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ABSTRACT

On the Thecry of Combinatorial Independence

Wl V LI
| rc D0

Submitted to the Department of Mathematics

on 1 May, 1964, in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

A theory of combinatorial independence on finite

modular lattices is based upon the notion of a differen-

tial. This theory is shown to be strong enough to

include the classical theory of abstract linear depen-

dence of H. Whitney, as well as the theory of geometric

lattices of Birkhoff and Dilworth. Several applications

are made.

The main result, obtained as an application of

the theory, is extension to arbitrary Whitney indepen-

dence systems of certain polynomials first defined by

W.T. Tutte for the special case of linear graphs. A



simplified and order-independent computation of these

polynomials is provided, and their characteristic

algebraic proverties are determined. The chromatic

polynomials of G.D. Birkhoff, as well as the classical

zeta and Mobius functions of the independence system

and of its dual system arise from this polynomial by

simple substitutions of variables. The existence of
n . ] 3

at least 2° non-isomorphic independence systems on the

Boolean algebra of an n-element set is established.

Thesis supervisor: Gian-Carlo Rota

Title: Associate Professor of Mathematics
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INTRODUCTION

One of the most important and characteristic

developments in combinatorial analysis in recent years

is the renewed attention being given to the generali-

zation of the theory of graphs to a more abstract

structure, a structure which has found disparate appli-

cations, The original idea goes back to a beautiful

paper’ of Hassler Whitney in 1935, Unfortunately, this

paper received little attention during its first twenty

years in print, ourside of a small group of mathema-

ticians working mainly in lattice theory.

Whitney's paper set forth equivalent axiomatizations

for independence systems on a finite set, phrased

alternatively in terms of rank, independence, bases,

and circuits, We call these general structures Whitney

systems, though they have been variously called matroids

frames, systems of linear independence, closures with

the exchange property, exchange structures, matroid

lattices, Birkhoff lattices, and geometric lattices.

*H, Whitney, "The Abstract Properties of Linear
Dependence", Amer. J., 57 (1935), pp. 507-533.



During the twenty years following the publication

of Whitney's paper, two schools of thought developed

concerning independence systems, A first direction

was established by Garrett Birkhoff, in a paper published

that same year. 1 He observed that the closed subspaces

of a Whitney system form a lattice. He exhibited the

characteristic covering and rank properties of these

lattices, and introduced the terms semimodular and

geometric to describe these new lattice structures.

Saunders MacLane worked out the notions of basis and

dimension in the latticial setting, and compared a

variety of possible statements of the Steinitz exchange

property. R.P. Dilworth&gt; further pursued this research,

emphasizing the correspondence (which fails to be 1-1)

between Whitney systems and semimodular lattices.

The second school of thought sought for extensions

of Whitney's theory of independence to infinite sets,

A typical paver of this school, with an adequate biblio-

graphy to earlier papers on infinite extension, is that

——

ts, Birkhoff, "Abstract Linear Dependence and
Lattices", Amer. J., 57 (1935), pp. 800-804,

2s, MacLane, "A Lattice Formulation for Transcen-
dence Degrees and p-Bases'", Duke J., 4 (1938) pp. 455-468.

SR, P, Dilworth, "Dependence Relations in a Semi-
modular Lattice", Duke J., 11 (1944), pp. 575-587.



of Jurgen Schmidt®. His description of the exchange

properties of derived sets reinforced our decision to

employ the term differential for the type of function

to be defined in Chapter I. R, Rado? completed an exten-

sive analysis of such infinite systems,

Only in the last decade has renewed interest attached

to Whitney's pioneering work. Though Whitney systems

are the natural domain for most theorems of graph theory,

their abstract quality has deterred many investigators

and even more readers, There is still reason to complain

of the relative unpopularity of the general theory,

even among avid readers of graph theory.

Advances in the past decade have been the work

of onc mathematician, W.,T. Tutte, of Waterloo. With an

assist from the chain-group techniques of algebraic

topology, he has succeeded in showing the precise manner

in which the theory of graphs and of planar granhs is

embedded in the general theory of independence, In a

“J. Schmidt, "Mehrstufige Austauschstrukturen",
Zeitsch, f, math. Logik und Grundlagen d. Math,, bd 2
(1956).

’R, Rado, "Axiomatic Treatment of Rank in Infinite
Sets, Can, J., 1 (1949), pp. 337-343,
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remarkable series of papers™ he makes contact with the

theory of Kuratowski subgraphs, and provides purely

combinatorial analogues of Kuratowski's results.

A substantial increase in interest in Whitney

systems manifests itself at the present time. George

Minty? at the University of Michigan, is generalizing

the Bott-Duffin circuit theory to arbitrary Whitney

systems, with an eye toward work with error-correcting

codes. Alfred Lehman and Jack Edmonds at the Bureau of

Standards are actively working on Whitney systems, and

applications to circuit and switching theory. Gian-

Carlo Rota® is continuing his researches into the nature

of Mobius functions of partially ordered systems,

researches which have already produced a proof that the

Mobius function of a geometric lattice alternates in

sign on the levels of the lattice, and have produced

fundamental relations concerning Galois connections

between partially ordered systems. Such activity

portends the fruitful development of independence

w.T. Tutte, "A Class of Abelian Groups'", Can J.
8 (1956), pp. 13-28; "A Homotopy Theorem for Matroids,
I and II", Trans. A.M.S. 88 (1958) pp. 144-174; "Matroids
and Graphs", Trans. A.M.S. 90 (1959), pp. 527-552.

2G.J. Minty, "Monotone Networks", Proc. Roy. Soc,
London, Ser. A 257 (1960), pp. 194-212.

3G. -C. Rota, "On the Foundations of Combinatorial
Theory", Zeitschr. fur Wahrshein., 2 (1964), pp. 340-360,
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theory in the near future,

The contribution we make to this theory is two-fold:

we construct a generalization of, and a natural setting

for, Whitney systems, and we produce several new results

concerning chromatic polynomials,

[t is our aim in writing this paper to provide an

appropriate lattice-axiomatic foundation for a theory

of independence. It proves expedient to represent

independence systems as certain functions on a modular

lattice, rather than as lattices themselves. We are

able in this way to define a unique dual structure

in purely latticial terms, a task which is impossible

to complete within the framework of Birkhoff, MacLane

and Dilworth.

We show that independence systems are determined

by the finite-difference analogues of exact differentials

defined on modular lattices. Our development centers

on a duplication of the real variable theorem concerning

independence of path for integrals of differentials

satisfying a local exactness condition. Hassler Whitney's

program for proof of the usual theorems on linear

independence and of theorems on graphs is carried out for

exact differentials on complemented modular lattices.



After a consideration of the Tutte polynomial

it was our feeling that there should be some simultaneous

computation of the Mobius functions and chromatic poly-

nomials of both a Whitney system and its dual via a

single enumerative process applied to all subsets.of

the underlying set. We determine such an enumeration

in the final chapter, The two-variable generating

function thus defined provides chromatic polynomials

for Whitney systems and their duals, and is shown to

reduce by simple substitution of variables to the Tutte

polynomial, which has heretofore been defined only for

graphs.

The conceptual simplicity of this new formulation

makes possible certain advances in the enumeration of

exact differentials on a Boolean algebra. We prove

the existence of at least 20 non-isomorphic exact differen-

tials on the Boolean algebra of all subsets of any

n-element set. The corresponding problem for granhs

is one of the intriguing unsolved problems of elementary

combinatorics. Our theory, together with Tutte's embedding

of the theory of graphs in the general scheme may be

the direct approach to this problem.

‘W.T. Tutte, "A Contribution to the Theory of
Chromatic Polynomials", Can. J., 6 (1954) pp. 80-91,
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It is our hope that the reader will find established

a useful conceptual basis for further research in the

abstract theory of combinatorial independence. Before

turning to the theory proper, and with the purpose of

further orienting the reader to our theory of differen-

tials let us consider the interaction of the various

theories of graphs due to G.D., Birkhoff, Whitney, Tutte

and those newly introduced in this paper, as they are

all applied to a single illustrative examnle,

Consiaer tae linear Graph G:

formed of 5 edges and 3 vertices, dividing the plane

into 4 regions. This graph arises from the edge-vertex

incidence relation

The dual graph G* may be constructed by placing a

sertex in each of the four regions of the plane, and then
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drawing an edge across every edge of the graph G,

connecting the new vertices in regions separated by

edges of G. The letter designation of corresponding edges

is preserved,

oT

v

 dl

the dual geagh

A coloring of a graph is an assignment of colors to

vertices such that no two adjacent vertices have the same

color. The chromatic polynomial of the graph G is just

that of a triangle, as the multiple edges act just as

single edges relative to admitting colorings. Given A

colors, use any of the A colors to color vertex 1, and

of the 2-1 different colors to color the adjacent vertex

2, and any of the A-2 colors different from both of these

to color vertex 3.

A(A=1)(A-2) = A” 7)“ " LA

We may color the dual graph in two different ways:

vertices B and D may be the same color or different.

Nith B and D the same color, there are A(A-1)(r-2)

colorings in X colors. With B and D different colors,
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there are A(A-1)(A=-2)(X-3) colorings in A colors,

Adding: A(A-1) (A-=2) (A=3) + A(A-1)(A=2) = A(A-1) (A-2)2
4 - 51° + 812 - 4,—

ei}

These polynomials may be obtained by lattice-

theoretic means. We construct for the graph G, the

lattice of contractions of G along subsets of its edges

as is shown in the lattice diagrams on the next page.

Loops are neglected; multiple edges are drawn single

for convenience.





To compute the chromatic polynomials from these

lattices, first calculate the Mobius function values

b(0,x) for each element x of the lattices. Recursively

defined, u(0,x) has value 1 at zero, u(0,0) = 1, and the

sum over any lattice interval [0,x] is zero. The values

are indicated on the lattices as

The sums of the values of the Mobius function on the

various lattice levels are the coefficients of the

chromatic polynomials of the graph and of the dual

graph.

W.T. Tutte obtained these polynomials via an arbi-

trary ordering of the edges (eg: alphabetically, as

we have written them) and the following considerations

concerning bases for the graph. A base (or basis)

for the graph G is a connected set of edges passing

through every vertex, but containing no circuits, If

an edge e is added to a base B, the set B + e contains

a unique circuit, If the edge e is the highest edge in
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this circuit, e is said to be externally active with

respect to the base B., The complement of the Base B

is a base for the dual graph, If an edge e of the

base B is deleted from B, and added to the complement,

a circuit is formed inthe dual graph G*, If the edge

e is the highest edge in this circuit, e is said to be

internally active with respect to the base B, Tutte

counted the internally active and e:.ternally active edges

for each base:

Bases

ac

ad

[Internally Active Externally Active

bde

ne

ae

bc

bd

Ty

be

ce

de 1

Tabulating the number of bases with activities (i,j),
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we obtain the array:

This serves as the array of coefficients for what we

call the Tutte polynomial:

I 2En + Nn L

Substituting (1-1,0) for (&amp;¢,n), we have (1-1) + (1-2)

= V2 - 32 + 2, which, when multiplied by A, is the

chromatic polynomial of the graph G., Substituting

(0,1-2) for (g£,n), we have

(1-0)3 + 201-002 + (1-2) = -02° = 554 8a - 4];

which, when multiplied by =-A, is the chromatic poly-

nomial of the dual graph.

Our theory of differentials offers an alternative

construction of both the geometric lattices and of the

Tutte polynomial. On the lattice of subsets of the five-

element edge set (shown on the next page) we mark

double or color red those covering lines ('"'steps')

along which the rank of the corresponding edge subsets

increase. The rank of a subset is the number of vertices

which the edges collectively contain, less the number

of connected components.
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This done, the lattice elements up from which

all steps are double (red) constitute the elements of

the geometric lattice of the graph G; the lattice elements

down from which all steps are singly-drawn (black)

constitute the inverted form of the geometric lattice

of the dual graph G*., Indeed, inversion of the Boolean

algebra, with interchange of double for single markings

of steps, is the differential of the dual graph, ie:

the dual differential,

Contractions or removal of edges of G form graphs,

the differentials of which are merely the restrictions

of the differential of G to various lattice subintervals,

Restriction to the lattice interval [e,l] corresponds

to contraction of the edge e; restriction to the interval

[0,1-e] corresponds to elimination of the edge e.

The number of doubly-drawn (red) edges in a path

through the Boolean algebra is dependent only upon the

end points of the path. If we CRUTET ale all edge subsets

with respect to the double grading (the number of red

steps from x to 1, then the number of black steps from

0 to x), the resulting array serves as coefficient

matrix for a function of two variables.
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5

10 2

8 51

«57 + 8 + n(2E + 10) + 5n° b

This polynomial we refer to as the rank generating

function, Substitution of (g£-1,n-1) for (&amp;,n) produces

the Tutte polynomial:

(8-1)% + 5(&amp;-1) + 8 + (n-1)(2£-2+10) + 5(n-1)% + (n-1)°

©. 268+ 1456-548 + 26n - 26 + 8n = 8 + 5n°

10n + 5 + n&gt; = 30% 3n - .

CT ® E+ 2En + n + 2n? + n&gt;

These computations, which could previously be carried

out only for planar graphs, can now be performed for any

Whitney system, There are differentials dual to those

for non-planar graphs; there are differentials, such as

that of the incidence relation

for which neither the differential nor its dual are

given by graphs.



TABLE OF CONTENTS

Chapter 1 page 1

§1 Introduction

§2 Lattice Preliminaries

§3 Differentials

§4 Operations on Di

Chapter II

§1 Introduction

{7 rentials

§2 Relations and Closures

§3 Whitney Systems and Graphs

§4 Atom and Coatom Differentials

§5 Various Applications

Chapter III

§1 Introduction

§2 Characterization of Exact Differentials

§3 A Taylor Theorem for Exact Differentials

§4 Structure of Fixed-Point Lattices

§5 Graph-1like Properties of Exact Differentials

56 Factorization into Primes

Chapter IV

1 Introduction

§2 Rank Generating Functions

 | 6

29

29

30

39

16

1Q

3 7

y 7

5 8

38

3 ()

85

101

103

103

10S



53 Algebraic Properties of the Rank

Generating Function

54 Associated Lattice Polvnomials

§5 Enumeration on the Fixed-Point Lattice

112

128

149

56 Classification and Enumeration of

Exact Differentials 24



Chapter 1

31 [niroduction

A variety of terms from the theory of partially

ordered systems in general and of lattices? in parti-

cular will be employed in this paper. The definitions

of these terms are collected in section two, together

with the statements of important properties of modular

lattices, and of the fundamental theorem of Galois

connections.

The concept of a differential on a modular lattice

is defined in section three, The defining pronerties

are then seen to restrict the local behavior of differen-

tials to one of five basic configurations. An equivalent

characterization of differentials is given in terms

of these local graphs, in that they permit a unique

extension to a differential. The further elimination

of the least symmetric of the allowable local graphs

provides the concent of exactness of differentials,

and marks off the principle objects under investigation

A . - .

for more detail, see G, Birkhoff, Lattice Theory,
(A.M.S. Colloquium Pub., 1948). CP ——



in this paper. Exact differentials are a natural genera-

lization of Whitney's indevnendence systems,

Section three concludes with a discussion of fixed

points of differentials. We establish the existence

of non-trivial fixed points for any non-zero differential.

We investigate an equivalent characterization of differen-

tials in terms of fixed points,

In section four we discuss a variety of different

algebraic operations which may be performed on differen-

tials, We produce new differentials from old by any

one of the following operations: restriction of the

domain lattice to a proper subinterval, taking supremum

over a set of differentials, inversion of the domain

lattice, a duality operator defined in terms of fixed

points, and multiplication of lattices. We prove two

important inequalities relating the values of a differen-

tial to those of its dual, and prove that the product

of exact differentials is exact. The concept of a

prime differential arises naturally from a consideration

of products.

§2 Lattice Preliminaries

A partial ordering (&lt;) is a reflexive anticommu-

tative and transitive relation. A set P 1s a partially



ordered system if a partial ordering is defined thereon.

A partially ordered system L is a lattice if, for every

pair (x,y) of elements of L there is a unique element

x~y of L such that z &lt; xay «+ z &lt; x and z &lt; y, and a

unigue element xvy of L such that xvy &lt; z «+ x &lt; z and

y &lt; z. These elements are called the inf and sup of

X and y, respectively, A least element of L is called

0, and a greatest element, 1,

An element y is said to cover an element x if x «&lt;

and Xx &lt; z s y= 2z =vy, A pair (x,y) in which y covers

Xx 1s termed a step. An increasing sequence of elements

X = Py&lt;Py&lt;ece&lt;p, = VY is said to be a path from x to y

if P; covers Pj.] for j = 1,.4.o,n., If x covers 0, x is

an atom; if it is covered by 1, x is a coatom. The

notations of closed [x,y] and open (x,y) intervals of

[. are used.

Certain categories of lattices figure prominently

in the theory of independence. A lattice is finite

if every path has finite length. A complete lattice

(there is a unique supremum for every lattice subset,

and, consequently, a unique infimum.) is essential to

the definition of differential. A modular lattice

(vx,yeL, xvy covers X «+ y COVers Xsy) possesses just

enough symmetry to permit the establishment of a duality



relation on differentials, It is the finite, complete,

modular lattice which serves as substrate for our theory,

in contrast to the customary use of the Boolean algebra,

or lattice of subsets of a finite set, with ordering

given by inclusion,

The exact differentials will distinguish within

the modular lattice L a pair of subsets which form

semimodular lattices ((vx,yelL) x covers Xay - Xvy covers

y). If for every x &lt;y &lt; z in L there is an element

y' such that yvy' = z and y.y' = x, and, in particular,

if L is a Boolean algebra, the distinguished subsets

are geometric lattices (y covers x «&gt; there is an atom

e of L such that x &lt; xve = vy).

The notation L will denote the inverse lattice

formed from L by inverting the partial ordering and

interchanging the roles of A» and v

We shall make frequent use of he characteristic

property of modular lattices,

that paths may be "projected" u.

or down without variation in

length, ie: if p: x = Po&lt;Py

Sese&lt;p, = Y is a path from x to

and if z covers x with z £ vy,

Y,

then q = Zvps defines a path



qi: Z = qp&lt;ees&lt;q, = 2ZVy of length equal to that of p.

If, on the other hand, p is as above, and y covers z

with x £ z, q; = zap, defines a path q: zx = qq &lt;

&lt;q. = z of length equal to that of p.

Finally, use of the basic theorem’ on Galois connec-

tions will shorten several of our proofs. A Galois

connection is a pair of anti-isotone functions o¢ and rt,

oc mapping a partially ordered system P into a partially

ordered system Q, and 1 mapping Q into P, such that

r composed with o is isotone on P, and o composed with

t is isotone on Q. The basic theorem states that 1

composed with o is a closure operator on the partially

ordered system P, as is o composed with 1 on the system

Q. Furthermore, the elements of P or of Q which are

closed with respect to these operators are exactly

those elements in the ranges of tv and o, respectively.

The partially ordered subsystems of closed elements

of P and of Q are isomorphic.

59 Uliiierentialrs

Throughout this section, L will denote a complete

and finite modular lattice. A function R defined for

135-5
toystein Ore, Theory of Graphs, (1962) AMS J DP«



all pairs x,y of elements of L is a differential if

and only if

1) R takes values J or 1, and R  X ,yY) = 0 unless

 ry

os) R is monotone with respect to intervals, ie:

© ¢vy &lt; z= R(x,y) &lt; R(w,z).

LT

d)

R is subadditive, ie: x &lt;¢

&lt; R(x,y) + R(y,z).

Translation property: If

Vv »

~ /

ly Covers

R  x, 2)

&lt;, R(x,xvy)

&lt; R(xry,y).

The translation property is the foundation of our theory.

It expresses the monotone nature of a differential with

respect to upward parallel translation of intervals

of length 1.

These conditions can be expressed pictorially if

we consider what they require concerning the values

of R on pairs drawn from any 4 element subset {X,y,Xay,xvy}

where x and y cover xay (and consequently xvy covers

x and vy).

As a standard procedure, to be used in all examples,

let us color red those steps (ie: lattice intervals of

length one) on which R has value 1, leaving black those

on which R = 0, Of the different possibilities for



coloring the edges of the figure only

five are allowable in a differential.

eliminated by the translation peropecks

- EE
eliminated by the monotone and shadditive properties

If R has value 1 on any one of the four steps,

the monotone property implies R(xay,xvy) = 1. In this

event, the subadditive property implies there must be

at least one step in each of the two paths from xay

to xvy on which R has value 1, As this is not the

case in the sixth, seventh, and eighth figures, these

may not occur in a differential,



On the other hand, the last four figures involve

contradictions of the translation property. This leaves

the first five figures as the only possibilities for

configurations within a differential,

These are the basic building blocks of differentials;

within the calculus of finite differences they correspond

to the values of second partial derivatives in function

theory. Since we shall show that differentials are

completely determined by their local characteristics,

we shall introduce the term local graph for any such

configuration, and shall denote the allowable local

graphs by special names, the significance of which will

become clear by the end of this chanter

z+Ne)

Allowable local

mixed prime

graphs:

JXi1v¢ *
- inexact

Each type of local graph has a characteristic

effect on the global properties of the differential.



The zero local graphs appear in the higher lattice

regions, the one-type local graphs in the lower regions,

by virtue of the translation property. Mixed local

graphs predominate in factorablel differentials; prime

local graphs indicate the existence of non-trivial

factors, and are associated with the phenomenon of

exchanes®, studied by Steinitz and MacLane.

Note that local graphs which are zero, mixed,

prime, or one possess a degree of symmetry lacking in

the inexact case. It might be expected that differen-

tials, none of whose local graphs are inexact, have

global symmetry properties which reflect their symmetric

local character. This is indeed the case.

Definition: A differential R on a finite complete

modular lattice L is exact if and only if no local

sraph of R is inexact.

The properties of exact differentials are set forth

in Chapter 3. Examples of exact and inexact differen-

tials are given in Appendix A.

We shall complete this section by proving three

propositions which serve to exhibit the essentially

lyide §4e, p.22, for products of differentials.

2vide Chapter two, §3, p.41.
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local character of differentials, and which provide

an equivalent characterization of differentials in

terms of sets of fixed points on a lattice,

Proposition. Local Character of Differentials:

The condition that all local graphs be allowable

suffices to characterize differentials, If R is a

function defined on all steps of the lattice L, every

local graph of which is allowable, R has a unique

extension to a differential on L.

Proof: If R is a 0-1 function on the steps of L,

satisfying the condition that it have only allowable

local graphs, we may define R(x,y) = 1 if and only if

X &lt;y and R = 1 on some step of some path from x to y

If this defines a differential, it must be the unique

differential extending R, since all differentials

are monotone, First we show R has the translation

property. If xvy covers x, and R(x,xvy) = 1, choose

a path p: xay = Po&lt;Pq

Caee&lt;p, = X, and let

q; = p;vy. Since L is

modular, q is a path from

to xvy, y = qQg&lt;qp&lt;ese&lt;q,

= xvy and q; covers p.,

,eeeons For each i,k

(Ps _19P39q5_199:} compose
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a local graph, Let i be the least index for which

R(p;,q;) = 1, Then R(p;.1095.1) = 0, and the local

graph on {pi 19P;995.109;} is not allowable. Thus

1 = R(pg,agp) = R(xay,y). Now we prove R to be subaddi-

tive, Say x &lt;y &lt; z, and R(x,y) = R(y,z) = 0, If there

is a step [u,w] between x and z for which R = 1, we

investigate the two projections [uvy,wvy] and [ury,way].

Since L is modular, exactly one of these is a step,

the other being a single element, If [uay,way] 1s a

step, R(uay,way) = 1 by the translation property, contra-

dicting R(x,y) = 0. If [uvy,wvy] is a step, we choose

a path p from u to uvy, and let q; = Div W, forming a

parallel path q from w to wvy,., Since R(y,z) = 0,

R(uvy,wvu) = 0, Let i be the least index such that

R(p;,a;) = 0, 1 2 1 since R(pgsag) = R(u,w) = 1,

Then R(p;_1s95.1) = 1 and the local graph on {p;.1

q;.12P;9;} must be prime or inexact. In either case,

R(p;_q1sP;) = 1, so R(p; _12YsP4rY) = 1 by the translation

property, where [pj _12YsP;AY] is a step between x and vy.

Contradiction.

The following proposition resembles a fixed point

theorem, and may be considered one if we regard a dif-

ferential R as defining an upward flow along any paths

on which R takes the constant value 0.
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Proposition, Existence of Fixed Points: If a

differential R on a finite complete modular lattice

L is not everywhere zero, there exists an element z

of L, z # 1, such that R(z,w) = 1 for all w covering

z. The same is true for any interval [a,b] of L, if

we substitute the conditions z # b, R not everywhere

zero on [a,b], and R(z,w) = 1 for all w &lt; b, w covering

Proof: Choose a path p from a to b which is maximal

with respect to the number k of initial steps along

which R(p; _19P;) =0, i=1,...,k. If the path p has
length n, and k &lt; n, then w &lt; b and w covers Py implies

R(p,,w) = 1 for otherwise the path p can be replaced

above Py by a path to b via w, which will have k+l

initial steps for which R = 0, If k = n, we have found

a path from a to b along which R = 0, By a simple

extension, by induction, of the subadditivity property,

R(a,b) = 0, and R must be zero everywhere on the interval,

by the monotone property.

Proposition. Characterization of Differentials

in Terms of Sets of Fixed Points: There is an invertible

correspondence between differentials R on a complete

finite modular lattice L and sets K of lattice elements

which are closed with respect to the lattice operation



inf, ie: sets K such that E&lt;K —- inf E e KX.

Proof: Given such a set K,define R(z,w) = 1

whenever w covers z, and z € K. Then define R(x,Yy)

for any pair x,y where y covers x by the translation

property, R(x,y) = 1 if and only if there exists z € K

such that x &lt; z but yvz covers z, Assume Xvy covers Y¥

and R(x,xvy) = 1, Then there exists z e€ K such that

Xx + z but xvyvz covers z, xvyvz = yv(xvz) = yvz and

y covers Xay implies R(xay,y) = 1, so R, as a function

now defined on all steps of L, has the translation

property.

Refer now to the types of local graphs pictured

on page 7. Since R, as so far defined, has the trans-

lation property, it will only fail to extend uniquely

to a differential if there is some local graph resembling

Taking x and y to be situated as in

 Bh

this figure, there must be some element z € K such that

x~y &lt; z but yvz covers z, Say x &lt; z, Then (xvy)vz

= yvz covers z, and R(x,xvy) = 1, If x £ z, xvz covers

z, so R(xry,x) = 1, In neither event is the local

graph the one we must exclude, so every local graph

is allowable. By our previous result, R now extends



uniquely to a differential,

With R thus defined for all pairs x,y of elements

of L, we note that the set of elements z such that w

covers z implies R(z,w) = 1 is exactly the set K with

which we started. If any element z has this property,

and z is not in the set K, then for each element w

covering z we can find an element x(w) in K such that

z &lt; x(w) but wvx(w) covers x(w), ie: w £ x(w). Then

inf x(w), the infimum being taken of a set of elements
 Ww

indexed by the elements w covering z, is an element

of K, because each x(w) is in K. z &lt; x(w) (vw) implies

¢ inf x(w), but w £ x(w) (vw) implies w £ inf x(w)
v w

Z

(vw). Thus z = inf x(w), and z is an element of K.
 WwW

For any differential R, the set of elements z

such that w covers z implies R(z,w) = 1 is a set closed

under the lattice operation inf, Let E be a subset

of the set K of elements z having this property, and

let u = inf E. Then w covers u implies w £ u, and

w £ x for some x in E. For this choice of x, wvx covers

x, so R(x,wvx) = 1, and R(u,w) = R(Wax,w) = 1 by the

translation property. Thus R(u,w) = 1 for all w covering

u = inf E, and the set K is closed with respect to inf.
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It remains to be shown merely that, starting

from a set K of lattice elements which is closed with

respect to inf, if we define a function R to have

value 1 on all steps [z,w] where z is an element of

K, and extend it to a differential in any way other

than that employed at the outset of this proof, we

obtain elements z not in K for which w covers z implies

R(z,w) = 1.

Since every differential has the translation

property, it follows that R(x,y) must equal 1 whenever

y covers Xx, and xXx &lt; z but yvz covers z, for some z in K.

If y covers x, but these conditions hold for x and y

with respect to no z in K, x &lt; z must imply yvz = z,

and y &lt; z, ie: x and y are beneath the same elements

of K., Let z be the least element of K which lies

above x and y (ie: the meet of all such elements

of K). The fixed point property applies to the interval

[x,z]. If R(x,y) = 1, there is some element w &lt; z,

w e [x,z], such that u e€ [x,z] and u covers w implies

R(w,u) = 1, But if any other element s covers w,

s £ z, then svz covers z, and R(z,svz) = 1, By the

translation property, R(w,s) = 1, so R(w,s) = 1 for all

elements s covering w, with x ¢« w &lt; z, in contradiction

to our choice of z.



§4 Operations on Differentials

1) Restriction

The simplest yet most important operation on dif-

ferentials is that of restriction of the domain of the

differential to pairs of lattice elements lying within

some fixed lattice interval:

R | rx. 1 (u,v) = R(u,v) for all u,v € [
.TL.Y

Proposition, Properties of Restricted Differentials:

If R is a differential on a lattice L, and if x and vy

are elements of L, with x &lt; vy, RI (x v] is a differential
’

on the sublattice [x,y]. If R is exact, RI x v] is
9

axact,.

Proof: The monotone, subadditive, and translation

properties all hold with respect to any elements of L

in the interval. If Rl [x,y] is not exact, there is
some inexact local graph within the interval. A local

graph for RI x,y] is also a local graph for R, so R
1s not exact.

Restrictions are a central feature of the study of

differentials, arising in the theory of graphs, in that

they correspond to the operations of contraction



and elimination of edges."

b) Surnremum

[£f R. and R, are two differentials on a finite

complete modular lattice L, then

[R.vR,] (x,y) = Ry (X,y)v RB, (x,y)

defines a function RvR, on pairs of elements in L.

RivR,, the supremum of Ry and Ro, is a differential,
since it is monotone, and its restriction to steps

[x,y] has only allowable local graphs. For a proof,

consult the following table of suprema for local graphs:

toval graph of R,

local

graph
) r

Zero mixed prime one

Zero zero | mixed prime | one

mixed mixed
or one

inexact | one

prime prime one |

one
7
one

inexact

 Bh infra, Chapter II, §3, p. 43.

inexact

inexact

one or

inexact

inexact

one

one or

inexact
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If Ry and R, are exact, it does not necessarily

follow that the supremum RvR, is exact, since the

supremum of a mixed local graph with a prime local

graph may be inexact.

The infimum of a pair of differentials is not

necessarily a differential, because the infimum of a

mixed local graph with a prime local graph is not an

allowable local graph.

re
pe. [nverse

There are operations on differentials which yield

differentials on other lattices, If R is an exact

differential on a finite complete modular lattice L,

then the inverse of R, written R"*, is defined on the

inverted lattice L. For any element x in L, let X

represent the image of x under this inversion, Then

if X covers y in L, define R' by

R Ty a) = 1] =~ Ria )y J

and extend to a differential by the monotone property.

That this defines a differential on L is clear

from the change which occurs in local graphs when R

values 0 and 1 are interchanged, and the lattice is

inverted: those of types zero and one are converted
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into one another, while local graphs which are mixed

or prime retain these descriptions.

Proposition. Properties of Inverse Differentials:

If R is an exact differential, R' is exact and R" = R.

If R is not exact, the function S(y,x) = 1 - R(x,Yy)

for all steps [y,x) of L cannot be extended to a differen-

tial,

Proof: No local graph of R is converted to an

inexact local graph under this inversion. R" = R because

the operations of subtraction from 1 and lattice inver-

sion are their own inverses, and the extension to a

differential from a function on steps, all local graphs

of which are allowable, is unique, If R is not exact,

there is some inexact local graph in L. Interchange

of R-values 0 and 1, followed by lattice inversion,

changes an inexact local graph into one which is not

allowable in a differential.

a) Dia |

Another operation, related, as we shall see, to

inversion, also produces a differential on L from one

on L, Assuming R is a differential on a complete

finite modular lattice L, we determine the set H of

lattice elements z for which z covers w implies
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R(w,z) = 0. The set H is closed with respect to the

lattice operation sup, since if E is a subset of H,

and if x = sup E, x covers w implies x £ w, and z £ Ww

for some element z € E., Because X covers w, Z covers

zaw, so R(zaw,z) = 0, and R(w,x) = 0 by the translation

property. This being true for all w covered by Xx,

Xx = sup E must be in the set H.

The image H of this set H under lattice inversion

is closed under the lattice operation inf, and determines

a unique differential in accordance with our characteri-

zation in terms of fixed points.’ This differential

we call the dual of R, and employ the notation R*,

The main theorem on duality, that R* = R' if R

is exact, will be proven in the equivalence theorem

of Chapter three. For any differential R, we still

have a relationship between the dual R* and the function

S defined, for all elements X covering y in L, by

S(y.,x)=1 - R(x,y), ie: the function used to define

the inverse differential R' 2

Proposition. Properties of Dual Differentials:

If R is a differential on a finite complete modular

lattice L, then for all elements x and y of L, with

tsupra, p. 12.
25ee examples of differentials and duals, Appendix A,
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. covering vy,

R¥*7yY) &lt;1 - R( Yo:yi)

Furthermore, for any pair x,y of elements of L,

R &lt; YY) &lt; R¥*¥*(x 2 YJ

Proof: To establish the first statement, we must

prove that R(y,x) = 1 implies R*(X,y) = 0 whenever

x covers y. Assume x covers y, and R(y,x) = 1. Let

H be the set of those elements z of L such that z covers

w implies R(w,z) = 0, Then for no element z of the

set H does z lie beneath x but not beneath y, If this

were the case, zvy = x would cover y, so z would cover

yrz, This would mean R(ysz,z) = 0, so R(y,x) = 0 by

the translation property, a contradiction. Therefore,

carrying all these elements over into their images

in L, and letting H denote the image of the set H, we
find y covers X, yet for no element Z of H is it the

case that % &lt; i but y £ % (ie: yvi covers z). Because

of the manner in which we define R* from H, R*¥(x,y) = 0.

The second statement follows from a comparison

of the set K, of elements z of L such that w covers 2

implies R(z,w) = 1, with the subset H of L in terms

of which the differential R** is defined. This latter
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set H is the inverse image of the set H of L composed

of those elements z for which Z covers w implies R*(w,z)

= 0, Say z is an element of K, and w is any element

covering z in L, Then R(z,w) = 1, so R*(w,z) &lt;1 - R(z,w)

= 0, by that portion of the proposition we have already

proven, This being true for every element w covered

by Z, Z must be an element of the set H, so z is an

element of H. We have proven the set K to be a subset

of the set H, Because of the manner in which the

differentials R and R** are associated with the sets

K and H, respectively, ie: for y covering x, R(x,y) =

if and only if there is an element z of K such that

Xx &lt; z but y £ z, with a similar statement relating R**

and H, both R and R** then being extended to differen-

tials by the monotone property, we have R(x,y) &lt; R**(x,y)

for all pairs x,y of elements of L.

e J Products

Let R4 be a differential on a finite complete

modular lattice Ly and R, be a differential on another

such lattice Ly. The product R;*R, of these differen-

tials is defined on the product lattice LixL,, a lattice

which is also finite, complete, and modular, according

These three properties follow easily from the
observation that (x1,%,) covers (y1sY,) in L,xL, if and
only if (xy=y4 and X, covers Yo) or (x; covers y, and x,=v,,
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to the formula:

[RyxR,1((x1,%5)5 (¥1sY,)) = sup{R; (x1,¥1)1R;(X54¥,)}
if (x,X%,) &lt; (y1sY,) and is equal to zero otherwise.

We regard an element x of a lattice L, on which a differen-

tial R is defined, as a factor of R if x = (1,0) in a

product representation of L, for which R is the product

differential.

Proposition. Properties of Product Differentials:

i) If R xR, is defined as above, R xR, is a

differential on the lattice LyxL,.

ii) If R is a differential on a lattice L, then

x is a factor of R if and only if, for all elements

ve2 of L,

R(y,z) = supiR(yax,zax),R(yvx,zvXx)}.

iii) If R is a differential on a lattice L and

x is a factor of R, then R is exact if and only if

both restricted differentials R| 1g x1 and R(x p] are
4 . ®

exact.

Proof:

i) The value [RyxR,1((xy,%5),(¥15Y5)) is 0

or 1, and has value 0 unless (x1,%,) &lt; (Y1sY2) ie:

unless x; &lt; yq in Ly and x, &lt; vy, in L,. R;*R, is



?
Li ]

monotone with respect to intervals:

S av (Wy,wo) &lt; (Xq,x,) &lt; (Y1sY,) &lt; (z1,2,) in L;xL,. Then

[RyRy T((x15%5), (Y1sY5)) = Sup Ry (%5,y4) &lt; Sup Rj(wiyz:)
i=1,2 i=1,2

(Ry xR, ((wy,w,), (21525), R; xR, is subadditive: say

(X1,x5) &lt; (Y1sY5) &lt; (21,25) in L,xL,, and 1 = [RyxR,]

((xq4%x,)10%), (29,2,)) = su1742 Sap Ri (xgazs). Then for i  «= 1 or

2, R.(y:yz;) = 1. By the subadditive property of

R © for this value of i, either R: (x;,y3) = 1 or R;(¥ss2;)

» Thus either sup R, (X5y5) = 1 or sup R:(y;25) = ]
i=1,2 i=1,2

the former being [RyxR, 1 ((xy5%5) 3 (Yq5Y5)), the latter

being [R.xRy1((y1sY5)s (21525). Finally, RyxR, has the

translation property: If (X1X,)v (yyy) covers (X1,X5),

we must show [RyxR T(x 4x5), (x1,%5)v(¥1,Y,)) &lt; [R{xR,]

((X95%5)a(y14Y5)s(y14¥,)). The proof is simplified by

the observation that (X70X5)v(y sy) covers (xy,x,)

implies either (xqvyq covers x, and XoVy, = X,) or

(x. Ya = Xq and .. hd / 2 covers x,). Let us assume the
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former is the case; our proof will apply equally in the

latter case, Let us assume RO(x1sX,), (Xqvy sXyvy,)) = |

Since X,vy, = X,, Ry (x5,X,vy,) = 0, The supremum of

this with Ry(xq,xqvyq) being 1, the latter must also

have value 1, By the translation property of Rq

Ry (xyayq) = 1, sol = Sup Ry (x3ny407y)

RyxR, T(x 3X) a(Y 1972) 5 (Y10Y 5d)

ii) Given a representation of a complete lattice

L as the product LoxL, of complete lattices Ly and L,,

let = be the projection of L into L,xL,, ie: w(x)

= (mq (x),7,(x)) for all elements x of L. = is then

invertible on Lis in that the lattice Ly is isomorphic

to the sublattice of L composed of all elements x such

that, for some fixed element u in L,, m5 (X) = u, This

sublattice is the interval (v"co,w), nt (1,w)] of L.

[f n(x) = (1,0) for a product representation of L

in which R is the product differential, we may embed

the lattice Ly as the interval [0,x] of L, and the

lattice L, as the interval [x,1]. Let the functions

Pq and DP, be the embeddings of Ly and L, in L., Then

py (r;(2)) = zaX and p,(m,(2)) = zvx, Since R(yax,zaXx)

= sup{R; (nv; (y),n;(2)),R,(0,0)} = Ry(mi(y)ymq(2)) and
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since R(yvx,zvx) = sup{R; (1,1) ,R, (7, (y),m,(2))} =
Ro(my(y),my(2)), we conclude that :

R(y,z) =.sup Ry (ms (7),m; (2) = sup{R(yrx,7 ),R(yvx,zvx)},i=1,

Conversely, if, for some element x in the lattice L,

this formula holds for all pairs of elements y,z in L,

 1

the differential R is the product of the restricted

differential Rlg x] On the sublattice [0,x] with the
’

restricted differential R| (4 17] On the sublattice [x,1]
Nf 1,

iii) Let us assume the differential R on the

lattice L is exact, and an element x in L is a factor,

As we proved in the second section of this proof, the

lattice L, is the image of an R-preserving isomorphism,
the domain of which is the interval [0,x] of L, and

the lattice L, is similarly the image of the interval

[x,1] of L. If Ry or R, were to have an inexact local

graph, R would have an inexact local graph in the

interval [0,x] or [x,1], respectively.

Conversely, assume an element x in the lattice L

1s a factor of the differential R on L, and both restric-

ted differentials R and R are exact,'f0,x1 x,1]
Consider the various possibilities for formation of

local graphs in L, the elements of which are taken to
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be y,z yaz, and yvz,

A step in L, such as that from yaz to z, results

from either a step in Ly and equality in Lys or else

from equality in L, and a step in Lo. Whichever is the

case for the step [yrz,z], the same is true for the

step [y,yvz]; the same can be said for the other

parallel pair of steps. 2 cases: a) the steps [yaz,y]

and [yaz,z] are associated with steps of the same

lattice, whether this be Ly or L,, and b) the steps

[yaz,y] and [yaz,z] arise from steps of different lat-

tices, one from a step in Li» equality in Ly the other

from equality in Lys and a step in L,.

In the first case, the local graph on the elements

y,2,Y22, and yvz has the same R values as does the

non-trivial projection of this local graph into Ly or

Lo, as we established in the second section of this

proof, In the second case, the two steps in each

parallel pair project onto the same step of L, or L,,

and thus have the same R value. Local graphs thus

formed must be zero, mixed, or one. This completes

the proof.

We define a differential R on a finite complete

modular lattice L to be prime if there exist no factors

of R in L other than 0 or 1, ie: if there is no
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non-trivial expression for R as a product differential.

The Local graph {
 ~N\

} which we call ad Fo rime’

is indeed a prime differential on the four element

lattice pictured. Also prime are both differentials

definable on the 2 element lattice, ie: | and

Other examples, defined on the Boolean algebras of a

three- or of a four-element set, are given in appendix B.
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Chapter II

31 troduction

Rather than proceed to the principal equivalence

and lattice structure theorems for exact differentials,

let us pause to consider a number of examples, related

characterizations, and fields of application.

In a long section following this introduction,

ve establish a three-way correspondence between differen-

tials, relations, and closure operators.

A third section relates Whitney's independence

systems to exact differentials on Boolean algebras,

and extends the concept of a Whitney independence

system to a structure definable on any finite complete

modular lattice, Graph relations are discussed, and

the notion of dual graph is set in differential terms.

In section four we examine atom differentials,

which arise from the interaction of set union and lattice

supremum on the set of atoms of a general lattice, and

which permit us to translate lattice properties into

the language of differentials.
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A few descriptive paragraphs concerning applications

of the theory of differentials to geometry, algebra,

logic, and probability bring this chapter to a close,

y de elations anu Closures

Any relation between two finite sets gives rise to

two differentials. The first, or set differential of

the relation, will be shown to be associated with the

relation by a correspondence which is onto the set of

all differentials on complete finite modular lattices,

and which is one-one up to the choice of a lattice

which will accept the embedding of a certain set as its

set of join-irreducible elements. The second, or

partition differential of the relation, is of interest
in the theory of graphs. (See Appendix A for examples).

A relation g from a finite set X to a finite set V

is an arbitrary subset of the cartesian product XxV.

If d is an element of X, and e an element of VY, we

write dge whenever d is related to e, ie: whenever the

pair (d,e) is in the subset Bg of the product XxV. If

d is an element of the set X, let g(d) be the subset of

/ composed of those elements of V related to d, If x

is any subset of the set X, let B(x) be the subset of
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/ composed of all elements for which there is some

element d in the subset x to which they are related,

ie: B(x) = Sup R(d), the supremum being taken in the
€X

Boolean algebra of subsets of the set /

[f B is a relation between finite sets X and VY,

we define the set differential R of g, for all pairs

x,z of subsets in the Boolean algebra of subsets of the

set X, by

R(x,z) = 0 unless x &lt; z and B(x) &lt; 8(z),

in which case R(x,z) = 1.

Proposition: The set differential of a relation

is a differential on the Boolean algebra of subsets of

the domain of the relation,

Proof: Let X and Y be two finite sets, B a rela-

tion from X to Y, and R the set differential of 8.

The function B from the Boolean algebra of subsets of

X to the Boolean algebra of subsets of Y is isotone,

ie: x &lt; z implies B(x) &lt; B(z). R is monotone, because

if X; &lt; X, € Xz €X, are four subsets of X, each contained

in the next, then R(x,,X2) = 1 implies B(x) &lt; B(x,)

&lt; B(x) &lt; B(x,), SO B(xq) &lt; B(x,), and R(x,%,) = 1,

R is subadditive, because if x, &lt; X, &lt; x, are three
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subsets of X, each contained in the next, and if R(xy,X,)

= 1, meaning B(x) &lt; B(x5), then the set B(x,), which is

contained between B(x;) and B(xs), cannot be equal to

both of them. Thus R(x;,x,) = 1 or R(x,,X3) = 1,

Finally, R has the translation property, because if

the subset zvx covers the subset z, x must contain

exactly one element e of X which is not in z, ie:

X = Xaz + e, R(xaz,x) = 0 if and only if the element

e is related only to elements of Y which are already

in the set B(xaz). But if this is the case, Xaz &lt; 2z

implies B(xaz) &lt; B(z), so e is related only to elements

of Y which are already in the set B(z). Because zvx

=z +e, R(z,zvx) = 0.

Proposition, Characterization of Fixed Points of

Set Differentials: Under this correspondence of a rela-

tion to its set differential, a subset of the domain

of the relation is a fixed point of the differential

if and only if its complement is the union of sets of

the form 8 Y(e) where e is any element of the range of

the relation.

Proof: In the notation of the previous proof, the

statement R(x,z) = 1 for all z covering x is equivalent

to the statement that, for any element d not in the

subset x, there is an element e of Y such that d is
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related to e, but no element of x is related to e,

ie: for every element d in the complement of x there

is an element e of Y such that e Le) is disjoint from

Xx, This is equivalent to the statement that the comple-

ment of x is a union of sets of the form s Le), where

e is an element of the range set Y.

The correspondence from relations to their set

differentials has produced a family of differentials,

all of which are defined on Boolean algebras. We have

seen that fixed points of the set differential R of a

relation B are complements of sets expressible as unions

of inverse images s Le) for elements e of the range

of the relation B. We may thus use the complete lattice

of arbitrary unions of such inverse images as an isomor-

phic copy of the inverse of the lattice L/R of fixed

points of the set differential. In this lattice of

unions of sets ele), e e Y, an element is join irredu=-

cible if and only if it is not expressible as the union

of two prover subsets, both of which are elements of

the lattice. Since all lattice elements are expressible

as unions of elements of the form g Le), for e € Y,

only elements of the form eg" Le) may be join irreducible.

Not all such elements are join irreducible, however, if

some set 8 Le) may be expressed as the union
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more elements e. distinct from e in Vv

Now, returning to the lattice L/R of fixed points

of the set differential R of the relation B: X = Y,

we see the complements in L of meet-irreducible elements

of L/R are all subsets of the form 8" Le) for some element

e of ¥Y. This yields an inversion of our correspondence

from relations to differentials:

Proposition. Construction of Relations from

Differentials: Given an arbitrary differential on a

Boolean algebra L of subsets of a finite set X, and

letting the set Y be composed of all subsets forming

meet-irreducible elements of the lattice L/R of fixed

points of R, the differential R is the set differential

of the relation B from X to Y defined for all elements

d in X and e in Y bv

d 3 e if and only if d £ e

Proof: Let Rq be the set differential of the

relation B thus defined. The meet irreducible elements

of the lattice L/R, are, as elements of L, complements
of sets of the form s"1(e), for some element e of Y.

Being thus composed of elements of X not related to an
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element e of ¥, the meet irreducible elements of L/R,

are thus equal to the sets chosen as the elements of

the set Y, namely, the meet irreducible elements of

the lattice L/R, Equality of sets of meet irreducible

fixed points implies equality of sets of fixed points,

and thus R = R,,

We need not, however, restrict ourselves to differen-

tials on finite Boolean algebras in the establishment

of this correspondence. Beginning with a differential

R on any finite complete modular lattice L, a modifica-

tion above construction produces a relation from the set

X of join irreducible elements of the lattice L to the

set Y of meet irreducible elements of the lattice L/R.

To reproduce the differential from this relation, we

would need an extended notion of set differential as

an equivalence Class of differentials R, on various

lattices L,» with their associated lattices L,/R, of
fixed points, each of which accepts the embedding of

the set Y as the set of meet irreducible elements of

ol LIE 4

We turn now to the second type of differential

associated with a relation between two finite sets

X and ¥, Let B be such a relation. With each element

d of the set X, associate the partition =n (d) of the
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set Y into sections, one section being all elements

of Y related to d, and all other sections containing

one element each, Then associate with each subset x

of the set X, an element n(x) in the lattice of all

partitions of the set Y, defined by =(x) = Sup n(d),
€X

the supremum being taken in the partition lattice,

wherein the operation inf is common refinement of par-

titions,.

The mapping m7: x »+ w(x) is isotone from the

Boolean algebra of subsets of the set to the partition

lattice of the set Y. We define the partition differential

of the relation 8 for all pairs of subsets x,z of X by

R(x,z) = 0 unless x &lt; z and mL 2) &lt; on(z)

in which case R(x,z) = 1,

The proof that the partition differential is a differen-

tial is analogous to that given for the set differential,

and will be omitted.

Proposition. Comparison of Set and Partition

Differentials: If a relation B between two finite sets

X and Y has set differential R and partition differential

Ris and 1f every element of X is related to at least

two elements of V (ie: if the empty set in the Boolean
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algebra of subsets of the set X is a fixed point of the

partition differential R,), then R &lt; R,.

Proof: Say x is a subset of X, d an element of

X not in x, and R(x,x+d) = 1, Then there must be

some element e of the range Y such that dge, but age

for no element a of x, Thus e is alone in its section

of the partition n(x). By our restrictive assumption,

d must be related to more than one element of VY, so e

is not alone in its section of the partition =n (x+d).

Thus n(x) &lt; =n(x+d), and Ry (x,x+d) = 1.

In the next section we shall point out the impor-

tance of partition differentials in their relationship

to Whitney independence systems in general, and to

graphs in particular, Let us turn instead to the

discussion of closure operators. We now complete our

three-way correspondence, already constructed from

relations to differentials, by providing a further

link from differentials to closures.

A closure operator on a lattice L is any function

CL, from L into itself, which satisfies the following

two conditions, for all elements x,y of L.

1) x &lt; C€(x)

iit) x &lt; C€(y) implies C&amp;(x) &lt; CL(y).
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We have already encountered closure operators in

our discussion of set and partition differentials, as

in the proof that a set differential is a differentiall

Also, the mapping R &gt; R**, from a differential to the

dual of its dual, is a closure operator on the lattice

of all differentials definable on a fixed lattice.

Oystein Ore? establishes the equivalence between

closure operators and complete intersection rings.

Since differentials are characterized by their fixed

points, which form such a ring, the correspondence is

immediate.

To define a closure operator, given a differential

R on a lattice, let

"
 ww A. ne] j = sup {z; R(x,z) = 0}

Conversely, given a Clusurls 1
dr A define a

Q ) v

differential

R(x,z) = 0 unless x &lt; z and C£(x) &lt; CL£(z)

in which case R(x,z) = 1

just as we did for the set aifferential of a relation.

lsupra, p.31.
20. Ore, Theory of Graphs, p. 177.
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The part played by Galois connections in the estab-

lishment of closure operators on lattices is thoroughly

discussed by orel. We will content ourselves with

pointing these out as they appear, as in the mapping

of a differential to its dual.

’ Whitney Systems and Graphs

Hassler Whitney begins his theory of independence?

with the description of a family of increasing integer-

valued functions defined on the elements of a Boolean

algebra. These functions, which we call Whitney rank

functions, are intimately related to exact differentials.

The proof that the Whitney rank functions and exact

differentials coexist is, however, independent of the

special properties of Boolean algebras. Indeed, exact

differentials provide an immediate generalization of

Whitney's theory to independence systems defined on a

finite complete modular lattice.

Whitney defines a rank function on a finite Boolean

algebra as follows: a function r on the set of subsets

tibid. p.183.
°H, Whitney, "On the Abstract Properties of Linear

Dependence", Amer, J. 57(1935) p.510,
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of a finite set X is a rank function if, for all subsets

x and y of X, and elements e,,e, of X,

i) r(¢) =0

ii) r(x+e) = r(x) + k, k =

iii) r(x+e,) = r(x+e,) = r(x) implies r(x+e +e,)
= r(x).

SY

Rephrasing these conditions in lattice terminology,

we obtain, for all elements x,y of a finite Boolean

algebra L,

i) r(0) = 0

ii) if y covers x in L, r(y) - r(x) = 0 or 1

iii) if x and y cover xay, then r(xay) = r(x) = r(y)

implies r(xay) = r(xvy).

Already it is clear how to establish a connection

to the theory of differentials, and in a way which

avoids terminology peculiar to Boolean algebras. We

shall see shortly that a somewhat simpler statement

is equivalent to Whitney's third condition; let us

define a Whitney rank function on a finite complete

modular lattice L as a function r, defined on the ele-

ments of the lattice L, with values in the non-negative

integers, and satisfying

1) 1 has initial value 0, ie: 1r(0) = 0

ii) unit increase condition: the value of r does
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not decrease, and increases at most by 1 on

any step, ie: vy covers x in L implies r(y)

r(x) is 0 or 1.

111) translation property: If y covers x in L,

and x &lt; z, then r(x) = r(y) implies r(z) =

r(zvy).

Theorem. Integration of Exact Differentials:

A function R defined on all pairs of elements in a

finite complete modular lattice L is an exact differen-

tial if and only if R is the first difference of a

Whitney rank function r on the lattice L, ie: R(x,y)

= r(y) - r(x) whenever y covers x in L.

Proof: Let r be a Whitney rank function on the lat-

tice L. The simple statement that r increases by at

most one on any step, implies R(x,y) = r(y) - r(x)

has value 0 or 1, and that there must be the same number

of steps for which R = 1 on each side of a local graph.

The only local graph?! satisfying this condition, yet

N0T allowable in an exac-.

i vide: p.7, supra.

difterential is /
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This local graph is excluded by Whitney's third condition,

but it is equally well excluded by our translation

property, Our theorem! on the local character of differ-

entials provides a unique extension of such a function

R to an exact differential,

Conversely, if R is an exact differential on the

finite, complete modular lattice L, we define an integer

valued function r for each element x of the lattice by

n

r(x) = ) R(p,_;+p;) for any path p from 0 to x.
i=1

Induction on the rank A(x) of the element x in the

modular lattice L provides a proof of independence of

path; the proof is of such a nature that it is more

suitably incorporated in the equivalence theorem for

exact differentials’. If we assume independence of

path, r is then well-defined as a function on the ele-

ments of the lattice L. The sum r has initial value

0 = R(0,0), and increases by 0 or 1 = R(x,y) on any

step [x,y]. To establish the translation property,

we notice that if y covers x in L, and x &lt; z, either

y &lt; z, ie: zvy = z, or else zvy covers z., If y &lt; 2

supra, p.10
‘infra, P.58. The hypotheses are identical.
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r(z) = r(zvy). If zvy covers z, and if r(x) = r(y),

ie: R(x,y) = 0, R(z,zvy) = 0 by the translation property

of the differential R, so r(z) = r(zvy). Thus the sum

r has the translation property of a Whitney rank function.

We shall see in the next chapter how the various

structures of Whitney's theory of independence carry

over into the realm of exact differentials. As Whitney

did for his independence systems, we shall be able to

prove for exact differentials several of the standard

theorems concerning circuits and trees in graphs.

A graph is a relation. We have seen how to define

a set differential and a partition differential of a

relation. On the other hand, a graph defines a Whitney

system, which in turn defines an exact differential.

The connection between the various differentials thus

definable from a graph is given by the following propo-

sition, Following W.T. Tuttel, we understand a graph

to be a relation B from a finite set X to a finite set

Y in which every element of X is related to at most

two elements of V.

Proposition, The Exact Differentials of a Graph:

‘W.T. Tutte, "A Contribution to the Theory of
Chromatic Polynomials", Can. J. 6(1954) p.80.



If a Whitney rank function is defined by a graph, the

exact differential defined by the rank function is the

partition differential of the graph relation. The dual

graph has as differential the dual differential,

Proof: The Whitney rank function for a graph G

has value k on a set x of edges of G if and only if the

number of vertices of the graph G, less k, is equal to

the number of arc-connected components of the subgraph

composed of all the vertices of G, and the edges of G

which are in the subset x. Thus the rank increases

on a step [x,x+e], and R(x,x+e) = r(x+e) - r(x), whenever

the ends of e are not arc-connected by the subgraph

with edges in the set x. Arc connection induces the

partition n(x)?! on the vertex set, ie: on the range

of the graph relation, The rank thus increases on a

step [x,x+e] whenever the image of the edge e under the

graph relation is not confined to a single section

of the partition r(x), ie: whenever n(x) &lt; n(x+e).

Thus the exact differential of the Whitney rank function

is the partition differential of the graph relation.

The rank function of the dual graph G* increases

on a step [x,x+e] whenever the edge e is in some circuit

the supra, p.36.
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of the subgraph of the graph G composed of edges in the

complement of the set x, ie: whenever e is not an

isthmus in the subgraph of edges in the complementary

set x" The mapping of a set to its complement maps

the Boolean algebra L of edge subsets isomorphically

onto the inverted Boolean algebra L. This isomorphism

carries the rank function of the dual graph into a

Whitney rank function on the lattice L. Since this

rank function increases on a step [x',x'-e] whenever e

is in some circuit of x', and since circuits are subsets

z of the Boolean algebra L such that Z is a coatom of

the lattice of fixed points of the dual differentiall,

the Whitney rank function increases whenever Xx' is

beneath some fixed point of R* which is not above x'-e.

This is the local characterization of the dual differen-

tial R* in terms of fixed points, so the exact differen-

tial of the Whitney rank function of the dual graph is

R*¥, the dual differential,

Corollary: The partition differential of a relation

8 from a finite set X to a finite set Y is exact whenever

B(e) is composed of at most two elements of VY, for every

element e of the set X

vide: infra,p.86.



§4 Atom and Coatom Differentials

Let us start with an arbitrary finite and complete

lattice Q. We construct the Boolean algebra L of subsets

of the set C of coatoms of the lattice Q, and define a

pair of mappings

(vx € Q) B(x) = Cn[x,1]

(vy € L) a(y) = inf  ,

wherein an element of the lattice Q is associated by

the map B with the set of coatoms above it, and a subset

of coatoms is associated by the map o with its infimum

in the lattice Q. This forms a Galois connection?!

r« Q 3 L. An element x is closed with respect to the

closure a°B on the lattice Q, if and only if it is the

infimum of some set of coatoms. A set y of coatoms 1s

closed with respect to the closure Bea on the lattice L

if and only if y is the set of coatoms above some ele-

ment of the lattice Q., The lattices of closed elements

of Q and L are isomorphic, by the main theorem on

Galois connections: this lattice is the sublattice of

Q composed of all elements expressible as a meet of

coatoms.

le.c. Rota, "On the Foundations of Combinatorial
Theory", Zeitsch. fur Wahrshein. [2] 1964, pp.340-360, 55.



As we saw at the close of section two", a closure

defines a differential. Under this correspondence,

applied to the closure Bea on the Boolean algebra L

of subsets of the set C of coatoms, the subsets containing

exactly one coatom are invariably fixed points of the

differential induced by the closure Bea, Conversely,

if we start with a differential R on a finite Boolean

algebra L, in which every atom of L is a fixed point

of the differential R, the above definition of maps

o and B defines a Galois connection between the Boolean

algebra L and the lattice L/R of fixed points of R in L

The map o from the Boolean algebra L to the lattice

L/R is onto. Thus we have the following statement

to relate the study of coatom-meet-expressible sublat-

tices to the study of a certain class of differentials.

Proposition, Characterization of Atom Differentials:

The isomorphy classes of complete finite lattices in

which every element is a meet of coatoms are in one-one

correspondence with the differential-preserving-isomor-

phism classes of Boolean algebras with differentials

in which every atom is a fixed point,

The same may be said, via lattice inversion, about

1 supra, p. 38.
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complete finite lattices in which every element is a

join of atoms. Let us call such a differential the

atom or coatom differential of the lattice Q, when

we construct it on the Boolean algebra of atoms or of

coatoms, respectively,

Ne shall see in chapter three?! that the lattice

of fixed points of an exact differential is always

semimodular. As a partial converse to this theorem,

we have the following statement,

Proposition, Relating Semimodularity to Exactness

of Atom Differentials: If R is an atom differential

of a finite complete semimodular lattice QO, R is an

exact differential.

Proof: Let a be the map from elements x of the

Boolean algebra of subsets of the set A of atoms of the

complete finite semimodular lattice Q, defined by

a(x) = sup x, the supremum being taken in Q. Assume

some local graph on subsets x,y,xay,xvy (x and y covering

XAy, as usual) of the lattice L is inexact, For instance,

say R(xay,x) = R(xay,y) = R(x,xvy) = 1, and R(y,xvy) = 0.

Since subsets x and vy each contain exactly one atom

i infra, p.81,
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not in xay, since R(xay,x) = R(xay,y) = 1, and since

Q is semimodular, o(x) and a(y) both cover a(xay) in Q.

They may, of course, be the same lattice element, except

for the fact that R(x,xvy) = 1, which excludes the

possibility that the one atom in the set y - x is also

beneath the element a(x) of Q. Since a(x) and a(y)

are not equal, yet both cover a(xsy), and since the

supremum a(x)va(y) is also expressible as a join of

atoms, a(x)va(y) = a(xvy), and this element covers

both a(x) and a(y). Thus R(x,xvy) = R(y,xvy) = 1, in

contradiction to our assumption of inexactness.

This procedure exemplifies the conversion of lattice

structure properties to differential language. It is

conceivable that the enumerative work in chapter four

of this paper may find application in problems of lattice

structure. For detail on these methods, the reader

should consult the work of R.P. Dilworth?

a) Geome..

or

yY

rious Applications

Our definition of a set differential and partition

*R.P, Dilworth, "Dependence Relations in a Semi-
modular Lattice", Duke J. 11(1944) pp.575-587.
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differential for a general relation between two finite

sets suggests a new lattice-theoretic approach to geo-

metric problems, Finite geometric configurations are

characterized by incidence relations, but these need

not be the edge-vertex incidence relations which are the

subject of graph theory. Furthermore, the possibi-

lity of defining set and partition differentials for the

converse relation gives rise to an interesting operator

both on geometric configurations and on differentials.

Let us consider two examples of non-graphic incidence

relations, for which the converses are also incidence

relations,

As a first stage of generalization beyond graph

theory, consider the edge-vertex incidence relation

of the five-pointed star, in which each of five edges

has four vertices, and each of ten vertices has two

edges. If the converse relation is interpreted as an

edge-vertex incidence relation, the resulting ten-edge,

five vertex figure is the complete five-graph.
»

A second stage of generalization introduces more
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possibilities. Consider the face-vertex incidence

relation of the cube. There are six faces, each with

four vertices, and eight vertices, each with three

faces, If the converse relation is also interpreted

as a face-vertex incidence relation, the resulting

six-vertex eight-face configuration is the octahedron,

The differentials of a relation and of its converse

are defined on different Boolean algebras, but the

lattices of fixed points are of the same order of mag-

nitude, and are likely to offer interesting comparisons.

D) Algebra

Substructures of algebraic structures are generally

defined as subsets which are closed under certain

algebraic operations. Any such definition gives rise

to a differential on the Boolean algebra of all subsets

of the underlying set:

for any subset x of the underlying

set X and for any element e not in Xx,
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R(x,x+e) = 0 if e is in the substruc-

ture generated by elements of X in x,

and R(x,x+e) = 1 otherwise,

The lattice of fixed points of these differentials

are the lattices of all substructures of that structure,

partially ordered by containment.

Typical examples of lattices of substructures

include the lattice of subgroups of a group, the lattice

of ideals of a ring, and the lattice of subfields of

a field, Semimodularity of such a lattice would follow

from exactness of the differentiall, but exactness is

an uncommon phenomenon in algebra. For example, the

differential for the additive group of integers modulo

four contains the inexact local graph ¢,{0},{2},{0,2}.

The differential of the Vier group, restricted to the

Boolean subalgebra of sets containing the zero element,

is exact, and has a modular subgroup lattice,

The question of exactness is related to the exis-

tence of inverses. To prove exactness, we must show

that if an element e, is not an algebraic combination

of elements in a subset x, but is a combination of ele-

ments in x together with €1s then the relation exnressing

linfra, P.81.
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this, which may involve €; with some coefficient other

than 1, can be solved for €, in terms of elements of

Xx together with €,e This can be done in Boolean rings,

and in fields, so these structures have semimodular

substructure lattices.

~

Sr J Logic

differential R 1s defined on the Boolean algebra

of all subsets of a finite set X of statements bv

for any subset x of statements in X,

and any statement e not in x, R(x,x+e)

= 0 if the conjunction of all state-

ments in xXx implies the statement e.

If the statements compose a set of axioms, and

if the differential R has the constant value 1, then

the axioms are independent.

1) Continuous Analogues

Probability

} and an Application to

One continuous analogue of the theory of differentials

on a finite Boolean algebra is responsible for our use

of the term exact, Let us designate the truth value

of the statement '""the subset x contains the element e"
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by some number between 0 and 1, rather than by the

discrete values 0 and 1. The subset x may now vary

continuously over the unit cube in a space whose dimen-

sion n is the number of atoms of the lattice. In this

event, the role of a Whitney rank function is played

by any function increasing on this product space all

of whose partial derivatives are bounded by 1, Our

theorem, in the following chapter, that exact differentials

have sums independent of choice of path, is the discrete

analogue of the usual theorem on integration of exact

differential in Euclidean n-space.

There is, however, an intermediate level of generali-

zation for our theory of differentials. Consider a

finite set X of statements, each with a probability

of occurance. On the Boolean algebra of all subsets

of this set, we may assign a probability measure m,

equal on each subset x to the probability that every

statement in the subset x is true, and all statements

not in x are false. The sum of the measure m over the

lattice 1s 1.

The measure m bears little resemblance to a differen-

tial. Formation of the probability distribution function

p brings us closer. For every subset x of the statement

set X let p(x) be the probability that all statements
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in the subset x are true. Then

dt ") = 1m)

The function p(x) is monotone decreasing, and has value

1 on the empty set, For computational simplicity, let

us assume p(l) # 0, Defined for any pair of subsets

x,y of X for which x &lt; y, the conditional probability

p(y/x) = p(xvy)/p(x) = p(y)/p(x) is a monotone decreasing

function of intervals, Let us therefore define a function

R(x,y) by

R(x,y) = 0 unless x &lt; y, in which case

R(x,y) = 1 - p(y)/p(x).

Proposition. Probabilistic Differentials: The

function R, defined as above for all pairs x,y of subsets

of the statement set X, satisfies the monotone, subaddi-

tive and translation properties of a differential.

Proof: Assume w &lt; XxX &lt;y &lt; z. Then p(z/w) &lt; p(y/x)

implies R(x,y) &lt; R(w,z), so R is monotone, If x &lt; Vv

the product (p(y)-p(x))(p(y)-p(z)) is not positive

because y is intermediate between x and z, Thus,

p(X)p(y) + p(yIp(z) 2 p(x)p(z) + p(y) and 1 - p(2)/p(x)

 1 -p(2)/ply) +1 - p(y)/p(x), ie: R(x,z) &lt; R(x,y)

R(y,z), the subadditive property. Finally, since the
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lattice operations v and a correspond to the statement

subset operations union and intersection,

R(xay,y) - R(x,xvy) = p(xvy)/p(x) - p(y)/p(xay) =

(p(xvy)p(xay) - p(x)p(y))/p(x)p(xay) is positive, the

numerator representing the probability p(x-y)p(y-x).
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Chapter III

. Introduction

We begin by gathering together in an equivalence

theorem the various conditions which characterize

exactness of differentials on a finite complete modular

lattice. The proof of this theorem comprises section

two of the present chapter,

In section three we explore the analogy between

differentials on a lattice and differentials in a space

of n real variables. We define higher order partial

differentiation of Whitney rank functions in such a

way that the Taylor expansion at zero in the lattice

is derived from a Mobius inversion formula.

[n the fourth section we examine the influence

of exactness on the structure of a lattice of fixed

points, noting that a stronger connection prevails if

the domain of the differential is a complemented lattice.

In section five we carry out the program of Hassler

Whitney by generalizing to differentials on a finite

complete and complemented modular lattice all the well
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known theorems from the classical theory of linear

independence. The matching and duality proverties of

bases, circuits and bonds are translated to laticial

terminology.

Ne bring Chapter III to a close with a discussion

of factorization of differentials into primes, and

show such factorization to be unique,

y 4. Characterization of Exact Differentials

The property of exactness, like its counterpart

in the theory of functions of several real variables,

appears in a variety of forms, and induces strong

symmetry and duality properties on differentials and on

structures derived from those differentials. We set

forth in the following theorem several equivalent

formulations of this property. Knowledge of this mani-

fold equivalence is our principal tool for the further

development of the theory of exact differentials.

Theorem. Equivalent Characterizations for Exact

Differentials: The following statements, all of which

concern a differential R defined on a complete finite

modular lattice L, are equivalent:

a) Exactness: R is an exact differential, ie:

1 local graph of R 1s inexact.
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pb) Local symmetry: If x, y, xay and xvy form a

local graph of L,

R(xay,x) + R(&gt;¥.xvy) = R(xay,y) + R(y,xvy).

Independence of path: For any pair of elements

n

in the lattice L, the sum r (x,y) = A R(p;_qsP;)

of the R values along any path p from x to v is indepen-

dent of the choice of path.

d) Integrability: There exists a Whitney rank

function r on the lattice L (ie: an integer valued

function with initial value zero, the unit increase and

translation properties) such that R(x,y) = r(y) - r(x)

whenever y covers x in L,

e) Fixed point covering property: If an element

y covers an element x in the lattice L, then the image

in the lattice L/R of C&amp;(y), the meet in L of all fixed

points above y, at most covers the image in L/R of

CL(x).

f) Existence of "dual fixed points': If the

differential R has value 0 anywhere on an interval

[a,b], then there is an element z in the interval, Z #a

such that z covers w and a &lt; w imply R(w,z) = 0.

) Duality: Whenever an element y covers an ele-

ment x in the lattice L, R*(y,x) = 1 - R(x,y).
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Proof:

a &gt; b, Assuming the differential R is exact, its

local graphs are then either zero, one, mixed, or prime.

Each of these types has the property that the sums of

the R values along the two paths from xay to Xvy are

equal.

 bh + ¢c. We assume that for any local graph on

XxX, y, Xay and xvy, R(xay,x) + R(x,xvy) = R(X»y,y)

+ R(y,xvy). Given any pair x &lt; y of elements of the

lattice L, and any two paths p and q from x to y, let

A be the rank function of the finite modular lattice

L, ie: A(x) is the length of any path from 0 to x. We

shall establish independence of path by induction on

the difference in rank, A(y) - A(x). If the rank

difference A(y) - A(x) is one, there is only one path

from x to y. If the rank difference is two, and the

paths are unequal, the points Xx, Py» 975 and y form a

local graph. Equality of the two sums follows from

our assumed statement b. Let us assume the R sum

rs (ZW) from z to w is independent of path whenever
the rank difference A(w) - A(z) is equal to n-1, and

that for the pair x &lt; y, the rank difference A(y) - x(x)

is equal to n.

{f the elements Pq and qq covering x in the paths
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p and q, respectively, are equal, the remaining path

segments from Pp; =a; toy via p and via gq are of

length n-1, and must have the same R-sum, Adding

R(x,p;) to each sum, we have rT, (x,y) = r (x,y). If
the elements Py and q, are unequal, the element z = Piva

covers p, and qq. Choose a path s

from x to y. The R-sum from x to y

along p is equal to the R-sum from

Xx to py, to z, then along the path s

to y, since these paths agree on the

first step, the remaining lengths

being equal to n-1. By our assumed

formula b, we have R(x,p;) + R(py,2) » R(x,q4) + R(qy,2),
so we may replace the first two steps of our path from

Xx to y via z by those to aq» then to z, without altering

the value of the R-sum. But this path agrees with the

path q from x to y on its first step, the remaining

length being n-1, so the path from x to y via Q1s Zs

and the path s, has the same R-sum as q. Thus the four

paths p, via Pq and s, via qq and s, and q have the same

R-sum, In particular, r, (x,y) = r (x,y).

We have established independence of path for

A(y) - A(x) = 1 or 2, and, assuming it for A(y) - x(x)

n-1i, have proved it for A(y) - A(x) = n. By thebd
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induction axiom the sum is independent of path for any

pair of elements x &lt; y in L,

c «&gt;» d. We have now proven the sum of an exact

differential is independent of path. This is precisely

the part missing from the proof of "independence of

path if and only if integrable to a Whitney rank function"

in Chapter twol.

c »+ e, We assume independence of path for the

R-sum along paths between two lattice elements, and

prove that if an element y covers an element x, then

CL(y), the meet in L of all fixed points above y, at

most covers CL(x) in the lattice L/R. If there is a

fixed point z lying between C£(x) and C&amp;(y), ie: CL(x)

Ct(y), we may choose a path q from x via C£(x)

and z to C£L(y) and a path p from x

via y to CL(y). If R(p;_qs7;) were

to have value 1 for i &gt; 2, ie: for

any step between y and C&amp;(y), our

proposition concerning the existence

of fixed points implies the existence of an element w

in the half-closed interval [y,C£(y)) such that, for

any u &lt; C£(y), u covering w, u £ C£(y) implies uvCL(y)

covers CL(y), so R(CL(y),uvCL(y)) = 1 by the definition

oie supra, Chapter II, §3, p.41l.
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of fixed point, and R(w,u) = 1 by the translation pro-

perty. The element w is a fixed point in the interval

[y,C€(y)] and lies below C&amp;(y), contradicting the defini-

tion of CL(y) as the least fixed point above vy.

The R-sum r,(x,CL(y)) is thus no more than 1.

The path q, however, passes through two fixed points

CL(x) and z, before reaching C£(y), so along q the

R-sum Tq (Xs CL(y)) must be at least 2, This contradicts

indenendence of path.

e &gt; ff, We assume the contradiction of the existence

statement for dual fixed points, ie: we assume there

exists an interval [a,b] and a step [c,by] in the

interval, a &lt; ¢c &lt;b &lt; by such that R(c,b) = 0, yet for

all elements z in the interval [a,b], and thus for all

elements z in the smaller interval [a,b], there exists

an element w, a &lt; w &lt; z, w covered by z, with R(w,z) =

Starting from b, and using the existence of downward

steps for which R has value 1, we may form a path

P: @ = Pg &lt; Py &lt; eee &lt;P, = b from a to b along which

R has constant value 1, We observed! in the proof of

the fixed point characterization of differentials that

R(x,y) = 1 for any element y covering an element x only

supra, p.l15.
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if there is some fixed point above x but not above vy.

If R(x,y) = 1, the meet CL(x) of all fixed points above

Xx cannot lie above y. Applying this condition along

the path p from a to b,

we see CL(p;_1) &lt; C£(p;)

for all i, i = 1,...,0.

Let j be the highest

value of the index i

such that Pp; $C, and

let k be the highest value

of the index i such that
o

k &gt; j and R(pyrc,py) = 1,

Such a value k exists, and lies between j+1 and n-1,

because R(P;4P541) = 1 and R(c,b) = 0, Then CL (py)

lies properly between CL(pync) and CL(py,q) = CL(py,qnC).
But Pr+1nC COVers pyaC, contradicting the fixed point

covering property.
f &gt;» g. We know in generall that, for all pairs of

2lements x,y of the lattice L with y covering x,

We fail to have

R vy

tie

x) &lt;1 - R(x,y).

required equality R¥*(y,x) = 1 - R(Xx,Yy)

supra, p.21.
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only if R*(y,x) = R(x,y) = 0, Assume that such a pair

of elements x,y exists, for which y covers x, and

R*(y,x) = R(x,y) = 0. We prove a contradiction to the

"dual fixed point" existence condition. Let w be the

join of all elements z less than x, for which R(s,z) =

for all elements s covered by z., Since R*(y,X) = 0,

w is also the join of all elements z less than y for

9

which z covers s implies R(s,z) = 0. Now R(x,y) = 0,

so we may apply the dual fixed point condition to the

interval [w,y], to produce an element u in the half

closed interval (w,y] such that for all elements s

greater than or equal to w and covered by u, R(s,u) = 0.

However, if s is any other element covered by u, then

w £s, and R(saw,w) = 0, so R(s,u) = 0 by the translation

property. Thus u is a "dual fixed point", in contra-

diction to the definition of the element w.

g + a, We assume the differential R is inexact

and prove a contradiction to the duality condition

R#¥(v,u) = 1 - R(u,v) for some pair of elements u,v

with v covering u, Assume the local graph of R on

X, Y, Xay and xvy, with x and y covering x.y, is inexact,

with R(x,xvy) = 0, the other three R values being 1.

Let z be the join of all elements w less than xvy for

which w covers s implies R(s,w) = 0, The element z

»

must lie beneath y, because R(y,xvy) = 1, the translation
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property implying R(yaz,z) = 1 if z £ y. Since R(xay,y)

= 1, the same argument proves that the element z lies

beneath xiy, and hence beneath x. Thus R*(xvy,x) = 0,

and R*(xVy,x) &lt;1 - R(x,xvy). This completes the proof

of our equivalence theorem.

We have listed seven properties, any one of which

characterizes the property of exactness. These seven

properties are phrased in terms of different concepts,

and thus will find different uses in the development

of a theory of exact differentials,

The local symmetry condition serves as a recursion

relation for proofs by induction of global properties

of exact differentials. The local symmetry condition,

taken with the integrability condition, provides a

starting point for an extended analogy with partial

differentiation of functions of several variables, and

leads to a Taylor theorem for exact differentials.

This topic is taken up in the next section.

A variant of the symmetry condition,

R(xAy,y) - R(x,xvy) = R(xay,x) =- R(y,xvy)

shows that changes in the value of the differential

always occur in pairs. The above equality is either

of the form 0 = 0 or of the form 1 = 1, The latter

occurs whenever R(xay,y) = 1, yet, on raising both
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points xay and y by supremum with x, the differential

value R(x,xvy) is decreased to 0. This form of exactness

condition requires a simultaneous decrease in R value

as the step [xay,x] is raised by one to the step [y,xvy].

This principle is the key to many proofs concerning

exact differentials,

The condition for independence of path of differen-

tial sums provides an analogue to the usual theorem

concerning line integrals of differentials in several

real variables,

The fixed point covering property provides a

natural link between the algebraic properties of a class

of differentials and the structural properties of its

fixed point lattices. Theorems of this type are collected

in section four of the present chapter.

Perhaps the condition most promising for extensions

of the theory of combinatorial independence is the

condition of existence of "dual fixed points". Differen-

tials satisfying this condition may well appear in

mathematical systems having no obvious structure of

independence.

The duality property simplifies the construction

of the dual for exact differentials. We may invert the
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lattice, and interchange 0 and 1 on all steps; the

resulting function on steps will extend properly to

the dual differential.

3 J \ Taylor Theorem for Exact Differentials

The usual test for exactness of a first order

differential in n real variables involves a comparison

of nartial derivatives of coefficient functions, A

differential of the first order is of the form

TM. (x;(x)dx,

where x 1s a variable n-dimensional vector x = (XppeeesX dy

and M. (x) is one of n real-valued functions on this

n-dimensional space. Such a differential is exact if

and only if, for every pair i,j of subscripts

°pr YARY = 3M, ix

Let us restrict the values of the variables Xs

to the set {0,1}, and investigate whether the usual

notion of exactness resembles the concept we use for

differentials on lattices, Under this restriction, the

n-dimensional space becomes isomorphic to the Boolean
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algebra of all subsets of an n element set. Let us

define partial differentiation, not by limits, but by

finite differences. If M is a function on the Boolean

algebra, and Xs is any one of the domain variables,

we define the partial derivative of M with respect to

X; as the function whose value of each subset x 1s

given by

oM
7x. (X) = M(xvx.) - lo. J

The partial derivative has value zero whenever the

variable X4 is in the set x. If the variable X4 is not

in the set x, then the partial derivative Ch (x) is a

difference of M-values on two subsets, one of which

covers the other in the Boolean algebra.

n

In the differential o = } M. (x)dx;, each M; is a
1i=1

function defined on elements of the Boolean algebra.

The exactness condition suggested by the theory of real

functions of several variables is that, for any pair

j,k of indices, between 1 and n, 3M; /3x; = My / ax, as
functions of the subset variable x, Referring to our

definition in terms of finite differences, we find the

condition becomes:

\T XvYX J - M. (x) = M.(xvx.) - M. (x).



We have only to define, for a differential R on the

Boolean algebra,

R(x,y) = M,(x) where x, =  Vv t

the exactness condition is then the local symmetry

condition for exactness of the differential R.

A

The n-variable analogue of the differential R on

Boolean algebra thus has the form

n

s(x) =) R(x,xvx,)dx,
i=1

Such differentials act on vectors in the n-dimensional

"tangent space'" as linear transformations. In our

theory, the n-space is 2m, the Boolean algebra, while

the vectors are subsets, and the inner product with a

subset y 1s enumeration of elements in the set inter-

section with y, ie:

 J}

n

)'y = ROG; xy (x4)
 par RGR) = 1 ]

where A is rank in the Boolean algebra, If we under-

stand R(x,xvx,) = 0 to mean "the element X, is dependent

upon the subset x", then the inner product o(x)*y is

the number of elements in y which are independent of

the subset x.
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difference of a Whitney rank function r., The value

of the differential R on a step [x,xvx.] is given by

RIX ,ivx.) =x.) r(xvx;) - r(x) = (x).
1

It may thus be said that a differential is exact if and

only if it is the differential of a function, In our

theory, however, all differentials have the translation

property, which causes them to resemble closures, and

all "integrals" are Whitney rank functions, The exten-

sion of the theory of exact differentials to those of

functions other than Whitney rank functions will not

be discussed in this paper.

We will, however, make use of the notions of gra-

dient and vectorial derivative. Assuming a differential

R to be exact, and letting the function r be its Whitney

rank function the set

{x.; R{y.,xvx.) = i

associated with any subset x, is analogous to the gradient

of the scalar potential function r, The vectorial deri-

vative of the potential function r, at a subset Xx, with

respect to a subset y, is the number of elements in y

which are independent of the subset x. Partial derivatives



are thus characteristic functions of inclusion relations.

Let us use the subscript notation for partial

differentiation, ie: 2(x) =r, (x). Considering a
Xi 1

partial derivative of the rank function r with respect

to some variable X. as a function on the Boolean algebra,

we may define a second partial derivative with respect

to x., then X: for x. # x,, by

”

TvX. J r?
N

hl

higher partial derivatives are defined accordingly.

Exnanding this relation, we find

= T{XvX.vX.)=T(XvX.)=T(KRv2(xvx xs) = T(xvx,) -
and for a third order derivative, with ao

being the same variable,

) + rg.)

WO O T i

T{XyXvXovXy) - r(Xvxivx,)
r(XvX;vX;) + r(xvx,)
r(xvxvx) + r(xvx;)
r(xvx,) - r(x).

These formulae are symmetrical in the subscript varia-

bles, so the results are independent of the order of

the subscripts, and hence depend only upon the set of
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variables present as subscripts. We may thus write

a set y as subscript, to indicate successive partial

differentiation, in any order, with respect to the

various elements Xx: in the set y, 1ie:

(x) where v =x) = ry he « ¢ *

By means of the connection:

R(x,z) =1r(2z) - r(x) when z covers x,

between an exact differential and its Whitney rank

function, we may express the partial derivatives . B

r
X.Y }

re £.X. ® Oo ¢ iry , in terms
of the value s of th e

differential R, as follows:

ToRyXvX:)
R{XvE; JXvE;vE;) - R(x,xvx;)

$ R(xvx vx, p XVX Vv Xv Xp)

. R{xvX,,XvX;vXy) - R(xv» YX Lv Xg)

R(xyxvxy)

These computations are the alternating

sums of differential values on all LvX,y-

steps parallel to the step connecting

the subset XvXjvX., a coatom in the

interval [x,xvxvy»vx,],tothe



supremum of the interval. Let us refer to such a step

as a coatomic step. The signs of terms alternate in

accordance with the difference in rank between the

upper end of each parallel step and the supremum of the

interval, Since the lattice is a Boolean algebra, these

steps are also those parallel to the atomic step [x,xvx,]

It is a curious consequence of exactness of the

differential that such alternating sums are the same

if another variable appears last in

the sequence of differentiations,

so that differential values are taken

on steps parallel to a different

atomic step, eg: [x,xvXx.].

A Taylor theorem for Whitney rank functions on a

Boolean algebra might well read

(1) = TO) + Ir (0) + 1/2 Tr,
1 “i ij “i

]Sots EL TexPpeerai,, “ig70

Lv J

ar

-r
2

{ 2)

where the interior summation is over all orderings of

the n variables, taken p at a time. Using independence

of order for partial differentiation and employing the

set-subscript notation, we obtain a simpler formula,

because there are p! equal terms associated with any
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subset y = {.&lt;. Topve 0 .
1- ib

The resulting formula we

shall state as a theorem.

Theorem, Taylor's Theorem for Exact Differentials

on a Boolean Algebra: If a differential R, on a Boolean

algebra L of all subsets of an n-element set, is exact,

with Whitney rank function r, and if I, is the result

of successive partial differentiation of the function

r with respect to the elements of the subset y, taken

in any order, then

c( =(1) = Y r_(0)
velL 7

Proof: The statement r(x) = ) r. (0) is equivalent
y &lt;X y

to the statement r_(0) = } wu(x,y)r(x)
y X&lt;y

) -1) 2-2) px by the Mobius inversion formulal
X&lt;7

and the fact that u(x,y) = -nr)-A x) for x &lt; y in

a Boolean algebra, The latter statement, r (0)

ve) A(X);(x),isthe definition of the partial
X v

derivative.

[f this theorem is to hold for exact differentials

on any finite complete modular lattice, we must define

“G.-C. Rota, "On the Foundations of Combinatorial
Theory", Zeitschr, fur Wahrshein., 2 (1964), pp. 340-360
53.
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=

the partial derivative at zero of a Whitney rank function

r with respect to the lattice element 1 by

£,(0) = Ju(x,1)r(x)
X

and the partial deriv-tive at

general lattice element y by

zero with respect to a

~ (0) = Lux, y) T(x).

Proposition. Partial Differentiation of Exact

Differentials: Let R be an exact differential on a

finite complete modular lattice L, and let r be its

Whitney rank function, Let c¢ be any coatom of the lattice

L, and let e be any atom of L. Then the partial deri-

vatives at zero with respect to the element 1 may be

computed as either

» 10) = Ju(x,1)R(Xac,x)
X

0) = (+170, x)R(x,xve).

Proof: Let us consider the first formula. The

terms corresponding to elements x of the lattice which

lie beneath the coatom c¢ all vanish, because R(xac,X)

= R(x,x) = 0, For elements x which do not lie beneath

c, we have R(xac,x) = r(x) - r(xac). We must prove
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This is true if we can show

) n(x,1)r(x) = - ) u(x,1)r(xac),
KicC x£c

which, in turn, is established if we show

-u(x,1) = the sum of values u(z,1) for elements

z covering x but not lying beneath some

coatom c¢ above Xx,

This statement will be proven for x = 0 as a lemma,

since its validity depends only upon the lower semi-

modularity of the lattice L. Its lattice-inverted

formulation will be of great utility in analysis of

fixed point lattices for exact differentials, all of

which will be shown to be semimodular.

Lemma. A Recursion Satisfied by Mobius Functions

on Semimodular Lattices: If L is a finite semimodular

lattice with Mobius function py, and if e is an arbi-

trary atom in the lattice L,

-u (0,1) = the sum of values u(0,c) for all

coatoms ¢ not above the atom e.

Inversely, if L is a finite lower semimodular lattice

with Mobius function uy, and c¢c is an arbitrary coatom

in r
Ad y

J
\ ,») = the sum of values u(e,1) for all
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atoms e not beneath the coatom c,

Proof: We shall prove the first form of our

lemma. The Mobius function is defined as the inverse

of the zeta function, 1ie:

oy = (0x) z(x,y) =] u(0,x)
' X&lt;y

so the function u is characterized by its property

that the sum of u(0,x) over any lattice interval [0,y]

is zero, unless y = 0, Let CisesesCy be an enumeration

of the coatoms of the lattice L which lie above the atom

e, The sum of values u(0,x) for all elements which are

less than or equal to at least one of the coatoms c. J

1 = t.eas0 4k, may be expressed, by the principle of

inclusion-exclusion, as the sum

PL w(0,x) - 1 wu(0,x)
1 X&lt;C, 1&lt;] XsCinCy

y u(0,x) =
1&lt;m X&lt;CinCincy

where each subscript varies from 1 to k. Since each

initial summation is over an entire interval, all sums

are zero. Since this sum is zero, and the sum over all

elements x in L of u(0,x) is also zero, the difference

between these, ie: the sum of u(0,x) over all elements

X which are less than or equal to no coatom above the



atom e, is also zero. If an element x is beneath no

coatom above the atom e, then e £ x, and xve is beneath

no coatom, so xve must be the element 1. By the semi-

modular assumption for the lattice L, xve covers x, so

x 1s a coatom, Thus the sum of u(0,x) over all coatoms

Xx not above the atom e, plus u(0,1), is zero, yielding

the first form of our lemma. The second form is the

inversion of the first, since the Mobius function is the

same for a lattice and its inverse, ie:

(x,y) = u(y,x).

This completes the proof of our lemma, and estab-

lishes the validity of the expression for the partial

derivative of a Whitney rank function on a finite complete

modular lattice, Partial differentiation was defined

in such a way as to make the Taylor theorem hold in the

extension from Boolean algebras to finite complete

modular lattices. Thus the substance of our general

Taylor theorem is embodied in the following three for-

mulae, which are given first in absolute, then in

relative terms:

a) Definition of the highest order partial derivative:

(0) = Yu(x,1)r(x).Po.

b) Characterization of the highest order partial

derivative:
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r,(0) = Yu(x,1)R(xrc,x), for any coatom
X

125000, x)R(xxve) , for any atom e.

— Taylor theorem:

r{l) (0).

Relative formulae:

a’) or (2) = ) wu(x,y)r(.).
Z&lt;X&lt;Y

J RR r.(z) = ) wu(x,y)R(xac,x) for any coatom
7 &lt;X &lt;V

c of the interval [z,y].

- 1) 2-2(x) ) wu(z,x)R(x,xve) for
2&lt;X&lt;Y

u
~~

any atom e of the interval [z,y].

had J ry) = 1 r.(2).
Z2&lt;X&lt;Y

i+ Structure of Fixed-Point Lattices

The principal conceptual link between differentials

and their lattices of fixed points involves the properties

of exactness and semimodularity. Maclane’ and Dilworth?

“*S. MacLane, "A Lattice Formulation for Transcen-
dence Degrees and p-Bases', Duke J, 4(1938) pp455-468,

“R.P. Dilworth, "Dependence Relations in a Semi-
modular Lattice", Duke J. 11(1944) pp575-587.
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both state theorems of this type; we shall provide

proofs which extend the validity of their claims.

Given a differential R on a finite complete modular

lattice L, let us denote by h the mapping from elements

x of the lattice L to the image in the fixed point

lattice L/R of the closure C£(x), the meet of all fixed

points above x, Let the inverse mapping ho! be the

inclusion map from L/R into L. Since the meet of fixed

points is also a fixed point, the inverse mapping hl

is a meet homomorphism. The join of elements x and y

in the fixed-point lattice yields the image under h

of the meet of all fixed points above both ho 1x) and

n"L(y), ie: the element h(Ce(h t(x)vh 1(y))) in L/R.

Proposition. Exactness and Semimodularity: If

differential R on a finite complete modular lattice L

1s exact, the fixed point lattice L/R is semimodular.

Proof: We must establish tue semimodular property

for L/R, namely

[f, for a pair of elements x,y of L/R,

y covers X.y, then xvy covers x.

Let x and y be a pair of elements in the lattice L/R,

for which y covers xavy. hl (x)An" L(y) = h™L (xy)
or
- ay) in the lattice L, so we may choose an element
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z of . covering h™ d(x)" ty), and lying beneath hi)

Since h™l(x)ah™1(y) is a fixed point, C£(z) satisfies

the ordering hl (x)an 1 y) &lt;z &lt; CL(z) ¢&lt; hlgy). Thus

xay &lt; h(C£(z)) &lt;y, so C£(z) is the point h™1(y). By

appealing to both the modularity of the lattice L and

the fixed point covering property of exact differentials,

we show that the element xvy covers the element x in L/R.

Since the element z covers hl (x)ah™ 1 (y) and is less

than hley), z is not less than hl(x), and consequently

zvh L(x) covers h(x), by the modularity of the lattice
L. On one hand, C&amp;(zvh }(x)) » €&amp;(z) = h™1(y) and

ce(zvh™l(x)) 2 ceh l(x)) = h™1(x) so the closure

ce(zvh™ (x) must be greater than or equal to hl x)vh iy),

and hence greater than cech tovn ion = hlxvy).

On the other hand, the fixed point covering property

of exact differentials implies h(zvh 1 (x))-h(CL(zvh1(x)))
= h(zvh 1(x)) at most covers x in L/R., Since the ele-

ment h(zvh 1 (x)) at the same time lies above xvy and

covers x, Xxvy must cover x. This completes the proof

of semimodularity.

A partial converse to this proposition was proven 1in

Chapter 11d, under the assumption that all atoms of the

A supra, Chapter II, §4, pds.
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lattice L are fixed points. In that event, the differen-

tial R is exact if and only if the fixed-point lattice

1s semimodular.

Exactness of a differential does not, however,

imply that the fixed point lattice is geometric. For

a simple counterexample, consider the lattice L of inte-

gers {0,1,2} ordered 0 &lt;1 &lt; 2, and the differential

R(0,1) = R(1,2) = 1. Since all elements are fixed-points,

the fixed point lattice L/R is isomorphic to L, which

is semimodular, but not geometric,

Proposition. Exactness and Geometric Lattices:

If a differential R on a finite complete and comple-

mented modular lattice is exact, the fixed point lattice

L/R is geometric.

Proof: The previous proposition shows the lattice

L/R is semimodular., It remains to prove that every ele-

ment of L/R is a join of atoms, ie: if an element vy

covers an element x in L/R, there is an atom e of L/R

such that xve = y, Again letting h and h™! represent

the canonical mappings between the lattices L and L/R

and using the fact that in the complemented modular

lattice L every element is a join of atoms, we may

choose an atom e of L which is less than hl(y) but
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not less than h"ix). The closure CL(e) is also not

less than hix), but less than hi), since the latter

is a fixed point. By the fixed-point covering property

of exact differentials, h(e) = h(CL(e)), which cannot

be zero in L/R, is an atom of L/R, lying beneath y but

not beneath x.

Whenever the domain of the differential is a comple-

mented modular lattice, as in the above proposition,

we also know the lattice structure of L/R relative to

coatoms, If the image in L/R of any fixed point is

meet-irreducible, the image is covered by the element

1 of L/R.

Pronosition., Meet of Coatoms Property for a

Fixed-Point Lattice: Let L be a complete finite comple-

mented modular lattice, and let R be an exact differential

on L. Then every element of the fixed point lattice

LR is a meet of coatoms of L/R.

Proof: Assume x is a fixed point of R in L, the

image of which is meet irreducible in L/R. There is a

unique fixed point y in L whose image in L/R covers the

image of x, If the element z is any complement of the

element y in the interval [x,1], let u be any element

of L covering x, with x &lt; u &lt; z, By the fixed point
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covering property of exact differentials, the image of

C€(u) in L/R covers the image of x, so C&amp;(u) must be

the fixed point y. wu &lt; C£(u) implies u &lt; y, contra-

dicting the complementary property of the element z,

that zay = x. Thus the complement of the fixed point

in the interval [x,1] must be x, and y must be the ele-

ment 1 of L, the image of which in L/R is the element 1

y

of that lattice,

.0 Graph-like Properties of Exact Differentials

[n the manner of Hassler Whitney, let us now see

which of the properties to be expected of a differential

of a graph relation actually are true for all exact

differentials.

The transition to this more general context is

accomplished by the following conventions. We replace

the statement "the edge e is dependent upon the subset

x of the edge set X'" by "the join-irreducible element

e of the lattice L and the element x of L have the

property that R(x,xve) = 0". Bonds and circuits are in

some sense the '"complements'" of meet irreducible elements

of the fixed-point lattices L/R and L/R*, respectively.

Perhaps the most striking property of exact differen-

ti1als is that derived from the statement "if an edge a
uf
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is dependent upon a subset x, but upon no smaller subset,

then x 1s a circuit."

Proposition, Characterization of Meet-Irreducible

Fixed-Points: Let R be an exact differential on a

finite complete modular lattice L, If an element y

of L covers an element x, and the step [x,y] is maximal

among parallel steps with respect to the property

R(x,y) = 1, then the element Xx, necessarily a fixed point

of the differential R, is meet irreducible in the 1lat-

tice L/R.

Proof: The precise statement of the maximal condi-

tion is as follows: vy covers x, R(x,y) = 1, and for all

elements z with x &lt; z, yv £ z, R(z,zvy) = 0,

Assume an element y covers an element x in L,

R(x,y) = 1, and for all elements z properly above x

but not above y, R(z,zvy) = 0. Such an element x must

be a fixed point, because if an element w # y covers Xx,

with R(x,w) = 0, then R(y,wvy) = 0 by the translation

property, while our assumption implies R(w,wvy) = 0,

Such a local graph is not allowable in a differential.

[f we show that all elements covering the element

Xx have the same closure, it will follow from the fixed

point covering property of exact differentials that the
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image of x in L/R is covered by exactly one element

of L/R, and hence is meet-irreducible,.

Let z be any element of L covering the element x.

[If z # y, zvy covers both z and y, by the modularity of

L, The local graph on {x,z,y,zvy} must be prime, since

R is exact, R(x,z) = R(x,y) = 1, and R(z,zvy) = 0 by

our maximality assumption concerning x. Thus C&amp;(z)

= CL(y) is true for all z covering x. This completes

the proof.

The lattice inverse of this proposition is equally

true; we state it separately because it is helpful in

discussions of duality.

Corollary. Meet Irreducible Fixed Points of the

Dual: Let R be an exact differential on a finite com-

plete modular lattice L., If an element y covers an

element x, and the step [x,y] is minimal among parallel

steps with respect to the property R(x,y) = 0, then the

element has as image under lattice inversion an element

whose image in the lattice L/R* is meet irreducible.

(Such an element y necessarily has the property, for all

elements w of L, that

y covers w implies R(w,y) = 0.)
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The classical theorems for linear independence

in finite-dimensional vector spaces are available for

exact differentials on a complemented modular lattice,

but fail for such simple modular lattices as linear

orderings.

An element x of a finite complete modular lattice

L is independent, relative to an exact differential R

defined on the lattice L, if the value of the Whitney

rank function r at x is equal to the rank A» of the

element x in the lattice L. For any element x, the

inequality r(x) &lt; A(x) applies, since r(x) is the sum

of R-values on any path from 0 to x, so we may define a

dependent element as an element Xx for which r(x) &lt; a(x).

Proposition. Differential Character of Independent

Elements: Let L be a finite complete complemented modular

lattice, and R be an exact differential defined on the

lattice L. An element x in L is independent if and only

if, for any element z of L

 + covers z implies R(z,x) = 1.

Proof: If the element x is independent, let z be

any element covered by x. Choose a path p from 0 to X
n

via z. Since A(x) = r(x) = A R(Ps_10p5)s
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R(p,_1sP,) = R(z,x). Conversely, r(x) &lt; a(x).

Choose a path p from 0 to x. For some subscript k,

1 &lt;1 &lt;n, R(py 197) must have value zero. The element

x~covers any complement z of the element Py in the

interval [Py .q10x], and R(z,x) = 0 by the translation

property.

A dual concept and proposition are also available,

Define an element x in a finite complete modular lattice

L to be a spanning element (or an element which spans),

relative to an exact differential defined on L, if and

only if the value of the Whitney rank function r at x

is equal to its value at the element 1 in L.

Corollary. Differential Character of Spanning

Elements: Let L be a finite complete complemented

modular lattice, and R be an exact differential defined

on the lattice L. An element x in L is a spanning

element if and only if, for any element z of L

ly covers Xx implies R(x,2)

A base (or basis) for an exact differential on a

finite complete modular lattice may be defined alter-

natively as a maximal independent element, a minimal

dependent element, or as an independent element which

spans. No two of these concepts are equivalent, as may
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be seen in the example illustrated in the

accompanying diagram, None of the elements

is a base, while 1 is the only maximal

independent element and 3 is the only

minimal spanning element.

Let us define a base as an independent element

which spans, and prove that all the suggested definitions

are eauivalent on a complemented modular lattice.

Proposition, Differential Character of Bases:

Let L be a finite complete complemented modular lattice,

and let R be an exact differential defined on the lattice

L. Then an element x of L is a base if and only if

a) X is a maximal independent element,

b) x is a minimal spanning element,

c) For any element z of L,

X covers z implies R(z,x) = 1, and

z covers x implies R(x,z) = 0, or

d) x is minimal with respect to the property:

at least covers xaz for every fixed point z, the image

of which is a coatom in the lattice L/R.

Proof: The equivalence, with the definition of a

base, of statements a,b, and c¢ follows from arguments

analogous to that given for the proposition on the



differential character of independent elements, We

omit the proof.

Statement d is the lattice counterpart of the

property of bases for a graph, that they are minimal

matchings of the family of edge sets constituting bonds

(or that the base complements are minimal matchings of

the family of circuits).

Assume an element x in the lattice L is a base, and

an element z in L is a fixed point whose image in the

lattice L/R is a coatom. Then the Whitney rank function

r of R has value r(z) = r(1) - 1, by the proposition

on existence of fixed points?, Since r(x) = r(1), x

cannot satisfy x &lt; z, so x at least covers xaz.

Conversely, assume an element x is minimal with

respect to the property that x at least covers x.z for

any fixed point z, the image of which in the lattice

L/R is a coatom. If y is any element covering x,

R(x,y) = 1 would imply the existence of a fixed point

in the half-closed interval [x,1). A maximal fixed

point w in the interval [x,l1) necessarily has a coatom

as image in the lattice L/R, But x.w = x, contradicting

ho

supra, Chapter I, §3, pl..
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our condition on the element x, On the other hand, if

y is any element of L covered by x, the minimality

condition implies the existence of a fixed point above

but not above x, so R(y,x) = 1. Thus the element x is

y

a base.

All the classical theorems on linear independence

become properties of bases for exact differentials on

finite complete complemented modular lattices. For

instance, the theorem "a set of non-zero vectors

(agyeee,ap} in a vector space is linearly dependent if

and only if some one of the vectors is a linear combina-

tion of the preceding ones'" becomes the differential

statement "if an element x of the lattice L is dependent,

then along any path p from 0 to x, R(p;_1sP;) = 0 for

some value of the subscript i".

Proposition. Theorems on Linear Independence,

Rephrased for Differentials: Let L be a finite complete

complemented modular lattice and let R be an exact

differential on the lattice L, with Whitney rank function

L) If an element y in L is independent, there

exists a base x for R in L such that y &lt; x.

ii) If an element x, with rank x(x) in the lattice

L, 1s a base for R, then A(x) = r(1l).
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i111) Any lattice element of rank A greater than

r(1) is dependent; any element of rank XA less

than r(1) does not span.

For a lattice element x of rank A(x) = r(1l)

to be a base for R, it 1s sufficient that it

span or be independent.

Proof:

i) Let v be an independent element, If y does not

span, there is some element z covering y such that R(y,z)

= 1, If u is any element, other than y, which is covered

by z, the elements y,z,u,usy form a local grpah. Since

y is independent, R(usy,y) = 1, so the local graph is

of type one, and R(u,z) = 1, Thus the element z covering

y is also independent. This possibility allows for a

recursive definition of a path upward from the element x,

all elements of which are independent. This path

terminates only in an independent element which spans

ie: in a base for R above x.

ii) If an element x is a base for the differential

R in the lattice L, we may choose a path p from 0 to 1

via x. Given any step [Py _19P4] in the path p above the

base x, we may choose an element z covering x such that

z ft Py.1 but z &lt; Py» because the lattice L is complemented.

If the differential R were to have value 1 on such a
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step [Py _79Py] above x, the translation property would
imply R(x,z) = 1, contradicting the properties of x as

a base. An argument of the same type implies that

R(py_qsPy) = 1 for all steps [Py.1sPyl in the path p

below the base x. Thus the R-sum r, (0,1), which must

have value r(1), counts the number of steps in the path

p below the base x. Thus number is the rank A(x) of

the element x in the lattice L.

11i) If, for an element x, A(x) &gt; r(1l), it follows

that A(x) &gt;» r(x), so x is dependent. Since r &lt; A for

all elements of L, the condition A(x) &lt; r(l) implies

r(x) &lt;r(l), so x does not span,

iv) Assume an element x is independent, and A(x)

r(l1). Then A(x) = r(x), so r(x) = r(l), and x spans.

On the other hand, if the element x spans, and A(x)

= r(1), then r(x) = r(1), so r(x) = 2(x), and x is

independent.

To these properties of bases we may add the exchange

property used by Whitney: in constructing equivalent

axiomatizations for independence systems.

A. Whitney, "On the Abstract Properties of Linear
Dependence", Amer. J. 57(1935) pp. 509-533,
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Proposition. Exchange Properties of Bases: Let

L be a finite complete complemented modular lattice,

and let R be an exact differential on L. If x and y

are bases for R in L, and if w is any element covered

by x, there is a base z covering w and lying beneath the

element wvy,

Proof: Choose a path p from w to yvw., Since yvw

lies above the base y, r(yvw) = r(l). Since r(w)

r(l1) - 1, there is some step [p;_1p;] in the path

p for which R(p; _140;) = 1, Let z be the complement

of Pi. in the interval [wops]. Then z covers w, and

R(w,z) = 1 by the translation property. i(z) = r(z)

r(l), so z is a base,-
-

The corresponding exchange property for coatomic

(in L/R) fixed points is derived from that given by

Nhitney for circuits,

Proposition. Exchange Property of Coatomic Fixed

Points: Let R be an exact differential on a finite

complete complemented modular lattice L, If, for some

pair of coatomic (in L/R) fixed points 84 and 8, there

are elements x and y in L covering the element 81065,

such that x is beneath 84 but not beneath 8 and vy

is beneath neither &amp;, nor S59 then there is a coatomic
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fixed point 8+ which is above the element y but not above

the element Xx.

Proof: Assume 81 and 8, are coatomic (in L/R)

fixed points of R in L and that two elements x and y

cover 8,782 with x beneath 84 but not beneath 85s and

y beneath neither §, nor §,. Consider the local graph

formed on the elements 818 855X,Y, and xvy. The two

lower steps of this local graph have R value 1, since

§106, is a fixed point, By the translation property,

and the fact that y is not beneath the fixed point 81

R(x,xvy) = R(61,67vY) = 1, The differential R being

exact, the local graph is of type one. Thus R has value

1 on the step [y,xvy]. Let z be an element of L in

the interval [y,1], maximal with respect to the property

that R(z,zvx) = 1, By our characterization of meet

irreducible fixed points?! the element z is a coatomic

(in L/R) fixed point of R lying above y but not above x.

To complete our catalogue of graph-like properties

of exact differentials, let us turn to the graph theorem

that if a single edge is added to a base, there is a

uaniaue circuit in the enlarged edge set. This principle,

supra, p. 8o
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introduced by Whitney", has been used by W.T. Tutte

throughout his work on chromatic polynomials? and the

homotopy theory for Whitney systems&gt;,

Pronosition. Fundamental Systems? of Coatomic

Fixed Points: Let L be a complete finite complemented

modular lattice, and let R be an exact differential

on L.

i) If an element x is a base for R in L, and x

covers an element z, there is a unique coatomic (in

L/R) fixed point above z in the lattice L.

ii) If an element x is a base for R in L, and an

element y covers Xx, there is a unique coatomic (in L/R*)

dual fixed point beneath y in the lattice L,

1i1) The Duality Principle for Exact Differentials:

Assume an element x is a base for R in L, and an element

y has the property that xvy covers both x and y. Let

§ be the unique coatomic (in L/R) fixed point above

xay, and y the unique coatomic (in L/R¥) dual fixed

Ly, Whitney, op. cit.

W.T. Tutte, "A Contribution to the Theory of
Chromatic Polynomials", Can. J. 6(1954) pp. 80-91.

|
WT. Tutte, "A Homotopy Theorem for Matroids,

and II", Trans. A.M.S., 88(1958) pp. 144-174.

Yet: This term is due to Whitney, op cit., p. 517.
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point beneath xvy, The following statements are equiva-

lent:

aj r
1s Jasé€

b) YAS ‘=

2) r

1 V vo,

Proof:

i) We have proven the meet of coatoms property

for fixed-point lattices of exact differentials on

finite complete complemented modular lattices. If an

element x is a base for the differential R on L, and x

covers an element z, then R(z,x) = 1. By the existence

proposition for fixed points, there is a fixed point u

in the half-closed interval [z,1). Choose a path from

the image of u to 1 in the lattice L/R. The penultimate

element in this path is a coatom, and is the image of

a fixed point w above the element z in L. If there are

two such fixed points Wy and Wo above z in L, and both

have coatomic images in L/R, they are not comparable

in the lattice L, so their infimum WirW, is a lower fixed

point also above z in L. Choose a path q from 0 to z,

then to WiAW,, then to Wi and finally to 1, The dif-

ferential sum r,(0,1) is (1) - 1 from 0 to z, and is

at least 2 from z via WirW, and w; to 1, contradicting

the independence of path for R-sums of exact differen-

tials. Thus the coatomic fixed point above z is unique.
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ii) This proposition is the dual of statement i),

and 1s proven by applying statement i) to the dual

differential R*, which is also exact. Note that if an

element x is a base for R, the image x of x in the

inverted lattice L is a base for R*.

iii) We prove that (a) y is a base if and only if

(b) yr8 &lt; x. The equivalence (a) «+ (c) is the dual

of the equivalence we prove, and thus must also hold.

If the element y is a base, then R(xay,y) = 1. The

half closed interval [xay,8) can contain no fixed point

since § is the only coatomic fixed point above xay and

every fixed point is a meet of coatomic fixed points.

By the proposition concerning existence of fixed points,

R must have constant value 0 on the interval [xay,6],

so the element y cannot lie beneath §, Thus ya8§ = Xay

&lt; x, Conversely, if y is an element such that xvy covers

both x and y, § is the unique coatomic fixed point above

x,y, and ya8 &lt;s x, we know yd = x.y is covered by y, so

yvé covers 8, Since § is a fixed point, R(S,yvé8) = 1

By the translation property, R(xay,y) = 1, so A(y)

r(y) = 1 + r(xay) = r(1), and y is a base,

The duality principle for exact differentials is

of critical importance in our enumerative work comprising

Chapter IV, Its usefulness arises from the fact that
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§

it relates the fixed points

coatomic in L/R to the dual

fixed points coatomic in L/R*

via the set of bases for the

differential R, The duality

principle, applied to the graph

relation of a planar graph, is

illustrated in the accompanying

diagram. A base for the graph

is marked in red. If the edge e is added to the base,

the enlarged set contains a unique circuit, which involves

the edge d. The duality principle implies that if the

edge d is removed from the base, the complement of the

resulting edge set contains a unique bond (or dual

circuit), which involves the edge e. This is marked

with a dotted line.

One additional observation should be made concerning

the duality principle. Assume, as in the statement of

the proposition, that an element x in the finite complete

complemented modular lattice L

is a base for the exact differen-

tial R, and that an element v

has the property that Xxvy covers

both x and y. Since x is a base,
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R(xay,x) = 1 and R(x,xvy) = 0, the local graph on the

elements X,y,Xay and xvy must be mixed or prime. The

element y is a base if and only if this local graph

is prime,

36 Factorization into Primes

Before proceeding to the enumerative work of

Chapter IV, let us prove a unique decomposition property

of differentials.

Proposition, Unique Decomposition into Prime

Factors: Let L be a finite complete modular lattice

and let R be a differential defined on the lattice L.

If R= R,x,..xR_ and R = R,,x,,.xR_, are two factori-1 p A q

zations of R into prime factors, there is a 1-1 corres-

pondence between the two sets of factors under which

corresponding factors are isomorphic.

Proof: If the two decompositions are essentially

different, then some y of R on L, corresponding to a

differential Ry has a non-trivial intersection with a

factor x of R on L, corresponding to a differential

Ry ie: 0 &lt; xay &lt; x, Given any step [u,w] in the

interval [0,x], we find uiy &lt; way if and only if ua(xay)

&lt; wa(xay) and uvy &lt; wvy if and only if uv(xay) &lt; wy (Xay).
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Since y is a factor, R(uay,way) = R(ua(xay),wa(xay))

and R(uvy,wvy) = R(uv(xay),wv(xay)) so R(u,w) =

sup{R(ua(xay),wa(xay)) ,R(uv(xay),wv(xsy)} and xay is
a factor of the differential R., This contradicts the

assumption that x is a prime factor, so the decomposition

must be unique up to a 1-1 correspondence in which

corresponding terms differ at most by a differential-

preserving isomorphism.

This proposition, although it was suggested by

Saunders MacLane's paper?! on factorization of graphs,

and although it applies to more general structures than

graphs, does not exhaust the possibilities of generali-

zing his results, which concern separation across

connected subgranhs.

By an inductive use of our observation in Chapter

[4 the prime factors of an exact differential are all

2X4accl.

5. Maclane, "Some Unique Separation Theorems for
Graphs", Amer. J. 57(1935), pp. 805-820,

dhe

‘supra, Chapter I, sd4e, p. 23.
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Chapter IV

31 Introduction

The content of this chapter 1s enumerative in

nature, By defining a rank generating function for

exact differentials, we bring to bear on the theory

of exact differentials the techniques of enumerative

combinatorial analysis. Emphasis will be laid on those

special numerical results available for exact differen-

tials defined on Boolean algebras.

In section two we define the rank generating

function of an exact differential as a certain poly-

nomial in two variables, arising from a simultaneous

rank grading in the fixed point lattice of the differen-

tial and in the fixed point lattice of its dual dif-

ferential, We prove a fundamental relation which helps

to characterize the structure of the domain of the

differential,

A discussion of the algebraic properties of the

rank generating function comprises section three. We

define the relative rank generating function is such a



. 1

way that, at any numerical evaluation of its two vari-

ables, it becomes a matrix element of the incidence

algebra of the domain lattice. We prove that the exis-

tence of factors of the differential implies factoriza-

tion of the rank generating function, We exhibit a

recursion for the relative rank generating function,

in terms of the domain lattice, then calculate the

inverse of the relative rank generating function as a

function element in the incidence algebra of the domain

lattice,

The principal theorem on rank generating functions

appears in section four. We prepare the way with a

sequence of lemmas which serve to match subsets in a

Boolean algebra to bases for an exact differential

defined on that Boolean algebra, The substitution

theorem establishes the fact that translation of the

domain of the rank generating function produces a variety

of generalizations of well-known lattice polynomials.

In section five we show that the Mobius function

of the fixed point lattices of a differential and of

its dual are values of the rank generating function.

ATL application of our tieury to the enumeration of



J
Ge ror

graphs concludes this paper.

ry tank Generating Functions

The principal tool of enumerative combinatorial

analysis is the generating function of a graded set, a

concept introduced by Laplacel, A grading of a set S

is a function g from the set S into the natural numbers

(0,1.2,...} such that any given integer is the image

of at most a finite number of elements of S. Such a

grading defines a counting sequence v from the natural

numbers into the natural numbers, defined in terms of

the grading by

v(j) is the number of elements of grade j in the set 5.

The (ordinary) generating function
on the set S is defined by

v of Lalo grading g

y(g) = 7 v(i)e-
i=1

Many variants of this concept are available. Generally,

they involve either multiple gradings, or the use of

functions other than powers of the variable in the

definition of the generating function, We shall deal

‘Laplace, "Théorie Analytique des Probabilites"
Courcier, Paris, 1812; 3rd ed. 1820.

y
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with ordinary generating functions of a bi-grading.

Ne have shown that an exact differential on a finite

complete modular lattice is associated with a unique

Whitney rank function on the lattice. The same may be

said for the dual of such a differential. The Whitney

rank functions of an exact differential and of its dual

provide a natural bi-grading of the elements of the

lattice.

Beginning with the bigrading defined by the two

Whitney rank functions, let us define the rank generating

function, Assume R is an exact differential on a finite

complete modular lattice L, with Whitney rank function

r on L. For every element x in the lattice L, define

gradings g1 and g, by

g,(x) = (1) - r(x)

g,(x) = r*(0) - r*(X)

where x represents the image of the element x in the

inverted lattice L. Then define a bigrading g on the

lattice L by setting

IL) = (g,(x),2,(x))

for every element x in L.

The double counting sequence of the bigrading g
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will be denoted by p, and is defined for all pairs of

natural numbers i = 0,.... 3 i = 0,1,... bv

Pi; = the number of elements x in L

with g(x) = (i,j).

Finally, the rank generating function p of the exact

differential R on the finite complete modular lattice

L is given by

o y Ny = LopgeTn
i,]

The rank generating function is a polynomial in

two variables, because the lattice L is assumed finite.

We now set forth in detail a number of simple properties

of this polynomial, and of the bigrading which gives

rise to it,

Provosition. Rank in the Fixed-Point Lattices:

Let R be an exact differential on a finite complete

modular lattice L, with Whitney rank function r. Let

r* be the Whitney rank function of the dual differential

R*, Then the rank in the lattice L/R of the image of

a fixed point x in L is r(x), and the rank in L/R* of

the image of a fixed point X of R* on L is r*(x).

More generally, for any element x in L, r(x) = rank
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in L/R of the image of C&amp;(x), and r*(X) = rank in L/R*

of the image of CL£*(X).

Proof: The more general statement follows from the

first form, because the presence of a step on which R

has value 1 in a path from x to C£(x) implies the

existence of an intermediate fixed point, so R(x,C&amp;(x))

= 0, and r(x) = r(CL(x)).

The first form of our statement follows from the

fact that if, for two fixed points x,y in L, the image

of y in L/R covers the image of x, then r(x) + 1 = r(y)

This covering property is proven as follows. Assume

the image in L/R of a fixed point y covers the image

of a fixed point x, and let z be any element of L

covering x. Since x is a fixed point, R(x,z) = 1. Since

there are no fixed points in the half-closed interval

[z,y), R(z,y) = 0, and rT, (Xs) = R(x,z) = 1 for any

path p from x to y via the element z. Thus r(x) + 1

riy).

To prove the rank property, we consider an arbitrary

fixed point x in L, and form a path q in L/R from the

zero of L/R to the image of x. The elements of this

path correspond to an increasing sequence of elements

in L, a sequence which may be extended to a path p from
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0 to x in L., Since the images of the fixed points in

the path p form a path in L/R, the R-sum r,(0,x) = r(x)

is equal to the rank of the image of the fixed point

X in the lattice L/R. Applying this result to the dual

differential R*, we find also that r*(x) is the rank

of the image of x-in L/R*, whenever x is a dual fixed

point of R on L.

[f we make use of the duality?! property of exact

differentials, we shall be able to simplify the compu-

tation of the rank generating function. Just as we may

characterize the grading gq by

g +x) = the number of steps on which R =

in any path from x to 1

50 also we may characterize the grading pg. vy

J / x) = the number of steps on which R = 0

in any path from 0 to x.

Proposition, Grading Duality: Let g = (g1,8;)

by the bigrading of a finite complete modular lattice

L with respect to the Whitney rank functions r and r*

sulplrd ) Chapter III, §2, p. 59.
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of an exact differential R and of its dual R*, If

A is rank in the lattice L, then g,(x) = x(x) - r(x)

for any element x in L,

Proof: The duality property of exact differentials

states that R*(y,x) = 1 - R(x,y) whenever an element y

covers an element x in the lattice L. The value of the

grading g, at x is the difference r*(0) - r*(x), or the

R* sum from % to 0 in the lattice L. This equals the

sum of 1 - R from 0 to the element x in the lattice L,

which is A(x) - r(x).

Generating functions may always be expressed either

as a sum over the range of the grading, or as a sum

over the graded set. Thus

&gt;(&amp;,n) = 1 egyetn] = 7 810%) g2(x)
1,] xel

The latter form is often more convenient in theoretical

NO IK 3

It is to be expected that the structure of the lattice

serving as domain of an exact differential will have

some influence on the algebraic properties of the rank

generating function. That all elements x of the same

rank in the lattice L have the same difference g, (x)

3.(x) is an immediate consequence of the grading
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duality property. Following Laplace, we state this as

a property of the rank generating function, rather than

as a property of its coefficients.

Proposition. The Fundamental Domain Relation for

a Rank Generating Function: Let p be the rank generating

function of an exact differential R on a finite complete

modular lattice L. Let Xx be rank in the lattice L,

and let r be the Whitney rank function of the exact

differential R. Then

A(x), _ ¢(1), c1/¢,t) AL

Proof: The bi-grading g is given, for all elements

X in L, by

g(x) = r(1) - r(x)

g,(x) = A(x) - r(x) ¥

so, for all elements x,

g,(x) - g,(x) = a(x) - r(1),

Evaluating the rank generating function at ¢ = 1/t,

n = t, and multiplying by fT) we have

“Wye, - +T(1) y (1/0) TD) -T(X) A (x)-1(x)
xelL

(1) A)-T(1) |p A(R)
xel xeL

-

a



In the particular case in which the lattice L 1s

the Boolean algebra of all subsets of an n-element set,

ve have

Ssi/t,t) = TD) ray?

because there are (3) elements of rank A» = k in L, for

k = 0,1,...,n, A considerable amount of information

is available from the fundamental domain relation,

because it consists of A(1l) independent relations on

the set of (r(1)+1)(x(1)-r(1)+1) coefficients of the

rank generating function. In particular, there is always

a monomial ¢T(1) with coefficient 1, which corresponds

to the element 0 of the lattice, and a monomial 2(1)-r(1)

also with coefficient 1, corresponding to the element 1

of the lattice.

5. Algebraic Properties of the Rank

Generating Function

a) The Relative Rank Generating Functiormn

The rank generating function of an exact differen-

tial is also, in some sense, a function on pairs of

elements of the lattice, We observed in Chapter il

supra, Chapter I, §4a, p. 16
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that the restriction of an exact differential to any

lattice interval is itself an exact differential.

Beginning, then, with an exact differential R on a finite

complete modular lattice L, we have, for every pair

of elements x,y of L with x &lt; y, a rank generating

function which we denote

p(X,¥Y3E,n),

associated with the restricted differential R| x v] on
’

the sublattice [x,y].

[f we further define p(x,y;£,n) to be the zero

function unless x &lt; y, we obtain the relative rank

generating function p(x,y;&amp;,n), defined for all elements

x and v in L, and for all real numbers &amp;¢ and n.

It will be convenient for future claculations to

set down in detail the enumerations which yield the

coefficients py5 (X57) of monomials gl] in the relative
rank generating function p(x,y;&amp;,n):

p35 (XY) = the number of lattice elements

with x &lt; z &lt; y, for which

i=r(y) - r(z) and

it

j= (Xz) = x(x)) = (r(z) - r(x)).

[hese conditions may also be written in terms of rank
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in the fixed point lattices of the restricted differen-

tial and its dual, The index i represents the rank

difference between the element 1 in the fixed point

lattice [x,y] / RIx,y] and the image in this lattice of
the closures of elements in the lattice interval [x,y].

The index j represents the rank difference in the

lattice [y,x] / R*| 15.5] between the image of 0 and the

image of the *closures of elements in the interval [y,X]

of the lattice L.

Hh) Factorization

There exists a connection between multiplication

of differentials and multiplication of their rank

generating functions.

Proposition. A Sufficient Condition for Factorization

of Rank Generating Functions: Assume an element Xx in

a finite complete modular lattice L is a factor of an

exact differential R on L., Then the rank generating

function of the exact differential R on L is the product

of the evaluations of the relative rank generating func-

tion at the pairs (0,x) and (x,l1) of the lattice elements )

lL 2

MM Cw yn) = p(0,x38,n)p(x,1;&amp;,n).
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Proof: Since the element x is a factor of the

differential R on the lattice L, we know the values

of R are given by

R(Y+2) = sup{R(vax,zax),R(yvx,zvX)}

for all elements y and z in the lattice L, If p is a

path from 0 to an element y in L, then for every step

[p;_150;] we have either Pj 1X &lt; PjAX OF p. vX &lt; p.vX

but not both, Thus the rank A» in L has the property

Aly) = (A(yax) = 2(0)) + (A(yvx) - Aa(x))

and the Whitney rank function r of the exact differential

R satisfies

r (vy) = (r(y~x) - r(0)) + (r(yvx) - r(x)).

The rank generating function p of R may be written

&gt;(E,n) = r(1 -ge )-r(y) A(y)-r(y)
Ne express these exponents of £ and n as follows:

r(1)-r(y) = [r(x)-r(ysx)] + [r(1)-r(yvx)]

A(Y)-1(y) = [A(yax)-T(yax)] + [A (yvX)-A(x)-r(yvx)+r(x)],

wherein the first of the two terms in each sum depends

only on the projection y + yax of the element y into the

interval [0,x], and the remaining term in each sum
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depends only on the projection y +» yvx of the element

y into the interval [x,1]. Summing instead over all

pairs of elements Y10Y 2s with Yq in [0,x] and Yo in

[x,1], we have

.) i on) = yj gT(x)-rlyi)Aly)-r(yy)
y,€[0,x]

1) - ‘

tbat )-r(y2) A(yy)=a{x)-r(yp)+r(x)
&gt;(0.v1Fr,n)p(x,158,n).

ZC) Recursion

Ne have extablished the property which rank genera-

ting functions possess relative to the multiplicative

structure of differentials, If an exact differential

1s defined on the Boolean algebra of all subsets of an

n-element set, the relative rank generating function

of the differential also satisfies a recursion relation

relative to the "additive" structure of the lattice.

Proposition. The Recursion Formula: Given an

exact differential R with rank generating function o

on the Boolean algebra L of all subsets of the n-element

set X, and given any element e of the set X, let e°

denote the complementary subset X - e, then
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0 (E,n) = nl R048) J 0,erse, mn) + eRe 1) ie 15e,m).

Proof: We consider three cases:

a) R(0,e) = 0, in which case R(e',1) = 0

b) R(e',1) = 1, in which case R(0,e) = 1

cz) R(O0,e) = 1 and R(e',1l) = 0.

Case a): Assume an element y covers an element

x in the interval [0,e']. Consider the local graph

on x,y,Xxve,yve., Since R(0,e) = 0, the translation

property implies R(x,xve) = R(y,yve) = 0. The local

graph must be either zero or mixed, so R(x,y) = R(xve,yve)

and the mapping x + xve from the interval [0,e'] to the

interval [e,1] is a differential-preserving isomorphism.

p(0,e*;&amp;,n) = p(e,1;£,n), and every subset in the inter-

val [e,1] has grading one higher in the second compo-

nent than the corresponding subset in the interval

[0,e']. Thus

&gt;{(€4n) = (1+n)p(e,1;&amp;,n)

np(0,e';€,n) + o(e,13&amp;,n).

Note that the factor 1+n in the above expression is

p(0,e;E,n). The first form of the above expression

is the product formula derived from the product R =

Rlpo,e1*Rl fe,170 the element e being a factor of the
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differential R on the Boolean algebra L.

case b): If R(e',1) = 1, the element e is again

3

lL,

factor of the differential R on the Boolean algebra

SO

J 5
a ,:) = o(0,e;6,n)p(e,1;8,n)

(1+&amp;)p(e,1;E,n)
4
= 0 2 9 ’ or ’ )9 9

case c¢): If R(0,e) = 1 and R(e',i) = 0, we must

DYTOVe

&gt;(Z,4n) = p(0,e';&amp;£,n) + p(e,1:8,n).

If y is any subset containing e, we choose a path p

from 0 to 1 via e and y, and show the bi-grading of the

subset y is the same as that with respect to the re-

stricted differential RIe 17° The sum of R values
’

along the path p from y to 1 is the same with respect

to R and RI |e 11» 2s is the sum of values of the func-
’

tion 1 - R on that portion of the path p from 0 to y

in one instance and from e to vy in the other. These

are required bi-gradings.

On the other hand, if y is a subset not containing

e, we choose a path q from 0 to 1 via y and the subset

e! , and sh ow the bi1-~- gradin g of th e sub se t v iis th e same

as that with respect to the restricted differential
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RIro et]? by a similar argument.
9

Thus, separating the expression for p(&amp;,n)

into a sum over subsets containing the element e and a

sum over subsets not containing e, we have:

)o= 3 £81(y) 82(y)
yel

- po e810) gy) oy 81) gay)
ye[0,e"'] vel[e,1]

s(0,e'3&amp;8,n) + po(ec,1l:28,1)

since we have shown that the gradings coincide.

lo obtain a well-known example of this recursion

formula, let the differential R be the partition differen-

tial of a graph relation. We know such a differential

to be exact; the lattice on which it is defined is the

Boolean algebra of all subsets of the set of edges.

The restricted differential Rl10,e'] is the partition
differential of the graph formed by removing the edge e

the restricted differential Rl (e,1] is the partition
differential of the graph formed by contracting the

edge e to a single vertex, and contracting all other

edges connecting the same pair of vertices to loops.

For example:
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elimination
 ow

&gt;
\

contraction
Ne

L_ 0

That we have established a general recursion formula

which applies simultaneously to the Tutte polynomiall

and to the chromatic polynomials? of a graph and its

dual will be clear once we derive these various poly-

nomials from the rank generating function&gt;.

Any recursion formula, valid for exact differentials

on a complemented modular lattice, must take into account

the possibility that an atom may have several complements

in the lattice, all of which are necessarily coatoms.

Proposition. General Recursion Formula: Given

an exact differential R with Whitney rank function r and

rank generating function p on a finite complete comple-

mented modular lattice L, the following formula holds

for any atom e of L, the complements of which are

*W.T., Tutte, "A Contribution to the Theory of
Chromatic Polynomials", Can. J. 6(1954) pn. 85.

26.D. Birkhoff, "A Determinant Formula for the
Number of Ways of Coloring a Map', Annals, 14(1912)
p. 42-46,

infra, sections 4 and 5 of tne present chapter,
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enumerated e'.,...,e' in some order:

9 Jn) = n1-R(0,€) 0 1.6.)

- ®(e'j,l(e'i, )o(0,e'i3E,n)
i

L

;T-r(e's e'5) 0,es etizE,n)

» k=1,r(1)-r(c 3 ) &amp;
al,’
~ klora,e ces’ EL)

Proof: The proof used for case c) of the recursion

formula for rank generating functions of differentials

on a Boolean algebra applies in this more general situa-

tion. The first component of the bi-grading is the same

for elements above e as it is on the interval [e,l].

The second component differs by 1 if R(0,e) = 0. Thus

arises the first term in the recursion formula. The

remaining terms arise by application of the classical

inclusion-exclusion principle to sums over lattice

elements lying beneath complements e'. comprising various

subsets of the set {e'1,000,e"} of all complements of
the element e of Ll

id) Matrix Inversion

vide infra, Appendix A, example
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The function p(x,y;£,n), regarded as a function

of x and y alone, for any fixed ¢ and n, may be thought

of as an upper triangular square matrix with numerical

entries, indexed in both dimensions by the elements

of the lattice, arranged in some increasing order,

These matrices all have the property that the entry

in the row corresponding to the element x in L and in

the column corresponding to the element y in L is zero

unless x &lt; y in L, Such matrices form an algebra under

addition, scalar multiplication, and matrix multiplica-

tion, an algebra called the incidence algebra’ of the

lattice L,

The principal objects of interest in the incidence

algebra are the identity, the zeta function, and its

inverse, the Mobius function. These are usually defined

as follows:

identity 6:

zeta gC.

Mobius wu:

S(x,y)=0ifx#vy
= 1 if x = vy.

z(x,y) = 0 if x £ vy

= 1 1f x &lt; vy.

the inverse of tz, thus characterized

by the relation } u(x,y) = 8(x,z)velx,z]

‘G.-C. Rota, "On the Foundations of Combinatorial
Theory", Zeitschr, fur Wahrshein,, 2 (1964), pp. 340-360
53.
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for any choice of interval [x,z].

We shall employ a polynomial generalization of the

zeta function, but shall use the same name. Thus we

define the zeta function of an exact differential R

with Whitney rank function r on a finite complete

modular lattice L by

”
- a) = FB) d)-r(l)

As a function of pairs of lattice elements, the relative

zeta function may then be computed, for x &lt; y, as

rayiE,n) = ef) TEI AG) T(r) =a x)r(x)

It should be noted that ¢(x,y;1,1) is the usual zeta

function, a numerical matrix element of the incidence

algebra, The relationship between the relative zeta

function of a differential and the rank generating

function of that same differential is exhibited in the

following statement.

Proposition. The Rank Generating Function Derived

from the Zeta Function: Given an exact differential R

on a finite complete modular lattice L, its rank genera-

ting function p and its zeta function ;, we have

d ,y36,yn) = } z(x,z31,n)z(z,y;8,1),
ze[x,y]
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ie: the rank generating function is the product, in the

incidence algebra, of two partial evaluations of the

relative zeta function.

Proof: The number of elements z in the lattice

interval [x,y] for which ¢(x,z;1,n) = nd and for which

;(z,y;8,1) = gt is equal to the coefficient Pije

We shall now develop an inversion formula for the

relative rank generating function, the inverse being

with respect to the operation of matrix multiplication

in the incidence algebra of the domain of the differen-

tial, and valid whenever that domain is a Boolean algebra.

Theorem, The Multiplicative Inverse of a Rank

Generating Function: If an exact differential R on

the Boolean algebra L of all subsets of an n-element

set has rank generating function p and zeta function gz,

then for all pairs x,y of subsets in L and for all pairs

c,n of non-zero real numbers,

J YeE.n) = (X.Y -C,-n)p’ y3l/5,1/n).

Proof: We begin by analysing the numerical product

c(x,y;&amp;,n)p(x,y;1/6,1/n). The coefficient of gin] in

the expansion of this product is equal to the number

of elements z in the interval [x,y] for which



iy r.,;;) = r(x) - [r(y) - r(z)]

s(z) - r(x)

’3

and for which

Aly) - r(y) - x(x) + r(x)

-[x(z) - r(z) - A(x) + r(x)]

yy) - r(y) - x(z) + r(z)

ie: the coefficient of £'n) in the expansion of the

product z(x,y;&amp;,n)e(x,y;1/£,1/n) is the number of elements

z in the lattice interval [x,y] such that any path from

Xx to y via z has R value 1 on i steps beneath z and R

value 0 on j steps above z. This means that the product

(x,ys&amp;,n)p(x,y;1/¢,1/n) may be expressed, in much the

same manner as the rank generating function, as a matrix

product of partial evaluations of the relative zeta

function:

t(X,y3&amp;,n)o(x,y;1/8,1/n)
s } oo o(x,z36,1)z(z,y;1,n)

z e[x,v]

No use has yet been made of the assumption that the

domain of the differential is a Boolean algebra. The

above formulation holds for any finite complete modular

lattice.

Ne dy now proceed to prove that the matrix product
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i t(x,z5-8,-n)o(x,233/¢,1/n)o(z,y;E,n)
ze[x,y]

is equal to the identity function §(x,y). Factor the

first two factors and the last factor into their res-

pective formulations as matrix products of partial

evaluations of the zeta function; this introduces a

triple summation

L Lze[x,y] wje[x,z] woefz,y]
of the product of four terms, signed in accordance with

the degrees of terms in g¢(x,z;-£,-n), namely:

(-DMEA) f we, Dewy 251, ez, W051, m) E (Wy, 56,1)

If we interchange the order of summation, summing

first with respect to subsets z in the interval [wy,w,1,

all terms in the product are constant except

COMP ee, 251,n) 0(z,u,51,0)
 AE) AE) (2) A) ST) T+ [A (Wp) Twp) = A (2) +1(2)]
(22) AW) =r (wy) -a(wy)+r (wy)

Since this power of n is independent of z, it remains

to sum -1)* (2) over the interval [wy,w,le This summa-

tion vields COM) sw), because the lattice is

Boolean, the number of elements of each rank is a binomial

coefficient, and the alternating sum of binomial
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coefficients is zero unless the sum is over an interval

of length zero.

We now ignore all terms in which Wy # Ww, and set

EWE Ww, in the rest. There remains to be performed

a single summation, for all subsets w in the interval

[x,y], of the products

(-2)* ODA (XD wie, 1) (wyye, 1)
(+1) (9A (x), TW) =x (x), x (y) 1 (w)
Ey) =T(x) (ogy (W) =a (xX)- _-

Once more, the summation of (-1)* (W)=2 (x) over the

interval [x,y] yields 6 (x,y), which is zero except when

Xx =y. When x = vy, f T(y)-rx) is also 1, so the entire

matrix product yields 6 (x,y), and the proof of the inver-

sion formula is complete.

The coefficient array for the inverse of the rank

generating function of an exact differential on a finite

Boolean algebra may be obtained by rotation (180°) of

the coefficient array of the rank generating function,

then applying the appropriate sign to the array as a

whole. For example, the rank generating function

» (&amp; n for the partition differential of the graph ©
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is n“ + n(4 + 35 + E°) + 3 + 3¢ + £“ with coefficient

A 1V 4

3

»

wr

501

r..aa inverse of the relative form )

,

CL »Y3&amp;,n), of this function has, at the subset pair

A VY) = vv the coefficient array

L .

1 3 4y+ Jy

This inversion process may be traced through two stages.

Substitution of 1/£, 1/n for ¢ and n reflects the coef-

ficient array through the origin, Multiplication by

t(£,n) translates the array up and to the right by

exactly its own dimensions. The composite effect is

equivalent to a rotation by 180°, preserving the outlines

of the array.

We now turn from this compilation of algebraic

properties to establish the relationship of the rank

generating function to other well-known polynomials.

2d Associated Lattice Polynomials

Embodied in a sequence of lemmas below is the proof

of the principal theorem concerning rank generating
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functions on a Boolean algebra, Our objective is to

establish a 1-1 correspondence between bases for the

differential and intervals in the Boolean algebra, such

that the collection of intervals is a 1-1 covering of

the Boolean algebra. Matchings of this type correspond

to substitutions in the rank generating function.

We shall first establish the matching process,

then state the theorem concerning substitution in the

rank generating function. Let R be an exact differential

with Whitney rank function r on a Boolean algebra L

of all subsets of an n-element set X. Since the Boolean

algebra is complemented, every subset which is a fixed

point of R on L is the intersection, in L, of coatomic

(in L/R) fixed points, and every dual fixed point is a

join in L of coatomic (in L/R*) dual fixed points. We

shall refer to the set C of coatomic (in L/R) fixed

points of R in L, and to the set C* of coatomic (in L/R*)

dual fixed points of R in L.

Place the elements of the set X in some linear

order w, The statement w(d) &lt; w(e) will mean the element

d is lower in the ordering w than is the element e.

Relative to this ordering of the set X, we define a

complex of four operators on the Boolean algebra.
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The first operator £ is designed to produce in

one operation the result of sequentially deleting from

a subset y the highest element of y which is in any dual

fixed point contained in the set y, repeating this

operation until the resulting subset is independent.

The definition: for any subset y in the Boolean algebra iL

£(y) is a subset of y, and an element e is in

y = £(y) if and only if there exists a dual

fixed point in C* contained in y, in which the

element e is the highest element in the ordering

ye

The mate to the operator £ is the operator u, which

is designed to produce in one operation the result of

sequentially adding to a subset y the highest element

not in some coatomic fixed point which contains the

subset y, repeating this operation until the resulting

subset spans, The definition: for any subset y in L,

y is a subset of u(y), and an element e is in

u(y) - y if and only if there exists a fixed

point in the set C which contains the subset y,

and in the complement of which e is the highest

element in the ordering w.

Note that, under the anti-isomorphism carrying the

Boolean algebra L into the inverted Boolean algebra L,
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the operator u defined for the differential R becomes

the operator £ defined for the differential R*, The

ordering w is left the same in both instances, and

non-containment in fixed points is the dual of contain-

ment in dual fixed points, This observation will make

1t unnecessary to provide separate proofs for what may

be seen to be the duals of statements already proven,

This first pair of operators map subsets into sets

which resemble bases in one or more respects; we shall

prove that the image subsets are independent sets and

spanning sets, respectively. The other two operators

also form a pair, but work in a direction opposed to that

of the first pair: the images of subsets are less like

bases than are the subsets themselves.

The operator ~ is defined to be the local opposite

of the operator u. Given any subset y in the Boolean

algebra, we define:

vy is a subset of y, and an element e is in

r if and only if the element e is in the

set u(y-e) - (y-e).

To characterize the operator =~ without reference to the

operator u, we say an element e is in the set y -

y =~

if and only if there exists a coatomic fixed point, in
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the set C, which contains y - e, and in the complement

of which e is the highest element in the ordering w.

Similarly, the operator * is defined to be the

local opposite of the operator £. Given any subset

is the Boolean algebra L, we define:

y is a subset of vy, and an element e is in

ro y if and only if the element e is in the

set (y+e) - L(y+e).

Thus an element e is in the difference set a - vy if

and only if there exists a dual coatom, in the set C*

which is contained in the set y+e, and in which the

element e is highest in the ordering w.

We shall prove that the operators | and ~ are

closure operators, the differentials of which are greater

than or equal to the differentials R and R*, respectively,

The operators * and ~ induce a bi-grading which we define,

in terms of the Boolean algebra rank A, for any subset y

in the Boolean algebra, by

L(y) = Aly) = Aly)

c(y) = A(Y') - A(y).

The grading 1(y), the number of elements deleted from

the subset y by the operator ~, we refer to as the
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internal activity" of the subset y., The grading e(y),

the number of elements added to the subset y by the

operator ©, we call the external activity of the subset y

We now prove a succession of lemmas leading to the

proof of the main substitution theorem. Rather than

repeat standard assumptions in the statement of each

lemma, let us agree that in each lemma the differential

R is exact, that it is defined on a Boolean algebra L

of all subsets of a finite set with n elements, and

that it has Whitney rank function r inducing the usual

bi-grading g = (81,85) on subsets in L. Further, we

agree that X is rank in the Boolean algebra L, and that

the operators £,u,’, and the bi-grading (1,e) are

defined as above.

Lemma. Ranges of the Operators £ and u: The

operator £ maps onto the set of independent subsets in

the Boolean algebra L; the operator u maps onto the set

of spanning subsets of L.

Proof: Let y be any subset in L, and u(y) its

image under the operator u., If an element z covers u(y),

and R(u(y),z) = 1, there is a fixed point of R in the

“cf. W.T. Tutte, "A Contribution to the Theory of
Chromatic Polynomials", Can. J., 6, (1954) p. 85.
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half closed interval [u(y),1l), and thus there is a

fixed point w of R, above u(y), whose image in L/R is

a coatom., But u(y) must contain the highest element

not in this coatomic fixed point w, contradicting the

statement u(y) &lt; w. By the characterization of spanning

elements in terms of differentials, u(y) spans. Converse-

ly, if vy spans, u(y) = y, so the map u is onto,

The corresponding statement concerning the range

of the operator £ may be proven by applying the above

result to the dual differential R*, and employing our

observation that the roles of the operators u and .£ are

interchanged by duality.

Lemma, Successive Operations Have the Same Effect

as u and £: Given a subset x in the Boolean algebra L,

and any subset y containing x but contained in u(x),

it must be true that u(y) = u(x). Dually, for the

operator £, £(x) &lt;y &lt; x implies £(y) = £(x).

Proof: Let x and y be subsets in the Boolean alge-

bra L such that x &lt; y &lt; u(x). If an element e is in

the set u(y), but e is not in y, there exists a coatomic

fixed point § in the set C, with &amp;§ containing y and with

the element e being highest in the order w among elements

in the complement of 6. Then x 14 . § implies e e u(x),
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50 u(y) is a subset containing y and contained by u(x).

The remainder of the proof that x &lt; y &lt; u(x) implies

u(y) = u(x) is somewhat more involved. We need the

recursive relationship, valid for any subset x and any

pair of elements eq and e, not in the subset x, that if

the elements eq and e, are in the set u(x), then the

element e, is in the set u(xve;). To prove this rela-

tionship, let €q and e, be any two distinct elements in

the set u(x) - x. There exist coatomic fixed points

84 and 6, containing x, such that €q is the highest
element, with respect to the ordering w, not in the set

81s and e, is the highest element not in the set 80

In particular, 84 # §,. If € is an element of 85s

then 8, is a coatomic fixed point containing Xvey.

Since e, is the highest element not in 8,0 ©, is in the

set u(xve,). If, on the other hand, the element eq

is not in the set §,, then e, is higher than e, in the

ordering w. If the element e, were not in the fixed

point 81 the contrary ordering, €q higher than eo
would apply. Thus the element € 1s in neither §, not

S54 and the element €, is in 81 but not in S55 with

e, higher than ey in the ordering w. Applying the

exchange property of coatomic fixed points’, there exists

supra, Chapter III ) 3S, Po Yo,
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a coatomic fixed point Sz containing the subset

(81r8,5)vey, and not containing the element €,e Since

elements not in §; are either not in §, or not in 89s

they are lower in the ordering w than either e, or e,

and thus lower than €5. Consequently, the element €,

1s in the set u(xve,), and our recursive relationship

1

is nroven,

We now complete the proof that x &lt; y &lt; u(x) implies

u(y) = u(x). Assume some element e is in the set u(x)

but not in the set u(y). List the elements €19€00000y€

of the set y - x in some order. Since the elements

e and €1s+04,€, are in the set u(x), the elements e

and €o9ees,€ are in the set u(xve,), the elements e

and €zy...,¢; are in the set u(xve ves), eee, and the

element e is in the set u(xve; ...ve;) = u(y). This

completes the proof of our lemma,

Lemma, The Rank and Bi-grading of Images Under

the Operators £ and u: The increase in rank between

a subset y and its image u(y) under the operator u,

is equal to the value g;(y) of the first component of

the bigrading g(y) = (g1(¥),g,(¥)). The value of the

second component of the grading is unchanged: g,(y)

2, (u(y)). The operator £ accounts for a decrease in

rank, between a subset y and its image £(y), equal to
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the value g,(y) of the second component of the bigrading

g(y). The value of the first component of the grading

is unchanged: g,(y) = g,1 (L(y).

Proof: Choose a path p from the subset y to its

image u(y). For any step [p;.10;] of the path p,

let e. be the single element in the difference set

Pi ~ Pj.1° By our previous lemma, €; 1s an element of

ulp;_1J, So R(p;_1s0;) = 1, Thus the first component

grading difference is equal to the difference in Boolean

algebra rank, and the second component grading is un-

changed, The corresponding statement for the operator

¢ follows by application of the foregoing result to the

dual differential R¥*,

Lemma. The Operators ~ and ~: The operator

is a closure operator on the Boolean algebra L. The

operator is a closure operator on the inverted Boolean

algebra L.

Proof: We shall prove for the operator ~ that,

for any subsets x and y in the Boolean algebra,

Lj OX ¢X

11) X &lt; vy implies .

iii) «°° =

The image x is defined as a subset of the set X, SO

property 1 holds. Assume a subset x is contained in a



subset y, and that an element e is in the set .~ but

not in the set y. By the definition of the operator

there is a coatomic (in L/R) fixed point &amp; containing

the subset y - e, in the complement of which e is the

highest element in the ordering w., Since x &lt; y, the

fixed point 6 also contains the set x - e, so e is not

an element of the image set x , contradicting our assump-

tion. Thus x~ &lt; y , proving property ii.

Now assume, in contradiction to property iii, that,

for some element e in an image set x of some set x

in L, there is a coatomic fixed point § containing the

set x - e, and the element e is the highest in the

ordering w among those elements not in the fixed point

§, Under these assumptions, we shall establish the

existence of a sequence of coatomic fixed points having

successively larger intersection with the set x - x

all containing the set x =- e, and all having the element

e as the highest element in their complement. The

extablishment of this sequence implies the contradictory

situation in which some coatomic fixed point terminates

the process by containing x - e, which would mean the

clement e must be in the set x

Lel © y be any coatomic fixed point containing the
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- e, for which the element e is highest among

elements in the complement of 81 Let eq be any element

which is in the complement of 84 and also in the difference

set x - Xx . Since eq is in the difference set Xx

there exists a coatomic fixed point 8, containing

KX = eq, such that eq is the highest among elements not

in 8,0 Since e is also in the complement of §19 © is

higher than eq in the ordering. By the exchange property

of coatomic fixed points, there exists a coatomic fixed

point 8 5 containing §176, and the element eq but not the

element e. Such an element 82 contains whatever inter-

section 5, had with the difference set x - x,plus the

element ey. Any element not in 8g is either not in 84

or not in 8,3 in either case it is lower in the ordering

w than is the element e. Thus there is established

set

a sequence of coatomic fixed points with successively

smaller intersection with the set Xx &lt; , and leading to

the contradiction outlined above.

The corresponding statement for the operator

follows by application of the above result to the dual

exact differential R¥*,

Lemma. Mutual Containment Relations: For any

pair of subsets x and y of the Boolean algebra, contain-

ment of y between x and x is equivalent to containment
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of x between y and u(y). Similarly, containment of

between x and x is equivalent to containment of x

hetween £(y) and vy.

Proof: A subset y is contained between a subset

« and its image x if and only if, for every element e

in the difference set x - y there is a coatomic fixed

point 6 containing the subset x - e, for which e is the

highest element in the complement of 6, This is true

if and only if the subset x is contained between the

subset y and its image u(y). The corresponding relation

between the operators * and £ is the dual of this relation.

Lemma. Partial Matching Property: A subset x is

the image of a subset y under the operator u if and only

if © 1s a spanning subset and y is contained between x

and its image x. Dually, a subset x is the image of

a subset y under the onerator £ if and only if x is

independent and y is contained between x and its image

Proof: Our lemma concerning the ranges of the

operators £ and u states that any image subset x = u(y)

is a spanning set, Since x is between y and u(y), we

apply the previous lemma to imply that vy lies between

x and its image x. Conversely, if a subset x spans,
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u(x) = x. If, moreover, a subset y is contained between

x and its image x , the subset x must be contained

between y and its image u(y). By the lemma concerning

successive operations for u and £, u(y) = u(x) = x.

The dual property follows by application of this result

to the dual differential R*,

We are now in a position to prove the fundamental

matching property, upon which all our subsequent enumera-

tive work is based. Using the operator £, then the

operator u, we map every element onto a base. The

inverse image of a base i§ invariably a lattice interval.

The collection of intervals associated with bases jointly

cover the entire Boolean algebra without overlapping.

Lemma, The Fundamental Base-Interval Matching

Property: A subset x is the image of a subset y under

the composite operator £, then u, if and only if the

subset x 1s a base, and the subset y is contained

between the image subsets x and x. The composition

of the operators u and £ in the opposite order results

in the same operator: u(f(y)) = £(u(y)) for all subsets

Proof: Assume a subset x is the image of a subset

, under the composite operator, x = u(£(y)). By the
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lemma concerning the ranges of u and £, the subset x

spans, and the subset L(y) is independent. By the

lemma on bi-grading of images of u and £, g,(u(£(y)))

= g,(L(y)) = 0, so x = u(£(y)) is also independent, and

must be a base. We now show that the subset y is con-

tained between x and x’. Because L(y) &lt;x =u(l(y)),

the mutual containement relation implies x &lt; £(y) &lt; Xx

so Xx &lt; £(y) &lt; xay. Choose a path p from £(y) to xy.

Since £(y) s xay &lt;y, the differential R must have

value 0 on every step of the path p. Since x &lt; £(y)

&lt; Xay &lt; Xx, the differential R must have value 1 on every

step of the path p. Thus the path must be of length

zero, and £(y) = xay. Let e be any element in the

difference set y - x = y - £(y), and let z be the subset

L(y)ve = (xve)ay. By our lemma comparing successive

operations with u and £, we know e is not an element

of £(z). There exists a coatomic (in L/R¥) dual fixed

point contained in z, and thus in xve, in which e is

the highest element in the ordering w. Thus e is an

element of the difference set x  - x, establishing

the fact that the subset vy is contained between Xx
+

and x

Conversely, we assume a subset y is contained be-

tween the images x and x” of a base x for the differen-
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tial, The proof that x = u(£(y)) rests on the duality

principle for exact differentials?l. Let e be any

element in the difference set y - x, Since e is thus an

element in the set x  - Xx, there exists a coatomic

(in L/R*) dual fixed point y contained in xve, such that

e is the highest element in y, We show that vy is

actually contained in the set (yax)ve., Let eq be any

element other than e in the dual fixed point y. We

apply the duality principle for exact differentials

to the dual fixed point y contained in xve and the

unique fixed point 6 containing x - eq. Let y be the

subset (x - eve. The element e is in the dual fixed

point y if and only if the base x is contained in the

set yv¥Y, 1f and only if the set yaad is contained in the

base x, if and only if the element e is not in the

coatomic fixed point.é§, Since e is the highest element

of vy in the ordering w, no element eq in y can be in

the difference set x - x. Thus the dual fixed point

y is a subset of (xay)ve, which in turn is contained

in the subset y, Therefore the element e is in the

difference set y - £(y). This being true for all

elements e in the difference set y - x, we know £(y)

1s a subset of xay. Since Xxay is contained between y

supra, Chapter I1I1 , 85, ye 97
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and £(y), the lemma concerning successive operations

implies £(xay) = £(y). But since xay is a subset of a

base, xay is independent, and £(xay) = xay, and £(y)

= Xay. Now apply the operator u to the subset £(y).

Since £(y) is contained between the base x and its image

 Xx , Xx is contained between £(y) and its image u(L(y)).

Thus u(x) = u(£(y)). But the base x is a spanning set,

so u(x) = x, and x = u(£(y)).

This completes the proof of the pase-interval

matching property

x = u(£(y)) if and only if

is a base, and x &lt; v

he equality of the two composite operators

1{£(y)) = £(u(y)) for all subsets

is a consequence of the symmetry of the base-interval

matching condition with respect to lattice inversion

and replacement of the differential R by its dual R*%

We conclude the presentation of preparatory material

with separate statements of two observations made in

the course of the previous proof.

Lemma. The Composite Operators: If a base subset Xx,
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with images x and . is the image under the composite

operator £, then u, of a subset y in L, x = u(&amp;(y)),

then the image £(y) is the intersection Xxay, and the

image u(y) is the union Xxvvy.

Proof: Under these assumptions, we proved £(y)

xray. The corresponding statement for the operator

u is the dual of the statement for the operator £.

 eo

Lemma, Internal and External Activity: If an

independent subset x is the image of a subset y under

the operator £, then the internal activity of y is equal

to the internal activity of x. If a spanning subset Xx

is the image of a subset y under the operator u, then

the external activity of y is equal to the external

activity of x.

Proof: Assume an independent subset x is the image

L(y) of a subset y. Since the operator " is a closure

operator on the inverted lattice L, the inequality Xx &lt; y

implies x” &lt; y~, so the difference set y - y is a

subset of the difference set x - x. As in the proof

of the fundamental base-interval matching property, we

use the duality principle for exact differentials to

prove these two difference sets are equal: x -

Since the numbers of elements in these sets
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are the internal activities 1(x) and 1(y), if follows

that +(x) = 1(y).

Given any element e in the difference set

there exists a coatomic fixed point § containing the set

x - e, such that e is the highest element not in §.

The condition y &gt; x = £(y) implies x2 y » X, by the

lemma on mutual containment relations. Let €, be any

element in the set x  - x. There exists a coatomic

(in L/R¥) dual fixed point Y contained in the set Xveyq,

such that eq is the highest element in y. Since the set

Xx is independent, and is a subset of the set &amp;§ve, which

spans, we may select a base w containing x and contained

in ve, The element eq is not in the base w, since the

set xve, is dependent. Thus the fixed point 6 is the

unique coatomic fixed point containing the set w - e,

and the dual fixed point y is the unique coatomic dual

fixed point contained in the set wvey, by the proposition
on fundamental systems of coatomic fixed points?, The

duality principle for exact differentials then applies,

making equivalent the statements e e€ y and e, é¢ 6S.

Since eq is the highest element in y and e is the highest

element not in 6, these statements cannot both be true.

supra, Chapter III, §5, p. 27
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Hence both are false. Since e, €¢ § for all elements
. . + . .

e, in the difference set x - x, the coatomic fixed

point &amp;§ contains the sets x’ - e and y - e, SO e 1s an

element of the difference set This completes

the proof.

The completion of the preceding sequence of lemmas

makes available an immediate proof of the substitution

theorem for rank generating functions. We recall that

the rank generating function of an exact differential

R enumerates all subsets in the Boolean algebra relative

to the rank bi-grading g = (81,85) The substitution

theorem states that simple substitutions of variables

transform the rank generating function into generating

functions enumerating independent sets, spanning sets,

or bases, relative to a bi-grading made up partly from

the rank bigrading g and partly from the bi-grading

(1,e), with respect to internal and external activity,

Theorem, The Substitution Theorem for Exact

Differentials on a Boolean Algebra: Assume an exact

differential R with rank generating function po is defined

on a Boolean algebra L of all subsets of a finite set,

If we define double counting sequences og 50M 50 and

m¥* JY
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5 5 is the number of bases of internal activity

i and external activity j,

mn; is the number of independent subsets with
first-component rank grading i and external

activity j,

m* sg is the number of spanning subsets with

internal activity i and second-component rank

grading j,

and if we let a, m, and m* be the associated two-variable

generating functions of these double sequences, then

the formulae

&gt;(€,n) = m(g,n+1) = m*(g+1,n) = a(g+l,n+l)

hold as identities in £ and  Nn

Proof: Expanding the generating functions m(¢,n+1)

m*(g+1,n) and «(g+1,n+1) by the binomial formula, we

}

see that the statement of the substitution theorem is

equivalent to the following equations among the coeffi-

cients of these four polynomials:

opm TE Gay-

= ($) os
m¥*. = £j L(5)as,
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[t will be sufficient to prove that m.,. = (ya . y
ij po 1 kj

and then that 033 = 3(5ms p- The symmetry of the

gradings and of the definitions of independent and

span with respect to lattice inversion and duality

then provides a proof for the remainder of the theorem,

With any base x of internal activity k and external

activity j we associate the various independent sets

y such that u(y) = x. All such sets y lie in the inter-

val [x ,x], and conversely. By the final lemma, the

external activities of y and x are equal; by the lemma

on rank bigrading under the operators £ and u, the

difference in Boolean algebra rank, x(x) - A(y), is

equal to the first component rank grading. An indepen-

dent set with first component rank grading i and exter-

nal activity j must be one of the 8 subsets with i

fewer elements than a base with internal activity k

and external activity agreeing with that of the inde-

pendent set. The total number of independent sets

enumerated by ms 5 is obtained by summing over all base-=

50 mys = TED ass

Finally, a subset with rank bi-grading gq = i,

g ) = j, is mapped by the operator £ onto an independent
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set with the same first component rank grading, and with

a number of elements j less than the number in the

original subset. Since such subsets lie in intervals of

the form [x,x] above independent sets x, a subset with

rank bigrading i,j must be one of the * sets containing

j elements in excess of an independent set of external

activity £. Summing over all such independent sets,

we have the formula p.. = J(5m, . This completes theij j’ iL

proof of the substitution theorem,

The following diagram of the Boolean algebra rank

differences involved in the above argument may serve

for further clarification:
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The substitution formula, p(g,n) = a(g+1l,n+l),

offers an alternative in every enumerative problem

concerning exact differentials on a Boolean algebra.

On one hand, we may perform the grading g = (81,85)

for every lattice element, This operation is conceptually

simple, but may involve extensive computations if the

underlying set X is large. On the other hand, we may

assign an ordering w to the elements of the set X,

form the images of all bases x under the operators

and = and measure the rank difference 1(x) between the

base x and its image x, and the rank difference e(x)

between x and its image x". While we achieve a considerable

decrease in the size of the set of objects to be graded,

we encounter a more complex grading process. But the

size of the set to be graded is an issue only in prac-

tical problems. In theoretical work, the size of the set

to be graded is of no consequence, while the conceptual

simplicity and order-independence of the rank grading

is all-important,

Ne close this section with an example, then proceed

to a closer inspection of the associated lattice poly-

nomials m,m*, and a, in section five.

Consider the exact differential on a set of four

ealements in which all zero and one-element sets are
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independent, all two-element sets are bases, and all

three- and four-element sets span. The differential

R has value 1 on all steps below rank 2, and value 0

on all steps above rank 2. The coefficient array for

the rank generating function p 1s then
.

4 = &gt; 0
 4 =

30 tiie coefficient array for the polynomial o is

a

? Since the sum of the entries in the

o coefficient array is equal to the (0,0) entry in the

p coefficient array, the numerical simplification in

passing from the rank generating function to the Tutte

polynomial is evident, However, all bases are struc-

turally identical; the differences between their internal

and external activities are introduced by the choice

of an ordering.

The working our of examples is aided by the obser-

vation that each base with internal activity k and

external activity j contributes HG to the coefficient
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of glad in the rank generating function. The total

contribution of one such base to the coefficient array

of the rank generating function is a rectangular array

formed of products of binomial coefficients. For example,

one base of internal activity 3, external activity 2

contributes 2 6 ov 2
1 3 31

cv the coefficient array of pp,

55 Enumeration on the Fixed-Point Lattice

The Mobius functions of the fixed-point lattices

both of an exact differential on a Boolean algebra and

of its dual differential may be obtained by evaluation

of the relative rank generating function at a pair of

integers. An immediate proof of this fact is provided

by G.-C. Rota's theorem? comparing the Mobius functions

of two lattices joined by a Galois connection. Since

we must distinguish between fixed points in the Boolean

algebra and their images in the fixed point lattice,

G.-C. Rota, "On the Foundations of Combinatorial
Theory", Zeitschr, fur Wahrshein., 2 (1964), pp. 340-360,
§4,
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let us use script letters x,y, etc., for the latter

Proposition. Mobius Functions of Fixed-Point

Lattices: If R is an exact differential with rank

generating function p on a Boolean algebra L of all

subsets of a finite set, then, for all elements x,y in

the fixed point lattice L/R, x and y being the images

of fixed points x and y of R in the Boolean algebra, the

value u(x,y) of the Mobius function of the lattice L/R

1s given by

x,)= (NTITE)xvi0,-2).

Proof: We define a Galois connection from the

interval [x,y] in the Boolean algebra L to the interval

[4,X] in the inverted fixed-point lattice L/R. The

mapping from L to L/R is the composite of closure CX£

in L, image of the resulting fixed point in L/R, and

inversion of the lattice L/R, The mapping from L/R

to L is lattice inversion followed by embedding. Both

maps are anti-isotone, The composite map from L to

L/R and back to L is equal to the closure operator CXL

in L., The composite map from L/R to L and back to L/R

is the identity, The pair of maps thus constitutes a

Galois connection.
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G.-C, Rota's theorem is proven under the additional

assumptions that x is the only element in the interval

[y,X] which is mapped to x in the interval [x,y], and

that the element x in the interval [x,y] is mapped to x

in L/R., These assumptions are valid, since the element

Xx 1s a fixed point of R in L.

The conclusion, in this application of Rota's

theorem, is that the Mobius function of the lattice

L/R, evaluated at the pair of elements x,y, is the sum

of all uw;(x,z) values of the MSbius function up of the

Boolean algebra L at pairs x,z of subsets in L, where

z is any subset not equal to x and mapped to the element

y in L/R. Such subsets z in L are the spanning subsets

for y with respect to the restricted differential

RI x y]* and are thus characterized by the value zero
’

for the first component rank grading g1(2) = r(y) - r(z)

= 0, The Mobius function Hy for the Boolean algebra has

value up (x,2) = (-1)A(2)-alx) The Mobius functions
on the lattice L/R and on its inverse L/R are equal.

Thus

sx,y) = 5 (-nAEAX)
ze[x,y]
g1(z)=0

(-FY)-rx) J (0y81(2) (yA (2)-1(2)
ze[x,v]

— NEO) TX) x yvi0,-1).
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Corollary. Mobius Functions of Fixed-Point Lattices

of Dual Differentials: If R is an exact differential

with rank generating function p on a Boolean algebra

L of all subsets of a finite set, then, for all elements

xay in the fixed point lattice L/R*, x and y being

the images of dual fixed points x and y in the Boolean

algebra, the value u(x,y) of the Mobius function of the

lattice L/R* is given by
u(x,y) = (-DAOITO)=Alx(x)Jovl),

Proof: A Galois connection is established between

the inverted Boolean algebra L and the inverted fixed

point lattice of the dual differential, L/R*, We obtain

an expression for the Mobius function value u(x,y) on

the lattice L/R* as the sum of all values up (z,x) wo

(-1) 2 (x)= (2) of the Mobius function up on the Boolean

algebra, where x is the dual fixed point corresponding

to the element x in L/R*, and z is any subset in the

interval [y,x] of L for which there is no dual fixed

point in the half-closed interval (y,z]. Such subsets

z are those mapped to y in the Galois connection, and are

characterized by the value zero for the second compo-

nent rank grading g,(2) = x(z)-r(z)-x(y)-r(y) = 0. Thus

)-x(z)A(x1)(-
]y) eb(X, &gt;

o
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AMx)=-r(x)-~- 3CA ETEIAGIATG) p(y T(R)-T(2)(gy82(2)
ze[y,x]

AlA)=-T(X)=-2(~ vr(-1) (x)-r(x) 2A) iy x3-1.0)

The exponents of (-1) in the expressions for the

Mobius functions on the fixed point lattices L/R and

L/R* are equal to the g1 and g, rank grading differences

respectively, between the corresponding subsets in L.

We proved in section two that these rank grading

differences are equal to the differences in lattice

rank in the lattices L/R and L/R*, respectively, If

we had reason to believe that the values p(x,y;-1,0)

and p(x,y;0,-1) would always be positive, we would

have an alternative proof of Rota's theorem? that the

Mobius functions of geometric lattices alternate in sign.

Our main substitution theorem, makes this proof possible.

Ne know

p(x,y;-1,0) = m(x,y;0,0) = my (x,y), and

p(x,y;0,-1) = m*(x,y;0,0) = m*, ,(x,y)

which enumerate spanning subsets of zero external activity

and independent subsets of zero internal activity,

supra, p. 107.

23. -C. Rota, op. cit., Theorem 4, §7.
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respectively, all statements being relative to the

Boolean algebra interval [x,y]. Being enumerants of

non-empty classes of subsets, the values p(x,y;-1,0)

and o(x,y;0,-1) are invariably positive.

39 Classification and Enumeration of

Exact Differentials

Having laid general foundations for an enumerative

theory of exact differentials, we are now in a position

to make substantial progress on the problem of enumera-

ting graphs, This problem, the enumeration of the

isomorphy classes of graphs with n edges, has remained

unsolved, despite the application of Polya's Theorem)

The sequence of values of an exact differential

on the steps of a path from 0 to 1 in the domain lattice

may be thought of as forming a word in a language

employing two letters, the letter 0 coming before the

letter 1 in the alphabet. Of the words thus associated

with a given exact differential the work coming first

in alphabetical order is an isomorphy invariant of the

differential, and serves as an index for a classification

“J. Riordan, "An Introduction to Combinatorial
Analysis', Wiley, New York, 1958, pp. 143-127,
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system,

Ne use the term least path to indicate a path,

from 0 to 1 in the domain lattice of an exact differen-

tial, if the word formed of the differential values

along this path 1s alphabetically the first among all

such words associated with the same differential, The

word associated with a least path of an exact differen-

tial we shall call the first word of the differential,

Given any n-letter word formed of the letters 0

and 1, we shall prove the existence of an exact differen-

tial having that word as first word. This establishes

the existence of at least 2" isomorphically inequivalent

exact differentials defined on the Boolean algebra of

subsets of an n-element set.

The existence proof proceeds by induction, and

involves some facts of independent interest concerning

extensions of exact differentials. First, however, we

shall establish the basic properties of least paths,

and indicate their relationship with the rank generating

function.

The ordering of rational numbers on the interval

[0,1] provides a clear picture of the ordering we have

placed on words. Given a path p from 0 to 1 in the
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Boolean algebra L of all subsets of an n-element set,

and given an exact differential R on L, map the path

n to the rational number

n z

LLR(py_1p)2 !i=

The lowest rational number in the range of this map

has binary decimal expansion equal to the first word

of the differential R., Any path mapned to this rational

number 1s a least path.

Proposition. Least Paths and Fixed Points: Let

R be an exact differential on a Boolean algebra of all

subsets of an n-element set, and let p be a least path

from 0 to 1 in L. If R(p;_qsD;) = 1 for any step

[p;_190;] of the path p, the subset Pi.1 is a fixed

point of the differential R., If R(p; 1974) = 0 for any

step [p;_9,p;4! of the path p, the subset Ps is a dual

fixed point of the differential R.

Proof: Assume R(p;_1,p;) = 1 on a step [p;_1,P;]

in a least path p for the differential R, If there

were a subset x covering P;.1 such that R(p;.q1s%) = (

the path via p to Pi_1° thence via x to 1, would be

alphabetically prior to the path p. Thus the subset

Pi-1 is a fixed point of R on L. Now assume R(p;.1sP: } U
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for a step [P;.1+P5] in a least path p for the differen-

tial, If there is a subset x covered by Pj» such that

R(x,p;) = 1, let e be the element in the difference set

P; - x, and define subsets a; by Q; = DP; - e, for i

For some value k of the subscript, dp.1 = 9 = Pg - ©

= Pr.q1» because e is an element in the subset p., and

the path p begins at the empty set. For subscrint

values 1 between k and j, the subsets a; form a path

from Py.1 to x. By the translation property, the

differential R has value 1 on all steps la; p51,

i = kyeeep,j. By the exactness of the differential,

R(a;_1,94) = R(p;_71sp;)&gt;» i= k+1,...,j. Compare the
words associated with the path p and with this alternate

path, q, agreeing with p except on the path segment

[Py.1op51. The word for the path q is formed by deleting
the letter 1 in the k'® position, shifting the k+15°%

through jth letters forward on space, and replacing

the letter 1 in the jh position. There is at least

one letter 0 between the k+15% and sth letters in the

word for the path p. The first letter 0 between the

k+15t and ; th letters is moved forward by one position

when the word for q is formed, so the latter word is

alphabetically prior to the word for the path p. This

contradiction implies that the differential R has value
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0 on all steps [x,p;] for subsets x covered bv P;s 30

the subset p. is a dual fixed point for R on .L,

Consider for a moment the coefficient array P31

for the rank generating function ¢ of an exact differen-

tial R with Whitney rank function r on a Boolean algebra

L of all subsets of an n-element set. If a subset y

covers a subset x, and the subset x has grading g(x)

= (g;(x),g,(x)) = (i,j), the grading g(y) is either

(1,j+1) or (i-1,j), if the differential R has value

or 1, respectively, on the step [x,y].

0

If a subset x with grading g(x) = (i,j) 1s on a

least path for the differential R, and if y is the

subset covering x in this least path, then R(x,y) = 0

if and only if there exists a subset with grading (i,j+1)

Thus the subsets in a least path are enumerated by the

extreme entries in the coefficient array for the rank

generating function.

For example, the part.tion differential for the

five-edged graph, ON , has Cu. «lent Array

51

3 3

7 §

tor the rank generating function »p.
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The least path p, the intervals [p;,1] of which corres-

pond to successive contractions of the 3 edges in the

tribond, then the two single edges, has word 10010,

the first word of this differential. This first word

corresponds to the outline of the coefficient array,

L!-

5 1
35 1

sol ..vting from the empty subset 0

in position (r(1),0), and ending with the full subset 1

in position (0O,n-r(1l)). Further considerations of this

nature will follow our nroof of the enumeration theorem,

[n order to establish the inductive step in our

proof that any word is a first word for some differential

we need to know precisely the nature of extensions of

exact differentials to enlarged domain lattices. All

proper extensions may be given in terms of the lattice

of fixed points of the original differential. For this

purpose we introduce the concept of a modular cut of a

lattice.

Definition: A modular cut of a lattice Q is a

bipartition of the elements of Q (one section of which

may be empty), such that each bipartition section is
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complete with respect to betweenness, and the section

containing the element 1 is complete under the formation

of meets, x.y, where xay is covered by one of the

cslements x or v,

The notion of modular cut thus combines the pro-

perties of a Dedekind cut with an essential covering

condition.

Lemma. Extensions Produce Modular Cuts: Let R

be an exact differential on a Boolean algebra L of all

subsets of an n-element set, Let e be any element

of that finite set and let {H,,H,} be the bipartition,

of the subalgebra of subsets not containing the element e

defined by

H, = {x € [0,e']; R(x,xve) = 1}

H, = {x € [0,e']; R(x,xve) = 0}

Then {Hy,Hy} is generated by a modular cut of the fixed

point lattice L/R, in the sense that the section Hy

consists of subsets contained in some fixed point in the

lower half of the modular cut.

Proof: Any maximal element of the set Hy, is a

fixed point (even coatomic), as we established in our
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characterization of meet irreducible fixed points™,

The translation property of differentials provides com-

pleteness of the bipartition sections with respect to

betweenness. For example, if Xx &lt;y &lt; z with x and z

in H;, we know R(x,xve) = 0 and x : n
3

and y is also in the section H,.

[t remains to prove that the bipartition of the

fixed point lattice L/R induced by the bipartition

{Hy , Hy} on the image of L/R under inclusion in L, is

a modular cut. Assume fixed points x and y in the

section Hy have an intersection z in Hy, and that the

image of x covers the image of z in the fixed point

lattice L/R. Choose a path p in the Boolean algebra L

from z to x. By our proof of the fixed point covering

property of exact differentials?, R(p;.qsp;) has value
1 only for i = 1, Since the fixed point x is in the

section Hy, R(x,xve) = 0, so the R~sum from z to xve

is 1. Lift the path p to a path pve from zve to xve.

Since R(z,zve) = 1, R is zero along the entire path pve.

Since the fixed point z is also the meet in the Boolean

algebra L of the fixed points x and y, the path p may

‘supra, Chapter III, §5, p. 86.
‘supra, Chapter III, 82, pnp. 59.
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be lifted to a path pvy from y to xvy, and lifted again

to a path (pvy)ve from yve to (xvy)ve. Since y is a

fixed point of the restricted differential RI10,e17
and since y is an element of Hy the differential R

has value zero on the steps [w,wve] and [y,yve] for any

subset w covering y and not containing the element e.

The fact that 1 = R(y,w) = R(yve,wve) implies yve is a

fixed point of the differential R, Thus R(pyvyve,p;vyve)

= 1, contradicting the translation property, because

R(pgve,pyve) = 0. Thus the bipartition {Hy,H;} is deter-

mined by a modular cut of the fixed point lattice L/R.

[lie converse of this lemma is also true, as we

JdA0W prove,

Lemma. Modular Cuts Produce Extensions: Let Ry

be an exact differential on a Boolean algebra Ly of all

subsets of an (n-1l)-element set X and let {Hy, Hy} be

any bipartition of the lattice Lg generated by a modular

cut of the fixed point lattice Ly/Ry. Then the following
three statements define an exact differential R on the

Boolean algebra L of all subsets of the n-element set

X+e, for e ¢ X: for any pair x,y of elements of Lys

with y covering x,

R(X,Y) = Ry (x,y)
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ii) R(x,xve) = 1 if x € H,

= (0 if x € H.-

i. ; Ry&lt;ve,yve) = 0 if Ry (x,y) = 0

or if R(x,xve) &gt; R(y,yve)

and R(:ve,yve) = 1 if R,(x,y)

and R(x,xve) = R(y,yve).

Proof: Fixed points of Ry on L, are fixed points

of Ron L if and only if they are in the section Hy

Fixed points of R which contain the element e must,

on deletion of e, become fixed points of Ry» by the

translation property. To ascertain which subsets of

the form xve, where x is a fixed point of Rp» are fixed

points of R, we observe that the R value of 1 on a step

[x,w], for w € Los decreases to 0 on the step [xve,wve]

if and only if x is in the partition section Hy, while

w 1s in the section Hy. This decrease thus occurs if

and only if the image of the fixed point x is covered

in Ly/Rg by the image of CL(w), with x in the partition

section H,, and CL(w) in the section H,.

In summary, the fixed points of R are those of R,

in Hy» plus those subsets xve covering fixed points Xx

of Ros where x is either in Hy, or is an element of H,
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not covered in L/R by any fixed point in Hy.

To establish that R, as defined by the three pro-

perties listed in the statement of the lemma, is a

differential, we show that the family of fixed points

of R is closed under intersection, and then quote the

characterization of differentials in terms of fixed

points, as given in Chapter It, Let x and y be two

fixed points of R on the enlarged Boolean algebra L.

If the appended element e is not an element of xay,

e 1s not in one of the two fixed points. Say e ¢ x.

Then Xay = xa(y-e) is a meet of fixed points of Rg»

and is thus a fixed point of the differential Rg oe

Since x is a fixed point of R, and e ¢ x, x is in the

bipartition section Hy. Thus xay is also in Hy so

Xay 1s a fixed point of the differential R on the enlarged

Boolean algebra L. If, on the other hand, the element

e is in both fixed points x and y, e is in xay. If

(xay) - e is a fixed point of Rg in the partition section

Hy, Xay is a fixed point of R., If (xay) - e is in the

partition section Hy, we must show it is covered in

Ly/R; by no fixed point of Ry in the section Hy If

a fixed point z of Ry in the scction H, covers the

supra, Chapter 1, §3, p. 1.2.
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fixed point (xay) - e in the lattice Ly/Ry, neither

ZaX not zay may be xay, since {Hgy, Hy} is generated by a

modular cut of the lattice Ly/Rye Since z covers xa.y,

we know zax = zavy = z, contradicting the statement

XAY ~ y-

Thus the set of fixed points of R is closed under

intersection, and gives rise to a differential, as

shown in Chapter I. That the differential is exact

follows from the manner of extension, If a local graph

1s entirely within Ly, it may not be inexact. If a

local graph has any subset in the extended portion

L - L,, either a pair of parallel sides corresponds to

addition of the element e, or all four subsets contain

the element e., In the first instance, the local graph

consists of subsets x,y in Los together with subsets

xve, yve in the extension, Condition iii) guarantees

that R values on the steps [x,y], [xve,yve], differ if

and only if the R values [x,xve], [y,yve] differ.

Such local graphs may not be inexact, Finally, assume

the subsets x,y,xvy,xay all contain the element e, and

that the local graph on these four subsets is inexact,

with R(x,xvy) = 0 and the other three R values 1, The

downward projection of this local graph into the Boolean

algebra L, has three R values 1 by the translation
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property. By exactness of Rg» this projected local

graph is of type 1. Since no change occurs in the R

values on three parallel sets of steps, R((xay)-e,x-e)

= R(xay,x), etc., we know that on the four steps

[(xay)-e,xay],[x-e,x],[y-e,y],[(xvy)-e,xvy] the values

of the differential R must be equal. This contradicts

the assumption that R(x,xvyy) = 0, while R(x-e,(xvy)-e)

Theorem, Existence of Exact Differentials With

a Given First Word: Let W be any n-letter word, ie:

any sequence of length n consisting of zeros and ones.

There exists an exact differential R on a Boolean algebra

L of all subsets of an n-element set, such that the

word W is the first word of the differential R on L.

Proof: The theorem is obvious for n = 1, Assume

we are given a word W = Wiseoo Wp of length n, and

that for any word of length n - 1 there exists an exact

differential defined on a Boolean algebra of all subsets

of an (n-1)-element set, such that the word of length

n-1 is the first word. If wo = 1, find an exact dif-

ferential Ry on the sublattice [0,1-e], for which

Wyseeosw,1is first word, Define R(x,xve) = 1 for all

subsets x in the sublattice [0,1-e], and define
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R(xve,yve) = R(x,y) for all pairs x,y of elements in the

sublattice [0,1-e]. This defines an exact differential

on the Boolean algebra of all subsets of an n element

step. That W is the first word for R follows from the

fact that the word for a path employing a step parallel

to [0,e] in any position but the last may be obtained

from the corresponding word for the projection of this

path into the sublattice [0,1-e] by insertion of the letter

1 at some point, moving all later letters back one

space. This results in a word at least as late in the

alphabetical ordering.

If the final letter Wo in the word W is 0, the

proof is a bit more intricate. Form an exact differen-

tial Ry on the Boolean algebra interval [0,1-e], having

WiseeesW,1as first word. On the fixed point lattice

[0,1-e]/R,, let the upper section of a modular cut

contain only the fixed point l-e of Ry. Construct an

extended exact differential R on the Boolean algebra L

of all subsets of the n-element set in accordance with

the above lemma, The coatomic fixed points of the

resulting differential R are the coatoms of Ry, on the

interval [0,1-¢], together with the elements of the

form xve, where x is a fixed point of L,/R, of rank

r(l)-2.
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If a subset x in the interval [0,1-e] is not a

spanning set, it is contained in some coatomic fixed

point of Rp» so is in the bipartition section Hy, with

R(x,xve) = 1, In any path from 0 to xve for a non-

spanning set x, the projection of this path into the

lattice interval [0,1-e], then via the step [x,xve],

is a lesser path, Let p be a least path for the extended

differential R, and one which passes through a minimum

number of subsets containing the element e, By the

argument just given, if the subset Py is the first subset

containing the element e occurring in the path p, the

subset Py. must be either a spanning subset in the

interval [0,1-e], or else a maximal non-spanning subset:

a coatomic fixed point of the differential Rg. If the

subset Py.1 is a spanning subset for Ro» all steps above

Pr-1 in the path p have R value zero, so the path fol?

lowing p to Pr-1» then via l-e to 1 gives rise to the

same word, and involves the element e in fewer subsets.

On the other hand, if p; _; is a coatomic fixed point

of Ros the step [Py_1sPg] is the final step of p for

which R has value zero. Any path along p to py _y, then

via l-e to 1 gives rise to the same word, and involves

the element e in fewer subsets. Thus the path » passes

through 1-e, and is a least path. The restriction of
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p to the interval [0,l-e] is a least path for Rgs sO

must give rise to the word WiseoosW qo Since wo is

0, the word for the least path p of the differential

R 1s the word W.

Corollary. A Lower Bound for the Number of Exact

Differentials: There are at least 2" non-isomorphic

exact differentials on a Boolean algebra of all subsets

of an n-element set,

Proof: There are 2" different words of length n,

and each mav be first word for some exact differential,

The construction of an exact differential with a

given first word may be carried out methodically, This

has been done for all words of length 2,3,4 and 5 in

Appendix B. On a Haase diagram of the Boolean algebra

of all subsets of an n-element set, we color red those

steps on which the differential R is to have value 1,

leaving black those steps on which R is to have value 0

Choose any path to be the least path, and color it to

conform to the given first word. Then color all steps

according to the requirements of translation and exact-

ness, together with the requirement that the given path

be least. Most helpful is our proof that the lower

ends of intervals on which R = 1 in a least path are
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fixed points, and that the upper ends of intervals on

which R = 0 are dual fixed points.

Nhen all the implications of the first word are

exhausted, an exact differential may not be fully deter-

mined, An exact differential can then be defined in

more than one way with the given first word; the number

of such ways we shall term the multiplicity of the

word. Thus,

the multiplicity o6(W) of a word W of

length n is the number of isomorphically

inequivalent exact differentials with

first word W, definable on the Boolean

algebra of all subsets of an n-element

set

We have proven that all words have multiplicity 6

at least equal to one. All words of one, two, or

three letters have multiplicity equal to one. A single

four letter word, 1010, has multiplicity two.

An application of the fundamental domain relation®

to the array of coefficients %j 4 for the Tutte nolv-
nomial, a«(&amp;,n) = p(£-1,n-1), bears on this question of

supra, Chapter IV, §2, p. 111.
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multiplicity. As a formula concerning coefficients,

the fundamental domain relation may be written

for all k, (1) = 1P3 kei-r(1)"
Substitution of Tutte polynomial coefficients for rank

generating function coefficients, we have

For all k, 3) = ) LG Gailey) ese
-
oer

S tLAE) Gailey) ose
This may be simplified, using the fact that the product

S t
(GG) Geeioren)) enumerates (s+k-r(l))-element subsets
chosen from the union of an s-element set with a t-element

set, in which i elements are chosen from the s-element

set. The sum over i of these products must be the
: 2 . s+t

binomial coefficient (s+k-r(1))° Thus

For } n _ s+t

ail k, (}) = A Geekery) se

Substituting q = r(1) - s and n =n - 5s

an equivalent expression in which the coefficients

we obtain

J provide a recursion relation for the binomial

coefficients.

Go Lor (1)-a,n-r (1) +a-p (ka)
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One solution for a set of a coefficients satisfying

the fundamental domain relation is

dig = 0 unless i = r(1), j = n-r(1),

in which case %r(1),n-r(1) ~ 1.

Given any solution for a coefficients satisfying this

relation, another solution is obtained by reducing

any positive coefficient 55 for 1 &lt;i &lt; r(1),

 «+ n-r(l), by one, and simultaneously increasing

by one the adjacent coefficients 4-1, 3 and i,5-1"

We may now form the possible coefficient arrays

for the Tutte polynomial of an exact differential with

a given first word. Say the word has n letters, k of

which are 1, Place a single 1 in the (k,n-k) position, and

continue with the transfer of units from positions (i,j)

to positions (i-1,j) and (i,j-1), until the array

first falls withing the outline prescribed by the first

word, This array, and the arrays resulting from further

transfers which do not affect the outline, constitute the

possible coefficient arrays for the Tutte polynomial

or

of an exact differential with that first word,

For example, the word 1010 plves rise LO CWO

possible arrays.
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. JP

1 - 1]. HL L]-
-oLo» a1»a2os1a]

11

The last two arrays satisfy both the fundamental domain

relation and the first word condition. Of these two,

the former yields rank generating function coefficients

1 4 -

11 ~:132s from the rank grading for tae

partition differential for the graph (¢&gt; . The

latter of these WoO mo

&amp;
-

function folte19~f- clients

the rank grading for the

ays yields rank encrat:ng

4

§5 4
p wlitch arise from

partition cifferential of the

graph A

Further examples will be found in Appendix B,

wherein all coefficient arrays are computed for exact

differentials on Boolean algebras of ranks two through

five,
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Appendix A

As examples of differentials, and to illustrate

the independence from one another of the properties

i) R#*¥* = R ("R is closed")

1i) R* is exact ("R is pre-exact")

11i) The fixed point lattice L/R is semimodular

iv) Every element in L/R is a join of atoms.

We exhibit four differentials, possessed of properties

1,ii, iii, and iv according to the following table:

(1 = yes, 0 = no)

R%¥* = R

R* 1s exact

L/R semimodular

L/R join of atoms N

Examples e and f exhibit the difference between

set differentials and partition differentials.

Example g¢ shows a product of differentials.

Example h is a differential on a modular but not

doolean lattice, to illustrate the theory of page 121.
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Appendix B

There follows a compilation of exact differentials

whose domain lattices are the Boolean algebras of all

subsets of a 1,2,3,4, or 5-element set, These are

listed in the order of their first words.

If an exact differential is the partition differen-

tial of a graph relation, the appropriate graph is

listed. If no such graph exists, a higher order geo-

metric relation is indicated, as is the case for the

word 1100.

Beside the first word and indication of the graph

relation, there are listed the coefficient arrays of

the rank generating function and of the Tutte polynomial,

The fixed point lattices of the differential and of

its dual are then drawn or described.

For exact differentials defined on the smaller

Boolean algebras, the differentials themselves are

drawn, with double (or red) lines indicating steps on

which the differential has value 1. The method for

drawing all exact differentials with a given first word

is indicated at the end of this appendix.
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The method for drawing all exact differentials

with a given first word is now indicated by an example.

The differential values of the first word are assigned

to steps in some convenient path, here taken to be

0,a,ab,abc,1. Then all implications are worked out,

and the appropriate differential values indicated,

according to the following principles:

1) The lower end of a step on which R = 1 in the

least path is a fixed point, so all steps of which it

is the lower end have differential value R = 1.

i') The upper end of a step on which R = 0 in the

least path is a dual fixed point, so all steps of which

it is the upper end have differential value R = 0,

ii) The translation property: Any step below

and parallel to a step on which R = 1 also has R = 1;

any step above and parallel to a step on which R = 0

also has R = 0,

iii) Exactness, in the form of the statement of

independence of path for differential sums.

The method:

First word: 1010

Least path: R(0,a) = 1 R(a,ab) = 0 R(ab,abc) = .

R(abc,1l) = 0,

Fixed points: R(0,b) = R(0,c) = R(U gd)
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R(b,ab) = -

R(ab,abd) = .

Translation:

Exactness:

R(abd,1) = R(acd,l) = R(bcd,1) = 0,

R(a,ac) = R(a,ad) = R(b,bc) = R(b,bd) =

R(ac,abc) = R(ac,acd) = R(ad,abd) =

R(ad,acd) = 0.

R(c,ac) = R(¢c,bc) = R(d,ad) = R(d,bd) =1

R(ac,acd) = R(ad,acd) = R(bc,bcd) = R(bd,bcd)

= {).

This leaves four steps with indeterminate differential

values, namely [c,cd], [d,cd], [cd,acd], [cd,bcd]. By
exactness, we know R(c,cd) = R(d,cd) and 1 - R9c,cd)

= R(cd,acd) = R(cd,bcd). There are thus two possible

exact differentials, as indicated following the word

1010 in the foregoing tables.
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