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ABSTRACT

On the Theory of Combinatorial Independence

Henry H., Crapo

Submitted to the Department of Mathematics
on 1 May, 1964, in partial fulfillment
of the requirement for the degree of

Doctor of Philosophy

A theory of combinatorial independence on finite
modular lattices is based upon the notion of a differen-
tial. This theory is shown to be strong enough to
include the classical theory of abstract linear depen-
dence of H, Whitney, as well as the theory of geometric

lattices of Birkhoff and Dilworth. Several applications

are made.,

The main result, obtained as an application of
the theory, is extension to arbitrary Whitney indepen-
dence systems of certain polynomials first defined by

W.T. Tutte for the special case of linear graphs. A



simplified and order-independent computation of these
polynomials is provided, and their characteristic
algebraic properties are determined. The chromatic
polynomials of G.D. Birkhoff, as well as the classical
zeta and Mobius functions of the independence system
and of its dual system arise from this polynomial by
simple substitutions of variables. The existence of
at least 2" non-isomorphic independence systems on the

Boolean algebra of an n-element set is established.

Thesis supervisor: Gian-Carlo Rota

Title: Associate Professor of Mathematics
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INTRODUCTION

One of the most important and characteristic
developments in combinatorial analysis in recent years
is the renewed attention being given to the generali-
zation of the theory of graphs to a more abstract
structure, a structure which has found disparate appli-
cations, The original idea goes back to a beautiful
paper1 of Hassler Whitney in 1935, Unfortunately, this
paper received little attention during its first twenty
years in print, ourside of a small group of mathema-

ticians working mainly in lattice theory,

Whitney's paper set forth equivalent axiomatizations
for independence systems on a finite set, phrased
alternatively in terms of rank, independence, bases,
and circuits., We call these general structures Whitney
systems, though they have been variously called matroids,
frames, systems of linear independence, closures with
the exchange property, exchange structures, matroid

lattices, Birkhoff lattices, and geometric lattices,

1H. Whitney, ""The Abstract Properties of Linear
Dependence", Amer., J., 57 (1935), pp. 507-533.
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During the twenty years following the publication
of Whitney's paper, two schools of thought developed
concerning independence systems., A first direction
was established by Garrett Birkhoff, in a paper published
that same year.1 He observed that the closed subspaces
of a Whitney system form a lattice. He exhibited the
characteristic covering and rank properties of these
lattices, and introduced the terms semimodular and
geometric to describe these new lattice structures.
Saunders MacLane2 worked out the notions of basis and
dimension in the latticial setting, and compared a
variety of possible statements of the Steinitz exchange
property. R.P, Dilworth3 further pursued this research,
emphasizing the correspondence (which fails to be 1-1)

between Whitney systems and semimodular lattices,

The second school of thought sought for extensions
of Whitney's theory of independence to infinite sets.
A typical paper of this school, with an adequate biblio-

graphy to earlier papers on infinite extension, is that

1G. Birkhoff, "Abstract Linear Dependence and
Lattices", Amer, J., 57 (1935), pp. 800-804,

2S. MacLane, "A Lattice Formulation for Transcen-
dence Degrees and p-Bases", Duke J., 4 (1938) pp. 455-468.

3R.P. Dilworth, '"Dependence Relations in a Semi-
modular Lattice", Duke J., 11 (1944), pp. 575-587,
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of Jiirgen Schmidtl. Hlis description of the exchange
properties of derived sets reinforced our decision to
employ the term differential for the type of function

to be defined in Chapter I, R. Rado® completed an exten-

sive analysis of such infinite systems.

Only in the last decade has renewed interest attached
to Whitney's pioneering work, Though Whitney systems
are the natural domain for most theorems of graph theory,
their abstract quality has deterred many investigators
and even more readers., There is still reason to complain
of the relative unpopularity of the general theory,

even among avid readers of graph theory,.

Advances in the past decade have been the work
of one mathematician, W.T. Tutte, of Waterloo. With an
assist from the chain-group techniques of algebraic
topology, he has succeeded in showing the precise manner
in which the theory of graphs and of planar graphs is

embedded in the general theory of independence, In a

lJ. Schmidt, "Mehrstufige Austauschstrukturen',
Zeitsch, f, math. Logik und Grundlagen d, Math,, bd 2
(1956) .

2R. Rado, "Axiomatic Treatment of Rank in Infinite
Sets™: Can, J,, 1 (1949}, pp. 357-343,
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remarkable series of papersl he makes contact with the
theory of Kuratowski subgraphs, and provides purely

combinatorial analogues of Kuratowski's results,

A substantial increase in interest in Whitney
systems manifests itself at the present time. George
Mintyz, at the University of Michigan, 1s generalizing
the Bott-Duffin circuit theory to arbitrary Whitney
systems, with an eye toward work with error-correcting
codes, Alfred Lehman and Jack Edmonds at the Bureau of
Standards are actively working on Whitney systems, and
applications to circuit and switching theory., Gian-
Carlo Rota3 is continuing his researches into the nature
of Mobius functions of partially ordered systems,
researches which have already produced a proof that the
Mobius function of a geometric lattice alternates in
sign on the levels of the lattice, and have produced
fundamental relations concerning Galois connections

between partially ordered systems. Such activity

portends the fruitful development of independence

lw.T. Tutte, "A Class of Abelian Groups'", Can J.
8 (1956), pp. 13-28; "A Homotopy Theorem for Matroids,
I and II", Trans., A.M.S. 88 (1958) pp. 144-174; '"Matroids
and Graphs", Trans, A.M.S5. 90 (1959), pp. 527-552,

2G.J. Minty, "Monotone Networks'", Proc. Roy. Soc.
London, Ser, A 257 (1960), pp. 194-212,

3G.-C. Rota, "On the Foundations of Combinatorial
Theory'", Zeitschr. fur Wahrshein., 2 (1964), pp. 340-360.
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theory in the near future,

The contribution we make to this theory is two-fold:
we construct a generalization of, and a natural setting
for, Whitney systems, and we produce several new results

concerning chromatic polynomials.,

It is our aim in writing this paper to provide an
appropriate lattice-axiomatic foundation for a theory
of independence. It proves expedient to represent
independence systems as certain functions on a modular
lattice, rather than as lattices themselves. We are
able in this way to define a unique dual structure
in purely latticial terms, a task which is impossible
to complete within the framework of Birkhoff, MacLane

and Dilworth.

We show that independence systems are determined
by the finite-difference analogues of exact differentials
defined on modular lattices, Our development centers
on a duplication of the real variable theorem concerning
independence of path for integrals of differentials
satisfying a local exactness condition, Hassler Whitney's
program for proof of the usual theorems on linear
independence and of theorems on graphs is carried out for

exact differentials on complemented modular lattices.
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After a consideration of the Tutte polynomial1
it was our feeling that there should be some simultaneous
computation of the Mobius functions and chromatic poly-
nomials of both a Whitney system and its dual via a
single enumerative process applied to all subsets;of
the underlying set., We determine such an enumeration
in the final chapter, The two-variable generating
function thus defined provides chromatic polynomials
for Whitney systems and their duals, and is shown to
reduce by simple substitution of variables to the Tutte
polynomial, which has heretofore been defined only for

graphs,

The conceptual simplicity of this new formulation
makes possible certain advances in the enumeration of
exact differentials on a Boolean algebra., We prove
the existence of at least 2" non-isomorphic exact differen-
tials on the Boolean algebra of all subsets of any
n-element set. The corresponding problem for graphs
is one of the intriguing unsolved problems of elementary
combinatorics. Our theory, together with Tutte's embedding
of the theory of graphs in the general scheme may be

the direct approach to this problem,

lw.T. Tutte, “A Contributien to the Theory of
Chromatic Polynomials", Can., J., 6 (1954) pp. 80-91,
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It is our hope that the reader will find established

a useful conceptual basis for further research in the
abstract theory of combinatorial independence. Before
turning to the theory proper, and with the purpose of
further orienting the reader to our theory of differen-
tials let us consider the interaction of the various
theories of graphs due to G.D., Birkhoff, Whitney, Tutte,
and those newly introduced in this paper, as they are

all applied to a single illustrative example.

Consider the linear Graph G:

formed of 5 edges and 3 vertices, dividing the plane
into 4 regions. This graph arises from the edge-vertex

incidence relation

a 1

b S

< DT >¢ 2

d =7 E
e 3

The dual graph G* may be constructed by placing a

vertex in each of the four regions of the plane, and then
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drawing an edge across every edge of the graph G,
connecting the new vertices in regions separated by

edges of G. The letter designation of corresponding edges

A
a K
— B e D
LS
c

+he ciug] St”n\.ik

is' preserxved,

A coloring of a graph is an assignment of colors to
vertices such that no two adjacent vertices have the same
color. The chromatic polynomial of the graph G is just
that of a triangle, as the multiple edges act just as
single edges relative to admitting colorings. Given A
colors, use any of the A colors to color vertex 1, and
of the A-1 different colors to color the adjacent vertex
2, and any of the A-2 colors different from both of these

to color vertex 3.

el R

We may color the dual graph in two different ways:
vertices B and D may be the same color or different,
With B and D the same color, there are A(x-1)(A-2)

colorings in X colors. With B and D different colors,
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there are A(A-1)(A-2)(x-3) colorings in A colors,
Adding: A(x=1)(X=2)(A-3) + A(A=1)(2=2) = a(r-1)(r-2)2

4 3 2

= X - 527 + 82° - 42,

These polynomials may be obtained by lattice-
theoretic means, We construct for the graph G, the
lattice of contractions of G along subsets of its edges,
as 1is shown in the lattice diagrams on the next page.
Loops are neglected; multiple edges are drawn single

for convenience.
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To compute the chromatic polynomials from these
lattices, first calculate the Mobius function values
u(0,x) for each element x of the lattices. Recursively
defined, u(0,x) has value 1 at zero, u(0,0) = 1, and the
sum over any lattice interval [0,x] is zero. The values

are indicated on the lattices as

The sums of the values of the Mobius function on the
various lattice levels are the coefficients of the
chromatic polynomials of the graph and of the dual

graph,

W,.T. Tutte obtained these polynomials via an arbi-
trary ordering of the edges (eg: alphabetically, as
we have written them) and the following considerations
concerning bases for the graph., A base (or basis)
for the graph G is a connected set of edges passing
through every vertex, but containing no circuits., 1If
an edge e is added to a base B, the set B + e contains

a unique circuit, If the edge e is the highest edge in
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this circuit, e is said to be externally active with
respect to the base B. The complement of the Base B

is a base for the dual graph. If an edge e of the

base B is deleted from B, and added to the complement,

a circuit is formed inthe dual graph G*, If the edge

e is the highest edge in this circuit, e is said to be
internally active with respect to the base B, Tutte
counted the internally active and externally active edges

for each base:

G
Bases Internally Active Externally Active
ac bde
ad be
ae = b
bc de
bd e
be e
ce e d
de de

Tabulating the number of bases with activities (i,j),




Sl

we obtain the array:

= N e

|l o]
=

This serves as the array of coefficients for what we

call the Tutte polynomial:

EZ ® E S En Ean 2n2 + n3

Substituting (1-1,0) for (&£,n), we have (l-A)2 + (1-2)
= AZ - 32 + 2, which, when multiplied by A, is the
chromatic polynomial of the graph G. Substituting
(0,1-2) for (g&,n), we have

(=) & ZE-R)S » (Iede=ln® -5yt

+ 82 - 4]
which, when multiplied by -), is the chromatic poly-

nomial of the dual graph.

Our theory of differentials offers an alternative
construction of both the geometric lattices and of the
Tutte polynomial. On the lattice of subsets of the five-
element edge set (shown on the next page) we mark
double or color red those covering lines ("steps'")
along which the rank of the corresponding edge subsets
increase, The rank of a subset is the number of vertices
which the edges collectively contain, less the number

of connected components,
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This done, the lattice elements up from which
all steps are double (red) constitute the elements of
the geometric lattice of the graph G; the lattice elements
down from which all steps are singly-drawn (black)
constitute the inverted form of the geometric lattice
of the dual graph G*, Indeed, inversion of the Boolean
algebra, with interchange of double for single markings
of steps, is the differential of the dual graph, ie:

the dual differential,

Contractions or removal of edges of G form graphs,
the differentials of which are merely the restrictions
of the differential of G to various lattice subintervals.
Restriction to the lattice interval [e,l] corresponds
to contraction of the edge e; restriction to the interval

[0,1-e] corresponds to elimination of the edge e.

The number of doubly-drawn (red) edges in a path
through the Boolean algebra is dependent only upon the
end points of the path., If we enuﬁerate all edge subsets
with respect to the double grading (the number of red
steps from x to 1, then the number of black steps from
0 to x), the resulting array serves as coefficient

matrix for a function of two variables.
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5 £ F S EE B N S 2E SENL 0 Snz & n3

This polynomial we refer to as the rank generating
function., Substitution of (&-1,n-1) for (&,n) produces
the Tutte polynomial:

(E=13" + 5(E~1) * & ® (u=11CIE=2+00) + Sn=10" + (-1

= g2 - 2 %+ 1 4% 56 -5+ 8 + 2En ~ 2 + 8n - 8 + 5p°
- Qv+ 5 & m° - 380 %5 - 1
2 2 3

WA Sk R I e e

These computations, which could previously be carried
out only for planar graphs, can now be performed for any
Whitney system, There are differentials dual to those
for non-planar graphs; there are differentials, such as

that of the incidence relation

for which neither the differential nor its dual are

given by graphs.



Chapter
§1
§2
§3
§4
Chapter
§1
§2
§3
§4
§5
Chapter
§1
§2
§3
§4
§5
§6
Chapter
Al
82

TABLE OF CONTENTS

I page 1
Introduction 1
Lattice Preliminaries 2
Differentials 5
Operations on Differentials 16
El 29
Introduction 29
Relations and Closures 30
Whitney Systems and Graphs 39
Atom and Coatom Differentials 46
Various Applications 49
I1I 57
Introduction 57
Characterization of Exact Differentials 58
A Taylor Theorem for Exact Differentials 68
Structure of Fixed-Point Lattices 80
Graph-like Properties of Exact Differentials 85
Factorization into Primes 101
1V 103
Introduction 103
Rank Generating Functions 105



§3

§4
§5
56

Algebraic Properties of the Rank
Generating Function

Associated Lattice Polynomials
Enumeration on the Fixed-Point Lattice
Classification and Enumeration of

Exact Differentials

112
128
149

154



Chapter I

§1 Introduction

A variety of terms from the theory of partially
ordered systems in general and of lattices1 in parti-
cular will be employed in this paper. The definitions
of these terms are collected in section two, together
with the statements of important properties of modular
lattices, and of the fundamental theorem of Galois

connections,

The concept of a differential on a modular lattice
is defined in section three, The defining properties
are then seen to restrict the local behavior of differen-
tials to one of five basic configurations. An equivalent
characterization of differentials is given in terms
of these local graphs, in that they permit a unique
extension to a differential., The further elimination
of the least symmetric of the allowable local graphs
provides the concept of exactness of differentials,

and marks off the principle objects under investigation

ltor more detail, see G. Birkhoff, Lattice Theory,
(A.M,S, Colloquium Pub,, 1948).




in this paper. Exact differentials are a natural genera-

lization of Whitney's independence systems.

Section three concludes with a discussion of fixed
points of differentials, We establish the existence
of non-trivial fixed points for any non-zero differential.
We investigate an equivalent characterization of differen-

tials in terms of fixed points,

In section four we discuss a variety of different
algebraic operations which may be performed on differen-
tials., We produce new differentials from old by any
one of the following operations: restriction of the
domain lattice to a proper subinterval, taking supremum
over a set of differentials, inversion of the domain
lattice, a duality operator defined in terms of fixed
points, and multiplication of lattices. We prove two
important inequalities relating the values of a differen-
tial to those of its dual, and prove that the product
of exact differentials is exact, The concept of a
prime differential arises naturally from a consideration

of ptroducts.,

§2 Lattice Preliminaries

A partial ordering (<) is a reflexive anticommu-

tative and transitive relation., A set P is a Dartiallx



ordered system if a partial ordering is defined thereon,

A partially ordered system L is a lattice if, for every
pair (x,y) of elements of L there is a unique element
xs»y of L such that z < x~y ++ 2 < x and z s y, and a
unique element xvy of L such that xvy < z «+ x < z and
y < z. These elements are called the inf and sup of

X and y, respectively., A least element of L is called

0, and a greatest element, 1,

An element y is said to cover an element x if x < y,
and x <z s y—- 2z =y, A pair (x,y) in which y covers
x is termed a step. An increasing sequence of elements
X = Py<Py<ese<p, =Y is said to be a path from x to y
Joff ¥ covers Pj.1 for j = 1l,..v,0. [If X covers O, x is
an atom; if it is covered by 1, x is a coatom. The
notations of closed [x,y] and open (x,y) intervals of

L are used,

Certain categories of lattices figure prominently
in the theory of independence, A lattice is finite
if every path has finite length. A complete lattice
(there is a unique supremum for every lattice subset,
and, consequently, a unique infimum,) is essential to
the definition of differential. A modular lattice
(vx,yeL, xvy covers x «+> y covers Xsy) possesses just

enough symmetry to permit the establishment of a duality



relation on differentials, It is the finite, complete,
modular lattice which serves as substrate for our theory,

in contrast to the customary use of the Boolean algebra,

or lattice of subsets of a finite set, with ordering

given by inclusion,

The exact differentials will distinguish within
the modular lattice L a pair of subsets which form

semimodular lattices ((vx,yel) X covers Xiy - Xvy covers

y). If for every x <y < z in L there is an element
y' such that yvy' = z and y~y' = x, and, in particular,
if L is a Boolean algebra, the distinguished subsets
are geometric lattices (y covers x <« there is an atom

e of L such that x < xve = y).

The notation L will denote the inverse lattice
formed from L by inverting the partial ordering and

interchanging the roles of » and v,

We shall make frequent use of the characteristic
property of modular lattices,
that paths may be '"projected" up
or down without variation in
length, ie: 41f p: X = P <Py
<...<p_ =y is a path from x to vy,

n
and if z covers x with z £ vy,

then q; = zvpy defines a path



q¥ 2 ® ga<s,i<g, = Zuy of length equal to that of p,
If, on the other hand, p is as above, and y covers z

with x £ 2, 'q. = Zapy defines a path q: zax = Qo<ess

i
<q, = z of length equal to that of p.

Finally, use of the basic theorem1 on Galois connec-
tions will shorten several of our proofs. A Galois
connection is a pair of anti-isotone functions ¢ and 1,

o mapping a partially ordered system P into a partially
ordered system Q, and 1 mapping Q into P, such that

1 composed with o is isotone on P, and o composed with
T 1s isotone on Q. The basic theorem states that =
composed with o is a closure operator on the partially
ordered system P, as is o composed with 1t on the system
Q. Furthermore, the elements of P or of Q which are
closed with respect to these operators are exactly
those elements in the ranges of t and o, respectively.
The partially ordered subsystems of closed elements

of P and of Q are isomorphic,

§3 Differentials

Throughout this section, L will denote a complete

and finite modular lattice. A function R defined for

loystein Ore, Theory of Graphs, (1962) AMS, pp.
183-5, Th




all pairs x,y of elements of L is a differential if

and only if
a) R takes values 0 or 1, and R(x,y) = 0 unless
XK v
b) R is monotone with respect to intervals, ie:
W <X <y <z R(x,y) ¢« R(w,z),

c) R is subadditive, ie: x <y < z + R(x,z)

A

R(x,y) + R(y,z).
d) Translation property: If xvy covers x, R(x,xvy)

< R(xry,y).

The translation property is the foundation of our theeory.
It expresses the monotone nature of a differential with
respect to upward parallel translation of intervals

of length 1.

These conditions can be expressed pictorially if
we consider what they require concerning the values
of R on pairs drawn from any 4 element subset {x,y,Xay,xvy}
where x and y cover xay (and consequently Xxvy covers

x and y).

As a standard procedure, to be used in all examples,
let us color red those steps (ie: lattice intervals of
length one) on which R has value 1, leaving black those

on which R = 0, Of the different possibilities for
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coloring the edges of the figure x y , only

five are allowable in a differential.

OO0

elyminated by the fianstadion propqr‘cq

QOO O«

E'l\mmaiec! B=j ﬁ\& ~nonotone and sihaddifsve ‘)ro‘)qt‘é\ea

If R has value 1 on any one of the four steps,
the monotone property implies R(xay,xvy) = 1, In this
event, the subadditive property implies there must be
at least one step in each of the two paths from xay
to xvy on which R has value 1, As this is not the
case in the sixth, seventh, and eighth figures, these

may not occur in a differential,



On the other hand, the last four figures involve
contradictions of the translation property. This leaves
the first five figures as the only possibilities for

configurations within a differential.

These are the basic building blocks of differentials;
within the calculus of finite differences they correspond
to the values of second partial derivatives in function
theory., Since we shall show that differentials are
completely determined by their local characteristics,

we shall introduce the term local graph for any such

configuration, and shall denote the allowable local
graphs by special names, the significance of which will

become clear by the end of this chapter,

Allowable local graphs:

OOOOQ

ZETO mixed prime one inexact

Each type of local graph has a characteristic

effect on the global properties of the differential,



The zero local graphs appear in the higher lattice
regions, the one-type local graphs in the lower regions,
by virtue of the translation property. Mixed local
graphs predominate in factorable1 differentials; prime
local graphs indicate the existence of non-trivial
factors, and are associated with the phenomenon of

exchangez, studied by Steinitz and MacLlane,

Note that local graphs which are zéro, mixed,
prime, or one possess a degree of symmetry lacking in
the inexact case. It might be expected that differen-
tials, none of whose local graphs are inexact, have
global symmetry properties which reflect their symmetric

local character. This is indeed the case,

Definition: A differential R on a finite complete
modular lattice L is exact if and only if no local

graph of R is inexact,

The properties of exact differentials are set forth
in Chapter 3. Examples of exact and inexact differen-

tials are given in Appendix A,

We shall complete this section by proving three

propositions which serve to exhibit the essentially

lyide §de, p.22, for products of differentials.

2vide Chapter two, §3, p.41l.
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local character of differentials, and which provide
an equivalent characterization of differentials in

terms of sets of fixed points on a lattice.

Proposition., Local Character of Differentials:
The condition that all local graphs be allowable
suffices to characterize differentials, If R is a
function defined on all steps of the lattice L, every
local graph of which is allowable, R has a unique

extension to a differential on L.

Proof: If R is a 0-1 function on the steps of L,
satisfying the condition that it have only allowable
local graphs, we may define R(x,y) = 1 if and only if
X <y and R = 1 on some step of some path from x to y.
If this defines a differential, it must be the unique
differential extending R, since all differentials
are monotone, First we show R has the translation
property, If xvy covers x, and R(x,xvy) = 1, choose
a path p: xay = Py<P
<.es<p. = X, and let L,
q; = DP;vY. Since L is qf
modular, q is a path from y Pa-y
to xvy, y = q0<q1<...<qn

= xvy and q; covers p.,

1 s b e shis Fox each i,

{pj.1sP34195.71,9;} compose
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a local graph, Let i be the least index for which
R(pi'qi) = 1, Then R(pi-l’qi-l) = 0, and the local
graph on {p._ ,,P;,9;.7,9;} is not allowable., Thus

1= R(po,qo) = R(xay,y). Now we prove R to be subaddi-

tive, Say x <y < z, and R(x,y) = R(y,z) = 0, If there

is a step [u,w] between x and z for which R 1, we
investigate the two projections [uvy,wvy] and [uay,way].
Since L is modular, exactly one of these is a step,

the other being a single element, If [uay,way] is a
step, R(uay,way) =1 by the translation property, contra-
dicting R(x,y) = 0., If [uvy,wvy] is a step, we choose

a path p from u to uvy, and let q; = p,vw, forming a
parallel path q from w to wvy. Since R(y,z) = 0,
R(uvy,wvu) = 0, Let i be the least index such that
R(p,,q;) = 0. i > 1 since R(py,q9,) = R(u,w) = 1.

Then R(pi-l’qi-l) = 1 and the local graph on {pi-l’
qi-l'pi’qi} must be prime or inexact. In either case,
R(pi_l,pi) =1, so R(pi_lhy,piny) = 1 by the translation
property, where [pi_lay,piay] is a step between x and y.

Contradiction.

The following proposition resembles a fixed point
theorem, and may be considered one if we regard a dif-
ferential R as defining an upward flow along any paths

on which R takes the constant value 0,
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Proposition, Existence of Fixed Points: 1If a
differential R on a finite complete modular lattice
L is not everywhere zero, there exists an element z
of L, z # 1, such that R(z,w) = 1 for all w covering
z. The same is true for any interval [a,b] of L, if
we substitute the conditions z # b, R not everywhere
zero on [a,b], and R(z,w) = 1 for all w < b, w covering

Z.,

Proof: Choose a path p from a to b which is maximal
with respect to the number k of initial steps along
which R(pi-l'pi) = 0, 1 = 1,...,ke¢ If the path p has
length n, and k < n, then w < b and w covers Py implies
R(pk,w) = 1 for otherwise the path p can be replaced
above Py by a path to b via w, which will have k+1
initial steps for which R = 0, If k = n, we have found
a path from a to b along which R = 0, By a simple
extension, by induction, of the subadditivity property,
R(a,b) = 0, and R must be zero everywhere on the interval,

by the monotone property.

Proposition., Characterization of Differentials
in Terms of Sets of Fixed Points: There is an invertible
correspondence between differentials R on a complete
finite modular lattice L and sets K of lattice elements

which are closed with respect to the lattice operation
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inf, ie: sets K such that E<K * inf E e K,

Proof: Given such a set K,define R(z,w) =1

whenever w covers z, and z € K., Then define R(x,y)

for any pair x,y where y covers x by the translation
property, R(x,y) = 1 if and only if there exists z e K
such that x < z but yvz covers z, Assume Xvy covers X,
and R(x,xvy) = 1. Then there exists z € K such that

X s z but xvyvz covers z, Xxvyvz = yv(Xvz) = yvz and

y covers Xay implies R(xay,y) =1, so R, as a function
now defined on all steps of L, has the translation

property.

Refer now to the types of local graphs pictured
on page 7. Since R, as so far defined, has the trans-
lation property, it will only fail to extend uniquely
to a differential if there is some local graph resembling

vy

x Y . Taking x and y to be situated as in
xny
this figure, there must be some element z € K such that
xX+y < 2z but yvz covers z. Say X % z. Then (Xvy)vz
= yvz covers z, and R(x,xvy) = 1., If x £ z, xvz covers
z, so R(xay,x) = 1, In neither event is the local
graph the one we must exclude, so every local graph

is allowable. By our previous result, R now extends
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uniquely to a differential,

With R thus defined for all pairs x,y of elements
of L, we note that the set of elements z such that w
covers z implies R(z,w) = 1 is exactly the set K with
which we started., If any element z has this property,
and z is not in the set K, then for each element w
covering z we can find an element x(w) in K such that
z < x(w) but wvx(w) covers x(w), ie: w £ x(w). Then

inf x(w), the infimum being taken of a set of elements
w

indexed by the elements w covering z, is an element
of K, because each x(w) is in K., z < x(w) (vw) implies

z < inf x(w), but w £ x(w) (vw) implies w £ inf x(w)
W w

(vw)., Thus z = inf x(w), and z is an element of K.
W

For any differential R, the set of elements 2
such that w covers z implies R(z,w) = 1 is a set closed
under the lattice operation inf, Let E be a subset
of the set K of elements z having this property, and
let u = inf E, Then w covers u implies w £ u, and
w £ x for some x in E. For this choice of x, wvx covers
X, so R(x,wvx) = 1, and R(u,w) = R(wax,w) = 1 by the
translation property. Thus R(u,w) = 1 for all w covering

u = inf E, and the set K is closed with respect to inf.
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It remains to be shown merely that, starting
from a set K of lattice elements which is closed with
respect to inf, if we define a function R to have
value 1 on all steps [z,w] where z is an element of
K, and extend it to a differential in any way other
than that employed at the outset of this proof, we
obtain elements z not in K for which w covers z implies

R(z,w) = 1.

Since every differential has the translation
property, it follows that R(x,y) must equal 1 whenever
y covers x, and x < z but yvz covers z, for some z in K,
If y covers x, but these conditions hold for x and y
with respect to no z in K, x ¢ 2 must imply yvz = z,
and y < z, ie: x and y are beneath the same elements
of K. Let z be the least element of K which lies
above x and y (ie: the meet of all such elements
of K). The fixed point property applies to the interval
[x,z]. If R(x,y) = 1, there is some element w < z,

w € [x,z], such that u e [x,z] and u covers w implies
R(w,u) = 1., But if any other element s covers w,

s £ z, then svz covers z, and R(z,svz) = 1, By the
translation property, R(w,s) = 1, so R(w,s) = 1 for all
elements s covering w, with x ¢ w < z, in contradiction

to our choice of z.
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§4 Operations on Differentials

a) Restriction

The simplest yet most important operation on dif-

ferentials is that of restriction of the domain of the

differential to pairs of lattice elements lying within

some fixed lattice interval:

Rl[x'y](u,v) = R(u,v) for all u,v e [x,y].

Proposition. Properties of Restricted Differentials:
If R is a differential on a lattice L, and if x and y
are elements of L, with x < vy, RI[x v is a differential
]

on the sublattice [x,y]. If R is exact, Rl[ is

X,yl]
exact,

Proof: The monotone, subadditive, and translation
properties all hold with respect to any elements of L

in the interval. If RI[x is not exact, there is

»Y ]
some inexact local graph within the interval., A local

graph for Rl[x,y] is also a local graph for R, so R

is not exact.

Restrictions are a central feature of the study of
differentials, arising in the theory of graphs, in that

they correspond to the operations of contraction
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and elimination of edges.1
b) Supremum

If R, and R, are two differentials on a finite

1 2
complete modular lattice L, then

[RlVRZ] (er) = Rl(x’Y)VRz(X!Y)

defines a function RlvR2 on pairs of elements in L.
RivR,, the supremum of Ry and R,, is a differential,

since it is monotone, and its restriction to steps

[x,y] has only allowable local graphs.

For a proof,

consult the following table of suprema for local graphs:

local graph of R,

'S Zero mixed prime one inexact
ZEXo Zero mixed prime one inexact
local
mixed mixed inexact one one or
raph .
S5 2P or one inexact
of : G .
prime prime one inexact
Ry
one one one
inexact one or
inexact

1infra, Chapter 1I, 53, p. 43.
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1f Rl and Rz are exact, it does not necessarily
follow that the supremum Rlsz is exget; since the
supremum of a mixed local graph with a prime local

graph may be inexact,

The infimum of a pair of differentials is not
necessarily a differential, because the infimum of a
mixed local graph with a prime local graph is not an

allowable local graph.
c) Inverse

There are operations on differentials which yield
differentials on other lattices, If R is an exact
differential on a finite complete modular lattice L,
then the inverse of R, written R*, is defined on the
inverted lattice L. For any element x in L, let X
represent the image of x under this inversion. Then

if X covers y in L, define R' by
R'()‘}’i) = 1 = R(x,y)
and extend to a differential by the monotone property.

That this defines a differential on L is clear
from the change which occurs in local graphs when R
values 0 and 1 are interchanged, and the lattice is

inverted: those of types zero and one are converted
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into one another, while local graphs which are mixed

or prime retain these descriptions,

Proposition, Properties of Inverse Differentials:
If R is an exact differential, R' is exact and R" = R,
If R is not exact, the function S(y,x) = 1 - R(x,y)
for all steps [y,Xx) of L cannot be extended to a differen-

tial.

Proof: No local graph of R is converted to an
inexact local graph under this inversion. R" = R because
the operations of subtraction from 1 and lattice inver-
sion are their own inverses, and the extension to a
differential from a function on steps, all local graphs
of which are allowable, is unique, If R is not exact,
there is some inexact local graph in L. Interchange
of R-values 0 and 1, followed by lattice inversion,
changes an inexact local graph into one which is not

allowable in a differential.
d) Dual

Another operation, related, as we shall see, to
inversion, also produces a differential on L from one
on L, Assuming R is a differential on a complete
finite modular lattice L, we determine the set H of

lattice elements z for which z covers w implies
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R(w,z) = 0. The set H is closed with respect to the
lattice operation sup, since if E is a subset of H,

and if x = sup E, x covers w implies x £ w, and z £ W
for some element z € E., Because X covers w, Z covers
zaw, so R(zaw,z) = 0, and R(w,x) = 0 by the translation
property. This being true for all w covered by x,

X = sup E must be in the set H.

The image H of this set H under lattice inversion
is closed under the lattice operation inf, and determines
a unique differential in accordance with our characteri-
zation in terms of fixed points.! This differential

we call the dual of R, and employ the notation R¥.

The main theorem on duality, that R* = R' if R
is exact, will be proven in the equivalence theorem
of Chapter three. For any differential R, we still
have a relationship between the dual R* and the function
S defined, for all elements X covering y in i, by
S(y,x) = 1 - R(x,y), ie: the function used to define

the inverse difrevential R1,=

Proposition., Properties of Dual Differentials:
If R is a differential on a finite complete modular

lattice L, then for all elements X and y of i, with

1SUpra, Ps 12.

2See examples of differentials and duals, Appendix A,
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X covering y,
R*¥(x,y) < 1 - R(y,x).
Furthermore, for any pair x,y of elements of L,

Rix,y) = B**(x,¥).

Proof: To establish the first statement, we must
prove that R(y,x) = 1 implies R*(X,y) = 0 whenever
x covers y. Assume x covers y, and R(y,x) = 1. Let
H be the set of those elements z of L such that z covers
w implies R(w,z) = 0., Then for no element z of the
set H does z lie beneath x but not beneath y. If this
were the case, zvy = x would cover y, so z would cover
yraz. This would mean R(ysz,z) = 0, so R(y,x) = 0 by
the translation property, a contradiction. Therefore,
carrying all these elements over into their images
in i, and letting H denote the image of the set H, we
find y covers X, yet for no element Z of H is it the
case that X < z but y £ Z (ie: yvZ covers z), Because

of the manner in which we define R* from ﬁ, R*(x,y) = 0.

The second statement follows from a comparison
of the set K, of elements z of L such that w covers z
implies R(z,w) = 1, with the subset H of L in terms

of which the differential R** is defined. This latter
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set I is the inverse image of the set H of L composed

of those elements z for which Z covers w implies R*(w,z)
= 0, Say z is an element of K, and w is any element
covering z in L., Then R(z,w) = 1, so R*(w,z) < 1 - R(z,w)
= 0, by that portion of the proposition we have already
proven., This being true for every element W covered

by Z, Z must be an element of the set H, so z is an
element of ﬁ. We have proven the set K to be a subset
of the set H. Because of the manner in which the
differentials R and R** are associated with the sets

K and ﬁ, respectively, ie: for y covering x, E(x,y} = 1
if and only if there is an element z of K such that

x <z but y £ z, with a similar statement relating R¥*#%
and ﬁ, both R and R** then being extended to differen-
tials by the monotone property, we have R(x,y) < R**(x,y)

for all pairs x,y of elements of L,
e) Products

Let Ry be a differential on a finite complete
modular lattice L1 and R2 be a differential on another
such lattice Lz. The product Rlsz of these differen-
tials is defined on the product lattice LixL,, a lattice

which is also finite, complete, and modularl, according

lThese three properties follow easily from the
observation that (xl,xz) covers (yl,yz) in LyxL, if and

only if (xl=y1 and x, covers y,) or (x; covers y, and x2=y2).
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to the formula:

[RIXRZ] ((xl ixz) ’ (Yl s}'z)) - SUp{Rl(Xl :Yl) rRz (xzsyz) }

if (xl,xz) < (yl,yz), and is equal to zero otherwise.

We regard an element x of a lattice L, on which a differen-
tial R is defined, as a factor of R if x = (1,0) in a
product representation of L, for which R is the product

differential.

Proposition. Properties of Product Differentials:

i) If RyxR, is defined as above, R;xR, is a

1
differential on the lattice L1XL2.

ii) If R is a differential on a lattice L, then
x is a factor of R if and only if, for all elements
¥z of L,

R(y,z) = sup{R(yax,zax),R(yvx,zvx)}.

iii) If R is a differential on a lattice L and
x is a factor of R, then R is exact if and only if
both restricted differentials R'[O,x] and Rl[x,l] are

exact.

Proof:
i) The value [RIXRz]((xl,xz),(yl,yz)) is 0
or 1, and has value 0 unless (xl,xz) < (yl,yz), ie:

unless x,; <y, in L; and x, <Y, in L,. Ri*R, is
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monotone with respect to intervals:

say (wl,wz) < (xl,xz) < (yl,yz) < (zl,zz) in leLZ. Then

[RIXRZI((XI’XZ)’(YI'YZ)) "'._S_UP Ri (xi’yi) S_Eup Ri(wi’zi)

i=1,2 i=1,2

= [Rlsz]((wl,wz),(zl,zz)). RlxR2 is subadditive: say

(xltxz) & (yleZ) £ (zlnzz) in LIXLZ, and 1 = [RIXRZ]

((xl,xz),(zl,zz)) =.Eup Ri(xi,zi). Then for i = 1 or

i=1,2

i=2, Ri(yi,zi) = 1., By the subadditive property of

R, for this value of i, either Ri(xi,yi) = 1 or Ri(yi,zi)

= 1. FThus either sup R.(x.,y.) = 1 or sup R:(y:,z:.) = 1
i=1,2 Bl (L jal,2 e a1 :

the former being [RlxRZ]((Xl’XZ)’(Yl’yz))' the latter

being [RIXRZ]((yl,yz),(zl,zz)). Finally, RlxR2 has the

translation property: If (xl,xz)v(yl,yz) covers (xl,xz),

we must show [RIXRZ]((xl,xz),(xl,xz)v(yl,yz)) < [Rlsz]

((xl,xz)A(yl,yz),(y14y2)). The proof is simplified by

the observation that (xl,xz)v(yl,yz) covers (xl,xz)

implies either (xlvyl covers Xx, and X vy, = xz) or

(xqvy; = X, and X,vy, covers X,)., Let us assume the
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former is the case; our proof will apply equally in the
latter case, Let us assume R((xl,xz),(xlvyl,xzvyz)) = 1,
Since X,vy, = X,, Rz(xz,xzvyz) = 0, The supremum of
this with Rl(xl,xlvyl) being 1, the latter must also
have value 1, By the translation property of Rl’
Rl(xl“yl) a1, 50 1 = Sup Ri(xiAyi,yi)
i=1,2

= [RIXRZ]((XI’XZ)“(VI’YZ)’(yl’yz))‘

ii) Given a representation of a complete lattice
L as the product L,xL, of complete lattices L, and LZ’
let = be the projection of L into L,xL,, ie: w(x)
= (nl(x),wz(x)) for all elements x of L, = is then
invertible on L,, in that the lattice Ly is isomorphic
to the sublattice of L composed of all elements x such

that, for some fixed element u in L,, nz(x) = u, This

sublattice is the interval [w'l(O,u),n'l(l,u)] of L,

If n(x) = (1,0) for a product representation of L
in which R is the product differential, we may embed
the lattice L1 as the interval [0,x] of L, and the

lattice L2 as the interval [x,1]. Let the functions
Py and P, be the embeddings of Ll and L2 in L, Then
pl(nl(z)) = zaX and pz(nz(z)) = zvx, Since R(yax,zaX)

= SUP{Rl(ﬂl(Y),ﬁl(Z)),RZ(O,O)} = R1(“1(Y)'“1(Z)) and
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since R(yvx,zvx) = sup{Rl(l,l),Rz(wz(y),nz(z))} =
Rz(nz(y),nz(z)), we conclude that

R(y,z) =_s?p2Ri(ni(y),vi(2)) = sup{R(yax,zx),R(yvx,zvx)}.
=il

Conversely, if, for some element x in the lattice L,
this formula holds for all pairs of elements y,z in L,
the differential R is the product of the restricted
differential RI[O,x] on the sublattice [0,x] with the
restricted differential Rl[x,l] on the sublattice [x,1]

of L.

iii) Let us assume the differential R on the
lattice L is exact, and an element x in L is a factor.
As we proved in the second section of this proof, the
lattice L1 is the image of an R-preserving isomorphism,
the domain of which is the interval [0,x] of L, and
the lattice L2 is similarly the image of the interval
{x,1] of L. If R1 or R2 were to have an inexact local
graph, R would have an inexact local graph in the

interval [0,x] or [x,1], respectively.

Conversely, assume an element x in the lattice L
is a factor of the differential R on L, and both restric-
ted differentials R and R are exact,
po,xy 274 Rl g
Consider the various possibilities for formation of

local graphs in L, the elements of which are taken to
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be y,z yaz, and yvz.

A step in L, such as that from yaz to z, results
from either a step in L1 and equality in LZ’ or else
from equality in L1 and a step 1in L2° Whichever is the
case for the step [yrz,z], the same is true for the
step [y,yvz]; the same can be said for the other
parallel pair of steps. 2 cases: a) the steps [yaz,y]
and [yarz,z] are associated with steps of the same

lattice, whether this be L. ox LZ' and b) the steps

1
[yaz,y] and [yaz,z] arise from steps of different lat-
tices, one from a step in Ll' equality in L,y the other

from equality in Ll’ and a step 1in L2.

In the first case, the local graph on the elements
YsZs¥yaz, and yvz has the same R values as does the
non-trivial projection of this local graph into L1 or
Lz, as we established in the second section of this
proof., In the second case, the two steps in each
parallel pair project onto the same step of L1 or LZ’
and thus have the same R value., Local graphs thus
formed must be zero, mixed, or one, This completes

the proof.

We define a differential R on a finite complete
modular lattice L to be prime if there exist no factors

of R in L other than 0 or 1, ie: if there is no
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non-trivial expression for R as a product differential.
The local graph , which we called "prime",

is indeed a prime differential on the four element
lattice pictured. Also prime are both differentials

definable on the 2 element lattice, ie: I and U .

Other examples, defined on the Boolean algebras of a

three- or of a four-element set, are given in appendix B.
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Chapter II

§1 Introduction

Rather than proceed to the principal equivalence
and lattice structure theorems for exact differentials,
let us pause to consider a number of examples, related

characterizations, and fields of application,

In a long section following this introduction,
we establish a three-way correspondence between differen-

tials, relations, and closure operators,

A third section relates Whitney's independence
systems to exact differentials on Boolean algebras,
and extends the concept of a Whitney independence
system to a structure definable on any finite complete
modular lattice., Graph relations are discussed, and

the notion of dual graph is set in differential terms,

In section four we examine atom differentials,
which arise from the interaction of set union and lattice
supremum on the set of atoms of a general lattice, and
which permit us to translate lattice properties into

the language of differentials.
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A few descriptive paragraphs concerning applications
of the theory of differentials to geometry, algebra,

logic, and probability bring this chapter to a close.

§2 Relations and Closures

Any relation between two finite sets gives rise to

two differentials., The first, or set differential of

the relation, will be shown to be associated with the
relation by a correspondence which is onto the set of
all differentials on complete finite modular lattices,
and which is one-one up to the choice of a lattice
which will accept the embedding of a certain set as its
set of join-irreducible elements., The second, or

partition differential of the relation, is of interest

in the theory of graphs. (See Appendix A for examples).

A relation g from a finite set X to a finite set V
is an arbitrary subset of the cartesian product XxVY.
If d is an element of X, and e an element of ¥, we
write dge whenever d is related to e, ie: whenever the
pair (d,e) is in the subset g of the product Xxy., If
d is an element of the set X, let g(d) be the subset of
Y composed of those elements of Y related to d., 1f x

is any subset of the set X, let B(x) be the subset of
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Y composed of all elements for which there is some
element d in the subset x to which they are related,

ie: B(x) = sup p(d), the supremum being taken in the
dex

Boolean algebra of subsets of the set V.

If g is a relation between finite sets X and VY,

we define the set differential R of g, for all pairs

x,z of subsets in the Boolean algebra of subsets of the

set X, by

R(x,z) = 0 unless x < z and é(x) < é(z),

in which case R(x,z) = 1.

Proposition: The set differential of a relation
is a differential on the Boolean algebra of subsets of

the domain of the relation,

Proof: Let X and Y be two finite sets, B a rela-
tion from X to Y, and R the set differential of 8.
The function & from the Boolean algebra of subsets of
X to the Boolean algebra of subsets of Y is isotone,
ie: x < z implies B(x) < é(z). R is monotone, because
if X € X, € Xz < X, are four subsets of X, each contained
in the next, then R(XZ’XS) = 1 implies B(xl) < B(xz)
< B(xs) < B(x4), SO B(xl) < B(x4), and R(xl,x4) = 1,

R is subadditive, because if x; < X, < x5 are three
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subsets of X, each contained in the next, and if R(xl,xz)
= 1, meaning B(xl) < B(XS)’ then the set E(xz), which is
contained between é(xl) and é(xs), cannot be equal to
both of them., Thus R(xl,xz) = 1 or R(xz,x3) & b,
Finally, R has the translation property, because if

the subset zvx covers the subset z, x must contain
exactly one element e of X which is not in z, ie:

X = X»z + e, R(xaz,x) = 0 if and only if the element

e is related only to elements of Y which are already

in the set E(XAZ). But if this is the case, Xa2 < Z
implies B(xaz) < é(z), so e is related only to elements
of Y which are already in the set B(z). Because zvx

=2z + e, R(z,zvx) = 0,

Proposition, Characterization of Fixed Points of
Set Differentials: Under this correspondence of a rela-
tion to its set differential, a subset of the domain
of the relation is a fixed point of the differential
if and only if its complement is the union of sets of
the form B-l(e) where e is any element of the range of

the relation,

Proof: In the notation of the previous proof, the
statement R(x,z) = 1 for all z covering x is equivalent
to the statement that, for any element d not in the

subset x, there is an element e of Y such that d is



33

related to e, but no element of x is related to e,

ie: for every element d in the complement of x there

is an element e of Y such that B'l(e) is disjoint from
X, This is equivalent to the statement that the comple-
ment of x is a union of sets of the form B'l(e), where

e is an element of the range set Y,

The correspondence from relations to their set
differentials has produced a family of differentials,
all of which are defined on Boolean algebras., We have
seen that fixed points of the set differential R of a
relation B are complements of sets expressible as unions
of inverse images B'l(e) for elements e of the range
of the relation B8, We may thus use the complete lattice
of arbitrary unions of such inverse images as an isomor-
phic copy of the inverse of the lattice L/R of fixed
points of the set differential. In this lattice of
unions of sets B (e), e € Y, an element is join irredu-
cible if and only if it is not expressible as the union
of two proper subsets, both of which are elements of
the lattice, Since all lattice elements are expressible
as unions of elements of the form B'l(e), for e e Y,
only elements of the form B_l(e) may be join irreducible.
Not all such elements are join irreducible, however, if

some set B'l(e) may be expressed as the union
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B'l(el)vs-l(ez)v...vB'l(en) for some set of one or

more elements e, distinct from e in V.

Now, returning to the lattice L/R of fixed points
of the set differential R of the relation g: X =+ Y,
we see the complements in L of meet-irreducible elements
of L/R are all subsets of the form B'l(e) for some element
e of Y. This yields an inversion of our correspondence

from relations to differentials:

Proposition. Construction of Relations from
Differentials: Given an arbitrary differential on a
Boolean algebra L of subsets of a finite set X, and
letting the set Y be composed of all subsets forming
meet-irreducible elements of the lattice L/R of fixed
points of R, the differential R is the set differential
of the relation B from X to Y defined for all elements

d in X and e in Y by

d B e if and only if d £ e.

Proof: Let R1 be the set differential of the
relation B thus defined., The meet irreducible elements
of the lattice L/R1 are, as elements of L, complements
of sets of the form B'l(e), for some element e of Y.

Being thus composed of elements of X not related to an
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element e of Y, the meet irreducible elements of L/R1
are thus equal to the sets chosen as the elements of
the set Y, namely, the meet irreducible elements of
the lattice L/R., Equality of sets of meet irreducible
fixed points implies equality of sets of fixed points,

and thus R = Rl‘

We need not, however, restrict ourselves to differen-
tials on finite Boolean algebras in the establishment
of this correspondence. Beginning with a differential
R on any finite complete modular lattice L, a modifica-
tion above construction produces a relation from the set
X of join irreducible elements of the lattice L to the
set ¥ of meet irreducible elements of the lattice L/R,
To reproduce the differential from this relation, we
would need an extended notion of set differential as
an equivalence Class of differentials Ra on various
lattices L » with their associated lattices La/Ra of
fixed points, each of which accepts the embedding of
the set Y as the set of meet irreducible elements of

La/Ra‘

We turn now to the second type of differential
associated with a relation between two finite sets
X and Y. Let B be such a relation. With each element

d of the set X, associate the partition n(d) of the



36

set Y into sections, one section being all elements
of Y related to d, and all other sections containing
one element each., Then associate with each subset x
of the set X, an element =(x) in the lattice of all

partitions of the set Y, defined by =(x) = sup =(d),
dex

the supremum being taken in the partition lattice,
wherein the operation inf is common refinement of par-

titions.

The mapping n7: x » n(x) is isotone from the
Boolean algebra of subsets of the set to the partition

lattice of the set Y., We define the partition differential

of the relation B for all pairs of subsets x,z of X by

R(x,z) = 0 unless x < z and =(x) < n(z),

in which case R(x,z) = 1.

The proof that the partition differential is a differen-
tial is analogous to that given for the set differential,

and will be omitted.

Proposition, Comparison of Set and Partition
Differentials: If a relation B between two finite sets
X and Y has set differential R and partition differential
Rl, and if every element of X is related to at least

two elements of V¥ (ie: if the empty set in the Boolean
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algebra of subsets of the set X is a fixed point of the

partition differential Rl), then R < Rl.

Proof: Say x is a subset of X, d an element of
X not in x, and R(x,x+d) = 1, Then there must be
some element e of the range Y such that dge, but age
for no element a of x. Thus e is alone in its section
of the partition n(x). By our restrictive assumption,
d must be related to more than one element of Y, so e
is not alone in its section of the partition nw(x+d).

Thus wn(x) < n(x+d), and Rl(x,x+d) = 1.

In the next section we shall point out the impor-
tance of partition differentials in their relationship
to Whitney independence systems in general, and to
graphs in particular, Let us turn instead to the
discussion of closure operators., We now complete our
three-way correspondence, already constructed from
relations to differentials, by providing a further

link from differentials to closures,

A closure operator on a lattice L is any function

CL, from L into itself, which satisfies the following
two conditions, for all elements x,y of L.

T

A

CL(x)

s o) LR

1A

Ce(y) implies CE&(x) =< Cl(y).
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We have already encountered closure operators in
our discussion of set and partition differentials, as
in the proof that a set differential is a differentiall.
Also, the mapping R » R**, from a differential to the
dual of its dual, is a closure operator on the lattice

of all differentials definable on a fixed lattice.,

Oystein Ore2 establishes the equivalence between
closure operators and complete intersection rings.
Since differentials are characterized by their fixed
points, which form such a ring, the correspondence is

immediate.

To define a closure operator, given a differential

R on a lattice; let
Ce(x) = sup {z; R(x,z) = 0},

Conversely, given a closure, C£, define a differential

R by

R(x,z) = 0 unless x < z and C&(x) < C&(z)

in which case R(x,z) =1,

just as we did for the set differential of a relation,

1supra, p.31.

20. Ore, Theory of Graphs, p. 177.
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The part played by Galois connections in the estab-
lishment of closure operators on lattices is thoroughly
discussed by Orel. We will content ourselves with
pointing these out as they appear, as in the mapping

of a differential to its dual.

§3 Whitney Systems and Graphs

Hassler Whitney begins his theory of independence2
with the description of a family of increasing integer-
valued functions defined on the elements of a Boolean
algebra. These functions, which we call Whitney rank
functions, are intimately related to exact differentials.
The proof that the Whitney rank functions and exact
differentials coexist is, however, independent of the
special properties of Boolean algebras. Indeed, exact
differentials provide an immediate generalization of
Whitney's theory to independence systems defined on a

finite complete modular lattice,

Whitney defines a rank function on a finite Boolean

algebra as follows: a function r on the set of subsets

1ibid. p.183.

ZH. Whitney, '"On the Abstract Properties of Linear
Dependence", Amer. J. 57(1935) p.510.
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of a finite set X is a rank function if, for all subsets
x and y of X, and elements €1, of X,
i) r(¢) = 0
1i) r(x+e) = r(x) + k, k = 0 or 1
At r(x+el) = r(x+e2) = r(x) implies r(x+el+e2)
= r(x).
Rephrasing these conditions in lattice terminology,
we obtain, for all elements x,y of a finite Boolean
algebra L,
i) r(0) =0
ii) if y covers x in L, r(y) = r(x}) = 0 or 1
iii) if x and y cover xay, then r(xay) = r(x) = r(y)

implies r(xay) = r(xvy).

Already it is clear how to establish a connection
to the theory of differentials, and in a way which
avoids terminology peculiar to Boolean algebras., We
shall see shortly that a somewhat simpler statement
is equivalent to Whitney's third condition; let us

define a Whitney rank function on a finite complete

modular lattice L as a function r, defined on the ele-
ments of the lattice L, with values in the non-negative
integers, and satisfying

i) r has initial value 0, ie: 1r(0) =0

ii) wunit increase condition: the value of r does
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not decrease, and increases at most by 1 on

any step, ie: vy covers x in L implies r(y) -

r{x) 1s O or 1.

iii) translation property: If y covers x in L,

and x < z, then r(x) = r(y) implies r(z) =

r(zvy).

Theorem, Integration of Exact Differentials:

A function R defined on all pairs of elements
finite complete modular lattice L is an exact
tial if and only if R is the first difference
Whitney rank function r on the lattice L, ie:

= r(y) - r(x) whenever y covers x in L,

Proof: Let r be a Whitney rank function

in a
differen-

of a

R(x,y)

on the lat-

tice L., The simple statement that r increases by at

most one on any step, implies R(x,y) = r(y) -

r(x])

has value 0 or 1, and that there must be the same number

of steps for which R = 1 on each side of a local graph.

The only local graph1 satisfying this condition, yet

not allowable in an exact differential is

vide: p.7, supra.
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This local graph is excluded by Whitney's third condition,
but it is equally well excluded by our translation
property, Our theorem® on the local character of differ-
entials provides a unique extension of such a function

R to an exact differential.

Conversely, if R is an exact differential on the
finite, complete modular lattice L, we define an integer

valued function r for each element x of the lattice by
n

r(xy = } R(p;_,»p;) for any path p from 0 to x.
i=1

Induction on the rank A(x) of the element x in the
modular lattice L provides a proof of independence of
path; the proof is of such a nature that it is more
suitably incorporated in the equivalence theorem for
exact differentialsz. If we assume independence of
path, r is then well-defined as a function on the ele-
ments of the lattice L. The sum r has initial value

0 = R(0,0), and increases by 0 or 1 = R(x,y) on any
step [x,y]. To establish the translation property,

we notice that if y covers x in L, and x < z, either

y < z, ie: zvy = z, or else zvy covers z. If y s 2z,

1supra, p.10.

2infra, p.58. The hypotheses are identical.
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r(z) = riz~y). 1% 2wy covers z, and if r(x) = rv(y),
ie: R(x,y) = 0, R(z,zvy) = 0 by the translation property
of the differential R, so r(z) = r(zvy). Thus the sum

r has the translation property of a Whitney rank function,

We shall see in the next chapter how the various
structures of Whitney's theory of independence carry
over into the realm of exact differentials, As Whitney
did for his independence systems, we shall be able to
prove for exact differentials several of the standard

theorems concerning circuits and trees in graphs.

A graph 1is a relation., We have seen how to define
a set differential and a partition differential of a
relation. On the other hand, a graph defines a Whitney
system, which in turn defines an exact differential.
The connection between the various differentials thus
definable from a graph is given by the following propo-
sition. Following W.T. Tuttel, we understand a graph
to be a relation g from a finite set X to a finite set
Y in which every element of X is related to at most

two elements of V.

Proposition., The Exact Differentials of a Graph:

Yy, T, Tutte, "A Contribution to the Theory of
Chromatic Polynomials", Can., J. 6(1954) p.80.
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If a Whitney rank function is defined by a graph, the
exact differential defined by the rank function is the
partition differential of the graph relation., The dual

graph has as differential the dual differential,

Proof: The Whitney rank function for a graph G
has value k on a set x of edges of G if and only if the
number of vertices of the graph G, less k, is equal to
the number of arc-connected components of the subgraph
composed of all the vertices of G, and the edges of G
which are in the subset x., Thus the rank increases
on a step [x,x+e], and R(x,x+e) = r(x+e) - r(x), whenever
the ends of e are not arc-connected by the subgraph
with edges in the set x., Arc connection induces the
partition n(x)l on the vertex set, ie: on the range
of the graph relation, The rank thus increases on a
step [x,x+e] whenever the image of the edge e under the
graph relation is not confined to a single section
of the partition w(x), ie: whenever =(X) < n(x+e).
Thus the exact differential of the Whitney rank function

is the partition differential of the graph relation.

The rank function of the dual graph G* increases

on a step [x,x+e] whenever the edge e is in some circuit

1supra, p.36.
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of the subgraph of the graph G composed of edges in the
complement of the set x, ie: whenever e is not an
isthmus in the subgraph of edges in the complementary
set x'. The mapping of a set to its complement maps

the Boolean algebra L of edge subsets isomorphically
onto the inverted Boolean algebra L. This isomorphism
carries the rank function of the dual graph into a
Whitney rank function on the lattice L. Since this

rank function increases on a step [x',x'-e] whenever e
is in some circuit of x', and since circuits are subsets
z of the Boolean algebra L such that Z is a coatom of
the lattice of fixed points of the dual differentiall,
the Whitney rank function increases whenever x' is
beneath some fixed point of R* which is not above x'-e.
This is the local characterization of the dual differen-
tial R* in terms of fixed points, so the exact differen-
tial of the Whitney rank function of the dual graph is

R*, the dual differential.

Corollary: The partition differential of a relation
g from a finite set X to a finite set Y is exact whenever
B(e) is composed of at most two elements of ¥, for every

element e of the set X,

Lyide: infra,p.86.
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§4 Atom and Coatom Differentials

Let us start with an arbitrary finite and complete
lattice Q. We construct the Boolean algebra L of subsets
of the set C of coatoms of the lattice Q, and define a

pair of mappings

(vx € Q) B(x)
(vy € L) a(y)

Calx,t]

inf y

wherein an element of the lattice Q is associated by
the map B with the set of coatoms above it, and a subset
of coatoms is associated by the map o with its infimum
in the lattice Q. This forms a Galois connection1
T % L. An element x is closed with respect to the
closure a°B on the lattice Q, if and only if it is the
infimum of some set of coatoms. A set y of coatoms is
closed with respect to the closure Beco on the lattice L
if and only if y is the set of coatoms above some ele-
ment of the lattice Q, The lattices of closed elements
of Q and L are isomorphic, by the main theorem on
Galois connections; this lattice is the sublattice of
Q composed of all elements expressible as a meet of

coatoms.,

1G.C. Rota, "On the Foundations of Combinatorial
Theory", Zeitsch., fur Wahrshein. [2] 1964, pp.340-360, §5,
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As we saw at the close of section twol, a closure
defines a differential, Under this correspondence,
applied to the closure RBea on the Boolean algebra L
of subsets of the set C of coatoms, the subsets containing
exactly one coatom are invariably fixed points of the
differential induced by the closure Rea, Conversely,
if we start with a differential R on a finite Boolean
algebra L, in which every atom of L is a fixed point
of the differential R, the above definition of maps
o and B defines a Galois connection between the Boolean
algebra L and the lattice L/R of fixed points of R in L.
The map a from the Boolean algebra L to the lattice
L/R is onto, Thus we have the following statement
to relate the study of coatom-meet-expressible sublat-

tices to the study of a certain class of differentials,

Proposition, Characterization of Atom Differentials:
The isomorphy classes of complete finite lattices in
which every element is a meet of coatoms are in one-one
correspondence with the differential-preserving-isomor-
phism classes of Boolean algebras with differentials

in which every atom is a fixed point.

The same may be said, via lattice inversion, about

1supra, p. 38,
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complete finite lattices in which every element is a
join of atoms., Let us call such a differential the

atom or coatom differential of the lattice Q, when

we construct it on the Boolean algebra of atoms or of

coatoms, respectively.

1 that the lattice

We shall see in chapter three
of fixed points of an exact differential is always
semimodular., As a partial converse to this theorem,

we have the following statement,

Proposition. Relating Semimodularity to Exactness
of Atom Differentials: If R is an atom differential
of a finite complete semimodular lattice Q, R is an

exact differential,

Proof: Let o be the map from elements x of the
Boolean algebra of subsets of the set A of atoms of the
complete finite semimodular lattice Q, defined by
a(x) = sup x, the supremum being taken in Q. Assume
some local graph on subsets Xx,y,xay,xvy (x and y covering
XAy, as usual) of the lattice L is inexact., For instance,
say R(xay,x) = R(xay,y) = R(x,xvy) = 1, and R(y,xvy) = 0.

Since subsets x and y each contain exactly one atom

linfra, p.s1.
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not in xay, since R(xay,x) = R(xay,y) = 1, and since

Q is semimodular, a(x) and a(y) both cover a(xay) in Q.
They may, of course, be the same lattice element, except
for the fact that R(x,xvy) = 1, which excludes the
possibility that the one atom in the set y - x is also
beneath the element a(x) of Q. Since a(x) and a(y)

are not equal, yet both cover a(xsy), and since the
supremum oa(x)va(y) is also expressible as a join of
atoms, a(x)va(y) = a(xvy), and this element covers

both a(x) and a(y). Thus R(x,xvy) = R(y,xvy) =1, in

contradiction to our assumption of inexactness.

This procedure exemplifies the conversion of lattice
structure properties to differential language. It is
conceivable that the enumerative work in chapter four
of this paper may find application in problems of lattice
structure. For detail on these methods, the reader

should consult the work of R.P. Dilworthl.

§5 Various Applications

a) Geometry

Our definition of a set differential and partition

1R.P. Dilworth, "Dependence Relations in a Semi-
modular Lattice", Duke J. 11(1944) pp.575-587.
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differential for a general relation between two finite
sets suggests a new lattice-theoretic approach to geo-
metric problems., Finite geometric configurations are
characterized by incidence relations, but these need

not be the edge-vertex incidence relations which are the
subject of graph theory. Furthermore, the possibi-

lity of defining set and partition differentials for the
converse relation gives rise to an interesting operator
both on geometric configurations and on differentials.
Let us consider two examples of non-graphic incidence
relations, for which the converses are also incidence

relations.

As a first stage of generalization beyond graph
theory, consider the edge-vertex incidence relation
of the five-pointed star, in which each of five edges
has four vertices, and each of ten vertices has two
edges., If the converse relation is interpreted as an
edge-vertex incidence relation, the resulting ten-edge,

five vertex figure is the complete five-graph.

A second stage of generalization introduces more
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possibilities., Consider the face-vertex incidence
relation of the cube. There are six faces, each with
four vertices, and eight vertices, each with three
faces, If the converse relation is also interpreted
as a face-vertex incidence relation, the resulting

six-vertex eight-face configuration is the octahedron,

The differentials of a relation and of its converse
are defined on different Boolean algebras, but the
lattices of fixed points are of the same order of mag-

nitude, and are likely to offer interesting comparisons.
b) Algebra

Substructures of algebraic structures are generally
defined as subsets which are closed under certain
algebraic operations., Any such definition gives rise
to a differential on the Boolean algebra of all subsets

of the underlying set:

for any subset x of the underlying

set X and for any element e not in x,
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R(x,x+e) = 0 if e is in the substruc-
ture generated by elements of X in x,

and R(x,x+e) = 1 otherwise.

The lattice of fixed points of these differentials
are the lattices of all substructures of that structure,

partially ordered by containment.

Typical examples of lattices of substructures
include the lattice of subgroups of a group, the lattice
of ideals of a ring, and the lattice of subfields of
a field., Semimodularity of such a lattice would follow
from exactness of the differentiall, but exactness is
an uncommon phenomenon in algebra. For example, the
differential for the additive group of integers modulo
four contains the inexact local graph ¢,{0},{2},{0,2}.
The differential of the Vier group, restricted to the
Boolean subalgebra of sets containing the zero element,

is exact, and has a modular subgroup lattice.

The question of exactness is related to the exis-
tence of inverses., To prove exactness, we must show
that if an element e, is not an algebraic combination
of elements in a subset x, but is a combination of ele-

ments in x together with €1 then the relation expressing

linfra, )¢ [ 1
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this, which may involve e with some coefficient other
than 1, can be solved for e, in terms of elements of
X together with ey This can be done in Boolean rings,
and in fields, so these structures have semimodular

substructure lattices,
c) Logic

A differential R is defined on the Boolean algebra

of all subsets of a finite set X of statements by

for any subset x of statements in X,
and any statement e not in x, R(x,x+e)
= 0 if the conjunction of all state-

ments in x implies the statement e,

If the statements compose a set of axioms, and
if the differential R has the constant value 1, then

the axioms are independent.

d) Continuous Analogues, and an Application to

Probability

One continuous analogue of the theory of differentials
on a finite Boolean algebra is responsible for our use
of the term exact, Let us designate the truth value

of the statement '"the subset x contains the element e"
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by some number between 0 and 1, rather than by the

discrete values 0 and 1., The subset x may now vary
continuously over the unit cube in a space whose dimen-
sion n is the number of atoms of the lattice, In this
event, the role of a Whitney rank function is played

by any function increasing on this product space all

of whose partial derivatives are bounded by 1., Our
theorem, in the following chapter, that exact differentials
have sums independent of choice of path, is the discrete
analogue of the usual theorem on integration of exact

differential in Euclidean n-space,

There is, however, an intermediate level of generali-

zation for our theory of differentials, Consider a

finite set X of statements, each with a probability

of occurance., On the Boolean algebra of all subsets

of this set, we may assign a probability measure m,

equal on each subset x to the probability that every
statement in the subset x is true, and all statements

not in x are false, The sum of the measure m over the

lattice is 1.

The measure m bears little resemblance to a differen-
tial. Formation of the probability distribution function
p brings us closer. For every subset x of the statement

set X let p(x) be the probability that all statements
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in the subset x are true. Then

p(x) = ) m(y)
X<y
The function p(x) is monotone decreasing, and has value
1 on the empty set, For computational simplicity, let
us assume p(l) # 0. Defined for any pair of subsets

x,y of X for which x < y, the conditional probability

ply/x) = p(xvy)/p(x) p(y)/p(x) is a monotone decreasing

function of intervals. Let us therefore define a function

R(x,y) by

R(x,y)
R(x,y)

0 unless x < y, in which case

1 = plyl/plx).

Proposition. Probabilistic Differentials: The
function R, defined as above for all pairs x,y of subsets
of the statement set X, satisfies the monotone, subaddi-

tive and translation properties of a differential,

Proof: Assume w < x <y < z. Then p(z/w) < p(y/x)
implies R(x,y) < R(w,z), so R is monotone, If x <y < z,
the product (p(y)-p(x))(p(y)-p(z)) is not positive
because y is intermediate between x and z. Thus,
P()P(Y) *+ p(Y)p(2) 2 p(x)p(z) + p’(y) and 1 - p(2)/p(x)
< 1-p(z)/ply) +1 - p(y)/p(x), ie: R(x,z) < R(x,y)

+ R(y,z), the subadditive property. Finally, since the
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lattice operations v and A correspond to the statement
subset operations union and intersection,

R(xay,y) - R(x,xvy) = p(xvy)/p(x) - p(y)/p(xay) =
(p(xvy)p(xay) - p(x)p(y))/p(x)p(xnry) is positive, the

numerator representing the probability p(x-y)p(y-x).
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Chapter III

§1 Introduction

We begin by gathering together in an equivalence
theorem the various conditions which characterize
exactness of differentials on a finite complete modular
lattice. The proof of this theorem comprises section

two of the present chapter.

In section three we explore the analogy between
differentials on a lattice and differentials in a space
of n real variables., We define higher order partial
differentiation of Whitney rank functions in such a
way that the Taylor expansion at zero in the lattice

is derived from a Mébius inversion formula.

In the fourth section we examine the influence
of exactness on the structure of a lattice of fixed
points, noting that a stronger connection prevails if

the domain of the differential is a complemented lattice.

In section five we carry out the program of Hassler
Whitney by generalizing to differentials on a finite

complete and complemented modular lattice all the well
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known theorems from the classical theory of linear
independence., The matching and duality properties of
bases, circuits and bonds are translated to laticial

terminology.

We bring Chapter III to a close with a discussion
of factorization of differentials into primes, and

show such factorization to be unique.

§2 Characterization of Exact Differentials

The property of exactness, like its counterpart
in the theory of functions of several real variables,
appears in a variety of forms, and induces strong
symmetry and duality properties on differentials and on
structures derived from those differentials. We set
forth in the following theorem several equivalent
formulations of this property. Knowledge of this mani-
fold equivalence is our principal tool for the further

development of the theory of exact differentials.

Theorem, Equivalent Characterizations for Exact
Differentials: The following statements, all of which
concern a differential R defined on a complete finite
modular lattice L, are equivalent:

a) Exactness: R is an exact differential, ie:

no local graph of R is inexact,
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b) Local symmetry: If x, y, xay and xvy form a
local graph of L,
R(xay,x) + R(x,xvy) = R(xay,y) + R(y,xvy).

c) Independence of path: For any pair of elements

R(pi-l’pi)

e

X <y in the lattice L, the sum rp(x,y) =
i=1

of the R values along any path p from x to y is indepen-
dent of the choice of path,

d) Integrability: There exists a Whitney rank
function r on the lattice L (ie: an integer valued
function with initial value zero, the unit increase and
translation properties) such that R(x,y) = r(y) - r(x)
whenever y covers x in L,

e) Fixed point covering property: If an element
y covers an element x in the lattice L, then the image
in the lattice L/R of C&(y), the meet in L of all fixed
points above y, at most covers the image in L/R of
ce(x).

f) Existence of '"dual fixed points'": If the
differential R has value 0 anywhere on an interval
[a,b], then there is an element z in the interval, z # a,
such that z covers w and a < w imply R(w,z) = 0.

g) Duality: Whenever an element y covers an ele-

ment x in the lattice L, R*(y,Xx) = 1 - R(x,Yy).
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Proof:

a > b, Assuming the differential R is exact, its
local graphs are then either zero, one, mixed, or prime.
Each of these types has the property that the sums of
the R values along the two paths from xsy to Xvy are
equal.

b » c. We assume that for any local graph on
X, ¥y, Xay and xvy, R(xay,x) + R(x,xvy) = R(xsy,y)

+ R(y,xvy). Given any pair x < y of elements of the
lattice L, and any two paths p and q from x to y, let

A be the rank function of the finite modular lattice

L, ie: A(x) is the length of any path from 0 to x. We
shall establish independence of path by induction on
the difference in rank, A(y) - A(x). If the rank
difference A(y) - A(x) is one, there is only one path
from x to y. If the rank difference is two, and the
paths are unequal, the points Xx, p;, dy, and y form a
local graph. Equality of the two sums follows from

our assumed statement b, Let us assume the R sum
rp(z,w) from z to w is independent of path whenever

the rank difference A(w) - A(z) is equal to n-1, and
that for the pair x < y, the rank difference A(y) - A(Xx)

is equal to n.

If the elements Py and qa; covering x in the paths
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p and q, respectively, are equal, the remaining path
segments from p; = q; toy via p and via q are of

length n-1, and must have the same R-sum, Adding

R(x,pl) to each sum, we have rp(x,y) = rq(x,y). 1f

the elements P and q, are unequal, the element z = Pyva;
covers p, and qq Choose a path s

from x to y., The R-sum from x to y

along p is equal to the R-sum from 1
X to Py to z, then along the path s

to y, since these paths agree on the

first step, the remaining lengths

being equal to n-1. By our assumed

formula b, we have R(x,pl) * R(pl,z) = R(x,ql) + R(ql,z),
so we may replace the first two steps of our path from

X to y via z by those to aq» then to z, without altering
the value of the R-sum, But this path agrees with the
path q from x to y on its first step, the remaining
length being n-1, so the path from x to y via Q15 2

and the path s, has the same R-sum as q. Thus the four
paths p, via p; and s, via a; and s, and q have the same

R-sum, In particular, rp(x,y) = rq(x,y).

We have established independence of path for
A(y) - 2(x) = 1 or 2, and, assuming it for A(y) - x(x)

= n-1, have proved it for A(y) - A(x) = n., By the
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induction axiom the sum is independent of path for any
pair of elements x < y in L,

c «» d. We have now proven the sum of an exact
differential is independent of path, This is precisely
the part missing from the proof of "independence of
path if and only if integrable to a Whitney rank function"
in Chapter twol.

c » e, We assume independence of path for the
R-sum along paths between two lattice elements, and
prove that if an element y covers an element x, then
CL(y), the meet in L of all fixed points above y, at
most covers C£(x) in the lattice L/R., If there is a
fixed point z lying between C£(x) and C&(y), ie: CL£(x)
< z < Ct(y), we may choose a path q from x via C£(x)

) and z to CL(y) and a path p from x

via y to Cé(y). If R(pi_l,pi) were
’ o to have walue 1 for i » 2, ie: feor

any step between y and C£(y), our

proposition concerning the existence
of fixed points implies the existence of an element w
in the half-closed interval [y,C£(y)) such that, for
any u < C&(y), u covering w, u £ C£(y) implies uvCL(y)
covers CL(y), so R(CL(y),uvC£(y)) = 1 by the definition

lSUpra, Chapter II, §3, p.4l.
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of fixed point, and R(w,u) = 1 by the translation pro-
perty. The element w is a fixed point in the interval
[y,CL(y)] and lies below C£(y), contradicting the defini-

tion of C£(y) as the least fixed point above y,

The R-sum rp(x,Ci(y)) is thus no more than 1,

The path q, however, passes through two fixed points
CL(x) and z, before reaching C£(y), so along q the
R-sum rq(x,Ct(y)) must be at least 2. This contradicts
independence of path,

e + f, We assume the contradiction of the existence
statement for dual fixed points, ie: we assume there
exists an interval [a,bl] and a step [c,bl] in the
interval, a < ¢c <b < b1 such that R(c,b) = 0, yet for
all elements z in the interval [a,bl], and thus for all
elements z in the smaller interval [a,b], there exists
an element w, a < w < z, w covered by z, with R(w,z) = 1.
Starting from b, and using the existence of downward
steps for which R has value 1, we may form a path
P: a = pg 9Py € wes <P, =D from a to b along which
R has constant value 1. We observedl in the proof of
the fixed point characterization of differentials that

R(x,y) = 1 for any element y covering an element x only

1supra, ps15.
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if there is some fixed point above x but not above y.
If R(x,y) = 1, the meet CZ£(x) of all fixed points above
x cannot lie above y. Applying this condition along
the path p from a to b,

we see Cﬂ(pi_l) < Cﬁ(pi) o
£Or all i, 1 =l oS a0

Let j be the highest i

value of the index i

such that P; < C and P,

let k be the highest value

of the index i such that §§%? )
k > j and R(pkkc,pk) = 1,

Such a value k exists, and lies between j+1 and n-1,
because R(pj,pj+1) = 1 and R(c,b) = 0, Then Cﬁ(pk)

lies properly between Cﬂ(pkhc) and C£(pk+1) = Cf(pk+156).
But Py4+17C COVETS Dy aC, contradicting the fixed point
covering property.

f > g. We know in general1 that, for all pairs of

elements x,y of the lattice L with y covering x,
B¥(¢,X) = 1 ~ B(x,7),

We fail to have the required equality R*(y,x) = 1 - R(x,y)

1supra, Pl
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only if R*(y,x) = R(x,y) = 0, Assume that such a pair
of elements x,y exists, for which y covers x, and
R*(y,x) = R(x,y) = 0. We prove a contradiction to the
"dual fixed point" existence condition. Let w be the
join of all elements z less than x, for which R(s,z) = 0
for all elements s covered by z, Since R*(¥,X) = 0,

w is also the join of all elements z less than y for
which z covers s implies R(s,z) = 0. Now R(x,y) = 0,

so we may apply the dual fixed point condition to the
interval [w,y], to produce an element u in the half
closed interval (w,y] such that for all elements s
greater than or equal to w and covered by u, R(s,u) = 0.
However, if s is any other element covered by u, then

w £ s, and R(saw,w) = 0, so R(s,u) = 0 by the translation
property. Thus u is a "dual fixed point", in contra-
diction to the definition of the element w,

g » a, We assume the differential R is 1inexact,
and prove a contradiction to the duality condition.
R#(v,u) = 1 - R(u,v) for some pair of elements u,v
with v covering u., Assume the local graph of R on
X, Y, Xay and xvy, with x and y covering x.y, is inexact,
with R(x,xvy) = 0, the other three R values being 1.

Let z be the join of all elements w less than xvy for
which w covers s implies R(s,w) = 0, The element z

must lie beneath y, because R(y,xvy) = 1, the translation



66

property implying R(ysxz,z) =1 if z £ y. Since R(x.y,Yy)
= 1, the same argument proves that the element z lies
beneath xay, and hence beneath x, Thus R*(xvy,x) = 0,
and R*(xvy,x) < 1 - R(x,xvy). This completes the proof

of our equivalence theorem,

We have listed seven properties, any one of which
characterizes the property of exactness. These seven
properties are phrased in terms of different concepts,
and thus will find different uses in the development

of a theory of exact differentials,

The local symmetry condition serves as a recursion
relation for proofs by induction of global properties
of exact differentials, The local symmetry condition,
taken with the integrability condition, provides a
starting point for an extended analogy with partial
differentiation of functions of several variables, and
leads to a Taylor theorem for exact differentials.

This topic is taken up in the next section.

A variant of the symmetry condition,

R(xay,y) - R(x,xvy) = R(xay,x) - R(y,xvy)
shows that changes in the value of the differential
always occur in pairs., The above equality is either
of the form 0 = 0 or of the form 1 = 1, The latter

occurs whenever R(xay,y) = 1, yet, on raising both
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points xay and y by supremum with x, the differential
value R(x,xvy) is decreased to 0. This form of exactness
condition requires a simultaneous decrease in R value

as the step [xay,x] is raised by one to the step [y,xvy].
This principle is the key to many proofs concerning

exact differentials.

The condition for independence of path of differen-
tial sums provides an analogue to the usual theorem
concerning line integrals of differentials in several

real variables,

The fixed point covering property provides a
natural link between the algebraic properties of a class
of differentials and the structural properties of its
fixed point lattices., Theorems of this type are collected

in section four of the present chapter.

Perhaps the condition most promising for extensions
of the theory of combinatorial independence is the
condition of existence of 'dual fixed points'". Differen-
tials satisfying this condition may well appear in
mathematical systems having no obvious structure of

independence,

The duality property simplifies the construction

of the dual for exact differentials. We may invert the
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lattice, and interchange 0 and 1 on all steps; the
resulting function on steps will extend properly to

the dual differential.

§3 A Taylor Theorem for Exact Differentials

The usual test for exactness of a first order
differential in n real variables involves a comparison
of partial derivatives of coefficient functions, A

differential of the first order is of the form
n
c = iZlMi(x)dxi

where x 1is a variable n-dimensional vector x = (xl,...,xn),
and Mi(x) is one of n real-valued functions on this
n-dimensional space. Such a differential is exact if

and only if, for every pdair i,j eof subscripts

BMi/BXj = an/Bxi.

Let us restrict the values of the variables X5
to the set {0,1}, and investigate whether the usual
notion of exactness resembles the concept we use for
differentials on lattices, Under this restriction, the

n-dimensional space becomes isomorphic to the Boolean
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algebra of all subsets of an n element set. Let us
define partial differentiation, not by limits, but by
finite differences. If M is a function on the Boolean
algebra, and X4 is any one of the domain variables,

we define the partial derivative of M with respect to
X; as the function whose value of each subset x 1is

given by
aM = )
ggi(x) = M(vai) M(x).

The partial derivative has value zero whenever the

variable X4 is in the set x. If the variable X4 is not

in the set x, then the partial derivative %% (x) is a
i

difference of M-values on two subsets, one of which

covers the other in the Boolean algebra.

In the differential o =

I~

1Mi(x)dxi, each Mi is a

3
function defined on elements of the Boolean algebra.
The exactness condition suggested by the theory of real
functions of several variables is that, for any pair
j,k of indices, between 1 and n, aMi/axj = an/axi, as
functions of the subset variable x. Referring to our

definition in terms of finite differences, we find the

condition becomes:

Mi(vaj) - Mi(x) = Mj(xin) - Mj(x).
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We have only to define, for a differential R on the

Boolean algebra,

R(x,y) = Mi(x) where X; = y-x;

the exactness condition is then the local symmetry

condition for exactness of the differential R,

The n-variable analogue of the differential R on

a Boolean algebra thus has the form

n

o(x) = E R{x,%vx )dx. .

; i i

1=1
Such differentials act on vectors in the n-dimensional
""tangent space'" as linear transformations. In our
theory, the n-space is Zn, the Boolean algebra, while
the vectors are subsets, and the inner product with a
subset y is enumeration of elements in the set inter-

section with y, ie:

n
ile(xsXin)xy(xi)

o(x)*y

A(yh{xi;R(xiXVXi) = 1})

where X is rank in the Boolean algebra, If we under-
stand R(x,vai) = 0 to mean "the element X is dependent
upon the subset x'", then the inner product o(x)*y is
the number of elements in y which are independent of

the subset x.
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1f R is an exact differential, it is the first
difference of a Whitney rank function r. The value

of the differential R on a step [x,vai] is given by

R(x,xvxi) = r(vai) - r(x) = %%T(X)-
i

It may thus be said that a differential is exact if and
only if it is the differential of a function, In our
theory, however, all differentials have the translation
property, which causes them to resemble closures, and
all "integrals'" are Whitney rank functions. The exten-
sion of the theory of exact differentials to those of
functions other than Whitney rank functions will not

be discussed in this paper.

We will, however, make use of the notions of gra-
dient and vectorial derivative., Assuming a differential
R to be exact, and letting the function r be its Whitney

rank function the set
{xi; R(x,Xin) = 1}

associated with any subset x, is analogous to the gradient
of the scalar potential function r, The vectorial deri-
vative of the potential function r, at a subset x, with
respect to a subset y, is the number of elements in y

which are independent of the subset x, Partial derivatives
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are thus characteristic functions of inclusion relations.

Let us use the subscript notation for partial

x_(x). Considering a
i

differentiation, ie: <—(x) =
=

partial derivative of the rank function r with respect

to some variable X, as a function on the Boolean algebra,

we may define a second partial derivative with respect

to x., then xj, for X5 # xj, by

e rx_(Xij) =r . (x);
i%j i i

higher partial derivatives are defined accordingly.

Expanding this relation, we find

rxixj = r(xinvxj) - r(xvxj) - r(xvx;) + T(x)
and for a third order derivative, with no two of X4

xj,xk being the same variable,

rxixjxk = r(xinvxjvxk) - T(Xinvxj)
- T(xvXx vx,) + r(xvx;)

- r(xvxjvxk) + r(xvxj)

+ r(xvxk) = rix).

These formulae are symmetrical in the subscript varia-
bles, so the results are independent of the order of

the subscripts, and hence depend only upon the set of
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variables present as subscripts. We may thus write
a set y as subscript, to indicate successive partial
differentiation, in any order, with respect to the

various elements X5 in the set y, ie:

ry(x) =71 (x) where y = x.,xj,...,xk.

xixjnooxk 1L

By means of the connection:
R(x,z) = r(z) - r(x) when z covers x,

between an exact differential and its Whitney rank

function, we may express the partial derivatives T oy
i

T in terms of the values of the

Xiox p rx.x.x e
175 sl [

differential R, as follows:

B R(x,xin)

i
rxixj = R(Xij,xinvxj) - R(x,xvx,)
r . R{Xvxewk, XvX.vXovX )
xixjxk 1 G

- R(xin,xvxivxk) - R(xvxj,Xijvxk)

+ R(x,vak).

These computations are the alternating
sums of differential values on all Xkivn
steps parallel to the step connecting

Xv ¥y

the subset xvxivxj, a coatom in the

interval [x,xvxivxjvxk], to the
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supremum of the interval. Let us refer to such a step
as a coatomic step. The signs of terms alternate in
accordance with the difference in rank between the

upper end of each parallel step and the supremum of the
interval. Since the lattice is a Boolean algebra, these

steps are also those parallel to the atomic step [x,xka].

It is a curious consequence of exactness of the
differential that such alternating sums are the same
if another variable appears last in
the sequence of differentiations,
so that differential values are taken

on steps parallel to a different

atomic step, eg: [x,xij].

A Taylor theorem for Whitney rank functions on a

Boolean algebra might well read

0) + 0) + 1721 €0) * wiis
REED grxi( igjrxixj

n
Tadzpls SSie fraw e - (0)
p=0 11,...,1p

r(l)

where the interior summation is over all orderings of
the n variables, taken p at a time., Using independence
of order for partial differentiation and employing the
set-subscript notation, we obtain a simpler formula,

because there are p! equal terms associated with any
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subset y = {xi pos Xy }. The resulting formula we
1

p
shall state as a theorem,

Theorem. Taylor's Theorem for Exact Differentials
on a Boolean Algebra: If a differential R, on a Boolean
algebra L of all subsets of an n-element set, is exact,
with Whitney rank function r, and if ry is the result
of successive partial differentiation of the function
r with respect to the elements of the subset y, taken

in any order, then

;1 i1 3 G TS ry(O).

yeL
Proof: The statement r(x) = ) ry(O) is equivalent
y <X
to the statement r_(0) = ) u(x,y)r(x)
Y X<y

= ) (-1)k(Y)-A(x)r(x) by the Mobius inversion formulal,
X<y

and the fact that u(x,y) = (-l)k(Y)“A(x) for x < v in
a Boolean algebra, The latter statement, ry(O)

- 3 1M 2 (X)r(x), is the definition of the partial
X<y

derivative.

I1f this theorem is to hold for exact differentials

on any finite complete modular lattice, we must define

1G.-C. Rota, "On the Foundations of Combinatorial
Theory", Zeitschr., fur Wahrshein., 2 (1964), pp. 340-360
834
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the partial derivative at zero of a Whitney rank function

r with respect to the lattice element 1 by

r,(0) = Yplx b ri(x)
X

and the partial derivative at zero with respect to a

general lattice element y by

ry(O) = EU(pr)r(x) .
X

Proposition. Partial Differentiation of Exact
Differentials: Let R be an exact differential on a
finite complete modular lattice L, and let r be its
Whitney rank function., Let c be any coatom of the lattice
L, and let e be any atom of L. Then the partial deri-
vatives at zero with respect to the element 1 may be

computed as either

T, (0) = Yu(x,1)R(xac,X)
X
or
r 0) = (DM Tu0, )R, xve)
X

Proof: Let us consider the first formula, The
terms corresponding to elements x of the lattice which
lie beneath the coatom c all vanish, because R(xac,x)
= R(x,x) = 0, For elements x which do not lie beneath

c, we have R(xac,x) = r(x) - r(xac). We must prove
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r (0) = § u(x,1)r(x) - ; p(x, 1) rhxae),
xftc X£C

This is true if we can show

Y} n(x,1)r(x) = - ¥ u(x,l)r(xac),
x<c x£c

which, in turn, is established if we show
-u(x,1) = the sum of values u(z,1) for elements
z covering x but not lying beneath some
coatom ¢ above Xx.
This statement will be proven for x = 0 as a lemma,
since its validity depends only upon the lower semi-
modularity of the lattice L, Its lattice-inverted
formulation will be of great utility in analysis of
fixed point lattices for exact differentials, all of

which will be shown to be semimodular,

Lemma. A Recursion Satisfied by Mobius Functions
on Semimodular Lattices: If L is a finite semimodular
lattice with Mobius function u, and if e is an arbi-
trary atom in the lattice L,

-u(0,1) = the sum of values u(0,c) for all
coatoms ¢ not above the atom e.
Inversely, if L is a finite lower semimodular lattice
with Mobius function p, and c is an arbitrary coatom
in by

-u(0,1) = the sum of values u(e,1) for all
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atoms e not beneath the coatom c.

Proof: We shall prove the first form of our
lemma. The Mobius function is defined as the inverse
of the zeta function, ie:

b1y Yu(0,x)g(x,y) = x§YU(O'x)

so the function u is characterized by its property
that the sum of u(0,x) over any lattice interval [0,y]
is zero, unless y = 0. Let ClaeessCy be an enumeration
of the coatoms of the lattice L which lie above the atom
e, The sum of values u(0,x) for all elements which are
less than or equal to at least one of the coatoms Ci»
i=11,...,k, may be expressed, by the principle of
inclusion-exclusion, as the sum

YL w(o,x) - ¥ ¥ u(0,x)

i <C. i<j <C . .
1 xscy i<j xscjnc,

A Z z (0,%) = oos
L<j<m xs<Cincincy
where each subscript varies from 1 to k. Since each
initial summation is over an entire interval, all sums
are zero, Since this sum is zero, and the sum over all
elements x in L of n(0,x) is also 2zero, the difference
between these, ie: the sum of p(0,x) over all elements

X which are less than or equal to no coatom above the
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atom e, is also zero. If an element x is beneath no
coatom above the atom e, then e £ x, and xve is beneath
no coatom, so xve must be the element 1, By the semi-
modular assumption for the lattice L, xve covers x, so

X is a coatom., Thus the sum of u(0,x) over all coatoms
X not above the atom e, plus u(0,1), is zero, yielding
the first form of our lemma., The second form is the
inversion of the first, since the Mobius function is the

same for a lattice and its inverse, ie:

-~ -~

ulx,y) = u(y,x).

This completes the proof of our lemma, and estab-
lishes the validity of the expression for the partial
derivative of a Whitney rank function on a finite complete
modular lattice, Partial differentiation was.defined
in such a way as to make the Taylor theorem hold in the
extension from Boolean algebras to finite complete
modular lattices. Thus the substance of our general
Taylor theorem is embodied in the following three for-
mulae, which are given first in absolute, then in
relative terms:

a) Definition of the highest order partial derivative:

r(@) = Ju(x,1)r(x).
X

b) Characterization of the highest order partial

derivative:
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toio] = u(x,1)R(x~c,x), for any coatom c
X

[-I)A(l)zu(O,x)R(x,xve), for any atom e,
X

c¢) Taylor theorem:

r(l) = Erx(ﬂ).

Relative formulae:

al) ry(z) = ) wlxy)r(x).
zsX<y
b') ry(z) = ) u(x,y)R(xac,x) for any coatom

ZEXLY
€ of the interval [z,v].

1Ay x)R(x,xve) for
z<x<y

any atom e of the interval [z,y].

&) eyl 0T (2]
ZsX<y

§4 Structure of Fixed-Point Lattices

The principal conceptual link between differentials
and their lattices of fixed points involves the properties

of exactness and semimodularity, Maclane® and Dilworth?

1S. MacLane, "A Lattice Formulation for Transcen-
dence Degrees and p-Bases'", Duke J. 4(1938) pp455-468.

2R.P. Dilworth, '"Dependence Relations in a Semi-
modular Lattice'", Duke J., 11(1944) pp575-587.
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both state theorems of this type; we shall provide

proofs which extend the validity of their claims,

Given a differential R on a finite complete modular
lattice L, let us denote by h the mapping from elements
x of the lattice L to the image in the fixed point
lattice L/R of the closure C£(x), the meet of all fixed
points above x. Let the inverse mapping h™! be the
inclusion map from L/R into L. Since the meet of fixed
points is also a fixed point, the inverse mapping B
is a meet homomorphism. The join of elements x and y
in the fixed-point lattice yields the image under h

of the meet of all fixed points above both h~1(x) and

h™l(y), ie: the element h(CL(h L(x).h 1(y))) in L/R.

Proposition, Exactness and Semimodularity: If
a differential R on a finite complete modular lattice L

is exact, the fixed point lattice L/R is semimodular.

Proof: We must establish the semimodular property

for L/R, namely

If, for a pair of elements x,y of L/R,

y covers X.y, then xvy covers x.

Let x and y be a pair of elements in the lattice L/R,
for which y covers xay. h Y(x) b 1(y) = h™l(xay)

< h-l(y) in the lattice L, so we may choose an element
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z of L covering h-l(x)ah-l(y), and lying beneath i

(r).
Since h'l(x)ah'l(y) is a fixed point, C£(z) satisfies
the ordering h-l(x)nh'l(y) €z © C&(z) = h-l(y). Thus
xay < h(C£(z)) <y, so CE€(z) is the point h-l(y). By
appealing to both the modularity of the lattice L and

the fixed point covering property of exact differentials,

we show that the element xvy covers the element x in L/R,
Since the element z covers h'l(x)ah'l(y) and is less

than h'l(y), z is not less than h—l(x), and consequently
2vh'1(x) covers h'l(x), by the modularity of the lattice

L. On one hand, CL(zvh 1(x)) » C&(z) = h™(y) and
ce(zvh Y (x)) 2 cehl(x)) = h"l(x) so the closure

C£(zvh 1(x)) must be greater than or equal to h-l(x)vh'l(y),
and hence greater than CE(h'l(x)vh'l(Y)) = h-1CXVY)-

On the other hand, the fixed point covering property

of exact differentials implies h(2vh'1(x)):h(C£(th'1(x)))

= h(th'l(x)) at most covers x in L/R. Since the ele-

ment h(th'l(x)) at the same time lies above xvy and

covers X, xvy must cover x., This completes the proof

of semimodularity.

A partial converse to this proposition was proven in

Chapter IIl, under the assumption that all atoms of the

1supra, Chapter 11, §4, p48.
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lattice L are fixed points. In that event, the differen-
tial R is exact if and only if the fixed-point lattice

is semimodular,

Exactness of a differential does not, however,
imply that the fixed point lattice is geometric. For
a simple counterexample, consider the lattice L of inte-
gers {0,1,2} ordered 0 < 1 < 2, and the differential
R(0,1) = R(1,2) = 1. Since all elements are fixed-points,
the fixed point lattice L/R is isomorphic to L, which

is semimodular, but not geometric.

Proposition. Exactness and Geometric Lattices:
If a differential R on a finite complete and comple-
mented modular lattice is exact, the fixed point lattice

L/R is geometric,

Proof: The previous proposition shows the lattice
L/R is semimodular, It remains to prove that every ele-
ment of L/R is a join of atoms, ie: if an element y
covers an element x in L/R, there is an atom e of L/R
such that xve = y, Again letting h and h-1 represent
the canonical mappings between the lattices L and L/R,
and using the fact that in the complemented modular

lattice L every element is a join of atoms, we may

choose an atom e of L which is less than h-l(y) but
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not less than hol

(x). The closure Cf(e) is also not
less than h-l(x), but less than h"l(y), since the latter
is a fixed point. By the fixed-point covering property
of exact differentials, h(e) = h(C£(e)), which cannot

be zero in L/R, is an atom of L/R, lying beneath y but

not beneath x.

Whenever the domain of the differential is a comple-
mented modular lattice, as in the above proposition,
we also know the lattice structure of L/R relative to
coatoms, If the image in L/R of any fixed point is
meet-irreducible, the image is covered by the element

1IN oL/ RS

Proposition. Meet of Coatoms Property for a
Fixed-Point Lattice: Let L be a complete finite comple-
mented modular lattice, and let R be an exact differential
on L, Then every element of the fixed point lattice

L/R is a meet of coatoms of L/R.

Proof: Assume x is a fixed point of R in L, the
image of which is meet irreducible in L/R, There is a
unique fixed point y in L whose image in L/R covers the
image of x, If the element z is any complement of the
element y in the interval [x,1], let u be any element

of L covering x, with x < u < z., By the fixed point
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covering property of exact differentials, the image of
CL(u) in L/R covers the image of x, so C£(u) must be
the fixed point y. u < C£(u) implies u < y, contra-
dicting the complementary property of the element z,
that zay = x, Thus the complement of the fixed point y
in the interval [x,1] must be x, and y must be the ele-
ment 1 of L, the image of which in L/R is the element 1

ol that lattice,

§5 Graph-like Properties of Exact Differentials

In the manner of Hassler Whitney, let us now see
which of the properties to be expected of a differential
of a graph relation actually are true for all exact

differentials.

The transition to this more general context is
accomplished by the following conventions. We replace
the statement "the edge e is dependent upon the subset
X of the edge set X" by '"the join-irreducible element
e of the lattice L and the element x of L have the
property that R(x,xve) = 0", Bonds and circuits are in
some sense the "complements" of meet irreducible elements

of the fixed-point lattices L/R and i/R*, respectively.

Perhaps the most striking property of exact differen-

tials is that derived from the statement "if an edge e
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is dependent upon a subset x, but upon no smaller subset,

then x 1s a circuit.”

Proposition. Characterization of Meet-Irreducible
Fixed-Points: Let R be an exact differential on a
finite complete modular lattice L. If an element y
of L covers an element x, and the step [x,y] is maximal
among parallel steps with respect to the property
R(x,y) = 1, then the element x, necessarily a fixed point
of the differential R, is meet irreducible in the lat-

tice L/R.

Proof: The precise statement of the maximal condi-
tion is as follows: vy covers x, R(x,y) = 1, and for all

elements 2 with X < 2z, ¥ £ 2z, Rlz,z25y) = 0,

Assume an element y covers an element X in L,
R(x,y) = 1, and for all elements z properly above x
but not above y, R(z,zvy) = 0. Such an element Xx must
be a fixed point, because if an element w # y covers Xx,
with R(x,w) = 0, then R(y,wvy) = 0 by the translation
property, while our assumption implies R(w,wvy) = 0.

Such a local graph is not allowable in a differential.

If we show that all elements covering the element
X have the same closure, it will follow from the fixed

point covering property of exact differentials that the
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image of x in L/R is covered by exactly one element

of L/R, and hence is meet-irreducible,

Let z be any element of L covering the element x.
If z # y, zvy covers both z and y, by the modularity of
L. The local graph on {x,z,y,zvy} must be prime, since
R is exact, R(x,z) = R(x,y) = 1, and R(z,zvy) = 0 by
our maximality assumption concerning x. Thus C£(z)
= CL(y) is true for all z covering x. This completes

the proof,

The lattice inverse of this proposition is equally
true; we state it separately because it is helpful in

discussions of duality.

Corollary. Meet Irreducible Fixed Points of the
Dual: Let R be an exact differential on a finite com-
plete modular lattice L., If an element y covers an
element x, and the step [x,y] is minimal among parallel
steps with respect to the property R(x,y) = 0, then the
element has as image under lattice inversion an element
whose image in the lattice i/R* is meet irreducible.,
(Such an element y necessarily has the property, for all

elements w of L, that

y covers w implies R(w,y) = 0.)
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The classical theorems for linear independence
in finite-dimensional vector spaces are available for
exact differentials on a complemented modular lattice,
but fail for such simple modular lattices as linear

orderings.

An element x of a finite complete modular lattice

L is independent, relative to an exact differential R

defined on the lattice L, if the value of the Whitney
rank function r at x is equal to the rank A of the
element x in the lattice L. For any element x, the
inequality r(x) < A(x) applies, since r(x) is the sum
of R-values on any path from 0 to x, so we may define a

dependent element as an element x for which )5 (2,08 IR < 1 B B8

Proposition. Differential Character of Independent
Elements: Let L be a finite complete complemented modular
lattice, and R be an exact differential defined on the
lattice L., An element x in L is independent if and only

if, for any element z of L

X covers z implies R(z,x) = 1,

Proof: If the element x is independent, let z be
any element covered by x. Choose a path p from 0 to X

n
via Z. sSince A(x) = 7lx) = z R(pi-l’pi)’
i=1
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1 = R(pn_l,pn) = R{z,x}, Conversely, v{x) =< x(x).
Choose a path p from 0 to x., For some subscript k,

1 s kK = n, R(pk_l,pk) must have value zero. The element
x~covers any complement z of the element Py in the
interval [pk_l,x], and R(z,x) = 0 by the translation

BEORETEVE

A dual concept and proposition are also available,
Define an element x in a finite complete modular lattice
L to be a spanning element (or an element which spans),
relative to an exact differential defined on L, if and
only if the value of the Whitney rank function r at x

is equal to its value at the element 1 in L,

Corollary. Differential Character of Spanning
Elements: Let L be a finite complete complemented
modular lattice, and R be an exact differential defined
on the lattice L., An element x in L is a spanning

element if and only if, for any element z of L

z covers X implies R(x,z) = 0.

A base (or basis) for an exact differential on a
finite complete modular lattice may be defined alter-
natively as a maximal independent element, a minimal
dependent element, or as an independent element which

spans. No two of these concepts are equivalent, as may
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be seen in the example illustrated in the
accompanying diagram., None of the elements
is a base, while 1 is the only maximal

independent element and 3 is the only '

minimal spanning element,

Let us define a base as an independent element
which spans, and prove that all the suggested definitions

are equivalent on a complemented modular lattice,

Proposition, Differential Character of Bases:
Let L be a finite complete complemented modular lattice,
and let R be an exact differential defined on the lattice
L. Then an element x of L is a base if and only if

a) x is a maximal independent element,

b) x is a minimal spanning element,

c) For any element z of L,

X covers z. implies R{z,X)

1
[
-
1h]
=
ja

z covers x implies R(x,z)

L}
o
-
o]
Lo

d) x is minimal with respect to the property: x
at least covers x»z for every fixed point z, the image

of which is a coatom in the lattice L/R.

Proof: The equivalence, with the definition of a
base, of statements a,b, and c follows from arguments

analogous to that given for the proposition on the
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differential character of independent elements., We

omit the proof.

Statement d is the lattice counterpart of the
property of bases for a graph, that they are minimal
matchings of the family of edge sets constituting bonds
(or that the base complements are minimal matchings of

the family of circuits).

Assume an element x in the lattice L is a base, and
an element z in L is a fixed point whose image in the
lattice L/R is a coatom, Then the Whitney rank function
r of R has value r(z) = r(1) - 1, by the proposition
on existence of fixed pointsl. Sance rix)] = vil), x

cannot satisfy x < z, so x at least covers Xaz.

Conversely, assume an element x is minimal with
respect to the property that x at least covers x,z for
any fixed point z, the image of which in the lattice
L/R is a coatom, If y is any element covering x,
R(x,y) = 1 would imply the existence of a fixed point
in the half-closed interval [x,1). A maximal fixed
point w in the interval [x,1) necessarily has a coatom

as image in the lattice L/R. But x.w = Xx, contradicting

lsupra, Chapter I, 53, pl1Z.
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our condition on the element x, On the other hand, if

y is any element of L covered by x, the minimality
condition implies the existence of a fixed point above y
but not above x, so R(y,x) = 1., Thus the element x is

a base.

All the classical theorems on linear independence
become properties of bases for exact differentials on
finite complete complemented modular lattices. For
instance, the theorem '"a set of non-zero vectors
{ajyeveya } in a vector space is linearly dependent if
and only if some one of the vectors is a linear combina-
tion of the preceding ones'" becomes the differential
statement "if an element x of the lattice L is dependent,
then along any path p from 0 to x, R(pi-l'pi) = 0 for

some value of the subscript i".

Proposition. Theorems on Linear Independence,
Rephrased for Differentials: Let L be a finite complete
complemented modular lattice and let R be an exact
differential on the lattice L, with Whitney rank function
T,

i) If an element y in L is independent, there

exists a base x for R in L such that y < x,
ii) If an element x, with rank A(x) in the lattice

L, is a base for R, then A (x) = r(l).
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iii) Any lattice element of rank A greater than
r(l) is dependent; any element of rank A less
than r(1) does not span,

iv) For a lattice element x of rank x(x) = r(1)
to be a base for R, it is sufficient that it

span or be independent,

Proof:

i) Let y be an independent element. If y does not
span, there is some element z covering y such that R(y,z)
= 1, If u is any element, other than y, which is covered
by z, the elements y,z,u,usy form a local grpah., Since
y is independent, R(usy,y) = 1, so the local graph is
of type one, and R(u,z) = 1, Thus the element z covering
y 1s also independent., This possibility allows for a
recursive definition of a path upward from the element x,
all elements of which are independent, This path
terminates only in an independent element which spans,
ie: 1in a base for R above x,

ii) If an element x is a base for the differential
R in the lattice L, we may choose a path p from 0 to 1
via x. Given any step [pk-l’pk] in the path p above the
base x, we may choose an element z covering x such that
2. F Pk-1 but z < Pis because the lattice L is complemented.

If the differential R were to have value 1 on such a
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step [pk-l’pk] above x, the translation property would
imply R(x,z) = 1, contradicting the properties of x as
a base. An argument of the same type implies that
R(pk~l’pk) = 1 for all steps [pk-l’pk[ in the path p
below the base x, Thus the R-sum rp(O,l), which must
have value ¥(1), counts the number of steps in the path
p below the base x. Thus number is the rank a(x) of
the element x in the lattice L.

i1i) If, for an element x, A(x) = r(l), it follows
that x(x) > r(x), so x is dependent, Since r < A for
all elements of L, the condition A(x) < r(l) implies
r(x) < r(l), so x does not span.

iv) Assume an element x is independent, and X(x)
= r(1). Then x(x) = r(x), so r(x) = r(1), and x spans.
On the other hand, if the element x spans, and X(x)
= r(1), then r(x) = r(1), so r(x) = A(x), and x is

independent,

To these properties of bases we may add the exchange
property used by Whitney1 in constructing equivalent

axiomatizations for independence systems.

1H. Whitney, "On the Abstract Properties of Linear
Dependence', Amer, J. 57(1935) pp. 509-533,
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Proposition, Exchange Properties of Bases: Let
L be a finite complete complemented modular lattice,
and let R be an exact differential on L, If X and y
are bases for R in L, and if w is any element covered
by x, there is a base z covering w and lying beneath the

element wwy.

Proof: Choose a path p from w to yvw, Since yvw
lies above the base y, r(yvw) = r(1l). Since r(w)
= r(1l) = 1, there is some step [pi_l,pi] in the path
p for which R(pi-l’pi) = 1, Let z be the complement
of P;i.1 in the interval [w,pi]. Then z covers w, and
R(w,z) = 1 by the translation property. i(z) = r(z)

= r(l), so z is a base,

The corresponding exchange property for coatomic
(in L/R) fixed points is derived from that given by

Whitney for circuits,

Proposition, Exchange Property of Coatomic Fixed
Points: Let R be an exact differential on a finite
complete complemented modular lattice L, If, for some
pair of coatomic (in L/R) fixed points 61 and 8, there
are elements x and y in L covering the element 610875,
such that x is beneath 81 but not beneath §,, and y

is beneath neither &, nor § then there is a coatomic

1 2
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fixed point 63 which is above the element y but not above

the element x.

Proof: Assume 61 and 62 are coatomic (in L/R)
fixed points of R in L and that two elements x and y
and

cover 6_a8 with x beneath &, but not beneath §

1 2! k 2t
y beneath neither 6§, nor §,. Consider the local graph
formed on the elements 61A62,x,y, and xvy. The two
lower steps of this local graph have R value 1, since
61A62 is a fixed point, By the translation property,
and the fact that y is not beneath the fixed point 815
R(x,xvy) = R(&l,dlvy) = 1, The differential R being
exact, the local graph is of type one. Thus R has value
1l on the step [y,xvy]. Let z be an element of L in
the interval [y,1], maximal with respect to the property
that R(z,zvx) = 1., By our characterization of meet

irreducibie fixed pointsl, the element 2z is a coatomic

(in L/R) fixed point of R lying above y but not above x.

To complete our catalogue of graph-like properties
of exact differentials, let us turn to the graph theorem
that if a single edge is added to a base, there is a

unique circuit in the enlarged edge set. This principle,

1supra, p. 86.
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introduced by Whitneyl, has been used by W.T. Tutte
throughout his work on chromatic polynomia152 and the

homotopy theory for Whitney systemss.

Proposition, Fundamental Systems4 of Coatomic
Fixed Points: Let L be a complete finite complemented
modular lattice, and let R be an exact differential
o i

i) If an element x is a base for R in L, and x
covers an element z, there is a unique coatomic (in
L/R) fixed point above z in the lattice L,

ii) If an element x is a base for R in L, and an
element y covers x, there is a unique coatomic (in i/R*)
dual fixed point beneath y in the lattice L.

iii) The Duality Principle for Exact Differentials:
Assume an element x is a base for R in L, and an element
y has the property that xvy covers both x and y. Let
¢ be the unique coatomic (in L/R) fixed point above

XAy, and y the unique coatomic (in i/R*) dual fixed

lH. Whitney, op. cit,

2W.T. Tutte, "A Contribution to the Theory of
Chromatic Polynomials'", Can. J. 6(1954) pp. 80-91.

3W.T. Tutte, "A Homotopy Theorem for Matroids,
I and II"’ TranS. AQIVi.S.’ 88(1958) pp. 144“'174.

4cf: This term is due to Whitney, op cit., p. 517,
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point beneath xvy, The following statements are equiva-

lent:
a) y is a base
b) yad < x
gl Xt e vy,
Proof:

i) We have proven the meet of coatoms property
for fixed-point lattices of exact differentials on
finite complete complemented modular lattices., If an
element x is a base for the differential R on L, and x
covers an element z, then R(z,x) = 1, By the existence
proposition for fixed points, there is a fixed point u
in the half-closed interval [z,l1). Choose a path from
the image of u to 1 in the lattice L/R., The penultimate
element in this path is a coatom, and is the image of
a fixed point w above the element z in L, If there are
two such fixed points Wy and Wy above z in L, and both
have coatomic images in L/R, they are not comparable
in the lattice L, so their infimum WwiaW, is a lower fixed
point also above z in L., Choose a path q from 0 to z,
then to w.aw

1"W2s then to w and finally to 1., The dif-

1!
ferential sum rq(O,l) is r(1) - 1 from 0 to z, and is

at least 2 from z via WiAW, and wy to 1, contradicting
the independence of path for R-sums of exact differen-

tials., Thus the coatomic fixed point above z is unique.
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i1) This proposition is the dual of statement i),
and is proven by applying statement i) to the dual
differential R*, which is also exact. Note that if an
element x is a base for R, the image x of x in the
inverted lattice L is a base for R%,

iii) We prove that (a) y is a base if and only if
(b) yré < x. The equivalence (a) +-+ (c) is the dual
of the equivalence we prove, and thus must also hold.
If the element y is a base, then R(xay,y) = 1. The
half closed interval [xay,8) can contain no fixed point,
since 6 is the only coatomic fixed point above xay and
every fixed point is a meet of coatomic fixed points.
By the proposition concerning existence of fixed points,
R must have constant value 0 on the interval [xay,$],
so the element y cannot lie beneath &8, Thus ya.s8 = Xay
< x. Conversely, if y is an element such that xvy covers
both x and y, 6§ is the unique coatomic fixed point above
xxy, and yad < x, we know ya8 = Xay is covered by y, so
yvé covers 8, Since 8§ is a fixed point, R(S8,yvs) = 1.

By the translation property, R(xay,y) = 1, so A(y)

r(y) = 1 + r(xay) = r(1),and y is a base.

The duality principle for exact differentials is
of critical importance in our enumerative work comprising

Chapter IV. 1Its usefulness arises from the fact that



100

it relates the fixed points

coatomic in L/R to the dual

fixed points coatomic in L/R%*, o
via the set of bases for the / >

differential R, The duality ! \

principle, applied to the graph ) 0

relation of a planar graph, is S S
illustrated in the accompanying

diagram. A base for the graph

is marked in red. If the edge e is added to the base,

the enlarged set contains a unique circuit, which involves
the edge d. The duality principle implies that if the
edge d is removed from the base, the complement of the
resulting edge set contains a unique bond (or dual
circuit), which involves the edge e. This is marked

with a dotted line.

One additional observation should be made concerning
the duality principle. Assume, as in the statement of
the proposition, that an element x in the finite complete
complemented modular lattice L
is a base for the exact differen-
tial R, and that an element y

has the property that xvy covers

both x and y. Since x is a base,
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R(xay,x) = 1 and R(x,xvy) = 0, the local graph on the
elements x,y,Xxsy and xvy must be mixed or prime., The
element y is a base if and only if this local graph

is prime,

§6 Factorization into Primes

Before proceeding to the enumerative work of
Chapter IV, let us prove a unique decomposition property

of differentials,

Proposition, Unique Decomposition into Prime
Factors: Let L be a finite complete modular lattice
and let R be a differential defined on the lattice L,

1

zations of R into prime factors, there is a 1-1 corres-

If R =R x...xRp and R = Rl,x...qu, are two factori-
pondence between the two sets of factors under which

corresponding factors are isomorphic.

Proof: If the two decompositions are essentially
different, then some y of R on L, corresponding to a
differential Ri' has a non-trivial intersection with a
factor x of R on L, corresponding to a differential
Ry
interval [0,x], we find uixy < way if and only if ua(xay)

ie: 0 < xay < x, Given any step [u,w] in the

< Wwa(xay) and uvy < wvy if and only if uv(xay) < wv(Xxay).
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Since y is a factor, R(uay,way) = R(uar(xay),wa(xay))

and R(uvy,wvy) = R(uv(xay),wv(xay)) so R(u,w) =
sup{R(uA(xhy),wA(xay)),R(uv(xhy),Wv(xAyD} and Xxay is

a factor of the differential R, This contradicts the
assumption that x is a prime factor, so the decomposition
must be unique up to a 1-1 correspondence in which
corresponding terms differ at most by a differential-

preserving isomorphism,

This proposition, although it was suggested by
Saunders MacLane's paperl on factorization of graphs,
and although it applies to more general structures than
graphs, does not exhaust the possibilities of generali-
zing his results, which concern separation across

connected subgraphs,

By an inductive use of our observation in Chapter
Iz, the prime factors of an exact differential are all

exacts

15. MacLane, "Some Unique Separation Theorems for
Graphs", Amer, J, 57(1935), pp. 805~820,

2supra, Chapter I, f4e, p.« 23,
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Chapter IV

§1 Introduction

The content of this chapter is enumerative in
nature, By defining a rank generating function for
exact differentials, we bring to bear on the theory
of exact differentials the techniques of enumerative
combinatorial analysis. Emphasis will be laid on those
special numerical results available for exact differen-

tials defined on Boolean algebras,.

In section two we define the rank generating
function of an exact differential as a certain poly-
nomial in two variables, arising from a simultaneous
rank grading in the fixed point lattice of the differen-
tial and in the fixed point lattice of its dual dif-
ferential, We prove a fundamental relation which helps
to characterize the structure of the domain of the

differential,

A discussion of the algebraic properties of the
rank generating function comprises section three., We

define the relative rank generating function is such a
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way that, at any numerical evaluation of its two vari-
ables, it becomes a matrix element of the incidence
algebra of the domain lattice. We prove that the exis-
tence of factors of the differential implies factoriza-
tion of the rank generating function. We exhibit a
recursion for the relative rank generating function,

in terms of the domain lattice, then calculate the
inverse of the relative rank generating function as a
function element in the incidence algebra of the domain

lattice.

The principal theorem on rank generating functions
appears in section four, We prepare the way with a
sequence of lemmas which serve to match subsets in a
Boolean algebra to bases for an exact differential
defined on that Boolean algebra. The substitution
theorem establishes the fact that translation of the
domain of the rank generating function produces a variety

of generalizations of well-known lattice polynomials.

In section five we show that the Mobius function
of the fixed point lattices of a differential and of

its dual are values of the rank generating function.

An application of our theory to the enumeration of
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graphs concludes this paper.

§2 Rank Generating Functions

The principal tool of enumerative combinatorial
analysis is the generating function of a graded set, a
concept introduced by Laplacel. A grading of a set S
is a function g from the set S into the natural numbers
{0,1,2,...} such that any given integer is the image
of at most a finite number of elements of S, Such a

grading defines a counting sequence v from the natural

numbers into the natural numbers, defined in terms of

the grading by

v(j) is the number of elements of grade j in the set S.

The (ordinary) generating function y of the grading g

on the set S is defined by

v(e) = [ v(i)eh,
i=1
Many variants of this concept are available. Generally,
they involve either multiple gradings, or the use of

functions other than powers of the variable in the

definition of the generating function, We shall deal

lLaplace, "Théorie Analytique des Probabilites",
Courcier, Paris, 1812; 3rd ed. 1820,



106

with ordinary generating functions of a bi-grading.

We have shown that an exact differential on a finite
complete modular lattice is associated with a unique
Whitney rank function on the lattice. The same may be
said for the dual of such a differential. The Whitney
rank functions of an exact differential and of its dual
provide a natural bi-grading of the elements of the

lattice.

Beginning with the bigrading defined by the two
Whitney rank functions, let us define the rank generating
function. Assume R is an exact differential on a finite
complete modular lattice L, with Whitney rank function
r on L, For every element x in the lattice L, define

gradings g, and g, by

g1 (x) T} = r{x)

r*(0) - T*(X)

n

g, (x)

where x represents the image of the element x in the
inverted lattice L. Then define a bigrading g on the

lattice L by setting
gx) = (g;(x),g,(x))
for every element x in L,

The double counting sequence of the bigrading g
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will be denoted by p, and is defined for all pairs of

natural numbers i = 0,1,... ; 3 = 0,1,... by

pij = the number of elements x in L

with gfx) = (1,3).

Finally, the rank generating function p of the exact

differential R on the finite complete modular lattice

L is given by

p(E,n) = .X_pi-alnj.

The rank generating function is a polynomial in
two variables, because the lattice L is assumed finite,
We now set forth in detail a number of simple properties
of this polynomial, and of the bigrading which gives

rise to it.

Proposition. Rank in the Fixed-Point Lattices:
Let R be an exact differential on a finite complete
modular lattice L, with Whitney rank function r. Let
r* be the Whitney rank function of the dual differential
R*, Then the rank in the lattice L/R of the image of
a fixed point x in L is r(x), and the rank in i/R* of

the image of a fixed point X of R* on i is r*(x).

More generally, for any element x in L, r(x) = rank
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in L/R of the image of C£(x), and r*(x) = rank in ﬁ/R*

of the image of C&*(Xx).

Proof: The more general statement follows from the
first form, because the presence of a step on which R
has value 1 in a path from x to C&(x) implies the
existence of an intermediate fixed point, so R(x,Cf(x))

= 0, and r(x) = r(CL£(x)).

The first form of our statement follows from the
fact that if, for two fixed points x,y in L, the image
of y in L/R covers the image of x, then r(x) + 1 = r(y).
This covering property is proven as follows. Assume
the image in L/R of a fixed point y covers the image
of a fixed point x, and let z be any element of L
covering X. Since x i1s a fixed point, R{(x,2) = 1., Since
there are no fixed points in the half-closed interval
[z,y), R(z,y) = 0, and rp(x,y) = R(x,z) = 1 for any
path p from x to y via the element z, Thus r(x) + 1

= r(y).

To prove the rank property, we consider an arbitrary
fixed point x in L, and form a path q in L/R from the
zero of L/R to the image of x. The elements of this
path correspond to an increasing sequence of elements

in L, a sequence which may be extended to a path p from
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0 to x in L, Since the images of the fixed points in
the path p form a path in L/R, the R-sum rp(O,x) = r(x)
is equal to the rank of the image of the fixed point

X in the lattice L/R. Applying this result to the dual
differential R*, we find also that r*(x) is the rank

of the image of x:in i/R*, whenever x is a dual fixed

point of R on L.

If we make use of the duality1 property of exact
differentials, we shall be able to simplify the compu-
tation of the rank generating function. Just as we may

characterize the grading g1 by

gl(x) = the number of steps on which R =1
in any path from x to 1,
so also we may characterize the grading g, by
gz(x) = the number of steps on which R = 0

in any path from 0 to x.

Proposition., Grading Duality: Let g = (gl,gz)
by the bigrading of a finite complete modular lattice

L with respect to the Whitney rank functions r and r*

lsupra, Chapter III, 52, p. 59.
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of an exact differential R and of its dual R*, If
A is rank in the lattice L, then gz(x) ® X(x) - r(x)

for any element x in L,

Proof: The duality property of exact differentials
states that R*(y,x) = 1 - R(x,y) whenever an element y
covers an element X in the lattice L. The value of the
grading g, at x is the difference r*(0) - r*(x), or the
R* sum from X to 0 in the lattice L. This equals the
sum of 1 - R from 0 to the element x in the lattice L,

which is X(x) - r(x).

Generating functions may always be expressed either
as a sum over the range of the grading, or as a sum
over the graded set., Thus

p(E,n) = ] pi.aan = 7 £81(x) g2(x)
1,j ] xel

The latter form is often more convenient in theoretical

work.

It is to be expected that the structure of the lattice
serving as domain of an exact differential will have
some influence on the algebraic properties of the rank
generating function., That all elements x of the same
rank in the lattice L have the same difference gz(x)

- gl(x) is an immediate consequence of the grading
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duality property. Following Laplace, we state this as
a property of the rank generating function, rather than

as a property of its coefficients,

Proposition. The Fundamental Domain Relation for
a Rank Generating Function: Let p be the rank generating
function of an exact differential R on a finite complete
modular lattice L., Let A be rank in the lattice L,
and let r be the Whitney rank function of the exact
differential R. Then

T ayt,e) = 7 23
xeL
Proof: The bi-grading g is given, for all elements

x in L, by

r(l) = r(x)

XXy = nlx),

gl(x)

gz(x)

so, for all elements x,

g,(x) - g, (x) = A(x) - r(1).

Evaluating the rank generating function at g = 1/t,

n = t, and multiplying by tr(l), we have

tr(l)o(lft,t) = tr(l) z (l/t)r(l)-r(x)th(x)-r(x)
xelL
— tr(l) E tl(X)‘r(l) — E tl(x).
xelL xeL
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In the particular case in which the lattice L 1is
the Boolean algebra of all subsets of an n-element set,

we have

o(1/t,t) = t T (eeny?,

because there are (2) elements of rank ) kin L, for

k =0,1,...,n, A considerable amount of information

is available from the fundamental domain relation,
because it consists of A(1l) independent relations on

the set of (r(1)+1)(A(1)-r(1)+1) coefficients of the

rank generating function. In particular, there is always

(1]

a monomial ¢ with coefficient 1, which corresponds

to the element 0 of the lattice, and a monomial %(1)-r(1)’
also with coefficient 1, corresponding to the element 1

of the lattice,
§3 Algebraic Properties of the Rank
Generating Function
a) The Relative Rank Generating Function

The rank generating function of an exact differen-
tial is also, in some sense, a function on pairs of

elements of the lattice, We observed in Chapter I1

1supra, Chapter I, §4a, p. 16.
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that the restriction of an exact differential to any
lattice interval is itself an exact differential,
Beginning, then, with an exact differential R on a finite
complete modular lattice L, we have, for every pair

of elements x,y of L with x < y, a rank generating

function which we denote

p(X,¥3E,n),

associated with the restricted differential RI[x on

Y]
the sublattice [x,v].

If we further define p(x,y;&,n) to be the zero

function unless x < y, we obtain the relative rank

generating function p(x,y;&,n), defined for all elements

x and y in L, and for all real numbers ¢ and n,

It will be convenient for future claculations to
set down in detail the enumerations which yield the
coefficients pij(x,y) of monomials £*n? in the relative

rank generating function p(x,y;&,n):

pij(x,y) = the number of lattice elements z,

with x < z < y, for which

i

]

r(y) r(z) and

(x(z) - x(x)) - (r(z) - r(x)).

j

These conditions may also be written in terms of rank



114

in the fixed point lattices of the restricted differen-
tial and its dual. The index i represents the rank
difference between the element 1 in the fixed point

lattice [x,y] / Rl[x and the image in this lattice of

Y]

the closures of elements in the lattice interval [x,y].

The index j represents the rank difference in the

lattice [y,X] / R*I[f = between the image of 0 and the
’

image of the *closures of elements in the interval [¥,X]

of the lattice L.
b) Factorization

There exists a connection between multiplication
of differentials and multiplication of their rank

generating functions.

Proposition. A Sufficient Condition for Factorization
of Rank Generating Functions: Assume an element x in
a finite complete modular lattice L is a factor of an
exact differential R on L. Then the rank generating
function of the exact differential R on L is the product
of the evaluations of the relative rank generating func-
tion at the pairs (0,x) and (x,1) of the lattice elements,
ie:

p(Eyn) = p(0,x38,n)p(x,1;E,n).
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Proof: Since the element x is a factor of the
differential R on the lattice L, we know the values

of R are given by
R(y,z) = sup{R(y~x,zax),R(yvx,zvx)}

for all elements y and z in the lattice L, If p is a
path from 0 to an element y in L, then for every step
[pi_l,pi] we have either Pj.1"X < PjaX OT p; qvX < D,vX,

but not both., Thus the rank X in L has the property

Aly) = (A(yax) - 2(0)) + (A(yvx) - a(x))

and the Whitney rank function r of the exact differential

R satisfies

r(y) = (r{y»x) - £(0)) » (rlyvx) - (X)),
The rank generating function p of R may be written

he, ) = et R S ECE L
yeL

We express these exponents of £ and n as follows:

¥l =r(y)
aly)-xly)

[r(x)-r(ysx)] + [r(1)-r(yvx)]
[A(yax)-T(yrx)] + [A(yvx)-A(x)-r(yvx)+r(x)],

wherein the first of the two terms in each sum depends
only on the projection y » yax of the element y into the

interval [0,x], and the remaining term in each sum
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depends only on the projection y + yvx of the element
y into the interval [x,1]. Summing instead over all
pairs of elements Y12V with Y1 in [0,x] and Y, in
[x,1], we have
o(£,n) = z Er(x)'r(Y1)nA(Y1)'r(Y1)
yle[O,x]
. y gr(l)-r(yz)nl(yz)-A(X)-r(yz)ﬂ(X)
y,elx,1]

b p(O.X;E,n)'p(an;E.n)-

c¢) Recursion

We have extablished the property which rank genera-
ting functions possess relative to the multiplicative
structure of differentials., If an exact differential
is defined on the Boolean algebra of all subsets of an
n-element set, the relative rank generating function
of the differential also satisfies a recursion relation

relative to the "additive" structure of the lattice.

Proposition., The Recursion Formula: Given an
exact differential R with rank generating function o
on the Boolean algebra L of all subsets of the n-element
set X, and given any element e of the set X, let e'

denote the complementary subset X - e, then
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p(E,n) = nl'R(O'e)p(O,e';a,n) + &R(e"l)p(e,l;a.n).

Proof: We consider three cases:
a) R(0,e) = 0, in which case R(e',1) = 0
b) R(e',1) = 1, in which case R(0,e) = 1

c) R(O,e) = 1 and R(e',1) = 0,

Case a): Assume an element y covers an element
X in the interval [0O,e']. Consider the local graph
on X,y,xve,yve., Since R(0,e) = 0, the translation
property implies R(x,xve) = R(y,yve) = 0. The local
graph must be either zero or mixed, so R(x,y) = R(xve,yve),
and the mapping X + Xxve from the interval [0,e'] to the
interval [e,1] is a differential-preserving isomorphism.
p(0,e';&E,n) = p(e,1;E£,n), and every subset in the inter-
val [e,1] has grading one higher in the second compo-
nent than the corresponding subset in the interval

[0,e']., Thus

p(Eyn) = (1+n)p(e,1;&,n)

nalO0,e' e n) + el e n).

Note that the factor 1+n in the above expression is
p(0,e;e,n). The first form of the above expression
is the product formula derived from the product R =

RI[O’e]xR|[e.1], the element e being a factor of the
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differential R on the Boolean algebra L,
case b): If R(e',1) = 1, the element e is again
a factor of the differential R on the Boolean algebra

L, so

p(&,n) pll0,es e, m)ple, e, n)
(lte)pile,l;&,n)

p 0, sE.n) * Eple,liE,n).

case c¢): If R(0,e) = 1 and R(e',1) = 0, we must

prove

plEsn) = p(0,e"&,n) * ple,1E,n).

If y is any subset containing e, we choose a path p
from 0 to 1 via e and y, and show the bi-grading of the
subset y is the same as that with respect to the re-
stricted differential R|[e’1]. The sum of R values
along the path p from y to 1 is the same with respect
to R and Rl[e,l]' as is the sum of values of the func-
tion 1 - R on that portion of the path p from 0 to y

in one instance and from e to y in the other, These

are required bi-gradings.

On the other hand, if y is a subset not containing
e, we choose a path q from 0 to 1 via y and the subset
e', and show the bi-grading of the subset y is the same

as that with respect to the restricted differential
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RI[O e']? by a similar argument,
?

Thus, separating the expression for p(&,n)
into a sum over subsets containing the element e and a

sum over subsets not containing e, we have:

p(E,n) = J ggl(Y)ngz(Y)
yel
o £81(y) 820y ) £81(y) 82 (¥)
yel0,e'] yele,1]

= p(0,e"3E,n) + ple,1;&,n)
since we have shown that the gradings coincide.

To obtain a well-known example of this recursion
formula, let the differential R be the partition differen-
tial of a graph relation. We know such a differential
to be exact; the lattice on which it is defined is the
Boolean algebra of all subsets of the set of edges.

The restricted differential Ri[O,e'} is the partition
differential of the graph formed by removing the edge e;
the restricted differential Rl[e,l] is the partition
differential of the graph formed by contracting the

edge e to a single vertex, and contracting all other
edges connecting the same pair of vertices to loops.

For example:
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elimination contraction

v ¢

ézzx >0

That we have established a general recursion formula
which applies simultaneously to the Tutte polynomiall
and to the chromatic polynomials2 of a graph and its
dual will be clear once we derive these various poly-

nomials from the rank generating functions.

Any recursion formula, valid for exact differentials
on a complemented modular lattice, must take into account
the possibility that an atom may have several complements

in the lattice, all of which are necessarily coatoms,

Proposition. General Recursion Formula: Given
an exact differential R with Whitney rank function r and
rank generating function p on a finite complete comple-
mented modular lattice L, the following formula holds

for any atom e of L, the complements of which are

1W.T. Tutte, "A Contribution to the Theory of
Chromatic Polynomials', Can. J. 6(1954) p. 85.

2G.D. Birkhoff, "A Determinant Formula for the
Number of Ways of Coloring a Map'", Annals, 14(1912)
po 42'46.

3infra, sections 4 and 5 of the present chapter,
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enumerated e'l,...,e‘k in some order:

Q(E,n) - nl-R(O'e)p(epl;gsn)

R(e'i,l)

* je p(0,e'i3€,n)
1

- " L
-_E.Er(l) pE 3)0(0.8'1 e'j3&,n)
Al

3

- (-1)k'1gr(1)"r(e'1 ¥ e'k)p(o,e'l v )
Proof: The proof used for case c) of the recursion
formula for rank generating functions of differentials
on a Boolean algebra applies in this more general situa-
tion. The first component of the bi-grading is the same
for elements above e as it is on the interval [e,l].
The second component differs by 1 if R(0,e) = 0. Thus
arises the first term in the recursion formula. The
remaining terms arise by application of the classical
inclusion-exclusion principle to sums over lattice
elements lying beneath complements e'. comprising various

subsets of the set {e‘l,...,e'k} of all complements of

the element e of Ll.

d) Matrix Inversion

lyide infra, Appendix A, example
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The function p(x,y;&,n), regarded as a function
of x and y alone, for any fixed ¢ and n, may be thought
of as an upper triangular square matrix with numerical
entries, indexed in both dimensions by the elements
of the lattice, arranged in some increasing order,.
These matrices all have the property that the entry
in the row corresponding to the element x in L and in
the column corresponding to the element y in L 1s zero
unless x < y in L, Such matrices form an algebra under
addition, scalar multiplication, and matrix multiplica-

tion, an algebra called the incidence algebral of the

Lattice L,

The principal objects of interest in the incidence
algebra are the identity, the zeta function, and its
inverse, the Mobius function. These are usually defined

as follows:

identity §: 6(x,y) = 0 if x # vy
=1 if x = y.
zeta & C(X,¥) = 0 if X £ ¥

= 1 1f x < y.
Mobius wu: the inverse of ¢, thus characterized

by the relation i, v) = silix,z]

ye%X.Z]

1G.-C. Rota, "On the Foundations of Combinatorial
Theory", Zeitschr, fur Wahrshein., 2 (1964), pp. 340-360
85,
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for any choice of interval [x,z].

We shall employ a polynomial generalization of the
zeta function, but shall use the same name. Thus we

define the zeta function of an exact differential R

with Whitney rank function r on a finite complete

modular lattice L by

tlEn] = e R ACLERTC )N

As a function of pairs of lattice elements, the relative

zeta function may then be computed, for x < y, as

et ) = g D OIS E e T DR S A L) S TCED

It should be noted that z(x,y;l,1) is the usual zeta
function, a numerical matrix element of the incidence
algebra, The relationship between the relative zeta
function of a differential and the rank generating
function of that same differential is exhibited in the

following statement,

Proposition. The Rank Generating Function Derived
from the Zeta Function: Given an exact differential R
on a finite complete modular lattice L, its rank genera-
ting function p and its zeta function g, we have

plx, v E,n) = ) (e e el n)e(z, v 8,10,
zefx,y]
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ie: the rank generating function is the product, in the
incidence algebra, of two partial evaluations of the

relative zeta function.

Proof: The number of elements z in the lattice
interval [x,y] for which t(x,z;1,n) = n? and for which

i

z(z,y;€,1) = & is equal to the coefficient o,

E
We shall now develop an inversion formula for the
relative rank generating function, the inverse being
with respect to the operation of matrix multiplication
in the incidence algebra of the domain of the differen-

tial, and valid whenever that domain is a Boolean algebra.

Theorem, The Multiplicative Inverse of a Rank
Generating Function: If an exact differential R on
the Boolean algebra L of all subsets of an n-element
set has rank generating function p and zeta function ¢,
then for all pairs x,y of subsets in L and for all pairs

g,n of non-zero real numbers,

o L (x,y38,m) = c(x,y5-8,-n)0(X,y31/¢,1/n).

Proof: We begin by analysing the numerical product
t(x,y;E,n)p(x,y;1/6,1/n). The coefficient of £'n’ in
the expansion of this product is equal to the number

of elements z in the interval [x,y] for which
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1=y} = rix) = vy} = r(z)]
r(z) = r(x)

]

and for which

J= x(y) = ¥(y) = x(x) * n(x)
=[A(z) = r(z) - A(x) + r(x)]
= x(y) =~ v(y) = a(z) * r(z)

ie: the coefficient of ginj in the expansion of the
product z(x,y;&,n)p(x,y;1/£,1/n) is the number of elements
z in the lattice interval [x,y] such that any path from

X to y via z has R value 1 on i steps beneath z and R
value 0 on j steps above z, This means that the product
t(x,y;&,n)p(x,y;1/¢,1/n) may be expressed, in much the
same manner as the rank generating function, as a matrix
product of partial evaluations of the relative zeta

function:

t(Xx,y38,n)p(x,y;1/€,1/n)

= 1 sxyzie,d) ez, vl 0.
zeefx,y]

No use has yet been made of the assumption that the
domain of the differential is a Boolean algebra. The
above formulation holds for any finite complete modular

lattice.

We may now proceed to prove that the matrix product
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) Z(Xy23=E,~n)p(X,Z2;1/E,1/0)p (2,7 ;E40)
ze[x,y]

is equal to the identity function 6(x,y). Factor the
first two factors and the last factor into their res-
pective formulations as matrix products of partial
evaluations of the zeta function; this introduces a

triple summation

ze[x,y] Wle[x’Z] WZQEZ|Y]

of the product of four terms, signed in accordance with

the degrees of terms in z(x,z;-&,-n), namely:

CMETE) e, 1wy, 251,008 (z,W,51,m) 8 (Wy,y 36, 1).

If we interchange the order of summation, summing
first with respect to subsets z in the interval [wl,wz],

all terms in the product are constant except

(”1)A(Z)C(Wlaz;lsn)cczswz;lin)
(1A (&) (A (2)-T(2) -2 () =T ()] [A(w5) -T () -A (2)+1(2) ]

(_I)A(z)nk(wz)-r(wz)-k(w1)+r(w1).

]

Since this power of n is independent of z, it remains

to sum (-l)A(Z) over the interval [wl,wz]. This summa-
tion yields (-1)l(w1)6(w1,w2), because the lattice is
Boolean, the number of elements of each rank is a binomial

coefficient, and the alternating sum of binomial
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coefficients is zero unless the sum is over an interval

of length zero.

We now ignore all terms in which Wy # W, and set

W W= in the rest., There remains to be performed

1
a single summation, for all subsets w in the interval

[x,y], of the products

-1 (W) =2 (X)c (x,w;g,1)c (w,yse,1)

(_1)A(W)'A(X)Er(w)-r(x)gr(y)-r(w)
Er(Y)'r(X) (_1)A (w) =2 (X) )

Once more, the summation of (-l)k(w)'k(x) over the
interval [x,y] yields 6 (x,y), which is zero except when

X =y. Whenx =y, e PO T(R) S o oise 1, so the entire
matrix product yields § (x,y), and the proof of the inver-

sion formula is complete.

The coefficient array for the inverse of the rank
generating function of an exact differential on a finite
Boolean algebra may be obtained by rotation (180°) of
the coefficient array of the rank generating function,
then applying the appropriate sign to the array as a
whole. For example, the rank generating function

p (& n for the partition differential of the graph
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fs m® * mpl e BEF ESY % 3 € 3E + E- with coetficient

array 4 31 « JThe inhverse of the relative form,
33 1

p(x,y;&,n), of this function has, at the subset pair

(x,y) = (0,1), the coefficient array 13 4 .

This inversion process may be traced through two stages,
Substitution of 1/¢, 1/n for £ and n reflects the coef-
ficient array through the origin., Multiplication by
t(£,n) translates the array up and to the right by
exactly its own dimensions., The composite effect is
equivalent to a rotation by 180°, preserving the outlines

of the array.

We now turn from this compilation of algebraic
properties to establish the relationship of the rank

generating function to other well-known polynomials,

§4 Associated Lattice Polynomials

Embodied in a sequence of lemmas below is the proof

of the principal theorem concerning rank generating
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functions on a Boolean algebra, Our objective is to
establish a 1-1 correspondence between bases for the
differential and intervals in the Boolean algebra, such
that the collection of intervals is a 1-1 covering of
the Boolean algebra. Matchings of this type correspond

to substitutions in the rank generating function,

We shall first establish the matching process,
then state the theorem concerning substitution in the
rank generating function. Let R be an exact differential
with Whitney rank function r on a Boolean algebra L
of all subsets of an n-element set X. Since the Boolean
algebra is complemented, every subset which is a fixed
point of R on L is the intersection, in L, of coatomic
(in L/R) fixed points, and every dual fixed point is a
join in L of coatomic (in i/R*) dual fixed points., We
shall refer to the set C of coatomic (in L/R) fixed
points of R in L, and to the set C* of coatomic (in ﬂ/R*)

dual fixed points of R in L.

Place the elements of the set X in some linear
order w, The statement w(d) < w(e) will mean the element
d is lower in the ordering w than is the element e,
Relative to this ordering of the set X, we define a

complex of four operators on the Boolean algebra,
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The first operator { is designed to produce in
one operation the result of sequentially deleting from
a subset y the highest element of y which is in any dual
fixed point contained in the set y, repeating this
operation until the resulting subset is independent.
The definition: for any subset y in the Boolean algebra L,
L(y) is a subset of y, and an element e is in
y - £(y) if and only if there exists a dual
fixed point in C* contained in y, in which the
element e is the highest element in the ordering

W,

The mate to the operator £ is the operator u, which
is designed to produce in one operation the result of
sequentially adding to a subset y the highest element
not in some coatomic fixed point which contains the
subset y, repeating this operation until the resulting
subset spans, The definition: for any subset y in L,

y is a subset of u(y), and an element e is in
u(y) - y if and only if there exists a fixed
point in the set C which contains the subset vy,
and in the complement of which e is the highest

element in the ordering w,

Note that, under the anti-isomorphism carrying the

Boolean algebra L into the inverted Boolean algebra L,
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the operator u defined for the differential R becomes
the operator £ defined for the differential R*, The
ordering w is left the same in both instances, and
non-containment in fixed points is the dual of contain-
ment in dual fixed points. This observation will make
it unnecessary to provide separate proofs for what may

be seen to be the duals of statements already proven,

This first pair of operators map subsets into sets
which resemble bases in one or more respects; we shall
prove that the image subsets are independent sets and
spanning sets, respectively., The other two operators
also form a pair, but work in a direction opposed to that
of the first pair: the images of subsets are less like

bases than are the subsets themselves.

The operator ~ is defined to be the local opposite
of the operator u, Given any subset y in the Boolean
algebra, we define:
y is a subset of y, and an element e is in
y - y if and only if the element e is in the
set u(y-e) - (y-e).

To characterize the operator ~ without reference to the

operator u, we say an element e is in the set y - y~

if and only if there exists a coatomic fixed point, in
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the set C, which contains y - e, and in the complement

of which e is the highest element in the ordering w.

Similarly, the operator * is defined to be the
local opposite of the operator £. Given any subset y
is the Boolean algebra L, we define:

y is a subset of y+, and an element e is in
y+ - y if and only if the element e is in the
set (y+e) - £(y+e).
Thus an element e is in the difference set y+ -y if
and only if there exists a dual coatom, in the set C¥*,
which is contained in the set y+e, and in which the

element e is highest in the ordering w.

We shall prove that the operators * and are
closure operators, the differentials of which are greater
than or equal to the differentials R and R*, respectively.
The operators " and " induce a bi-grading which we define,
in terms of the Boolean algebra rank A, for any subset y

in the Boolean algebra, by

Ay) - A(y")
A(y") - A

1(y)
e(y)

The grading 1(y), the number of elements deleted from

the subset y by the operator ~, we refer to as the
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internal activityl of the subset y. The grading e(y),

the number of elements added to the subset y by the

operator +, we call the external activity of the subset vy.

We now prove a succession of lemmas leading to the
proof of the main substitution theorem, Rather than
repeat standard assumptions in the statement of each
lemma, let us agree that in each lemma the differential
R is exact, that it is defined on a Boolean algebra L
of all subsets of a finite set with n elements, and
that it has Whitney rank function r inducing the usual
bi-grading g = (gl,gz) on subsets in L., Further, we
agree that X is rank in the Boolean algebra L, and that
the operators ﬂ,u,+,- and the bi-grading (i,e) are

defined as above.

Lemma. Ranges of the Operators £ and u: The
operator £ maps onto the set of independent subsets in
the Boolean algebra L; the operator u maps onto the set

of spanning subsets of L,

Proof: Let y be any subset in L, and u(y) its
image under the operator u., If an element z covers u(y),

and R(u(y),z) = 1, there is a fixed point of R in the

1cf. W.T. Tutte, "A Contribution to the Theory of
Chromatic Polynomials'", Can, J., 6, (1954) p. 85,
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half closed interval [u(y),1), and thus there is a

fixed point w of R, above u(y), whose image in L/R is

a coatom. But u(y) must contain the highest element

not in this coatomic fixed point w, contradicting the
statement u(y) < w. By the characterization of spanning
elements in terms of differentials, u(y) spans. Converse-

ly, if y spans, u(y) = y, so the map u is onto.

The corresponding statement concerning the range
of the operator £ may be proven by applying the above
result to the dual differential R*, and employing our
observation that the roles of the operators u and £ are

interchanged by duality,

Lemma, Successive Operations Have the Same Effect
as u and £: Given a subset x in the Boolean algebra L,
and any subset y containing x but contained in u(x),
it must be true that u(y) = u(x). Dually, for the

operator £, £(x) <y < x implies £(y) = £(x).

Proof: Let x and y be subsets in the Boolean alge-
bra L such that x < y < u(x). If an element e is in
the set u(y), but e is not in y, there exists a coatomic
fixed point 6 in the set C, with & containing y and with
the element e being highest in the order w among elements

in the complement of &, Then x <y < & implies e e u(x),
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so u(y) is a subset containing y and contained by u(x).

The remainder of the proof that x <y < u(x) implies
u(y) = u(x) is somewhat more involved. We need the
recursive relationship, valid for any subset x and any
pair of elements e; and e, not in the subset x, that if
the elements e and ¢, are in the set u(x), then the
element e, is in the set u(x«el). To prove this rela-
tionship, let €4 and e, be any two distinct elements in
the set u(x) - x. There exist coatomic fixed points
§, and 6, containing x, such that ¢, is the highest
element, with respect to the ordering w, not in the set
&1 and e, is the highest element not in the set 850
In particular, 61 # 62. e e is an element of 52,
then 8, is a coatomic fixed point containing Xve,.
Since e, is the highest element not in §5 €5 is in the
set u(xvel). If, on the other hand, the element e,
is not in the set 6,, then e, is higher than e in the
ordering w, If the element e, were not in the fixed
point 1 the contrary ordering, e higher than €,

would apply. Thus the element e, is in neither 61 nor

1
62, and the element e, is in 61 but not in 855 with
e, higher than e in the ordering w. Applying the

exchange property of coatomic fixed pointsl, there exists

lsupra, Chapter 1II; 5, p. 95,
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a coatomic fixed point 85 containing the subset

(dl“az)vel' and not containing the element €y Since
elements not in §; are either not 1o §; or not in 8
they are lower in the ordering w than either e, or e,,
and thus lower than €, Consequently, the element €,

is in the set u(Xvel), and our recursive relationship

is proven,

We now complete the proof that x < y < u(x) implies
u(y) = u(x). Assume some element e is in the set u(x)
but not in the set u(y). List the elements €13€95 0008
of the set y - x in some order. Since the elements
e and €1s.+4,€ are in the set u(x), the elements e
and €ryees,€ are in the set u(XVel), the elements e
and Czyeee,€y are in the set u(XVelvez),..., and the

element e 1s in the set u(Xve1 ...vek) = u(y). This

completes the proof of our lemma,

Lemma, The Rank and Bi-grading of Images Under
the Operators £ and u: The increase in rank between
a subset y and its image u(y) under the operator u,
is equal to the value gl(y) of the first component of
the bigrading g(y) = (g;(y),g,(¥)). The value of the
second component of the grading is unchanged: gz(y)
= gz(u(y)). The operator £ accounts for a decrease in

rank, between a subset y and its image £(y), equal to
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the value gz(y) of the second component of the bigrading

g(y). The value of the first component of the grading

is unchanged: gily) = g;(£(y)).

Proof: Choose a path p from the subset y to its
image u(y). For any step [pi-l’pi] of the path p,
let e be the single element in the difference set
Py - Pj.1+ By our previous lemma, e is an element of
u(pi_l), so R(pi-l’pi) = 1, Thus the first component
grading difference is equal to the difference in Boolean
algebra rank, and the second component grading is un-
changed. The corresponding statement for the operator
£ follows by application of the foregoing result to the

dual differential R¥*,

- +
Lemma, The Operators * and ": The operator
is a closure operator on the Boolean algebra L. The
operator = is a closure operator on the inverted Boolean

algebra L.

Proof: We shall prove for the operator - that,

for any subsets x and y in the Boolean algebra,

: B0 R S

ii) x <y implies x <y
ti) % =X,
The image x is defined as a subset of the set X, 50

property 1 holds. Assume a subset x is contained in a
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subset y, and that an element e is in the set x but

not in the set y . By the definition of the operator ,
there is a coatomic (in L/R) fixed point & containing

the subset y - e, in the complement of which e is the
highest element in the ordering w. Since x < y, the
fixed point 6 also contains the set x - e, so e is not

an element of the image set x , contradicting our assump-

-

tion, Thus x < y , proving property ii.

Now assume, in contradiction to property iii, that,
for some element e in an image set x of some set x
in L, there is a coatomic fixed point & containing the
set x - e, and the element e is the highest in the
ordering w among those elements not in the fixed point
8, Under these assumptions, we shall establish the
existence of a sequence of coatomic fixed points having
successively larger intersection with the set x - x_,
all containing the set x - e, and all having the element
e as the highest element in their complement., The
extablishment of this sequence implies the contradictory
situation in which some coatomic fixed point terminates
the process by containing x - e, which would mean the

element e must be in the set x - x ,

Let 61 be any coatomic fixed point containing the
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set x - e, for which the element e is highest among
elements in the complement of 81 Let ey be any element
which 1s in the complement of 61 and also in the difference
set x - x . Since e, is in the difference set x - x ,
there exists a coatomic fixed point §, containing

X - e;, such that e is the highest among elements not

in §,. Since €, is also in the complement of §15 © is
higher than e in the ordering. By the exchange property
of coatomic fixed points, there exists a coatomic fixed

point 8¢ containing 61A62 and the element e, but not the

1
element e, Such an element 8+ contains whatever inter-
section §, had with the difference set x - x , plus the
element eq. Any element not in 65 is edther not in 81
or not in 62; in either case it is lower in the ordering
w than is the element e. Thus there is established

a sequence of coatomic fixed points with successively
smaller intersection with the set x - x , and leading to

the contradiction outlined above.

The corresponding statement for the operator i
follows by application of the above result to the dual

exact differential R¥*,

Lemma, Mutual Containment Relations: For any
pair of subsets x and y of the Boolean algebra, contain-

ment of y between x and x is equivalent to containment
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of x between y and u(y). Similarly, containment of y
e . .
between x and x 1is equivalent to containment of x

between £(y) and y.

Proof: A subset y is contained between a subset
x and its image x  if and only if, for every element e
in the difference set x - y there is a coatomic fixed
point & containing the subset x - e, for which e is the
highest element in the complement of &, This is true
if and only if the subset x is contained between the
subset y and its image u(y). The corresponding relation

between the operators * and £ is the dual of this relation.

Lemma. Partial Matching Property: A subset x is
the image of a subset y under the operator u if and only
if x is a spanning subset and y is contained between x
and its image x . Dually, a subset x is the image of
a subset y under the operator £ if and only if x is
independent and y is contained between x and its image

+
X .

Proof: Our lemma concerning the ranges of the
operators £ and u states that any image subset x = u(y)
is a spanning set, Since x is between y and u(y), we
apply the previous lemma to imply that y lies between

x and its image x . Conversely, if a subset x spans,
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u(x) = x. If, moreover, a subset y is contained between
x and its image x , the subset x must be contained
between y and its image u(y). By the lemma concerning
successive operations for u and £, u(y) = u(x) = x,.

The dual property follows by application of this result

to the dual differential R¥*,

We are now in a position to prove the fundamental
matching property, upon which all our subsequent enumera-
tive work is based. Using the operator £, then the
operator u, we map every element onto a base, The
inverse image of a base is invariably a lattice interval,
The collection of intervals associated with bases jointly

cover the entire Boolean algebra without overlapping.

Lemma, The Fundamental Base-Interval Matching
Property: A subset x is the image of a subset y under
the composite operator £, then u, if and only if the
subset x is a base, and the subset y is contained
between the image subsets x and x*. The composition
of the operators u and £ in the opposite order results
in the same operator: u(£(y)) = £(u(y)) for all subsets

Y.

Proof: Assume a subset x is the image of a subset

y under the composite operator, x = u(£(y)). By the
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lemma concerning the ranges of u and £, the subset x
spans, and the subset £(y) is independent. By the
lemma on bi-grading of images of u and £, gz(u(ﬂ(y)))

= gz(i(y)) =0, so x = u(£L(y)) is also independent, and
must be a base. We now show that the subset y is con-
tained between x  and x . Because £(y) < x = u(L(y)),
the mutual containement relation implies x < £(y) < X,
so X s £(y) s Xay. Choose a path p from £(y) to xay.
Since £(y) s xay < y, the differential R must have

value 0 on every step of the path p., Since x < £(y)

A

Xay < X, the differential R must have value 1 on every
step of the path p. Thus the path must be of length
zero, and £(y) = xay. Let e be any element in the
difference set y - x =y - £(y), and let z be the subset
L(y)ve = (xve)ay. By our lemma comparing successive
operations with u and £, we know e is not an element

of £(z). There exists a coatomic (in i/R*) dual fixed
point contained in z, and thus in xve, in which e is

the highest element in the ordering w. Thus e is an
element of the difference set x - x, establishing

the fact that the subset y is contained between x~

+
andex %

Conversely, we assume a subset y is contained be-

tween the images x and x' of a base x for the differen-
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tial., The proof that x = u(£(y)) rests on the duality
principle for exact differentialsl. Let e be any
element in the difference set y - x, Since e is thus an
element in the set x - X, there exists a coatomic

(in i/R*) dual fixed point y contained in xve, such that
e is the highest element in y., We show that y is
actually contained in the set (yax)ve, Let e be any
element other than e in the dual fixed point y. We
apply the duality principle for exact differentials

to the dual fixed point y contained in xve and the
unique fixed point & containing x - e,. Lety be the
subset (x - el)ve. The element e is in the dual fixed
point y if and only if the base x is contained in the
set yvY, if and only if the set yaé is contained in the
base x, if and only if the element e is not in the
coatomic fixed point.é, Since e is the highest element
of vy in the ordering w, no element €4 in y can be in
the difference set x - x . Thus the dual fixed point

y is a subset of (xay)ve, which in turn is contained

in the subset y, Therefore the element e is in the
difference set y - £(y). This being true for all
elements e in the difference set y - x, we know £(y)

is a subset of xay. Since xay is contained between y

lsupra, Chapter I1I, 55, p. 97.
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and £(y), the lemma concerning successive operations
implies £(xay) = £(y). But since Xxsy is a subset of a
base, xay is independent, and £(xay) = xay, and £(y)

= xay. Now apply the operator u to the subset £(y).
Since £(y) is contained between the base x and its image
x , x is contained between £(y) and its image u(L(y)).

Thus u(x) = u(£(y)). But the base x is a spanning set,

so u(x) = x, and x = u(£(y)).

This completes the proof of the base-interval

matching property

x = u(£(y)) if and only if

: - +
X is @ base, and ¥ < ¥ < X ,

The equality of the two composite operators
u(£(y)) = £(u(y)) for all subsets y

is a consequence of the symmetry of the base-interval
matching condition with respect to lattice inversion

and replacement of the differential R by its dual R¥*,

We conclude the presentation of preparatory material
with separate statements of two observations made in

the course of the previous proof,

Lemma, The Composite Operators: If a base subset x,
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with images x and x+, is the image under the composite
operator £, then u, of a subset y in L, x = u(L(y)),
then the image £(y) is the intersection xay, and the

image u(y) is the union xvy.

Proof: Under these assumptions, we proved £(y)
= Xay. The corresponding statement for the operator

u is the dual of the statement for the operator £,

Lemma, Internal and External Activity: If an
independent subset x is the image of a subset y under
the operator £, then the internal activity of y is equal
to the internal activity of x. If a spanning subset x
is the image of a subset y under the operator u, then
the external activity of y is equal to the external

activity of x.

Proof: Assume an independent subset x is the image
£(y) of a subset y. Since the operator ~ is a closure
operator on the inverted lattice i, the inequality x < ¥y
implies x~ <y , so the difference set y - y is a
subset of the difference set x - x ., As in the proof
of the fundamental base-interval matching property, we
use the duality principle for exact differentials to

prove these two difference sets are equal: Xx - X

=y -y . Since the numbers of elements in these sets
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are the internal activities 1(x) and 1(y), if follows

that 1(x) = 1(y).

Given any element e in the difference set x - x ,
there exists a coatomic fixed point § containing the set
X = &, such that e is the highest element not in §.
The condition y 2> x = £(y) implies x| 2 Yy * x, by the
lemma on mutual containment relations, Let e be any
element in the set x - x. There exists a coatomic
(in i/R*) dual fixed point Y contained in the set Xveq,
such that eq is the highest element in y. Since the set
x 1s independent, and is a subset of the set é§ve, which
spans, we may select a base w containing x and contained
in éve., The element € is not in the base w, since the
set xve, is dependent., Thus the fixed point & is the
unique coatomic fixed point containing the set w - e,
and the dual fixed point y is the unique coatomic dual
fixed point contained in the set wve,, by the proposition
on fundamental systems of coatomic fixed pointsl. The
duality principle for exact differentials then applies,
making equivalent the statements e € y and ey € S,

Since e; is the highest element in vy and e is the highest

element not in §, these statements cannot both be true.

lsupra, Chapter 111, §5, p. 97
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Hence both are false. Since e; € § for all elements
e, in the difference set x - x, the coatomic fixed

) . + .
point 6 contains the sets x - e and y - e, S0 e is an
element of the difference set y - y . This completes

the prootf.,

The completion of the preceding sequence of lemmas
makes available an immediate proof of the substitution
theorem for rank generating functions. We recall that
the rank generating function of an exact differential
R enumerates all subsets in the Boolean algebra relative
to the rank bi-grading g = (gl,gz). The substitution
theorem states that simple substitutions of variables
transform the rank generating function into generating
functions enumerating independent sets, spanning sets,
or bases, relative to a bi-grading made up partly from
the rank bigrading g and partly from the bi-grading

(1,e), with respect to internal and external activity.

Theorem. The Substitution Theorem for Exact
Differentials on a Boolean Algebra: Assume an exact
differential R with rank generating function p is defined
on a Boolean algebra L of all subsets of a finite set.

If we define double counting sequences “ij’mij’ and
*
m ij by
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355 is the number of bases of internal activity
i and external activity j,

mij is the number of independent subsets with
first-component rank grading i and external
activity i,

m*ij is the number of spanning subsets with
internal activity 1 and second-component rank

grading j,

and if we let a, m, and m* be the associated two-variable
generating functions of these double sequences, then

the formulae
D(E,ﬂ) - m(£:n+1) = m*(5+1:n) = a(€+l’n+l)
hold as identities in & and n.

Proof: Expanding the generating functions m(¢,n+l),
m*(g+1,n) and «(g+1,n+1) by the binomial formula, we
see that the statement of the substitution theorem is
equivalent to the following equations among the coeffi-

cients of these four polynomials:

ko L
Pl = k§ (i)(j)“kﬁ



145

: e i k

It will be sufficient to prove that mij = E(i)akj’
= vt -

and then that Bigs = %(j)mi£° The symmetry of the

gradings and of the definitions of independent and
span with respect to lattice inversion and duality

then provides a proof for the remainder of the theorem.

With any base x of internal activity k and external
activity j we associate the various independent sets
y such that u(y) = x. All such sets y lie in the inter-
val [x ,x], and conversely., By the final lemma, the
external activities of y and x are equal; by the lemma
on rank bigrading under the operators £ and u, the
difference in Boolean algebra rank, A(x) - A(y), is
equal to the first component rank grading. An indepen-
dent set with first component rank grading i and exter-
nal activity j must be one of the (?) subsets with i
fewer elements than a base with internal activity Kk
and external activity agreeing with that of the inde-
pendent set. The total number of independent sets

enumerated by mij is obtained by summing over all bases,

_ k
50 my s = E( i)akj'

Finally, a subset with rank bi-grading g; = i,

g, = j, is mapped by the operator £ onto an independent
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set with the same first component rank grading, and with
a number of elements j less than the number in the
original subset. Since such subsets lie in intervals of
the form [x,x+] above independent sets x, a subset with
rank bigrading i,j must be one of the (?) sets containing
j elements in excess of an independent set of external
activity £, Summing over all such independent sets,

we have the formula Piy = %(?)miz. This completes the

proof of the substitution theorem,

The following diagram of the Boolean algebra rank
differences involved in the above argument may serve

for further clarification:?
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The substitution formula, p(&,n) = a(g+1l,n+l),
offers an alternative in every enumerative problem
concerning exact differentials on a Boolean algebra.
On one hand, we may perform the grading g = (gl,gz)
for every lattice element., This operation is conceptually
simple, but may involve extensive computations if the
underlying set X is large. On the other hand, we may
assign an ordering w to the elements of the set X,
form the images of all bases x under the operators
and - and measure the rank difference 1(x) between the
base x and its image x , and the rank difference e(x)
between X and its image x*. While we achieve a considerable
decrease in the size of the set of objects to be graded,
we encounter a more complex grading process., But the
size of the set to be graded is an issue only in prac-
tical problems., In theoretical work, the size of the set
to be graded is of no consequence, while the conceptual
simplicity and order-independence of the rank grading

is all-important,

We close this section with an example, then proceed
to a closer inspection of the associated lattice poly-

nomials m,m*, and «, in section five,

Consider the exact differential on a set of four

elements in which all zero and one-element sets are
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independent, all two-element sets are bases, and all
three- and four-element sets span, The differential
R has value 1 on all steps below rank 2, and value 0

on all steps above rank 2, The coefficient array for

the rank generating function p is then v 14 »

so the coefficient array for the polynomial a is
V|2 « Since the sum of the entries in the

a coefficient array is equal to the (0,0) entry in the

p coefficient array, the numerical simplification in
passing from the rank generating function to the Tutte
polynomial is evident, However, all bases are struc-
turally identical; the differences between their internal
and external activities are introduced by the choice

of an ordering.

The working our of examples is aided by the obser-
vation that each base with internal activity k and

external activity j contributes (?)(?) to the coefficient
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of ginj in the rank generating function., The total
contribution of one such base to the coefficient array

of the rank generating function is a rectangular array
formed of products of binomial coefficients, For example,

one base of internal activity 3, external activity 2

1 5 31
contributes 26 6 2 to the coefficient array of o.
1.5 .5 1

§5 Enumeration on the Fixed-Point Lattice

The Mobius functions of the fixed-point lattices
both of an exact differential on a Boolean algebra and
of its dual differential may be obtained by evaluation
of the relative rank generating function at a pair of
integers. An immediate proof of this fact is provided
by G.-C. Rota's theorem? comparing the Mobius functions
of two lattices joined by a Galois connection. Since
we must distinguish between fixed points in the Boolean

algebra and their images in the fixed point lattice,

1G.-C. Rota, "On the Foundations of Combinatorial

Theory", Zeitschr., fur Wahrshein., 2 (1964), pp. 340-360,
§4,



150

let us use seript letters x,y, ete,, for the latter,

Proposition. Mobius Functions of Fixed-Point
Lattices: If R is an exact differential with rank
generating function p on a Boolean algebra L of all
subsets of a finite set, then, for all elements x,y in
the fixed point lattice L/R, x and y being the images
of fixed points x and y of R in the Boolean algebra, the
value p(x,y) of the Mobius function of the lattice L/R

is given by

w(x,y) = (-DFTYITE) oy vi0,-1).

Proof: We define a Galois connection from the
interval [x,y] in the Boolean algebra L to the interval
[#,X] in the inverted fixed-point lattice L/R. The
mapping from L to L/R is the composite of closure C&
in L, image of the resulting fixed point in L/R, and
inversion of the lattice L/R. The mapping from L/R
to L is lattice inversion followed by embedding. Both
maps are anti-isotone, The composite map from L to
f?ﬁ and back to L is equal to the closure operator C{&
in L. The composite map from f?ﬁ to L and back to L/R
is the identity, The pair of maps thus constitutes a

Galois connection.
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G.-C., Rota's theorem is proven under the additional
assumptions that x is the only element in the interval
[¢,X] which is mapped to x in the interval [x,y], and
that the element x in the interval [x,y] is mapped to X
in L/R. These assumptions are valid, since the element

X is a fixed point of R in L.

The conclusion, in this application of Rota's
theorem, is that the Mobius function of the lattice
i?ﬁ, evaluated at the pair of elements x,y, is the sum
of all uL(x,z) values of the Mobius function M, of the
Boolean algebra L at pairs x,z of subsets in L, where
z 1s any subset not equal to x and mapped to the element
y in i?ﬁ. Such subsets z in L are the spanning subsets
for y with respect to the restricted differential
Rl[x,y]’ and are thus characterized by the value zero
for the first component rank grading gl(z) = r(y) - r(z)
= 0, The Mobius function u, for the Boolean algebra has
value y;(x,z) = (-l)A(Z)'A(x). The M&bius functions

on the lattice L/R and on its inverse f7ﬁ are equal.

Thus,
Bl = L] (=1pAtE A
ze[x,y]
g1(z)=0
= (-1)r(y)'r(x) ) (D)g]_(Z)(_l)A(Z)-I‘(Z)

ze[x,y]

1T T« v50,-1).
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Corollary. Mobius Functions of Fixed-Point Lattices
of Dual Differentials: If R is an exact differential
with rank generating function p on a Boolean algebra
L of all subsets of a finite set, then, for all elements
Xay in the fixed point lattice i/R*, x and y being
the images of dual fixed points x and y in the Boolean
algebra, the value up(x,y) of the Mobius function of the
lattice ﬂ/R* is given by

Wy (eGSR SRl s

Proof: A Galois connection is established between
the inverted Boolean algebra L and the inverted fixed
point lattice of the dual differential, E?E*. We obtain
an expression for the Mobius function value u(x,y) on
the lattice ﬂ/R* as the sum of all values uL(Z,X) =
(-1)A(X)'A(z) of the Mobius function u; on the Boolean
algebra, where x is the dual fixed point corresponding
to the element X in i/R*, and z is any subset in the
interval [y,x] of L for which there is no dual fixed
point in the half-closed interval (y,z]. Such subsets
z are those mapped to y in the Galois connection, and are

characterized by the value zero for the second compo-

nent rank grading gz(z) = A(z)-r(z)-Ar(y)-r(y) = 0. Thus

u(x,y) = ekt e

ze{y.X]
gz(zJ=0
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(_l)l(x)-r(x)-x(y)ﬂ"(y) E (_l)T(X)"T(Z)(O)Hz(Z)

ze[y,x]

ENEE R B )

The exponents of (-1) in the expressions for the
Mobius functions on the fixed point lattices L/R and
i/R* are equal to the g1 and g, rank grading differences,
respectively, between the corresponding subsets in L,
We proved in section two1 that these rank grading
differences are equal to the differences in lattice
rank in the lattices L/R and i/R*, Tespectively, If
we had reason to believe that the values p(x,y;-1,0)
and p(x,y;0,-1) would always be positive, we would
have an alternative proof of Rota's theorem® that the
Mobius functions of geometric lattices alternate in sign.
Our main substitution theorem, makes this proof possible.

We know

p(x,y5-1,0) = mlx,y;0,0) = my o(x,y}, and

]

plx,v;0,-1) m*(x,y;0,0) = m*O,O(x'Y)

which enumerate spanning subsets of zero external activity

and independent subsets of zero internal activity,

1supra, p. 107,

2G.-C. Rota, op. cit,, Bheorem 4, §7.
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respectively, all statements being relative to the
Boolean algebra interval [x,y]. Being enumerants of
non-empty classes of subsets, the values p(x,y;-1,0)

and p(x,y;0,-1) are invariably positive,

§6 Classification and Enumeration of

Exact Differentials

Having laid general foundations for an enumerative
theory of exact differentials, we are now in a position
to make substantial progress on the problem of enumera-
ting graphs, This problem, the enumeration of the
isomorphy classes of graphs with n edges, has remained

unsolved, despite the application of Polya's Theoreml.

The sequence of values of an exact differential
on the steps of a path from 0 to 1 in the domain lattice
may be thought of as forming a word in a language
employing two letters, the letter 0 coming before the
letter 1 in the alphabet. O0f the words thus associated
with a given exact differential the work coming first
in alphabetical order is an isomorphy invariant of the

differential, and serves as an index for a classification

lJ. Riordan, "An Introduction to Combinatorial
Analysis*, Wiley, New York, 1958, pp. 145-147F,




system,

We use the term least path to indicate a path,

from 0 to 1 in the domain lattice of an exact differen-
tial, if the word formed of the differential values
along this path is alphabetically the first among all
such words associated with the same differential., The
word associated with a least path of an exact differen-

tial we shall call the first word of the differential,

Given any n-letter word formed of the letters 0
and 1, we shall prove the existence of an exact differen-
tial having that word as first word., This establishes
the existence of at least 2" isomorphically inequivalent
exact differentials defined on the Boolean algebra of

subsets of an n-element set,

The existence proof proceeds by induction, and
involves some facts of independent interest concerning
extensions of exact differentials, First, however, we
shall establish the basic properties of least paths,
and indicate their relationship with the rank generating

function.,

The ordering of rational numbers on the interval
[0,1] provides a clear picture of the ordering we have

placed on words., Given a path p from 0 to 1 in the
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Boolean algebra L of all subsets of an n-element set,
and given an exact differential R on L, map the path

p to the rational number

Rip: 10 020",

I e~—=

i=1
The lowest rational number in the range of this map
has binary decimal expansion equal to the first word

of the differential R, Any path mapped to this rational

number is a least path,

Proposition. Least Paths and Fixed Points: Let
R be an exact differential on a Boolean algebra of all
subsets of an n-element set, and let p be a least path
from 0 to 1 in L, If R(pi_l,pi) = 1 for any step
[pi-l’pi] of the path p, the subset p, 4 is a fixed
point of the differential R, If R(piwl’pi) = (0 for any
step [pi«l’pi] of the path p, the subset D is a dual

fixed point of the differential R.

Proof: Assume R(pi_l,pi) = 1 on a step {pi-l’pi]
in a least path p for the differential R. If there
were a subset x covering P;i.1 such that R(pi_l,x) =0,
the path via p to Pij_1° thence via x to 1, would be
alphabetically prior to the path p. Thus the subset

Pi.1 is a fixed point of R on L., Now assume R(pj_l,pj)
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for a step [pj-l’pj] in a least path p for the differen-
tial, 1If there is & subset x covered by pj’ such that
R(x,pj) = 1, let e be the element in the difference set
pj - x, and define subsets a; by gs = Po = e for & = iy
For some value k of the subscript, Qj.q = 9 = P - ©

= Pr.1» because e is an element in the subset pj, and
the path p begins at the empty set, For subscript
values 1 between k and j, the subsets q; form a path
from Pr.q to Xx. By the translation property, the
differential R has value 1 on all steps [qi,pi],

i = kj.s05)s By the exactness of the differential,
R(qi_l,qi) = R(pi_l,pi), i = k#l,...,], Compare the
words associated with the path p and with this alternate
path, q, agreeing with p except on the path segment
[pk_l,pj}. The word for the path gq is formed by deleting

the letter 1 in the kth

h

position, shifting the k+15¢
through jt letters forward on space, and replacing
the letter 1 in the jth position. There is at least
one letter 0 between the k+15% and jth letters in the
word for the path p. The first letter 0 between the

k+lst h

and jt letters is moved forward by one position
when the word for q is formed, so the latter word is
alphabetically prior to the word for the path p. This

contradiction implies that the differential R has value
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0 on all steps [x,pi] for subsets x covered by P;s SO

the subset 1 is a dual fixed point for R on L,

Consider for a moment the coefficient array P33
for the rank generating function ¢ of an exact differen-
tial R with Whitney rank function r on a Boolean algebra
L of all subsets of an n-element set, If a subset y
covers a subset x, and the subset x has grading g(x)

= (gl(x),gz(x)) = (i,j), the grading g(y) is either
(i,j+1) or (i-1,j), if the differential R has value 0

or 1, respectively, on the step [x,y].

If a subset x with grading g(x) = (i,j) is on a
least path for the differential R, and if y is the
subset covering x in this least path, then R(x,y) = 0
if and only if there exists a subset with grading (i,j+1).
Thus the subsets in a least path are enumerated by the
extreme entries in the coefficient array for the rank

generating function,

For example, the partition differential for the

five-edged graph, th\ , has coefficient array

il
5 for the rank generating function p.
9
7

TN =
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The least path p, the intervals [pi,l] of which corres-
pond to successive contractions of the 3 edges in the
tribond, then the two single edges, has word 10010,
the first word of this differential., This first word
corresponds to the outline of the coefficient array,

1| -

S-E]- starting from the empty subset 0

9 3 2
7k

in position (r(l1),0), and ending with the full subset 1
in position (0O,n-r(1)). Further considerations of this

nature will follow our proof of the enumeration theorem,

In order to establish the inductive step in our
proof that any word is a first word for some differential,
we need to know precisely the nature of extensions of
exact differentials to enlarged domain lattices. All
proper extensions may be given in terms of the lattice
of fixed points of the original differential. For this
purpose we introduce the concept of a modular cut of a

lattice,.

Definition: A modular cut of a lattice Q is a

bipartition of the elements of Q (one section of which

may be empty), such that each bipartition section is
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complete with respect to betweenness, and the section
containing the element 1 is complete under the formation
of meets, Xa.y, where Xxay is covered by one of the

elements x or y.

The notion of modular cut thus combines the pro-
perties of a Dedekind cut with an essential covering

condition,

Lemma, Extensions Produce Modular Cuts: Let R
be an exact differential on a Boolean algebra L of all
subsets of an n-element set, Let e be any element
of that finite set and let {HO,Hl} be the bipartition,
of the subalgebra of subsets not containing the element e,

defined by

HO {x e [0,e']; R(x,xve) 1}

L}
]

H {x e [0,e']; R{x,xve) 0}.

Then {HO,Hl} is generated by a modular cut of the fixed
point lattice L/R, in the sense that the section HO
consists of subsets contained in some fixed point in the

lower half of the modular cut.

Proof: Any maximal element of the set Hj is a

fixed point (even coatomic), as we established in our
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characterization of meet irreducible fixed pointsl.

The translation property of differentials provides com-
pleteness of the bipartition sections with respect to
betweenness. For example, if x <y < z with x and z

in Hl' we know R(x,xve) = 0 and x < y, so R(y,yve)

n
o

and y is also in the section Hy.

It remains to prove that the bipartition of the
fixed point lattice L/R induced by the bipartition
{HO,Hl} on the image of L/R under indlusion in L, is
a modular cut, Assume fixed points x and y in the

section Hl have an intersection z in H and that the

Ol
image of X covers the image of z in the fixed point

lattice L/R. Choose a path p in the Boolean algebra L
from z to x. By our proof of the fixed point covering

property of exact differentials?

3 R(pi_l,pi) has value

1 only for i = 1, Since the fixed point x is in the
section Hl, R(x,xve) = 0, so the R=sum from z to xve

is 1, Lift the path p to a path pve from zve to xve.
Since R(z,zve) = 1, R is zero along the entire path pve.

Since the fixed point z is also the meet in the Boolean

algebra L of the fixed points x and y, the path p may

1supra, Chapter III, §5, p. 86,

2supra, Chapter I1L, 82, p. 59.
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be lifted to a path pvy from y to xvy, and lifted again
to a path (pvy)ve from yve to (xvy)ve. Since y is a
fixed point of the restricted differential R|[0’e,],

and since y is an element of H, the differential R

has value zero on the steps [w,wve] and [y,yve] for any
subset w covering y and not containing the element e.

The fact that 1 = R(y,w) = R(yve,wve) implies yve is a
fixed point of the differential R, Thus R(povyve,plvyve)
= 1, contradicting the translation property, because
R(pove,plve) = 0. Thus the bipartition {HO’HI} is deter-

mined by a modular cut of the fixed point lattice L/R.

The converse of this lemma is also true, as we

now prove,

Lemma, Modular Cuts Produce Extensions: Let RO
be an exact differential on a Boolean algebra Ly of all
subsets of an (n-1)-element set X and let {HO’HI} be
any bipartition of the lattice LO generated by a modular
cut of the fixed point lattice LO/RO. Then the following
three statements define an exact differential R on the
Boolean algebra L of all subsets of the n-element set
X+e, for e ¢ X: for any pair x,y of elements of Lo»

with y covering x,

1) R(x,y) = Ry(x,y)
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I
ot

12 ) R{X Xve) it x e H

0
= 0 if x € Hl

iii) R(xve,yve) = 0 if Ry(x,y) = 0

or if R(x,xve) > R(y,yve)

and R(xve,yve) = 1 if Ro(x,y) =1

and R(x,xve) = R(y,yve).

Progof:  Fixed peints of Ry on L,y are fixed points

of R on L if and only if they are in the section Hyo

Fixed points of R which contain the element e must,

on deletion of e, become fixed points of R by the

Dl
translation property., To ascertain which subsets of

the form xve, where x is a fixed point of R,, are fixed

0°*
points of R, we observe that the R value of 1 on a step
[x,w], for w e LO' decreases to 0 on the step [xve,wve]
if and only if x is in the partition section Hy, while

W 15 in the section Hi' This decrease thus occurs if
and only if the image of the fixed point x is covered

in LO/R0 by the image of C£(w), with x in ' the partition

section Hy, and C£(w) in the section H

l‘
In summary, the fixed points of R are those of RO
in HO, plus those subsets xve covering fixed points X

of RO, where x is either in H or is an element of HO

1’
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not covered in L/R by any fixed point in Hl.

To establish that R, as defined by the three pro-
perties listed in the statement of the lemma, is a
differential, we show that the family of fixed points
of R is closed under intersection, and then quote the
characterization of differentials in terms of fixed
points, as given in Chapter II. Let x and y be two
fixed points of R on the enlarged Boolean algebra L.
If the appended element e is not an element of xay,

e is not in one of the two fixed points., Say e ¢ x.
Then xay = xa(y-e) is a meet of fixed points of Rg»
and is thus a fixed point of the differential Ry
Since x is a fixed point of R, and e ¢ x, x is in the
bipartition section HO. Thus xay is also in HO, SO

xay is a fixed point of the differential R on the enlarged
Boolean algebra L. If, on the other hand, the element

e 1s in both fixed points x and y, e is in xay. If

(xay) - e is a fixed point of Ry in the partition section
Hyy Xay is a fixed point of R. If (xay) - e is in the
partition section Hy, we must show it is covered in

LO/RO by no fixed point of Ry in the section Hy. £

a fixed point z of Ry in the section H; covers the

1supra, Chapter 1, §3, p. 12.
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fixed point (xay) - e in the lattice LO/RO, neither

zaX not zay may be xay, since {HO,Hl} is generated by a
modular cut of the lattice LO/RO. Since z covers xa.y,
we know zaX = zay = z, contradicting the statement

XAy < Z.

Thus the set of fixed points of R is closed under
intersection, and gives rise to a differential, as
shown in Chapter I. That the differential is exact
follows from the manner of extension., If a local graph
is entirely within Lyp» it may not be inexact. If a
local graph has any subset in the extended portion
L - L,, either a pair of parallel sides corresponds to
addition of the element e, or all four subsets contain
the element e. In the first instance, the local graph
consists of subsets x,y in L,», together with subsets
xve, yve in the extension, Condition iii) guarantees
that R values on the steps [x,y], [xve,yve], differ if
and only if the R values [x,xve], [y,yve] differ.

Such local graphs may not be inexact, Finally, assume
the subsets Xx,y,xvy,xay all contain the element e, and
that the local graph on these four subsets is inexact,
with R(x,xvy) = 0 and the other three R values 1. The
downward projection of this local graph into the Boolean

algebra L, has three R values 1 by the translation
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property. By exactness of Rys this projected local
graph is of type 1., Since no change occurs in the R
values on three parallel sets of steps, R((xay)-e,x-e)
= R(xay,x), etc., we know that on the four steps
[(xay)-e,xay]l,[x-e,x],[y-e,y],[(xvy)-e,xvy] the values
of the differential R must be equal, This contradicts
the assumption that R(x,xvy) = 0, while R(x-e,(xvy)-e)

= 1,

Theorem, Existence of Exact Differentials With
a Given First Word: Let W be any n-letter word, ie:
any sequence of length n consisting of zeros and ones.
There exists an exact differential R on a Boolean algebra
L of all subsets of an n-element set, such that the

word W is the first word of the differential R on L.

Proof: The theorem is obvious for n = 1, Assume
we are given a word W = WisesesWy of length n, and
that for any word of length n - 1 there exists an exact
differential defined on a Boolean algebra of all subsets
of an (n-1)-element set, such that the word of length
n-1 is the first word. If W = 1, find an exact dif-
ferential R0 on the sublattice [0,1-e], for which
WiseoosWo g is first word. Define R(x,xve) = 1 for all

subsets x in the sublattice [0,1-e], and define
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R(xve,yve) = R(x,y) for all pairs x,y of elements in the
sublattice [0,1-e]. This defines an exact differential

on the Boolean algebra of all subsets of an n element

step, That W is the first word for R follows from the

fact that the word for a path employing a step parallel

to [0,e] in any position but the last may be obtained

from the corresponding word for the projection of this

path into the sublattice [0,l-e] by insertion of the letter
1 at some point, moving all later letters back one

space. This results in a word at least as late in the

alphabetical ordering.

If the final letter W in the word W is 0, the
proof is a bit more intricate. Form an exact differen-
tial Ry on the Boolean algebra interval [0,1-e], having
WisesopW, ; a@s first word, On the fixed point lattice
[O,I-e]/RO, let the upper section of a modular cut
contain only the fixed point l-e of Ry Construct an
extended exact differential R on the Boolean algebra L
of all subsets of the n-element set in accordance with
the above lemma, The coatomic fixed points of the
resulting differential R are the coatoms of R, on the
interval [0,1-e], together with the elements of the
form xve, where x is a fixed point of Ly/Ry of rank

r(l)-2.
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If a subset x in the interval [0,l-e] is not a
spanning set, it is contained in some coatomic fixed
point of RO’ so is in the bipartition section HO’ with
R(x,xve) = 1., In any path from 0 to xve for a non-
spanning set x, the projection of this path into the
lattice interval [Oml-e], then via the step [x,xve],
is a lesser path, Let p be a least path for the extended
differential R, and one which passes through a minimum
number of subsets containing the element e, By the
argument just given, if the subset p, is the first subset
containing the element e occurring in the path p, the
subset Py.q Must be either a spanning subset in the
interval [0,1-e], or else a maximal non-spanning subset:
a coatomic fixed point of the differential Rye i£ the
subset Py is a spanning subset for Rp» all steps above
Pr-1 in the path p have R value zero, so the path folz
lowing p to Pr-1° then via 1l-e to 1 gives rise to the
same word, and involves the element e in fewer subsets.
On the other hand, if Pr.-1 is a coatomic fixed point
of Ry the step [pk-l’Pk] is the final step of p for
which R has value zero. Any path along p to p; q, then
via l-e to 1 gives rise to the same word, and involves
the element e in fewer subsets, Thus the path p passes

through 1-e, and is a least path., The restriction of
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p to the interval [0,1-e] is a least path for Rps sO
must give rise to the word WisesosW, ;. Since WS
0, the word for the least path p of the differential

R is the word W.

Corollary, A Lower Bound for the Number of Exact
Differentials: There are at least 2" non-isomorphic
exact differentials on a Boolean algebra of all subsets

of an n-element set,

Proof: There are 2" different words of length n,

and each may be first word for some exact differential.

The construction of an exact differential with a
given first word may be carried out methodically, This
has been done for all words of length 2,3,4 and 5 in
Appendix B, On a Haase diagram of the Boolean algebra
of all subsets of an n-element set, we color red those
steps on which the differential R is to have value 1,
leaving black those steps on which R is to have value 0,
Choose any path to be the least path, and color it to
conform to the given first word. Then color all steps
according to the requirements of translation and exact-
ness, together with the requirement that the given path
be least, Most helpful is our proof that the lower

ends of intervals on which R = 1 in a least path are
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fixed points, and that the upper ends of intervals on

which R = 0 are dual fixed points.

When all the implications of the first word are
exhausted, an exact differential may not be fully deter-
mined, An exact differential can then be defined in
more than one way with the given first word; the number
of such ways we shall term the multiplicity of the

word, Thus,

the multiplicity 6(W) of a word W of

length n is the number of isomorphically
inequivalent exact differentials with
first word W, definable on the Boolean
algebra of all subsets of an n-element

sSetl.

We have proven that all words have multiplicity o
at least equal to one., All words of one, two, or
three letters have multiplicity equal to one. A single

four letter word, 1010, has multiplicity two.

An application of the fundamental domain relation!

to the array of coefficients %; 3 for the Tutte poly-

nomial, a(&,n) = p(€-1,n-1), bears on this question of

1supra, Chapter IV, §2, p« 111,
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multiplicity, As a formula concerning coefficients,

the fundamental domain relation may be written

D s
for all k, () = gpi,k+i-r(l)'

Substitution of Tutte polynomial coefficients for rank

generating function coefficients, we have

for all k,

]

L I Gaitray) st

1 st

E (E( )(k+1 r(l)))a

Stl

)

This may be simplified, using the fact that the product

s 1

(i)(k+i-r(1)) enumerates (s+k-r(l))-element subsets

chosen from the union of an s-element set with a t-element
set, in which i elements are chosen from the s-element

set, The sum over i of these products must be the

STk

Ll r(l)) Thus

binomial coefficient (

Fals s+t
S0
Substituting q = r(1) - s and p = n - s - t, we obtain
an equivalent expression in which the coefficients

L provide a recursion relation for the binomial

coefficients.
n~p)

n
(k) = pEq“r(l)-q.n-r(l)m-p k-q
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One solution for a set of a coefficients satisfying

the fundamental domain relation is

= 0 unless 1 = »(1), 3 n-r(1l),

o .
1)

in which case o = 1,

r{l) sn=2(1)

Given any solution for a coefficients satisfying this
relation, another solution is obtained by reducing
any positive coefficient a5 40 for 1 <vi < (1),

1l < j <n-r(l), by one, and simultaneously increasing

and ao.

by one the adjacent coefficients a. : 1
1= T yd=1

1,3
We may now form the possible coefficient arrays

for the Tutte polynomial of an exact differential with

a given first word., Say the word has n letters, k of

which are 1, Place a single 1 in the (k,n-k) position, and

continue with the transfer of units from positions (i,j)

to positions (i-1,j) and (i,j-1), until the array

first falls withing the outline prescribed by the first

word., This array, and the arrays resulting from further

transfers which do not affect the outline, constitute the

possible coefficient arrays for the Tutte polynomial

of an exact differential with that first word.

For example, the word 1010 gives rise to two

possible arrays.
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! 47 1] . Tl i
..|-+--l+-1_1_+'2-"11'
o 2 kil

The last two arrays satisfy both the fundamental domain
relation and the first word condition, Of these two,

the former yields rank generating function coefficients
, and arises from the rank grading for the

partition differential for the graph «>¢> . The

latter of these two arrays yields rank generating
function coefficients 4 1 , which arise from

the rank grading for the partition differential of the

graph éé; .

Further examples will be found in Appendix B,
wherein all coefficient arrays are computed for exact
differentials on Boolean algebras of ranks two through

five,
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Appendix A

As examples of differentials, and to illustrate
the independence from one another of the properties
1) R** = R ("R is clased!")
ii) R* is exact ("R is pre-exact")
iii) The fixed point lattice L/R is semimodular
iv) Every element in L/R is a join of atoms,
We exhibit four differentials, possessed of properties
1,11, iii, and iv according to the following table:

(1 = yes, 0 = no)

R*¥* = R 0 1 0 1
R* is exact 1 0 1 0
L/R semimodular 0 1 1 0
L/R join of atoms 1 0 0 i

Examples e and f exhibit the difference between

set differentials and partition differentials,
Example g shows a product of differentials.,

Example h is a differential on a modular but not

Boolean lattice, to illustrate the theory of page 121,
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Appendix B

There follows a compilation of exact differentials
whose domain lattices are the Boolean algebras of all
subsets of a 1,2,5,4, or S5-element set. These are

listed in the order of their first words.

if an exact differential is the partition differen-
tial of a graph relation, the appropriate graph is
listed, Tf no such graph exists, a higher order geo-
metric relation is indicated, as is the case for the

word 1100,

Beside the first word and indication of the graph
relation, there are listed the coefficient arrays of
the rank generating function and of the Tutte polynomial.
The fixed point lattices of the differential and of

its dual are then drawn or described,

For exact differentials defined on the smaller
Boolean algebras, the differentials themselves are
drawn, with double (or red) lines indicating steps on
which the differential has value 1, The method for
drawing all exact differentials with a given first word

is indicated at the end of this appendix.
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The method for drawing all exact differentials
with a given first word is now indicated by an example.
The differential values of the first word are assigned
to steps in some convenient path, here taken to be
0,a,ab,abc,1. Then all implications are worked out,
and the appropriate differential values indicated,

according to the following principles:

i) The lower end of a step on which R = 1 in the
least path is a fixed point, so all steps of which it
is the lower end have differential value R = 1,

i') The upper end of a step on which R = 0 in the
least path is a dual fixed point, so all steps of which
it is the upper end have differential value R = 0.

ii) The translation property: Any step below

and parallel to a step on which R = 1 also has R ks

]

any step above and parallel to a step on which R 0
also has R = 0,

iii) Exactness, in the form of the statement of
independence of path for differential sums.

The method:
First word: 1010
Least path: R(0,a) = 1 R(a,ab) = 0 R(ab,abc) =1

R(abc,1)

n

0.

FIxed points: R(0,b) = R(0,c) = R(0,d) =1
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R(b,ab) = 0

R(ab,abd) =1

R(abd,1) = R(acd,l1) = R(bcd,1l) = 0,
Translation: R(a,ac) = R(a,ad) = R(b,bc) = R(b,bd) =1

R(ac,abc)

]

R(ac,acd) = R(ad,abd) =

R(ad,acd) 0

Exactness: R(c,ac) = R(c,bc) = R(d,ad) = R(d,bd) =1
R(ac,acd) = R(ad,acd) = R(bc,bcd) = R(bd,bcd)
= 0,

This leaves four steps with indeterminate differential

values, namely [c,cd], [d,cd], [cd,acd], [cd,bcd]. By

exactness, we know R(c,cd) = R(d,cd) and 1 - R9c,cd)

= R(cd,acd) = R(cd,bcd). There are thus two possible

exact differentials, as indicated following the word

1010 in the foregoing tables.,
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