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INTRODUCTION

In some engineering materials, such as steel, strength and

the stress-strain relationship are independent of rate and duration of

loading (within the usual ranges of temperature, rate of stress, etc.).

In contrast, however, there is a pronounced influence of time on the

behavior of concrete under load, Concrete continues to deform with

time when subjected to a sustained load. It is said to

undergo creep. Concrete creep is a visco-elastic phenomenon, and

thus it exhibits both instantaneous elastic and delayed viscous

deformations, which are partially recoverable.

In conventional structures, with stress levels below one third

of the ultimate concrete strength and generally not extreme

temperatures, creep is only a minor problem. However, when a concrete

structure is subjected to high temperatures, and elevated temperature

gradients, for long periods of time, the temperature dependent creep

properties of concrete cause stress redistribution which can lead

to major problems. For example, in concrete structures subjected to

cyclic heating, cracking can occur on cooling after a relatively short

period of mild heating.

These creep effects on the stress distribution through a concrete

pressure vessel have become a major analysis problem. As the

phenomenon of concrete creep is not yet totally explained, considerable

damage to the vessel could result if the effects of creep are not

properly accounted for. Costly and sophisticated structural analysis
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procedures lose their accuracy and their effectiveness if the material

behavior is not understood and modeled correctly, For this reason

it becomes very important to develop an understanding of the phenomenon

of concrete creep, so that the behavior of the concrete structure under

stress may be modeled and analyzed accurately.

In Chapter 1 the behavior of concrete under stress is described.

Time-dependent deformations due to shrinkage and creep are examined,

including their recovery upon removal of the stress. A short histori-

cal note is also offered.

The mechanisms of concrete creep are examined in Chapter 2. The

prevailing theories are presented and evaluated.

In Chapter 3 the factors which influence creep in concrete

structures are described. Environmental and material influences are

examined.

The major import of this study concerns concrete creep formula-

tions. In Chapter 4 material and physical models used to represent

the visco-elastic phenomenon are examined. Many of the creep

equations which have been proposed are given. Also, approximate

numerical solution methods for the analysis of concrete creep are

described and evaluated on the basis of their ease of use and accuracy

pf solution.

Finally, the solution technique for the creep problem is

described, using a finite element analysis of an axisymmetric thick-

walled cylinder, and a thin-walled sphere
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CHAPTER 1

CREEP AND SHRINKAGE OF CONCRETE

1.1 Introduction

Since concrete is part crystalline and part amorphous, it

exhibits properties common to both phases, that is, under working

stresses it undergoes both instantaneous elastic and delayed plastic,

or viscous, deformations. Thus, depending on the stress value, the

stress state and the environment, there are elastic, delayed elastic,

viscous and plastic components. As a result, in considering concrete

behavior under stress, we encounter two distinct types of deformation;

that which occurs on the application of the load and that which occurs

with the passage of time while the load continues to act. The former

is instantaneous strain, and the latter is creep strain.

Under a sustained load concrete undergoes an initial, instan-

taneous elastic strain, Eq This initial strain is followed by a

time-dependent strain consisting partly of the strain due to shrinkage

or environmental effects, Ess and partly of a stress-dependent strain,

called creep, €.e Thus the total strain is written

Er = Ey te te J .1)

The time-dependent strain increases in magnitude at a decreasing

rate, until a limiting value is reached.

Upon removal of stress at some time ths there is an instantaneous

recovery, EIR’ which 1s usually smaller than €. 4° There is also a

relatively small, time-dependent recovery, € po called creep recovery

-R.



(or delayed elasticity) which reaches a limiting value fx As a result,

there remains an irrecoverable, or residual, strain which is sometimes

referred to as permanent set. Thus, at any time t &gt; t, we have

ZA 2K €,, te_+eg, (at t,) - €in TAR (1 2)

Creep and shrinkage are not independent phenomena, but since

they occur simultaneously in many structures it has been convenient

to treat the two together. For this reason, the term "creep" is often

used in engineering practice to denote the phenomenon of shrinkage and

of creep together.

|. 2 Historical Perspective

In 1905 Woolson described the ability of concrete in a steel

tube to '"'flow" under a high axial stress, and the first paper on

creep, then described as nonelastic deformation of concrete, was

published (62). Hatt, of Purdue University, published the first data

of creep on reinforced concrete in the 1907 proceedings of the ASTM

(23). Although he made no reference to shrinkage of concrete, his

results do show the presence of large scale nonelastic deformations

ander load. Hatt's comment on this behavior, "These results taken

together show a sort of plasticity in concrete by which it yields

ander the action of a load applied for a long time, or applied a number

of times".

Although the nonelastic behavior of shrinkage was observed

earlier than Hatt's discoveries of creep behavior, the structural

_Q-



significance of shrinkage was not recognized until 1911 by White,

in a paper to the ASTM (61). In his paper he spoke of stresses

developing due to shrinkage. White's observations caused some concern

since the ability of creep to relieve these shrinkage stresses was

not yet recognized.

McMillan, in 1915, published one of the earliest studies

reporting the time-dependent deformation of both loaded and unloaded

concrete (36). From that time to the present, the relation of creep

to shrinkage has been a problem, both from a theoretical point of view

and for design purposes.

Many others were involved in the history of the early observa-

tions and in the development of the theory of concrete creep. By

1917 the ability of concrete to undergo both elastic and creep recovery

was observed by Smith (56). On the basis of these early observations,

the broad format of deformations of concrete under sustained loads

and subsequent unloading was established.

At the present time, the number of publications dealing with

creep and shrinkage of concrete is increasing. This does not mean

that creep and shrinkage are now solved problems, but that they

continue to loom large in the design of modern concrete structures

such as prestressed concrete structures, highly statically indeterminate

gtructures, shells, nuclear pressure vessels, mass concrete, structures

of high flexibility, long columns, and even tall buildings.

-10-



1.3 Shrinkage

Concrete undergoes volume changes independent of externally

imposed stresses and of temperature changes, These volume changes

are commonly referred to as shrinkage, even though negative shrinkage,

i.e., swelling, can also occur.

Shrinkage arises from basically two causes: loss of water on

drying, and volume changes on carbonation. The former will be

referred to as shrinkage, and the latter as carbonation shrinkage (5).

When loss of water to the ambient medium (unsaturated air)

takes place, deformation occurs. A part of this deformation is

reversible under alternating wet and dry storage conditions, and is

referred to as moisture movement. The term irreversible shrinkage

is used for that part of the deformation which is not recovered on

subsequent rewetting. The process of moisture diffusion from the

interior of the concrete toward its surface is very slow and complex.

The surface dries more rapidly than the interior, and as a result

"free" shrinkage of concrete tends to develop primarily in the outer

periphery of the section. Tensile stresses are induced in the outer

fibers and compressive stresses in the inner fibers, due to the

nonuniform distribution of this free shrinkage and the requirement for

plane strain. The uniform "apparent" shrinkage is the combined result

of the free shrinkage and the instantaneous and creep deformations,

which are caused by the induced stresses. Therefore, free unrestrained

shrinkage can only take place in these sections of concrete where

uniform drying is achieved very quickly. However, the term free

-11-



shrinkage is frequently used to describe the shrinkage in plain concrete

unrestrained by external containment (such as forms), or internal

reinforcement.

Loss of water and shrinkage are in a cause-and-effect situation,

but their relation is not a simple one. When concrete begins to dry,

the free water held in the capillaries is the first to be lost. How-

ever, this loss of water causes practically no shrinkage. As drying

continues, absorbed water is lost and the resulting volume change of

unrestrained cement paste is approximately equal to the loss of a water

layer one molecule thick from the surface of all gel particles. The

"thickness" of a water moleculeisabout1% of the gel particle size,

therefore we would expect a linear change in dimensions of cement

paste on complete drying to be on the order of 1%. Values up to 0.4%

have been observed, but the overall change in the volume of drying

concrete is less than the volume of water removed (5).

Although the loss of water occurs only from the cement paste,

for engineering purposes, the overall shrinkage of the concrete is

measured. This is much smaller than the free shrinkage of neat paste,

due to the restraining effect of the aggregate and the nondrying inner

portion. For design purposes, shrinkage is considered as an ordinary

linear strain, and is added to the elastic and creep strains to determine

deformations, curvature and deflection.

Shrinkage is greatly influenced by the magnitude of the surface

area of cement paste being desorbed. As a result, high-pressure-steam—-

~12-



cured cement paste, which is microcrystalline and has a low specific

surface, shrinks only 1/10 to 1/5 as much as a similar paste cured

normally,

Aggregate, due to its restraining effect on the free shrinkage

of neat paste, is an important influencing factor of drying shrinkage.

The volumetric content of aggregate is the greatest factor influencing

the magnitude of shrinkage developed by concrete. For example,

changing the maximum aggregate size from 1/4 inch to 6 inches means that

the aggregate content can rise from 602 to 80% of the total volume of

concrete. This results in a decrease in shrinkage to 40Z of the value

with the smaller aggregate (5).

The extent of restraint offered by the aggregate depends on its

elastic properties, and there exists a qualitative relation between

shrinkage and the modulus of elasticity of the aggregate used.

Although an increase in water content appears to be a primary

factor in increasing shrinkage, in fact the influence is only in its

role in reducing the volume content of the restraining aggregate.

Therefore, the relation between water content and shrinkage is not a

fundamental one.

The fineness of the cement does not have an effect on the

magnitude of the concrete shrinkage, however higher fineness can

accelerate the shrinkage. This results in an increase in cracking.

Chemical composition of the cement is not of large importance to

shrinkage. For example, shrinkage of concrete made with high alumina

-1 a



cement is of the same magnitude as when normal Portland cement is used,

although it takes place much more rapidly (31). The addition of

calcium chloride increases shrinkage 10 to 50%, but this is probably

due to the fact that a finer gel is produced, and because of

greater carbonation. Air entrainment also does not appear to influence

shrinkage (28).

Shrinkage occurs no matter what the age at which drying begins,

and continues for many years. At long ages, however, the rate of

shrinkage is so low that it is not significant. Although the rate of

shrinkage is affected by many factors, as described above, for the

usual range of structural concretes exposed to relative humidity of

50 to 70%, the rate of shrinkage is (5):

14 to 34% of the 20-year shrinkage occurs in 2 weeks;

40 to 80% of the 20-year shrinkage occurs in 3 months;

66 to 80% of the 20-year shrinkage occurs in 1 year.

The magnitude of shrinkage also depends on the humidity of storage,

increasing with low relative humidity, but is unaffected by the rate

of drying.

Since the observed shrinkage is governed by the extent of drying

that can take place, the size of the concrete member undergoing drying

1s a significant factor. The size effect can be accounted for indirectly

by the ratio of the drying surface to the volume of concrete enclosed

within. Ultimate shrinkage decreases as volume-surface ratio increases

y 12N

~14-



Swelling takes place when concrete is cured and stored for

prolonged periods in water. This swelling is about six times smaller

than shrinkage in air at a relative humidity of 70%, and eight times

smaller than shrinkage at 50Z humidity (58). Swelling takes place

more rapidly than shrinkage and is usually completed in 6 to 12 months,

whereas shrinkage increases for several years.

Swelling 1s caused by water absorption of the cement gel and is

accompanied by an increase in weight. The gel particles are forced

apart by the absorbed water molecules, and this creates a swelling

pressure. The surface tension of the gel is decreased by the ingress

of water, and this causes additional small expansion (45). Although

drying shrinkage is not completely recoverable, concrete which

has been dried in air with a given relative humidity will swell if

subsequently placed in an environment of higher humidity (such as

water). Usually, the irreversible part of shrinkage is about 0.3

to 0.6 of the drying shrinkage, with the lower value being more common.

Reversible deformation, or moisture movement results from subsequent

cycles of drying and wetting. Lightweight concrete has a higher

moisture movement than concrete made with normal weight aggregate.

Also, the magnitude of the moisture movement varies with humidity and

the composition of concrete, being smaller the larger the aggregate

content (5).

As was mentioned at the beginning of this section, concrete

undergoes not only drying shrinkage, but also

~-15-



carbonation shrinkage; the two are quite distinct in nature.

The chemical process of carbonation is as follows. In the

presence of moisture, co, in the atmosphere reacts with hydrated

cement minerals (the agent being carbonic acid). Ca(OH), carbonates

to CaCo,, but other cement compounds are also affected, hydrated

silica, alumina, and ferric oxide being produced.

Carbonation shrinkage is probably caused by the dissolving

of crystals of Ca(oH), under the compressive stress imposed by the

drying shrinkage, and the depositing of CaCo, in spaces free from

stress. As a result, the compressibility of the cement paste is

temporarily increased,

The moisture content of the concrete and the relative humidity

of the ambient medium affect the rate of carbonation. Also, the

specimen size is a factor, since the moisture released by the reaction

must diffuse out in order to preserve the hygral equilibrium between

the inside of the specimen and the outside atmosphere. If this

diffusion is too slow, the diffusion of co, into the paste is nearly

stopped due to the increase of the vapor pressure within the concrete.

Carbonation increases the shrinkage at intermediate humidities, but

not at 100% or 25%. At 252 humidity, there is insufficient water in

the pores of the cement paste for co, to form carbonic acid. At 100Z,

when the pores are full of water, the diffusion of co, into the paste {is

very slow. It is also possible that the diffusion of calcium ions from

the paste leads to percipitation of CaCo,, which clogs the surface pores

-16-



(59).

Figure 1 shows the relation between shrinkage and time for

specimens stored at different relative humidities (5).

There are several methods for the prediction of shrinkage, and

many are of a similar nature. The European Concrete Committee (8) has

proposed the following method for estimating shrinkage deformation.

The effective shrinkage strain of an unreinforced concrete prism is

defined as

€ ih
ro
ne Kx 4

¥ “1 \1 3)

whe:a

ky depends on the composition of the concrete,

kg depends on the effective thickness of the member, and is

defined as the area of the section divided by one-half

of the perimeter in contract with the atmosphere,

k depends on the duration of drying and the effective thickness,

and

Ep depends on the relative humidity

The values of these coefficients, for virious conditions, can be found

using available tables and graphs

l.4 Creep Behavior

(8)

Creep occurs only when concrete is subjected to stress, either

external or internal, and can be defined as the increase in strain,

with time, under a sustained stress. This stress can be very low,

-17-
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almost approaching a zero value. In general, deformation due to creep

is larger than the elastic deformation. For this reason, creep

represents an important part of the deformations in concrete. Creep

causes displacements and stresses in the structure, however, only in

prestressed concrete and slender columns is the strength of the structure

adversely affected, or in conditions of high temperature gradients.

Although the rate of creep is affected by many factors,

creep—-time curves are all of similar shape. For the usual range of

structural concretes, loaded at 28 and 90 days and stored at a relative

humidity of 50-100%, the rate of creep is (58):

18 = 35% of the 20-year creep occurs in 2 weeks

40 - 70% of the 20-year creep occurs in 3 months

64 - 80Z of the 20-year creep occurs in 1 year

Figure 2 defines the various components of deformation of

concrete (42). Figure 2(a) shows the nature of shrinkage alone, and

Figure 2(c) defines the nature of creep in the absence of shrinkage or

swelling. If a specimen is drying while under load it is usually

assumed that creep and shrinkage are additive, as shown in Figure 2(b).

Thus, the overall increase in strain of a loaded and drying member is

assumed to consist of shrinkage (equal in magnitude to a similar

unstressed member), and of creep. However, this assumption is not

entirely accurate. Creep and shrinkage are not independent phenomena

to which the principle of superposition can be applied. In fact, the

effect of shrinkage on creep is to increase the magnitude of creep (41).

But in many structures creep and shrinkage occur simultaneously and
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the treatment of the two together is, from the practical and

engineering standpoint, often convenient. Hence, while the additive

apporach is generally followed, it should be noted that under drying

conditions an additional creep, known as drying creep, occurs. When

no moisture movement to or from the ambient medium occurs, creep is

referred to as true or basic creep (1) [Figure 2(d)]. In general,

creep strain is made up of two parts

 cE K-4 €gasic T “DRYING L
’

 a 4)

Basic creep appears to be made up of a viscous flow part which

is totally irrecoverable, and a delayed elastic part which is partially

recoverable (1).

= _ -t/Tq _ -t/1y
ease = OBlo (1 -e ) +o,(l -e ) + ot]

where RB is a gel compliance factor. Basic creep is independent of

(1.5)

specimen size, and usually also of composition, size and grading of

the aggregate, and type of cement used. Only the volumetric composition

of the concrete (i.e., B) is involved. A temperature increase results

in a higher basic creep, and concrete in relative humidities much below

50% may exhibit lower basic creep. Basic creep is similar for

concretes under axial stress and shear stress.

Drying creep has time variation characteristics similar to

free shrinkage, and is influenced by the same organismic and environ-

mental factors. 1It appears to be irrecoverable with respect to stress,

but may undergo partial recovery upon restoration of the original

EP



moisture content (1).

ZprYING ~ OBYE la + (B/0)] § = - 9 u5)

where a and b are constants, and Eg is the free drying shrinkage strain

at a given environmental humidity.

Creep occurs in three stages (38). "Primary creep" is the

stage during which the strain rate decreases. During this stage slip

occurs on closely spaced adjacent planes. When the strain rate becomes

constant, the 'secondary stage" of creep is attained. During this

stage the slip planes bend and develop kinks, and eventually a sub-

grain structure results. In terms of types of deformation, delayed

elastic deformation can be considered as primary creep, and viscous

deformation (i.e., residual deformation) as secondary creep. When the

"final state" is reached, the strain rate accelerates. This is also

known as tertiary creep. The manner in which the specimen is loaded

is responsible for this increase in strain rate during the final stage.

At high strain rates necking of the specimen is responsible for the

final stage behavior, due to the accompanying stress intensification.

At low strain rates the increasing rate of strain during the final

stage is the result of microcracks forming at the grain boundaries,

accompanied by internal stress intensification. The three stages

of creep are shown in Figure 3 (38).

The effects of creep on concrete structures are larger deflections

and redistributions of stresses (10, 52). Under conditions of non-

uniform stress and temperature, stress redistribution and relaxation

2?
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takes place, and stresses become time dependent quantities. If the

concrete is subjected to a constant strain, there will be a progressive

decrease in stress with time. Figure 4 shows this decrease in stress

with time (3)

1.5 Creep Recovery
When the sustained load is removed from concrete which has

undergone creep, there is an instantaneous recoverY, ER? which repre-

sents the elastic strain corresponding to the stress removed and the

elastic modulus at the given age. Generally, this recovered elastic

strain is somewhat lower than the instantaneous elastic strain at

loading, €q° Following this instantaneous recovery is a gradual,

relatively small time-dependent decrease in strain called creep

recovery, ER? which reaches a limiting value, Cor” As a result,

there remains an irrecoverable strain, or permanent set. At any time

 tr &gt; t., where ty is the time when the load is removed, the total

strain in the concrete is

—
. a + -— —-—¢ rg €. + €. (at t,) ir CR ry.  )

For typical concrete mixes, creep recovery is approximately 10 - 202

of the creep strain, but the higher the applied stress, the lower

the percent recovery (49). If the concrete is reloaded at a later

r{me. instantaneous and creep deformations develop again, as shown in

Figure 2. The shapes of the creep curve and the creep recovery curve
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are similar, but the recovery approaches its maximum value much more

rapidly than does the creep. The curves in Figure 5 show this

relationship (38).

Both the instantaneous recovery and the total time-dependent

recovery are linear functions of stress up to at least 65Z of the

ultimate strength, except for a very rich 1:1 mix which Ali et.al.

found exhibited nonlinearity of the time-dependent recovery above 50%

of the ultimate strength (1). Hornby found that creep recovery

increases with temperature, and is 65% greater at 75°C than at 25°C

(24).

Ali et.al. suggested a complex rheological model describing

creep and creep recovery, including the partial recovery of the

seepage effect. For a concrete unloaded at t,, the time-dependent

recovery is

ad ‘ oar, (1-HTK (1-e~ (EET) 400 a, (1-711 (l-e” (t-tq) /T1y
(1.8)

where Co is a coefficient representing the amount of creep due to

seepage which is recoverable. If it is completely recoverable Co = 1,

if completely irrecoverable Cc, = 0 (1). The maximum creep recovery

is given bv

-— T -t /T1Er = 00 (1 - e t1/Tky 4 oC, a,(1 = e "1771 -«

{ 3)

In summary, creep recovery is due to interaction between the

elastic and viscous phases of the concrete. It is time-dependent

due to the internal redistribution of moisture which takes place
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slowly upon removal of the load. The recovery is both elastic

(particles returning to their original positions and configurations),

and inelastic (particles taking up new positions and configurations.

In an actual reactor vessel, pressurizing and heating can be

expected to unload much of the concrete and cause creep recovery.

However, it is unlikely to have any significant long-term effects

under steady conditions unless it influences initial crack formation.

Under cyclic loading conditions, however, creep recovery will occur

at every cycle, and could be important.

In general, creep and shrinkage, and subsequent recovery,

have the following adverse effects:

1. Steel reinforcement located in compression areas (of

beams and columns) is subjected to severe stress increases which

may reach the yield point of mild steel.

2. In pretensioned and post-tensioned concrete structures

there is a gradual loss of prestress.

3. In statically indeterminate structures additional

stresses or secondary moments may be created.

4. In columns, particularly slender columns. creep can

increase the lateral displacement, thus decreasing the buckling

load factor.

5. Most importantly, creep and shrinkage cause large

stresses in reactor containment structures, where high tempera-

tures and temperature gradients exist.
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CHAPTER 2

CREEP THEORIES

2.1 Introduction

Although the field is narrowing, the mechanism of concrete

creep is still subject to some controversy. The difficulty lies in

the fact that a satisfactory theory of creep must explain, in a

unified way, the behavior of creep under the various environmental

conditions and states of stress which influence it. One can not have

a theory which assumes different physical mechanisms for each set of

conditions. For this reason it is difficult to propose definite

conclusions on the mechanism of creep. Perhaps the only general

statement that can be made is that the presence of some evaporable

water is necessary for creep to occur. However, creep behavior at

high temperatures suggests that at that stage the water no longer

plays a role, and the gel itself is subject to creep-deformation.

2.2 Mechanisms

Although seepage of water to the outside of concrete may take

place in drving creep, the occurrence of creep in mass concrete suggests

that this process is not essential to basic creep. However, internal

seepage of water from the absorbed layers to voids, such as capillary

voids, is possible. Internal seepage is possible under any storage

condition. and the fact that creep of non-shrinking specimens is

independent of the ambient humidity indicates that the fundamental
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cause of creep in air and water is the same.

The creep-time curve exhibits a definite decrease in its slope.

This may occur due to the same mechanism throughout, however it is

reasonable to assume that after many years under load the thickness

of the absorbed water layers is reduced to such an extent that no

further reduction could take place under the same stress. Yet creep

after more than 30 years has been observed (58). Therefore, it is

probable that the slow, long-term part ©ldcreep is due to causes

other than seepage, but that the deformation can occur only in the

presence of some evaporable water (42). This suggests viscous flow,

or sliding between the gel particles.

Because of coarsening of the gel particles associated with

the formation of new bonds and stabilization in the deformed position,

only a small part of creep due to seepage is reversible. At high stress-

es a part of the overall measured creep may be due to growth in micro-

cracks, but at working loads a significant contribution of micro-

cracking to creep is unlikely. The six prevailing hypotheses which

attempt to explain the mechanism of creep are presented and discussed

below. They are

1. Plastic deformations

2. Viscous flow

3. Seepage of gel water

A

3.

5.

Delayed elasticity

Nonuniform shrinkage

Intercrystalline deformations
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2.3 Plastic Deformation Theory

The plastic theory suggests that creep is a result of crystalline

flow, that is, slipping of material along planes. This theory was one of

the first to explain the creep phenomenon in concrete, and at that time

creep was known as "plastic flow" (41).

After a limiting stress is exceeded, plastic deformations

occur. The plastic deformations are irrecoverable and nonlinear with

applied stress, and result from intracrystalline slips and local rupture

of the hardened cement paste. Although creep does have an irrecoverable

part, it does occur at very low stresses, and creep is linear with

stress up to about 507 of the ultimate. Neither this behavior, nor

the sensitivity of creep to moisture and moisture movement can be

explained in terms of plastic deformation mechanisms. Thus, this

hypothesis might contribute significantly only at stress levels near

the ultimate. Today investigators account less for the crystalline slip-

ping as a main factor causing creep.

2.4 Viscous Flow Theory

Thomas (57), Glanville (14), Reiner (48), and Freudenthal (11)

have considered hardened cement paste as a viscous fluid surrounding

the loose and relatively rigid aggregate particles. The viscous theory

suggests that creep is the result of viscous flow of the concrete

against and around the aggregate particles, with transfer of more

loads from the cement gel to the aggregate.
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This concept offers plausible explanations for linearity of

creep strain with stress, the absence of a limiting stress for creep

to occur, stress relaxation at a constant strain, the sensitivity of

creep to temperature, and the largely irreversible nature of long-

term creep. However, it can not fully explain creep recovery upon

stress removal, change of volume during creep, progressive reduction

of the creep rate with time, and the sensitivity of creep to moisture

chanr"R

2.5 Seepage Theory
Hardened cement paste has been considered as a limited swelling

gel, whose equilibrium with its solid skeleton and external load is

determined by the vapor pressure of the gel water (46). The gel water

seepage theory (34), which is similar to the theory of consolidation

in soil mechanics, envisages a disturbance of this equilibrium under

applied load and its gradual re-establishment by the exchange of

moisture with the environment. Creep is the volume change accompanying

the resulting moisture movement, that is, creep is the result of the

seepage of water outside of the cement gel.

When external loads are applied on the concrete, the pressure

on the water is increased. More loads are progressively applied on

the solid material as the water flows outside the cement. This

results in a volume decrease. This theory is parallel to the theory of

concrete shrinkage, except that in shrinkage water is expelled from

the gel by drying, not by loads.
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The gel water seepage theory appears to explain the marked

increase in creep under compression with simultaneous drving, but if

this theory were true we would expect a specimen under sustained

compression to undergo a greater gel moisture loss than an unloaded

specimen, roughly in proportion to the wrresponding creep and

shrinkage deformations. However, several tests report little or no

effect of applied load on the moisture lost by a drying specimen (39).

Also, exchange of moisture results in increased creep irrespective

of the direction of such exchange of the applied stress (20). Signifi-

cant creep occurs even in the absence of moisture exchange. Hence,

these observations weaken the conventional seepage hypothesis.

2.6 Delaved Elasticitv Theorv

The morphology of hydrated cement indicates the presence of both

crystalline and noncrystalline components of colloidal size with the

associated absorbed moisture. Under load, the gel could behave as a

composite body of elastic and viscous phases which could interact,

resulting in delayed elastic behavior. To a limited extent, concrete

creep does exhibit such a behavior, however, this mechanism can not

offer an explanation for the influence of moisture exchange on creep.

Freyssinet has proposed another delayed elastic mechanism to

explain creep deformations in terms of the changes in the surface tension

forces arising in the capillary pores of hardened cement paste (13).

However, this hypothesis has been questioned (46). Also, creep
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deformation of concrete with practically empty capillaries is not

significantly lower than that for saturated concrete.

Nonuniform Shrinkage Theory

The presence of differential shrinkage stresses due to nonuniform

drying has been considered partly, or wholly, responsible for the

2.7

phenomenon of creep in concrete (43). However, the concept that

creep is entirely the result of restrained shrinkage has been seriously

challenged (1). Only a small part of the increase in creep with

simultaneous drying, especially at high stresses, may be explained cn

this basis.

2.8 Intercrystalline Deformation Theory

Imperfectly formed crystal lattices suffer viscous deformation

under sustained stress, and these zones can exist not only where the

crystalline components of the cement gel grow into each other, but also

at the gel-aggregate interface (20). Although these deformations

progress very slowly, the almost constant rate of flow could result

in sizeable deformations after a long time. However, creep rate has

been observed to decrease with time not remain constant

2.9 Conclusions

None of the above theories provide a convincing explanation of the

sensitivity of creep to moisture change, although they do appear to

explain certain aspects of creep behavior. The seepage mechanism offers
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the most promising theory in this direction, but not in the conventional

form.

Ali and Kesler suggest an hypothesis based on a reinterpretation

of the seepage mechanism and its integration with the visco-elastic

behavior of the cement gel (1). Creep deformation is explained partly

in terms of the modification, by the applied stress, of the shrinkage

or swelling resulting from changes in moisture content, and partly in

terms of visco-elastic deformation of the structural elements of the

gel.

The following behavior under various conditions of moisture

exchange and applied load can be anticipated:

I Free shrinkage is less than shrinkage under compression

and more than shrinkage under tension.

2 Free swelling is more than swelling under compression

and less than swelling under tension.

Hence, creep is expected to increase with moisture exchange, irrespective

of the mutual directions of the load and the moisture movement. Such

increase in creep entails no significant change in the moisture movement

relation to an unloaded control specimen.

Now, creep does occur in the absence of any moisture exchange,

although large creep deformations occur when there is simultaneous

moisture loss. This creep is the result of mechanisms other than the

atress-modification of shrinkage and swelling. Delayed elastic action

and intercrystalline deformations, that 1s visco-elasticity, appear
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to best account for creep in the absence of moisture exchange.

The interaction of the crystalline and amorphous phases of the cement

gel and the absorbed moisture could account for the partly recoverable

and partly nonrecoverable response under sustained load.

Almost all o the observed characteristics of concrete creep under

moderate stress levels may be explained in terms of the stress-

modification of shrinkage or swelling to variation of gel moisture, and

the visco-elastic deformation of the gel and its associated moisture.

Thus, concrete creep may be considered, broadly speaking, as composed

of two practically independent components, caused by distinctly different

groups of mechanisms:

le Basic creep, e.g. that part which can occur independent of

moisture exchange. This corresponds to the visco-elastic

behavior of the gel. The viscous flow part is totally ir-

recoverable, while the delayed elastic part is partially

recoverable.

/ Drying or wetting creep, e.g. the additional creep over the

basic which occurs due to simultaneous moisture exchange

with the environment. Such creep is the result of the

modification of shrinkage or swelling by the applied stress.

It appears to be irrecoverable with respect to stress, but

may undergo partial recovery upon restoration of the

original moisture content.

In summary, time-dependent deformations under load appear to arise

-16=



in concrete mainly from the imperfectly crystalline colloidal

components of the hydrated cement and the associated absorbed moisture.

Also, the aggregate may contribute to this deformation.

Basic creep may be considered as a process of molecular

diffusion and shear deformation of the gel and the absorbed water under

load, not entailing any loss or gain of total moisture content.

Interaction with the crystalline components results in the partly

viscous and partly delayed elastic behavior exhibited. These

mechanisms are temperature dependent.

Drying creep may be considered as due to a mechanism similar to

that involved in free shrinkage due to desiccation. The removal of

water by evaporation brings the extremely large surfaces of the

colloidal structure closer, thus mobilizing strong surface forces,

resulting in shrinkage of the gel structure. With no applied stress

this shrinkage is much smaller than the amount of gel moisture withdrawn.

Applied stress can be seen as modifying the extent of the shrinkage,

without affecting the loss of moisture
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CHAPTER 3

SIGNIFICANT CREEP PARAMETERS

3.1 Introduction

In Chapter 2 the difficulty in finding a single theory which

accurately explains the behavior of concrete creep under various

conditions and states of stress was described. This difficulty is due

to the fact that there are many variables which affect concrete creep.

Several of the more important influencing factors are listed below:

l. Temperature

2. Stress~strength ratio

3. Ambient humidity

4. Age at initial loading (or dgreee of hydration)

5. Water-cement ratio

6. Concrete strength

7. Curing

8. Composition of cement

9. Concrete mix proportions

10. Aggregate

11. Admixtures

12. State of stress

13. Shape and size

The significant factors affecting concrete creep, and the extent of

their influence on basic and drving creep, are listed in Table 1 (1).
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TABLE 1—SIGNIFICANT FACTORS AFFECTING CREEP OF
CONCRETE UNDER MODERATE STRESS

Significant factors
affecting creep

Mix proportions
Degree of hydration
Moisture content
Moisture exchange
Temperature
Aggregate properties

1. rheology
2. permeability
3. surface texture
4. shrinkage, swelling

Stress magnitude
Stress distribution
Specimen size

Influence on basic creep

Delayed elastic
action, partly
recoverable
on removal

of stress

Viscous flow,
irrecoverable
on removal

of stress

Primary
Primary
Secondary

Primary

Secondary

Primary
Primary

Primary

Secondary

Primary Primary

Influence on

drying creep

Stress-modified
shrinkage, partly
recoverable on
restoration of

moisture

Primary
Primary
Secondary
Primary
Secondary

Secondary
Primary
Secondary
Secondary
Primary
Primary
Primary
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3.2 Temperature
The influence of temperature on creep is of interest in

connection with the use of concrete pressure vessels, particularly in

prestressed concrete pressure vessels. The effect of temperature on

concrete creep was studied by Hannant (19). In the tests performed,

the temperature of the concrete was varied from 23°C to 93°C under

several loading conditions. Results showed that the creep strain

varied linearly up to 77°C, and non-linearly above that point. The

creep at 77°C was about 4.5 times that at 23°C. Measurements from

the Wylfa prestressed concrete reactor vessel showed that creep at

150°F was 2.8 to 4.6 times greater than creep at 70°F (52).

The work of Ross and England . (10) shows that the rate of creep

increases with temperature up to about 70°C, and thereafter decreases

somewhat up to about 100°C. At higher temperatures the rate of

creep increases again such that a high creep is attained. Figure 6

(5) illustrates these findings.

Sarne suggests that the decrease of creep, observed by some

investigators, at high temperature is probably due to the specimen

size, and is not an accurate reflection of the creep behavior (52).

In massive structures, where drying is much slower even at high

temperatures, the increase in creep should be used at all times.

The difference between the temperature during the period of

loading, and during the period preceeding loading must be recognized.

Whereas the former has a direct affect on creep behavior, the latter
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incluences the basic principles of concrete, such as its maturity,

the structure of the gel, etc.

3.3 Stress-Strength Ratio

Within the range of working stresses, experiments have shown

creep to be proportional to the applied stress, except with specimens

loaded at a very early age (15, 27). The proportionality has a

lower limit of virtually zero stress, and an upper limit of approximat-

ely 40-60% of the ultimate strength of the concrete. However,

different observers suggest this upper limit may be anywhere from

23% to 75%. It seems safe to conclude, however, that within the range

of working stresses, the proportionality holds good.

Tests made by Jensen and Richart show the proportionality of

creep to stress-strength ratio to exist up to about 0.6, with increased

creep at higher ratios (27). On the average they found:

Stress-strength ratio 0.2 0.4 0.6 0.7 0.8 0.9

Creep (arbitrary units) 0.2 0.4 0.6 0.83 1.23 2.06

Gopalakrishan et. al. found that for constant temperature, creep

varies linearly with the stress-strength ratio. Their results

suggest the following creep strain factor to account for the stress-

strength ratio (52):

oc &lt; 0.35 f!
Cc

o&gt; 0.35 f°
Cc FACTOR = 1.0 + (oc - 0.35 £.)/0.45 £!

FACTOR = 1.0

This factor will double the creep strain if the stress-strength ratio
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is equal to 0.8.

When the stress-strength ratio of a concrete compression

specimen is 40-60%, severe internal microcracking occurs. As a result,

once the cracking has accelerated, the creep behavior changes. This

upper limit of proportionality rises with an increase in the strength

of the concrete, i.e., it rises with the duration of the load.

Above the limit of proportionality, creep increases with an

increase in stress, at an increasing rate. There exists a stress

level above which creep produces time failure (about 70-80% of the short-

term static strength). Figure 7 (5) shows the development of strain

for different stress-strength ratios.

3.4 Ambient Humidity

Numerous tests have shown that creep increases with a decrease

in the relative humidity of the surrounding medium. Creep may be

2 to 3 times greater at a relative humidity of 50% than at 100Z, as

fllustrated in Figure 8 (58). However, two points should be

noted.

First, ambient relative humidity affects creep if drying takes

place while the specimen is under load. But if the concrete has

reached hygral equilibrium prior to loading, the magnitude of creep

{s independent of the relative humidity of the surrounding madium (42).

Therefore, it appears that it is not the ambient humidity that is a

factor in creep, but the process of drying while the concrete is
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subject to creep.

Secondly, Hansen found, in 1958, that alternating the ambient

relative humidity between two limits results in a greater creep than

that obtained at a constant humidity within those limits. An effect

of this behavior is that laboratory tests under constant humidity

underestimate the actual creep under conditions of practical

exposure

1.5 Other Fac tors

Any comparison of creep behavior must take into account the

degree of hydration of the cement at the time of application of the

load, since different type cements have different rates of hydration,

even though they have similar ultimate strengths. Comparison should

be made under a load where the stress-strength ratio is the same. Under

these conditions the type of cement, f.e., its composition or

fineness, does not affect creep, in the first approximation (38).

The age of the concrete influences creep in so far as it

influences the degree of hydration and the development of strength.

Ross and Neville have shown creep to correlate well with maturity

(40). Under conditions where no sensible variation in the degree of

hydration occurs, the age at loading ceases to influence creep. For

example, the influence of the age at loading is much smaller in the

case of dry-cured concrete. Also, at later ages the rate of creep

becomes independent of the age at loading

jyN



Creep increases with an increase in the water-cement ratio,

as Figure 9 shows (5). Creep is approximately proportional to the

square of the water-cement ratio. Both the water-cement ratio and the

aggregate-cement ratio influence concrete creep. Although both

factors control the water content of the nix, the influence of the

aggregate—cement ratio on creep is the lesser of the two,

With this influence of the water-cement ratio, and because the

strength of structural concrete is a practical concern, relating

creep to strength is both convenient and fairly reliable. Table 2

shows typical values which were observed by Klieger (29).

TABLE 2 - CREEP OF CONCRETES OF DIFFERENT STRENGTHS

Compressive Strength Ultimate
at Time of Application Specific Creep

1076 per psi

Ultimate Creep at

a Stress-Strength

Ratio of 0.3. 10°of Load, psi

2000 1.40 713

4000 0.80 1067

6000 0.55 1100

3000 i) an"0 1.~7

The quality of the cement paste has a direct influence on creep.

This can be expressed approximately by saying that for a constant cement

paste content, and the same applied stress, creep is inversely pro-

portional to the strength of the concrete. Thus, strength is a
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convenient, but approximate, measure of the state of the cement paste,

1.e., its composition and degree of hydration.

Although normal weight aggregate is not likely to creep to an

appreciable extent, it does influence concrete creep. Since cement

paste Is subject to creep, and aggregate is not, the effect of the

aggregate is to reduce the effective creep of concrete. Also, the

higher the modulus of elasticity of the aggregate, the greater the

restraint offered by the aggregate to the potential creep of the

cement paste, The porosity and absorption of the aggregate influence

creep, as they effect the transfer of moisture within the concrete

(42).

Although use of lightweight aggregate results in much higher

creep than normal weight aggregate, there is no fundamental difference

between the two as far as creep is concrened. The higher creep of

concrete made with lightweight aggregate reflects only the lower

modulus of elasticity of the aggregate. There is no inherent

difference in the behavior of coated and uncoated aggregate, or between

those obtained by different manufacturing processes. However, all

aggregates do not lead to the same creep.

Not enough is known about the effects of entrained air,

admixtures, and pozzlans, however it appears that entrained air

probably increases creep. The reason is that entrained air can be

considered as aggregate with zero elastic modulus (28).

Creep under uniaxial tension, its magnitude and creep~-time curves,

{fs similar to creep in compression. The behavior is also similar to
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creep under torsional loading.

Measured creep decreases with an increase in the size of the

specimen, but at a thickness of greater than about three feet the

size effect is no longer noticeable (42). The influence of size on

creep is greatest during the initial period after the application of

the load. Beyond several weeks the rate of creep is the same in

specimens of all sizes. The size effect applies not to the basic

creep, but to the increase in drying creep.

Work at the Portland Cement Association Laboratories indicates

that both creep and shrinkage are functions of the surface-volume

ratio. Thus it may be concluded that when a free surface is absent,

creep is unaffected by the size of the member. In fact, in mass

concrete, size effects are not present.

The rate of creep decreases progressively with time. The

average increase in creep with time is shown in Table 3 (58).

TABLE 3 - AVERAGE INCREASE IN CREEP

Creep after 1 year

Creep after 2 years

Creep after 5 years

Creep after 10 years

Creep after 20 years

Creep after 30 vears

1,00

1.14

1.20

1.26

1.33

1.268
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The longest period for which creep data are available is around 30

years, and here a small but measurable rate of creep was observed

(58). It is notpossible to say whether the rate ever vanishes to

zero, In which case creep approaches asymptotically a limiting value,

or if the rate becomes stabilized at some value, in which case the

creep increases indefinitely.
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CHAPTER 4

ANALYTICAL FORMULATIONS

4.1 Introduction

Due to the large number of variables which influence creep

of concrete, it is impossible to make a single mathematical model which

accurately accounts for all of them. Many creep expressions have been

suggested which attempt to account for some of these variables, and

under certain conditions, they can predict creep behavior with varying

degrees of accuracy. Material and physical properties are included by

varying fixed parameters in the creep equation to fit experimental

results. Also, since creep of concrete is known to be a visco-elastic

phenomenon (63), both material and physical models can be used to

represent creep behavior

4 2 Visco-Elastic Ma terial Behavior

The visco-elastic behavior of creep of concrete means that

creep is a function of not only the strains and stresses in the con-

crete at the time of the creep, but that it is also a function of the

history of the strains and stresses in the concrete. Linear visco-

elastic material models adequately predict behavior, when stresses are

less than approximately 50Z of the ultimate strength.

Since a unique relation between stress and strain, or between

stress rate and strain rate, characterizes an elastic material, and

a relation between stress and strain rate charact~rizes a viscous
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fluid, relations between stress, strain, stress rate and strain rate

necessarily characterize creeping concrete which contains both elastic

solid and viscous fluid components. The elastic component has perfect

"memory" of its initial state, while the viscous component has no

memory at all. Hence, the visco-elastic material has an imperfect

memory of limited duration.

Two simple physical models of a visco-elastic material are (12):

(a) An incompressible viscous fluid with a high concentration of

elastic particles suspended in it, where an applied stress produces

viscous flow and elastic deformation of the solid particles.

(b) An elastic sponge with its pores filled with an incompressib-

le viscous fluid. In this case, an applied stress produces elastic

deformation of the sponge which increases gradually as the fluid is

squeezed out of the pores.

The mechanical behavior of creeping concrete can be idealized

in terms of combinations of these two models. Over a limited time

scale the characteristic features of the visco-elastic behavior of

creep of concrete can be illustrated by simple superposition of a linear

elastic and a linear viscous one-dimensional relation.

Considering a substance described by model (a), the total rate

of flow of this model at any time t is the flow rate of the viscous

fluid augmented by the strain rate imposed on the solid particles.

This 1s the case since the load is carried by the suspended particles

and the surrounding fluids. Hence, the total strain rate for model (a)
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is obtained from the equations describing the elastic strain rate and

the incompressible, linear, viscous fluid in uniaxial flow (12).

de 1 do 1 1. do 1—— I em —— &gt; 0 om ie +Ldt CE dt lac 7 9!

where A is the coefficient of viscous

(¢ 1)

traction, and T denotes a material

time parameter, T = A/E.

Integrating Equation 4.1 for constant stress (0 = constant, and

do/dt = 0), the equation is obtained

Ce. Y + JA 0) \ a

Ta &amp;7)

NY

-
J
—
-

(1+3)=2= + ot) (:.3)

where the integration constant €(0) = O/E represents the instantaneous

elastic strain at time t = 0. The second term represents a strain

which is increasing (linearly) with time, that is, creep. Equation 4.3

represents the simplest creep equation, and ¢(t) characterizes the

material in creep; it is known as the creep function. The time constant

Tt characterizes the initial speed of stress relaxation. It 1s a measure

of the imperfect memory of the medium, and represents the time at which

the stress has decreased to 1/e of its initial intensity. When 1 =&gt; 0

the relaxation is instantaneous (viscous fluid with no memory), and

when T = ® no stress relaxation occurs (elastic solid with perfect

memory).
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The equation for the visco-elastic material described by model

(b) is obtained by considering that the sponge and the fluid can not

deform independently, but they must carry the load by joint

deformation. Hence, the total stress is the sum of the elastic stress

and the viscous stress (12)

Oo = EF +
de de28: Sxac - Ee + Tgp (5 4)

This visco-elastic equation is similar to Equation 4.1 obtained for

model (a) in that it also has a time parameter . However, it

differs from Equation 4.1 in that the reduction to an elastic medium

is obtained by setting dec/dt = 0, instead of de/dt = =.

4.3 Physical Models

The linear visco-elastic material models described in Section

4.2 can be represented by a physical system of springs and dashpots

arranged in various combinations (63). The two basic arrangements are

a spring and a dashpot in series or parallel (44). The former is

known as the Maxwell element (Figure 10 ) and represents a material

described by model (a) above. The latter is known as the Kelvin

(Voigt) element (Figure 10 ), and represents a material described by

model (b) above.

The Maxwell element, described by Lewis et. al. (33), represents

creep at constant stress, stress relaxation at constant strain, and

has a strain-rate-dependent stress-strain diagram. Upon loading after
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a creep test, only the elastic strain is recovered (Figure 11).

These are the principal features of a rate sensitive material under

quasi-static conditions.

Since Maxwell models represent initial elastic response, plus

permanent creep, they do not allow for creep recovery after load

reversal. This is the principal shortcoming of this model, and can

cause problems when analyzing structures which have a cyclic load

history, such as a pressure vessel which undergoes annual shut down

for refueling. One possibility is to use a percentage of the

instantaneous elastic strain for creep recovery (2), or a percentage

of the creep strain could be used (52). Another possibility,

suggested by the creep equarion presented by Argyris et. al. (2),

is to use a linear function of time under load to calculate the

non-recoverable part.

The use of a series of Kelvin elements was described by

Zienkiewicz et. al. (66). For a Kelvin element, the stress across

the element is ¢, and the relative displacement is the creep strain €

(52). The creep expression is of the form (52)

de
— = 3 g - br
dt Is (4. a 3)

and, for several elements

Ae. = [(Ja,) 0 = Jb, e 1 At (4.6)

The creep strains and stresses decay exponentially. In the exponential
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form, the creep equation is

~ -biAt -biACc -_— 1S + A -—— e( ci’ Hat (£4), © b o(1 9 ( 1

where a, and b, are material properties for the th Kelvin element.

If the creep equation can be written in this form, then the

concrete behavior can be analyzed numerically using Kelvin elements

(52). The degree of accuracy of the model depends on the number of

Kelvin elements used in series. In general, two elements are adequate

to represent the visco-elastic creep behavior of a concrete structure

(64, 65, 66) -

The Kelvin element shows no stress relaxation. It exhibits a

delayed elastic response, which, upon unloading after a constant

stress creep test, is totally recoverable at time t -&gt; «= (44)

(Figure 12 ). Althouth it can not be used to represent initial elastic

response, results using Kelvin elements can be added to those obtained

from an elastic analysis. Results using both Maxwell elements and

Kelvin elements have been shown to give good agreement with results

measured from existing structures and with those of other creep

models (33, 52).

A model called a Burgess body has been proposed by Argyris et.al.

(2). It consists of one Maxwell element in series with a number of

Kelvin elements. Its equation is of the form

~5Q
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t

e(t) = 2 + B? | YIT(1),t]o(1)dT

ro qt _) | ST(e), tle”
? 0

{ Py
}

2) = 8) ya “4.5a".

»

The first part corresponds to the instantaneous elastic response, the

second to permanent flow, and the third to delayed elastic strain

which is recoverable. Age and temperature are included as

parameters, and if delayed elasticity and permanent flow are affected

by age and temnerature in the same manner, then

P[T(t),T] = Y[T(T),t] \
£ ry

Oo. 1)

Results obtained using this model are in good agreement with those

from other experimental concrete tests. However, this agreement

only confirms the effectiveness of curve fitting to experimental data,

not the creep law itself

bh.4 Concrete Creep Equations

Many other creep-time equations have been suggested, most of

which are of a hyperbolic or an exponential type. These have been

developed mainly by experimentation, instead of by attempting to

explain creep as a visco-elastic material. In some cases, creep is

expressed by a "standard" curve, modified by factors for particular

mix proportions and storage conditions.
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In 1960 England represented the behavior of heated concrete

beams by a visco-elastic model consisting of a spring of elastic

modulus E, in series with a dashpot of time-dependent viscosity N(t).

He proposed the following relationship (26)

de _ 1 do Ww def
ic CE at T ofO = t) Cx

L Fa. i)

where f(0) is a function of temperature, O

and c(t) is the specific thermal dreep of concrete

de (t) _ od
dt nic)

Roll developed a mathematical model to describe the mechanism

of creep (7), and on the basis of his model proposed the following

expressions for creep rate and creep strain

£ =

-
hn «ce Pa”t/™ 4 ou (a7t/T1 4 jog.-100t/Ty,

ce P 1, (1-e"t/ TY, + sa, (2-e"t/T1 - o-100t/Ty,

(4 11)

(4.12)

where

8 = uniaxial sustained compressive stress

t = time under sustained stress

 LC = (time) 1

and all other parameters are model constants which are mix-

and size-dependent.
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The model constants were then estimated using the results of tests on

creep, creep rate and creep recovery, and a sample of Roll's results

follows:

TIME (days)

10

25

20

101

TY

210

OBSERVED (10% in/in.)
2.6 3.0

3.1 3.6

4.5 4.9

6.2 6.9

6.8 7.6

1.8 3.0

nN 9.3

CALCULATED

2.5

3.0

4.3

6.7

7.2

8.2

".5

A study by Lewis et. al. (32) in 1969 used a creep equation

proposed by Hanson of the form

)

+ o-F(K)log (1 + t) (4.13)

where F(K) is a function of age and temperature. Analytical results

gave a lower bound to measurements taken from the Oldbury pressure

vessel (9).

Another creep equation used in the analysis of an  | sting

structure is of the form

E
n

a
-l

(4.14)

where € is the specific creep strain with regard to stress, and a and

n are functions of temperature and age. Results correlated with
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measured stresses.

Saugy (53) performed a nonlinear analysis using a creep

equation of the form

i =e (1 +a(-1)™ (4 15)

where a and n are functions of temperature and age, and €, is the

strain for the present loading. Results showed that stresses were

redistributed, increasing the integrity of the vessel up to about 1.5

times the design pressure.

Lorman proposed the following hyperbolic expression (34), which

causes creep to approach a finite limiting value, c_ = md

nt
+41

1 (4.16)

where t is the time since application of the load, and m and n are

constants.

Another hyperbolic expression was suggested by Ross (50), which

leads to a limiting value of c_

L
edly a

i7b

\ 1 v)

where a and b are constants.

Thomas proposed an exponential expression (57) which leads to

values of the ultimate creep, c_, closely agreeing with those of

Lorman and Ross

&gt;
a Cd 1_a-A (td) Body ] 6. * 3)

wilyfa=



where A, d, and g are experimentally determined constants. Thomas found

that the ratio of the limiting creep to that occurring during the first

year under load varies little, and suggested that it does not exceed

4/3 for specimens loaded at an age of 28 days. For specimens loaded

at later ages the creep after one year will be smaller, and thus the

ratio is an increasing function of the age at loading, approaching a

limiting value of c_= 1.45¢,. However, the disadvantage to using this

expression is that in order to find the limiting value of creep, it is

necessary to know the creep after one year under load, which is not

very convenient in practice.

McHenry's exponential expression also assumes that creep is

proportional to the amount of potential creep remaining (35). The

specific creep is given by

o™ ——
= (a+3ePT) (1-e'5) (4.19)

where T is the age at the time of application of load (T &gt; 5 days),

t is the time since the application of load, and a, B, p, and r are

constants.

A simple exponential

 Cc t

equation was suggested by Shank (54)

(4.20)

where a is a constant, and b is a coefficient dependent on the

concrete properties. Shank's equation is easy to use, however it can

only be used to estimate creep up to about one year under load, since
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for longer periods the creep increases at too great a rate. Also,

the expression postulates an indefinite increase in creep.

A similar approach was adopted by Saliger (51)

*
8

Yo1)

where a 1s a creep coefficient of the form

- A F (4 22)

Although this expression does not cause creep to reach a finite limit,

Saliger assumes that the ultimate creep is reached at an age of 30

months. However, this would mean that concrete loaded at an age of

30 months would show no creep, which is not the case. Therefore, Saliger's

equation can not be used for loading ages greater than a few months.

Saliger also suggested that concrete subjected to a sus-

tained load will respond elastically to any additional live loads. That

is, live loads produce only elastic deformations. He also postulated

that strains produced by a given stress are independent of any stress

applied either before or after that stress. McHenry first postulated

this principal of superposition, and applied it to creep recovery.

Although the principal of superposition introduces a fixed bias, it is

convenient for most practical purposes.

The U.S. Bureau of Reclamation made an extensive study of

creep of concrete (67), and they found that specific, or ultimate,

creep can be expressed as

 8 6—



¢ = F(T)log(t+l) (4.23)

where T is the age at which the load is applied, F(T) is a function

representing the rate of creep with time, and t is the time in days.

In these studies creep was estimated from the change in the elastic

properties of the concrete. Thus, for a given mix, the modulus

of elasticity (as a function of time) is a useful parameter in

estimating creep. However, as in many of the previous expressions, the

necessary information can be obtained only after a long period of time.

Greenbaum and Rubenstein used an equation of the following

form to analyze stresses in a thick-walled pressure vessel (17)

-
act L (4.24)

where a, b, and c are constants. They used two different equations,

depending on specific structure and material conditions.

~
—

~

= 6.4 x 10"18,4-4

: = 6.4 x 1071"
rr fy A 7

1:

(4.243)

(4.24b)

The results showed good agreement when compared to closed form

solutions. Creep caused redistribution of stresses, and a large

reduction of high stress concentrations.

The following equation suggested by England and Ross and given

in Reference 66 was used by Sarne (52) in a nonlinear finite element

analysis of concrete structures

 _-— 4.0T[(1-e 1%) 4(1-"0-035ty 1,076; (¢ °3)
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where T is the temperature in °C, t is the time in days, and 0 is

the stress in Ksi. In this case, the value of concrete creep strains

is a function of the duration of the load and the concrete temperature.

Hannant approximated creep strain with a log curve in two

parts (26)

c(t)

c(t) =

-9
= 1.51 x 10 log, (1+t) for O 50 C ly 3S

(3.62 log, ~y
A+t) - 3.58] x 1077 for + &gt; 50 davs

(4.262)

(4.260)

However, the constants used in these equations render them valid for

only a specific concrete mix, that used in the Oldbury pressure

vessels.

The above creep equations require that constants be determined

empirically for the specific material and physical conditions being

studied. That is, limited time creep tests must be made using the

actual mix and storage conditions. The longer the time of the tests,

the better the predictions will be. For a 60 day test the error is

about 152. However, the time necessary to obtain reasonably accurate

results is very often not convenient, or possible, for practical

purposes. Attempts have been made, using the creep data available in

technical literature, to calculate coefficients and parameters for

creep prediction under any conditions.

Jones et.al. propose a ''standard" creep curve (28) which can

be modified for the particular slump, air content, cement type and

content, percent fines, relative humidity of storage, thickness of
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member, and age at loading, by means of correction factors. Although

this method was developed for lightweight concrete, it appears to

be valid for normal weight concrete.

Wagner used a similar approach (60). "Standard" values of

ultimate specific creep are modified by various coefficients to

suit the particular conditions. However, Wagner's predicted values

of ultimate creep compare poorly with 4/3 of the measured one year

creep, due in part to the properties of the aggregate, which are

not considered in his curves.

In summary, if it is possible to make 60 day creep tests, any

of the equations described above can be used, depending on the

desired facility of use and accuracy, to give satisfactory results.

If no tests can be made, the methods developed by Jones and Wagner

must be used. These yield results which may not be sufficiently

accurate in structures sensitive to creep, with errors of + 30%

commonplace

Numerical Solution Methods

Several methods of numerical solution of the creep equation

have been presented in technical literature. The oldest method is

4.5

the effective modulus method. Because it is one of the simplest

methods, its use is widespread (33, 65). The method consists of a

single elastic solution using an e”fr~~ive (or sustained) Young's

modulus.

E | 1/3(c .r 3 = E(x )/[1 + ¢(t,t ) 1 \1 7)

—£0—



where J(e,t 0) is the creep function, and is equal to the strain at

time t (including the elastic strain) caused by a unit constant stress

acting since t, ¢(t,t) is the creep coefficient and is equal

to E(t )J(t,t )-1. Creep strains are calculated for a given stress

1Le

in

 ce or

He
Et oy

“aff

Reference 65 Zienkiewicz gives /E ¢¢ as

t1 1 3
 = ——— + |  o(T,t,T) = (0)dT
E ff E(t) 0 oT

where c(T,t,T) = (1 - La (t=1), - i

E, (T)

(&amp; 28)

( 3)+ a &amp;

For a long-time load

E E,(T) E, (T) (4.30)

The advantage that only one elastic solution is necessary to calculate

strains is offset by several disadvantages. When aging is negligible,

such as for old concrete, excellant accuracy is obtained. However,

when aging is a factor and when stress variations occur, the assump-

tion that stresses remain constant leads to overestimation of creep.

Under pressure loads where stress changes are usually small, acceptable

answers are obtained. Under temperature loads where stress changes

more than 30Z of the initial values are possible, the error will be

large (47). Also, the effective modulus method incorrectly predicts

all creep as fully recoverable.

In 1967 Frost presented the age-adjusted effective modulus
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method. In this method computation of changes from ty to t due to

creep is reduced to a single elastic analysis with inelastic strains,

as in the effective modulus method. The effective modulus is adjusted

by means of an aging coefficient to yield more accurate results using

the age-adjusted effective modulus. This method gives exact solutions

when the stress is constant (creep test), when the strain is constant

(stress relaxation test), and when € = € o(t,t ), which is typical

of straining structures by differential creep or shrinkage and of

buckling deflections. The age-adjusted effective modulus method is

the closest approximate method to the exact solution.

The steady-state stress solution gives a stationary state of

stress which would be achieved after a long period of time. A draw-

back to this method is that actual creep strains may not be large

enough to cause stresses to approach a steady-state condition.

The steady-state bound may lead to tensile values which are too high

during stress reversals. (25)

The rate of creep method was proposed by Glanville (4), but

was first applied to more complicated problems by Dischinger. (In

German it is known as '"Dischinger's Method" and in Russian as the

"Theory of Aging'). This incremental procedure has the advantage

that boundary conditions, body forces, thermal strains, and material

properties can be changed at each time increment. The drawbacks are

that no delayed recovery is modeled, creep due to stress changes is

underestimated, and a negligible creep is predicted for loads

applied to very old concrete. In contrast to the effective modulus
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method, however, the rate of creep method gives good results for loads

applied to very young concrete.

The solution technique assumes that for each time step, the

changes in strains and stresses are small compared to the total strains

and stresses which exist in the structure before the creep occurs.

The steps used for solution are:

l. An elastic solution is first obtained for the applied load.

2. Using the stress from the elastic solution, the creep strains

are calculated from the creep law.

3. These creep strains are then applied to the structure using

equivalent body forces.

G New displacements, strains, and stresses are found. These

new creep strains and stresses are considered as initial

strains and stresses for the next iteration.

5 Step 2 is then repeated for each time increment using the

new stress values.

This method will not diverge if the incremental creep strains are less

than the total elastic strains before creep occurs.

Two methods of accumulating creep strains are commonly used

(17). The time hardening creep law assumes the creep rate is dependent

on the instantaneous stress and temperature and the time since the

load was applied. The strain hardening law assumes the creep rate is

dependent on the instantaneous stress, temperature and accumulated

creep strain. The strain hardening law is more accurate, but the time
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hardening law presents fewer analytical difficulties. However, for

constant loads, both laws provide virtually identical results, with

the strain hardening law giving slower relaxation of stresses.

When large deformations are involved, the number of time

steps necessary may make the rate of creep method impractical

because of the number of time increments necessary. Therefore, when

using this method the allowable size of time increments should be

considered. In general, the time increments can increase at a rapid

rate after the first few days. In any case, the large computer storage

space needed may make this method unattractive.forlargeproblems.

England used a rate of flow method to represent the creep

compliance function as a sum of a delayed elastic component, which is

recoverable, and flow, which is not recoverable

j(t.t L260 8s)
E(t)1’

(4)

(4 a1)

Zh 1 e

1.1, %
E, E(t") E(28)

and ¢q° $e are creep coefficients for delayed elastic strain and flow,

respectively. Although this method appears to yield good results for

creep recovery after sudden complete unloading, only simple problems

have been solved to date.

Arutyunian (3) proposed the following approximation
v1 $,(t") —(t-t")'~

J D —— + —— -— » 1Jet’) 2 gioy t Fey L-e ) ©(4 32)
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where for long-time creep effects good values are

r, = 50 days and ¢ = 6(,7)1.25¢" 0-118

This corresponds to an age-dependent Kelvin model coupled in series

with an age-dependent spring. Relaxation problems can be reduced to

first-order differential equations for internal force rates or

displacement rates, and a similar equation relates strain rates and

stresses. The Arutyunian method has found widespread use in Eastern

Europe, since in contrast with the effective modulus and the rate of

creep methods, the proper ratio between the creep of young aging and

old non-aging concrete can be taken into account. However, the

analysis is much more complicated than that required for other methods,

and has not always proven to be the most accurate.

In general, the age-adjusted modulus method is found to be the

most accurate of those presented here, and, with the effective modulus

method, is the simplest to use. These methods reduce the creep problem

to a single elastic analysis, and unlike the rate of creep, rate of flow

and other methods, no differential equations need to be solved. The

rate of flow method, with effective modulus treatment of delayed

elastic strain, appears as the next best method, and should be used

when the table of aging coefficients required by the age-adjusted

effective modulus method is unavailable. In the case of prestress loss,

all methods give relatively equal results. In slender columns, with

axial loads exceeding the long-time buckling load, the prediction

of all approximate methods is poor.
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The differences between methods are significant in cases of

stress relaxation, shrinkage stresses, creep buckling deflections,

and straining of structures by differential creep due to nonuniformity

of concrete age. For stress redistributions in cracked reinforced

concrete cross sections, the differences are unimportant. Also,

contrary to widespread opinion, the effective modulus and rate of creep

methods do not always give opposite bounds on the exact solution,

as in the case of creep buckling (4).

All of the methods described above are linear, and satisfy the

principle of superposition. As a result, two kinds of error are en-

countered in the prediction of creep effects. The first error origin-

ates in the stress-strain law, and the second is due to the approximate

nature of the method of analysis. Short of a nonlinear creep law.

nothing better than superposition is possible.

McHenry has developed a superposition law which provides reason-

able prediction of strain variation with time, provided the concrete

stress does not exceed about 50% of its ultimate strength. The

superposition model tends to overestimate creep recovery, usually

by about 12% (6). The major advantage to the model is that once the

creep under a load has been determined to the point where additional

calculations will yield little change, there is no need to store the

particular creep history. The only problems arise when loads are

short-term, with durations of less than about 90 days, and it must

be determined whether creep of the load removal will give under or

over conservative results. The problem could possibly be overcome by
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using a longer time under load for the initial load, or a shorter creep

recovery of the load removal. This assumes that any additional changes

past this time for each load will offset each other. When using super-

position for old concrete problems arise since the change in age during

loading will have little effect on the creep curve. Upon removal of

the load, a similar creep curve may be generated, thus negating the

original creep.

bh.6 Multiaxial Creep
All of the preceeding creep equations and solution methods have

been for the uniaxial case, however multiaxial creep states are

important in many structures, such as pressure vessels. Biaxial and

triaxial creep states can be considered by using a creep Poisson's

ratio. Not much data is available on the change of creep Poisson's

ratio with temperature and time, but it has been considered to be

a constant (19, 52). In general, a value equal to the elastic Poisson's

ratio has been suggested (6, 52). Some variation in creep Poisson's

ratio between uniaxial and multiaxial states of stresses are indicated

by the results given in Reference 15, with the lower creep for the

multiaxial state of stresses. For triaxial compression, creep

Poisson's ratio is largest in the direction of the smallest principal

compressive stress.

Previous tests have been made which report the Poisson's ratio

of creep of concrete to be from v, = 0.0 to Vv. = 0.5, however these

values are only valid under the specific conditions of the individual
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tests (37). Hanna (18) and Ross (50) found that lateral creep had no

influence on creep in the other direction of loading. Stress o, &lt; 9

should have no influence on creep in the direction of gy» But 9

should influence creep in the direction of the lower load.

Meyer's tests showed different results, however (37). He found

that for drying specimens, creep Poisson's ratio was considerably

below the value for the elastic Poisson's ratio. For specimens with

constant degree of water saturation, creep Poisson's ratio was equal

to or higher than the elastic Poisson's ratio. Hence, Meyer concluded

that the Poisson's ratio for creep of concrete is not a material

constant, but a value dependent on drying conditions, i.e.,

environmental conditions. Others suggested that lateral creep, contrary

to longitudinal creep, is a constant, influenced little by curing

conditions. Meyer suggested that the higher the curing temperature,

the lower the creep Poisson's ratio, and he proposed that for design

purposes the final creep Poisson's ratio be taken to be 0.1. However,

it is suggested by many others to be taken as the elastic Poisson's

ratio.

Iriaxial creep is calculated by interrelating the triaxial

principal stresses, using a creep Poisson's ratio equal to the elastic

ratio, in the creep equation

[JT = (3 - vio. + a,’ (4.33)

The use of this method has been justified by comparison with experimental

results (68).
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Kraus (30) used an expression of the form

eCey ~ alo* [o,- 12 (0p + a ~) (’'. 24)

with the experimentally determined creep law

to Tr

» ~~ a
=

~ ne (o*, £ Er)

oi 2 32 2.1/2o* = [(o a,) + (0, a5) + (04 - a,) 1

cA
-

 JS = c c
= — \[(e] =F, 2, ~

x:
~ 2S22 (eS e712*

sek V2 ec °C 2 . C ec .

9 + (eS-sccy) 2,1/2

(6 75)

(4.35a)

(4.35b)

(4.35c)

Equation 4.35 is written in different forms, corresponding to the

steady-state creep law,

o¥ . ck {(o*) (4.36)

NT

zc* = Bg*™ (4.37)

where for constant stress og*

cx
= Aqk m (4.38)

the time hardening creep law.

ro R
2c - AqaD or (ro39)

and the strain hardening creep law,
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LL na l/m gan/m cC*(1-1/m) “4Se FB0)

where A, B, m, and n are obtained from uniaxial tests.

In 1967 Hannant (19) proposed the following equations for

the total dilatational and deviatoric strain components £14 and 43

0E 30il 1 ii
y (1 =-20[g—=— +0, f (©)  , t

de as
ij _ 1_ijye (1+ Vg Se + Sy f (©) dc

3t

(4.413)

(4.410)

where O14 is the stress tension, S13 is the stress deviator tensor,
1

f(©) is a function of the temperature O, and ey = £13 ~ 3 fk Sey

The time variable can be eliminated and Equations 4.4la and 4.41b

expressed in terms of the specific creep c¢

0
TH 133c = A -2V[g 7+ £@]o

945 13
5c ~ AF VIE + EO]s,

(4.423)

(4.42b)

Although much data presently exists on uniaxial creep, relatively

little is known about multiaxial creep behaivor. Further work must be

done in this area before any of these models, parameters, or ex-

pressions can be used with confidence in describing this phenomenon

under various material and environmental conditions.

-7Q



CHAPTER 5

NUMERICAL SOLUTION SCHEMES

5.1 Solution Technique

The creep behavior of a structure is determined by the finite

element method using an incremental procedure. After the load or its

increment is applied to the structure, and iteration completed, bring-

ing the structure to equilibrium, a time increment is assumed to occur

and the effects of creep during that time increment can be calculated.

During the time increment, creep strains are found by using

a selected creep law. These creep strains are considered as initial

strains for the next iteration. A consistent nodal load vector is

built from the creep strains, and the displacements and stresses due

to this load vector are found.

The solution technique for the concrete creep problem is

summarized as follows:

l. For each time interval the total strain increment is

made up of 3 parts

Ae = Meg + AE of + Ae, (5.°.)

where Ae, is the incremental elastic strain,

Ae, is the incremental thermal strain

Ae = AT (5.1a)

and Ae, is the incremental creep strain, and can be selected for the

particular problem and conditions
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Ae. = f(o,t,T) (5.1b)

T is the temperature, and can be a function of time and position

Tr i I &gt; (5.1c)

2. The instantaneous elastic strains and stresses due to

the external loading are calculated. These are considered as initial

strains and stresses for the next time interval. Thus, at t = 0, there

exists, due to the external loading, €s and o_.

3. Assuming that the stresses a, remain constant over the

interval At, the incremental strains due to creep and temperature

effects are calculated using Equations 5.), 5.1a, 5.1b, and 5.lc.

4. Using the strains found in Step 3, the total change of the

nodal point displacements are determined.

11
KAu

&gt;.

- ( B D(Ac,., + Ar
1% "§ -J

The total change in strain is then calculated using

Ae RA (5.3)

6. The incremental stresses are elastically determined

n .

Ac = DBAu -~ DlAe.] - DlAe,,| 5.! n)

7. If the stress increments found in Step 5 are larger than

a preset fraction of the existing stresses. Steps 4-6 are repeated
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using a smaller At. If the stresses are smaller than the preset

fraction, the stresses at the end of the time interval are determined

by adding the stress increments from Step 6 to the previously

calculated stresses,

Tan a
oO f Ao 15.5 r

8. Another time increment is added, and Steps 3-7 are repeated.

The analysis continues for a desired time t = ¥At, or until a steady

state is reached

5.2 Present Status of Program Development

A program using a general curvilinear linear strain isoparametric

finite element has been developed for the solution of displacements

and stresses of axisymmetric structures. Displacements and stresses

resulting from both external and creep loadings can be calculated,

for both cylindrical and spherical structures.

The program considers the size and shape of the structure, the

material properties, the magnitude and duration of the loads, and the

creep formulation to be used. In this way, the reinforcing and/or

prestressing effects of the actual structure can be included by

modifying material properties and loading conditions. The user can

also select the increment of time and the creep expression to be

used, to meet the conditions of the particular problem.

Structures in which creep effects are typically of importance

can be analyzed using the geometric parameters in the program. The

=P)



response of a concrete pressure vessel to creep at higher temperatures

and pressures can be approximated by using a thick-walled cylinder

and an appropriate creep formulation. Concrete creep effects on

thin shells can also be determined.

Several of the most widely used creep equations have been

Incorporated into the program, including those suggested by Greenbaum

and Rubenstein, Lorman, Ross, and Shank. These expressions account

for the influence of age of concrete, temperature, duration of load,

and magnitude and type of load. The Greenbaum and Rubenstein ex-

pressions allow a multiaxial creep analysis. Any other creep ex-

pressions can be easily incorporated into the program.

For the general creep problem, the initial displacements and

stresses due to the sustained load are calculated, and then the

displacements and stresses resulting from the concrete creep are

determined for each time step. The time increments are increased

after the first few intervals to obtain a less costly analysis for

long-timeloads. The time intervals increase according to the

following equation,

At = At + 101% (5.6 J

where 1 is the interval number.

Due to the time and monetary limitations, the incremental

portion of the program has not been fully debugged. At present, the

initial response of the structure due to the sustained load can be
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determined, and the consistent nodal! load vector resulting from the

creep strains can be assembled. The analysis procedure for the

program is described in Figure 13. A listing of the program appears

in Appendix A.

wRhr=



-._

PERFORM INITIAL
ELASTIC ANALYSIS

READ INPUT

Finite Element Data,
Material Properties,

Initial Loading Conditions
A EE | EE mr

ASSEMBLE T

T£/[B] [D)(B]aV|

| SOLVE
Displacements
and Stresses

4

[Time = 0]

| PERFORM CREEP mmr
ANALYSIS —_— -

—
[select Creep!

Expression pet Time +- Time A(Time)

[Deternine Incremental |Creep Strains i
Lar ER——

a” ERE

Assemble Consistent
Nodal Load Vector

£181" [D1lAe, + Bey)

Figure 13 Program Analysis Procedure
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DISCUSSION AND REMARKS

The behavior of reinforced and prestressed concrete members

under the action of creep is considerably better understood than

several years ago. Rational methods of allowing for the restraining

action of reinforcement have been developed. Strains and stresses

in concrete and steel can be calculated, and hence axial shortening

and curvature of members can also be calculated.

The effects of creep in arches, shells, composite steel,

concrete and precast concrete, in-situ concrete members, as well

as continuous beams, have been evaluated. The problem of creep

buckling has also become better understood. With the proper knowledge

of concrete creep behavior under extreme conditions, the designer

is able to make provision in design so as to minimize the adverse

effects of creep. This is especially important in such structures

as concrete pressure vessels.

There presently exists much data on the visco-elastic behavior

of uniaxial creep. However, further experimental data is needed

before multiaxial creep behavior is understood. More importantly,

especially for the analysis of pressure vessels, further work needs

to be done in the area of concrete creep formulations. This study,

and the resulting program, serves as a first step towards the

development of a means of assessing creep formulations. Once the

present formulations are assessed, an accurate, yet easy to use,
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expression should be developed for use in the analysis of complex

structures in which creep effects are important. This expression

must account for the many environmental and material parameters

which influence the mechanisms of concrete creep. Also, further

work can be done in extending the present program to account for

nonlinear creep behavior.
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APPENDIXA

Listing of Program
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healt

LL)
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LJ
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hy

uy
lp

al
a

AN ASSESSMENT JP CREZ? PORMULATIONS
POR CONCRZIE STRUCTURES

3

JOSEPH A. MARICRZ

MASSACHUSETTS INSTIIUIZ OF TZCIANOLIGY

MASTER'S THESIS PZBRUARY, 1976

PROGRAM INITIAL

DETERMINZS PRIBLEM SIZ2 AND RUNNING BARAMETERS. ALSO PIXES ALL
VARIABLY-DIMENSIONFD ARRAYS.

DITMZNSION P2J3CE!16),53),2(3),321(3),BC2(8),KEY3S (8)
DIMENSIIN UDISP(B),4DI5P(8),U?IRC2(8),wFORCE(3),TDISP(16)
DIMINSTION NJID3(8,9),XKSY5(15,17),2IS2(16),FORZE(16)
DIMENSION PPIRC2'16,17),3TRESS33,5)

THE ABIVEZ ARRAYS MUST BE DIMENSIINEZD 3Y [CHE SER IN THIS ROUTINE ONLY

DEPINITION OP VARIABLES

NE
NPN
NN
NNE
ANNE
NPRNT

NUMBER OF ZL3IMZINIS
ELSM ENT NUMSZR IN CINNSCTIVITY LISTING
NJ432R OF NJID33
TWICE THE NUM3EI? 3F NCDZS
TWICE THE NJMB33IR OP NODZS PLUS INE
PRINTOUT CJNSISIS C2 AN INPUT EDIT AND ANY
JULPHT WHICH I35 53L3CT=ZD BY NPRNT. IH® NPRNT
VALUZ2S AND COQ325PZ3NLCINS JUPPUT ARE:

MAINJCI1
MAINCD?2
MAINCCI3
MRINDOO4
MATNRADS
MEINCIO6
MLINIR)T
MEINCC)IS
MAINCGI9
MLINYS1C
MAINCZ11
MAINCO12
MAINZ213
MAINCO14
MAINCO1S
MAINGO1G
MAINCO17
MAINC218
MAINGZ19
MEINZQO20
MAINDZ21
MAINCC22
MAINDD23
MAT NDD24
MAINCO2S
MAINJD26
MLINCO27
MAIN2D28
MAINDG29
MAINZ 33C
MEINTD31
MAINSD32
MAINCT33
MEINCC3Y
NAT NIC3S
MLINIO36



oJ
&gt; 0D
~

-
oy
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-
wl

S{NN)

Z (NX)
BC1(NN), BC2(NN)

KEYBC (NN)

K31BC'I)

N ADE (NZ,9)

DISP (NNE)
UDISP (NY),

WOISP (NN)

PORZCB INNES)

SOLV3D DISPIACZMENTS
SJLVED STHZSSEs
RECUCED SILFFNESS MATRIX
UNIFDUZED STIFPNESS MATRIX AND FORCE
DISPLACEMENT BOUNDARY CCNDITIONS
CLIMENTAL STIFZNES5 MATRICES
RZIEIZICE SURPACE PARAMETERS FROM
SU3RJITINE GECH
B MAIXIX, ZACTIRS IJSED TO GENERATE IT,
AND CJMPCN3INTS OF ZLEMENT STIFFNESS AT
BACH IIIZGRATICN POINT
FILL J3BJ35 INCLUDING REDUCED STIFFNESS
MALRIXK CEISRMINANT

ARC LEN5TH COSRCINATE ALCNG TdZ RZIFERENCE
CURVE ZORRIISPINLINS TJ ZACH NODI
NORMAL CDODJIRDINAIE 290R 3ACHd NCDZ
TWO PIRCE JR [ISPLACEMINT BOUNDARY
CONDITICNS IN THZ 5 AND N DIRECTIONS, RESPECTIVELY
BOUNDARY CONOITIIN KEY DELZRMINING THE
NATURZ JP IdE 3CUNDARY CCNDITIONS AT A NODE

1

BS1(I) BC2(I)
FORCE PORCE
PCRC2 CISPLACEZMENT

DISPLACZYENT gIRCT
DISPLACEMENT CISPLACIMENT

ARRAY LEZ2INs RACK JF THE ACTUAL NODE NUMBERS
POR EACH ZLZMENT WITH A NIUWTH POSITION FOR AN
AS YT NDT BPRISEAMMED MATIRIAL SELECTICN KEY
PINAL 3JLVILC JISPLACE4INT VECTOR
SUBYAIRICZS 22 IHE PARTITIDONED DISPLACEMENT
VECTOR CONTAINING NJODAL DISPLACLMZINTS IN THZ
S AND J DIR3CTICNS, RISPECTIVELY
LOAD VECTOR ddICH CONTAINS EXToZRNAL LOADS AND
UNKNIOAN REAZCIIINS AHERZS THE DISPLACEMENTS

MAINOO37
MAINCC3S8
MAINGO39
MAINDIOUO
MAINIO41
MATHND42
MAINIDJY3
MAINCCY4Y
MATNCIUS
MAINDO4UG6
MAINGIU?T
MAINCO48
MAINCO49
MALNCJ353
MAINDOS1
MAINC?252
MEINZOS53
MAINDNSY
MAINCTSS
MAINCRS6
MAINDDS7
MAINCIS8
MAINJOS53
MLINCZ20D
MAINSDOO1
MAINDIDS2
AATNCOS3
MAINT 254
MATNCCOS
MATNCDS6
MAINCIOT
MAINCDO6B
MAINND59
MAINCOTC
MAINZCT1
MFAINGCT2
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UFORCE (NN) ,
WFIRCE INN)-

Ea

XXSYS ‘NNZ, NNYZ)

PFORCE (NN 2),
PPORCIINNE,NNNE)

STR235 (NN,5)
hs

a

c B 4,16)

ch D (4,4)

 bo

DB (4,16)
BT (16,4)
C{16,4)
ELSTIF (16, 16)
ELST (16,16)
XSTRES (4)

IDISP (16)

KEYSTR

INT 93)
DUNMT,DUNM2

»

n

J

—

"

ro

hl

-y

“=

o

hy

ARE P32SCRISED
SUEMATRI&gt;35 QF THE PARTITIONED LOAD VECTOR
CONTAINING NJIJAL PORCE3S IN THE S AND N
DIRESITONS, 3E3EECTIVELY |

\SSEY3LED,RE0USED, AND AUGMENTED MASTER
STIFFN3S3 MATHLX
DUMMY \RIAY3 JSEC 3Y TE SUBROUTINES WHICH
SOLVE IZ PINAL R3IDUC?) SYSTiM OF EQUATIONS
STRESS VASTIR - THI PIRST POUR PCSIT LIONS POR
2ACH N3D{ A327 JCCUPIED BY [HE AVERAGE NIDAL
STRESS VALUZ ?)R ALL ZLEMENTS INCIDENT UPON
THAT N2DE (3N, 3S, T3N, STHETA) . THE PIPTH
PISITICH IS USIC IN KZZEING TRACK OF THE
AVIRASING P3)22SS.
ZLEMENTAL 3 MADRIX
RIGIDIIY 4ATRIL D
IP D1,3) = 1.), THE MATERIAL IS ASSUMED
TO BZ ISJIRIPIC JITH

E = D(1,1) |

P3IS3)H4"S RATIO = D!1,2)
PRODUCT 37 IHZ MATRICES, D*B
MATRIX 3 TRAN3S2CSZD
PRODUCT 32 4AIRICES, BI*D
PRODUCT J? MAIRICES, BT*D*3
PINAL INT2331131D ILEMENT STIFFNESS
STRESS COM2CNENIS AT A NODZ FOR A
PARTICULAR ZLZI4ENT
APPROXIYMATZ DI13PLACEMENT VICTOR USED IN
GINERATING XSIRES FOR AN ELEMENT
SIGNALS 3URJUILNE BFIR4 TD EVALUATE THE
B MATRIX AT NJJAL POINTS
TRANSP3SZ J? IJIZRPOLATIGN POLYNGMIAL VECTOR N
DUMMY VARL[AZLES WHICH TRAWSFER J, =-1, OR 1
VALUES PCR CUSVILINEAR COORDINATES, S AND N,
TJ BPIAM AH SISNALFD BY KEYSIR

MAINGC73
MAT NDT 4
MAINNRGCTS
MAINCCT6
MaIN2DTT
MAINCOTS
MLINGOTI
MAINDC3O
MAIN(CCS1
MAINCI32
MAINO
MLINCD3Y
MAINYC3S
MAINDTB6
MAINICHT
MATINCCO38
MAINDO89
MATNCI9C
MARINI
MAINJD92
MATNTO93
MAINDOOY
MAINTQ3S
MAINDI96
MAINCII?
MEINODGS8
MAINGCI9
MATNT1)0
MAINUGIOT
MATINIJ122
MAINC123
MAINDNIZUY
MAINC1DS
MATND136
MAIN2127
MAINC1D8



IBH1Y

1000

2000

GC1

$C9
C
\

INTEG2R QR,Q8
QR=8
3 =5 |
WRITE (08,3001) |
FARMAT '*1°,1X,'NOTE: 1. THE UNIT JP LENGTH I3 INCHES.',//,8X,'2.

ITHE UNIT JP ?JRCE IS PIUNDS.',//,3X,'3. TIMPEZIATURES ARZ IN DEGREE
2S CENTIGRADE.',//)

READ {JR, 1307) NE,NN,NGEOM,NPRNT
FORMAT (415)
WRITE’23,209))
FORMAL (///,20 ("*') ,uX, "PINITZ ELZMENL CATA',U4X,65('*'))
WRITE ’23,2001) NE
PORMAT {//,13X,'NUMB3SR OP EL IMZNTS3',17('k*),I5)
WRITE (28,5001) NN
FORMAT (/,13X, * NUMOISR OP NODAL POINT3',13'%%),I5,///)
NNF=2%®NN
NNNE=2%NYe1
CALL CLISP(NZ,NN,NGSIM,NNE,NNVE,PP3R22,5,2,3C1,822,KEYBC,NODE,XKSY

‘Ss, DISP,PIRCE, FFORCE,STRESS, NPRNT,UCIS?, ADISP,UPJIACE,WPORCE,TDISP)
SONTINUZ
STOP
END

MAINN109
MAINC110
MAINCTIT
MAINI112
MAIND113
MAINO114
MAINC115
MAIND116
MEIND11T
MAINC118
MAINU119
MAIND126
MAI NN121
YaINT122
MAIND123
MAIND124
MATINN125
MEINC126
MRINT127
MAINT 128
MAINCI129
MAINC13C



SUBRJOUTIN® CLISP{NE,NN,NGECH,NN3Z,NNNZ,EPORCE,5,2,8C1,B52,KEYBC,NID
1E, XXSYS,DISP, PORCE,PFORCZ,SIR3SS5,NPRNL, UDI SP, 4DISP, UFIRCE, WPORCE, T
2DISP)

PROZZ553S INPORMATION = INPUT Jf GZ3%32TRY, BOINDARY CONDITIONS,
ELTAINT NODE NUMBZRING, ANS MAT3IRIAL RIGIDITY

DIMENSION PPIRCE{(NNE),S{NN),Z(NN),3 1{NY),BC2{NN),KEYBC (NY)
DIMENSION NODZ (NE, 9) ,XKSYS(NNE,NNNE),DJISP(NNZ),PORCE(NNE)
DIMENSION PPIRCE(NNE,NNNZ),ST3E33°NN,5) |

DIMENSION JDI3P (NN) ,dDISP (NN) ,UPIRZZ (NN) ,#FIRCE (NN) ,TDISP (16)
DIMENSION SN{3),2N (3) ,RON (8) ,30IN (3) ,1N!3),%2N!3),Xx3L4‘8),RN 8)
DIMENSION B{4,15),P5I5(8) ,PdIS{3),NT{3),2L3TIFP (16,16) ,BT (16,4)
DIMENSION D{4,4),C!10,U4) ,D3(4,15),X3I3E3(4),2LST (10,16), PSI (8)
DIMENSION PHI (A)
DIMEZNSTIN ISIRES (NN,D3) ,CRP (NN), RPV (NNZ, NN)
INTEGER QR,Q3
DUMI=),)
DUM2=].0
oUM3I=),0
JR=3
RB =5
XKEYSTR=9)
NIJ=9
[JK=0
T=C.0
DY 3833 I=1,NN
DJ 8838 J=1,5

8888 TSTRES !I,J)=).0
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WRITE 'Q8,513))
5130 PORMAL(///,1X,10(*®%),4X,*NODALPIINICIORDINATES

10UDARY CONDITIONS®,4X,40dxv)/)
WRITE!Q8,5131)

AND RN

a -
ma

CLSP2GI1
CLsPLCI2
CLSPCOQ3
CLSPJI2U4
CLSP2GOS
CLsPUCE6
CLSPCCD0T
CLSPGNI8
CLsPL(039
CLSP2210
CLSP2211
CL5P3212
CL5P2213
CLSPI214
CLSPUO15
CLSPXJ16
CLSPZ317
CLspCN18
CLsP0O19
CLSPIu20
CLSPCI2Y
CLSP(0C22
CLSP2223
CLSPuO24
CL5P32325
CLSP?026
CLSPN227
cLspil28
CLSP2523
CLSPCLO3C
CLSPCA31
CL5P3G232
CLSP2(33
cLsplulu
CLsP(C"3S
CLSPCN38



5131 PORMAT (/1X, 8X,'NODE POINT',7X,*sS', SX,'2',7X,'KZYBC',8X,*BC1',11X
2,%8C2',/)

DO 1 I=1,NN
RZAD ¢Q2,1001) S(I),Z(I).BC1(I),BC2(I),REYBC(I)
PORMAT {2P13.4,2217.6,15)
WRITE (02,2902) I,S{I),2!I),KEY3C{I),221{I),BC2!(I)
FOP®AT 1X, ,I15,7X,F7.2,3X,27.2,34,15,4X,E13.4,2X ,E13.4)
CONTINUE
NRITE (Q3,5133)
PORMAT (///7/761%,20*%®Y)4,SLI¥INTCCNNICTIVITIES',4X,607%%"

1) 7)
WNRITZ793,2033)
FCRMAT {/,5K,*BLEM2NT,3X,'N3D31%,24,*NODE2",2X,'NOD=3,2X.%NODEY'v,2X,*NIDESY,2X,NODI6Y,2X,*NCD?,2X¢,*NODER',/)
DI) 2 I=1,NZ
RZAD (23,1202) NEN, {NJDE(NEN,J),J=1,3)
FORMAT "1)I5)
WRITE ({Q3,2004) NEN, {(NODZ(NEN,J),J=1,%)
FORMAT (6X, I3,5X,13,4X,I3,4X,I3,4X,13,4X,I3,4X,I3,4%X,I3,4X,13)
CONTINUS
RIAD (28,1003) ((D(I,J),J=1,4) ,I=1,4)
FORMAT (4P15.6,/,4P15,6,/,4FP15.5,/,4F15.6)
CONPINUZ
IF!D*1,3).NE.1.0) GO TO 3
WRITE{Q8,30J1)
PORMAT (*'1°,///,11X, "MATERIAL I3 ASSJ42C TD BE ISOTROPIC:',////,19X%

1," MATZRIAL PRIPERTIZS',//,16X,"MODULO3 OJF',6X,'PIISSOd'*S!,/,16X,
2ELASTICIPY',3X,'RATIO’,/)

WRIT S(28,30)2) D(1,1),D (1,2)
FORMAT (11X,2215.4)
CONTINUE
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ELEMZNDI STIPPNESS GENERRATION

DO 50 T=1,NN3
DJ 50 J=1,NNJIS

CLSP2237
CLSPOC38
CLSPNC39
CLspCCul
CLSP22U41
CLSP2242
CLSPJ043
CLSPCO4Y
CLSP?345
CLSPLOU4G
CLSPCCY4T
CLsp0748
CLSPCJL9
CLsPOS50
CLSPCCS1
CLSP(NS2
CL3PGI53
CLSPJ354
CLSPCI55
CLSPCN56
CLSP2T57
CLSPCO58
CLSPI059
CLSPCI6I
CLSPOC61
CL5P3062
CLSP0Y563
CLSPC ol
CLS P3265
CLSPCN6E6
CLSP""07
CLSPCJ68
CLSP7J69
CLsplC7C
CLSPO271
CLSPCI72



a |=)

¥
LC
uf

-
her

ja

” ]

XKSYS (I,J) =).9
CONTINUZ
DO 55 KK=1,NZ
DO 4 I=1,16
DO 4 J=a1,16
ELST (I,J) =9.9
CONTINUE
DO 5 J=1,3
NNODE=NUDE‘KK,J)
SN (J) =5 {NNOD2)
ZN J) =2'NNODE)
TONTINYZ
CALL SEJOM(KK,NGEOM,SN,ZN,RON,3)IN,R1N,B2N,X3IY,RN,NPRNT,NIJ)
CALL 3FJRM'S¥,2N,RN,R1N,R2N,RON,RIIN,(3IN,KEYSTR,DUM1,DUN42,B,D,ELS

IT, N32)4, NPANT, NIJ, C)
NIJ=1

ASSEMBLY JP EFELEMZNT STIFPNZSS23 !3 MASTER STIFF NESS MATRIX

DO 54 I=1,8
DY 54 J=1,8
SAN=NODZ (KK,I)
N3N=NIDE KK,J)
XKSYS (NAN, N3N) =XKSYS{NAN,N3N)+2L3T(I,J)
CONTINUZ
DO 51 1=1,8
DJ 51 J=9, 16
JJ=J-3
NAN=NID3 (KK, I)
NEN=NIDE(KK,JJ)+N
XKSYS (NAN, NON) =XKSYS (NAN, NBN) ¢EL3T (I,J)
CONTINU?
DO 52 I39,15
DO 52 J=1,8
II=I-3
NAN=NDDE 'KK,IT) ¢NN

CLSPOC73
CLSPJI74
CL3PC975
CLSP0J76
CLSPCQ77
CLSPGCT78
CLSPCRT79
CLSP2282
CLSPI)31
CLSP)J82
CLSpPoG33
CL3SP((C34
CLSPL 285
CLSPC?36
CL3PC"37
CL5PJ3838
CL5PO089
CLS2(J)30
CLsPC591
CL3PIC92
CL5PC)33
CLsp(c9I4
CLSPCII5
CLsPC%96
CLSPCJ97
CL3P2)98
CLspl239
CLSPJ10)
CLSP0121
CcLspPC172
CLSP2113
CLSPI1J4
CLSPI1JS
CLSPJ136
CLSP2107
CL5P(108



NB N=NJDZ {KK,J)
XKSYS (NAN, NBN) =XKSYS (NAN, NBN) +ELST (I,J)
SCNTINUZ
D9 53 I=9,16
DO 53 J=J,16
II=T-3
J3=J-8
NAN=NIDZ {KK,II) +NN
NBN =NID3I’'KK,JJ)+NN
XKSYS (NAN, NBN) =XKSYS{NAN,NBN)+EL3T(I,J)
CONTINU?Z2
CONTIVYZ
IF (NPRNT, 32.3) WRITEZ(QB,2043) NYZ,NVE

2043 PORYAT'1', /,38X,'THE ASSEMBLED YaA3IZ8 SIIPFYESS MATRIX (*,I2,!Xt
Lo 1,T2,% 1,77)
T IP (NPRNT.38.3) WRITE(Q3,2014) ((XK3Y5(1I,J) ,J=1,NNE) ,I=1,3NE)

2018 FORMAT S16 814,211.48),/,25%X,81211.4,1¢),//))
BOUNDARY CONDITIONS

n

Timi

DO 60 I=1,NNE
prsp (I) =2.2
PORCE(I)=).J
CONTINUZ
DO 61 I=1,NN
ud1sp!1)=0.90
WDISP(I)=J.0
CONTINUZ
J==1
DO 70 T=1, NN
J=J¢2
KB=KZYBC (I)
KB=KB+1
50 TO (65,06,57,68),KB
FORZE£!J)=8BC1.I)
KFP=J+1}

IN

5 4

3 .

CLSP5199
CLSPC110
CLspC111
CL5PY112
CLSP0113
CLsSPC114
CLSPO115
CLSPY116
CL5P2117
CLSPI118
CL5P0119
cLs2C12¢
CLSPC121
CLSP2122
CL5P%123
CL5Pu124
CLsP012S
CLSPY126
CLSPI127
CLSPN128
CLSPU129
CLSPN13C
CLSPM131
CL32C132
CL5P31133
CLSPY134
CLSPC135
CL3P0136
CLSPG137
CLsP2138
CLSPO139
CLSPI 140
cLspPf1u41
CLSP? 142
CLSPO143
CLSPY144



FORCE (KP) =BC2!.1I)
GO TO A9
FORCE(J)=BC1(I)
KF=J+1
DISP (KP?) =BC2(I)
GO IJ 99
DISP(J)=BC1(I)
KFP=J¢1
PORCE(IK?)=BC2{I)
G) TI 6&amp;3
DISP (7) =BC1(I)
KP=J¢1
DISP !KF)=BC2!1)
CONTINUG
CONTINUE
DC 64 I=1, NN
J=201-1
UDISP{I) =DISP (J)
UFORCZ(I)=PORCE(J)
J=2%1
NDISP(I)=DISP{J)
WEFORCZ (I)=FO0RCE J)
CONTINUS
PDO 63 I=1,NN
J=Te¢ NN
DISP (I) =UDIS?(I)
FORCEI)=UPORZE!I)
NISP (J) =WDISP{I)
FORCELT)=WPOICE(I)
CCNTINUZ
 IT? (N?PRNT.52.3) W4RITE(Q3,20C8)

2C08 FORMAT! 1',///,5X, "ASSEMBLED CISPLACZ4ENT AND LOAD VECTORS FROM BO
TUNDARY CONDITIOJNS',//)
IF !NPRNT,GE.3) WRITE(QB8,2C99)
FORMA [24X,*DISPLACEMENT?7X,*23323',/)
DC 71 I=s1,NN3

37

59

|
£0

53

CLSPO145S
CLSPC146
CLSPD 147
CLSPO148
CLSP2143
CLSPJ15¢C
CLSPJ151
CL3P7152
CLSPC153
CLS P2154
CLSPZ155
CL5P2156
CLSP0157
CLSP3158
CL5P7 159
CLSP2162
CLSP2151
CLSP0162
CLSPC163
CLSPN164
CLspPL165
CLSPG166
CLSPO167
CLSPJ168
CLSPC149
CLSPI170
CLSP21T1
cLspC172
CLSP0173
CLSPI174
CLSPO175
CL53PJ176
CLSP?177
CLSpPL178
CL5PC179
CLSPJ18)



IF !NPRNT.GE.3) WRITE QB,2010) JI3P(L),FORCE(I)
2010 FORMAT {24X,B11.4,4X,211.4)
71 CONTINUZ

STIPPNESS R2DUCT ION

.
»

oe

»
ap

DO 76 I=1,NN3
IF'I.GT.NN) GO TO 73
[FI{K3YBZ(I).EQ.D) GO TO 76
[P(KZYBS(I).20.1) GO TO 76
[P(KEY3C{I).32).2) 30 TD 75
[F (KSY32(I).322.3) G0 TO 75
CONTINUZ
JIK=I~-NN
[F!K2Y35!JJIK) .EQ.)) 30 TO 76
IF {KEYBC {JJK) «EQ.1) GO TO 75
TP (KEYSC (JIK).EQ.2) GO TO 76
[P (KEY3C {JJK) .EQ.3) GO TO 75
CONTINUE
DIY 72 J=1,8N3
IF(J.Z2.I) GO TO 72
FORCE (J) =FORIZ (J) -XK3YS (J,I)*CISP'I)
CONTINU?
DO 74 X=1,3N2
XKSYS!K,I) =0,9
XKSYS(I,X) =0,9
CONTINU
XKSYS(I,I)=1.9
FORZCR'I)=DISPI)
CONPINUS
J=NNN2
DO 77 I=1,NNB
XKSYS (I,J) =FIRCE(I)
CIONTINUZR
IAN NT+2
JA=NNE+2

-

|
0
oo

1

15

72

la

16

117

CLSPJ1831
CLSPN132
CLSP0183
CLSPO184
CLSPI135
CL3P(186
CLSPN137
CLSPO138
CLSP(189
CL5P212)
CLSPY131
CL5P3132
CLSP2193
CLSPI134
CLSPN 195
CLSPY136
CLSPY197
CL5P21933
CLSPY199
CLSP72.9
CLSPC221
CLSPN2)2
CLSPJ203
CLSPC274
CLSP0295
CLSP3206
CLSPC237
CLSP0208
CLSP0229
CLSPC21C
CLSPI211
CLSP2212
CLSPO213
CL3PC214
CLSPL215
CLSPG216



TB=NNZ+2
IB=NNZ+2
IF (NPRNT.G32.2) WRITE{Q3,2011) NNZ,NV1
FORMAL (*1',/,42X, THE REDUCED STIP?NESS MATRIX (',I2,'X',I2,%)',//

')
IP (NPRNT. 32.2) WRITE{Q3,2014) !({(K3Y3!1J,JI),JI=1,NNE),IJ=1,NNE)
IF 'NPINT.GE.2) WRITZ'08,2041)
PORMAT ("1',/,10X,* THZ REDUCED LJ1J ViZIJR',//)
TF (NPRNT.GZ.2) WRITZ(J2B,2042) (2J33:%(IJ),IJ=1,NNZ)
PORMAT!212X,219.12,/))
CONTINU®

2011

elu

e042
78

-

C
. CALL 9YATSOL{XKSYS,PJaC%,DISP,??)3CE,P?CRCE,NNE,O,3,0,),NNNE,DET)
2 WRITE (03,2013)
2019 FORMAD{"1Y,27%,THE3JLVIDDISPLACE424T3',////,12X,"NODE®,12X, *UDI

15P*,21X, 401327, /)
DO 79 IJ=1,NY
IJJ=TJ +N
WRTTR (29,2023) I1J,DIsP(IJ),DIsP(LJJ)
FCRMAT'/,10X,15,5X,P20.15,5X,22).15)
CONTINJZ
IP ‘NPRNT.GE.7) WRITE’QB,2040) DET
PORMAT (53X,////¢ "THE DETERMINANT [3 ',E20.5,///)

SOLJITION PIX DISPLACZIMENIS

2040

STR=SSS CALCULATIONS

DC B81 I=1,NN
pe 31 J=1,5
STRESS I,J) =).0
CONTINIR
[F(NPRINT.2Q.)) GJ TO 112
KEYSTR=1
DO 190 X=1,N2
IT =z=1.N

»

CLSPJ217
CLspP0218
CL5P0219
CLSPd220
CLSP2221
CLSPJ222
CLSP2223
CLSprC224
CLSPJ225
CLSPN226
CLSPJ227
cLspl228
CLsPC229
CLsSPn23C
CLSP1231
CL5P2232
CLSPO233
CL5PJI234
CL5PC235
CLSPO236
CL3P0237
CLsP(238
CLSPC239
CLSPJ2470
CLSPI241
CLSPC242
CLS PC243
CLSP2244
CLSPI245
CLSPY246
CLSPC247
CLsSPC248
CL5P3249
CLSPJ250
CLSPJ251
CLSP(0252



1 Pr

a 4

1

4,
o

?
|S

3 Pp )

A|

R77

)1

ETA==-1,)
b&gt; 82 LL=1,8
NNCDE=NJDE {(K,LL)
SN SLL) =S {NNOD3)
ZN (LL)=2{NOD2)
CONTINUZ
DO 13) L=1,3
KNOCDZ=NJDOE [K,L)
CALL GZD0M!KK,NGEOM,SN,ZN,RCN,3D0IN,R1X,B2N, X3IN,BRN,NPRNT,NIJ)
CALL BPORM {SN,ZN,RN,RIN,R2N,RCN,JIN,L:IN,KEY5TR,XI,ETA,B,D,ELST,N

13238, NPRNT,NIJ,C)
CONTINUE
D2 845 II=1,4
DY 85 JI=1,16
D3 (1I,JJ)=0.0
PDC 85 KJ=1,4
DB {II,JJ) =DB{II,JJ)¢D(II,KJ)*3(KJ,JJ)
CONTINUZ
DO 36 KJ=1,8
NNCDE=NDDE (K,KJ)
TDISP (KJ) =CI3P 'NNDODE)
JI=KJe+3
NNODE=NNJDE+NN

 ITDISP{JJ) =DISE{NNODE)
CCNTINUS
DJ 88 IL=1,4

 XKSTRES (II) =0.9
DC 83 JJ=1,15
XSTRES (II) sX3TRES{II)+DB{II,JJ)*TII58{JJ)
CONTINUZ
DY 87 1II=1,4
STRESS (XNJDE,IT)=STRESS(KNODE,II)+{SIRES(II)
CONTINUE
STR2S5 (KNJDE, 5) =STRESS (KNODE, 3) +1.)
GO TO !31,92,23,94,95,35,97,93),L
XI=t,)

CLSPO253
CLSPY254
CLSP0255
CLSPJ256
CLS P2257
CLSPJ3258
CLSPY259
CLSPI2AC
CLSPG 261
CLSP0262
CLSPN263
CLSPl264
CLSPJ2€S
CLSPC266
CLSPC257
CLSPG268
CLSP(C263
CL5P2270
CLSPC271
CLSPJ272
CLSP3273
CLSPZ274
CL5P7275
CL3P2276
CLSP2277
CLsP2278
CLSPM279
CLSPJ28%)
CLSPl231
cLspG282
CLSP}243
CLSPJ284
CLSPn285
CL5P0286
CL3PC287
CLs P0238
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399393

ETA=z=1,9
GO TO 199
£I=1.0
ETA=1.0
GO TY 190
XI==-1,0
FT2=1,0
G2 TO 100
XI=).)
ETA=-1,)
GI) Id 1)
Xr=1.9
ETa=0.0
3) TI 13)
XI=0,9
2TA=1.)
GI 129 12)
XIz=-1,)
£TA=).)
30 TO 120
CONTINUE
CONTIN2

AVERAGING THE STRESSES

WRITE (28,2023)
FORMAT ('1',//,32X,°'T42 CALCULATZD 3I3:iSSE3',/)
DY 11) I[=1,NN
D2 11) J=1,4
3STRESS'1,J)=SIR32SS(I,J)/s5TR=ES
CONTINU
[IK=TJIK+1
DY 3939 I=1,39
DJ 3933 J=1,4
TSTRES I,J) =sTSTRES (I,J) #STR3S35 1,3)
dDIT2 (23,2731)

CL5P22939
CLSPJ290
CLSP2291
CLSP(C232
CLSP0293
CLSPO234
CLSPJI235
CLSPJ296
CLSPY297
CL5P(C298
CLS P2299
CcLsp2320
CLSPZ301
CL3PJ3)2
CLSP(C323
CLSP(3J4
CLSPC325
CLSPL36
CLSP23)7
CLSP23)8
CLSP213)9
CLsSPY310
CL5PI311
CLspi312
CLSP2313
CLSPO314
CLSPT315
CLSPC316
CL3P2317
CLSPY313
CLSPQ319
CL3P) 320
CLsSP” 321
CLSP™ 322
CL53P2323
cLSPP324



2031 FORMAD!///,5KL,"NOD3!8X,NCRMAL3PR353',4¢,TANSSNTSTRESS',U4X,
"9 SHEAR SIR233',5X, 'HOOP SIRES3',//)

DO 111 T=1,NY
WRITE{23,233J) I,!(TSLR3S 'I,J),J=1,4)
FIRMAT (3X, I3,5%,06(2X,215,6),/)
CONPINIS
CONTINU?
CALL 32LZ&gt;T°'PSTRES ,LJK,T,DT,2.,C424V)
IF {(IJK.L2.56) 30 TJ 6)

RESTON
END

CLSP1325
CLSP(326
CLSPI327
CLSP&gt;328
CLEPN329
CLSPL 236
CLsPC331
CLSPC332
CLSPC333
CLSPJ334
CLSP2335
CLSP2335
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SUBROUTING 330% (KK,NSZIM,SN,24,RI4,IN,RIN,R24,X3IN,AN,NPINT,NIJ)
CALCULATZS G3IINPTRIC PARAMETIIS J)? [43 RIIERSNC3 SURPACS

DIMENSION RON({8) ,ROIN(3),RIN{3),R24(E),X3IN{3),RN!8),5N(8),2ZN!8)
INTZGEZR QR,0B
0B =5
2} =8
PI=3.141532654
IP (NPRNT.52.,5) WRITE (Q3,20C6)
PORMAT (*1',//,50X,*P30M SUBRIIIINI 3EIN',///)
GY TI (1,3) ,NSEON

CYLINDRICAL SECTION

CONTINUE
IZ (NIJ.EQ.0) READ(QR, 1705) RReF
FORMAT (715.6)
pc 2 J=1,3
RON(J) =3R 3°?
ROIN {J) =0.9
RIN(J)=1,0E2)
R2N1J) =+RREF
(3IN(J) =1.0
RN 13) =RRZZ¢ZNJ)
IP (NPRNT.SE.5) WRITE(QB,2007) KK,J
PORMAT (5X, *3N= *,I5,2X,'NN= ',15)
IF 'NPRNT. 32.5) WRITZ:03,2003) RIN :J),RCINIJ),RIN(J),R2N'J),X3IN1J)

1,RN (J)
008 PIORMATISK,'RIN= ',E11.4,2X,"ROIN=*,E811,4,2X,*RIN= ',E11.4,2X,*R2N

1= LC EB11,.4,2X,'X3IN= 'L,311.4,2¢,%30= 'LE11.4,77)
CONTINUZ
GO IJ 1090
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a SHERICAL SECTION
ny
a

GESCMI2I1
GZOMGII2
GEOMIOQ3
GZOIMCuI4
GZIM2J25
GEOMOCOCS6
GLOOMY
GEOM3IN)8
GZJIM30029
GEIM3I1Q
GEOMCI11
GLOMCC12
GZIMIC13
GEOM2014
GZIOMC215
GEOMCD16
GZICOMC217
GZ0OMZI18
GEOMGC19
G20MC02C
GZ2oMr C21
GECM0J22
GIZCM(023
GECMLI24
GICMGC25
GIIMCC26
GFIMC027
GZoM(228
GZiMuf29
GZOMTZ30
GECMIN3T
GEOMCI32
GZIMI233
GooMCl3u
GI0M2235
GZOMO(036



100
i
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CONTINUS
IP(NIJ.2Q2.0) READ (QR, 1375) R1izF
NIJ=1
pO 4 J=1,8
RON (J) =RREF*CIS(SN(J)/RREP)
ROIN {J) ==SINISN!J)/RREP)
RIN (J) =3R%3°P
R2N (J) =]33F
X3IN (J) =CIS (SN (J) /KREF)
RN (J) = (RRZP+ZN (J)) *#CIS (SN (J) /RREP)
IF (NPRNT. 32.5) WRITE (Q3,2337)KK,J
IP (NPRIT. 32.5) WRITZ(Q3,20C8) RON(J),2CIN(J),RIN(J),R2N(J),X3IN(J)’ NJ)
CONTINUZ
5) TO 1)
CCNIINUE
RETURN
FND

GEOMTN37
GEONGN3S8
GEOM3O39
GEOMCQU0
GEIM2O4T
GEIMCIAY2
GEOMCOU3
GEOMINuY
GEOMTOU4S
GEZCMC 246
GIZOMING7
GIoMQU48
GEDOM(CO49
GEJIMZUSD
GEOM0I51
GECOMCN52
G=CMC053
GEOMOOSY

j
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2000

SUBROITINZ BPORM SN,ZN,RN,R1N,R2N,RCN, EOIN, X3IN,KEYSTR,DUM1,DUN2,B
'D,BLST,N53304, NPRNT, NIJ)

DEPIN2S THZ INTERPOLATION POLYNDIYIALS AND THZIR DERIVATIVES,
SETS UP THE EQUATIONS FOR THE ZL3I%3NIs, JPIICNALLY DIFINZS
THZ ISOTRIPIC RIGIDITY MATIX, AND NUMZIRICALLY INTEGRATES TO
PIND THS STIPFNESS MATRIX FOR ZACH ELEMENT

DIMENSISN RIN (8) ,KIIN{8),RIN{3),32N{3),K3IN(8) ,RN{(8),SN{8),2Y(8)
DIMZNSIIN XNI (8) ,P3I3(3),PHIS (3) ,3 (4,16) ,D (4,4) ,BT (16,8) ,C (16,4)
DIMENSION ELSITP{16,16)
DIMENSTIAON BL3T (15, 16)
DIMENSION PSI ’3),PHI’3)
INTEGER QX,0Q3
PI=3,141592654
H1=5./9,
H2=3,/9.
H3=H1
QR =3
Q8 =5

3 MATRIX

Do 10 I=1,4
DO 10 J=1,16
B!{I,J)=3.0
CONTINUE
KKK=1.
XI==+774597
ETA=XI
IF {KEYSTR.EQ.J) GO TJ 1
KI=DU41
ETA=DIN2
CONTINUS
IF (NPANP.GE.6) WRITE(QB,20C))
FORMAT (*1',/,42X,' PROM SUBROULINZ BR2I3M',//)

BPEMCCO1
BPRMT002
BFR M0003
BFRMOCGU
PPRMCOIS
BPRMC0O6
B?’MG217
RFEMCO00S8
RFFM22I9
EFAMCO15
BFEMCO11
FPRMZD12
BFRMII13
BFRYM D114
BFRMCLZ15
BFEMTI16
BFRMC017
BPRMC218
BFRMCC19
Bramia2c
EFRM2221
BraMrn22
BFRMZN23
BFR MYI24
BFPM2J25
BFaMOT 26
BFINDD27
EFRMC228
BPRMC-D29
BFR™3J3C
BFERM2I31
BFRIMIN32
EFRMC233
BFENMCIIY
BPRM~235
BPRML)Y36



11 CONTINUR
IP 'NPINT.GE.6) WRITE(Q3,2018) KKX
PORMAT(//¢3X,2T({**%),/,3X,"**,25K,"#",/,3X,*'* INI2ZGRATION POINT NO

Yet 12," #',/,3X, 0, 25K, %,/,3X,27('%),////)
IP(NPRNT.GZ.6) WRII3:0B8,2001) XI,3IA
FORMAT {(5X,'XI= *,F1).4,5X,'ST\= ',P1).4,/)

wit

™ INTSRPOLATIION POLYNOMIALS AND D3IRIVATIVIS
”~.
a

ANT (1) 2 1=e25) %{1e=XI) * (1. -ETA) ¥ (KT ¢+i[\¢1,)
INT {2) ={.25)%{1.¢XI)*{1,-ETA) *# {XI-2T4-1.,)
ENT?3)=°,25)% 1, XI) ® 1. +ETA) # (XI+201=1.)
ENT (4) = {=025) %(1.=XI)*{1,¢ET4)&amp; (XI-210+1.)
KNT(DS)2(a5)*(1e=-XT*22)=x(1,-ET1)
KNT 6) L035)%1o¢XT)®(1,-ETA%%k,)
KNT (7)=(5)*(1e=XL%x2)*{1,4ET1)
KNT’3) 2°03) **1,=XI)*’1,-2TA%K?2)
PSIS (1) =(e25) *{V1.=ZTA) *{2.,%XI¢2T])
PSIS (2) =(s 25) *(1.-2TA) ¥(2.*XI-3TA)
PSIS(3) = (25) #{1.+ETA)*(2.2XI+2TA)
PITS (4) = (+25) (1.+3TA) #(2.*X[~-2ZTA)
PSIS'5) ==XI*‘1.=CSTA)
PSIS (A) ={.S)*{1,.-5TA*k?)
PSIS '7) ==XI%*‘1.+ElA)
PSIS (3) ={=.5) * {1.-Z TA! ¥2)
PHIS (1) =((XI+2.0%%TA)«(1.0-XI))4.
PHIS [2)=112.82TA=XI)*{1.+4XI)) 74.
PHIS (3) =((XI¢2.%ETA)*(1.¢XI))/4.
PHIS (4) =! 12.%ZTA=XI)*1.-XT))/+4.

PHIS '5) ==2TA®’1,+XI)
PHIS (7) ={.5) {1s =XI%%2)
PHIS (3) =-ETA* (1. -X1I)
IP 'NPINT.GE.6) WRITZ!QB,2015)

2015 PORMAT(//Z, 10K," % 120 9X, %%2%? JX, "4300,GX,044k?GX,05&amp;09X,%6%!,9
1X, 987%3X,,'€3%x?_/)

’
bt
O
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BFRMCO37
BFRMCN38
BPFREMCO39
BFRMCIUC
BFP MJU4
BPoMGl42
BPEMICY]
BPE ACOUU
BFRM2745
BFEMCTUG
BFRMOCYT
BraMs048
BFEMCO49
EFPMINSD
BPRM(CCS1
BFEMIT52
BFE M(CCS3
BPFM0I5Y
Ree M0255
BFE MNCSS
BFRM(CJIST
RFaEMG(SS
BreMCC59
BFEMIQ6(
BPRFMIO61
BFRM(CH2
BFPMJIG63
BFPrMCIHY
BFE MOC65
BPFMC266
BFPMT267
BFrMICo8
BPEM(C269
BFRMCO70
BFRMCCT1
BFRM0OOT72
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IP (NPRNT.GZ.6) WRITE (QB,20C2) (XNT(I),I=1,8),{PSIS{I),I=1,8), {(PHIS
1(I),I1=1,38)
PORMAT(2X, 'XNI ',8 211.4,1X) ,/,14, 2351S ',37211.4,1X),/,1X,*PHIS!

12,28 {E11.4,1X),/)
DO 12 K=1,8
Al1=A1 ¢ PSIS(X)™*2ZN (K)
CONTINTZ
A2=],0
DY 13 XK=1,3
AR2=22 ¢ PHIS(K) #SN (KX)
CONTINUZ
A=A1%)2
B1=).,)
DO 14 K=1,8
B1=B1 ¢ D2HIS (K) ®*2ZN (XK)
CCNTINUZ
B2=1,1
po 15 ¥=1,3
E2=82 + PSIS(K) *SN {K)
CONTINUZ
B3=B1%B2
KJACIB=A33 (A-338)
DC 16 K=1,8
PST (K)=(1./XJACO3) * (A2%PSIS(K) -32%2 {13 (K))
CONTINUE
IP INPANT,. 33.5) WRIT2{2B,2003) (p3I{Il),I=1,8)
FORMAT (2X, *P3I ',8(211.4,1X))
DY 17 K=1,9
J=K#+8
31{1,J) =PSI X)
TCNTINUT
DO 18 X=1,8
PHI (K)=(1./XJACOB) #{A1%PHIS (KX) -31%P31I3 [(K))
CONTINYZ
IT (NPRNTe3 2.6) WRITE (QB, 2004) (°4I {L),I=1,38)

BFRMOCT3
BFEMCOTY
BFPMTCTS
BPrMO(CTE
EFamMiL77
BFraM(J78
BEPRMCOTO
BFEMCCSC
BPE M281
BPRMTI32
BFRM7C33
BFRMOC 34
BPRM45 35
BFRM2236
BFRMM C37
BPRM(CS38
BFRM-(39
BPiM209G
BFRrMAN91
BFRMN 232
BPRMACI3
BFFMOCO4
EFPENMDII5
B?RM7236
PPEMCCI7
BPRMCI98
BFPRMCUI9
BFEMI12C
BFaM01)1
BFrMZ1)2
B23MJ1)3
cFIMI124
BFRM2175
BFRMI1236
BPAMNNMYT
BFRMY1)8



2004 PORMAT (2X, 'PHI *,8(E11.4,1X),///)
D1=2.,9
D2=0,0
D3=0.9
d4=0,0
05=0,9
DA =0,0
07=0,.9
p8=C.)
DC 19 X=1,8
D1=D1+(XNT{(K)*2N(K))D2=D2+(XNT(X)*R1N(K))D3=D3+{XNT(K)«R2V{K))
Du=D4+(XUT(K)5RIT(K))
05=D5¢{dT!K)*RCON'K))
D6=D6+(XNT(K)*X3I%(K))D7=37+4"ANT'K)*3’X))D3=D8¢(XN{K)*SN{K))
CONTINUZ
[F {NP3NT.5%.6) WRITE(QB,2216) xJACI3,»1,D2,D3,D4,D5,D6,D7,D8
FORMAT (20X,*XJACOE = *,211,4,/,20X,'C1 = * ,B11.4,/,20X,*D2 = *,E11

Tel, /,23X,*D3 = ',E11.4,/,2CX,'D4 = *,311,4,/,20X,'D5 = ¢,211.4,/,2
20X,'D5 = *,311,4,/,20%,'D7 = *,211.4,/,23X,'D3 = ' ,E11.4,/7//)

IF 'NGEIY.2Q.4) GOIO 22
[FINGZOY.NZ.2) GO TO 1)?
DiN1=1,0
DIN2=1,)¢D1+D2
DJ) 99 K=1,8
B{2,K)=DPHI(K)
J=Ke3
B{2,.) =),
B{3,K)=P3I(K)
COCNIINUZ
GO TO 102
CONTINUZ
DEN1=1.0¢D1/D2

3
P
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2016

J A

100

BFRMJI1C9
BFEMO11C
BPRMZ111
BFEM0112
BFRML113
BFEMO114
BPxMC115
BPEMT 116
BrIMQO117
PraMC118
BFPMC119
EFRM2120
BPRMC121
sFRMCT122
BFaIM( 123
BRRMNT24
BF¥MC125
BFIMT126
BPRMZ127
BFEMC128
EPRMC129
BIrRM2130
BFPMC131
EFRNC 132
BFOM3133
EFRMI134
BFREMI135
EFRMY136€
BFRMO137
BFoMi 138
BFEMN139
BPRMC 145
EPRMC 141
BFRMJ142
 BEFRMC 143
BFRMC144
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DEN2=D1+D2
DO 101 K=1,8
3 (2,K) PHI (K) ®* (1./DEN1)
J=K+3
B(2,J)=XNT(K)/DEN2
B*3,K)=P5I ‘K)-XNT'K)/DEN2
CONTINUZ
CONDINUE
DI) 2) K=1,8
J=Ke93
393,J)=PHTXK)**'1./D8N1)
5 (U,K)=(=TAN(D8/D2) #XNT{K)) /D3IN2
3°4,J)=(NT'K)/DEN2
CONTINUE
30 I'D 24
SINTINYZ
DO 23 K=1,3
J=Ke8
B(2,X)=2HI(K)
392,J)=2.0
5(3,K) =P3I (K)
3'3,J)=Dp4I'K)
5{4,K)=XNP{K)*DU/{D5%(1.+#D1/D3))
B*L,J) =XNT !K) *D6/(D5%(1.+D1/D3))
DEN1=21,+D1/D2
CONDINUZ
CONTINU
I? (NPRNT. 32.5) WRITZ2(0Q3,2095)
PCRYAT'/,504,*THZ B MATRIX W(16)',//)
IF (NDP3ANT.52.6) WRITE!0Q3,2G96) {((3{I,J),J=1,16) ,I=1,4)
FORMAT 43 1X, 211.4) ,/,25X,8(311.4,1XL)»//))
[PIKSYSTR.NE.D)) GO TO 49

D MATRIX

oDD=D"'1,3)

EFRMN 145
BERMI146
CFRMI147
BPaMC 148
BPEM) 149
BFRM0 150
BFRM2151
BEFRY7152
BFEMC153
ETRMO 154
BFR MN 155
BPRMC156
BFP M0157
BFPM" 158
BFEMN159
BFIMC160
BFRM2161
BPPMM162
BFR MI 163
BEPPMITCY
BFEMC155
BFP XC 156
BFEM3167
BFRAJ 168
BPEMC169
BFRMI1TS
BFPMN171
EFRMC172
BFEM0173
BPEMI174
BTR M2175
BFRM2176
EFRNS177
BF3IMJ178
EPRMI179
BPR MD 180
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[FP (NP2RNT.LT.5) 50 TO 8001
IF DDDNE,1.0)WRITE[QB,2022)
PORMAT('1?,23X,' RIGIDITY MATRIX, D, (4X4)',//)
TF (DDD.NE.1.J))WRITS(Q3,2017)((2(L,3),3=1,4),I=1,4)
FORMAT{1IX,4(211,4,2X,811.4,24,3211.4,2X,311.4,/,13X).//)
CCNTINUZ
[FP DDD.NZ.1.))GITO25
E=D{1,1)
FNU=D 11,2)
CONT=2/{{1.¢2NU)4{1.,-2.%¥ENU))
CON2=3/(2.*(1.¢2NU))
DI1,1)=221*!1,-EYU)
D(1,2) =CON1%2NU
D’1,3)=3.7
D(1,4) =CON1I+#ENU
D!2,1)=CONTI«3NU
D{2,2)=CINI~{1,.-ENU)
D(2,3)=).0
 dD (2,48) =CONT=3NU
D(3,1)=0.)
D:!3,2)=).0
J(3,3)=CON2
D!3,4) =).0
D(4,1) sCONT#2ZNU
Df4,2)=CONI=ENU
DI4,3) =).
Df4,4)=TON1#(1,-ENU)
IP (NIJ. Q.0) WRITE {QB,2019)
PORMAT(*1, 25X,*ISOLROPIC D 4ATRIL (4X4) *,.//)
IF'NIJ.EQJ.J)WRITE (23,2017) [(D!I,J),)=1,4),1I=1,4)
SCIONTINGS

B TRAIUSPOSE MATRIX

DO 26 I=1,4
DO 26 J=1,16

BraMi 181
BFAM2182
BFFM2183
EPEM2134
BPPMD135
5FRM0136
BFIXI187
BPM 138
BERMO139
BFFPM0190
BFP MJI191
BFeM2192
BFEMJ193
BFRPMI194
BFRMN135
BPRNEC 196
BFFY2197
EFRAMT198
BFRMZ 139
BFRM22JQ
RPPM( 201
3PuMT202
RFIMN20G3
BPEMT2)4
BFR¥22%5
375 M2236
BFEMO 237
BFRNMC278
BFPEMD239
BPRM{21C
BFEMI 211
RPFMC 212
BFFNM2213
DFEM2214
BFPFMC215
UPEMC 216



26

2030

37 !J,I)=8'1,J)
CONTINUZ
IF 'NPRNT.GE.6) WRITE ’Q8,203))
FORMAT {//,29X, "BT MATRIX (16X4)")
IP (NPRNT.GE.0) WRITZ(QB,2032) ((3r(L,1),J=1,4),I=1,1b)
FPORKMAT(//, 104,16 :E11,4,2X,E11,4,2X,311.4,2X,211.4,/,1)X))2032

a

Bred 9MATRIXL

DO 27 I=1,16
DD 27 J=1,4
C’T,Jd) =).
DO 27 K=1,4
C(I,J)=C(I,J) + BT (I,K)*D(K,J)
CONTINGZ
IF (NPRNCe3%.6) WRITS (Q3,2731)
PORMAT '////,271X,'30%D 4ATRIX ‘15X4)") |
[F(NPRNP.GF.H) WRITZ{Q3,2232) !((5(I,d) ,J=1,4),I=1,16)

27

20 31
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DO 28 I=1,16
DO 28 J=1,16
BLSTIF'I,J)=),0
DO 28 X=1,4
ELSTIF!1,J)=ELSTIP(I,J)+C(L.K)*3(£.7)
CONTINU
IP (NPRYT.35.0) WRITZ(Q3,23395)
PORMAT!'1',//,57X,'3T*D%B MATRIX '15X16)°',//)
[P{NPINT.3Z.0) WRITZ{QB,2012) {{3L531I[P{I,d) ,J=1,16),1I=1,16)
PORMAI'16'3°1L,211.4),/,25%X,8(211.4,10),/77),'1")

28

20 35

2012

C NOMZRICAL INTZGRATION POR ELZM3INI SCIZFPNESS

GO TO (31,33,35,37,3),41,43,453,47) ,k 4X

BPRPMI217
BFRMT 218
BFPMN219
BREMC220
EFPRNMC221
BFRM0222
BPRMO223
BFIMO 224
BPRM(C 225
BFEMG226
BFPM(227
BremMr22s
BFr4(229
BFPOM2230
BFIM™ 231
BFEMC232
BFRPM233
BFeMo234
BFrMI235
BPPMI236
RFEMD217
BPRM72138
BFRMZ2239
BFAMC24C
BPPMT 241
BPUiMS242
BPRMN243
EPRNMN244
BFRMT 245
BFEMT246
EFRMI247T
BFrMl248
BFEMN 249
BFEMC25C
BFPEM™ 251
BPRM(252
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DO 32 J=1,16
ELST ‘I,J)=3LST (I,J) + ELSPI?(I,J)*CT7*DEN14XJACIB*H1*®H1
CONTINGZ
KKK=KKK+1
KI=-,7745937
ETA=0,"
IF'NPINT.GE.6) WRITZ'03,2036)
FORMAT {//,37X, THE ACCUMULATEC EL24SNT STIPFNESS MATRIX {(16X16)°,/
'/)
IF INPRNT.3E.6) WRITZ (03,2912) ({3L3! (I,J),J=1,16),I=1,16)
GO TO 11
DY 34 I=1,16
DG 34 J=1,16
ELST ‘L,J)=2LST ‘I,J) + EL.
CONTINUZ
KKK=KKK*1
XI=-,774597
ETA==XI
[F(NPRNT,52.,6) WRITE (QB,2036)
IP (NPRNT.32.6) WRITE(QB, 2012)
GO TO 11
DO 36 I=1,16
DO 36 J=1,16
ELST (I,J)=ELST (I,J) + EL3{I2!{I,J)&lt;C7*DEN1*XJACOB*H1=H3
CONTINUZ
KKK=KKKe*1
XI=J.)
STA=-,774597
IF (NPRNT. 3BE.6) WRITE !{QB,2036)
[P'NPRNT. 38.6) WRITE'Q3,2012) [ELSI !I,J),J=1,16),1I=1,16)
39 TI 11
DY 38 I=1,16 |
D0 38 J=1,16
ELST (I,J) =3LST (I,J) + ELSIIP(L,J)*L7*DEN1%XJACOE*H2+*H1
SONTINUZ
KKK=KKK*1

BFRM2253
BFRMC 254
BPFMT255
BPRMO25€
BZRM2257
EFaMC258
BFP M7259
BFRM(C26C
BEFRMD261
BPEM{252
EFEM0O263
BFrM(264
EFFMC 25S
BFRMCZH6
BFPMC2KAT
EFRMD268
BPLEMC269
EFIMN270
EPRMC271
EFRMZ2272
BPRMZI273
BPRMC27U
BFEMP 275
BFFMC276
EFRM.277
BPFMC273
ERPEMD279
BPRM(0230
BPENMI231
BFARMT 282
BPRM(C233
BFRMZ234
BFR247235
EFPRM™"236
BFRMD 237
BFPAMOY288
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XI=0,"7
ETA=0.2
IP INPRNT.G 2.6) WRIIZS!(2B,2J336)
IF {(NPRNT.32.6) WRITE({QB,2012)
G0TI 11
DO 49 I=1,106
DO 40 J=1,16
ELST (I,J) =2LST (I,J) + ELSIIz
CONTINUZ
KKK=KKK+1
KI=0.7
TTA=.774597
[P {(NPRNT.,GE.H) WRITE {QB,2035)
[F (NPRNT.533.6) WRITE(Q3,2C12)
50 TO 1
DI) 42 I=1,16
DO 42 J=1,16
SLST (I,J) =2LST (I,J) + ELS
CCNTINUE
KKK=KKX+1
£I1=.774597
ETA==,7745137
IP (NPINT.GE.0) WRITE (QB,2030)
[F(NPRNT.GE.9) WRITZ2 08,2012)
5 TO 11
DI U4 I=1,16
DO 44 J=1,16
LST !I,J3)=3LST I,J) ¢ ELSTIP (I,J) *CT7*DENI«XJACODB*H3«H1
CONTINDSZ
KKK=KKX¢1
KI=.774597
ITA=).)
IF {(NPINT,GE,5) WRIT2({QB,2036)
IF (NPAND. 33,0) WRITZ(QB,2012) ((2L3I (I,Jd),J=1,16),1I=1,16)
GO TI 11
DJ) 46 I=1,16

= ) =1,16){{2L5C (I,J) ,J=1,16),I=1,

((2L35I (I,J) d=1,16),I=1,16)

BFRMN239
EFRMO290
BFP X( 231
BPM 292
BPM 293
BFIFMO234
EFRM3295
BFRM(C296
EFEMC237
BPEM.298
BFEMT 239
BFPFM23)0
LFR42301
LPRNMZ3D2
BFRMZ3C3
RPRMT 304
BPRMI3YS5
BFIMN3D6
BPRrM(397
BFFrM" 308
EFRM¥73)9
BrrMl31C
FFEMN 311
BFRM7 312
FFPM-313
BFEM{C314
BFEM7 315

 BEFuMC 316
BFiM2317
FFr M7318
BFFM(319
bF¥M) 320
BrPM2321
BFRMI322
BPr MC 323
BFFEMZ 324
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DO 46 J=1,16
ELST (T1.J)=2LST (I,J) + BEL3TI?(I,J)*C7kDEN1*XJACOB®{3*H?
CONTINUZ
KKK=KKX+1
XI=.774597
BTA=.774557
[F (NDPINT, 3Es0) WRITZ({QB, 2030)
TF (NPINT.GB.6) WRITZ.03,2012)
30 TO 11
DO u8 I=1,16
DC 48 J=21,16
ELST (I,J) =2LST (I,J) + EL3II?(I,J)eCT7%DEN1=&lt;XJACOB*H3*H3
CONTINUZ
IF (YPONT. 33.4) ARITZ(Q3,2C21)
PORMAT 141)
IF (NPRNT.32.4) WRITE (28,2913)
FORMAT (//,34X, THE PINAL INTZSRATEC ELEMENT SLIPPNZSS MATRIX (15X1

16) ',//)
IF(NPRNTD, 332.4) dRID3(QB,2012) ((3L3T (I,J) ,J3=1,16).I=1.,16)
CONTINUSZ
RETURN
=ND

BFRM0325
BFRM2326
FPRMNI27
BFRMT328
BPEM0O329
BFEMZ33(C
BFEMI331
UFPMC2232
BFPMD 333
EPRMN 334
BP2M2335
FPEM 33h
BPuYo 31317
EFRX7338
EPP MC 339
BFRM234D
BPRMT 341
EF3M0342
EZ3MC343
EPRMT INL
BFEMY345
BFIMC 346
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SUBROUTINE MATSOL{AP,P,W,AA,B3,930,12,KY,4)D,N2RIT,NNNS,DED)

SETS UP THZ AUGMENTED STIFFNZ3S 4ATRIL APINNT,NHN2Z), AND TWO
AUXILIARY MATRICZ3: AA (NNZ,NNNZ), PHE 5122 O07 TZ SCIFPNESS MATRIX,
AND BINNNI), A VICTOR THE 3AM: 5[43 AS THZ DISPLACEMENT VECTOR.
THE ARRAYS XKSYS, PORCZ, AND O0I52 ARE RELAZELZD AP, P, AND W,
IESPICTIVAELY.

DIMENSION AP(NEQ,NNNZ),D(NED)od(NNN2I)
DIMIZINSION AA{NEQ,NNNZ),B(NZJ)
N= NEQ
NP=N+]
DO 20 I=1,N
AP (I,NP)=P(I)
CONPINUS
CALL TRIDIG(A2,W,LA,3,N,KY,MI2,NPRIL,NMNE,DET)
CALL CH3KSM(AP,W,AA,B,N,IP,NNIE)
RETURN
END

MSCL2J31
MSCOLCAD2
M30L(3D3
M3CLCANU
MSOLCI25
MSOLC226
MS5JOL0GD7
MSJOLC2N8
M50L3CN9
MSCL221¢8
M32LCC11
MSOLO712
MSCLC213
M30LG214
M30LCN15
MSOLY)1E
MSZLNC17
MSOLCS18
vysoLCZ 19
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SUBROITINE TRIDIG!AP,W,BTC,WI,N,KY,¥)D,NPRIT,NNNZ,DET)

PERFORMS AN IN=-CORZ RFDUCTION OP P43 NNE ZQUATIONS AFTER HAVING
JEDEPINZ=D THE AA AND B ARAVYsS A353 3[0C A4D WI, RESPeCTIVELY.
NOT3: WHEN NPRIT = 0, OUTPUT #231 [RIDIG aND CHIKSY IS SUPPRESSED;
WHEN NPRIT IS NOT EQUAL TO 23), IDJME DUTPUI Is CALLED FOR.

DIMENSION AP (4,NNME),W (NNNF)
DIMENSION BTC {N,NNNE),AI(N)
DIMENSION WWd (27)
INTEGER QR, QB
QR =8
IB=S

PIRY INITIAL A-P MATRIX

NP aN¢1
D7 95 I=1,NP
W(I)=0,0
KEY=)
NSP=NP
NPP=NP=-1
IF (NPRIT) 201,210,201
WRIT® (28,1001) NPP,NP
FORMAT {*1% ,50X, INITIAL AP MAIRIK (',I2,°X',I2,%)',//)
4RITE!Q3,100)) ({aP(I,J),J=1,¥P),I=1,VNED)
FORMAT 1678 °1X,E11.4),/,25X,9(211.4,14),//))
SONTINTZ
IF (KY. 22.9) GO TO 25
GO TI 169
CINTINUS

S2T UP BTC MATRIX

PIPST SJOLUMN

TRIGCC QT
TRIGCON2
TRDGICD23
TAIDG2 224
TRDGI "DS
TRDGCCS6
TEDGCCIT
TRDGCCIR
TRIGLOCY
TROGS 1?
TODGLD11
TRDGI{"12
TIDGCI13
TR0GIC14
TPOGCR15
IPDGCG1E
TRD3¢217
TEDGLI18
TRD3L219
IRDGCC20
TRDGCN21
TRDGIN22
TRDG2223
TRD3.024
TRDGCA25
TRDGTJI26
TRDGC227
TRDGTGC28
TROGLI29
TRDGAC3C
TRDG(LD 31
TRDOGLJ32
TRDGIN 33
TRDGL C34
TROG(CN35
TRDOGIN 36



30
oy,
-

a
\»

Cc

10

wi

~
hast

!
pt
9)
~

1

37)

50

?

30
190)

220
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DO 30 I=1,NPP
BTC(I,1)=AP(I,1)
CCNTINUR

TOP ROW

DC 40 J=2,NP
BTC{1,J) =aP{1,J) /AR (1,1)
CONTINUS

SECOND RJA AND DON

DO 10) I=2,NP?
DO 8) ‘J=2,NP
[P(J.5T.I) GJ TO 69
JJ=3-1
BT=G.)
D0 59 K=1,J3
BT=BT+BICI,K)*BTC‘K,J)
CONTINGS
BTC!I,J)=AP'L,J)BT
GZ TO 9)
CONPINUZ
II=I=1
BT=0.)
DC 70 £=1,1IT
LT=BT+82C(I,K)*BTC(K,J)
CONTINUZ
3T(I,J)={A2(I,J)=BT)/BTC(I,I)
CONTINUZ
CIONTINGZ
[F(NPRID) 229,230,220
JFTTS¢)3,1003) NPP,NP
FORMAT (*19,50X,* PINAL BTC MATRIX (',[2,'X',I2,')',//)
HFEITE’23,100)) °’'BTC’I,Jd),J=1,NP),I=1,NPP)

TRDGCA37T
TRADGC N38
TRDG( 39
TRIOGCO4(
TRLGCS41
TRDGC 42
IPDGCOU3
TODGLN4UY
TIDGCZ US
TRDGCAU6
TRDGLIYWT
TRDGCH 48
TADGL S49
TRIG(CHSCO
TRDG? 351
TiD3(352
TRDOGMI53
TIDGZNS54
TRDGTG55
TRDG( 56
TPDGRIIS5T
TRDCLNSA
TRDGIISAI
TADG27AL
TRDGZ261
T2DG(262
TRDGC 253
TRDGNGHRU
TIDG C65
TaDGLY56
T22G2J)67
T&amp;ED5C068
TRDGL CHI
TRDGCYT(
TROG(ZT1
TIDGL0 72



c IND DZPLECTIONS

230 CONTINUS
DO 12) I=1,NPP
K=NP-1I
TW=2.0
SPPP=YPP-1
DO 11) J=K,NPPP
IN=TH+BTC{K,J*1)*W(J+1)
CONTINUE
W{K) =3T2(K,NP)-TW
CONTINU?
[F'KEY.2Q.7) 30 TO 129

c
c |

pt
pb
oo
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INVERT THE DEPLECTION MATRIC

DJ 243 I=1,N?
WWW (I) =4d(I)
CONPINUZ
D0 125 I=1,NP?
J=NP-I
NI 'T)=4'J)
CONTINIS
DO 125 I=1,NP
W{I)=dI!)
CONTINUZ
LF (NPRIT) 26),27),26)
WRIT2(23,50))) NP, NP
PORMAT’*1?,1)X,THEDEPLECTIONMAPILK (',I2,'X1)',10X,*THE INVERTE

1D DEFLICTION MATRIX {*,I2,'X1)',//)
DO 253 I=1,NP
WRITE (03,5002) WWW (I),W!(I)
FYAMAL (194,211.4,29X,E11.4)
CONTINUZ
CONTINU?
Kry=2

25

126

26)
3000

5002
250
27)

TROGCDT73
TRDGC OTL
TRDGC275
TROGCIT6
T2DGLATT
TTRDGCHYT8
TR0GCITY
TROGIIZC
T2DGL O31
TIDGLIB2
TEDGO033
TRDGCC8Y
TBDG( 8S
TEDGL N86
TRDGZI37
TPDGCI88
TKDIGL239
TRDGC IC
TRDSGCO91
TRDGNCA2
TEDGZ233
TRADGEENIG
TRDGONIS
TRDGC296
TRDGC IS?
TRDG.2I8
TRDGCII9
TrDG.13570
TRDGC 101
TRDGZ122
TRDGJ123
TRDGC154
TRDGC 135
TRLCGC 196
TREDGO127
TRDGZ 118



129
GO TO 161
CONTINUST
35C TO 200
CONTINU160

L

-

~

ww
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~
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FORM TH3 PLIP-PLOP MATRIX

PLACE AP MATRIX ONTO BTC MATRIX

161
KEY=1
CONTINUS
DO 170 T=1,NPP
DO 179 J=1,NPP
K=NP-I
L= N=]
BTC (I,J) =AP K,L)
CONTINUZ
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SET UP PRESSURE COZFPICIENTS

DO 175 I=1,NPP
J=NP-T

BTC{I,N?) =AP{J,NP)
CONTINU?178

c
o

~
~
|

RE=-INITIALIZE AP MATRIX

DO 183 I=1,NPP
DO 180 J=1,NP
AP (I,J) =BTC(I,J)
CONTINU
IF INPRIT) 182,183,132
CONTINYT
IRIT2'23,1002) NPP,NP
"JRMAT{"1*,57X, "MODIZI3D AP 4ATRLX {(',12,'X',I2,')*,//)
ARITE (03,1000) ((AP(L,J),Jd=1,3P),L=1,3PP)

189

182

1002

TPDGC139
TeDGZ 110
TRDGC111
TEDGC 112
TRDGN113
TIGL 114
TadDsT 118
TRIG2116
TRDGC117
I310G7118
TRDGT 119
TRIGS12C
TROGT 121
TROGN122
TRDGT 123
TRDA2124
TRDGI 125
TRIG 126
TIDGC 127
TD52128
12050129
TREDGU13Y)
TRDGI131
TRDGT 132
TROGC133
TADGS134
TRDGN135
TANDGT 136
TRIG2137
T¢DGe 138
TRDG.139
Tud6C 14°
TRDGC 141
TENG 142
TPDOGC 143
TRDG. 144
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200

CONTINUZ
IF (KEY. 2Q.2) GO TO 200
GO TO 25
CONTINUE
NP=NSP
RETURN
END

TRDGC145
TRDOGN 146
TRDGJ 147
TRDGO148
TRDGC 149
TRDGZ15C
TRDG2151
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SUBROUTINE Cd 2KSN AP,H,D,Y,N, IP NNN)

USES THZ SOLVED DISPLACZMENTS TJ) CALZJIATS A LOAD VECTOR. THIS
IS COMPARED TO THZ KNOWN LIAD ViIZIJR AND TIdE DIFFERENCES, 9R
RESTDIALS, CALCULATSD (GIVINS A SEVERAL INDICATION OF THE
ACCURACY 27 THT SOLUTION).
NIT2: WHEN IP = J, JUIPUT 7304 CH32K3M IS REPRFSSED;
WHIN IP I53 NOT EQUAL TC Z33), Td: JUIPUT I53 CALLED FOR.

DIMENSION AP (N,NNN2I),W(YN),D(N),Y(N)
INTES IR QR, 23
QR =8
QR =5
IP (IP. £2.3) RITURN
DO 27 I=1,N
SUM=0,2
DO 19 K=1,1
SUM=SUNM#AD (I,K) *H(K)
CONDINUZ
Y({I)=3UY
CONTINUZ
NRITZ2'23,192))
PORMAT (////)
NRITZ2!23,100))
FORMAT("1,17X,'CHECKSUMPJ2THE AX=P MATRIX

Yo/ + 16X,53('*')0////21K,1%,13K,AP?,15X,*'Y-AP',/20X,3{'%'),16
2X,500%0),13K,320%)77)
DfI)=YI)API,N¢1)
WRITE!0Q3,1001) Y({I),AP({I,N¢1),D[I)
FOIMAD(10X,3220.10)
CONTINU
RETURN
END

CKSMLOI1
CK34373232
CKSMCON3
CK3MT22u
CKSMC 235
CKSM(J06
CKSNMC02T
CKX34Ccd)8
CKS4(329
CKsmMCT 1?
CK3™73J11
CKSMY312
CKsSM(Cn13
CKSMZ214
CKsSM(%15
CK3MJ216
CKsSM{Z17
CKkoMliJ
Cx3M{n19
CKSM(GI2(C
CKX5MCDN21
CKSM()22
CHIM™I23
CKSM(C24
CKSMCC25
CKSMIJ26
CK3MC527
CK3M”)28
CKs3M1N29
CKSM{ N30
CK3I4CI31
CKSMT132
CKSNMZI33
CKSMOC3y
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SUBRJUTINS SBLECT !(TSTRES ,1JK,T7,DT,CRP,C,CRPNV)

SELS2CTS TUS PARTICULAR CREEP 2XPR3S3I)N AND TIMZ INCREMENT TO BE
US3D., CALCULATES THE CREZ2 STRAINS AND ASS2MBL2S THE CONSISTENT
NODAL LJOAD VECTOR. PROGRAM THIN ELURN3 TO CLISP FOR ITZRATION
AND CALCULATION OF CREEP DISPLACZ3IMINTS AND SILRESSES.

DIMRNSION TISTRES !NN,5),CRP Nd) ,4£32N,5),32PP!NN),C16,4),CRPNVHY
12, NN)

INTEGER QR,QB
YR =8
0B=5

IP (IJK.N¥3,1) GO TO uu
READ ‘JR,39) JCODE,DT
FORMAT (I2,P5.1)
CCNTINUZ
T=T+DT+¢10=[JK
DO 3) I=1,NN
DO 31 K=1,4
XS I,K) =TSTR2SS(I,K)
TONTINUZ®
SEFP(I)=(1/323T(2))*#(SQRT(XS(L,1)=Kk3({L,4))*%2+¢(XS(I,4)~-XS(I,2))**2
1 XS ‘T,2)=XS'T,1))2246[XS'I,3)*¥2)))
5=S2FF (TI)
56 TT) °1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,13,2v)
CRP{I)=6,42=-13&amp;(S"4,4)%T
IP 'TJRK.NF.1) 30 TJ 89)
I? (I.NE.1) 6G) TD 99)
WEITZ (23,171)
FORMAT"1°/10X,'CREZPEXPRES3IIV:',7{,*GRIENBAUMANDRUBZN3TEIN,'/

1/34X,°C22?2 = [6.4FE-18) (SEFP*#4,4)T?)
G) TO 999
CRP{I) =A 4B=13%{Sk*y,4)*(T*+*),.7)
IP (IJK. NS, 1) GO TO 839
IF (I.NZ.1) GI TO 93)

SLCTC(C 21
SLCT2)22
SLCTCSN3
SLTTLLou
SLCT3225
SLCTNCY6
SLTTI)I7
SLTTICC26
SLCTTCH9
SLCTAY1G
SLITS11
SLCT{G12
SLZT"H13
SLZT?O14
SLCT(315
SLCTEI16
SLCTC M17
SLcT(213
SLCTCI13
51.1020
SLCTCI21
BLIT(A22
SLZTC323
SLCTLO24
SLZTC?25
SLCT(I26
SLTTCI27
SLCTIN28
SLCTCI29
SLCTCI3C
SLCT(O 31
SLoTn 3]
SL2T5)33
SLCTCT 34
SLZTSD3S
SLCT(C36
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WRITE(Q3,201)
FORMAT (*1'/13X,'CREE? EXPRESSION:',7X,'SRIENBAUM AND RUBZNSTEIN,'/

2/3UX,*CEPP = (6.4E-13) (SEFF+%*4.13) (I¥%).7)')
57 TO 999
CRP(I)=(().472-6%T)/(-28,+T))*S
IF IJK. NE.1) 3C TO 8)9
IF{I.N2.1) 3) TO 399
NRITE’QB, 321)
FORMAT{*1*/10X,'CR2EPEXPRES3ION:",7XL,'LORMAN*//34X,

JIC = TES ().UTE-6)/(=28.0+T)")
50 TI 991
CRP (I) =T/{2.)6+0.15655=3*T)
IP (IJK.NZ.1) 50 TO 899
IF{I.NE.1) GD TO 39)
WRITE (03,401)
FORMAT :*1*/1JX, 'CREZP EXPRESSION:',7X,'R0OSS,'//34X,'C = T/'0.06+0.

11653-3471)1)
5) TO 933
CRP (I) =60.E-6+%(T**{1./0.32))
IP (IJK.NZ.1) 30 TO 839
IP{I.N2.1) GI TO 999
WRITE (23,501) |
PORMAT?'1'/10X, "CRIB? EXPRESSION:',7X,'SHANK,'//34X,

59C = (50.)E=6)(T**{1/0.82))")
GI TO 933
CONTINUZ
CONTINU2
CONTINUZ
CIONIIVIZ
SINTINUE
CONTINUZ
CONTINUZ
CONTINUE
CONTINU?
CONTINUE
CONTINUZ

SLCTCD37
SLCTCN138
SLCTCD39
SLCTCH4)
SLCTCI41
SLCTLNY2
SLCT{D43
SLCTCOuu
SLCTCJ45
SLT 45
SLCT(0T47
SLCTIMJu8
SLCTY249
SLCTCISC
SLZT(251
SLCT(CC 52
SLCT(JS3
SLCTOIY54
SLZTCCSS
SLCT"15%6
SLCTCH7
SLCTL158
SLCTS259
SLZTI250
SLCT{261
SLCT(762
SLCTIN63
SLCTCR64
SLCTL JES
SLCTLI66
SLCTOC57
SLCT((5h8
SLZTCIS9
SLCTC 370
SLCTCCT1
SLZTC272
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CONTINUZ
CONTINUZ
CONTINUZ
CONTINUE
G60 IJ 99)
WRITE (23,992)
FORMAT (1X///21X,'WHERE,"',7X,'C = CREIP STRAIN'/3U4X,'T = TIME SINCE

| APPLICATION JF LOAD'/34X,'S = APPLIED STRZSS')
30 TO 99)
WRITE’QB,994)
PORMAT {1X///21X, *WHERE,", 7X," = C3
APPLICATION JP LOAD!)

33 TO 9930
WRITE {Q3,933)
FORMAT (1X///21X,'WHERE,',7X,'C2P?=2EPECTIVICREPSTXAIN'/34X,

Je T = TIME SINCE APPLICATIIN 22 LJAD'/34X,'5EPP = EFPECIIVE STRE
2SS'//41X,*SEFF = {1/3QRT{2))* [3)RT{(SR=-STHETA) **2 + (STHETA=-SZ)%%2
3 ¢ (SR=-SZ)**2 + 6(574%%2)))'/ 434,31 = SIPRZSS IN RADIAL DIRZC
4TION® /43X, *ST4ETA = STRESS IN THC) DLRZCLION'/48X,*SZ = SIRES
5S IN Z DIRZCTION'/48X,'SRZ = 51342 STRES5 IN R-Z DIRECTION!)

GO TJ 99)
CONTINUZ
CONTINUZ
CONTINUZ
WRITE(QB,32) T
FORMAT (/////////10X,*AT TINE T = *,13," DAYS,'/1)4,'THE TOTAL DISP

TLACEM2NTS AND STRESSES ARE:")
DJ 9399 I=1,NNE
DO 3933 J=1,uN
CRPAV'I,J)=C(I,J)#CRP{(I)

PERFORM CRZEZP ANALYSIS USING 322CIRPILED CREEP PORMULATION

SLCT0373
SLCT2C 74
SLCTZI?75
SLCTCC76
SLCT2?17
SLCT((CT8
SLCTI379
SLCT(CI8D
SLT3%31
SLTTCI82
SLCT(733
SLZT{ i434
SLCT{545
3.275436
SLCTCL37
SLCT()38
SLZTMPC39
SLCTC IS
SLCTCINM
SLCTCZ232
SLCTC"33
SLCTJ334
SLZTCI95
SLCTOY36
SLZTE%97
SLCT2298
SLZTCU99
SLCTO13D
SLZTI 1M
SLIT):
SIL.2Tv123
SLTTI1Y4
SLCTI115
SLZTC17%6
SLCTN1)7
SLZTM)S8
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