a 'K X0GB
x40  o (2.121b)

o GB2  
(2.121c)

with B being the half-width of the strip footing, and G the shear

modulus of the soil. The compliance matrix [F] can then be written

as F F :
[F]

F F

1 0 / x k X K 4 1 0

0 1/B /KO 0 1/B

[B]-T[.] [B]-' (2.122)

where 1 0

[B] L BJ (2.123)
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x xx

L r]=KX

fx X

is dimensionless; and [B]-T denotes ([B] )T = ([B)T -1

Since [K = [F] 1

[K] = G [B] [J- 1 [BIT

b =B

E
e IF

-S
B

M2

PB

I

pB 4

a =

a0 =
s

MS
= 2 s2

-1 -e

-e e 2 + s 2

eq. (2.115) can be written as

{6A } =([F]~- B a 2 [-j-l [ 1[]~

(2.128)

(2.129){6Ao }

and

(2.124)

Letting

(2.125)

(2.126a)

(2.126b)

(2.126c)

(2.126d)

(2.126e)

(1.127a)

(1.127b)
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where the coefficient matrix of {6Ao} is dimensionless. Therefore,

once the compliance function and the response {6Ao} due to a certain

excitation are known for a structure without mass, the response for

a given combination of mass M and mass-moment of inertia Ic can be

determined using eq. (2.129).

2.8 Structure - Soil - Structure Interaction

2.8.1 Generalities

The problem of structure - soil - structure interaction is

concerned with the influence of an adjacent body on the response of a

given structure. This mutual influence takes place because both

bodies are connected through the foundation soil, as shown in Fig. 2-8.

U

3
H

soil G

Figure 2-8

rock
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If one of the structures is excited, both of them will experi-

ence displacements u, $4 and w1 , i = 1, 2. Also, if the soil is set

in motion, the response of the two structures will be different than

if only one of them existed. As before, only harmonic motion will be

considered in this work; and the soil is homogeneous, isotropic and

linearly elastic with hysteretic damping. The two structures are

represented by parallel rigid strip footings in the y-direction. The

global system of coordinates and the basic variables are shown in

Fig. 2-8.

In principle, this problem can be solved by using the program

PLAXLY2 described before; but the large number of finite elements that

would be needed to cover the area between the two footings makes its

use uneconomical. Furthermore, symmetry cannot be used in the general

case. The approach that is explained in the next subsection is an

indirect one, but it is more expedient and general.

Only structures founded on the surface of the soil will be stud-

ied here.

2.8.2 Stiffness Functions

Consider a set of equally spaced points on the surface of a

soil stratum of unit depth, as shown in Fig. 2-9. Either a horizontal

or a vertical line load (in the y-direction) will produce both hori-

zontal and vertical displacements throughout the soil surface. Since

the points under consideration are equally spaced, it suffices to deter-

mine the displacement patterns for the loads applied at the origin of
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global coordinates; and for a load at any otherpoint a distance x

away, this pattern just shifts the same distance x.

-I

1- Zt - c(0 )

m P

1-----------.0 * --1

k

n pointsDints

Z2a

Figure 2-9

The first footing (Fig. 1) coversm points, and has a total width

2B, = (m-l)•Ax, and the second footing (Fig. 2) covers n points, with

a total width 2B2 = (n-1)-Ax.

Now, an influence matrix [F] can be written, with elements fkj'
relating forces at j and displacements at k. This matrix is frequency-

dependent, that is, [F] = [F(w)]. Order the forces and displacements

so that odd position-numbers correspond to the horizontal direction,

i.e., P, and u; and even to the vertical direction, i.e., Pz and w.

Then, the following relation holds,

I'%-
I 91

H=J
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[F 11 ] [F12

(2m x 2m) (2m x 2n) (2m x 1) (2m x 1)
< > (2.30)

[F2 1] [F 22 3 2 (V2

(2n x 2m) (2n x 2n) (2n x 1) (2n x 1

where the order of the submatrices or subvectors are shown in paren-

theses. The vectors {P } are the forces applied at the points in

the location of footing i, i = 1, 2; and {V} are the corresponding

displacements,

A vertical line load produces symmetric vertical and antisym-

metric horizontal displacements, and a horizontal load produces sym-

metric horizontal and antisymmetric vertical displacements. Also,

u at point k due to a unit force P pplied at point j is equal but

opposite in sign to w at point k due to a unit force P) applied at

point j. Therefore, the influence matrix [F] is symmetrical, satis-

fying the law of reciprocity [15]. This matrix can be thought of as

a (frequency-dependent) flexibility matrix for the soil surface.

The matrix [F] is of order (2m x 2n). Considering that the two

footings are rigid bodies, there are only three independent degrees

of freedom for each of them, namely, a horizontal displacement ug,

a rotation about the center-line $i, and a vertical displacement wg .

Denoting by superscripts the number of the points under either

footing, the conditions of rigid body motion are
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UP = U2 u =r .....= u (2.131a)1 1 1 (213a

w = w.- E $ (2.131b)

where r = m or n, i= 1 or 2, and 1 < k < r. The local coordinate

of point under footing i is just the distance-between that

point and the center-line of the footing.

Calling

{V*}= {u $ l u2 2 w21T (2.132a)

and

{P} ={P, P Pz x2 $2 z2 T (2.132b)Xl l i x2 Q~ z2

the condensed displacement and force vectors, respectively, a con-

densed stiffness matrix can be found by imposing conditions (2.131).

They are equivalent to writing

{V} = [T] {V*} (2.133)

where [T] is a transformation matrix of order (2m + 2n) x 6,

given by



t (u - 0

0 0 L

t (t-u - 0

0 0 t

0 0

1 0 L

L )- 0

0 0 L

0 0 0

0 0 0

0 0 0

0 0 0'

0 0 0

0 0 0Q

0 0 0'

0 0 0'

0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

0

0

0

0 0 0

0 0 0

0 0 0

L
L (w)-0

0 0 1

0 0 - 0
0 0 t

0 0

0 (0 -
0 0

0 0

I

0

L

0

L

[] [0])

[[0) [L.t]

-OL-

(tiE 10Z
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Therefore

[F]{P}= {v} = [T] {V*}

1 {*..P = [F]~ [T]J{V } (2.135)

Now, the total forces acting on the footings are just the re-

sultants of the reaction forces at the r, r = m or n, points under

each footing, i.e.,

x I x
= )

p r p

z z

P)
i £=1 1

p M)
z.

i= 1or 2

= m or n

It can be easily observed that this statement is equivalent to

premultiplying the vector {P} by [T]T ;so,

{P } = [T]T{P} (2.136b)

which, after introducing into eq. (2.135) gives

{P *} = ([T]T[F]~I[T]){V*}

= [K*]{V*} (2.137)

(2.138)[K*]= [T]T [F]~1 [T]

is the desired condensed stiffness matrix, of order (6 x 6).

(2.136a)

where
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2.8.3 Effect of Mass

The effect of including mass in the footings is just to add

an inertia term to the stiffness matrix [K*]. The inertia matrix

is given by I

[Ji

where

[ 1 ]

[0]

[2]

(2.139)

[Di] = Mi -E

0

The meaning of E and S is

inertia term is

-E.

E + S.
1

0

0

0

1J
, i = 1, 2 (2.140)

the same as in Section 2.7. Since the

[J] {*}= - Q [J] {V} (2.141)

the relation between forces and displacements in the two footings is

* 2 * *
([KI]- [J]) {V } = {PI} (2.142)

Note that the stiffness matrix [K*] already includes the effect

of the mass of the soil.

The displacements for a given pair of masses can be expressed

in dimensionless form. For a set of loads P' P ' Pz' x2' $
and Pz2 acting independently, the load vector {P } is now a diagonal

matrix,

[P*] = diag (P x P P P P$ z x2 2
P )
z2

(2.143)
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and the resulting displacements form a (6 x 6) matrix [V*], where

each column is the vector of displacements for one of the applied

individual loads. Calling

[B] = diag (0 B 0 0 B2  0) (2.144)

the dimensionless-displacements [V] are expressed by

[V] = G[B]T V*] [B] [P] (2.145)

2.8.4 Rock Motion

If a horizontal motion uR e is prescribed at the rock level,

the displacements at the free surface of the soil are u0 ep, with

only horizontal components, as-predicted by the 1-D theory.

The displacements on the footings are given by

[K*] ({V*} - {V}) =2 [j {V*} = {0} (2.146)

where

{V ={u 0 0 u 0 0}0 0 0

= { 0 0j1 0 0}T (2.147)

and ({V*}- {V0}) is then the relative motion of the footings with

respect to the free-field motion. Then,

([K*] - .2EJ) {*} = [K*] {VO}   (2.148)

The right-hand-member-is equivalent to u0 {R}, where.{R} is the

vector formed by adding the first and fourth columns of [K]. The



-74-

amplification of the motion u is then given by

([K*]- 02[J])(l {V*}) = {R}
u0

In terms of dimensionless displacements, the amplification is

{u1/u0 $ B /u0 w/u 0
u2/u0 $2B2/u0 w2 /U0}T

(2.149)

(2.150)
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CHAPTER 3 - EFFECT OF LAYER THICKNESS

3.1 Introduction

The majority of studies on the dynamics of ground-foundation

systems have dealt with the case of a footing resting on an elastic

half-space. In actual situations, the soil (as distinguished from

rock) has a limited depth, and the foundation may be partially em-

bedded. In this work, the soil is represented by a homogeneous,

isotropic and viscoelastic material resting on a rigid half-space

(rigid rock). For simplicity, the layer has been assumed homogene-

ous throughout the whole domain, and of uniform thickness. The foun-

dation is represented by a rigid strip of infinite length.

This chapter explores the nature of the amplification, compli-

ance and stiffness functions, for a strip footing resting on the

surface of the soil as a function of the layer thickness. The ef-

fect of embedment is then studied in Chapter 4.

3.2 Amplification Functions

The amplification function, as used here, is the transfer func-

tion for the motion from the rock level to the surface of the soil

or to the bottom of the footing (point A in Fig. 3-1). Therefore,

this function is given by uA/uR, where uA is the magnitude of the

horizontal displacement at point A, and uR is the magnitude of the

horizontal displacement at the soil-rock interface.

Resonance phenomena do not appear in the case of a half-space.

On the other hand, in the case of a stratum over a rigid medium, waves
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are reflected at both boundary surfaces of the soil layer. There

will be as a result a set of frequencies, function of the layer

thickness and the-,elastic properties of the soil, at which resonance

occurs for harmonic motion. If the medium is perfectly elastic, the

amplitude of the resulting displacements becomes infinity at these

frequencies; but if some amount of material damping exists, the dis-

placements are limited in magnitude, due to the energy loss in the

viscoelastic medium.

A U

pz- mOssIess footing
WA P

H . .j sod
H

rock (iofinitely sfif 9

Figure 3-1

According to the theory of one-dimensional amplification[ ],

the resonant frequencies of the stratum considered in this study coin-

cide with the natural frequencies of vibration of a prismatic beam

having the same mass density p as the soil, and with a length equal

to the layer thickness. For horizontal vibrations, this equivalent

beam has the same shear modulus G as the soil, but an infinite bend-

ing stiffness, i.e., it is a pure shear beam. For vertical vibrations,
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the equivalent beam has a modulus (X + 2G), where X and G are the

Lame's constants of the soil, and deformsonly axially. The boundary

conditions are in both cases the same as for the actual soil stratum,

one end fixed and the other free.

For transverse (horizontal) vibrations, the resonant frequen-

cies w are
= 2n-1 I , n = 1, 2, ..

Cs = = shear-wave velocity (3.2)

a= Q = frequency ratio (3.3)
Cs

these resonant frequencies can be expressed as resonant frequency

ratios.

an 2n-1lx2n1T (3.4)

For longitudinal (vertical) vibrations, the resonant frequencies

are

W = 2n-1 +2G ,on 2Hn n = 1, 2, ... (3.5)

The amplification function for horizontal vibrations is shown

in Fig. 3-2, where u /uR is the 1-D amplification, u 0 being the ampli-

tude of motion at the free surface. This function is shown for four

different percentages of hysteretic damping 6. The amplitudes of-suc-

cessive peaks go in the ratio of 1, 1/3, 1/5, ... . Fig. .3-3 shows

the maximum amplification, corresponding to the first resonant frequency,

and with

(3.1)
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vs. the percentage of hysteretic damping. In the range of small 0,

say less than 20%, the maximum amplification is inversely propor-

tional to the amount of damping. It is clearly seen that an error

in the prediction of damping can lead to significant under- or over-

estimations of the surface motion in the neighborhood of the reson-

ant frequencies.

For the case of a massless strip footing resting on the surface

of the soil stratum, this 1-D amplification is the same as the trans-

fer function given by uA/uR, that is uA = u .

3.3 Compliance and Stiffness Functions

3.3.1 General Characteristics

Consider a rigid massless footing welded to the soil, and a

harmonic force or moment applied at its base. The resulting displace-

ment and rotation provide the frequency dependent flexibility coef-

ficients:

F xx= horizontal displacement due to unit horizontal force;

F = rotation due to unit moment;

F o= horizontal displacement due to unit moment; and,

Fo = rotation due to unit horizontal force;

where Fx = Fx according to the law of reciprocity [15]. The com-

pliance, or flexibility, matrix [F] is then defined as

[F]= F ; F0 (3.6)
F F 0
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The inverse of this matrix is the stiffness matrix [K], given

by

[K] = [FK xx K X (3.7)
K 0 K #

which relates resulting forces to prescribed displacements.

Then, the following relations can be written:

[F] {P} = {U} (3.8)

or

[K] {U} = {P} (3.9)

where
u

{U} = = displacement vector (3.10)

{P} { = force vector (3.11)

with the displacement and force components as shown in Fig. 3-1.

The compliance functions were computed in the frequency ratio

range 0 < a < 2n for ratios of layer thickness to half-width of foot-

ing, H/B, of 1, 2, 4, 8 and 16, by means of the computer program

PLAXLY2 described in Chapter 2. The finite elements used had a maxi-

mum dimension of 1/12 of the minimum wavelength, except that for the

cases of high H/B ratio, the lower half of the soil stratum was mod-

eled with elements 1/6 of the minimum wavelength in depth, but 1/12

in width. The error introduced by using such an apparently coarse

mesh was sufficiently small, since the largest part of energy trans-

mission occurs in the upper part of the layer in the form of Rayleigh
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waves, especially at high frequencies (small wavelengths). A

Poisson's ratio v = 0.30 was used throughout, and the percentage

of hysteretic damping was taken as 10%, except for the case of H/B

= 2, where other values of 0 were considered as well.

Figs. 3-4 and 3-5 show the compliance functions F and F for

the case of H/B = 2 and different percentages of damping. For the

case of no material damping, 8 = 0%, F shows singularities at fre-

quencies w slightly higher than those corresponding to the reson-

ant frequencies wn of the stratum, since only a small part of the

stratum surface is excited by external forces. The first resonant

frequency ratio is alH= 7/2, and the second is a2H = 37r/2, as shown

in these figures by &and (9. The real part of F xxtends to infin-

ity as the excitation frequency approaches Wn, and starts again

from zero just above it; the imaginary part is zero throughout all

frequencies smaller than w0, indicating that no radiation of energy

takes place in this range, and goes from -co to 0 between success-

ive resonant frequencies, showing a finite peak at a frequency just

above that corresponding to resonance for vertical vibrations,

(a1 1= (C /Cs)(w/2), as indicated in the figures by )). Simi-

larly, F has a singularity at a frequency close to a1 , but the

imaginary part has a non-zero value below this frequency, since

rocking is also influenced by shear waves, which have a resonant

frequency lower than that of compressional waves. For finite amounts

of damping, the compliance functions follow the general trend of the

undamped case, but both the real and imaginary parts are finite

throughout the whole frequency range.
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The stiffness functions Kxx and K for the same system are

shown in Figs. 3-6 and 3-7. The horizontal stiffness for zero damp-

ing becomes zero at a ~ alH and shows a singularity at a frequency

ratio close to alv, as seen from the change in Re(Kxx) from -- to

+co across this frequency. The rocking stiffness also shows a dis-

turbance around this peak. Both functions are very wavy for low

values of damping, but smooth out as damping increases. In contrast

to the compliance functions, the stiffness functions have less iden-

tifiable features with respect to location of peaks, but they show

clearly that radiation damping occurs only for frequencies larger

than that of the first shear mode.

While simple consideration of the one-dimensional resonant fre-

quencies of the stratum explains some of the basic features of these

curves, it can only afford a partial explanation for their complete

shape. It must be realized that at any frequency the motion i's the

result of a complex combination of waves. As discussed in ref. [56]

the solution can be expressed in terms of generalized Rayleigh wave

modes. These modes are dispersive; that is, their phase velocity

(velocity of propagation along the surface) depends on the wave num-

ber (and therefore on the frequency). These modes may not propa-

gate below critical values of the frequency and their wave numbers

may change abruptly from complex to real or pure imaginary with a

corresponding change in the modal shape. The result of these vari-

ations is the waviness of the functions which depends on the rela-

tive importance or participation of each mode.
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Consideration of the group velocity

C =Q (3.12)

shows that both C and k become zero at the one-dimensional reson-

ant frequencies. (C = 0 implies that there is no transmission of

energy [ ], thus a resonance condition). But there are additional

frequencies (roots of a transcendental equation) [26, 29] at which

C may become zero for a mode with k # 0, or at which two modes

have the same phase velocity but opposite directions of propagation,

resulting in a net zero group velocity. If there is no damping in

the system, very large and narrow peaks will appear in the compli-

ance functions at these frequencies.

Because these effects are essentially due to singularities at

resonant frequencies, they are considerably decreased if the system

has some internal damping; and as the damping increases, the curves

become much smoother.

In general, these resonant frequencies are functions of only

the properties of the soil stratum, such as the thickness H, the

shear modulus G, and the Poisson's ratio v. They are independent

of the shape and dimensions of the footing.

3.3.2 Effect of Damping. Approximation.

It has often been suggested that the stiffness functions for

an elastic stratum or half space can be used for a hysteretic medium

just by replacing the static stiffness by a value k(1+2i$). The
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real part of the static stiffness is indeed independent of ,although

this is not true for the static compliance since

K
F = K , (3.13a)
XX (1+4e)(K' Kg- K )

and F = (K K , K2  (3.13b)
(1+ 42)0(K K- K X2

If this approximation were to hold over the complete range of

frequencies, one should have

K(O)• K ()+ iK (a) = (K (0) + iK (0)(1 + 21) (3.14a)

or K ()= K (0) - 20K (0) (3.14b)

K ()= K (0) + 20K (0) (3.14c)

Fig. 3-8 shows that these relationships do not hold true and that

therefore the application of the correspondence principle in this case,

as often used, is only approximate.

3.3.3 Effect of Layer Thickness

It is interesting to look first at the variation of the static

compliances and stiffnesses as a function of the thickness of the

stratum. The variation of static compliances against the thickness

to width ratio is shown in Fig. 3-9a for rigid footings resting on

the surface of the soil stratum. These curves apply to the case of

v = 0.30 and 0 = 10%. For other values of damping 8, the correspond-
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ing curves can be found by multiplying the respective ordinates by

1.04/(1+4e). The swaying compliance keeps increasing as the layer

thickness increases; but the variation is slow, less than linear.

In the limit, when H/B + °°, which is the case of the half-space,

F (0) tends to infinity. Therefore, even with very deep strata,

the effect of the rigid rock is felt. On the contrary, the rocking

compliance converges very rapidly to a finite value, as seen from

the small difference between GB2F#(0) at H/B = 8 and 16. This sug-

gests that an effective "bulb of pressure" exists for rocking exci-

tation. The fast convergence of F to the half-space solution in

the dynamic case also occurs, as will be shown later.

Fig. 3-9b shows the variation of the static stiffness against

the H/B ratio, for the case of v = 0.30 and any value of damping.

The stiffness variation gives a better insight to the problem of

static deflections and can be thought of as a coefficient of sub-

grade reaction. The static deflections would be given by

P
u= X for a horizontal load P (3.15)

x x

and $'= for a rocking moment P (3.16)

where '2
K =K (3.17)x xx-

K' 2

K= K - (3.18)4XX
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evaluated at S = 0. Of course, K, = 1/F , and K = 1/F .

For the dynamic case, compliance functions for several H/B

ratios are plotted in Figs. 3-10 and 3-11. They apply only for a

damping of 10% and Poisson's ratio of 0.30. As the stratum thick-

ness increases, convergence to the half-space solution should be

expected. Only Fy and F 0are shown, because the coupling func-

tion F = F is small and erratic.

For the horizontal compliance Fxx, it is seen that after the

first high peak, the functions for different H/B ratios follow a

definite trend, similar to that of the half-space solutions shown

in Fig. 3-12, as obtained by different authors [22 , 31 , 47].

The rapid convergence in the case of rotational excitation,

namely F , is particularly conspicuous. In this case, there are

tensile stresses on one-half of the footing and compressive stres-

ses on the other half at the same instant of time, thereby produc-

ing some cancelling effect on the dynamic response of the soil.

As a consequence, the depth of the supporting rigid rock has less

importance than in the case of translational excitation, where the

stresses under the footing are most likely of the same sign at any

instant of time, increasing the depth of the effective "bulb of

pressure."

Except at the first resonance, the compliance functions fol-

low quite well the trend of the half-space solutions of Fig. 3-12.

The difference is more marked when the stratum is shallTow, since

wave reflections at the rock and free surface are then more impor-
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tant. In this case, the closeness of the rigid bottom does not

allow enough radiation damping, besides producing a stiffening ef-

fect and increasing the resonant frequency.

It is noted that, as the H/B ratio increases, the compliance

functions are more wavy, but this is due to the larger number of

resonance frequencies occurring in the frequency ratio range under

consideration, 0 < a 0 0.5n. However, the series of peaks smooth

out as H/B increases, and also as a increases.

The compliance, and hence the stiffness, functions vary con-

siderably with frequency, thus making it difficult to represent the

system using a one or two degree of freedom model composed of a

mass, springs and dashpots; unless a very small range of frequen-

cies is considered.

The stiffness function K, may become negative for some range

of frequencies, as illustrated in Fig. 3-4 for the case of H/B = 2.

This situation happens only in shallow strata. For H/B = 4 and up

this phenomenon does not occur. This implies that, at some frequen-

cies, the restraining action of the stiffness is more than offset

by the effect of the inertia forces due to the mass of soil.

In the three solutions for the half-space illustrated in Fig.

3-12, the following comments apply. The solutions by Karasudhi

et al. [22] and by Luco and Westmann [31] are analytical; but both

make some simplifying assumptions with regard to interface condi-

tions between the footing and the soil. These solutions apply to a

perfectly elastic half-space, and they cannot therefore be directly
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compared with the solutions obtained by PLAXLY2, where damping was

considered. Application of the corresponding principle [8 ] to

derive a solution for 8 = 10% is not valid, since inertia terms do

not change with hysteretic damping, whereas the elastic moduli do.

For low frequencies, the correspondence principle should give fairly

good results. The solution by Roesset [47] was derived using a fast

Fourier transform [11] for a load under the footing and then inte-

grating across the width and imposing the condition of rigid body

motion in this area. This solution can take damping into considera-

tion.

3.4 Effect of Mass

From the knowledge of the compliance and amplification func-

tions, the response of a rigid structure with arbitrary mass distri-

bution (but symmetrical about a vertical axis) can be found, as de-

scribed in Section 2.4.

Four parameters define the rigid block of infinite length in

Fig. 3-13: the width of the base 2B, the mass M, the height of the

center of gravity (C) above the bottom E, and the radius of gyration

with respect to the center of gravity S. Three dimensionless param-

eters can be defined from these four quantities:

mass ratio, B = - gPB
height of c.g. Ratio, e =E

radius of gyration ratio, S =
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Figure 3-13

Figs. 3-14 and 3-15 show the amplification curves as given

by the response of the bottom of the structure uA/uR for two differ-

ent layer depths, H/B = 1 and 2, respectively. They are applicable

to the case of e = 2/3 and s = 1, and with a soil having 10% hys-

teretic damping and Poisson's ratio of 0.30. The responses for mass

ratios B, = 0, 1, 2, 4 are depicted.

Increasing mass ratios shift the resonant frequencies towards

lower values, the effect being more pronounced as the stratum gets

shallower.

As the mass ratio increases, there is first an increase in the

maximum amplification of the first peak, and then it becomes smaller

and tends towards a value of 1 at the'static frequency. The reason

for this behavior is that the "effective" stiffness, [K]- 02]is

reduced as the mass of the structure increases, thereby producing
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larger displacements. But for large values of Bx, the inertia term

-4[j] overcomes the stiffness [K]; and consequently, the "effective"

stiffness increases again, but with the inertia-term dominating.

This results in smaller displacements. At the same time, the fact

that all the soil surface has smaller displacements for low frequen-

cies, adds to the reduction in the height of the peaks for high mass

ratios. For deep strata, the range of B, for which the peaks keep

increasing is larger.

Another interesting observation is that as the mass ratio in-

creases, the amplification curve uA/uR starts showing two distinc-

tive peaks in the neighborhood of the first resonant frequency. This

happens for even low mass ratios when the layer of soil is shallow

enough.

The first peak is caused by resonance in swaying. The second

peak is due to excitation of the rocking mode, which occurs more

easily when the stratum is thin, and/or when the mass moment of iner-

tia is high. This second peak starts forming at the resonant fre-

quency for vertical vibration; and shifts towards the resonant fre-

quency for horizontal excitation (at a = n/2), as B is increased.

At the same time, this peak increases in height. After crossing

the frequency ratio a = Tr/2, it starts becoming smaller again. This

is illustrated in the detail of Fig. 3-16. A similar effect occurs

when the density p of the structure is kept constant, and its

height is varied (with a corresponding change in position of the

cener of gravity and value of the radius of gyration). This is
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shown in Fig. 3-17, where Hst is the height of the homogeneous

structure of rectangular cross-section, with base-width 2B.

In order to show that the second peak is due to the excitation

of rocking, the following approximate calculations can be done.

Assume that the stiffnesses vary parabolically in the range

of frequencies where the two peaks occur. Neglect the cross stiff-

ness K = Kqx as well as damping. For the case of H/B = 2, Figs.

3-6 and 3-7 show that K xxand K can be approximated by

K x (2.48 - 0.70 a 2 )G

K = (2.88 - 0.196 a2 )GB2

Therefore,
K x

[K]1
0

SG
0

0

K4

0 (2.48 - 0.70 a2) 0 j

B 0 (2.88 - 0.196 a2 0

= G[B]T [ B]

where the matrices [B] and [K] are self-explanatory. The inertia

term is 1

02[J] = a2 B x()G[B]T 2 2
H --e e 2+s2

where e = 2/3 and s = 1 for this example. Consider the case ofB=4 ,

as shown in Fig. 3-18. Then, resonance occurs when

([K] - 02 []) {6}= {0} ,
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and in order to have a non-zero solution,

det ([K]- 2 [J])= 0

which implies

(2.48 - 0.70 a2) -a2  0.67 a2
=0

0.67 a2  (2.88 - 0.196 a2)- 1.445 a2

since B ()2 x 2 = 1 and det [B] / 0

Solving the frequency equation given above, gives two positive

real roots, a= 0.34i and a = 0.52r. These frequencies correspond

remarkably well to the location of the two peaks. The respective

eigenmodes are

$BJ 1-0.741and 1.17J

which show that for the first peak the swaying predominates, and

the structure rotates about a point below the base of the footing

(to speak in simple terms); and for the second peak, the rocking

predominates, and the rotation occurs about a point higher than

the base. The uncoupled resonant frequencies are

, = 1.21 rad/sec for swaying (a = 0. 385 )

o = 1.33 rad/sec for rocking (a = 0.427T)
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The motion of the rigid structure can be decomposed in two parts.

The amplification of the soil at the surface, u , and the interaction,

given by uA/u. In this way, the interaction effect can be observed

more clearly.

Fig. 3-19 shows the effect of interaction for a mass ratio of 2

and different H/B ratios. It is seen that after the first peak, this

effect is basically beneficial; that is, the response under the struc-

ture with mass is smaller than the free-field motion (indicated by

the line uA/uo = 1). For shallow layers, the reduction in amplitude

is considerable.

Similarly, Fig. 3-20 shows the interaction for structures of

different mass ratios sitting on a layer with a ratio H/B equal to 2.

The peaks are higher as B increases, but the reduction at higher

frequencies is also more pronounced. For deeper strata, the differ-
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ence between the curves is less perciptible, since then the effect

of 1-D amplification is much more important than the effect of

interaction; therefore, the interaction curves are closer to a

straight line at uA/u = 1.

The effect of changing the location of the center of gravity

and/or the radius of gyration while keeping the mass ratio constant

is illustrated in Fig. 3-21, for rather extreme values of e and s.

Changing the radius of gyration, while keeping B and e constant,

does not modify the response noticeably for frequencies below reson-

ance; and at higher frequencies, when the interaction effect pro-

duces displacements smaller than the free-field motion, it is more

beneficial when the mass is concentrated closer to the center of

gravity (i.e. small values of s). Changing e while keeping B and

s constant produces a marked change for low frequencies, as seen

from the curves for cases 2, 4 and 5. As the center of gravity

moves up, the peak of the interaction curve moves towards the left;

whereas increasing the radius of gyration shifts the peak to the

right.

For actual structures, the peaks are expected to be flatter

than the ones shown in these figures; since there is radiation in

three directions, rather than only in a plane, as the cases being

studied here consider.

Furthermore, the larger or smaller benefit of the interaction

effect depends on the frequency content of the applied earthquake

motion. If most of the frequency components of the-applied motion
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lie in the neighborhood of the peaks of the interaction curves,

the resulting motion will be greatly amplified. -If the earthquake

motion is applied at the rock level, the interaction curves might

be misleading, since the total response of the structure depends

also on the magnification due to the soil (1-D amplification).
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CHAPTER 4 - EFFECT OF EMBEDMENT

4.1 Introduction

The response of a rigid strip footing resting on the surface

of a homogeneous layer of soil has been studied in Chapter 3. In

many cases, structures are embedded-in the soil, and-this embedment

should affect the response. It is the purpose of this chapter to

determine compliance functions for some embeddedfoundations, and

their response to harmonic horizontal motions in the rock underlying

the soil stratum. The model used assumes that the soil is capable

of resisting tensile stresses, so that, at any moment, the footing

remains welded to the soil. Besides, the soil is taken as linearly

viscoelastic. Therefore, it is expected that the "actual" footing

will experience displacements somewhat larger than predicted in this

study.

4.2 Amplification Functions

The one-dimensional amplification theory [21, 48] is no longer

strictly applicable for determining the motion at the base of the

rigid footing given harmonically varying prescribed displacements

in the rock. Fig. 4-1 shows the geometry and parameters involved

in this problem. The notation used is basically the same as in Chap-

ter 3. The response of the footing relative to the rock motion,

uA/uR, is plotted against the frequency factor a = QH/Cs in Fig. 4-2

for different embedment ratios D/H. These curves apply for a layer

with H/B = 2, = 10% and v = 0.30. It can be observed that as
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embedment increases, the dynamic response uA/uR is reduced for all

frequencies. The reduction is particularly strong in the neighbor-

hood of the peaks. The frequency at these peaks is practically un-

altered as the massless footing is embedded into the soil, although

there is actually a very slight shift towards higher frequencies.

When the footing rests on the ground surface, the response uA

is the same as that given by the 1-D amplification theory. For em-

bedded footings, Fig. 4-3 compares the "actual" response against the

motion predicted by the 1-D amplification theory at the level of the

base of the footing. It is seen that the latter tends to overestim-

ate the response for low frequencies until past the fundamental

resonant frequency; and to underestimate the response thereafter.

Notice that the second peak does not develop for the footin embedded

one-third of the layer thickness when 1-D theory is used, since at

the corresponding frequency (a = 37r/2) the node of the mode shape

shape is at that level, as shown in Fig. 4-1.

Whereas a massless footing on the surface of the stratum does

not exhibit a rocking motion, an embedded footing does, as shown in

Fig. 4-4, where the rocking is expressed in terms of the vertical

displacement of the footing edge, $B/uR. This figure applies for the

same stratum of soil used in the preceding figures. In general, as

the depth of embedment increases (within the practical range), the

rotation becomes larger. While the vertical displacement of the

footing edge is only a small percentage of the horizontal motion,

it tends to increase as the frequency increases, then making rock-
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ing important.

Fig. 4-5 illustrates the phase angles or phase lag of uA and t

with respect to uR for the same embedment ratios used before. At

least for the swaying motion, it can be observed that the response

tends to follow more closely the motion of the rock as embedment-in-

creases. This is expected, since the base of the footing will be

physically closer to the rock.

Fig. 4-6 shows the amplification function for an embedment

ratio D/B = 2/3, and different layer thicknesses. Logically, for

shallow layers, the amplification should be small, tending to 1 as

H/B tends to D/B; and tending to the 1-D amplification at the sur-

face as the layer thickness increases. The reason the amplifica-

tion for H/B = 2 in the neighborhood of the second resonant frequency

is smaller than that for H/B=l is that, in the former case, the node

of the mode shape of the 1-D amplification is at a depth equal to

the level of the footing base (see Fig. 4-3), thereby producing only

small displacements at point A.

The effect of embedment is isolated in Fig. 4-7 for the same

cases considered in the previous figure. It shows the variation of

uA/uo against frequency ratio a, that is, the response of the foot-

ing compared to the free-field response at the surface. The embed-

ment produces a beneficial effect, especially around the resonant

frequencies, where the reduction is considerable.

The effect of embedment can also be shown in terms of a con-

stant embedment ratio D/H, i.e. depth referred to the layer thickness,
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rather than to the structure's width. Fig. 4-8 shows the ratio

UA/uO for D/H = 1/3 and different layer thicknesses. It appears

that embedment is, still, beneficial in general; but for shallow

strata, the response of the embedded footing can be a little higher

than that of the surface footing in some range of frequencies be-

tween resonances. However, this increase is in the range where

the 1-D amplification is low; so, it is relatively unimportant.

The finite element mesh used to compute uA/uR was similar to

that used for the footing on the surface. The cases considered for

the dynamic response were only H/B = 1, 2 and 4, since deeper layers

are less affected by the embedment of the structure.

4.3 Compliance Functions

Compliance functions are determined in a manner similar to the

one employed in Chapter 3, by applying a unit horizontal force and

a unit rocking moment at the center of the footing base (point A in

Fig. 4-1). These functions are shown in Figs. 4-9 for the case of

H/B = 2, a = 10% and v = 0.30 for footings embedded 1/6 and 1/3 of

the layer thickness, and compared to the same functions for a foot-

ing resting on the surface. The curves have been normalized, with

respect to the real part of the static compliances. It is recalled

that these values change with damping. The quantities shown in the

tables inserted in the figures represent dimensionless static stiff-

nesses, approximately.

It can be seen that for this case the main effect of the embed-
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mentis the increase in the static stiffnesses. The variation with

respect to frequency of the normalized horizontal and rocking com-

pliances is very approximately independent of the embedment. While.

there is a slight change in the peak frequencies and some variation

for higher frequencies, these effects do not seem significant. The

cross compliances, on the other hand, show a more significant varia-

tion. There is also a more appreciable change for very shallow

strata (ratio H/B of the order of unity).

The static compliances are compared in Fig. 4-10 for different

embedment to width ratios D/B, and layer thickness to width ratios

H/B. The soil is purely elastic and has a Poisson's ratio of 0.30.

To consider a percentage of hysteretic damping a, divide the ordin-

ates by (1 + 402). Both the swaying and rocking static compliances

decrease monotonically with embedment ratio. Whereas the swaying

compliance increases with layer thickness for any given D/B ratio,

the rocking compliance tends to finite values, corresponding to those

of the elastic half-space. For very small embedments and/or deep

layers, a horizontal force applied at A (Fig. 4-1) in the positive

x-direction (to the right) produces a rotation in the negative $-

direction (clockwise), in the static case and at low frequencies.

In other cases, the coupling effect is positive.

Fig. 4-11 shows another comparison of the static compliances,

but now with respect to the ratio of embedment to layer thickness,

D/H. Several curves for different H/B ratios are plotted. These

curves seem to show a very fast variation for deep strata as embed-
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ment increases; but the reason is that for a given D/H ratio, the

embedment is larger when H/B is large.

4.4 Effect of Mass

The addition of mass to the rigid strip footing has basically

the same effect as for the footing on the surface. For sufficiently

high mass ratios and/or for shallow enough strata, the amplifica-

tion curves uA/uR show two peaks. Again, it is seen in Figs. 4-12

and 4-13 that the second peak is produced by the excitation of the

rocking mode (compare with discussion in Section 3.4). Fig. 4-12

applies to the case of H/B = 1, and Fig. 4-13 to the case H/B = 2.

Both consider a D/H ratio of 1/3; and the soil has a damping of 10%

and a Poisson's ratio of 0.30. The shift in the frequency of the

peaks as the mass ratio increases is faster for thinner layers; the

maximum amplification is in general lower too. After the first one

or two peaks, the amplification drops to a small value; and, actu-

ally, for high mass ratios, there is a considerable de-amplification

of the rock motion. It must be recalled that although these figures

show the general behavior, they are applicable only to a particular

set of values of the height-of center of gravity ratio E/B and radius

of gyration ratio S/B. Notice that the (first) peaks increase in

amplitude as the mass ratio increases, and then level off towards

uA/uR = 1. As indicated in Chapter 3, this behavior is due mainly

to the effect of the inertia of the structure on the effective stiff-

ness of the system.
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To see how embedment affects the horizontal and rocking motion

of a rigid structure, a system with-the characteristics indicated

in Figs. 4-14 and 4-15 was chosen. For the swaying motion, the reson-

ant frequencies increase with embedment, and the peaks tend to be

smaller. Whereas for a massless footing, rotation increased with em-

bedment (within the usual embedment ratios), for a footing with the

selected mass ratio, the behavior is opposite. There is a remark-

able decrease in rocking motion as the footing penetrates into the

soil. The reason behind these results is that a massless footing

is equivalent to a loss of mass of soil due to the excavation; and

then, it is easier for the rest of the soil to move a weightless

block as it gets larger because of an increased embedment. But the

situation is opposite when the structure weighs more than the volume

of soil lost in the excavation. For example, for the case of D/H=

1/3, a rectangular block filling the excavation with the given mass

ratio of 2 would have a mass density 1.5 times higher than the ex-

cavated soil. There is of-course the influence of the relative val-

ues of Bx, e and s; and the response is somewhat affected too by a

change in the last two parameters (see Fig. 3-21 for a footing on the

surface). At high frequencies, the rotatory inertia of the struc-

ture prevents it from attaining a large amplification. But for large

H/B ratios, the rocking amplification curves follow the behavior of

the massless footing; that is, they increase, slowly, with frequency.

It has to be noted, however, that for a massless footing the rota-

tion is very small; whereas for structures with considerable mass,



to-

9 - 030 =B 0/, -.3 -2

D/H = 1/68 =2 ,e.2/ >s-

, 7

6-

0

-

E
< 3-

D/ = 0

0

0

0

Frequenric Ratio a=

Figure 4-14 Effect of Embedment on Horizontal Amplification



5

)

s = I

-K D/H 0

U

Frejuengcj Raho a--

Effect of Embedment on Rotation Amplification

i-t

-A

Of

C

0

C

4

D/H0if.

-H
0

2- q

S=10% ,

Fi gure 4-15



-142-

the rocking motion, as expressed by the vertical displacements of the

edges, is of the same order of magnitude as the swaying motion.

Fig. 4-16 isolates the effect of embedment for the same system

considered above. It gives the ratio of the swaying response of an

embedded structure against the response of the same structure rest-

ing on the ground surface.

The main effect reproduced by these figures is the shift in the

fundamental frequency of-the mass-soil system due to the increase of

stiffness with embedment. The effect of embedment on the motion of

the mass under an earthquake-type excitation at the rock would thus

depend on the frequency content of the earthquake.

Finally, Figs. 4-17 through 4-19 give a summary of the maximum

swaying and rocking response, and position of resonant frequencies,

against mass ratio. They consider constant values of height of c.g.

ratio, e = 2/3, and radius of gyration ratio, s = 1; and the soil has

the characteristics used throughout this chapter. Fig.-4-17 applies

for H/B = 1, Fig. 4-18 for H/B = 2, and Fig. 4-19 for H/B = 4. The

embedment ratios are given against the layer thickness; that is, the

parameter D/H is used. The second peak is shown in dotted lines when

its amplitude is higher then the first. It is seen-that the reson-

ant frequency is reduced as the mass ratio increases. Besides, the

maximum possible amplification is obtained at lower mass ratios when

the layer is thin. As seen from Figs. 4-17 and 4-18, the peak re-

sponse for embedded footings can be larger than for the same footing

on the ground surface, when the mass ratio is high enough. For thin
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layers, that behavior occurs even for small mass ratios. Of course,

for massless footings, the maximum swaying amplification is always

lower when embedment is deeper. When there is a second peak in the

swaying response, its magnitude increases rapidly with increasing

mass ratio, but suddenly it levels off. However, this second peak

remains higher than the first peak, at least in all cases considered.

The fall-off of resonant frequencies is faster for thin layers, and

is more pronounced when the embedment ratio is small. With regard

to rotation, the increase in rocking peak amplification is faster

for-thin layers. Embedment reduces the rate of increase.

It is also interesting to compare the horizontal displacements

of the center of gravity against those at the bottom of the struc-

ture, for different mass ratios, as done in Fig. 4-20, for H/B = 2,

e = 2/3 and s = 1. At least for this case, the peak motion of the

center of gravity is somewhat higher than that of the bottom; and

they are more similar when embedment increases, reflecting the reduc-

tion in rocking motion. Fig. 4-18b and 4-20d illustrate this

point.

In summary, the general trends with increasing mass are: First,

an increase in peak amplification as interaction is added to site ef-

fects; then a decrease as the peak frequency shifts off the site ef-

fects peak; and, finally, an increase again as the second peak devel-

ops.
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CHAPTER 5 - STRUCTURE - SOIL - STRUCTURE INTERACTION

5.1 Introduction

It is recognized that the response of a structure to exciting

forces or to seismic motions is affected by the presence of other

bodies in the neighborhood. Also, this structure will be set into

motion if an adjacent structure is excited. The coupling between

the responses of structures through the foundation soil is called

here "structure - soil - structure interaction."

Richardson [44] and Warburton, Richardson and Webster [58,59]

have investigated this problem for the case of circular footings

resting on the surface of an elastic half-space. In this chapter,

two parallel rigid strip footings of arbitrary width and separation

are considered. They are welded to the surface of a homogeneous, iso-

tropic and viscoelastic layer. The soil has a Poisson's ratio v = 0.30

and a percentage of hysteretic damping 0 = 10%. This is a plane-strain

problem under harmonic motion.

5.2 Method of Solution

Using the program PLAXLY2 described in Chapter 2, the displace-

ments in the surface of the soil layer were computed for both a unit

horizontal and a unit vertical line load and stored in disc. A series

of points separated Ax = .lH were taken, where H is the layer thick-

ness, covering a total distance of 12H. The structure - soil - inter-

action is important when the two (or more) structures are close enough.

By varying the widths of the footings,different depth-to-half-width
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ratios H/B 1. i = 1, 2, can be taken. The half-width Bg is an in-

teger multiple of Ax, and the distance between center-lines of the

footings L is an integer multiple of Ax/2.

Only two structures were considered in this study. The mathe-

matical approach was presented in Section 2.8. The (rigid) struc-

tures were restricted to have a height of center of gravity of 2/3

of Bi and a radius of gyration equal to B1, i = 1, 2, to reduce the

number of parameters involved in the problem. The mass-ratios

B = M1/PB, where Mi is the total mass of the ith footing, were

taken as 0. 1, 2 and 4. These conditions can be thought of as tak-

ing two geometrically similar structures (just scaled up or down),

and varying their densities.

The geometry of this problem is shown in Fig. 5-1. The notation

follows closely the one used in the preceding chapters. A subscript

1 or 2 has been added where necessary to identify the two footings.

cf 2832"1/3

Als A2

H .0_30,

rock

Figure 5-1

The exciting forces P , P , P 1 =1, 2 were applied at points
A or A2' I * Z1
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5.3 Response to Exciting Forces

Two geometrically similar structures were considered, i.e.

B1 = B2 = B.

The case of a relatively deep layer, H/B = 4 was first consid-

ered, with a separation between the centers of the footings L/B = 5

(L/H = 1.25). Figs. 5-2 through 5-5 show the selected responses to

different exciting forces, in terms of dimensionless displacements.

Only those responses which are significant are illustrated. The case

of vertical excitation has been omitted; but it is emphasized that

all three degrees of freedom of each structure are coupled in this

problem, as opposed to the one-structure situation treated in Chap-

ters 3 and 4.

The different figures are identified with an ordered pair of num-

bers (B ,B ),e.g. (1,4) meansB = 1,B = 4.
x1  x2  x1 2

Fig. 5-2 shows the horizontal displacement in one of the footings

when it is excited by a horizontal force. When the mass-ratio of the

footing is small, varying the mass-ratio of the adjacent (unexcited)

footing so that B > B changes the response slightly, especially in

the location of the peaks. At high frequencies, the influence of the

foreign mass practically disappears. When the excited footing is

heavy (B = 4) the influence of a second smaller mass (B 2 B ) is

even less perceptible. It all these cases, the difference is mostly

marked around the first peak, corresponding to the fundamental fre-

quency of the system for horizontal motion.
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Fig. 5-3 shows the horizontal displacement of the unexcited

mass. The maximum response of this footing increases when its mass

ratio increases and/or when the mass ratio of the excited footing

increases. The curves for the two cases (1,4) and (4,1) are exactly

equal. The principle of reciprocity extends to the masses, as for

the stiffnesses.

The rotationsinduced by a horizontal force applied on footing 1

are illustrated in Fig. 5-4. The rotation of the excited footing

is about twice as large as that of the unexcited footing. For high

frequencies, the rotation of footing 2 is very small. In general,

the shapes of the response curves for the two masses are similar,

for any given pair of mass-ratios. Notice, however, that whereas

the response of the excited footing is not affected very much by

changing the mass-ratio of the adjacent footing (except at the high

peaks), the response of the latter is quite different as any of the

two mass ratios changes. The rotation of both footings is in general

larger when the mass-ratio increases, at least in the region of the

high peaks.

For this relatively deep layer of soil, the dimensionless rota-

tion is of the same order of magnitude as the horizontal translation,

and it is this rotation which is responsible in great part for the

motion of the unexcited footing (and feedback to the excited footing).

Fig. 5-5 shows the rotations induced in the two footings due to

an exciting rocking moment in one of them. The same comments as for

Fig. 5-4 apply here. But in this case the important peaks are due
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to the vertical resonance of the layer, which is excited by rocking.

The rotation of the unexcited mass is negligible until after the

frst resonance in horizontal translation.

In all these curves, the peaks occur at lower frequencies for

larger mass ratios, as is the case for the one-footing problem stud-

ied in Chapter 3.

For a very shallow layer, H/B = 1, Figs. 5-6 through 5-9 show

a few of the response curves.

In Fig. 5-6, the horizontal displacement due to a horizontal

exciting force in the same footing is shown. The response is in

general smaller than for the relatively deep layer discussed before.

It shows two significant peaks at low frequencies, which are due to

horizontal and rocking resonances, respectively, and is quite smooth

thereafter. For this shallow stratum, the influence of the adjacent

mass is imperceptible, at least in the range of mass ratios and for

the distance between footings considered here. The first peak de-

creases as the mass ratio of the excited footing increases, whereas

the second peak increases.

Fig. 5-7 shows the rotation in a footing where a rocking moment

is applied. Here, as in the previous figure, the frequencies at the

peaks shift towards the left as the mass ratio increases. The rota-

tion, as manifested by the vertical displacement of the footing

edges, is as large as the horizontal displacement induced by a hori-

zontal force (Fig. 5-6). But the influence on the adjacent footing

is very small, one or two orders of magnitude smaller (not shown).
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In Fig. 5-8, the curves show the horizontal displacement due

to a rocking moment or the rotation due to a horizontal force, in

the excited footing. These curves have a shape very close to those

of Fig. 5-7, and are smaller in magnitude, but still quite appreci-

able.

The horizontal displacements induced in footing 2 by a horizon-

tal force applied in footing 1 are shown in Fig. 5-9. These displace-

ments are one order of magnitude smaller than those of the excited

footing. They show a narrow and high peak, common to all combinations

of mass ratios, at a frequency ratio of about 0.361. When compared

with Figs. 5-7 and 5-8, it is seen that all the response curves have

a peak around that frequency. Therefore, this peak is caused by the

rocking mode primarily. Whereas the combination of light masses

(1,1) gives rise to another important peak, the response damps out

when one of the two masses is heavy. Again, the case (1,1) is accom-

panied by considerable rocking; but for the other combinations of

masses, the rotation in this footing is small after the high peak at

a = 0.36n.

The effect of the distance between footings is shown in Fig.

5-10 for an excited footing, and in Fig. 5-11 for the adjacent struc-

ture. Only the horizontal displacements due to an applied horizontal

force in one of them are shown. These curves apply for two equal

masses on a layer of four times the half-width of any of them. For

the excited mass, the difference in response between having an ad-

jacent structure at a distance of 5B or 10 is small; but for the
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unexcited mass, the effect of the distance is important. In the

range of frequencies where the induced motion is large, the response

is smaller when the excited footing is far, as might be expected.

For other (higher) frequencies, the induced motion can be larger when

the excited footing is farther; but then, the response is quite small.

5.4 Response to a Prescribed Motion of the Soil

The situation considered in this section is the response of two

masses resting on the surface of a soil layer when the free surface

moves harmonically in time as u0 e . The response of a mass when

there is another body in the neighborhood is shown, as well as the

increase or decrease in motion compared to the case of having only

one footing.

Two geometrically equal masses are considered first with a ratio

H/B = 2 and a separation equal to 2.5 times the layer thickness,

center-to-center. Figs. 5-12 and 5-13 show the amplification of the

free-field displacement as given by u1/uO when the second mass ratio

varies from 0 to 4. Fig. 5-12 applies when the footing under inves-

tigation is relatively light,B 1, and Fig. 5-13 when it is rela-x1
tively heavy, B = 4.

When the footing is light, the amplification (or deamplification)

is not very marked; within 60% to 160% of u . By comparing Figs.

5-12a and 5-12b, it is seen that the peaks in u,/uo follow in general

the peaks of u2/u 0 for any given value ofB (in both figures, B x= 1). At the frequencies of the peaks, both footings tend to rein-

force each other.
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Observe in Fig. 5-12b that a massless footing, as given by the

curve (1,0) also has an amplification of the free-field motion, since

the first footing (ofB = 1) modifies u in its neighborhood, pro-

ducing horizontal, rocking and vertical displacements in adjacent

structures, as well as in itself.

Although not shown here, it is important to point out that the

rotation induced on the footings by u 0 can be important at certain

frequencies, where $iBi/u may be even larger than ui/u, i = 1 or 2,

and/or greater than 1.

Fig. 5-13 shows u /U when B 4 for different values of B

For this relatively heavy structure, the response is mostly determined

by itself. The influence of the second structure is felt almost only

around the second important peak near a = 71, which is caused by rock-

ing mainly.

It is of interest to isolate the effect of the second mass on

the first. For this purpose, the curves shown in Fig. 5-14 show the

ratio of the horizontal displacement u 1 when there is another mass

nearby to the displacement produced if the other structure has no

mass (but still exists). The only important effect of the second

mass occurs when it is relatively heavy, and it is located in the fre-

quency range where rocking is important. The behavior is mostly de-

termined by the second mass, as observed by the closeness of the curves

corresponding to (1,1) and (4,1) on one hand, and by (1,4) and (4,4)

on the other.

However, in these curves, the second footing's stiffness still
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affects the response. In Fig. 5-15, the effect of the second foot-

ing is isolated completely, by comparing ul when the two footings

are present against ul when only one exists. Now, other peaks appear

at lower frequencies, preceded by a large deamplification. This ef-

fect is more noticeable as the mass of the footing increases (cases

(4,1) and (4,4)).

Therefore, restraining the surface motion by an adjacent rigid

footing produces a feedback, even if it has no mass.

As a last example, the influence of a big structure on a smaller

one is presented in Figs. 5-16 through 5-19. The small footing is

taken as four times narrower than the large one. They are separated

a distance 2.5H center to center, as in the preceding example. In

terms of dimensionless ratios, H/B 1 = 4, H/B2 = 1 and L/H = 2.5.

In Fig. 5-16, the small footing is light (B = 1). Varying the

mass ratio of the second footing changes the response considerably.

The peaks move to the left as B 2 increases, and in the region where

rocking is important, around a = n, the magnitude of the peaks is very

sensitive to variations in the mass of the large footing. When the

first mass is heavy (B 4), as shown in Fig. 5-17, the amplifica-

tion curves are in general higher than when it is light. The peaks

also shift to the left, but varying the second mass from B 2 = 1 to 4

does not produce a marked effect on u1 /u 0 in the region around a = ?.

The largest variation seems to be from B 2 = 0 to 1. It is the iner-

tia forces in the second footing which affect most the response of

the first footing.
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In Fig. 5-18 it is shown how the small footing affects the re-

sponse of the large one. As expected, the influence is very small.

It is felt more when the large footing is light; but for all practi-

cal purposes, the large footing can be studied alone as in Chapter 3.

Similarly to Fig. 5-15, Fig. 5-19 shows the ratio of u when

the large footing is present against u when only the small footing

exists. The amplification due to the large footing is very pronounced.

In the average (for a white noise input), the presence of a large foot-

ing is detrimental to the small one. Again, rocking is responsible

for a large part of this amplification, which increases when either

of the mass ratios increases.
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CHAPTER 6 - CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

The response of a rigid strip footing resting on or embedded in

a soil stratum was studied. Results were given in terms of dimen-

sionless parameters. For all the examples considered, the soil was

taken as homogeneous, isotropic and linearly elastic with hystere-

tic damping. The cases studied included the excitation of a foot-

ing by horizontal forces and rocking moments, and the motion due

to a specified displacement at bedrock. The interaction of two

footings through the soil was also considered.

Poisson's ratio was kept constant since the rest of the param-

eters involved in this study was already numerous. For the same

reason, almost all results were obtained for only one particular

value of damping; but a discussion of the effect of this variable

is included.

The model used satisfied equilibrium and compatibility condi-

tions throughout the whole domain. The method was consistent in

the sense that it used the same displacement expansions for the

derivation of the elastic, damping and inertia forces at any nodal

joint. It accounted for the dynamic response of the semi-infinite

layered regions, providing displacements continuous in a horizontal

direction, and piecewise linearly continuous across the depth of the

stratum.

Since there were no available analytical solutions known to the
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writer, the results could not be checked rigorously. The solu-

tions presented appear to be reasonable. They follow the trend

of other cases studied by several authors in an approximate way

for circular or rectangular foundations. As the stratum thickness

increased, the solutions found by the present method converged to

the known half-space solutions.

Different mesh sizes were used by the originator of the model

to determine the accuracy of the method. A few other cases were

tested by the writer. No apparent numerical errors arose.

The separation of the amplification effect of the soil from

the interaction effect was done using an input motion at the base

of the structure consistent with the derived stiffness functions.

The adequacy of this procedure was tested by using the program

PLAXLY2 to analyze the problem as a whole. The results obtained

by both methods gave identical results.

The adequacy of the solutions depends, however, on the valid-

ity of an important simplification. It was assumed that the soil

could resist tensile stresses and that it would be at all times

perfectly welded to the structure.

6.2 Conclusions

Effect of internal damping

The general form of the compliance (or stiffness) functions

does not change significantly with the amount of damping, except
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for the fact that singularities occur for the undamped case. The

use of the correspondence principle to derive solutions for a

given percentage of damping starting from the elastic case is, how-

ever, inadequate. Only for the half-space, the application of

this principle gave results that agreed fairly well with the solu-

tion with damping considered implicitly.

Effect of layer thickness

The static horizontal compliance varies more with layer thick-

ness than the rocking compliance, which converges rapidly to the

half-space solution as the layer thickness increases. This suggests

that the rocking vibration is practically confined within a "bulb

of pressure" under the footing.

After the first peak, the compliance functions oscillate around

the half-space solution, and tend towards it as the frequency in-

creases, suggesting that the effect of the rigid base under the soil

is less important in the high frequency range.

One effect of the mass of the footing is, clearly, to decrease

the resonant frequencies. As the mass ratio increases, there is

first an increase in the maximum amplification at the firts peak,

and then a decrease in the value of the amplification as the inertia

term predominates over the force due to the stiffness of the soil.

A second peak is produced by rocking, and it increases in magnitude

as the mass ratio increases. These effects are more pronounced for

shallow than for deep layers.
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The location of the center of gravity is an important parameter

affecting the response. Increasing the height of the center of

gravity produces marked changes in the resonant frequency, moving

it towards lower values. In the average, the smaller the radius of

gyration is, the greater the deamplification of the surface motion.

Effect of embedment

When there is embedment, the theory of one-dimensional amplifi-

cation will no longer provide the correct input motion at the base

of the structure for a separate soil-structure interaction analysis.

The motion of the soil is modified in the vicinity of the footing

even if it is massless; and the peaks of the amplification curves

are reduced as compared to those of the footing on the surface. How-

ever, the frequency of these peaks does not change appreciably with

embedment, suggesting that it is the total stratum thickness which

governs the resonant frequency, rather than the net distance between

the bottom of the-footing and the rock, as occurs in the case of

vertical vibration. In addition to a horizontal motion, there will

be now a rotation of the footing. This rocking is small for low

frequencies, but can become significant in the high frequency range.

The compliance functions are rather similar for footings with

different embedment to layer thickness ratios, when normalized with

respect to their static values . Therefore, it would seem that the

compliance functions for embedded footings can be found approximately

from those corresponding to a footing on the surface by using a scal-

ing fedtor.
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The main effect of embedment is to increase the stiffness of

the footing-soil system by the scaling factor mentioned above. As

a result, when the footing has mass, the resonant frequencies of

the system are higher than if the footing were at the surface. The

rocking motion is reduced by embedment if the mass of the structure

is higher than the mass of soil lost by the excavation. But the

maximum horizontal amplification can be higher for embedded foot-

ings than for footings on the surface if the mass ratio is high.

Effect of adjacent structures

From the limited number of cases considered it would appear that

the effect of neighboring structures is less important for very

shallow layers of soil (on rigid rock) than for layers of moderate

thickness. In all cases, the adjoining structure affects only

slightly the response of the excited mass, the effect being more

noticeable when the latter is small. Results as far as the excited

structure is concerned are almost the same for a distance between

the two masses of 2.5 or 5 times their base dimension. The signifi-

cant part of this kind of study would thus be the determination

of the vibrations induced in the second structure, rather than the

feedback from this one to the excited mass.

For the case of a base motion (simulating an earthquake excita-

tion) the effect of a neighboring structure is particularly signif-

icant around the first fundamental frequency of the layer in vertical
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motion, indicating that this interaction is primarily due to the

rocking effect.

6.3 Recommendations for Further Work

It was the purpose of this work to investigate several factors

affecting the soil structure interaction problem: effect of layer

thickness (by opposition to an elastic half space), effect of embed-

ment and effect of adjacent structures. Since the number of param-

eters involved is very large, the cases studied do not cover the

complete spectrum of possibilities, and the conclusions presented

before have to be interpreted as expressing a trend based on the ob-

tained results, rather than as absolute statements.

Further parametric studies seem warranted in order to validate

these conclusions. It would be interesting in particular to con-

sider realistic models of structures rather than rigid masses and

to evaluate fully the degree of approximation involved by simplify-

ing assumptions (such as using the compliance functions for the half-

space modified by scaling factors to account for layering or embed-

ment). The effect of the rocking motion at the base of the structure

in case of embedment should also be investigated in more detail.

While the program used is only applicable in rigor for strip

footings, it is used sometimes in practice for the study of rectangu-

lar or even circular foundations. A comparison of results obtained

with this model and more accurate (but also more expensive) three-
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dimensional finite element programs is necessary.

Other improvements can be introduced in the program to study

additional factors: among these the possibility of considering non-

linear soil properties (by an iterative linear analysis) and the

possibility of applying a base motion which is not the same at all

points (a travelling disturbance) deserve special consideration.

The effect of elastic rock (instead of a rigid base) could also be

important in the case of shallow layers.
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APPENDIX

PROGRAM PLAXLY2

Identification:

Analysis of plane and axisymmetric layered media of infinite

extent subjected to harmonic loads which act within the plane of the

cross-section, or to prescribed harmonic motion at the rock-soil

interface.

Programmed by Gunter Waas, University of California, Berkeley,

June 1972, as PLAXLY. Modified and extended by Victor Chang Liang

and the original author.

Purpose:

Program PLAXLY2 is designed for the analysis of harmonic motion

in plane and axisymmetric systems of the type shown in Figs. 2-la

and 2-lb. Materials may be either linearly elastic or viscoelastic.
The loads (prescribed nodal forces and nodal displacements) vary har-
monically with time. Static loads may be analyzed by setting the

frequency zero. The program consists of a main program MAIN and 17

subroutines: INPUTD, ELSTIF, QUAD, BOUMAT, GENEP., SECEVA, BOMAP,

INVERT, HANKEL, STIFF, BLOCKS, MODIFY, OUTPUT, RFORCE, OUTDIS, SHAKE

and MULT.

Di screti zation:

The irregular region I (see Figs. 2-la and 2-lb) is subdivided

into finite elements with quadrilateral cross-sections as shown in

Fig. 2-3. The layered regions are subdivided into thin sublayers

such that the layer interfaces coincide with the finite element nodes
at the plane or cylindrical boundaries between the irregular and the
layered regions. Any finite element, except those adjacent to the
boundaries between the irregular and layered regions, may have zero
moduli and zero mass density, while the sublayers of the layered
regions must always have non-zero property values.
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The numbering of the finite element nodes is arbitrary, with

the following restriction. If it exists, the left layered region L

(see Fig. 2-3) is connected to the first NUMLL+nodes, where NUMLL

is the number of sublayers in the left layered regions. The surface

layer is connected to nodes 1 and 2, the second layer to nodes 2

and 3, ... , and the bottom layer (numbered NUMLL) to nodes NUMLL

and NUMLL+1. The right layered region R, if existing, is connected

to the last NUMLR+1 nodes, where NUMLR is the number of sublayers in

the right layered region. The surface layer is connected to the

nodes NUMNP-NUMLL and NUMNP-NUMLL+l, ... , and the bottom layer to

NUMNP-l and NUMNP, where NUMNP is the total number of nodes. Because

the system is supported by a rough rigid base (see Figs. 2-la and

2-lb) zero displacements must be specified for the nodes at the bot-

tom, or VSR, VSI, VPR and VPI if there is harmonic motion of the

rigid base (see input data, item I).

Size Limitations:

The program uses dynamic storage allocation for arrays the

lengths of which are problem dependent. The total storage available

for these arrays is the length, MTOT, of the array A, which appears

in the blank COMMON statement of MAIN. The length requirement is

MTOT > MBAND (5MBAND+7) + 3NUMNP + 2NPBB

in which

MBAND = maximum half-bandwidth of global stiffness matrix,
i.e. twice the maximum difference between nodal
point numbers of nodes belonging to any element +2

NUMNP = total number of nodal points
NPBB = number of.points outside the finite element region

at which motion is to be computed.

If the value of MTOT is reset, then the dimension-of the array A

in the blank COMMON statement of program PLAXLY must also be adjusted.

This program uses temporary secondary storage with sequential

access. The units are referred to by 1, 2, 3, 4 and 8.
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Output Information:

The program prints the following output:

1) Input and generated data.

ii) Nodal point displacements including amplitudes and phase
angles

iii) Reaction forces for nodes at which non-zero displacements
are prescribed, including amplitudes and phase angles.

iv) Displacement at desired points outside the finite-element
region.

v) One-dimensional amplification when displacements are pre-
scribed at the rock level.

Input Data:

A. START CARD (5H) (Read in MAIN)

The work START must be punched in columns 1 to 5 on a separate
card at the beginning of each problem. Several problems can
be analyzed in one run.

B. HEADING CARD (12A6) (Read in MAIN)

Columns 1 to 72 contain alphanumerical data to be printed as
title on the output.

C. CONTROL

Cols.

CARD (815) (Read in MAIN)

1-5 No. of nodal points, NUMNP
6-10 No. of finite elements, NUMEL

11-15 No. of different materials, NUMMAT
16-20 No. of sublayers in Region L, NUMLL, less or equal 40
21-25 No. of sublayers in Region R, NUMLR, less or equal 40
26-30 No. of points outside of Region I where displace-

ments are to be-computed, NPBB
31-35 No. of frequencies at which the model is to be anal-

yzed, NFRQ
36-40 If column 40 is left blank, problem is taken to be

axisymmetric and NUMLL must be zero. 1 in column 40
indicates a plane problem; 2 indicates plane-strain
problem with prescribed horizontal and/or vertical
motion at rock level; 3 indicates axisymmetric prob-
lem with nrescribed vertical motion at rock level
(if both VSR and VSI are not equal to 0, an error mess-
age will be given, and the particular example will
be flushed out).

Note: If NUMLR is input as minus NUMLL, Region R is understood
to be a mirror image of Region L, and some computation can be saved.
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D. MATERIAL CARDS (215, 5F10.0) (Read in INPUTD)

One card for each different material; not more than 40 materials.

Cols. 1-5 Material number, M
6-10 Interpretation parameter, INTPR

If INTPR=O Cols. 21-60 contain moduli
If INTPR=l Cols. 21-60 contain wave velocities

11-20 Mass density, RHO
21-30 Real component of shear modulus or S-wave velocity, G131-40'Imaginary part of shear modulus or S-wave velocity, G241-50 Real part of Poisson,'s ratio or P-wave velocity, NUI
51-60 Imaginary part of Poisson's ratio or P-wave velocity,

NU
2

E. LAYER CARDS (1015) (Read in INPUTD)

Cols. 1-5 Material number for sublayer 1
6-10 Material number for sublayer 2
etc.

Note: This data is grouped in sets, one set for each layered
region. If there are two layered regions the first set
describesRegion L and the second set*Region R. If NUMLL=O
or NUMLR=O the-respective set is omitted. In the axi-
symmetric case NUMLL should be zero. Each set consists
of as many cards as necessary to contain the material
numbers of the layers-sequentially, starting with the sur-
face layer and ending with the bottom layer.

F. NODAL POINT CARDS (2I5,4F10.0,15) (Read in INPUTD)

Cols. 1-5 Nodal point number, NL
6-10 Parameter indicating if displacements or forces are

specified, ICODE
11-20 r-ordinate, (x-ordinate in plane case), R(NL)
21-30 z-ordinate, Z(NL)
31-40 U(1,NL) see below (for horiz. rock motion, put a 1.)
41-50 U(2,NL) see below (for vertical rock motion, put a 1.)
51-55 Parameter-for nodal-point generation, INCL

If ICODE is

0 U(1,NL) is specified force in r-direction and U(2,NL) is
specified force in z-direction

1 U(1,NL) is specified displacement in r-direction and
U(2,NL is specified force in z-direction

2 U(1,NL is specified force- in r-direction and U(2,NL) is
specified displacement in z-direction

3 U(1,NL) is specified displacement in r-direction and
U(2,NL) is specified displacement in z-direction

Note: Nodal point cards need not be input in numerical sequence.
Suppose cards for nodes NA and NB are input sequentially. If
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(NA-NB) <cl then nodal point data will be generated for nodes
NA+INCL, NA+21NCL, ... , NB-INCL-where INCL is the integer speci-
fied on the card for node NA. The coordinates for these nodal
points will be obtained by linear interpolation between nodes NA
and NB. The value-of ICODE for the generated nodes is 0. If
(NA- NB) > 0 no data are generated. If left blank INCL is taken
as1.

G. OUTPUT SPECIFICATION CARDS (F5.0, F10.0)(Read in INPUTD)

Cols. 1-5 Number of the interface passing through the point at
which motion in Region L or Region R is to be computed,
RZ. Interfaces are numbered from the surface down-
ward commencing with 1.

6-15 Absolute r-ordinate (horizontal) of point at which
motion is to be computed, RZ.

Use one card for-each point in Region L and Region R. Cards
for points in Region L are placed first. The number of
points, NPBB, is specified by the Control Card, see C.

H. ELEMENT CARDS (715) (Read in ELSTIF)

Cols. 1-5 Element number, MMM
6-10 Nodal point i, IY(l)
11-15 Nodal point j, IY (2)
16-20 Nodal point k, IY(3)
21-25 Nodal point 1, IY(4)
26-30 Material identification number for element, IY(5).

If leftblankit is taken as 1.
31-35 Element generation parameter, INCL

r

Note: Order nodal points counter clockwise when the r-axis points
horizontally to the right and the z-axis points vertically
downwards.

Note: Element data may be generated automatically if the material
number is the same for all elements in a series and the
nodal point numbers can be obtained as follows:

IY(l) = IY l).+INCL
IY(2). = IY +2)INCL
IY( 3)1 = IY 3)+INCL
IY(4) = IY(4)+INCL

where j refers to an element for which the element number
MMM is one less than the element number MMM. In this
cas only the element card for the first eleient ofthe
series need be input. However, the last element (highest
element number) must always be input. If INCL is left
blank then INCL=l.
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I. FREQUENCY CARDS (Fl.0) (Read in MAIN)

Cols. 1-10 Frequency of the exciting forces and displacements,
CPS

11-20 Real part of specified horizontal rock motion, VSR
21-30 Imaginary part of specified horizontal rock motion,

VSI
31-40 Real part of specified vertical rock motion, VPR
41-50 Imaginary part of specified vertical rock motion,

VPI.
Note: If CPS is positive it is interpreted as the frequency in

cycles per second. If CPS is negative it is interpreted
as the angular frequency in radians per second. The num-
ber of frequency cards is equal to NFRQ specified in the
Control Card, see C.

J. STOP CARD (4H) (Read in MAIN)

For normal termination of execution the complete data deck (not
each individual problem) finishes with a card with the word STOP
punched in columns 1 to 4.


