May 1991 LIDS-TH-2035

National Science Foundation
Grant NSF-ECS-8552419

Bellcore, Inc.
Dupont

Army Research Office
Grant ARO-DAAL03-86-K-0171

ROUTING AND PERFORMANCE EVALUATION
IN INTERCONNECTION NETWORKS

George D. Stamoulis

May 1991 LIDS-TH-2035

ROUTING AND PERFORMANCE EVALUATION
IN INTERCONNECTION NETWORKS

by
George D. Stamoulis

This report is based on the unaltered thesis of George D. Stamoulis submitted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical
Engineering and Computer Science at the Massachusetts Institute of Technology in
May 1991. This research was carried out at the M.I.T. Laboratory for Information
and Decision Systems, and was supported by the National Science Foundation under
Grant NSF-ECS-8552419 with matching funds from Bellcore Inc. and Dupont, and by
the Army Research Office under Grant ARO-DAALO03-86-K-0171.

Massachusetts Institute of Technology
Laboratory for Information and Decision Systems
Cambridge, MA 02139

ROUTING AND PERFORMANCE EVALUATION
IN INTERCONNECTION NETWORKS

by
GEORGE D. STAMOULIS

Diploma, Electrical Engineering, National Technical University of Athens, 1987.
S.M., Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1988.
Electrical Engineer, Massachusetts Institute of Technology, 1991.

SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1991

© Massachusetts Institute of Technology 1991
All rights reserved

Signature of Author v
Department of Electrical Engineering and Computer Science

May 8, 1991

Certified by

/AP

John N. Tsitsiklis

Associate Professor of Electrical Engineering
Thesis Supervisor

Accepted by

Arthur C. Smith

Chairman, Department Committee on Graduate Studies

ROUTING AND PERFORMANCE EVALUATION
IN INTERCONNECTION NETWORKS

by
GEORGE D. STAMOULIS

Submitted to
the Department of Electrical Engineering and Computer Science
on May 8, 1991 in partial %ulﬁ]lment
of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

We analyze routing problems for inessage-passing parallel computers. The underlying net-
work topology is the binary hypercube. We assume that each message is transmitted in a
packet of unit length. First, we study static probleins, where all packets involved are available
at the same time. We derive an algorithm for performing the total exchange task (matrix
transposition) in the shortest possible time. We also derive an efficient algorithm for the task
where each member of a subset of nodes wishes simnultaneously to broadcast a packet to all
other nodes. The completion time of this algorithm is within a small multiplicative factor from
the corresponding lower hound, for any possible subset of broadcasting nodes. Both of our
static algorithms can be easily implemented in a distributed fashion.

We then consider dynamic routing problems, where packets are generated at random times
over an infinite time-horizon. The analysis of such problems constitutes the main focus of our
research. Our motivation is the understanding of the communication issues arising in general
purpose asynchronous computation. First, we analyze the problem of multiple node-to-node
comumunications in the hypercube: each node generates packets according to a Poisson process;
each packet has a single destination, which is selected randomly. We consider a simple greedy
routing scheme, where every packet takes a particular shortest path leading from its origin
to its destination. We analyze this scheme by treating the hypercube as a queueing network
with deterministic servers, and by using a stochastic comparison with a product-form queueing
network. We thus prove that the greedy scheme can sustain any throughput value less than 1,
while inducing an average delay of ©(d) (that is, of the order of magnitude of the diameter d of
the hypercube) for any fixed throughput value. We also prove that, in heavy traffic, the average
delay has optimal asymptotic behavior. We then extend these results to the butterfly network.
Finally, we consider the dynamic routing problem of multiple broadcasts in the hypercube,
where packets to be broadcast are generated according to Poisson processes. We devise and
analyze two routing schemes that can sustain high throughput values regardless of the size of the
hypercube; at the same time, in light traffic, the average time required to complete a broadcast
is ©(d), which is the optimal order of magnitude. The first routing scheme is analyzed exactly
and closed form results are obtained. The performance of the second scheme is investigated
using an approximate model; a simulation study shows that the resulting formulas are very ac-
curate. All of the routing schemes considered in both dynamic problems are distributed and of
the on-line type; that is, all routing decisions are made on the basis of past information only.

Thesis Supervisor: Dr. John N. Tsitsiklis
Title: Associate Professor of Electrical Engineering

Acknowledgements

I would like to express my deepest gratitude to Professor John Tsitsiklis, my thesis
advisor, for his wise and generous guidance, as well as for his unfailing encouragement
and support throughout my studies at M.I.T. Besides an advisor, he has been an

invaluable friend.

I am thankful to my thesis readers, Professors Dimitri Bertsekas and Tom Leighton,
for the stimulating discussions we have had and for their suggestions on my thesis.
I am also indebted to Professor Bertsekas for his friendship and support during the

past years.

Professor Jeffrey Shapiro, my academic counselor, has always been very encouraging

and helpful.

I wish to thank Dr. Teunis Ott of Bellcore for his helpful suggestion regarding
Chapter 5.

My thanks to all inembers of the Laboratory for Information and Decision Systems

— faculty, students and staff — for an excellent working environment.

For their love and support, I am grateful to my family. Without them, nothing

would have been possible.

Table of Contents

1. INTRODUCTION 11
1.1 Parallel Computersc.c ittt 11
1.2 Communications In Message-Passing Systems 12

1.2.1 Prototype Communication Tasks 12
1.2.2 Static and Dynamic Routing Problems 14
1.2.3 The Model for Communicationsccovivvieeiniinn... 15
1.2.4 Distributed Routing i 16
1.3 Selecting a Network Architecture 17
1.4 A Brief Survey of the Routing Literature 19
1.5 Overview of the Results — Motivation
— Comparison with Previous Work 20
1.5.1 Static Routing Problemsc.oiiiiiiL. 21
1.5.2 Dynamic Routing Problems, 23
1.6 Summary of the Contribution of This Research 27

BACKGROUND MATERIAL 28

2.1 The Hypercube Network i it 28
2.1.1 Definition i e 28
2.1.2 Hypercube Dimensions — Hamming Distance — Paths 30
2.1.3 The Completely Unbalanced Spanning Tree 31
2.1.4 The d Disjoint Spanning Treesccoviiiieaiin... 33
2.2 Discrete-Time Queuesccoviiiiiiiiiiiiiinninnn.. 34
2.2.1 The Discrete-Time G/D/1 Queue With Unit Service Time ... 34
2.2.2 The Discrete-Time M/D/1 Queue With Synchronization...... 35
TOTAL EXCHANGE IN THE HYPERCUBE 36
3.1 Introduction i 36
3.2 The Lower Boundc. it 37
3.3 Derivation of the Optimal Algorithm 38
3.4 Implementation of the Optimal Algorithm 42

MULTIPLE SIMULTANEOUS BROADCASTS

IN THE HYPERCUBE 46
4.1 Introduction i 46
4.2 Lower Bounds, 47
4.3 Parallel Prefix, 48
4.4 An Efficient Algorithml 49
4.5 A Randomized Version of the Efficient Algorithm 53
4.6 Efficient Algorithms for Special Cases 54

46.1 TheCase K = O(d) «ovniniiiiiiii it ii i 54

46.2 TheCase K =2 .. ittt iinann, 54

46.3 TheCase K =dccoviiiiiiiiiiiiiiiiiaiaiaiaennnan....bb

6.

MULTIPLE NODE-TO-NODE COMMUNICATIONS

IN THE HYPERCUBE 57
5.1 Introductiono ittt 57
5.1.1 Problem Definitiono, 57
5.1.2 Setting the Performance Objectives 58
5.1.3 The Greedy Routing Scheme — Summary of the Results 59
5.1.4 Summary of the Related Literature — Contribution 61
5.2 Preliminary Results 62
5.2.1 The Necessary Condition for Stability 62
5.2.2 Lower Boundsonthe Delay it 63
5.2.3 Simple Non-Greedy Schemes 67
5.3 Performance Analysis of the Greedy Scheme 68
5.3.1 The Equivalent Queueing Network 68
5.3.2 Changing Service Discipline in the Equivalent Network 71
5.3.3 The Stability Region of the Greedy Routing Scheme 78
5.3.4 The Bounds for the Delay Induced by the Scheme 80
5.3.5 Asymptotic Behavior of the Average Delay 82
5.4 The Case of Slotted Time, 84
5.5 OpenProblems i 87
5.6 Greedy Routing on the Butterfly Network 89
5.6.1 The Butterfly Networkcciiiiiiiiiiii ... 89
5.6.2 The Routing Problemcociiiiiiiiiiiiiii, 91
5.6.3 Preliminary Results i, 91
5.6.4 Performance Analysis of Greedy Routing 92
5.A AppPendix ... e e e 98
MULTIPLE BROADCASTS IN
THE HYPERCUBE — PART I:
FIRST RESULTS AND DIRECT SCHEMES 101
6.1 Introduction i e e 101
6.1.1 Problem Definition — Motivation 101
6.1.2 Summary of the Results 102

6

7.

6.2

6.3

6.4
6.5
6.A

Preliminary Results i i, 104

6.2.1 The Necessary Condition for Stability 104
6.2.2 Lower Bounds on the Delay 105
6.2.3 Setting the Performance Objectives 109
Direct Routing Schemes i .. 110
6.3.1 A Simple Approach to the Problem 110
6.3.2 Performing Multinode Broadcasts Periodically 111
6.3.3 Non-Idling Versions of the Periodic Schemes 113
Experimental Results for the Direct Schemes 115
Approximate Analysis of the Direct Scheme 119
Appendix ... e 124

MULTIPLE BROADCASTS IN THE HYPERCUBE

7.1

7.2

7.3

7.4
7.A

— PART II: INDIRECT SCHEMES 128
An Indirect Routing Scheme 128
7.1.1 Introductionoiiiiiiiiiiiiii i i 128
7.1.2 The Rules of the Routing Scheme 129
Performance Analysis of the Indirect Scheme 132
7.2.1 Auxiliary Resultso i 132
7.2.2 The Condition for Stability 135
7.2.3 Derivation of the Average Delay and the Average Queue-Size .. 137
Discussion on the Scheme — Further Results 141
7.3.1 Limitations on the Stability Properties 141
7.3.2 Potential Methods for Improving the Stability Properties143
7.3.3 Deadlock PreventioncccoiiiiiiiiiiiiL, 147
Comparison of the Various Routing Schemes 148
Appendix ... e e e 152
ApPPendix ... e 154

7.B

~1

CONCLUSION 156

8.1 Suminary of this Research, 156
8.2 Directions for Further Research 158
REFERENCES 159

List of Figures

Chapter 2
2.1 The 3-dimensional hypercube o 29
2.2 Recursive construction of the 3-dimensional hypercube 29
2.3 A completely unbalanced spanning tree of the 3-cube 31
2.4 The d disjoint spanning trees,for d =3 il 33
Chapter 3
3.1 Recursive construction of the algorithm for total exchange

inthe (d4+1)-cubeo 39
3.2 Derivation of the order of packet transmissions ford =4 44
Chapter 4
4.1 Imbedding a complete binary tree in the d-cube 49
Chapter 5
5.1 The equivalent queueing network Q for the 3-dimensional hypercube .. 69
5.28 NetWork G ..ottt ettt e e et e 74
5.2b Network Gooviiiiiiiii i e 74

B5.2c Network G oot e e e e 75
5.3 Comparing the average queueing delay per packet under the greedy

and the adaptive schemes, for p =0.90o il 89
5.4 The 2-dimensional butterfly i 90
5.5 The equivalent queueing network R for the 2-dimensional butterfly 93
Chapter 6
6.1 Experimental results for T — d — %, for the routing scheme using

the trees of the multinode broadcast algorithm of [BOSTT91] 116
6.2 Experimental results for T — d — %, for the routing scheme using

the trees of the algorithm for the d simultaneous multinode

broadcasts of [SaS85] 116
6.3 Comparing the delay induced by the two non-idling schemes,

for d = 10 ... e e e 117
6.4 Comparing the delay induced by the two non-idling schemes,

for p = 0,10 o e e 118
6.5 Comparing the queue-sizes for the two non-idling schemes,

for p = 0,15 . e e 118
Chapter 7
7.1 Introducing the virtual arcs and buffers By and By in 71,

in the 3-cube 131
7.2a Thetree T of pathso i 132
7.2b Thesingle path P e e 132
7.3 The simple case for Lemma 7.1, 133
74 The tree 7 of paths with different lengths 135
7.5 The first-order term in the delay induced by the non-idling version

of the indirect routing scheme i, 149

6 Comparing the delay induced by the two schemes, ford =8 149
T Comparing the average queue-size) per node

under the two schemes, for p =0.30 ..., 150

7.8 Comparing the maximum queue-size M (over all nodes)

under the two schemes, for p =030 i i, 151

10

1. Introduction

1.1 PARALLEL COMPUTERS

The impressive progress in hardware technology during the past decades has en-
abled the use of multiple processors within the same computer. In fact, there exist
computers with as many as 65,000 processors. Such systems are primarily used for
the solution of large numerical problems, such as the ones arising in weather pre-
diction, computational fluid dynamics, image processing, optimization etc. In these
applications, multiple calculations (or other operations) related to the same problem
are concurrently performed by different processors. Thus, by parallelizing a significant
portion of the computations, the solution is derived much faster than in a serial com-
puter. Typically, processors within a parallel computer have to exchange information,
in order to proceed with their respective calculations. There are basically two ap-
proaches for establishing this kind of communication. Under the first one, prevalent in
message-passing systems, processors communicate by sending messages to each other
through an interconnection network. Under the other approach, adopted in the so-
called shared-memory systems, processors communicate by reading and writing into a

shared part of the memory. In reality, however, such systems include either a bus or a

11

crossbar switch, connecting all processors to all memory locations. Thus, a significant

amount of communications take place even in a shared-memory system.

With the increasing size of the parallel computers in use and the increasing need
for fast and real-time computation, performing the interprocessor comimunications
efficiently has become an extremely important issue. Thus, related routing problems
have received extensive attention of researchers, especially during the past decade. In
this Ph.D. Thesis, we analyze several such problems, primarily pertaining to message-
passing systems. Most of our analysis is closely related to the popular hypercube
architecture. Nevertheless, we also investigate more general issues, as well as develop

analytical tools that are more broadly applicable.

1.2 COMMUNICATIONS IN MESSAGE-PASSING SYSTEMS

The discussion to follow refers to a message-passing system. Associated with each
such system is a network, where each node corresponds to a different processor. Ideally,
it would be desirable for this network to be complete, that is, each node to be connected
to all other nodes. Since this is not practically feasible unless the number of processors
is very small, a multitude of special network topologies have been developed, such as
the linear array, the 2-dimensional array, the binary hypercube, the pyramid etc; see
[BeT89]. Of course, the performance of a parallel computer depends significantly on
the underlying topology. Before addressing this topic in §1.3, we discuss some general
issues without making any reference to a particular network architecture. We shall only
assume that the network graph is connected, i.e. there is a directed path connecting
each pair of nodes; note that each (directed) arc of this graph corresponds to a directed

communication link between the start and the end nodes.
1.2.1 Prototype Communication Tasks

There are certain prototype communication tasks (scenarios) that arise very often
during the execution of parallel algorithmms; see [BeT89]. In this subsection, we briefly

present those of the prototype tasks that are related to our research.

The simplest conceivable communication task is node-to-node communication, where
some node wishes to send a message to some other node. This task may be accom-

plished by transmitting the message along one of the paths connecting the two end-

12

nodes. Another simple task is the single node broadcast, where some node wishes to
send the same message to all other nodes; this task arises, for example, when one
of the processors has computed the final result of a series of calculations and wishes
to report it to all other processors. A single node broadcast may be accomplished
by transmitting the message along a spanning tree (of the network graph) emanating
from the broadcasting node. (That is, a spanning tree with all of its arcs pointing

away from this node.)

A generalization of the single node broadcast task is the multinode broadcast, where
all nodes wish to perform a broadcast at the same time. This situation arises in parallel
iterative algorithms of the form z := f(x), where f : R — R™ and n is the number of
processors; typically, the :th processor knows the function f; and updates z;. Assume
that the problem is dense, i.e. each entry of the function f(z) depends explicitly on
almost all entries of z; then, once z; is updated, its new value must be broadcast
to all other processors, in order to be used in their subsequent calculations. If all
processors are perfectly synchronized, then all entries of the vector z become available

to be broadcast at the same time.

In the prototype tasks involving broadcasts, each transmitting node sends the same
message to all other nodes. Other interesting tasks arise when this is not the case. In
particular, when some node wishes to send a different message to each of the other
nodes, then a single node scatter arises. This situation may occur when a certain
processor has some special responsibility in coordinating the operation of the network.
An even more general task is the fotal ezchange, where every node wishes to transmit
a different message to each of the other nodes. This task arises in computing the
transpose of a matrix A, in the case where each processor stores initially a different
row. Indeed, assume that processor i knows initially all entries a;;,...,a;n; after
transposition of the matrix, node k should store all entries ajg,...,ank. Therefore,
for each pair (i,k) where k # ¢, processor ¢ has to send the value of entry a; to
processor k; clearly, this situation corresponds to a total exchange. Finally, of interest
is also the permutation task, where each node sends exactly one message and receives
exactly one message; this task is often considered as a “benchmark” for comparing the

performance of different networks.

13

1.2.2 Static and Dynamic Routing Problems

As discussed in the previous subsection, the set of origin-destination pairs associated
with a prototype task usually has a special structure. In the context of the network
architectures used in practice, this fact usually enables the development of efficient
routing algorithms for such tasks. When designing such an algorithm, it is more
convenient to assume that all inessages to be transmitted are available at the same
time and that the commnunication task is to be performed once and in the absence
of other transmissions in the network. These favorable assumptions apply to cases
where all (or almost all) of the processors are actually engaged in the same problem
and they are synchronized with each other to a significant extent. A routing problem
arising under these conditions is called static, because it is known a priori exactly
what messages it involves. When designing a routing algorithm for such a problem,
the objective is usually to minimize the completion time of the algorithm, that is to
complete all transmissions as fast as possible. Most often, it is also desirable for a fast
algorithm to be eflicient with respect to the number of transmissions involved and the

amount of memory required, and not to be complicated to implement.

Unlike the case of static problems, the situation is less predictable in the so-called
dynamic routing problems, where it is assumed that there are multiple tasks to be
performed; these tasks are taken to be generated at random time instants over an
infinite time-horizon, and they may interfere with each other. For such a problem,
it is only meaningful to design a routing scheme, namely a set of rules to be applied
regardless of what messages will be generated in the future; such a scheme should be
of the on-line type, that is each message should be routed only on the basis of past
information. When dealing with a dynamic routing problem, the objective is to design
a scheme that makes efficient use of the available resources, thus attaining satisfactory

throughput, while introducing a small amount of delay per task.

In order to clarify the distinction between the two types of problems, let us consider
the iterative algorithm z := f(z) mentioned in §1.2.1. If all processors are synchro-
nized, then a multinode broadcast task will be performed at the end of each iteration.
If no other transmissions take place in the underlying interconnection network, then
designing the corresponding algorithim is a static problem; the same algorithm will be

executed periodically, namely once after each iteration. On the other hand, the situa-

14

tion is different in an asynchronous environment, where processors operate at vartable
speeds; thus, each processor completes its kth iteration at a different time, and pro-
ceeds with the next one without waiting for processors that are running late. In such
a case, there arise multiple single node broadcasts, generated at various time instants
and interfering with each other. Of course, one could claim that the multinode broad-
cast also consists of a multitude of interfering single node broadcasts. Even though
this is true, the problem is still characterized as static, because all of the “constituent”

single node broadcasts are known to be generated at the same time.
1.2.3 The Model for Communications

In the course of our analysis, we adopt a simple model for communications; this is

as follows:
(a) The time axis is divided in slots of unit length; all nodes follow the same clock.

(b) Each message is transmitted in a single packet. Transmitting a packet from some
node to one of its neighbors takes unit time; this includes the “actual” transmission

time, the propagation delay and time for processing.
(c) Packets propagate within the network in a store-and-forward fashion.

(d) Only one packet may traverse a (directed) arc per slot; all transmissions are error-

free.

(e) Each node can transmit packets through all of its output ports and at the same

time receive packets through all of its input ports.
(f) Each node has infinite buffer capacity.

A few comments on our model are in order. First, the assumption that packets
have fixed length is in agreement with several standards for communications, such as
the Asynchronous Transfer Mode for lightwave networks [Min89]. The assumption
that each message consists of only one packet is somewhat simplistic, since there
may be messages that do not “fit” in a single packet. In other models appearing in
the literature (e.g. the ones of [SaS85] and [JoH89]), messages are taken to consist
of several packets of unit size, which may be split and recombined later. Such an
extension can be easily accommodated by the routing algorithms designed under our

model; the converse is not always true, as will be seen in §1.4.1.

15

The assumption that messages are taken to propagate in a store-and-forward fashion
is again standard in the context of parallel computers. Another alternative, which has
recently attracted increased attention, is the so-called wormhole routing, where each
bit of a packet is forwarded immediately towards the destination, without “waiting”
for the tail of the packet; see [DaS87]. This may prove advantageous in cases where
messages are rather long and cannot be split in shorter packets, while the traffic is
light. On the other hand, under wormhole routing, additional provision has to be
taken for deadlock prevention, which complicates the routing algorithms. We prefer
to adopt the “traditional” store-and-forward routing, because it is still applied widely;
moreover, due to its simplicity, it provides us with more insight of the main issues
affecting the performance of the various routing algorithms. In fact, for all routing
problems to be analyzed, the performance of any algorithm (or routing scheme) is
limited by the usage of some critical communication resource. All routing algorithms
to be presented attain high and efficient utilization of the respective critical resource;
thus, introducing wormhole routing would not provide considerable opportunity for

designing algorithms with improved performance.

Finally, the assumption of infinite buffer capacity is not realistic; however, it is
adopted mainly for analytical convenience. In the course of our analysis, we shall also

derive estimates of the buffer capacity required in practice.

Though simple, we believe that our model captures the essence of communications in
the context of message-passing systems, while it allows the design of routing algorithms

that are both powerful and easily adaptable to other models.
1.2.4 Distributed Routing

When solving a problem in a parallel computer, there is always the need for some
centralized coordination of the various processors; for example, when a prototype com-
munication task arises, some special mechanism has to trigger the initialization of the
task. It is often required that there is only limited use of centralized control. This
requirement is motivated by the fact that excessive application of centralized control
would occupy a considerable amount of the system’s computational and communica-
tion resources. An algorithm that makes minimal use of centralized control is called
distributed. This definition is not precise, because it not entirely clear what the “mini-

mum” possible extent of centralized coordination is for each particular problem; below,

16

we clarify our notions of distributed routing algorithms and schemes.

For a static routing problem, we shall assume that all nodes are notified of the
communication scenario and when transmissions start. In a distributed algorithm for
such a problem, we shall assume that each node knows when to transmit its own packets
and which paths to choose for each of them; regarding the packets it has to forward,
each node can figure when to do so, by looking at the paths of the packets received
and by performing some local computations. It will be assumed that each packet has a
special field of information, where its path is stored. (In fact, it is often the case that
the path to be followed by a packet can be determined by the corresponding origin-
destination pair and some small amount of additional information, without having to
provide the entire sequence of intermediate nodes.) Similar assumptions apply to the

distributed schemes pertaining to dynamic routing problems.

As already mentioned, the advaniage of a distributed algorithin lies on the fact
that the central controller imposes limited additional load to the system; on the other
hand, such an algorithm may be more complicated. However, an algorithm designed
for a distributed environment can be easily adapted to run in the presence of central-
ized control; the converse is usually not true. Therefore, for all routing problems to
be analyzed, we shall be primarily interested in designing distributed algorithms (or

schemes).

1.3 SELECTING A NETWORK ARCHITECTURE

So far, we have discussed several general issues on communications in message-
passing systems, without referring to any particular architecture. Among the multitude
of architectures used in practice, we have selected the d-dimensional binary hypercube
as the underlying network of most of our analysis. The nodes of this network constitute
a lattice of points of the d-dimensional space, with each point having binary-valued
coordinates. Thus, the d-dimensional binary hypercube (to be also referred to as d-
cube) has 2¢ nodes, with each of them having d neighbors, namely the d “nearest”
nodes in the d-dimensional space. (A formal definition of the hypercube network is
presented in §2.1, together with the most important of its topological properties.) The
primary reasons for selecting the hypercube as our main topology of reference are as

follows:

17

(a) Dxistence of several actual multiprocessing systems using the hypercube topology,
such as the Connection Machine (with 64K processors), the NCUBE/10 (with 1K

processors) etc; see [[Iwa87].

(b) Close relation of the hypercube with several of the other network topologies used
in practice. Such topologies can be either imbedded in the hypercube (e.g., the
2-dimensional array) or obtained therefrom by introducing certain modifications

(e.g., the butterfly).

(c) Potential for designing very efficient routing algorithms and schemes, due to pow-

erful topological properties.
(d) Potential for neat analysis of the problems of interest.

In order to clarify the advantages of the hypercube, we shall briefly compare it with
the 2-dimensional array, the nodes of which form a square lattice in the 2-dimensional
space; this network is particularly suitable for the numerical solution of partial d-
ifferential equations (with discretization of the continuous variables). For a generic
problem however, it is not that appropriate, due to its large diameter. Indeed, for
a 2-dimensional array with N nodes, the diameter is O(\/]_V); since the degree per
node of the 2-dimensional array is 4, the ideal would have been to have a diameter
of O(In N). [The notation O(-) denotes order of magnitude.] On the other hand, a
hypercube with IV nodes has diameter log, IV, at the expense of increasing the degree
per node to log, V; thus, communication among “remote” nodes can be performed

much faster in this network.

The only disadvantage of the hypercube is that it has logarithmic in the number
of nodes degree; this property hinders the construction of actual hypercubes with ar-
bitrarily many processors. Nevertheless, there is very little difficulty in practice, due
to the impressive progress in hardware technology. For theoretical reasons primarily,
there have been constructed several constant-degree networks that can simulate the
hypercube with small slowdown; e.g., the Cube-Connected Cycles (see [BeT89|). How-
ever, most of the routing algorithms for these networks are first designed in the context

of the hypercube, and then they are converted according to standard processes; see

[LeL90].

To summarize, the hypercube constitutes a network architecture that is both excit-

ing to analyze and important for practical applications.

18

1.4 A BRIEF SURVEY OF THE ROUTING LITERATURE

In the present section, we briefly summarize the routing literature; it should be

noted that publications closely related to our research are discussed in §1.5.

The literature on static routing problems in the various network topologies is rather
extensive. Regarding static routing in the hypercube, Bertsekas et al. [BOSTT91] have
devised optimal algorithms for a variety of prototype tasks under the model for commu-
nications discussed in §1.2.3. Previously, Saad and Schultz [SaS85], as well as Johnsson
and Ho [JoH89], had constructed optimal or nearly optimal algorithms for the same
tasks, under a somewhat different model for communications. In particular, they as-
sume that messages consist of a fixed number of unit-size packets, and they allow both
splitting the messages and recombining the constituent packets at no overhead. In
[Var90|, Varvarigos developed a methodology for designing optimal algorithms for a
class of symmetric communication tasks (called isotropic tasks); Varvarigos also ana-
lyzed the multinode broadcast task, under the assumption that packets have random
lengths with exponential distribution. Other references related to static routing in the
hypercube may be found in [BeT89], [JolI89] and [BOSTTI1].

The communication tasks considered in the aforementioned articles as well as the
respective algorithms do not employ any randomization. In his famous article [Val82],
Valiant has demonstrated how to use randomization in order to perform a deterministic
task. In particular, in the context of the d-cube, he considered the permutation task
and showed that it may be accomplished in time ©(d) with high probability, by using
a randomized two-phase algorithm. [Recall that the diameter of the d-cube equals d;
hence, most permutations require at least ©(d) time units.] In the first phase of the
algorithm in [Val82|, each packet chooses a random intermediate destination (with all
nodes being equiprobable) and is sent there; in the second phase, each packet travels
from its intermediate destination to its actual one. In a later work, Valiant and Brebner

[VaB81] modified this algorithm, thus simplifying considerably the analysis.

The permutation task is also important for emulating shared-memory systems. As
already mentioned in §1.1, such systems usually include a crossbar switch network,
connecting the various processors with the memory locations. Thus, an important
problem is to route permutations where each node of one front of the switch (namely,

each processor) has a packet to send to a different node of the opposite front (that is, to

19

a different memory location). Aleliunas [Ale82] and Upfal [Upf84] derived randomized
permutation algorithms for constant-degree networks; by using a two-phase approach
(such as in [Val82] and [VaB81]), these algorithms complete in time O(ln V) with high
probability, where N is the number of nodes. [Notice that O(In V) is the optimal order
of magnitude for the completion time, because the diameter is also ©(ln V).] Further
improvement was attained by Pippenger [Pip84], who derived an algorithm with similar
performance but requiring only constant-size buffer at each node. However, under
this algorithin, a deadlock may arise with small (yet positive) probability. The first
deadlock-free permutation algorithm with constant-size buffers was derived by Ranade
[Ran87]; this algorithm pertains to the butterfly network, and runs in time O(ln V)
with high probability.

Each of the aforementioned references is dealing with static routing in the hypercube
or in some other standard network. Static routing problems have also been analyzed
for general network graphs. Leighton and Rao [LeR88| have analyzed the uniform
multicommodity flow problem, which is essentially an FDMA version of the total
exchange task; these authors establish an upper and a lower bound for the maximum
possible rate (per node pair) of exchanging information. Leighton et al. [LMRS88] have
analyzed the scheduling problem for routing n node-to-node communications over a
set of prespecified paths (in a general graph); for each such set of paths, they prove
the existence of an efficient off-line scheduling (that is, to be derived prior to starting

transmissions), which involves only constant-size queues.

All of the references mentioned so far are dealing with static routing problems.
The literature on dynamic problems is less extensive; most of the related works are

discussed in §1.5.2.

1.5 OVERVIEW OF THE RESULTS — MOTIVATION

— COMPARISON WITH PREVIOUS WORK

In this section, we present a summary of the specific problems analyzed and the
results derived in this PL.D. Thesis; we also discuss our motivation for considering

these problems and we compare our work to the related literature.

Prior to presenting our research in Chapters 3-7, we give some background material

in Chapter 2. In particular, we present the definition of the hypercube network and

20

the most important of its topological properties, together with some imbeddings of
spanning trees to be used in the analysis. Later in that chapter, we describe some
queueing systems to be encountered in the subsequent analysis; these systems are

considered in discrete ttme and involve deterministic servers.
1.5.1 Static Routing Problems

In Chapters 3 and 4, we consider two static routing problems in the context of the

d-cube.

In Chapter 3, we analyze the total ezchange task, where each node has a different
packet to send to each of the other nodes; see also §1.2.1. We derive a simple lower
bound for the time required for eny algorithm to perform this task, namely that the
completion time is always at least 291 time units. Then, we prove the existence of
an algorithm that attains ezactly this lower bound. Apart from being unimprovable
with respect to its completion time, this algorithm also attains 100% utilization of the
network arcs. Initially, the algorithm is constructed recursively with respect to the
dimensionality d of the network. Following the analysis, we present a relatively simple
distributed implementation for this optimal algorithm. As already mentioned in §1.2.1,
the total exchange is among the prototype tasks arising in matrix computations, and

thus, it is of interest to devise an optimal algorithm for performing it.

Our optimal algorithm of Chapter 3 for the total exchange in the d-cube was the
first ever published to accomplish the task in the minimum possible completion time,
namely in 29-! time units; note that this result was first presented in [BOSTT91].
Other total exchange algorithins were previously given in [SaS85| and in [JoH89];
however, in both these articles it is assumed that M different packets are transmitted
per origin-destination pair. The corresponding lower bound for the completion time is
M22-1 and it is met ezactly by our algorithm, by treating all M packets per origin-
destination pair as one and rescaling the slot duration by M. On the other hand,
the algorithm of [SaS85] does not attain this lower bound, unless M is a multiple of
d; for M = 1, which corresponds to our model for communications, the algorithm of
[SaS85] takes time d2¢~!. Regarding the total exchange algorithms of [JoH89], most
of them complete in time M2%~! only when M is a multiple of d, or when d is a
prime number; for M = 1, all of the algorithms in [JoH89] complete in more than

2¢-1 time units, except for one of the algorithms, which attains this lower bound only

21

when d is prime. Following the derivation of our total exchange algorithm, Varvarigos
[Var90] and Edelman [Ede91], each taking a different approach from ours, devised

other optimal such algorithms.

In Chapter 4, we consider the communication task of K simultaneous broadcasts,
where K of the nodes of the d-cube wish to broadcast a packet at the same time. Note
that the single node broadcast task (resp. the multinode broadcast) is a special case
of this task with K = 1 (resp. K = 2¢). Regarding this problem, we first prove that
the completion time of any algorithm for this task is at least max{d,("’:—;l)%—} time
units. Then, we develop an algorithm that attains this lower bound within a small
multiplicative constant factor. This algorithm applies to any K and to any K-tuple
of broadcasting nodes; in fact, neither the subset of broadcasting nodes nor K has to
be known prior to performing the task. The algorithm is simple to implement in a
distributed fashion. During its initial phase, the broadcasting nodes achieve some form
of cooperation. We also argue that some kind of cooperation is actually necessary for
an algorithmm to complete the task in time ©(max{d, %}) for all sets of broadcasting
nodes, unless if randomization is used. Finally, we present some algorithms pertaining

to cases where K has one of special values.

Motivation for analyzing the aforementioned problem is as follows: Consider again
the distributed version of the iterative algorithm z := f(x). If all nodes are perfectly
synchronized and the iterations are implemented in a Jacob: fashion, then all entries
of the vector ¢ are updated at the same time; thus, a multinode broadcast arises at
the end of each iteration. However, even in synchronous environments, there are cases
where not all of the z;’s are updated at the same time; e.g., in Gauss-Seidel algorithms,
or when the iterations are implemented in a multigrid fashion, where some variables are
updated more frequently than others. It is in such cases that a simultaneous broadcast

by a subset of nodes arises.

The efficient algorithm of Chapter 4 for the task of K simultaneous broadcasts in
the d-cube is new. To the best of our knowledge, the problem had not been analyzed in
the previous literature, except of course for the special cases K = 1 and K = 2¢, which
correspond to a single node broadcast and a multinode broadcast respectively. When
specialized to the multinode broadcast task (namely, for K = 2%), our algorithm

completes in at most twice the optimal time, but it is much simpler to implement

22

than the optimal multinode broadcast algorithm of [BOSTT91] or the corresponding
algorithms of [SaS85] and [JoH89]. The problem of K simultaneous broadcasts in
the d-cube was considered recently by Varvarigos and Bertsekas [VaB91], who used a

different approach and derived an algorithm that (in general) is faster than ours.
1.5.2 Dynamic Routing Problems

In Chapters 5, 6 and 7, we turn our attention to dynamic routing problems, analyzed
in the context of the hypercube. The analysis of these problems constitutes the main

focus of our research.

We begin with the problem of multiple node-to-node communications over an infinite
time-horizon, which is analyzed in Chapter 5. In particular, we assume that each
hypercube node generates packets according to a Poisson process, independently of
the other nodes. Each packet has a single destination, which is selected randomly
according to a certain rule; for a special case of this rule, the destination distribution
is uniform. We analyze the problem in steady-state; first, we derive the necessary
condition for stability, valid for any legitimate routing scheme. We also derive two
lower bounds for the average delay per packet; one of them applies to all legitimate
routing schemes, while the other applies to all schemes of a certain class. We then
analyze the performance of a greedy routing scheme, where each packet chooses a
particular path leading to its destination and attempts to traverse each arc of this
path as fast as possible. This scheme is distributed and extremely simple to inplement;
regarding its performance, we prove that the scheme is very efficient. In particular, its
stability properties are optimal; moreover, for any fixed traffic level (that maintains
stability), the average delay per packet is @(d), namely of the same order of magnitude
as in the case of zero traffic; finally, for any fixed dimensionality d, the rate of increase
of the average delay in heavy traffic is also optimal. We also extend the results to the
context of the butterfly network, where greedy routing is the most reasonable scheme
to apply. Finally, we discuss some open problems related to the analysis of adaptive
routing schemes, where a packet’s path is influenced by contention. One such scheme

has very satisfactory performance in practice, but seems to be analytically intractable.

The problem of multiple node-to-node communications in the hypercube (over an
infinite time-horizon) was considered in several articles, which we discuss below; all of

them deal with the case of uniform destination distribution. Abraham and Padmanab-

23

han [AbP86] have constructed an approximate model for this problem, under various
assumptions on the buffer capacity of the nodes. In particular, they assume that pack-
ets advance in their respective paths independently of each other; the model involves
some parameters, which are determined by solving a system of nonlinear equations.
Greenberg and Hajek [GrH89] have analyzed this problem under deflection routing,
where packets encountering contention are temporarily misrouted, rather than stored
or dropped. The analysis in [GrH89] is approximate too. Varvarigos [Var90] has for-
mulated a Markov chain model for evaluating the performance of deflection routing,

and has investigated its steady-state statistics numerically.

The problem of multiple node-to-node communications has been analyzed in the
context of the 2-dimensional array by Greenberg and Goodman [GrG86], with their
analysis being again approximate. Recently, Leighton [Lei90] analyzed the problem for
the same network and proved that a simple greedy routing scheme has very satisfac-
tory average performance. Similar problems were also analyzed by Mitra and Cieslak
[MiC87], as well as by Hajek and Cruz [HaC87], in the context of the extended Omega
network, which is a crossbar switch. In contrast with all the other articles, where
packets were taken to have fixed length, it was assumed in both [HaC87] and [MiC87|
that, for each individual packet, transmission times over the various arcs are inde-
pendent and exponentially distributed random variables. This assumption is called
“Kleinrock’s independence approximation” and siinplifies the analysis considerably;
even though it constitutes a reasonable approximation for several problems on data
networks (see [BeG87]), it is rather unrealistic for problems arising in parallel comput-
ers. Finally, Bouras et al. [BGST87] considered the problem of multiple node-to-node
communications in the context of Banyan networks, which are also crossbar switches;
these authors investigate the performance of greedy routing, under the assumption of

fixed packet lengths; however, the analysis in [BGST87| appears to be incorrect.

To the best of our knowledge, all of our results established in Chapter 5 are new,
except for the necessary condition for stability, which is straightforward. Moreover,
our analysis provides the first proof that some routing scheme for perforiing multiple
node-to-node communications over an infinite time-horizon (on either the d-cube or
the butterfly) has both optimal stability properties and an average delay of ©(d) per
packet. In fact, proving that greedy routing has these properties has been an important

open question in the routing literature. The routing scheme considered in Chapter 5

24

is the first one in the hypercube to be analyzed rigorously. Excluding the results in
[HaC87] and [MiC87], which are based on Kleinrock’s independence approximation,
the only rigorous performance analysis of a routing scheme is that in [Lei90], in the

context of the 2-dimensional array.

Comparing the results of Chapter 5 to those of [Lei90], it is worth noting that ours
are more ezplicit. To the best of our knowledge, our greedy routing scheme is the
first for which the bounds on the delay are expressed by simple formulae involving
only the rate of generating packets and the dimensionality d of the network (without
adopting the independence approximation). This is due to the new approach followed
in the derivation of our results: First, it is established that the hypercube behaves as a
queueing network with deterministic servers (each corresponding to an arc) and with
Markovian routing among the various servers; then, by using sample-path arguments,
it is proved that the total number of packets present in this queueing network is
dominated by that corresponding to a product-form: network. The approach followed
in [Lei90] involves combinatorial arguments, which are based on the following idea: A
packet that suffers large delay should have collided with an untypically large number
of other packets; by careful enumeration of such “bad” scenarios, it is then proved that
the probability for a packet to be delayed excessively is small. It should be noted that
our approach relies on the assumption of Poisson packet-generating processes. (Recall,
however, that there are very few tractable queueing systems that do not involve Poisson
arrivals.) Nevertheless, we hope that our analysis will be suggestive of the efficient

performance of greedy routing under more general packet-generating processes.

In the course of the analysis of Chapter 5, we establish an interim proposition that is
rather generally applicable. This enables the extension of our results on the hypercube
to all crossbar switch networks with arcs arranged in levels, such as the Omega and
the Banyan networks, and the butterfly (which is actually considered in Chapter 5);
in fact, such an extension is possible even if each arc involves a different (yet fixed)

transmission time per packet.

In Chapters 6 and 7, we analyze a problem where multiple broadcasts are performed
over an infinite time-horizon, again in the hypercube network. Packets are generated
according to the model adopted in Chapter 5; however, each packet is now to be

broadcast, rather than sent to a single node. Again, we are interested in devising

25

routing schemes that make efficient use of the available resources, while introducing
a small amount of delay. We first derive a necessary condition for stability as well
as two lower bounds for the average delay per packet; one of them applies to all
legitimate routing schemes, while the other applies to all schemes of a certain class.
We then introduce two distributed routing schemes that prove to be rather efficient with
respect to their stability properties. Though both schemes are simple in principle, their
delay properties seem to be analytically intractable; thus, at this point, we resort to
simulation and/or approximate analysis. The corresponding numerical results suggest
very satisfactory performance of both schemes. We then present another distributed
scheme, which is somewhat more complicated but still simple to implement. For both
the stability and the delay properties of the scheme, we prove that they are rather
satisfactory. The aforementioned problem, as well as the results derived in Chapter 6
and 7 are new. In the analysis of Chapter 7, we derive an interim result on the delay
induced by a tree of paths; this result seems to applicable to other routing problems

too.

Motivation for analyzing the two dynamic routing problems of Chapters 5 and 6-7 is
as follows: As already mentioned, dynamic routing problems pertain to asynchronous
environments, where the underlying assumptions of static routing may be far from re-
ality. Such an example was already given in §1.2.3, regarding the iteration z := f(z).
The problem of Chapters 6 and 7, where packets to be broadcast are generated at ran-
dom time instants, is closely related to this situation, provided that the function f(z)
is dense. On the other hand, the problem of multiple node-to-node communications
seems to match better a situation where each node actually corresponds to several
processors and computations on several sparse problems are performed at the same
time. These two problems are simple (and extreme) cases of the routing problems
arising in general purpose computation. In this general context, it may occur that
packets received by a node influence the generation of subsequent packets as well as
their length; moreover, it may even occur that each packet is destined for a different
subset of nodes, which is possibly determined by the packets previously received. In
fact, in such chaotic situations, the statistics of the packet generating processes may
be unknown or ill-defined. The analysis of the two dynamic problems of Chapters 5

and 6-7 may be viewed as a first step towards treating such general problems.

As already mentioned, for both dynamic problems analyzed we derive universal

26

lower bounds for the average delay per packet; namely, lower bounds applying to the
delay induced by any legitimate routing scheme. This concept is new and Lelps in bet-
ter understanding the limitations imposed on the performance of all routing schemes.
By taking these limitations into account, more realistic performance objectives may

be set; also, the performance of the schemes analyzed may be better evaluated.

1.6 SUMMARY OF THE CONTRIBUTION OF THIS RESEARCH

The contribution of our research was discussed in detail in §1.5. In summary, the

main new results contained in this Ph.D. Thesis are as follows:
(a) The first exactly optimal algorithm for the total exchange task in the hypercube.

(b) An efficient algorithm for the communication task of K simultaneous broadcasts in

the hiypercube, applying to all possible subsets of broadcasting nodes.

(c) The first rigorous proof of the efficiency of a greedy scheme for routing multiple
node-to-node communications {(over an infinite time-horizon) in the hypercube or

the butterfly.

(d) The first analysis of a dynamic routing problem involving broadcasts in the hyper-

cube arising over an infinite tine-horizon.

27

2. Background Material

In this chapter, we present some background material on the hypercube network

and on discrete-time queueing systems.

2.1 THE HYPERCUBE NETWORK

2.1.1 Definition

Most of our research is related to the d-dimensional binary hypercube (to be referred
to as d-dimensional hypercube or simply d-cube). This network consists of 2¢ nodes,
numbered from 0 to 2¢ — 1; e.g., see [BeT89]. Associated with each node z is a binary
identity (z4,...,z1), which coincides with the binary representation of the number
z. Each arc of the hypercube connects two nodes whose binary identities differ in a
single bit. That is, arc (z,y) exists if and only if z; = y; for ¢ # m and zpm # ym
(or equivalently |z — y| = 2™~!) for some m € {1,...,d}. Note that (z,y) stands for
a unidirectional arc pointing from z to y; of course, if arc (z,y) exists, so does arc
(y,z). It is easily seen that the d-cube has d2? arcs. In Figure 2.1, we present the

3-dimensional hypercube.

28

\ . binary
identity

Figure 2.1: The 3-dimensional hypercube.

011
Co 11 C 11
N AN
\ AN
010
10 10 ~. 00!
01 | 01 110
000 ™~ _
00

00

100

Figure 2.2: Recursive construction of the 3-dimensional hypercube.

29

A d-cube can be constructed recursively, by connecting two (d — 1)-cubes. Indeed,
it suffices to start with two such hypercubes Cp and C;, and then introduce two
unidirectional arcs between each pair of nodes with the same binary identity. The
resulting network is a d-cube; the binary identity of each node is obtained by adding
a leading 0 or 1 to its previous identity, depending on whether the node belongs to Co

or to C1. The recursive construction of the 3-cube is depicted in Figure 2.2.
2.1.2 Hypercube Dimensions — Hamming Distance — Paths

Let there be two nodes z and y of the d-cube. We denote by 2z @ y the vector
(zd D Yd,---,21 D y1), where @ is the symbol for the XOR operation. The ith (from
the right) entry of z ® y equals 1 if and only if z; # y;. Moreover, for j € {1,...,d},
we denote by e; the node numbered 29-1; that is, all entries of the binary identity of
e; equal 0 except for the jth one (from the right), which equals 1. Nodes e;,...,eq are
the only neighbors of node (0,...,0). In general, each node z has exactly d neighbors,
namely nodes z ® eg,...,z ® eq. Clearly, arc (z,y) exists if and only if 2z ® y = e,,, for
some m € {1,...,d}; such an arc is said to be of the mth type. The set of arcs of the

mth type is called the mth dimension.

The Hamming distance between two nodes z and y is defined as the number of
bits in which their binary identities differ; this equals the number of unity entries of
z ® vy, and is to be denoted as H(z,y). Clearly, if the ith entry of z @ y is equal to
1, then any path from z to y contains at least one arc of the :th type; for otherwise,
the end node z of the path is such that z; = z;, and thus ¢ # y. Hence, each path
from z to y contains at least as many arcs as the Haimnming distance between the two
nodes. Moreover, there exist paths containing ezactly this many arcs. Each such path
is called a shortest path from z to y, for obvious reasons. It is stra.ightforwa,rd that

the diameter of the d-cube equals d.

For two nodes z and y of the d-cube, let H(z,y) = k and let 41, - ,1; be the entries
of z®y that equal 1. Any shortest path from z to y contains k arcs, one arc of each of
the types ¢y,...,2,. There exist k! different such paths from z to y, each corresponding
to a different order of crossing the hypercube dimensions iy,...,t,. The path in which
the dimensions are crossed in increasing indez-order is called the canonical path from

z to y; e.g., for z = (0,0,0,1) and y = (1,0,1,0) in the 4-cube, the corresponding

30

canonical path is as follows:

(0,0,0,1) - (0,0,0,0) — (0,0,1,0) — (1,0,1,0).

2.1.3 The Completely Unbalanced Spanning Tree

The completely unbalanced spanning tree rooted at some node » is defined as the
spanning tree 7 with the following property: Every node vy is reacled from the root
z through the canonical path from z to y. Note that all spanning trees considered

throughout our analysis are directed, since all hypercube arcs are taken unidirectional.

One can easily see that the collection of all canonical paths originating at node 2
constitute a tree 7 rooted at 2, Indeed, it suffices to check that the following is true:
If node y' belongs to the canonical path from z to y, then the part of this path that
ends at y' is the canonical path from 2z to y'. A completely unbalanced spanning tree

of the 3-cube is presented in Figure 2.3; the root of that tree is node (0,0, 0).

000

Figure 2.3: A completely unbalanced spanning tree of the 3-cube.

31

The completely unbalanced spanning tree 7 rooted at node z has d subtrees, which
are denoted as T3,...,74. In particular, subtree 7T; is hanging from node z @ e; and it
comprises all nodes y with the following property: y1 = z1,...,¥i—1 = zi—1 and y; # z;
(see Figure 2.3). Therefore, subtree 7; contains 2¢~! nodes, subtree 7; contains 242
nodes etc, subtree 7; contains 1 node; hence the terminology “completely unbalanced”.
Another interesting property of a completely unbalanced spanning tree is that it has

24-1 Jeaves.

Notice now that for any binary d-tuples v, w and y we have (v@y)®(vdw) = ydw.
This implies that if (y,w) is an arc of the d-cube, then so does (v @ y,v ® w) and vice
versa; moreover, the two arcs are of the same type. Next, consider a spanning tree
S rooted at some node z. The aforementioned property implies that the set of arcs
{(z®2)@Dy,(z®z)®w): (y,w) € S} constitute a spanning tree S' rooted at node
z. The tree S' is said to be a translation of the tree §. Clearly, the two trees are
isomorphic; that is, there exists a 1 — 1 mapping ¢ : {0,...,2¢ -1} — {0,...,2¢ — 1}
such that if (y,w) is an arc of S then (g(y), g(w)) is an arc of S'; notice that g(y)d=efy®v.
It is straightforward to check that the completely unbalanced spanning tree rooted at

a node z can be obtained by translating the one rooted at node (0,...,0).

Consider now a spanning tree with the following property: Each node y is reached
from the root z through that shortest path in which the hypercube dimensions are
crossed in the order (2,3,...,d,1). It is easily seen that this tree is isomorphic to
the completely unbalanced spanning tree rooted at z. By considering different orders
for crossing the hypercube dimensions, we obtain other mutually isomorphic trees.

Henceforth, we call all of these trees completely unbalanced, as well.

Completely unbalanced spanning trees have been used extensively in algorithms for
hypercube communications; see [SaS85], [JoH89] and [BOSTT91]. (Johnsson and Ho
[JoH89] use the terminology “spanning binomial tree” instead.) Apart from being con-
venient to deal with, these trees can be described in a very concise way, which reduces
significantly the memory requirements of the algorithms using them; in particular, for
each completely unbalanced spanning tree, it suffices to specify the root and the order

of crossing the hypercube dimensions.

32

2.1.4 The d Disjoint Spanning Trees

Johnsson and Ho [JoH89] have constructed an imbedding of d arc-disjoint span-
ning trees in the d-cube; they call them “d Edge-Disjoint Spanning Binomial Trees”
(dESBT). This imbedding consists of d completely unbalanced spanning trees, to be
denoted as 71, ... T, Tree T is rooted at node ej; the order of crossing the

hypercube dimensions in the paths of T3 is as follows:
(jmodd) 4+ 1,[(j + 1)modd] +1,...,[(j + d — 1) modd] + 1.

In Figure 2.4, we present this construction for d = 3; this figure is taken from (JoH89)].

The d disjoint spanning trees comprise a total of d(2¢ — 1) hypercube arcs, since
each of them consists of 2¢ — 1 different arcs. There are d arcs that do not belong

in any of these trees; these are the d arcs outgoing from node (0,...,0), namely

(0,e1),...,(0,eq).

000

T T@ 7O

Figure 2.4: The d disjoint spanning trees, for d = 3.

33

2.2 DISCRETE-TIME QUEUES

2.2.1 The Discrete-Time G/D/1 Queue With Unit Service Time

In this subsection, we briefly present some properties of the discrete-time G/D/1
queue with unit service time; this is a single server queueing system operating as

follows:
(a) The time axis is divided into slots of unit duration.

(b) The number of arrivals Ax during slot k is distributed as the random variable 4,
for k = 0,...; thus, we have E[z4*] = E[zA]défGA(z). Arrivals within different slots
are mutually independent. Customers arrive in the system just before the end of
each slot.

(c) Each customer’s service time equals one slot.

We denote by Y the number of customers present in the system at the beginning
of the kth slot, including the customer in service (if any). It follows from the above

discussion that

Yiy1 = [Ya — 1]t + 4Ag, fork=0,..., (2.1)

where [oz]*'déf max{0, a}. The queueing system considered is stable if and only if either
E[A] < 1 or Pr[A = 1] = 1. By the term “stability” it is meant that, as n — oo, the
distribution of the total time spent by the nth customer in the system converges to a
proper distribution, which is independent of the initial condition (namely, of the value
of Yy); note that a proper distribution corresponds to a random variable that is finite
with probability 1. Henceforth, we assume E[A] < 1; in this case, the steady-state
distribution of Y, also is well-defined, and can be derived by using standard tools of

queueing theory. In particular, we have [KoK77]

z—1
z — G a(z)
Using the fact Pr[Y = 0] = lim,_,o Gy (2), it follows that

Gy(2)& lim E[zY*] = (1 — E[4)) Ga(z), for |z|<1. (2.2)

kli—l}go Pr[Yy # 0] = E[4].

The expected number N of customers in the system (in steady-state) can be calculated
by evaluating dG+z(z)|z=1; thus, it follows from (2.2) that

E[A(A - 1)]

2(1 — E[4])

NE lim E[Yi] = E[4] +

34

Using Little’s formula, we have

N E[A(A —1)]
E[4 " T 2EMAI1 - El4])’

where T is the steady-state average delay per customer, the service time included.

T =

(2.3)

2.2.2 The Discrete-Time M/D/1 Queue With Synchronization

We consider a discrete-time G/D/1 queue with unit service time and with the
number of arrivals per slot assuming the Poisson distribution. In this case, we have
E[A(A — 1)] = E?|A]; thus, (2.3) gives
El4]

(2.4)

So far, we have assumed that arrivals may occur only at the end of each slot. If
we assume instead that the arrival instants are points of a continuous-time Poisson
process with rate A < 1, then the analysis leading to (2.2) still holds. (Again, service
may only start at the beginning of a slot.) However, a correction in the expression
for the average delay T is necessary. In particular, we have to add to the right-hand
quantity in (2.4) the expected duration of the time elapsing between the arrival instant
of some customer and the beginning of the next slot. This quantity is called the average

synchronization time and it equals % Thus, we obtain

3 EA] 3 A
T=stsu—E@a) "2 20-n" (2.5)

Iinally, consider the queueing system described above, but modified as follows:
Service may only start every A slots, say in the beginning of the slots numbered
0,A,...; moreover, the service time duration is now set to A. We will be referring to
this system as the discrete-time M/D/1 queue with synchronization. The number of
arrivals during A successive slots is Poisson, with rate AA. Moreover, the arrivals in
different intervals of duration A are mutually independent. Thus, in order to derive
the expression for the steady-state average delay T', we simply have to apply (2.5) with
AA instead of A and rescale time by A; thus, we obtain
3 AA

E

2t aaoa) (2.6)

T=al

Clearly, the discrete-time M/D/1 queue with synchronization is stable if and only if
AA < 1.

35

3.Total Exchange in the Hypercube

3.1 INTRODUCTION

The total exchange task is among the prototype communication scenarios arising
in parallel computation. In the course of this task, each node sends a different packet
to each other node. For example, this situation arises in the transposition of a matrix
stored by row; see §1.2.1. In this chapter, we first prove a lower bound on the time
required for any algorithm to perform a total exchange in the d-dimensional hypercube.
We then prove the ezistence of an algorithm that attains this lower bound ezactly;

finally, we present a rather simple implementation of the optimal algorithm.

The algorithm derived in this chapter was the first ever published to attain the
minimum possible time for the total exchange task in the d-cube; the result appears
in [BOSTT91]. Among the previously existing algorithms, the fastest was one derived
by Johnsson and Ho [JoH89], which however is exactly optimal only when d is a
prime number. In fact, the algorithms by Saad and Schultz [SaS85] and the ones of
[JoH89] were derived under the assumption that M packets are exchanged per origin-
destination pair; these algorithms attain exactly the corresponding optimal time only

for M being a multiple of d or for prime d (see also §1.4.1). Even though we are

36

here considering the case M = 1, the algorithn to be presented is optimal for any
value of M; indeed, it suffices to rescale the slot duration by M, and treat all M
packets corresponding to an origin-destination pair as one. Following the derivation of
our total exchange algorithm, Varvarigos [Var90] and Edelman [Ede91| devised other

optimal such algorithms, by using a different approach.

3.2 THE LOWER BOUND

For any node z of the d-cube, there exist (z) nodes y at Hamining distance k& from
z, for all k € {1,...,d}. Each packet transmitted by ¢ and destined for such a node y
has to undertake at least k transmissions. Furthermore, for an arbitrary total exchange
algorithm for the d-cube, let R(z) denote the total number of transmissions of packets
originating at node z, where both the initial and intermediate transmissions (if any)

are included. It follows from the above discussion that

d
R(m)ZZk(k):dZd'], forz=0,...,2¢ —1. (3.1)
k=1
Since the d-cube contains d2¢ unidirectional arcs, at most d2¢ transmissions may
take place during each time unit. Therefore, the completion time Ty of the arbitrary

algorithm considered satisfies

2¢-1
1
> — . .
Ti> 2o zzjo R(z) (3.2)
This together with (3.1) implies that
Ty >2471. (3.3)

Hence, any total exchange algorithm in the d-cube takes at least 2¢~! time units.
Moreover, for an algorithm to attain this lower bound, it is necessary that both in-
equalities (3.1) and (3.2) hold with equality; thus, packets should follow shortest paths
and all arcs should be busy (in both directions) during all of the 2¢~! time units. In
what follows, we present an algorithm for which Ty = 2¢~1. In light of the above,
this algorithm is optimal (i.e., unimprovable) with respect to both the time and the

number of transmissions criteria and achieves 100% arc utilization.

37

3.3 DERIVATION OF THE OPTIMAL ALGORITHM

Following a methodology similar to that in [BeT89], we construct the optimal algo-
rithm recursively. In particular, we shall assume that we have an optimal algorithm
for total exchange in the d-cube with certain properties to be stated later, and we shall

use this algorithm in order to perform an optimal total exchange in the (d + 1)-cube.

First, let us assume that we have an algorithm for total exchange in the d-cube, not
necessarily of the optimal duration; then, we can construct a total exchange algorithm
for the (d 4+ 1)-cube as follows: We decompose the (d + 1)-cube into two d-cubes,
denoted as C_o and C;. Without loss of generality we assume that Cy contains nodes
0,...,2% — 1 and that their counterparts in C; are nodes 2¢,...,29+1 _ 1, respectively;
see also §2.1.1. The algorithm for the (d+ 1)-cube consists of three phases. In phase 1,
there is a total exchange within each of the sub-cubes Cy and C, using the available
algorithm for the d-cube; each node in Cy exchanges its packets with the other nodes
in C and similarly for sub-cube C;. In phase 2, each node transmits to its counterpart
node in the opposite d-cube all of the 2¢ packets that are destined for the nodes of the
opposite d-cube. In phase 3, again there is a total exchange in each of the two d-cubes;
however, the packets exchanged in this phase are the ones received in phase 2. The
recursive construction of the algorithm for the the total exchange in the (d 4 1)-cube

is illustrated in Figure 3.1, which is taken from [BeT89].

The simplest way to accomplish the total exchange in the (d+ 1)-cube is to perform
the three phases sequentially; letting T; denote the completion time for the d-cube

algorithm, we thus obtain the following recursion:
Typr =Ta+2%+ Ty,

where we have used the fact that phase 2 lasts for 2¢ time units. (Notice that each
node has to send 2% packets in phase 2, one packet per time unit.) Assuming now
that the algorithms for the d-cube, the (d — 1)-cube etc, the 2-cube were all derived
by the same recursive construction (with T, = 1), we obtain Ty = d24-1; this exceeds
the lower bound of (3.3) by a factor of d. Notice, however, that phases 1 and 2 can
be performed simultaneously; indeed, these two phases involve disjoint sets of packets
and use disjoint sets of arcs. By performing phase 3 after the end of phases 1 and 2,

we obtain
Tiy1 = max{Ty, 29} + Ty ;

38

OO

y Co I C \
, i, \
To'ta¥ exchanges | Total exchanges
within sub-cube Cy \ within sub-cube C;
during phases 1 and 3 during phases 1 and 3

Communication
during phase 2
between sub-cubes
Co and C;

Figure 3.1: Recursive construction of the algorithm

for total exchange in the (d + 1)-cube.

solving this recursion, we have Ty = 2¢ — 1. This algorithm is derived in [BeT89]; its
completion time exceeds the lower bound of (3.3) by almost a factor of 2. Here, we
improve on this time by allowing phase 3 to start before phase 2 ends. To illustrate
how this is possible, consider the packet originating at some node z € Cy and destined
for its counterpart node in Cq, namely = + 2%, and the packet originating at z +24 and
destined for . These packets are not transmitted at all during phase 3. Therefore, if
they are transmitted last in phase 2, then phase 3 can start one time unit before the
end of phase 2. This idea can be generalized as follows: Clearly, if it were guaranteed
for all nodes ¢ € Cy (and resp. for all nodes z € () that all packets originating at z
and going to C; (and resp. originating at z and going to Cy) arrive in time for phase 3
at node z+2¢ (and resp. at node z —2%), then phase 3 can be performed just after phase
1, without completing phase 2. In such a case, phase 3 would proceed uninterrupted;
thus, the first half of phase 2 would be carried out simultaneously with phase 1, while
the second half would be carried out simultaneously with phase 3 and we would have
Tyy1 = 2T4. Assuming that the algorithms for the d-cube, the (d — 1)-cube etc, the

2-cube were all obtained by the same recursive construction (with T} = 1), we now

39

have Ty = 2¢-1; hence, this family of recursively constructed algorithms would achieve
the lower bound of (3.3). In what follows we prove that such a recursive construction

is indeed feasible.

Suppose that the optimal total exchange algorithm has already been devised for the
d-cube. Let Ny(xz,n) denote the number of its own packets that node z has transmitted
up to and including time n, for n = 1,...,29-1. [Note that N4(z,n) ranges from 1
to 2¢ — 1.] We can use Ng4(z,n) to express the requirement that phase 3 packets
originating at nodes of Cy are available in time at the appropriate node of C, so that
phase 3 begins right after phase 1 and continues uninterrupted (with phase 2 still being

in progress). In particular, it is necessary that
Ng(z,n) <29"'4+n—-1, forn=1,...,2¢ ' andz =0,...,2¢ - 1. (3.4)

To see this, note that the left-hand quantity in (3.4) is the number of packets orig-
inating at node z € Cy that must be transmitted by node z + 2¢ during the first n
time units of phase 3, while the right-hand quantity in (3.4) equals the number of
available time units within phase 2 for transferring these packets from node = to node
z + 29. (Recall that each node z sends its phase 2 packets one by one.) There is also a
requirement analogous to (3.4) for the nodes of C;. Since the existence of the optimal
algorith for the d-cube was assumed, it is not known whether or not (3.4) holds. Thus,
we shall also assume that this is indeed the case, and we shall prove that (3.4) holds for
the algorithm to be constructed for the (d 4 1)-cube; the formal argument is presented

next.

Proposition 3.1: For every d, there exists a total exchange algorithm for the d-cube,

satisfying Ty = 29! and
Na(z,n) <2 14n—-1, forn=1,...,2¢ andz =0,...,2¢ - 1. (3.5)

Proof: We have T} = 1 and N;(3,1) = 1, for ¢ = 0,1, which proves the inductive
hypothesis for d = 1. Furthermore, we assume that for some d we have a total exchange
algorithm for the d-cube that satisfies both Ty = 2¢~! and (3.5). Let s(z,y,d) denote
the timne unit in this algorithm during which node z transmits its own packet that is
destined for node y (with z # y). We shall construct a three-phase total exchange

algorithm for the (d + 1)-cube that satisfies the inductive hypothesis, namely both

40

Tyy1 = 2¢ and (3.5). Suppose that packets are transmitted during phase 2 according
to the following rules: (In view of the symmetry of the transmissions of nodes of the
d-cubes Cy and C, we describe the rules for packet transmissions of phase 2 only for

the nodes of Cj.)

(a) Each node z € Cy transmits its packets to node = + 2¢ in the order in which the
latter node forwards them in phase 3 (ties are broken arbitrarily); thus, the packet
destined for node y € C; (with y # = +2?), is transmitted before the packet destined
for y' € Cy (with y' # z + 2%) only if

s(m,y - 2d’d) < s(wvy’ - 2d’d) '

(b) Each node z € Cy transmits its packet destined for node z + 2% lasi.

We claim that under the above rules, phase 3 can proceed uninterrupted after phase
1. To show this, consider any node ¢ € Cyp (the case of ¢ € C; can be treated

2¢-1 packets from

analogously). At the end of phase 1, node z has received exactly
node z+2¢, since phase 1 lasts for 2¢~?! time units (by the inductive hypothesis). Hence,
n — 1 time units after the end of phase 1, node z has received exactly 2¢=1 + n — 1
packets from node x + 2¢. On the other hand, the total number of packets of node
z+ 2% that = forwards during the first n time units of phase 3 is exactly Na(z,n). Since
Nag(z,n) <291 4 n—1forall n =1,...,2¢71 [by the assumed relation (3.5)], and
node z + 2% transmits its packets to node z according to the above rules, node z always

has enough packets from node z + 2¢ for transmission if phase 3 begins immediately

after phase 1. Since node = € Cy was chosen arbitrarily, this holds for all z € Cj.

Consider the total exchange algorithm for the (d+1)-cube, whereby phase 3 proceeds
uninterrupted immediately following phase 1 as described above. Since, according to
the inductive hypothesis, each of phases 1 and 3 takes Ty = 29~ this algorithm takes
time Tyyq = 2Ty = 2¢, which is the desired duration. There remains to show that
the second part of the inductive hypothesis [namely, (3.5)] is satisfied for d + 1. For
any node z, let Ngi1(z,n) denote the number of node z’s own packets that z has
transmitted up to and including time n of this algorithm. In the first 2¢~! time units
of the algorithm, phases 1 and 2 execute simultaneously; since packets of phase 2 are

transmitted by each node one by one, we have
Naii(z,n) = Ng(z,n) +n, forn=1,...,2¢,

41

Combining this inequality with the fact Nq(z,n) < 2¢ — 1 (which holds for all n), we
obtain
Ngpi(z,n) <28 +n -1, forn=1,...,2971, (3.6)

In the next 2¢ — 1 time units of this algorithm, phases 2 and 3 execute simultaneously;

since node z does not transmit any packet of its own during phase 3, we have
Napi(z,n) =29 4+n -1, for n =291 +1,...,2¢.
Combining this inequality with (3.6), we obtain
Nag1(z,n) <29 4n—-1, forn=1,...,2¢.

Since the choice of = was arbitrary, it follows that (3.5) holds for the (d + 1)-cube as
well, which completes the proof. Q.E.D.

3.4 IMPLEMENTATION OF THE OPTIMAL ALGORITHM

In this section, we present the rules used by the nodes for transmitting their own
packets and forwarding the packets they receive from other nodes, whenever further
transmission is required. These rules can be easily derived by “unfolding” the recursive

construction of the optimal algorithm.

The presentation of these rules becomes more clear, by using the binary representa-
tion of node identities. Recall that e denotes the node numbered 2¥-1 for k = 1,...,d

(see §2.1.2). Also, Z; denotes the reverse of bit zz, namely Zx = (x4 + 1)mod 2.

We first describe the order in which an arbitrary node z transmits its own packets.
It follows easily from the discussion in §2.1.2 that each packet crosses the hypercube
dimensions in decreasing index-order. Thus, a packet originating at node z and des-
tined for node y follows the reverse of the canonical path from y to = (*). Furthermore,
by the structure of the three phases presented in §2.1.2, it is seen that, for each arc

(z,z ® ex), node z sends all of its own packets to cross this arc before forwarding

(*) The fact that the index-order of crossing the various dimensions is the decreasing is
a consequence of the choice of Cy and C'; in the recursive construction of the algorithm;
if Cy and C; were chosen so that Co = {z : z1 = 0}, then this index-order would be

the increasing, and the resulting paths would be the canonical ones.

42

through (z,z @ ex) any packets received by other nodes. Therefore, at time instants

1,...,2¥=1 node z transmits those of its own packets that are destined for nodes
b))

(Tdy---yTht1,TkyVk—1y---,V1), Wherev,, =0orl form=1,...,k—1.

All these packets are sent through arc (z,z @ ex); the last packet to be transmitted
in this group is the one destined for node = @ ex. (The aforementioned rules apply
for k = 1,...,d.) For z = 0, the exact order in which = transmits its packets on
each of its outgoing arcs may be derived by uéing a sequence of d tables, which are
constructed iteratively. The kth table consists of & columns, the mth of which contains
the destinations of packets transmitted through arc (0,e,,). The first table contains
only e;. For k = 2,...,d, the first £ — 1 columns of the kth table are (obviously)
identical to those of the (k — 1)st table, whereas its last column contains the entries
of the (k — 1)st table with their kth bit being set to 1. In the last columnn, entries
corresponding to the same row of the (k—1)st table appear one after the other, ordered
(arbitrarily) from left to right; entries corresponding to different rows of the (k — 1)st
table are ordered from top to bottom. The last element of the kth column of the kth
table is eg. This scheme follows easily from the recursive construction of the optimal
algorithm; for example, given the (d—1)st table, the way of constructing the dth column
of the dth table follows from the assumed order of transmitting the packets of phase
2 (see also the proof of Proposition 3.1). In Figure 3.2, we present the construction
of the d tables for the case d = 4. For any other node z, the corresponding order of
destinations may be obtained by XOR-ing each entry of the dth table for node 0 with
the binary identity of z. For practical applications, it seems preferable to construct
these tables prior to the starting transmissions, rather than computing each row on-
line. This is due to the fact that the entries of mth row of the kth table cannot be

derived recursively by operating only on the (m — 1)st row of the (k — 1)st table.

Furthermore, we focus on the packets arriving in some node z and present the
rules under which these packets are forwarded by = (whenever necessary). Packets
arrive in z, through arc (z @ ex,x) in groups of 2¥~1, for k = 1,...,d. Each group
consists of all packets originating from the same node (ya,...,Yk+1,Tk;Tk—1,-..,%1)
(where y, = 0or 1, for m = k + 1,...,d) and destined for all nodes of the form
(Tdy---yThyVk—1,-..,v1) (where v,, = 0or 1, for m = 1,...,k —1). [The origin and

destination sets of the packets traversing arc (z @ er,x) are implied by the fact that

43

Table 1
Time Arc (0,€)
1 0001
Table 2
Time Arc (0,e;) | Arc (0,e2)
1 0001 0011
2 0010
Table 3
Time Arc (0,e1) | Arc (0,ez) | Arc (0,e3)
1 0001 0011 0101
2 0010 0111
3 0110
4 0100
Table 4
Time Arc (0,e;) | Arc (0,ez) | Arc (0,e3) | Arc (0,eq)
1 0001 0011 0101 1001
2 0010 0111 1011
3 0110 1101
4 0100 1010
5 1111
6 1110
T 1100
8 1000

Figure 3.2: Derivation of the order of packet transimissions for d = 4.

44

ey e A

packets cross the various hypercube dimensions in decreasing index-order.] The order
of group arrivals is lezicographic in y® z [or equivalently in (ya @ Td, .., Yk+1 D Tkt1)]-
As an example, let us consider the case z = 0 and k = d—1. Each packet to be received
through arc (e4_1,0) originates from one of nodes eq_1, €d, and eq ® eq_3. (Note that
these three nodes are given in lexicographic order.) In the recursive construction of
the algorithm, the packets from node eq_; belong to phase 1, while those from eq and
eq ® eq_1 belong to phase 3 and thus they are received later; it can also be seen that
the packets from ey are received by node 0 prior to those from eq®eq_1, by considering

the recursive structure of the optimal algorithm for the (d — 1)-cube.

Routing of the packets to be forwarded by node z is accomplished as follows: A
packet destined for node (zd,...,Tk,Vk—1,.--,v1) joins the queue of packets to be
transmitted by = through arc (z,z @ eg.), where

k* = 1g23§'f_1{m fUm = Tm} -
Packets originating from the same node and placed in the same queue preserve their
order of arrival. Packets originating from different nodes y, z and placed in the same
queue are ordered according to the lexicographic order between y ® = and z & =.
(This can be seen by an example similar to that presented in the previous paragraph.)
Forwarding packets through arc (z,x @ ey) starts at time 2k=141 fork=1,...,d—1;
at each time, the packet at the top of the queue for arc (z,z® e) is forwarded through

that arc. No forwarding takes place through arc (z,z @ eq).

The rules presented above follow from the recursive construction of the optimal
algorithm. Our earlier analysis guarantees that packets are always in time at the in-
termediate nodes (if any) of the paths they have to traverse. Notice that the algorithn
is implemented in a fully distributed fashion. Indeed, the travelling schedule of each
packet is locally determined at the intermediate nodes of its path, by examining only
the packet’s origin and destination. Thus, packets do not have to carry any timing in-
formation, which makes the implementation rather efficient for practical applications.
Another nice property of the optimal algorithm is that it does not require any addi-
tional buffer capacity to be implemented. Indeed, since all hypercube arcs are always
busy, each node receives d packets and transmits d packets per slot; thus, the total
number of packets stored at each node remains constant (namely, it equals 2¢ 1) for

the entire duration of the algorithm.

45

4. Multiple Simultaneous

Broadcasts in the Hypercube

4.1 INTRODUCTION

During the execution of parallel algorithms, it is often necessary that several pro-
cessors simultaneously broadcast packets to all others. The case where all processors
wish to perform a broadcast at the same time corresponds to the multinode broadcast
task; among others, this task arises in the synchronous distributed execution of Jacobi
iterations; see §1.2.1. In this chapter, we consider a similar routing problem; in par-
ticular, we assume that each member of a subset of K processors wishes to broadcast
a packet. This situation arises when a distributed iterative algorithm is implemented

in a multigrid or Gauss-Seidel fashion; see also §1.4.1.

We analyze the problem defined above in the context of the d-dimensional hyper-
cube. We first derive a lower bound for the time required to perform K simultaneous
broadcasts, applying to any K € {1,... ,29} and to any routing algorithm. We then
develop (in §4.4) a simple distributed algorithm that meets this lower bound within a

small multiplicative constant factor. This efficient algorithm works even if no node of

46

the hypercube knows the value of K or the identities of any other broadcasting nodes.
The main idea of the algorithm is as follows: The K packets to be broadcast are split
evenly among the d disjoint spanning trees T, ..., T4 presented in §2.1.4; each
packet is sent to the root of one of these d trees, which will eventually broadcast the
packet along that same tree. The even splitting of the K packets among the d trees is
accomplished by performing a parallel prefiz task prior to starting transmissions; we
briefly discuss this task in §4.3. When specialized to the multinode broadcast task
(namely, for K = 24), our algorithm completes in at most twice the optimal time, but
it is much simpler to implement than the multinode broadcast algorithms of [SaS85],
[JoH89] and [BOSTT91]. In addition to the general algorithm of §4.4, we also present
other efficient algorithms pertaining to cases where K is known to have one of certain

values.

The problem formulated above as well as the results to be derived are new. Recently,
the problem was considered by Varvarigos and Bertsekas [VaB91], who used a different

approach and derived an algorithm that (in general) is faster than the one of §4.4.

Throughout the analysis, it will be assumed that the K broadcasting nodes are

distinct, unless otherwise specified.

4.2 LOWER BOUNDS

Clearly, under any routing algorithm, K broadcasts involve a total of at least
(2¢ — 1)K packet transmissions. Since at most d2? transmissions may be performed
in each slot, this task requires at least %}K = @(%) time units. Furthermore,
the completion time of each broadcast is no less than the diameter d of the d-cube.
Hence, it follows that under any routing algorithm and for any K-tuple of broadcast-
ing nodes, the task considered takes time Q(max{d, %), and in particular at least
max{d, (%I—l)%} time units. The notation T' = Q(max{d, £}) should be interpreted

as “T is of larger order of magnitude than max{d, %}”; that is, there exists a constant
C such that T > Cmax{d, £} for all K < 2% andford=1,...

We are interested in devising an algorithm that attains the optimal order of mag-
nitude O(max{d, £}) of the completion time, for any K € {1,...,2%} and for any
K -tuple of broadcasting nodes. The simplest possible distributed algorithm for our

task would be as follows: Each of the 2% nodes of the hypercube is confined to broad-

47

cast its packet (if it has one) along a prespecified spanning tree. Unfortunately, such an
algorithm would not always attain the optimal order of magnitude for the completion
time. Indeed, for any fixed node = and for any of the 29 prespecified trees except for

the one rooted at z, there exists exactly one arc of the form (z @ ej, x) that belongs to

the tree. Thus, there exists some arc (z @ ej-,x) that belongs to at least 2dd—1 of the

e d__ r .
trees. Therefore, as long as K < 2 y 1 an adversary can choose the K broadcasting

nodes in such a way that all of the packets will be received by node z through arc
(z @ ej,); in this case, the broadcasts last for at least K time units. [Similarly, if
K is ©(d—2%) with 0 < € < 1, then the adversary can force €(df& of the packets
to be transmitted over the same arc.] The above argument shows that, in the worst

case, the completion time of the task will not be of the optimal order of magnitude,
unless the paths to be followed by the packets are chosen in an adaptive fashion. In
the algorithm to be presented, this is attained by performing a parallel prefix task (see

§4.3) prior to starting transmissions of the actual packets.

It is worth noting that the above conclusion (and the argument we used) is rem-
iniscent of an important result by Borodin and Hopcroft [BoH82] on the inefficiency
of oblivious routing when performing a permutation task. It is proved therein that,
if for each origin-destination pair there is a predetermined path to be followed, then
there exists a permutation that will take time Q(d_%2d); on the other hand, it is
known that each permutation can be accomplished within 4d time units, by choosing

an appropriate set of paths (see [LeL90]).

4.3 PARALLEL PREFIX

Let ag,...,az¢_; be given scalars. A special case of the prefiz problem [LaF80] is
defined as follows: Compute all partial sums of the form E:d:;l ay,forz =0,...,2¢-1.
This prefix problem can be solved efliciently in parallel in time 2d, by using 24+1 1
processors connected in a complete binary tree with bidirectional arcs [LeL90]. The
main idea of the corresponding parallel algorithm is as follows: The partial sums of

d
the form Ez;; ay with z > 29-1 can be computed by solving a prefix problem with

d
input @ye-1,-..,a54_yq; the partial sums of the form z:____zl ay with z < 2971 — 1 can
be computed by solving a prefix problem with input ag,...,az:¢-1_; and then adding
241

Y y=zd-1 0y to the results. Notice that both prefix sub-problems are of Aalf the size

of the original prefix problem and may be solved in parallel. Assuming that the time

48

required for performing an addition is negligible compared to the duration of a time
slot, the prefix problem is solved in 2d slots, provided that the various communications

among the tree-connected processors are pipelined appropriately.

A parallel prefix task can be performed also in the d-cube in time 2d, by imbedding
a complete binary tree with 291 — 1 nodes and bidirectional arcs [LeL90]. Such an
imbedding is presented in Figure 4.1, which is taken from [LeL90]; notice that after
collapsing the virtual arcs of this graph, we obtain a completely unbalanced spanning
tree (with bidirectional arcs) rooted at node (0,0,0) (see also Figure 2.3). In the

beginning of the prefix task, node z of the d-cube knows the value of a.; at the end of

241

the task, ¢ knows the value of Eyzz

Qy.

000

_ actual
P - arc
Vd
7
7
10 ,
000 0 virtual
/ /
/ s
000 010 100
/ / /
000 001 010 011 100 101 110 111

Figure 4.1: Imbedding a complete binary tree in the d-cube.

4.4 AN EFFICIENT ALGORITHM

In this section, we present a distributed algorithm for performing I simultaneous
broadcasts in time @(max{d, %() for any choice of K and of the broadcasting nodes.

The main idea of the algorithm is as follows: The K packets to be broadcast are split

49

evenly among the d disjoint spanning trees T, ... T(D; each of the packets is sent
to the root of one of these d trees, which will eventually broadcast the packet along

that tree. In more detail, the algorithm consists of three phases:

Phase 1: A prefiz task is implemented (see §4.3), with input ao,...,az:_y, where
a; = 1 if node = wishes to broadcast a packet, and a; = 0 otherwise. This prefix
computation lasts for 2d time units; after its completion, node z knows the value of
ZZ:;I aydéfr,. Notice that if node z is to broadcast a packet, then r, equals its rank
under the decreasing order within the subset of broadcasting nodes. Also note that
ro = I{. As an example, suppose that nodes 0, 2, 3 and 6 of the 3-cube wish to perform
a broadcast; then, the prefix computation gives r7 = 0, 76 =75 =14 = 1, 13 = 2,
ro =ry =3,and rg =4 = K. '

Phase 2: For each broadcasting node z, its respective packet is sent to the root

€j(z) of tree T((=)) where the index j(z) is determined according to the following rule:
j(:c)(!éf(r, —1)modd+1.

The path to be followed by the packet of node z is the reverse of the path from e;(,)
to = that is contained in T7U(=)). Let N be the number of packets to be received by
root e;; since the r;’s of the broadcasting nodes ‘are distinct and consecutive, taking
all the values K,...,1, it follows easily that N equals either |£] or [£7, for all
j € {1,...,d}. Therefore, the packets to be broadcast are split among the d disjoint
spanning trees T ..., T(4) as evenly as possible. Since the d disjoint trees remain
disjoint after reversing all their constituent arcs, packets sent to different roots do
not interfere. Due to pipelining, all N9) packets destined for root e; will have been
received after at most N(5) 4+ d — 1 slots from the beginning of the present phase.
Therefore, all of the transmissions involved in this phase will have been completed after
max;—1,.,a{NW +d -1} = [£] 4+ d -1 slots (and possibly earlier). The termination
of this phase may be detected as follows: Due to pipelining, after the dth slot of phase
2 each root e; receives its packets continuously; that is, if a packet is received by e;
at time t > d + 1, then e; also received a packet during time ¢ — 1 through the same
incident arc, for otherwise the packet received at time ¢ would have arrived earlier.
(Recall that packets corresponding to different trees do not interfere.) Thus, root e;
can tell that it received all of its packets when there occurs a slot ¢ > d+1 with no new

arrivals; then, e; sends a termination packet to node 0, which declares the termination

50

of the entire phase when it receives d such packets (*). The additional overhead for
termination detection is only 3 slots. (Note that termination packets do not interfere
with the actual ones, because arcs of the type (ej,0) do not belong to any of the d
“reversed” disjoint trees; see §2.1.4.) All nodes other than ey,...,eq do not have to
detect termination of tlie present phase, because they are not supposed to trigger the

next one. Hence, the duration of this phase is at most [£] + d + 2 slots.

Phase 3: Each of the roots ey, ..., eq broadcasts the packets received during phase
2. Root e; broadcasts the corresponding N (9) packets along tree T(7); just after
forwarding the N(9th packet, root ¢; starts broadcasting [along 7¢/)] a termination
packet. Again, packets broadcast along different trees do not interfere. By pipelining
successive broadcasts over the same tree (including the termination packets), this
phase is completed in max;—,,.. .4{N + d} = [5] + d slots; termination is detected

individually by each node.

It follows from the description of the algorithm that its total duration is at most

2[%] + 4d + 2 time slots, which is O(max{d, Ld{')

For K > d?, the upper bound on the completion tiine exceeds the lower bound
max{d,(sz:l %} by a factor that is very close to 2. In fact, for the case K = 29,
which corresponds to a multinode broadcast, phase 1 of the algorithin is not necessary,
because it is known that 7, = 2¢ — z for every node x. We thus obtain a multinode
broadcast algorithm with completion time at most 2[%] + 2d + 2 slots. In fact, the
duration of this algorithm can be computed exactly, because it is known which path
is to be followed by each packet. (Recall that the duration of the phase 2 was only
bounded from above, because its exact value depends on the particular K-tuple of
broadcasting nodes; however, for K = 2¢, there is only one possible such K-tuple.)

We refrain from carrying out this computation, because it appears to be very tedious.

Nevertheless, it may be seen that the resulting multinode broadcast algorithim takes at

(*) An alternative way for detecting termination of this phase is for each root e; to send
to node 0 the number of inessages received during each slot; termination is declared by
node 0 when the sum of all these numbers reaches the value of K, which is known to
node 0 since phase 1. Though somewhat more subtle, we prefer the method introduced
earlier, because it involves fewer messages and does not require knowledge of K (even

by node 0); the advantage of this will become more clear in §4.5.

51

least [#J + [%] + d slots, because node eq_; has to receive at least L#T_IJ packets
through arc (eq ® eq_1,€eq4—1) in the phase 2. [This follows from the fact that, in the
paths of tree 7(¢=1) the hypercube dimensions are crossed in the order d,1,2,...,d—1
(see §2.1.4); thus, all nodes = with = > 291 constitute a subtree of 7(¢~1) hanging
from arc (eq—1,e4 D eq4_1), and at least [#J of them have to send their respective

packet to root eg_;.] Therefore, the completion time of the new multinode broadcast
2d

1] by a factor between 2 and 2. However,

this suboptimal algorithm is much stmpler to implement than the multinode broadcast
algorithms of [SaS85], [JoH89] and [BOSTT91). Indeed, the former algorithm involves

a total of d+1 spanning trees, whereas the latter involve a total of at least 2¢ trees; also

algorithm exceeds the optimal value [

the trees used by the algorithim discussed above can be described in a rather concise

way, which reduces its meinory requirements even further (see also §2.1.3).

Furthermore, for K <« d?, the duration of the algorithm exceeds the lower bound
max{d, (2'17;'1)%(} by a factor that is close to 4. Finally, for K = ©(d?), the correspond-

ing factor is between 2 and 6, with the worst case arising for i = d2?. (It should also
d
AL

the completion time of the task.) In fact, K = ©(d?) is the largest order of magnitude

be noted that the quantity max{d, ()£} is not necessarily a tight lower bound for
for K that can possibly lead to a completion time of ©(d), i.e. of the same order of

magnitude as the time for a single node broadcast.

The algorithm presented above for the /i simultaneous broadcasts in the d-cube is
fully distributed, that is, it does not require any centralized coordination. Moreover,
the algorithm is non-oblivious (i.e., adaptive), meaning that the paths followed by
different packets are not selected independently; this is due to the first phase of the
algorithm, where the broadcasting nodes coordinate in order to split evenly the packets
among the d disjoint spanning trees. An oblivious randomized version of our algorithm

is presented in §4.5.

Throughout the derivation of the efficient algorithm, it was assumed that the K
broadcasting nodes were distinct. If this is not the case, then the value of a, (in
the prefix computation) should be set to the number of packets to be broadcast by
node z; K now stands for the total number of packets to be broadcast. If node
z has a, > 2 packets, then it should send its mth packet to the root indexed by

(rz —az —1+m)modd+1,form =1,...,a,. The duration of the algorithm is again

52

2[%] + 4d + 2 time slots; notice also that the lower bound derived in §4.2 still applies.

4.5 A RANDOMIZED VERSION OF THE EFFICIENT ALGORITHM

In this section, we present a randomized version of the algorithim of §4.4; the new
algorithm accomplishes the K simultaneous broadcasts in time ©(max{d, £}) with
high probability, for any K -tuple of broadcasting nodes. The main idea is to skip phase
1 (where a parallel prefix task is performed), and randomly split the packets among the
d trees. In particular, we now assume that each broadcasting node z selects randomly
the value of j(z), with Pr[j(z) = i] = } for all 7 € {1,...,d}. Again, let NG) denote
the number of nodes having chosen 79); now, N is a random variable. Clearly,
if max{N®) ... N} < C% (with ¢ > 1), then the task can be accomplished in
at most 20%- + 2d + 2 time slots, by performing phases 2 and 3 exactly as in the
algorithm of §4.4; on the other hand, it follows from the Chernoff bound that the
inequality max{N),... N} <(C % holds with high probability, for an appropriate
value of the constant C'. Notice that the termination of phase 2 cannot be detected by
the alternative method that counts the total number of packets received by the root

nodes, because the value of K has not been previously computed.

As an example, let us consider the case K = d?; we have

Pr[NG) = n] = (dz) (é)"(1 - %)dz_" , forn=0,...,d°.

n

This together with the Chernoff bound implies that

. d?
Pr[N(J) > Cd] < (1 — 3 + 2) 2= Cd < (z-1)d,~Cd , Vz>1;

applying this with z = C and using the fact 1 + o < %, it follows that
: 1\ Cd
Pr[ND > Cd] < (E) eO-Dd Yo >,
Applying the union bound, we obtain after some algebra
Primax{N®, ..., N} > Cd] < (%)Cd, vC > 1.

Hence, for any C > e, the algorithm completes in less than 2(C + 1)d + 2 slots, with
probability at least 1 — (%)Cd for any d?-tuple of broadcasting nodes.

53

The randomized algorithm presented above is oblivious. Hence, for the task of K
simultaneous broadcasts, randomized oblivious routing is efficient, while deterministic
oblivious routing is inefficient (see §4.2). Again, this conclusion is reminiscent of the

well-known results of [Val82] and [BoH82| for the permutation task.

4.6 EFFICIENT ALGORITHMS FOR SPECIAL CASES

In this section, we present simple efficient algorithms for performing K -simultaneous

broadcasts in the d-cube in the cases where I{ is known to satisfy K = O(d), K = 2
or I{ =d.

4.6.1 The Case K = 0(d)

Consider the following distributed algorithm: Each of the K nodes broadcasts its
packet along a completely unbalanced spanning tree rooted at itself, with all of these
trees having the same index-order of crossing the hypercube dimensions; e.g. the
increasing index-order. Suppose that a copy P, j(z) of the packet originating at a
node z wishes to traverse some arc (z,z @ €;) at the same time with the copy P, ;(y)
of another packet originating at node y. Then, both P, j(z) and P. ;(y) are destined
for the same subset of nodes, namely all nodes w satisfying wy; = z1,...,w;j_1 = z;_1.
Therefore, if P, j(z) traverses arc (z,z,®e;) before P, j(y), then P, j(y) (or copies
thereof to be generated later) will never be delayed again due to copies of the packet
originating at node z. This argument implies that each copy of a packet suffers at
most K — 1 units of delay caused by contention; thus, the algorithm terminates after
at most d+ K —1 time units. Unfortunately, this upper bound for the completion timne
is of the optimal order of magnitude @(max{d, £}) only if K is O(d); on the other
hand, since each node is confined to a prespecified spanning tree, when K is not O(d)
there are cases where the algorithm does not complete in ®(max{d, %) time units,

according to the negative result of §4.2.

The algorithm above is faster than the one presented in §4.4 for all X < 3d, and it
should be used ouly when K is known to be O(d).

4.6.2 The Case K =2

Next, we present a distributed algorithin for performing 2 broadcasts simultaneously

in d time units, which is clearly the fastest possible.

54

We denote by = and y the two distinct broadcasting nodes; moreover, let £ and 7
be the nodes at Hamming distance d from x and y, respectively. Using the algorithm
presented in §4.6.1, we can perform the 2 simultaneous broadcasts in at most d + 1
time units. Since each copy of a packet suffers at most one unit of delay caused by
contention, the algorithm will last for exactly d slots if the following property holds:
Node Z receives the packet of node z after d slots and at the same time node § receives
the packet of node y after d slots. This is guaranteed by introducing the following
simple priority discipline: Assume that two copies P, j(x) and P, j(y) of the packets
under broadcast collide at arc (z,z @ e;); if node & (and resp. node §) will eventually
receive a copy of P, j(z) [and resp. of P ;(y)], then P, (z) [and resp. P, ;(y)]
should be transmitted first. To see that this priority discipline works, it suffices to
show the following property: If P, j(z) is destined for node Z, then P; j(y) cannot be
destined for node ¥, and vice versa. To prove this, notice that, when the hypercube
dimensions are crossed in increasing index-order (or in any other prespecified index-
order), the paths from z to Z and from y to § are disjoint. Indeed, since both paths
have length d, it follows that if an arc (w,w @ ej) were shared by these two paths,
then we would have w; # z1,...,wj_1 # z;_1,w; = ¢j,...,wq = ¢4 and at the same
time wy # y1,...,Wj—1 # Yj—1,Wj = Yj,...,Wqd = Yq; these imply that z = y, which

is a contradiction.

4.6.3 The Case K =d

For K = d, the algorithm of §4.6.1 lasts for at most 2d — 1 slots. This upper bound
can be tightened by introducing priority disciplines such as the one presented in §4.6.2.
Nevertheless, there still exist cases where the algorithm would take more than d time
units. Below, we present an algorithm that completes in d time units; however, this
algorithm assuines that K is known to equal d and that each broadcasting node z knows
its rank 7, within the d-tuple of broadcasting nodes. The algorithm is as follows: Node
z will broadcast its packet along the completely unbalanced spanning tree (rooted at

z) in which the hypercube dimensions are crossed in the following index-order:
re modd +1,(ry +1)modd+1,...,(r; +d — 1)modd + 1;

moreover, the packet of node & may cross the arcs of dimension (r; + m — 2)mod d+1

only at the mth slot. To see that copies of different packets never collide, it suffices

55

to show that (r, + m — 2)modd + 1 # (ry + m — 2)modd + 1 for = # y; this follows
from the fact 7, # r, while both r; and r, belong to {1,...,d}.

As already established in §4.4, the ranks of the broadcasting nodes can be computed
in 2d time slots, by running a parallel prefix phase. If this overhead is taken into
account, then the total duration of the algorithm would be 3d slots; this is better than
the time 4d + 3 taken by the algorithm of §4.4, but it exceeds the completion time
2d — 1 attained by the simple algorithm of §4.6.1. Of course, if the same d-tuple of
nodes is to perform a simultaneous broadcast several times, then the computation of
the ranks should be carried out only once; in such a case, the present algorithm might
be preferable. In the extreme case where one node has d packets to broadcast, then
the parallel prefix computation is redundant, and the algorithm takes d time units,

which is the fastest possible.

56

5. Multiple Node-to-Node Commu-

nications in the Hypercube

5.1 INTRODUCTION

So far, we have only dealt with static routing problems. In the present chapter,
we consider the dynamic problem of performing multiple node-to-node communica-
tions; that is, packets generated randomly over an infinite time-horizon have to be

transmitted from one node of the hypercube to another.
5.1.1 Problem Definition

The precise definition of the problem to be analyzed is as follows: Each node of
the d-cube generates packets according to a Poisson process with rate); different
nodes generate their packets independently of eachh other. Each packet has a single

destination, which is selected randomly; in particular, we assume that

Pr(a packet generated by node z is destined for node z] = pH("")(l — p)d—H("‘) ,
(5.1)

57

ey et % Mo e I

where the parameter p € (0,1] is a constant (independent of d) and H(z,z) denotes
the Hamming distance between nodes « and z (see §2.1.2); different packets make their

selections independently of each other.

" The rule (5.1) for choosing a packet’s destination may be implemented as follows:
Every packet P flips each of the bits of the identity of its origin z, and the resulting
binary string is taken as the identity of P’s destination; each bit-flip is performed with
probability p, independently of the others. Hence, the average Hamming distance

between a packet’s origin and destination equals dp.

It is easily seen from (5.1) that for p = % the destination distribution is uniform;
that is, each node (including its origin) is equally likely to be chosen as a packet’s
destination. This is the case usually considered in the literature; see §1.5.2 (*). For
p < %, the destination distribution favors nodes at shorter distance from a packet’s

origin; in this case, packet transmissions tend to be more localized.

For analytical convenience, we shall assume that time is continuous. The results to

be derived can be easily extended to the case of slotted time, which is treated in §5.4.

The problem defined above is invariant under translation; that is, if each hypercube
node is relabelled from z to z @ y* (where y* is a fixed d-bit string), then the statistics

of the various random variables are not affected.
5.1.2 Setting the Performance Objectives

For the routing problem defined in §5.1.1, our objective is essentially to route as
many packets per time unit as possible, without each packet suffering excessive delay
due to contention. As already explained in §1.2.2, we are interested in devising efficient
on-line routing schemes, which means that packets are to be routed only on the basis
of past information; this restriction is very reasonable for our problem, because it is

not known at any time what packets will be generated in the future.

As will be proved in §5.2.1, the inequality

o= p <1 (5.2)

(*) In most of the related works, a packet’s origin is not a permissible destination;
however, the results to be derived (when rescaled appropriately) also apply to this

case.

58

is a necessary condition for stability; that is, if this inequality does not hold, then,
with probability 1, the number of undelivered packets will grow to infinity as time
elapses. The parameter p will be called the load factor of the system. Therefore, we
are interested in devising a routing scheme that is guaranteed to be stable for all p < 1.
Moreover, regarding the average delay T per packet, it is desirable that for each p < 1
there exists some C, (which does not depend on d) such that T' < C,d. Note that T is

defined as the steady-state average time elapsing until a packet reaches its destination.

The aforementioned requirement on the delay is motivated as follows: In light of
(5.2), a routing scheme preserving stability for all p < 1 can sustain the same rate per
node of generating packets for a hypercube network of arbitrary dimensionality d. On
the other hand, since each packet has to travel at an average Hamming distance of dp
(see §5.1.1), in the abscence of contention it would take an average of dp time units to
send a packet to its random destination, by applying shortest-path routing. Thus, the
average delay per packet under zero traffic is ©(d), namely of the order of magnitude
of the diameter of the d-cube. (Recall that p is constant.) Since p does not depend on
d, it is also desirable that the average delay per packet in the presence of contention
is still ©(d), with the multiplicatlive factor involved depending only on the load of the

network.
5.1.3 The Greedy Routing Scheme — Summary of the Results

The simplest approach to our routing problem is for each packet to choose a shortest
path leading to its destination and attempt to traverse this path as fast as possible.
Although it is intuitively clear that such greedy schemes may possibly be efficient, their
performance had not been analyzed rigorously in the previous literature; see §1.5.2.
We shall prove that a certain greedy scheme is very efficient, and, in particular, that

it meets the performance objectives set in §5.1.2.

The routing scheme to be analyzed is as follows: Consider a packet originating at
node z and destined for node z; this packet will be routed through the canonical path
from z to z (see §2.1.2); e.g., a packet travelling from node (0,0,0,0) to node (1,0,1,1)
in the 4-cube would follow the path

(0,0,0,0) — (0,0,0,1) — (0,0,1,1) — (1,0,1,1) .
Packets advance at their respective paths as fast as possible. No idling occurs, hence

59

the characterization “greedy”; that is, it never happens that an arc (y,y @ ex) is idle
while one (or more) of the packets stored at node y have to cross this arc. Finally,
contention is resolved on a FIFO basis; thus, whenever several packets present at a

node y wish to traverse the same arc, priority is given to the one that arrived at y the
first.

It will be proved that the routing scheme above is stable for all p < 1, which, in
light of (5.2), is the broadest possible stability region. By the term “stability” it is
meant that, as n — oo, the distribution of the total time spent by the nth packet in
the network (i.e., of the nth sojourn time) converges to a proper distribution, which
is independent of the initial state; recall that a proper distribution corresponds to a
random variable that is finite with probability 1. It will also be established that, for
p <1, the delay T induced by the greedy scheme satisfies

d
dp+p—»t— <7< L

2l-p) = T 1-p’
Of particular interest is the upper bound on the delay, which coincides with the average
delay in an M /M /1 queue with utilization p and average service time dp. (Notice that,
for our routing scheme, dp equals the total average propagation time per packet, which
may also be viewed as average “service time”.) The above result guarantees that, for
any fixed p, each packet reaches its destination in an average time O(d), as prescribed
in §5.1.2. Notice also that under heavy traffic (i.e., for p — 1) the delay T increases
as 1%5 It will be established that this behavior is optimal for any fixed d. Indeed,
it will be proved that liminf,;{(1 — p)T] > 0 under any legitimate routing scheme;
this result is a consequence of a universal lower bound for the delay, that is, a bound
applying under all routing schemes. We shall also discuss some open questions related
to the routing problem of interest, and we shall analyze the case of slotted time as

well.

The results above may be easily extended to the d-dimensional butterfly. This cross-
bar network is an “unfolded” version of the d-cube; see §5.6.1 and [BeT89]. In this
context, it is assumed that packets are generated at one of the fronts of the butterfly
and destined for a randomly chosen node at the opposite front; the destination distri-
bution is identical to that presented in (5.1), except for the fact that z and z belong
to opposite fronts of the butterfly. Crossing the dimensions in increasing index-order

(as in the canonical paths of the hypercube) is the only legitimate choice of paths for

60

the butterfly. Thus, in this context, our scheme simply reduces to greedy routing; this
will be seen to be stable for all p < 1, where p is now defined as pdéf)\ max{p, (1 - p)};
moreover, for p < 1, the average delay T satisfies

Ap A1 -p)
d+p2(1 —Ap) - p)2[1 - A1 -p)

<T< dp + d(1 — p) .
- 1—-2p 1-X1-0p)
Again, the delay T' is ©(d) for any fixed p < 1, which is the optimal order of magnitude;

also, the behavior of T' under heavy traflic will be seen to be optimal, for any fixed d.
5.1.4 Summary of the Related Literature — Contribution

The dynamic routing problem of this chapter has been dealt with in several arti-
cles, which were discussed in detail in §1.5.2. In particular, Abraham and Padmanab-
han [AbP86] approximately analyzed the problem for the case of uniform destination.
Greenberg and Hajek [GrH89| approximately analyzed the performance of deflection
routing, where packets may be temporarily misrouted, rather than stored or dropped.
Varvarigos [Var90] has formulated a Markov chain model for evaluating the perfor-
mance of deflection routing, and has investigated its steady-state statistics numerical-
ly. All three [AbP86], [GrH89] and [Var90] are dealing with the hypercube network.
The same problem has been analyzed in the context of the 2-dimensional array by
Greenberg and Goodman [GrG86], and in the context of the extended Omega network
by Mitra and Cieslak [MiC87], as well as by Hajek and Cruz [HaC87]; all these works
are approximate (see §1.5.2.) Recently, Leighton [Lei90] proved that greedy routing in
the 2-dimensional array has very satisfactory average performance. Finally, Bouras et
al. [BGST87] investigated the performance of greedy routing in the context of Banyan

networks; however, the analysis therein appears to be incorrect.

To the best of our knowledge, the results derived in this chapter are new. Moreover,
our analysis provides the first proof that some routing scheme (on either the d-cube
or the butterfly) is stable for all p < 1 while satisfying the requirement for ©(d)
average delay; proving that greedy routing has these properties has been an important
open question in the routing literature. Also, this is the first routing scheme for
which the bounds on the delay are expressed in simple formulae involving the system’s
parameters p and d. Finally, the approach for deriving the aforementioned results is
new as well: It is established that the hypercube (resp., the butterfly) behaves as a

queueing network with deterministic servers (each corresponding to an arc) and with

61

Markovian routing among the various servers; then, by using sample-path arguments, it
is shown that the total number of packets present in this queueing network is dominated
by that corresponding to a product-form network. This approach contrasts with the
combinatorial approach used in [Lei90], which is based on the following idea: A packet
suffering large delay should have collided with an untypically large number of packets;
by careful enumeration of such “bad” scenarios, it is then proved that the probability
for a packet to be delayed excessively is small. Our approach relies on the assumption
of Poisson arrivals; nevertheless, we hope that our analysis will be suggestive of the

efficient perfomance of greedy routing under more general packet-generating processes.

Finally, it should be noted that similar results may be proved for other crossbar
switches with arcs arranged in levels (e.g, the Omega and Banyan networks), even if
different arcs have different (yet fixed) transmission times. This is due to the generality

of an interim result established in our analysis, namely Proposition 5.9.

5.2 PRELIMINARY RESULTS

First, we formalize an earlier observation, which will be used several times in the
analysis. Consider a fixed packet P generated at node z. Let B; denote the event that
packet P will choose a destination z such that z; # z;; notice that if event B; occurs,
then P will have to cross an arc of the :th dimension in order to reach its destination.

As already explained in §5.1.1 [see the comment below (5.1)], the following is true:

Lemma 5.1: For any fixed packet P, events By, ..., B4 are mutually independent, with
Pr[B;] = pfor: =1,...,d. Independence prevails both with and without conditioning

on the origin of the packet. [
5.2.1 The Necessary Condition for Stability

In this subsection, we derive the necessary condition for stability. The average total
number of packets generated in the network per time unit equals A2¢. Recall now
that each packet has to undertake an average of at least dp transmissions under any
routing scheme (see §5.1.1); thus, it follows that during each time unit an average total
demand for at least (A2¢)(dp) packet transmissions is generated in the system. Since
at most d2? packet transmissions may take place per time unit, it follows that the

system can be stable only if (A2%)(dp) < d2¢. Thus, we obtain the following necessary

62

condition for stability under any routing scheme:

pXp <1, (5.2)
where p is the load factor of the system. This terminology is appropriate, because
when p = 1 all hypercube arcs are almmost always busy, even if no redundant packet
transmissions take place. Notice that this necessary condition for stability applies

under more general arrival processes as well.
5.2.2 Lower Bounds on the Delay

First, we establish a universal lower bound on the steady-state average delay T
per packet; that is, a bound that applies to any routing scheme. Recall that T is
defined as the steady-state average of the time elapsing between the moment a packet

is generated until it reaches its destination.

Proposition 5.2: The average delay T per packet induced by any routing scheme
satisfies

> d' = L
T > max{dp,pD(2%p)} = (dp+p2d(1 — p)> y Yp<1,

where D(2¢; p) is the average delay for the M/D/2¢ queue with unit service time and
arrival rate 2%p. [
Proof: Consider a fixed packet P generated at node z; if its random destination
satisfies z; # z; (that is, if event B; occurs for P), then P will not reach its destination
untlil it traverses at least one arc of the 1st dimension. Let W be the average time until
a packet crosses the 1st dimension, with the convention that packets that do not have
to cross the 1st dimension contribute zero to this average; clearly, there holds 7' > W.
It is straightforward to see that the value of W can only decrease if we introduce the

following conditions:
(a) Each packet for which event B; has not occurred never crosses the 1st dimension.

(b) Each packet for which event B; has occurred is available upon its generation at all
nodes. Moreover, such a packet will only cross the first available arc of type 1; this

actually leads to the minimum possible value of W, as proved in [StT91].

Under these assumptions, the 2¢ arcs of the 1st dimension operate as an M/D/2¢

queue. The input stream of this queue consists of all packets for which event B,

63

occurs; by Lemma 5.1, this stream is Poisson with rate A2%p = 2¢p. The average delay
induced by this queue equals D(2%; p); since only a fraction p of the packets “joins”
this M/D/2¢ queue, we have

W > pD(2%p) . (5.3)

Recall now that 7' > dp (under any routing scheme) and T' > W these facts together
with (5.3) imply that
T > max{dp, pD(2%;p)} . (5.4)

Furthermore, it is known [Bru71] that

p

d. > .

combining this with (5.4), it follows that

) e). -
T_Q(111ax{dp,p+p2d+l(l_p)}> Q(dP+P2d(1_p)))

where we have also used the inequality max{a;,az} > %(al + a3). The proof of the

result is now complete. Q.E.D.

The universal lower bound of Proposition 5.2 shows that liminf,_1[(1 — p)T] > 0,
for any fixed d, under any routing scheme; thus, under heavy traffic, the delay T grows
at least as fast as 11Tp‘ (Since p was taken fixed, p — 1 means A — %) As far as
asymptotics with respect to d are concerned, the bound appears to be loose, due to
the presence of the factor %; Below, we establish a sharper lower bound applying to
a restricted but fairly broad class of routing schemes.

As suggested by the proof of Proposition 5.2, a scheme that comes close to attaining
the universal lower bound for the delay T (if there exists such a scheme) would schedule
transmissions adaptively. This claim is further supported by Proposition 5.3, which
establishes a lower bound on the average delay per packet induced by oblivious schemes.
Under such a scheme, each packet selects its path independently of the existing traffic
and insists on traversing the selected path, regardless of the contention encountered
en route (see [BoH82]). We also assume that all packets generated at the same node
follow the same rules, which are time-independent. We now present the lower bound

on the delay induced by oblivious schemes.

64

Proposition 5.3: The average delay T' per packet induced by any oblivious routing

scheme satisfies

p p
T > max« dp, 1+—,—]}:Q(d+-_—). [
{pp[2(1 - p) PP,

Proof: This proof is similar to that of Proposition 5.2. We consider a node z and
an arc (y,y @ e1); under any oblivious scheme, the following is true: For each packet
generated at z, arc (y, y®e;) is the first arc of type 1 to be crossed by such a packet with
probability g, ,, independently of all other events occurring in the network; moreover,

there holds
241

Y @ey2p, Vze{o,...,2¢-1}, (5.5)
y=0

because it is with probability p that some packet generated by node = will necessarily
cross an arc of the Ist dimension (due to the occurrence of event By). Let W be
the average time until a packet crosses the 1st dimension for the first time, with the
convention that packets that do not have to cross the 1st dimension contribute zero to
this average; obviously, we have T' > W. For any oblivious routing scheme, the value

of W can only decrease if we introduce the following conditions:
(a) Each packet to cross the 1st dimension is only delayed at the first time it does so.
(b) Each packet to cross arc (y,y @ e1) is available at node y upon its generation.

Under these conditions, each arc (y,y @ e;) is fed by a group of 2¢ Poisson streams.
We denote by r, the total arrival rate of the compound Poisson stream; this rate is
constant, because the routing rules were taken time-independent. Obviously, we have

24 1

T‘yZJ\Zqz,y, vy € {0,...,2¢ - 1}. (5.6)
=0

Clearly, arc (y,y @ e1) behaves as an M/D/1 queue with unit service time. Therefore

(see [Kle75]), the average delay W, per packet joining this queue is given as follows:

r
Wy=1+ 2(1 —y"'y)
Using this, we obtain
1 241 1 241 ry)
I/VZ/_zdgo"'yWyzwyzo Ty [1+m] . (5{)

Combining (5.5) and (5.6), we have

241

> ry > A2%. (5.8)

y=0

Notice now that r[1 + ﬁ] is a convez and increasing function of r; therefore, in
light of (5.8), the right-hand quantity in (5.7) is minimized when r, = Ap for all

y € {0,...,2% — 1}. Thus, it follows that

W2 e[] =]

This together with the facts T'> W and T > dp implies that

el

the proof is completed by using the inequality max{cj,az} > %(al + az). Q.E.D.

Proposition 5.3 implies that, for a fairly broad class of schemes, the universal lower
bound on the delay T' (see Proposition 5.2) is rather loose. Suppose now that, under
oblivious routing, we allow packets generated at each node = to take into account the
routing decisions made by packets previously generated at the same node z (instead
of selecting the path for each packet on individual basis). This assumption is appro-
priate for distributed systems, where packets do not have any specific information on
the travelling schedule of other packets generated elsewhere in the network. It is an
interesting open question to investigate whether Proposition 5.3 still holds. Related to
this question are the server allocation problems discussed by Stamoulis and Tsitsiklis
in [StT91}; it is assumed therein that customers arrive in a multiserver system through
several streams, and each stream is scheduled on the basis of individual information.
We conjecture that Proposition 5.3 is still valid, because each packet has a very limited
knowledge of the routing decisions made within the entire network. If this is indeed
the case, then a scheme violating the lower bound given by Proposition 5.3 should

involve centralized coordination and/or adaptive routing.

It is worth noting that Propositions 5.2 and 5.3 hold for any destination distribu-

tion that is invariant under translation; that is, when the probability that a packet

66

originating at node x is destined for node z equals f(z @ z), which depends only on

z @ z. In such a case, the load factor p is defined as

def
pé max{pl,.--,Pd};

p; 1s the load factor for the jth dimmension and equals

P =X N f()

{y:y;=1}

Moreover, the condition p < 1 is still necessary for stability under any routing scheme.
5.2.3 Simple Non-Greedy Schemes

In this subsection, we discuss routing schemes based on pipelining successive in-
stances of an algorithm used in static routing. For simplicity, we assume that the

destination distribution is uniform (i.e., p =).

As already mentioned in §1.4, in the first phase of the permutation algorithm of
[VaB81], each packet selects a destination at random (with all nodes being equiprob-
able) and travels there. This algorithmm has the following property: there exists a
constant R > 1 such that the first phase takes time less than Rd (and close to this

value) with high probability.

Consider now the following routing scheme for our problem: At time ¢t = 0, each
node selects one of its packets; all selected packets are routed as in the first phase
of the permutation algorithm of [VaB81]. These packets arrive at their respective
destinations at time ¢;, where ¢; < Rd with high probability. At time #;, each node
selects another one of its packets, and the selected packets are again routed as in the

first phase of the algorithm of [VaB81] etc.

Under this scheme, each node z routes one of its packets every Rd time units ap-
proximately. (For simplicity, we ignore the overhead required for detecting termination
of each run of the static algorithm.) Since each node z generates packets at a rate
A, stability may prevail only if ARd < 1, or equivalently p < iﬁ' Therefore, for any
fixed p, the simple scheme described becomes unstable for large d. This undesirable
performance is due to the fact that the algorithm of [VaB81] makes inefficient use of
the communication resources of the hypercube network; indeed, the average traffic per

arc is O((17) packets per time unit, for each of the two phases of that algorithm.

67

The unsatisfactory stability region of the aforementioned non-greedy routing scheme
can be improved by pipelining successive instances of an efficient static algorithmn for
d permutations, such as the one by Chang and Simon [ChS86] or that by Valiant
[Val89]. Each of these articles presents an algorithm for routing d permutations on
the d-cube in ©(d) time with high probability. Both algorithms result in an average
iraffic of ©(1) packets per arc and time unit; thus, by pipelining successive instances
of either of them we would obtain a routing scheme maintaining stability for p < p*
with p* being some small constant; e.g., using the algorithm of [ChS86] would lead to

p* ~ 0.005, which is very small compared to the upper bound given by (5.2).

All of the schemes described above are non-greedy, i.e. they involve idling; in
particular, it often occurs that packets wait at their respective origins, while some
of the arcs to be traversed are idle. As will be seen in §5.3, avoidance of this idling

phenomenon improves performance dramatically.

5.3 PERFORMANCE ANALYSIS OF THE GREEDY SCHEME

In this section, we analyze the efficient greedy routing scheme for the hypercube.
As already mentioned in §5.1.3, the scheme is as follows: Each packet travels from its
origin to its destination through the corresponding canonical path (that is, by crossing
the dimensions required in increasing index-order). Packets advance at their respective
paths as fast as possible; no idling occurs. Also, whenever several packets present at
a node y wish to traverse the same arc, then priority is given to the one that arrived

at y the first.

This routing scheme is the non-idling version of one of the schemes described in
§5.2.3 (namely, of that based on the permutation algorithm of [VaB81]). It will be
seen in §5.3.1 that, under this scheme, the hypercube is equivalent to a queueing
network with certain useful properties. The analysis in §§5.3.2-5.3.5 deals with the

performance of this equivalent queueing network.

Throughout this section, the time axis is taken continuous.
5.3.1 The Equivalent Queueing Network

It is straightforward that, under our routing scheme, the d-cube may be viewed

as a queueing network, with d2¢ deterministic FIFO “servers”; each “server” has unit

68

Figure 5.1: The equivalent network Q for the 3-dimensional hypercube.

69

service duration and corresponds to a hypercube arc. This equivalent queueing network

(to be referred to as Q) has the following properties:

Property A: The external arrival stream at any arc (z,z @ e;) is Poisson with rate

Ap(1 — p)i~1; streams corresponding to different arcs are mutually independent.
p p p

To see this property, consider a packet P generated at node z of the d-cube. With
probability p(1 — p)i‘1 the destination of P satisfies z; = z1,...,2;_1 = z;_; and
z; # z; (see Lemma 5.1). Since packets cross the hypercube dimensions in increasing
index-order, it follows that each of the packets generated by node z will join the queue
for arc (z,z @ e;) with probability p(1 — p)i~*.

Property B: After crossing arc (y,y®e;), a packet will never traverse again an arc
(z,z @ ej) with j € {1,...,i}. Thus, the equivalent network Q is a layered network;
that is, its servers are organized in d levels, with the ¢th level comprising all arcs
(y,y D e;) for y € {0,...,2¢ — 1}, i.e. all arcs of the ith dimension. Upon “service
completion” at a certain level, a packet either joins a queue at a higher level (not

necessarily at the next one) or it departs from the network.

In Figure 5.1, we present the equivalent network Q for the 3-cube (which is depicted

in Figure 2.1).

Property C: Routing in the equivalent network Q is Markovian. In particular,
upon crossing arc (y,y @ e;), a packet takes one of the following actions: either it joins
the queue at arc (y@De;,yDe; De;) with probability p(1 —p)?~¢~! for j =i+1,...,d; or
it departs from the network with probability (1 — p)?~*. After crossing arc (y,y @ eaq),
a packet departs from the network with probability 1. Different packets mnake their

routing decisions independently of each other.

The validity of Property C requires some clarification; in particular, in light of

Property B, we need to show the following result:

Lemma 5.4: Consider a fixed packet P, which has just crossed arc (y,y @ e;); there
holds

Pr[P will cross (y e,y @ e; ®ej)| P has crossed (y,y ® e;)]

=p(l—p)~ !, fori<j<d. [

Proof: Let z denote the origin of packet P. Clearly, in order to prove the lemna, it

70

suffices to establish the following result:

P[P will cross (y @ e;,y De; ®ej)| P has crossed (y,y & e;) and P originated at z]
=p(l—p) ™", (59)

for any permissible origin = of P. Notice, however, that P will skip the dimensions
1+ 1,...,7 — 1 and cross the jth dimension next if and only if events B; 4,...,B;_;
did not occur while B; occurred. Hence, proving (5.9) is equivalent to proving the

following;:

Pr(Bit1,-..,B;-1,B; | P has crossed (y,y ®e;) and P originated at x|
=p(1 —p)y~i1, (5.10)

where By is the complement of event B,. Since hypercube dimensions are crossed in
increasing index-order, knowledge of the origin of P and of the fact that P has just
crossed arc (y,y @ e;) provides information only on the first ¢ bits of the destination

of P; thus, (5.10) follows from the independence result of Lemma 5.1. Q.E.D.

According to the proof of Lemma 5.4, propagation of a packet P on the hypercube
may also be visualized as follows: Upon generation, P decides whether or not to cross
dimension 1; the probability that it decides positively equals p. If it does so, then it
takes its step on this dimmension and then it decides whether or not to cross dimension
2; on the other hand, if it does not decide to cross dimension 1, then it considers

crossing dimension 2 etc.
5.3.2 Changing Service Discipline in the Equivalent Network

In the previous subsection, we established that, under the routing scheme analyzed,
the hypercube is equivalent to a queueing network @ with deterministic FIFO servers
and Markovian routing. In this subsection, we prove the following result (to be stated

formally in Proposition 5.9):

If the service discipline at the servers of Q is changed from FIFO to Processor
Sharing (PS), then the number of packets contained in the network (at any fixed time)

stochastically increases.

The network @ operating under the PS service discipline will be seen to be of the

product form; hence, its performance can be analyzed easily. Thus, by using the above

71

result, we shall derive a sufficient condition for stability (in §5.3.3) and an upper bound

on the average delay for the original network Q (in §5.3.4).

Recall that under the PS discipline all customers present at a server receive an
equal proportion of service simultaneously; see [Wal88|, p. 354. For example, consider
a deterministic PS server, with unit service rate; assume that it has two customers to

serve, with the first customer arriving at time 0 and the second at time i. Upon arrival

3

7 units of service remaining; however, due to

of the second customer, the first one has
the presence of tlie second customer, she will be served at rate %; thus, she will depart
at time % + 2% = %. Similarly, it can be seen that the second customer will depart at
time 2. Notice that we are using the term “service rate” for a PS server (rather than
the term “service duration”), because the time duration for which a customer receives

service depends on previous and future arrivals.

The proof of the stochastic comparison between networks @ and Q is based on sev-
eral lemmas that establish sample-path results; these we present next. For simplicity,
all queueing systems to be considered in these lemmas are taken initially empty.
Lemma 5.5: Let there be a deterministic FIFO server with unit service duration.
For a fixed sequence t1,1,,... of arrival times, let Dy, D3,... denote the corresponding
sequence of departure times. Similarly, let D;, Ds,... be the departure times for a
deterministic PS server, with unit service rate, fed by the same input stream. There

holds

DiSD,‘, fOI‘i=1,... |

Proof: Clearly, we have D; = #; +1. In the context of the PS server, the 1st customer
will depart at time ¢; + 1 only if no other customers arrive until that time; otherwise,
service of the 1st customer will be slowed down, and she will depart later than ¢; + 1.
It follows that

D, >t1+1=D;. (5.11)

It is well-known that the PS discipline is work-conserving; see [Wal88], pp. 353-354.
That is, the unfinished work w(t) at time ¢ is the same for both the FIFO and the PS
servers considered. By definition of w(t), we have

D, =t;+w(t;—)+1, fori=1,... (5.12)

72

We now consider the ith arrival at the PS server, where 1 > 2. If w(¢{;—) = 0, then
reasoning as in proving (5.11), it follows that D; > ¢; + 1 = D,. Assume now that
w(t;—) # 0; it is straightforward that customers depart from a deterministic PS server
in the order they arrive; hence, the ¢th customer may depart only after an amount

w(t;—) + 1 of work has been finished by the server. Therefore, we have
D; >t +w(t;—)+1=D;,

where we have also used (5.12). The proof of the lemma is now complete. Q.E.D.

Let there be two streams of events, one occurring at times 77,73,... and the other
at times 7{,73,... If 7, <7/ for i =1,..., then the latter stream of events will be said
to be a delayed version of the former. For example, as implied by Lemumna 5.5, for any
fixed arrival stream, the departing stream of a deterministic PS server is a delayed

version of the one of the corresponding FIFO server.

Lemma 5.6: Let there be a deterministic FIFO server with unit service duration. Let
D,,D,,... (resp. D},D),...) be the sequence of departure times corresponding to a

fixed sequence ty,tz,... (resp. t},t},...) of arrival times. If ¢; < ¢} fori =1,..., then
D, <D, fori=1,... [
Proof: There holds
Dy=t+1 and D; = max{D;_;,t;} +1, for 1 =2,...;
similarly,

1=t+1 and D.=max{D. ,,t:}+1, for i=2,...

i—1r%¢

Using these facts and the assumption ¢; < ¢t} for ¢+ = 1,..., the result follows by a

straightforward inductive argument. Q.E.D.

The result to be established next is based on Lemmas 5.5 and 5.6; generalizing this
will lead to the main result of this subsection, namely Proposition 5.9. We consider the
queueing network G depicted in Figure 5.2a. This consists of three deterimninistic FIFO

servers with unit service duration, denoted by 57,52 and S3. Customers completing

3

A R S R v . 5 s ame

Figure 5.2a: Network G.

PS

=(s0)

PS

r O

PS

Figure 5.2b: Network G.

74

service at Sy or S, either depart from the network or they join the queue at S3; the
routing decisions are Markovian. Obviously, G is a layered network (see §5.3.1). We

define a sample path w of G as the following collection of information:
(a) The ezternal arrival times at servers Sy, S, and S;.
(b) The routing decision made by the ith customer upon service completion at S; (resp.
S2) fore=1,...
Clearly, given a sample path w, network G evolves in a deterministic fashion. We
also consider network G, which is a network identical to G except for the fact that PS

service discipline applies to the servers of ¢ (instead of FIFO); see Figure 5.2b. The

result to be proved is as follows:

Lemma 5.7: For a particular sample path w, let B(t) [resp. B(t)] denote the number
of customers departing from G (resp. G) during the interval [0,%]; for any w, there

holds

B(t) > B(t), Vt>0. m

Proof: First, we consider a network G' obtained from G by changing the service

discipline only at .S; and Sz (from FIFO to PS); this network is depicted in Figure 2c.
PS
(s
FIFO

=

PS

Figure 5.2c: Network G'.

We define as the output stream of a server the stream of customers completing

service therein, including those that do not depart immediately from the network.

75

Notice that server S; is not affected at all by the presence of the other two servers;
the same statement applies to server S;. Therefore, using Lemina 5.5, it is seen that
the output streamn of server S; in G' is a delayed version of that corresponding to 5
of G. Recalling also that the routing decisions of customers completing service are the
same for networks G and G', it follows that the substream of customers departing from
G' at 57 is a delayed version of the corresponding substream in G. Similar statements

apply to the streams stemming from §;.

Next, we consider the stream feeding 53 in G'; this stream is a delayed version of
that feeding 53 in G, because each arrival at S3 of G' corresponds to an arrival at S; of
G that occurs no later. [Recall the aforementioned “comparison” of the output streams
of S1 (resp. S3) in the two networks and the coupling of the routing decisions.] There-
fore, applying Lemma 5.6, the output stream from 53 of G' is a delayed version of that
corresponding to S; of G. According to Lemma 5.5, the former output stream is delayed
further when the service discipline at 53 of G' is changed from FIFO to PS. This modifi-
cation (which yields network G) does not affect the streams of customers departing from
the 1st level. Therefore, for each of the servers of G, its departing stream is a delayed

version of that of the corresponding server of G; this proves the result in question.

Its should be noted that customers joining S3 may get out of order when changing
the service discipline; thus, a particular customer may depart earlier from G than from

G. Nevertheless, this does not affect the validity of the Lemma 5.7. Q.E.D.

Next, we generalize Lemuma 5.7. In the context of network Q, a sample path w is
defined as the collection of information comprising all external arrival times and all
routing decisions. Notice that routing decisions at each “server” are identified by the
order they are made, not by the identity of the packets deciding; e.g. “the 1st packet
to cross arc (e; @ ez,e;) will advance to (e;,e; @ e3), the 2nd such packet will depart
from the network etc”. Such an identification of the routing decisions is legitimate,
because routing in Q is Markovian. As in Lemma 5.7, we denote as Q the network

obtained from Q after changing the service discipline of all servers from FIFO to PS.

Lemma 5.8: For a particular sample path w, let B(t) [resp. B(t)] denote the number
of packets that have departed from Q (resp. Q) during the interval [0, t]; for any w,
there holds

B(t) > B(t), Vt>0. n

76

Proof: This proof is done by applying repeatedly the argument used in proving Lem-
ma 5.7. In particular, we replace the FIFO servers by PS ones, on a level-by-level
basis, starting from the 1st level and proceeding one level at a time. As in the proof of
Lemma 5.7, it follows that at the jth step of this process all streams stemming from
levels 1,...,7 — 1 remain unaffected, while all streams stemming from levels 7,...,d
are delayed. The network resulting at the dth step coincides with Q, because it con-
tains only PS servers. Thus, it follows that, for the same sample path w, all streams
departing from network Q constitute delayed versions of the corresponding streams

departing from Q. The proof of the result is now complete.

Notice that packets may get out of order at certain steps (see also the proof of
Lemma 5.7). Nevertheless, this creates no difficulty, due to the particular coupling of
routing decisions. If one insists on tracing the path followed by a particular packet
[say the first to arrive at “server” (0, e;)] it may occur that this changes at some steps
of the process described above; this is of no importance, because the “comparison”
of the various streams still applies, even though the streams may consist of different

packets at each step. Q.E.D.

All Lemmas 5.5, 5.6, 5.7 and 5.8 were established for systems that are initially
empty; it is straightforward that each of these results also applies when the queueing

systems compared have the same initial condition.
Now that we have established Lemma 5.8, we can easily prove the following result:

Proposition 5.9: Let N(t) [resp. N(t)] denote the (random) total number of packets

present in network Q (resp. Q). If both networks start at the same initial state, then
N(t) <« N(t), Vvt>0. n

Proof: On a sample-path basis, there holds N(t) = B(t) — A(t), where A(t) [resp.
B(t)] is the number of arrivals at (resp. departures from) network Q during [0,¢];
a similar relation holds for network Q. Using Lemma 5.8, we have N(t) < N(t) on
a sample-path basis. Relaxing the coupling of the arrival processes and the routing

decisions in the two networks, we obtain the stochastic inequality in question (*).

Q.E.D.

(*) <st is the symbol for stochastic domination; for two real-valued random variables
V1 and V3, there holds V; <g V3 if Pr[V; > v| < Pr[V, > v] for all v.

7

Notice that both Lemma 5.8 and Proposition 5.9 apply to alllayered networks with
Markovian routing and deterministic FIFO servers (possibly with different service
times); thus, if the FIFO discipline is changed to PS, then the total number of packets

in such a network increases in the stochastic sense.
5.3.3 The Stability Region of the Greedy Routing Scheme

In this subsection, we derive the stability region of the greedy routing scheme for
the hypercube. First, we prove that the greedy routing scheme balances the traffic
over the various hypercube arcs, despite the fact that arcs of different dimensions are

treated differently.

Proposition 5.10: The total arrival rate at any arc of the d-cube equals Ap=p. =
Proof: By symmetry among the hypercube nodes, all arcs belonging to the same
dimension j have the same total arrival rate §;. Furthermore, the total arrival rate
for the jth dimension equals 2¢\p, because each of the packets generated within the

d-cube crosses the jth dimension for an expected number of p times. Hence, we have

249, = 2¢)\p, which gives §; = Ap = p for all j € {1,...,d}. Q.E.D.

Of course, Proposition 5.10 implies that the total arrival rate at any server of the
equivalent network Q is also p. The same statement applies to the network Q with
the PS servers. Notice now that Q is an acyclic network with FIFO servers; thus,
according to [Wal88], p. 246, network Q is stable if the total arrival rate for each
server is less than the corresponding service rate. Recalling that all servers of Q have

unit service rate, we reach the following conclusion:
Proposition 5.11: The greedy scheme under analysis is stable for all p < 1. [

In light of the necessary condition for stability p < 1 (see §5.2.1), our greedy routing
scheme has opttmal stability properties. Note that the proof of Proposition 5.11 does
not make use of Proposition 5.9. Nevertheless, we presented the latter result first,

because it is used in the discussion to follow.

Regarding the network @ with the PS servers, our analysis so far has proved the

following properties:

(a) Each server of Q is fed externally by a Poisson process. Arrival processes corre-

sponding to different servers are independent; see Property A of §5.3.1.

78

(b) @ cousists of PS servers, with the total arrival rate per server being p; service times
corresponding to different packets and/or different servers are (trivially) indepen-
dent.

(c) Routing among the various servers of Q is Markovian.

It follows from these properties that network Q is also stable for all p < 1; see [Wal88],
pp- 93-94. Moreover, this network is of the product-form, meaning that the number of
packets present in the various servers are independent random variables; the steady-

state probability that a particular server of Q hosts n packets equals (1 — p)p™.

In the next subsection, we bound the average delay T per packet induced under
this scheme in steady-state; this coincides with the steady-state average time spent
per packet in network Q. The ezistence of this steady-state performance measure is
guaranteed (for p < 1) by Proposition 5.11. [Recall our definition of stability, namely
that the sojourn time of the nth packet converges (for n — o0) to a proper random
variable.] Before proceeding with the analysis for T, we clarify a fine mathematical

point, regarding the steady-state properties of Q.

Due to the assumption of Poisson arrivals, the state of network Q is described by
the number of packets present at each server and the residual service time for the
packet in “service” (that is, under transmission) at each busy server. This state-
vector evolves as a homogeneous continuous-time multidimensional Markov process;
certain entries of the state-vector are discrete (i.e., integer-valued), while the rest are
continuous. This process is irreducible and aperiodic, and it will also be seen to be
recurrent; thus, it is intuitively expected that, in the stable case (i.e., for p < 1), its
steady-state distribution exists and is proper. However, to the best of our knowledge,
such a technical result does not appear in the related literature, except for a stability
condition for non-product form queueing networks, which is presented by Borovkov in
[Bor87]. We refrain from using the result of [Bor87], because there is some doubt as to
its correctness. Below, we prove the ezistence of lim;_, o, E[N(t)], by using arguments

from renewal theory.

First, notice that for p < 1, network Q regenerates infinitely often. Indeed, for
p < 1, the network Q with the PS servers is stable, and it empties infinitely often
under any sample path w. (Recall the product-form property of @.) Using Proposition

5.9 (which also holds on a sample-path basis), il is seen that network Q also empties

79

infinitely often. Whenever Q empties, it regenerates, because the past history of
the network does not affect its future evolution (due to the memoryless property of
the Poisson process); the regeneration points form a renewal process. By evaluating
J N(u)du over the various regeneration periods (i.e, over intervals between successive
regeneration points), we obtain a sequence of independent and identically distributed
random variables. By the Law of Large Numbers, it follows that

i
lim 1/ N(u)du =N, (5.13)
0

t—oo t

on a sample-path basis, where NV is a constant; using Proposition 5.9, it follows easily
that N is finite [see also (5.16) below]. Furthermore, it is straightforward that the
duration of a regeneration period of network Q is a continuous random variable, with
well-defined probability density function; that is, the probability for this random vari-
able to assume any particular value equals 0. Applying a result from renewal reward

theory (see [Ros83] and [Gal90]), it follows from (5.13) that
1 [t
tlim E[N(t)] = tlim ¥'/ N(u)du = N ;
— 00 — 00 0

thus, the sample-path average total number of packets present in Q coincides with
the corresponding steady-state ensemble average. Reasoning similarly, it can also be
showed that the limit (as n — o0) of the sample mean of the sojourn times of packets
1,...,n equals the ensemble average T, for each sample path. Thus, Little’s law applies

to network Q, and gives
N =T ; (5.14)

this will be used in the delay analysis to follow.
5.3.4 The Bounds for the Delay Induced by the Scheme
The main result of this subsection is the upper bound on the steady-state average

delay T per packet under our greedy routing scheme; this result is presented next.

Proposition 5.12: The delay T of the greedy routing scheme under analysis satisfies

Tg—ép—, Vp<1. [
1—p

Proof: As already mentioned in §5.3.3, the network @ with the PS servers is of the
product form, provided that it is stable. In particular, for any p < 1, the steady-state

80

probability that a particular server of Q hosts n packets equals (1 — p)p™. Therefore,

the steady-state average total number N of packets present in @ is given by

N=de-t . (5.15)
1-p
It is well-known that if V; <, V; then E[V;] < E[V,] (see [Ros83|); combining this

with Proposition 5.9, we have
tlim E[N(t)] < tlim E[N(1)],
or equivalently N < N; this together with (5.15) implies that

N<d P . .16
< 1, (5.16)
Using also Little’s law [see (5.14)], we obtain

T<d_p
<1,

Since network Q is equivalent with the d-cube under our greedy routing scheme, the

proof of the result is now complete. Q.E.D.

Next, we comment on the number of packets stored per hypercube node. The
steady-state average such number equals zﬂd; this quantity does not exceed dﬁ’, as
implied by (5.16). Thus, it is seen that, for any fixed p, the average size of the queue
built at each node is O(d). In fact, one can show that the total number of packets
within the d-cube is O(d2¢) with high probability. Indeed, by Proposition 5.9 and the
product-form property of @, for ¢ — oo, the random variable N(t) is stochastically
dominated by the sum of d2¢ independent geometrically distributed random variables
with expected value ITPP. Using the Chernoff bound, it follows that, for ¢ — oo,

N(t) < d2""%(1 + €) with high probability, for any ¢ > 0.

Next, we present a lower bound on the delay T'.

Proposition 5.13: The delay T of the greedy routing schemne under analysis satisfies

p

T2dtrsg)

Vp<1. [

Proof: Each arc of the 1st hypercube dimension is only fed by a Poisson stream

with rate p < 1; using the expression for the average size of an M/D/1 queue (see

31

o w e srw o - urp e =

[Kle75]), it follows that a packet to cross this dimension is delayed by an average of
1+ 2—(1”_—‘7). Recall now that each packet crosses the jth dimension with probability p,
for j = 1,...,d. Taking into account the average delay induced by the 1st dimension
and only the average propagation time for each of dimensions 2,...,d (which equals
p), it follows easily that

Tz(d—l)p+p[1+§ﬁ] ;

this immediately proves the result. Q.E.D.

It should be noted that another lower bound for 7' follows from Proposition 5.3,
which is applicable because our routing scheme is oblivious; the lower bound of Propo-

sition 5.13 is sharper by a factor of at most 2.

As a final comment, notice that the network Q with the PS servers has the same
steady-state distribution as the Jackson network Q obtained from Q by replacing the
deterministic servers with ezponential ones (with unit service rate). However, a result
analogous to Proposition 5.9 would not hold if we had considered network Q (instead
of Q). Even though the steady-state average delay of Jackson network Q also equals
]—"’_P;, we believe that Proposition 5.12 cannot be established easily by comparing these
two networks; our arguments related to this point are presented in Appendix 5.A.

5.3.5 Asymptotic Behavior of the Average Delay

Proposition 5.12 implies that T' = ©(d) for any fixed p, which is the optimal order

of magnitude. Also, comnbining Propositions 5.12 and 5.13, we obtain

% < lim[(1 - p)T] < dp,

p

which implies that under heavy traffic (i.e., for p — 1) the delay induced by the greedy

1
T—p
(following the proof of Proposition 5.2), this asymptotic behavior of T' is also optimal.

routing scheme behaves as for any fixed d. According to the discussion in §5.2.2

As already mentioned in §5.1.1, the average propagation delay per packet equals dp,
which is independent of p. Hence, the steady-state average queueing delay per packet

equals T — dp; using Propositions 5.12 and 5.13, we have

I dp
P <r_dp<p . 5.17

82

Notice that, for fixed p, the upper bound for T' — dp is ©(d) while the lower bound is
©(1). We can actually close this gap, by proving that

T—dp>[(d-1)plp*(1-p), VYpe(0,1). (5.18)

The underlying idea for proving this result is as follows: For p € (0,1), a packet P
faces additional contention for each arc of dimensions 2,...,d it crosses; that is, when
P crosses an arc of a dimension 7 > 2, it contends with packets that had not entered
the path of P up to this point. It can be proved that the probability for at least one
collision per dimension j > 2 is bounded from below by a fraction of p (depending
only p); using this, (5.18) follows after some algebra. We refrain from presenting the
technical details, because the rigorous argument should first be carried out in slotted
time, and then extended to the case of continuous time [by means of (5.26), which is
proved in §5.4|. A similar (yet simpler) argument is given in §5.6.4, applying to the

butterfly network; see Proposition 5.18.

The lower bound of (5.18) is not tight for heavy traffic, because it does not grow to
infinity for p — 1. This can be remedied by including the queueing delay for the 1st

dimension in the left-hand quantity of (5.18); thus, we obtain

T —dp>[(d—1)plp*(1 —p)+p Vp e (0,1).

_r

2(1-p)’
Nevertheless, this bound in not within a constant factor from the upper bound of
(5.17). We conjecture that, for all p € (0,1), the latter bound is tight; namely, we
conjecture that 7' > aid_ip, where a depends only on p (and a@ < 1). On the other
hand, for p = 1, it is easily seen that the lower bound in (5.17) is tight. Indeed, in this
case, each packet generated at node z is destined for node &, where each entry of the
binary identity of & is the complement of the corresponding entry of z. As was proved
in §4.6.2, the canomnical paths from = to Z and from y to § are disjoint (for y # z).
Thus, for p = 1, packets generated at different nodes follow disjoint paths; this easily

gives that T'=d + ﬁ.

83

5.4 THE CASE OF SLOTTED TIME

In the analysis so far, it was assumed that the time axis is continuous. In the present
section, we extend our results to the case of slotted time. In particular, we assume
that the time axis is divided in slots of duration 7; all nodes are synchronized to the
same clock. Since packets are taken to have unit length, we may assume, without
loss of generality, that 7 < 1 and, in particular, that 1 is integer; otherwise, there
will be some waste due to the fact that packets do not “fit” exactly to time slots.
(Of course, the simplest case is 7 = 1, but the more general one is not any harder.)
Furthermore, it is assumed that each node of the hypercube generates a new batch of
packets at the beginning of each slot, namely at each time kT with k € {0,1,...}. The
batch size has Poisson distribution with expected value A7; thus, the rate per node of
generating packets is the same as in the case of continuous time. Notice that batches
generated at different times and/or different nodes have independent sizes. Again,
each packet has a single destination, which is chosen according to the rule used in the
case of continuous time [see (5.1)]. The system’s state is recorded at times k7+, while
transmissions starting at time k7 are assumed to terminate at time (k + 1)r. (Recall
that 1 is integer.) Thus, a packet starting transmission immediately upon arrival, will
be recorded as present in the arc for exactly % time slots, as required. Finally, packets
are to be routed to their respective destinations under the greedy scheme analyzed in
the previous section. Again, when several packets contend for the same arc (y,y ®¢;),
priority is allotted to the one that arrived at node y the first. Since time is slotted,
ties may often occur; it is assumed that a tie (among the highest priority packets) is

resolved in a fair randomized way.

In order to analyze the routing problem under the new assumptions, we consider
the slotted-time version of the network @ defined in §5.3.1. The new network will be
denoted by Q; it has the same properties as Q, except for the fact that packets are
generated in the way presented above and that all events occur in discrete time. It
can be easily seen that the total arrival rate per server of @ equals p. Thus, reasoning
as in the case of continuous time (see §5.3.3), it follows that stability applies for all
p < 1, which is the broadest possible region. (The inequality p < 1 is still a necessary
condition for stability, because the argument used in §5.2.1 also applies to slotted

time.)

34

Furthermore, we consider a sample path w of network Q (see §5.3.2); it is apparent
that a sample path @ of @ can be obtained from w as follows: For each server (z,z®e;),
we take the external arrivals occurring under w during the interval [k7,(k + 1)) and
we consider them as the external arrivals occurring at (z,z @ e;) at time k7 under the

sample path @. Thus, all external arrival streams are advanced in time.

We now assume that the two networks @ and @ are coupled in the way presented
above. Let B(kT) be the number of departures from network @ up to and including
time k7. Also, let A(k7) be the number of external arrivals at @ up to and including
time k7. Finally, let N(k7+) be the total number of packets present in Q at time
kT+; notice that

N(kt+) = A(kt) — B(kT); (5.19)

also, by the definitions introduced in the proof of Proposition 5.10, we have
N(kt) = A(kt) — B(kT) . (5.20)

Furthermore, applying Lemma 5.5 on a level-by-level basis, starting from the 1st level
of servers, it is seen that B(kt) > B(kT), because all streams arising in the context of @
are advanced versions of the corresponding streams in Q. Notice that this result relies
on the fact that % is integer; otherwise, there would be idling in Q for some fraction

of the time, and thus the “comparison” would not have been possible. Therefore, it

follows from (5.19) and (5.20) that
N(kt+) < N(k71) + A(kT) — A(kT). (5.21)

By construction of sample path @ in slotted time, it is seen that A(kT) — A(kT) equals
the total number X, of external arrivals occurring in continuous time during the

interval [kT,(k + 1)7); this together with (5.21) implies that
N(kt+) < N(kT) 4+ Xy ; (5.22)

note that the random variable X} is independent of N(k7) and assumes the Poisson

distribution with expected value (A2%)r.

An alternative sample path @' in slotted time may be constructed as follows: For
each server (z,z @ e;), we take the external arrivals occurring under the continuous-

time sample path w during the interval [(k — 1)1, kT); these arrivals are considered

85

as the ones occurring at (z,z @ e;) at time k7 under the sample path @'. Thus, all
external arrival streams are now delayed in time. Notice that @' is the same as sample
path @ considered previously, except for the fact that all events of @ are shifted by one

slot to the right. Using this and reasoning exactly as in proving (5.22), it follows that
N((k+1)7) < N(kt+). - (5.23)

As in the case of continuous time, the state of network @ is described by the number
of packets present at each server and the residual service time for the packet in “service”
at each busy server. However, the state-vector now evolves as a homogeneous Markov
chain with countable state-space. (Since time is slotted, the “residual” service times
may only take finitely many values.) Clearly, this Markov chain is irreducible and
aperiodic; moreover, (5.22) implies that if p < 1, then N (k7+) is finite with probability
1, because the same property applies to N(kt). Therefore, using a well-known result
on Markov chains with countable state-space (e.g., see [Ros83], p. 109), it follows that
the steady-state distribution of the state-vector of Q ezists and is proper for all p < 1.

Henceforth, we assume that stability applies. Let N (resp. T) denote the steady-
state average total number of packets (resp. average delay per packet) for network Q.
By Little’s law, we have

N = (2T . (5.24)

On the other hand, using (5.22) and (5.23), it follows that
klim E[N((k+1)r+)] < klim E[N(kt+4)] < klim E[N(kt+)] + klim E[X4],

or equivalently

N <N <N+ (X24r, (5.25)

where we have also used the fact E[Xx] = (A2¢)r. Combining (5.24) with (5.14) and
(5.25), we finally obtain
T<T<T+r. (5.26)

Therefore, the delay induced by the greedy routing scheme in slotted time has similar
asymptotic properties as that in continuous time (both for p — 1 and for d — o0).
Also, the number of packets stored per node has similar properties as in the case of

continuous time.

86

Finally, similar results apply when it is assumed that new packets are generated
in continuous time while transmissions occur in discrete time. The new value of the
steady-state average delay per packet is T+ Z; the term 7 equals the average synchro-

nization time (see §2.2.2).

5.5 OPEN PROBLEMS

In §5.3.5, we discussed an open question related to the lower bound for the delay
induced by the greedy routing scheme. In this section, we present open questions

related to other schemes that can also be used in our routing problem.

In the greedy scheme analyzed in §5.3, there is only one permissible path for each
origin-destination pair (namely, the corresponding canonical path). A natural exten-
sion of this scheme is to allow each packet to choose from multiple shortest paths
leading to its destination. This selection would be randomized; again, packets would
traverse their respective paths as fast as possible, subject to contention. For such a
scheme to be efficient, the rule for path selection should balance the traffic among the
various hypercube arcs. (e.g., the traffic is balanced when all shortest paths for each
origin-destination pair are permissible and equiprobable.) It is reasonably expected
that all greedy shortest-path schemes with balanced traffic are efficient, in the sense
that they meet the performance objectives set in §5.1.2. Such a result appears to be
rather hard to prove. In particular, with multiple permissible paths, the corresponding
equivalent queueing network is not layered; moreover, packets do not propagate in a

Markovian fashion, which complicates the analysis even further.

So far, we have only considered oblivious schemes. We now turn our attention
to adaptive schemes; for simplicity, we assume that time is slotted. The “ultimate”
adaptive scheme is deflection routing, where, after departing from its origin, each
packet P travels continuously until it reaches its respective destination z. At each
intermediate node y, packet P attempts to traverse one of the arcs belonging to a
shortest path from y to z, in order to reduce its Hamming distance from the destination
z; such arcs are referred to as preferred ones. If no preferred arc is available, P
traverses one of the remaining arcs, and its Hamming distance from z increases. As
already mentioned in §1.5.2, deflection routing has only been analyzed numerically

or approximately in the previous literature. Notice that, under this routing scheme,

87

R W " TN g R TRDE - = e - mey gemy mewgms et 5 pee

the number of packets in transit cannot exceed the number of hypercube arcs. This
property allows for modelling the system as a finite-state Markov chain, and derive
either nuierical or approximate estimates of the various performance measures. On
the other hand, few results have been derived in closed-form expressions, because the
analysis is very complicated; thus, derivation of explicit results on deflection routing

is a very hard open problem in the routing literature.

Consider now the following variation of deflection routing: packets that cannot tra-
verse a preferred arc are stored, rather than misrouted. Thus, the Hamming distance
from a packet’s location to its destination never increases (as might occur under de-
flection routing). In order to define the scheme completely, we also have to specify
the rule of assigning packets to their preferred arcs; similar to [Var90], we assume that
packets at smaller distance from their respective destinations have priority over the
ones at larger distance. The rationale for this is that the former packets have fewer
preferred arcs, and thus when they contend for one of them they should be favored,
because they have less alternatives than packets to travel at larger distance. It is
intuitively clear that the adaptive scheme described above is very efficient; indeed,
given the state of the system at each particular time, the number of packets advanc-
ing towards their respective destinations is very close (if not equal) to the maximum
possible. In [igure 5.3, we compare simulation outcomes for the adaptive scheme to
the ones for the greedy scheme analyzed in §5.3, for the case of uniform destination
distribution (p = %) It is seen that the average queueing delay T' — dp per packet
is very small under the adaptive scheme, even though the simulations correspond to
very heavy traffic (namely, p = 0.90). In fact, under the adaptive scheme, T — dp
does not seem to increase with d, which would be a very interesting property of the
scheme. Unfortunately, the adaptive scheme is very hard to analyze; thus, evaluation

of its performance appears to be a very challenging open question.

Unfortunately, most of the open problems presented above are rather hard. A
seemingly more tractable one is to analyze our routing problem under an arbitrary
destination distribution. For this case, it may be profitable to “mix” the packets by first
sending each of them to a random intermediate node, as is done for the permutation
task in [VaB81] and [Val82]. Such a “mixing” may result in improved delay properties
under medium traffic, at the expense of reducing the maximuin traffic that may be

sustained by the system.

88

14 | J f |

121+ - 1
7”7
A 7”
A greedy e
104 X adaptive s i
P
Vd
Pd
81~ <A |
e
% A

2 _
| _
. A X 1

WALRLEMEPRIS %

| ' ' l

. ' }
3 4 s ° ’ 8
d

Figure 5.3: Comparing the average queueing delay per packet

under the greedy and the adaptive schemes, for p = 0.90.

5.6 GREEDY ROUTING ON THE BUTTERFLY NETWORK

In this section, we extend the results derived for the hypercube to the butterfly

network. First, we briefly describe the basic properties of this network.
5.6.1 The Butterfly Network

The d-dimensional butterfly is an “unfolded” version of the d-cube. It consists
of (d + 1)2? nodes, organized in d + 1 levels, with each level having 2¢ nodes. In
particular, for 7 € {1,...,d+ 1}, the nodes of the jth level are denoted by [z; j] where
z €{0,...,2¢ —1}. For j # d + 1, each node [z;j] is connected to two nodes, namely
[z;7+1] and [z @ ej; 7 + 1]; see Figure 5.4, where the 2-butterfly is depicted. Therefore,

there exist two types of arcs:

(a) Arcs of the form [z;j] — [z;j + 1], which are referred to as straight arcs; for

notational convenience, arc [z;j] — [z;j + 1| will be denoted by (z;7;s).

(b) Arcs of the form [z;j] — [* @ €;;7 + 1], which are referred to as vertical arcs; for

notational convenience, arc [z;j] — [z @ ej;7 + 1] will be denoted by (z;j;v).

89

The butterfly network s a crossbar switch; packets are assumed to be generated at
the 1st level and destined for the (d + 1)st level. It is easily seen that for eacl origin-
destination pair [z;1] and [z;d + 1] there corresponds a unique path, which consists
of d arcs. In particular, let 74, . .. yik be the entries in which the binary identities of T
and z differ, with i, < i2 < --- < ig; then, the path from [z;1] to [2;d + 1] contains
exactly k& vertical arcs, namely

(25415 v), (weael;iz;v), s (T e e,k v);

vertical arc

/ \
/ \
/ [00:2] \
0 [00;1] (00;3]
1 (01:1] [01;3]
2 [10;1] (10;3]
3 (1] , [11;3]
\ (1r:21 ~
\ /
\ /
N\

straight arc

Figure 5.4: The 2-dimensijonal butterfly.

90

5.6.2 The Routing Problem

The dynamic routing problem to be analyzed is essentially the same as that in the
context of the d-cube. That is, each node of the 1st level independently generates
packets according to a Poisson process with rate A; all packets have unit transmission
time. LEach packet has a single destination in the (d + 1)st level; this destination is
selected randomly, according to the following rule:

Pr [a packet generated by node [z;1] is destined for node [z;d + 1]]
— pH(=) (1 _ p)d-H(z.2)

where p € [0,1] is a constant; recall that H(z,z) denotes the Hamming distance of
the binary representations of z and z. Agaill, different packets make their selections
independently of each other. Notice that, for p = %, the destination distribution is
uniform over the nodes of the (d + 1)st level; that is, each such node is equally likely

to be chosen as a packet’s destination.
5.6.3 Preliminary Results

First, we note that a result analogous to Lemina 5.1 applies to the present context;
however, B; now corresponds to the event that a packet has to traverse a vertical
arc stemming from the jth level. Furthermore, notice that arcs (z;1;s) and (z;1;v)
may only be traversed by packets generated by node . Therefore, packets to traverse
arc (z;1;v) form a Poisson stream with rate Ap; similarly, packets to traverse arc
(z;1;s) form a Poisson stream with rate A(1 — p). Recalling that all packets have unit
transinission time, it follows that the inequalities Ap < 1 and A(1 — p) < 1 are both
necessary conditions for stability of any routing scheme. Combining these conditions,

we obtain the following result: Stability may prevail only if
P\ max{p,1 —p} < 1. (5.27)

Notice that, for given A, the maximum value of p occurs for p = % For p > %, the
vertical arcs become the bottleneck of the system; for p < %, the straight arcs become

the bottleneck of the system; this will become more clear in Proposition 5.15.
Next, we present a universal lower bound on the average delay T per packet.

Proposition 5.14: Under any routing scheme, there holds

Ap (1-p) A1 —p)

ST R T i §

91

L 1 4 = v e o~ & . £ tn = e r vt rrm——. oo e e e

Proof: When no idling occurs, the value W, (resp. W;) of the average delay induced
by arc (z;1;v) [resp. (z;1;s)] equals that of an M/D/1 queue with arrival rate Ap
[resp. A(1 — p)] and unit service duration; when idling occurs, these delay values are
larger. Thus, we have [Kle75]

Al —p)

nd W >1+ .
* 21— M1 —p)]

Wy > 1+ AP (5.28)

(1 - 2p)
Note that after a packet arrives at the 2nd level, it requires at least d — 1 more time

units until it reaches its destination; thus, it is seen that, under any routing scheme,

the average delay T per packet satisfies
T>d-1+4+pW, +(1-p)Ws.
This together with (5.28) proves the reult. Q.E.D.

Equation (5.27) as well as Proposition 5.14 demonstrate the limitations applying
to the performance of any routing scheme. The scheme to be analyzed below is the

simplest possible:

Packets are routed in a greedy fashion; that is, each packet advances at its respective
path as fast as possible. When several packets contend for the same arc, then priority
is allotted on a FIFO basis.

In fact, given that there is only one path per origin-destination pair, greedy routing
is the most natural scheme arising in the context of the butterfly. It will be shown in

§5.6.4 that this simple scheme is very eflicient.
5.6.4 Performance Analysis of Greedy Routing

Similar to the hypercube (see §5.3.1), under greedy routing, the butterfly may be
viewed as a queueing network R with d29+! deterministic FIFO “servers”; each of
them has unit service duration and corresponds to an arc. In Figure 5.5, we present
the network R corresponding to the 2-dimensional butterfly. The main properties of

the equivalent network R are as follows:

Property A: R is a layered network; it consists of d levels, with the jth level
comprising all arcs (z;7;s) and (z;7;v). In fact, each packet receives one time unit
of “service” at each level, contrary to the network described in §5.3.1, where a packet

might skip some of the levels.

92

- ~
depar
external ~ frc?r?q E;H‘es
] e
arrivals e
S network

Figure 5.5: The equivalent queueing network R for the 2-dimensional butterfly.

93

Property B: Routing is Markovian. In particular, after traversing arc (y;j;s)
[resp. (y;7;v)], where j # d, a packet takes one of the following two actions: either
it joins the queue for arc (y;j + 1;s) [resp. (y ® e;;7 + 1;s)] with probability 1 — p;
or it joins the queue for arc (y;7 + 1;v) [resp. (y @ e;;7 + 1;v)] with probability p.
After crossing arc (y;d;s) [resp. (y;d;v)], a packet departs from the network with
probability 1. Different packets make their routing decisions independently of each

other.

This property may be established by reasoning as in Lemma 5.4; recall that an
independence result, analogous to Lemma 5.1, applies to the butterfly as well (see

§5.6.3). Another result to be used in the analysis is as follows:

Proposition 5.15: The total arrival rate at each arc (z;j;s) equals 6, = A\(1 — p).
Also, the total arrival rate at each arc (z;7;v) equals 6, = Ap. u
Proof: We fix some j € {1,...,d}. By symmetry, all straight (resp. vertical) arcs
of the jth level have the same total arrival rate 6’ [resp. 05,‘1)]. As already men-
tioned, each packet crosses some straight (resp. vertical) arc of the jth level with
probability 1 — p (resp. p); also, the total arrival rate over all arcs of the jth level
equals A\2%, because each packet crosses exactly one arc of this level. Thus, we obtain
A24(1 —p) = 2467 and A24p = 2d0$.j), which proves the result. Q.E.D.

It is seen from Proposition 5.15 that, for p < %, straight arcs are more congested
than the vertical ones; the converse holds for p > % For p = %, all arcs are equally

congested.

Furthermore, since R is an acyclic network with Markovian routing and FIFO
servers, we can apply the stability result of [Wal88], p. 246. Thus, we reach the

following conclusion:

Proposition 5.16: Greedy routing on the butterfly is stable if
Ap <1 and AMl-p) <1,

or equivalently if pdéf)« max{p,1l — p} < 1. [

In light of the necessary condition for stability in (5.27), it is seen that greedy
routing in the butterfly has optimal stability properties.

As in §5.3, we evaluate the performance measures of network R by comparing it to

a product-form network. In particular, we also consider network R, which is identical

94

to R except for the fact that all of its servers operate under the Processor Sharing (PS)
discipline. The total arrival rate for each server of R is the same as in R, and is given
by Proposition 5.15. Therefore, network R is stable if Ap < 1 and A\(1 — p) < 1, or
equivalently if p < 1 [see (5.27)]; in the stable case, R is of the product form [Wal88],
pp. 93-94. Moreover, Proposition 5.9 applies to the present context, because R is a
layered network with Markovian routing and deterministic FIFO servers; see also the
comment on the generality of that result, following its proof. Below, we establish the

upper bound for the average delay T per packet induced by greedy routing.
Proposition 5.17: There holds

T dp + d(1 —p)

< Vp<1.
“1-2p 1-X1-p)’ p< -

Proof: Reasoning as in the end of §5.3.3, it follows that

¢
tlim E[N(t)] = N = lim 1/ N(u)du ,
— 00 0

t—oo §

where N(t) is the total number of packets present in the equivalent network R at time

t, and IV is the steady-state average of this. Again, applying Little’s law, we have

N

On the other hand, using Proposition 5.9, we obtain
N<N, (5.30)

where N is the steady-state average total number of packets for R. As already inen-
tioned, for p < 1, network R is of the product form; this together with Proposition
5.15 implies that the steady-state probability that a particular “server” (z;j;v) [resp.
(z;7;5)] of R hosts n packets equals (1 — Ap)(Ap)™ (resp. [1 — A(1 — p)][A(1 — p)|™).

Since there exist d2¢ “servers” of each of the two types, it follows that

Ap AM1-p)
= d2¢ d2° 31
N 1—Ap+ 1-X1-p) (5-31)
This together with (5.29) and (5.30) proves the result. Q.E.D.

Using Propositions 5.14 and 5.17 and the definition of p it follows that

%max{p, 1-p} <].ilnl[(l - p)T] < dmax{p,1 — p}.
p—

95

Thus, for p — 1, the average delay T behaves as l+p (for fixed d); in light of the
universal lower bound of Proposition 5.14, this asymptotic behavior is optimal. Also,
for any fixed p, we have T = O(d), which is the optimal order of magnitude. Further-
more, notice that the average queueing delay per packet equals T' — d. Proposition
5.14 implies that, for fixed p, T'— d is §2(1), while Proposition 5.17 implies that 7' — d

is O(d); the result to be present next closes this gap for p # 0 and p # 1.
Proposition 5.18: There holds

T—-d>=(d—1)pmin{p,(1 —p)}, Vp € (0,1). =

N =

Proof: First, notice that the analysis of §5.4 for the case of slotted time applies exactly

as presented therein. In particular, using (5.26), we have
T>T. (5.32)

Henceforth, we focus on the case of slotted time, and we assume that the system is in

steady-state; we also take p # 0 and p # 1.

We consider a straight arc (z;7;s) with j > 2; the case of a vertical arc may be
treated similarly. Notice that, at each slot k, there are at most two packets joining
the queue for this arc; namely, at most one packet just trasmitted over arc (z;7 —1;s),
and at most one just trasmitted over (z @ e;;5 — 1;v). Notice that the two streams
of packets feeding arc (z; j;s) are mutually independent, due to the following fact: No
packet ever collides with packets from both of these streams. Indeed, if this were the
case, then there would be two different directed paths connecting a pair of nodes of
the butterfly, which does not apply. Consider now a packet P joining the queue for
(z;7;s) at slot k through arc (z;j — 1;s); it follows from the discussion above that P
sees the contending stream emerging from arc (z @ e;;7 — 1;v) at a typical time. This
implies that P will experience a stmultaneous arrival from the contending stream with
probability equal to the rate of this stream, namely Ap(1 — p). (Recall Proposition
5.15 and Property B in the beginning of this subsection.) In such a case, P will suffer
a unit of queueing delay with probability %, because contention between simultaneous

arrivals is resolved on a fair basis.

Generalizing the above conclusion, it is seen that every packet suffers an average

queueing delay of at least 2Ap(1 — p) at each arc of levels 2,...,d. Thus, it follows

96

that
T -—d> %(d —1)Ap(1 —p). (5.33)

This together with (5.32) and the definition of p proves the result. Q.E.D.

The lower bound of Proposition 5.18 is not tight in heavy traflic, because it does not
grow to infinity for p — 1. This can be remedied by including the queueing delay for
the 1st level in the left-hand quantity of (5.33); thus, we obtain T'—d > a;(dp)+ a3 ﬁ,
where «; and a; only depend on p. On the other hand, Proposition 5.17 shows that
T-d< ﬂldf"p, with @ only depending on p. Similar to the case of the hypercube (see
the end of §5.3.5), it is conjectured that the upper bound is tight for all p € (0, 1); for
p = 0 and for p = 1, the lower bound of Proposition 5.14 is tight, because packets

originating at different nodes follow disjoint paths.

Finally, we comment on the number of packets stored per node of the butterfly;
first, notice that only the nodes of levels 1,...,d have to store packets. For ¢ — oo,
an overall estimate of the average number of packets per node at time ¢ is provided by

the quantity 27 using (5.30) and (5.31), it follows that

N _) M1 —p) der
24 =1_)p 1-Ml_p) -

This estimate is quite favorable because it suggests that the “overall” average queue-
size per node is O(1) for any fixed p. However, it is not guaranteed that this bound
holds for the average number of packets stored by the nodes of each individual level.
It is conjectured that this is actually the case; the following result provides strong
evidence for this claim: As ¢ — oo, the total number of packets stored by the nodes
of levels 1,...,7 at time ¢ does not exceed j 2dqp(1 + €) with high probability, for any
€ > 0 (and for any 7 € {1,...,d}). This result may be proved by applying stochastic
domination between the first j levels of networks R and R, and using the product-form
property of R.

Finally, related to the above discussion is the following open problem: Analyze the
performance of greedy routing under the assumption that nodes in levels 2,3,...,d of
the butterfly have constant [that is, ©(1)] buffer capacity. Even though it is reasonable
to conjecture that the average delay would still be ©(d) for any p < 1, proving such a

result appears to be a rather challenging task.

97

APPENDIX 5.A

In this appendix, we elaborate on a comment presented at the end of §5.3.4, namely
that Proposition 5.12 does not seem to follow easily from a comparison between net-
work Q and the Jackson network O. (Recall that 0 is obtained from Q by replacing
all the deterministic servers with exponential ones having unit service rate.) Here we

present some “unsuccessful attempts” for proving Proposition 5.12 in this way.

Assume that both networks start at time 0 with one packet just generated at node 0
and destined for node e;. Then, we have N(t) > 1 for all ¢ € [0,1) with probability 1;
on the other hand, the total number N (t) of packets of the Jackson network may drop
to 0 (with positive probability) at any time ¢ € (0,1). Hence, a stochastic inequality
such as N(t) <¢ N(t) does not apply for ¢ € [0,1). ‘

Furthermore, notice that a result such as E[N(t)] < E[N(t)] Vt > 0 would have
been sufficient for proving Proposition 5.12. However, this result does not apply either.
Indeed, let us consider again the aforementioned initial state for the two networks. We
fix a t* € (0,1); obviously, E[N(¢*)] > 1. On the other hand, with probability 1 —e~*",

the first packet departs from the network by time ¢*. Thus, we have
E[N(t*)] < e ¥ + E[A(t")] = ™" +t*(N2),

which is smaller than unity for sufficiently small A. [Recall that A(¢*) denotes the
total number of packets generated during the interval [0,%*) excluding the one initially
present in the network.] It follows that E[N(¢t*)] < 1 < E[N(#*)] for sufficiently

small A.

Finally, since both networks Q and Q are ergodic (for p < 1), Proposition 5.12
would also be implied by the following result:

lim. [% Y (B0 - t,-)] < lim [% S (B0 - ti)] : (5.4.1)

where t; denotes the generation time of the ith packet under a particular sample path
w, and D; (resp. D;) denotes the departure time of this packet from network Q
(resp. Q). [Recall that each of the sample-path averages in (5.4.1) converges to the

corresponding steady-state average delay per packet.] The most straightforward way

98

to prove (5.4.1) is to show that

E[D;], for k = 1,... (5.4.2)

4
S
5
IA

it

However, this result does not apply to all sample paths. Below, we present a simple
counterexample; for simplicity we take d — 2, so that it is equivalent (for certain sample
paths) to consider the network G of Figure 5.2a instead of Q. The corresponding

Jackson network will be referred to as G.

Assume that at time 0 there are two packets P; and P, present in each network; P,
is located at server S1, while P, is at located server 52; both packets are to join server
S3. The other packets of the sample path are generated much later, so that they do

not influence P; and P, at all. Below, we prove that
E[D1 + Dy] > E[D, + D,], (5.4.3)

which disproves (5.4.2).

In the context of G, we have either Dy=D,+1=3 or Dy =Dy 41 = 3, depending

on how the tie in server 53 is broken. In both cases, we obtain
D+ D, =5, (5.4.4)

In the context of ¢ , let Xi() denote the service time of Pi at S;; all these random vari-
ables are independent and assume the exponential distribution with mean 1. Clearly,
two equivalent cases should be considered in the analysis, namely X 1(2 < Xz(z) and
Xl(l) > X;z); the first (resp. second) case corresponds to P1 (resp. P,) departing first

from the network, Due to Symmetry, we only consider the case Xl(2 < X;z) . We have

A

E[Ds + D,] = E[D, + D, X < xy. (5.4.5)
Furthermore,

BDy [XV < X = px 4 X1 x0 < x)

= Ex{V [x(< x7 E[X(¥]
3
2 ’

(5.4.6)

99

where we have used the fact E[min{R;,R;}] = for exponential random variables
with mean 1. Furthermore, given that Xil) < ng), we have X.‘Ez) = X§1) + Z where
Z is exponentially distributed with mean 1 and is independent of X §1). Notice also
that service of P; at Sy starts at time X" + ma,x{Xis), Z}. It follows from the above

discussion that

E[D; | X < X = X + max{X{®, 2} + X | XV < x{¥)
=EXxXM xM < x4 E[lna.X{X§3), ZY + E'[X;a)]

-1l
22
:3,

where we have used the fact E[max{R;,R;}] = 2 for exponential random variables

with mean 1. Using also (5.4.6) and (5.A4.5), we obtain
- - 9

This together with (5.4.4) proves (5.4.3). Of course, the fact that (5.4.2) does not
hold does not necessarily imply that (5.4.1) does not apply either; however, this fact
suggests that if (5.4.1) applies, then its proof should be rather subtle.

100

6. Multiple Broadcasts in the
Hypercube — Part I: First
Results and Direct Schemes

In the dynamic routing problem of Chapter 5, it was assumed that each packet has
a single destination. In this chapter and in the next one, we consider another dynamic

problem, where each packet is broadcast to all nodes.

6.1 INTRODUCTION

6.1.1 Problem Definition — Motivation

The precise definition of the problem to be analyzed is as follows: Each node of the d-
cube generates packets according to a Poisson process with rate \; different nodes gen-
erate their packets independently of each other. Each packet is to be broadcast to all n-

odes. We assume that no other packet transmissions are taking place in the network.

We propose several routing schemes for broadcasting packets in the aforementioned

context, and we analyze their throughput and delay properties in steady-state. As in

101

Chapter 5, we are interested in distributed routing schemes of the on-line type; that
is, the routing decisions for the various packets are made locally, without knowledge
of future events (see also §1.2.2) The underlying model for communications is the one
presented in §1.2.3. However, it is taken that packets are generated by continuous-time
processes, even though transmissions occur in slotted time. This assumption simplifies
the analysis; with minor modifications, the results to be derived also apply to a system
such as the one considered in §5.4, where batches of packets are generated at the end

of each slot.

Motivation for studying the present problem arises from the context of asynchronous
computation. Let us consider once more the distributed implementation of the iterative
algorithn z := f(z) (see §1.2.1). At the end of every iteration, each processor i
has to broadcast the new value of z;, in order that the other processors use it in
their subsequent computations. If all processors are perfectly synchronized, then all
entries of the vector = are to be broadcast at the same time, which gives rise to a
multinode broadcast. However, there are cases where the new values of the x;’s are
not all computed at the same time, while faster processors do not wait for slower
ones; thus, packets to be broadcast are generated at unpredictable times. Such a
model for asynchronous computation is appropriate when the speed of each processor
is variable, while all processors are equally fast “on the average”. Related asynchronous
algorithms have received considerable attention in the literature, but have primarily
been analyzed from the point of view of convergence (see [BeT89]). This kind of
analysis often involves some a priori assumptions on the time required to broadcast a
message. Here we make a first attempt to investigate this communication delay in the
context of the hypercube network. For analytical tractability, we have assumed that
packets are generated by the various nodes according to independent Poisson processes;
we hope that our analysis will be suggestive of the results holding under more general
packet-generating processes. To best of our knowledge, the problem formulated above

as well as the results to be presented are new.
6.1.2 Summary of the Results

Whenever some node of a network wishes to broadcast a packet, it just has to
transmit it along a spanning tree emanating from this node. (That is, a spanning tree

with all of its arcs pointing away from this node.) If no other packet transmissions

102

take place at this time, then all nodes will have received the packet under broadcast
after some time equal to the depth of the selected tree. This simple communication
task is the single node broadcast; in the d-cube, it can be performed in d time units,
by transmitting the packet along any tree with depth d. (There are several such trees

from which to choose.)

Unfortunately, matters are not that simple in the presence of contention. Indeed,
consider the following simple scheme for our dynamic routing problem: each node
chooses a spanning tree rooted at itself and broadcasts all of its packets along that
tree. It will be seen in §6.3.1 that the performance of such a routing scheme may
possibly be rather poor, in the sense that the traffic accommodated can be extrémely
low. Of course, there is an upper bound for the traffic that can be sustained by any
routing scheme. This bound is given by the following necessary condition for stability:
2¢ — 1

d

that is, if this inequality does not hold, then the number of packets whose broadcast has

5 <1; (6.1)

not been completed grows to infinity as time elapses. The parameter p will be called the
load factor of the system. Thus, we are interested in routing schemes that are stable for
all p < p*, where p* is a constant (preferably close to 1). This requirement is satisfied
by routing schemes performing multinode broadcasts periodically. Unfortunately, these
schemes will be seen to introduce unacceptably high delay, even in light traffic (namely,
for p =~ 0). Thus, we shall be mainly concerned with devising schemes that also
satisfy a requirement on the average delay per packet in light traffic; namely, that
T = ©(d) + O(d)p for small values of p. (Note that T is defined as the steady-state
average time spent by a packet in the system until its broadcast is completed.) This
requirement for the delay is motivated by the fact that it takes d time units to perform
a single node broadcast in the d-cube in the absence of other transmissions; thus, it is
desirable that contention does not increase this delay by more than a factor depending
on the load of the network. More discussion on this point is given in §6.2.3, following
the derivation (in §6.2.2) of a universal lower bound for T that is, a bound applying

to any routing scheme.

In §6.3 and in Chapter 7, we present several routing schemes that meet the afore-
mentioned performance objectives. The schemes discussed in §6.3 are characterized as

direct ones, because each packet is broadcast along a spanning tree rooted at the node

103

where it was generated. These schemes are stable even for p ~ 1, while they seem to
satisfy the desirable delay properties. Unfortunately, the analysis is intractable at that
point; nevertheless, we provide some strong evidence for the aforementioned claims,
based on simulation (see §6.4) and on an approximate model developed in §6.5. In
Chapter 7, we present an indirect routing scheme; that is, all packets are sent to one of
nodes ey, ..., eq, which are in charge of performing the broadcasts along the d disjoint
spanning trees 7(), ... T(9) introduced in [JoH89] (see also §2.1.4). We prove rigor-
ously that this scheme is stable for all p < p* &~ £, while it satisfies T ~ 3d + 1 + %p
for small p. The analysis of the indirect scheme is based on an interim result (namely,
Lemma 7.2), concerning the delay induced in a tree of paths; this result appears to be

applicable to other routing problems involving trees.

In evaluating the performance of the various schemes, we also consider the steady-
state average queue-size () per node. Qur schemes appear to be efficient also with
respect to queue-sizes. Study of the behavior of the measure Q aims at estimating
the buffer capacity required for applying the schemes in practice. In fact, the indirect
scheme of Chapter 7 is deadlock-free when implemented with finite buffers; for the rest
of the schemes, deadlock prevention can be achieved by using standard techniques (see
§7.4).

The problem of multiple broadcasts in the hypercube is considerably more in-
tractable than that of multiple node-to-node communications (in Chapter 5). Thus,
for simplicity, it will be taken for granted that if a routing scheme is stable, then all
steady-state statistics are well-defined. A more formal analysis such as that of §5.3.3
would complicate our discussion even further, while obscuring the main issues related

to routing.
6.2 PRELIMINARY RESULTS

6.2.1 The Necessary Condition for Stability

The average total number of packets generated in the network during one slot equals
A2¢. Broadcasting a packet (using any routing scheme) requires at least 2¢ — 1 trans-
missions. Therefore, during each slot, an average total demand for at least A2¢(24 — 1)
packet transmissions is generated in the system. Since at most d2¢ packet transmis-

sions may take place during each slot, it follows that the system can be stable only if

104

A29(2¢ — 1) < d2¢. Thus, we have the following necessary condition for stability:

24 1
d

p =) <1, (6.1)

where p is the load factor of the system. This terminology is appropriate, because
when p ~ 1 all hypercube arcs are almost always busy, even if no redundant packet

transmissions take place.
In light of (6.1), asymptotics with respect to p will be taken with fired d; thus,
p — 1 should be interpreted as A — %, while p — 0 should be interpreted as A — 0.

6.2.2 Lower Bounds on the Delay

First, we establish a universal lower bound on the delay T'; that is, a bound that
applies to any routing scheme. Recall that T is defined as the steady-state average of
the time elapsing hetween the moment a packet is generated until the completion of

its broadcast.

Proposition 6.1: The average delay T per packet induced by any routing scheme

[D(d;p)-l—%]} :n(d+d(—1”_—m) ,

where D(d; p) is the average delay for the discrete-time M/D/d queue with unit service

satisfies
2¢ _1
T > maxqd, v

time and arrival rate dp. [

Proof: We denote by L(z) the set of arcs incoming at node z; that is,
def .
Lz)={(zdej,z)|j=1,...,d}.

Anylegitimate routing scheme for performing broadcasts must conform to the following

two constraints:

(a) For every node y # w, each packet generated at y must traverse at least one arc in
the set L(x).

(b) If a packet generated at node y traverses arc (z @ ej,z), then either z @ ej =y or

the packet has previously traversed an arc in the set L(z @ ¢;).

The first of the above constraints guarantees that each packet is received by all
nodes, while the second constraint guarantees that a packet traverses an arc only after

being received by the arc’s starting node.

105

R SIS

We now fix a node = and we focus on the transmissions to be performed over
the arcs of the set L(z). At each slot there are a number of such transmissions
pending, including the ones currently in progress. Suppose that we relaz constraint
(b); that is, we assume that a packet may traverse any arc of £(z), provided that it
has already been generated. This is equivalent to assuming that all neighbors of =
receive instantaneously any packet generated elsewhere in the network. Transmissions
over the arcs of £(z) may now be done sooner, because the permissible schedules
are less constrained than previously. Therefore, by relaxing constraint (b), node =
receives packets no later than previously; thus, the average time W, required for the
“typical” packet to reach node = may only decrease. The smallest possible value for
W, would be attained if the following were true: Nomne of the packets generated at
¢ traverses any arc of L£(x), while any packet generated elsewhere only traverses the
first available arc of L(z). Clearly, in this case, the d arcs of set £(z) operate as a
discrete-time M /D /d queue with synchronization, having unit service time and arrival
rate A(2¢ — 1) = dp. [The definition of this queueing system is analogous to that of
the discrete-time M/D/1 queue with synchronization, given in §2.1.2; recall also the
definition of p in (6.1).] Taking also the average synchronization time into account

(which equals %, as argued in §2.1.2), we obtain

w, > 221 [D(d; p) + %] : (6.2)

where D(d; p) is the average delay for a discrete-time M/D/d queue with unit service

241
2

by node z do not join this queue (while they are instantaneously received by z).

Combining (6.2) with the obvious facts T' > W, and T > d, we obtain

time and arrival rate dp; the factor accounts for the fact that packets generated

d _
T > max {d , 22—dl [D(d; p) + %]} . (6.3)

Furthermore, it is known [Bru71] that D(d;p) satisfies

P

1
. > L —

This together with (6.3) and the fact 2;:1 > 7 implies that

P
> —r t.
T_1na.x{d,4d(l_p)} ;

106

g Reem as memet gy A b s mat o ohe = wmin v e ehe it eam

——ESEE g - - —p ey §IP 8

the proof is completed by using the inequality max{e;,az} > %(al + az). Q.E.D.

As suggested by the proof of Proposition 6.1, a scheme that comes close to attain-
ing the universal lower bound for the delay T (if there exists such a scheme) would
schedule transmissions adaptively and/or by making use of global information. This
claim is further supported by Proposition 6.2, which establishes a sharper lower bound
on the delay T induced by oblivious schemes. Under such a scheme, each packet de-
cides which paths to follow independently of all other packets in the network and
insists on traversing the selected paths, regardless of the contention encountered en
route; all packets generated by the same node follow the same rules (which are time-
independent). Clearly, the class of oblivious schemes comprises all schemes where each
packet independently selects which tree to be broadcast along by using a randomized
rule that depends only on the identity of its origin node. The routing schemes dis-
cussed in §6.3 are of this type. We now present the lower bound on the delay induced

by oblivious schemes.

Proposition 6.2: The average delay T per packet induced by any oblivious routing

scheme satisfies

24 13 P p
> - = d+ —— 1} .
T_max{d’ 24 [2+2(1—P)J} Q(+1—p) .

Proof: This proof is similar to that of Proposition 6.2. Again, we fix a node z and we

consider the set £(z) of arcs incoming at z. Each packet generated at some node z will
attempt to cross some of the arcs of £(z); which arcs will be crossed is determined by a
randomized rule depending only on node z. Of course, all legitimate oblivious schemes
are subject to constraints (a) and (b) presented in the proof of Proposition 6.1. Again,
we relaz constraint (b); this may only result in node receiving packets earlier than
previously. Recall now that, under an oblivious scheme, packets select their respective
paths independently. Therefore, after relaxing constraint (b), each arc (z @ ej,) is
fed by a Poisson stream with rate rj; by constraint (a), we have Zj:l r;i > A(2¢ —1).
[Notice that the arrival stream pertaining to each arc (z @ ej,z) has constant rate,
because the routing rules were taken time-independent.] Furthermore, the average
time W, for a packet to reach node z is minimized if packets generated by z do not

cross any arcs of £(z) while packets generated elsewhere cross exactly one such arc;

107

in this case, we have
d
D=2 —1)=dp, (6.4)
j=1

where we have also used (6.1). As proved in §2.1.2, the the average delay induced
by a discrete-time M/D/1 queue with synchronization (having arrival rate r and unit

service time) equals 3 + i see (2.5). Thus, it follows that

d
i |3 T
V. > 247 .
We >y o [2+2(1_rj)], (6.5)

where we have also taken into account the fact that packets generated by node z do
not join the queue for any of the arcs of £(z). Notice now that r[3 + 31—yl is a convex
function of r; therefore, in light of (6.4), the right-hand quantity in (6.5) is minimized

d .
2 -1 = p. Thus, we obtain

forry = =rg=2X

v S li) - T]

Combining this with the obvious facts T > W, and T > d, we have

24 13 P
> | — . .
T_ma.x{d, 5d [2+2(1—p)]} (6.6)
Sinc > 2, and max{caj,az} > 7 (@1 +«z), it follows that the right-hand quantity
of (6. 6) Qd + _p), this completes the proof of the result. Q.E.D.

Each of the lower bounds derived consists of two additive terms; one of them ac-
counts for the minimum propagation delay incurred per broadcast (namely, d), while
the other term corresponds to a minimum overhead due to contention. The universal
lower bound implies that lim inf,_,;[(1— p)T']; that is, the average delay T under heavy
traffic is Q(:1-) (Recall that asymptotics with respect to p are taken with fixed d.)

Proposition 6.2 implies that for a rather broad class of schemes the universal lower
bound on the delay T is loose, due to the presence of the factor 5. Suppose now
that, under oblivious routing, we allow packets generated at each node = to take into
account the routing decisions made by packets previously generated by the same node

z. It is an interesting open question to investigate whether Proposition 6.2 still holds.

108

We conjecture that this is true, because each packet has very limited knowledge of the
routing decisions taken within the entire network. Related to this open question are
the server allocation problems discussed by Stamoulis and Tsitsiklis in [StT91]. If our
conjecture is true, then a scheme coming close to attaining the universal lower bound

on T should either involve centralized coordination or some form of adaptive routing.

Finally, it is worth noting the similarities between the results of this subsection and

those of §5.2.2, as well as between the respective proofs.
6.2.3 Setting the Performance Objectives

The bounds provided by (6.1) and Proposition 6.1 demonstrate the limitations on
the performance of any scheme that may be applied in our routing problem. Given
these bounds, we are interested in devising schemes that come fairly close to meeting

both of them.

Starting with the asymptotic properties of the delay T, it follows from Proposi-
tion 2.1 that T = Q(d) for any fixed p, and T = Q(l—l—p) for any fixed d. Thus,
ideally, we would desire to devise a scheme maintaining stability for all p < 1 and
satisfying T < I lf—p (with K being some constant). Such a scheme would have the
broadest possible stability region and optimal asymptotic delay properties. Again,
there is remarkable similarity between this discussion and the one of §5.1.3, where
we presented the performance objectives for the problem of multiple node-to-node
communications. Unfortunately, the present problem is considerably more intractable
than that of Chapter 5. Thus, we have to “lower our expectations” and settle for
somewhat weaker performance objectives. In particular, we are interested in devising

schemes with the following properties:
(a) Stability should be maintained (for all d) even when the load factor p is ©(1).
(b) Under very light traffic, i.e. for p ~ 0, the average delay T should equal Kd, with K

being some constant; that is, lim, o T'= Kd. This requirement is suggested by the
fact that it takes d slots to perform a broadcast (in the d-cube) in the absence of con-
tention. Also, the first-order approximation of T' (as a function of p) should be of the
form T' =~ Kd+0O(d)p. This requirement basically implies that, for moderately small
values of p (yet independent of d), the additional delay due to contention should

not be larger than a multiple of the delay attained in the absence of contention.

109

B e

Motivation for considering the first-order approximation of T is as follows: As
implied by Propositions 6.1 and 6.2, the delay T will definitely be large when the
system is loaded close to capacity (i.e., for p ~ 1). Thus, it is expected that in practical
applications (and particularly in situations modelling asynchronous algorithms), the
load factor p has some small or moderate value. (A negligible value of p would make

very inefficient use of the network, while the routing problem would be trivial.)

Based on these performance objectives, we have devised and analyzed several effi-

cient schemes, which we present in the sections to follow as well as in Chapter 7.

6.3 DIRECT ROUTING SCHEMES

6.3.1 A Simple Approach to the Problem

The most straightforward approach to our problem is as follows: Each of the nodes
broadcasts its packets along a certain spanning tree emanating from itself. Such a
scheme can possibly have rather poor performance. In fact, its performance depends
heavily on the selection of the trees. For example, consider the case where each node
routes its packets along the corresponding unbalanced spanning tree in which the
hypercube dimensions are crossed in increasing index-order (see §2.1.3). Every node
z receives through its adjacent arc of the jth type all packets originating at nodes z
satisfying ¢ = 2, for m > j and z; # z;. Thus, during each slot, there are generated
an average of A27-! packets that will eventually have to traverse arc (z®ej,z). It
follows that the simple scheme under analysis may be stable only if A27~! < 1 for

J=1,...,d, or equivalently

Hence, the load factor that can be sustained by the above simple scheme deteriorates
to 0 as the dimensionality d of the hypercube increases; moreover, the first of the
performance objectives set in §6.2.3 is not met, because there exists no constant p*
such that stability be guaranteed (for all d) if p < p*. The reason for this undesirable

behavior is that some of the arcs are shared by far more trees than the others.

A potential remedy to the above problem is to select 2¢ trees (one rooted at each
node) such that all arcs are shared by approximately the same nuinber of trees. There

does exist such a set of trees, namely the ones used in the optimal multinode broadcast

110

algorithm of [BOSTT91]. Since this algorithin lasts for [#T_]] slots, it follows that

each arc is shared by at most [zdd_l] of the trees. Broadcasting the packets along

these trees will create no additional bottlenecks in any of the arcs. As is discussed in

§86.3.3-6.4, this scheme performs rather satisfactorily.

An alternative way of balancing traffic over the hypercube arcs is to allow for
multiple trees per node and distribute among them the packets to be broadcast; an
efficient routing scheme of this spirit is presented in §6.3.3. Both this scheme and
the one mentioned above are closely related to the periodic schemes, which we discuss

next.
6.3.2 Performing Multinode Broadcasts Periodically

In this subsection, we discuss schemes where an efficient static algorithm for per-
forming multinode broadcasts is run periodically. Though very efficient with respect
to their stability regions, these schemes induce large delays even in light traffic; for

this reason, they will be modified in §6.3.3.

The optimal completion time for the multinode broadcast task is [de'l] slots, and

it is attained by an algorithm constructed by Bertsekas et al. [BOSTT91]. (To see

that this quantity is a lower bound on the time required for the task, just notice that

each node has to receive 2¢ — 1 packets, while it may only receive at most d packets

per slot.) By pipelining successive instances of this optimal algorithm, each node may

broadcast one packet every [de_l'l slots. In fact, the packets generated at each node

z form a discrete-time M/D/1 queue with synchronization; the arrival rate is A and
the “service time” duration equals [Z—dd_—]] Therefore, the scheme is stable if and only

if A[de']] < 1, or equivalently

(20 -1)/d
(2 =1)/d] *

p< (6.7)

It is known that zdd_l is never an integer for d > 2; see [BOSTT91] for a simple proof

of this fact. This implies that the scheme under analysis becomnes unstable if p is
sufficiently close to 1. Of course, if d is not very small, then the right-hand quantity in
(6.7) is very close to 1; e.g., for d = 10 (which is a realistic value), this quantity equals
0.9932. Thus, for all practical purposes, the load factor that can be accommodated

under this scheme is very high. On the other hand, since each period of the scheme

111

lasts for |—2dd‘1'| time units, we have T' = Q(%) even for p = 0; thus, the delay induced

by this periodic scheme is unacceptably high, even in very light traffic.

Another periodic routing scheme is obtained by pipelining successive instances of
the optimal static algorithm for the d simultaneous broadcasts, which was constructed
by Saad and Schultz [SaS85]. For this communication task, every node z has d packets
to broadcast; each of these packets is routed along a completely unbalanced spanning
tree rooted at node z. In particular, one of the packets is routed along that tree
where the hypercube dimensions are crossed in the order 1,2,...,d; one of the packets
is routed along that tree where the hypercube dimensions are crossed in the order
2,3,...,d,1 etc; one of the packets is routed along that tree where the hypercube
dimensions are crossed in the order d,1,2,...,d — 1. Each packet that traverses the
hypercube dimensions under the order j,(j modd)+1,...,[(+ d — 2) mod d] + 1 will
be called a j-packet; for each packet, the corresponding value of j is the called the
tag of the packet. The algorithm of [SaS85] takes time 2¢ — 1, which is the optimal

duration.

Returning to the periodic scheme for our dynamic routing problem, let us assume
(for simplicity) that each packet selects its tag randomly, with all values 1,...,d being
equiprobable. Then, prior to being broadcast, all j-packets generated at the same
node join a discrete-time M/D/1 queue with synchronization, having arrival rate 3
and “service time” duration 2¢ — 1. Thus, the present periodic scheme is stable if
and only if %(2d — 1) < 1, or equivalently p < 1, which is the broadest possible
stability region. However, the average delay T per packet is extremely high, even in
very light traffic; indeed, since each period of the scheme lasts for 2¢ — 1 slots, we
have T = 2(2¢) even for p ~ 0. Notice that the same properties would apply even
if packets were assigned their tags in a round-robin mode, which is the best possible
rule. [That is, if the kth packet generated at each node z were assigned a tag-value
(k — 1)modd + 1; this would give rise to an M/D/d queue at each node z, instead of

d separate M/D/1 queues.]

Otlher periodic schemes may be obtained by pipelining instances of other nearly
oplimal multinode broadcast algorithms, such as the ones in [JoH89]. It is apparent
that these periodic schemes would share the main properties of the two schemes de-

scribed above; namely, that stability is maintained even for high values of the load

112

factor p, whereas the delay performance in light traflic is highly unsatisfactory. This
is primarily due to the extensive occurrence of idling, caused by the periodic feature
of these schemes; that is, it often occurs that arcs are idle while packets have to wait
for the next period in order to cross them. As will be seen in the next subsection,

avoidance of this idling phenomenon improves performance dramatically.
6.3.3 Non-Idling Versions of the Periodic Schemes

Under the non-idling versions of each of the periodic schemes of §6.3.2, routing is
simply performed as follows: Each packet is broadcast along the same tree as in the
periodic scheme, and proceeds as fast as possible, subject to contention. Both non-
idling schemes to be presented appear to perform rather satisfactorily. Unfortunately,
their delay properties seem to be analytically intractable; thus, they are studied by

means of approximations and simulations.

First, we establish that the stability region of each non-idling scheme is the same
as that of the corresponding periodic scheme. Let us consider the one based on the
optimal multinode broadcast algorithm of [BOSTTY1]; here, each packet generated
by node z is broadcast along that tree used by z in the algorithm of [BOSTT91].
This scheme is basically of the simple form considered in §6.3.1, because it involves
one spanning tree per node; moreover, it belongs to the class of oblivious schemes
defined in §6.2.2. As already mentioned in §6.3.1, each arc of the d-cube is shared

by at most |—2{T—1] of the trees used; thus, during each slot, there are generated an

241
d

average of at most A[| packets that will eventually have to traverse any particular
arc (z,z @ e;). Therefore, the standard argument of calculating the average demand
for transmissions over each arc does not impose any necessary condition for stability
other than (6.7), which is a rather favorable one. Below, we show that (6.7) is also
a sufficient condition for stability of the non-idling scheme, provided that a simple

distributed priority scheme is used.

We fix a node z; let 7,, be the time instant when the nth packet was generated by
z, for n = 1,... We assume that the nth such packet is attached with a label, denoted
by £,.; we have £, = £ if the following is true: In the periodic version of the algorithm,
the nth packet would have been broadcast by node z in the £th period, that is during

the multinode broadcast starting at time (£ — 1)[#] + 1. It is easily seen that these

113

labels may be updated in a recursive way, according to the following simple rule:

i =1nax{€n +1, [W} +1} ,

and

6= |]

Having defined these labels, we cousider the following rule for contention resolution:
If two or more packets wish to traverse the same arc at the same time, then priority
is given to that with the smallest label; if there are more than one such packet, then
priority is given to the one (with minimum label) that would had crossed this arc
the first during the multinode broadcast algorithm of [BOSTT91]. Using this priority
discipline, the order of the various packet transmissions is preserved when the periodic
routing scheme is converted to a non-idling one; thus, each packet now arrives at its
destination no later than under the periodic version of the scheme; therefore, inequality

(6.7) is a sufficient condition for the stability of the non-idling scheme as well.

Next, we consider the non-idling version of the second periodic scheme of §6.3.2,
which is based on the optimal algorithm for the d simultaneous broadcasts of [SaS85].
Under this non-idling scheme, packets are simply routed as follows: Upon generation,
each packet randomly selects its tag-value j, and is to be broadcast by crossing the
hypercube dimensions in the order j,(jmodd) + 1,...,[(j +d — 2)mod d] + 1; each
packet proceeds as fast as possible, subject to contention. Using a priority discipline
such as the one presented in the previous paragraph, we can guarantee stability of the
non-idling scheme for the same region as for the periodic scheme, namely for all p < 1.
In our discussion of §§6.4 and 6.5, we assume that contention is resolved on a FIFO

basis, which is a more natural priority discipline.

Regarding the average delay T, it is straightforward that 7 ~ d +% for p =~ 0, under

both non-idling schemes, because the trees used for the various broadcasts have depth

d. Indeed, notice first that T > d + 1, for obvious reasons. (The term 3 accounts for

the average synchronization time.) Furthermore, for each non-idling scheme, consider
an inferior routing scheme performing single node broadcasts one after the other along
the same trees; since only one broadcast may be completed every d slots, this scheme

is stable if A2¢d < 1, or equivalently if p < Py = 2;,—%%; moreover, the inferior scheme
dp
2(p3—p)

induces an average delay T = d + % + per packet. Since T < T, it follows

114

that lim, .o T < d + %, which in turn implies that T ~ d + % for p ~ 0. (Recall that

asymptotics with respect to p are taken with fixed d.)

Regarding the first-order term in T, it is conjectured that it is O(d)p under both
non-idling schemes; in particular, we believe that it equals @(d)p [rather that being
o(d)p], because each packet faces additional contention for each arc it attempts to cross.
Given the complex structure of the paths followed by the various packets (under both
routing schemes), it appears that good bounds for T are very hard (if at all possible) to
derive formally. For this reason, we resorted to simulations; the experimental results
obtained are presented in the next section. In fact, the aforementioned conjectures for

the delay will be seen to agree with the simulation outcomes to a satisfactory extent.

6.4 EXPERIMENTAL RESULTS FOR THE DIRECT SCHEMES

In this section, we discuss the delay performance of the two routing schemes of
§6.3.3, as investigated by means of simulation; each of the outcomes to be reported

was obtained over a period of 1,000 slots.

As already mentioned in §6.3.3, it is expected (for both schemes) that the first-
order term in T' is ©(d)p. In order to examine the validity of this conjecture, we have
plotted the simulation outcomes for measure 7' — d — % as a function of d, for various
values of p. (Recall that d 4 1 is the value for the zero-order term in T, under both
schemes.) In particular, in Figure 6.1 we present these plots for the scheme using the
trees of the multinode broadcast algorithm of [BOSTT91]. Apparently, for all three
values of p considered, T — d — % is an increasing function of d; in fact, it seems that
T—-d— % grows linearly in d (for fixed p), with the corresponding slope being increasing
in p. (Note however, that the points obtained for the smaller values of d do not match
very well to a linear pattern.) Similar conclusions are drawn by observing Figure 6.2,
which corresponds to the scheme based on the algorithm of [SaS85], using d completely
unbalanced spanning trees per node. (Note that the vertical axis of this figure is in a
different scale than that of Figure 6.1.) In fact, the conjecture that T — d — % grows
linearly in d (for fixed p) is supported rather strongly by the plots of Figure 6.2. This

conjecture will be further supported by an approximate model for delay analysis, which

is developed in §6.5.

The simulation outcomes reported so far provide us with strong evidence that

115

2.2] I | | [;
2.0 =
1.8 A p=0.10 —
* P=O.15 .
1-6- . p-0.20 "- -
14 * -
w .
% 1.2' - // =
*
[_. 1-0' 7 g _L
o ¥ A
0.8 n g Nl
0.6 1 . s . =
- /, A
0.4 moX BoX —
X -0 AT A]
02+ p7.
[1 | I | |
0.0 5 6 7 8 9 10 11

Figure 6.1: Experimental results for T — d — %, for the routing scheme using

the trees of the multinode broadcast algorithm of [BOSTT91].

1.0

| | t | | f
0.9 1 -
A p-0.10 _.‘.
0.8' x p-0.15 e -
N p=020 - m
0.7 '-..-]
0 0.6 » * 1
O' . - jé/ -
E 0.5- n _ - —
- ’)K
0.4 - [] _ ’ﬂ(’ =
¥ A
0.31 x-- . A -
0.2 L A.ATT A _
A' f
0.1 1 —
0.0 | | | | | |
4 5 6 7 8 9 10 11

T R e Sy G * <l % vl oy - e eeeee

Figure 6.2: Experimental results for T — d — %, for the routing scheme using

the trees of the algorithm for the d simultaneous multinode broadcasts of [SaS85.

116

= | | o
’
151) 4 —
B multinode broadcast F
A dsimult. multin. br. ;
| /]
14 /.
’ A
13 " '
— /s . —
a / A
] S
V4 A'
124 ’ o —
. | | } &
i ¢ A
1 s .k ’ —+
1 ’ A
10 ! | L |
0.0 0.1 0.2 0.3 04

Iigure 6.3: Comparing the delay induced by the two non-idling schemes, for d = 10.

T~d+ % + ©(d)p for small p, under both routing schemes considered; thus, it ap-

pears that our schemes meet the second performance objective set in §6.3.3.

Next, we compare the delay performance of the two schemes. Observing Figures
6.1 and 6.2, it is seen that the scheme using the d completely unbalanced trees per
node is superior to that using the trees of the algorithm of [BOSTT91]. This fact is
observed more clearly in Figure 6.3 (where d = 10 and p varies from 0.05 to 0.4), and
in Figure 6.4 (where d varies from 5 to 10 and p = 0.15); it is worth noting that for
fixed p, the first-order term T — d — 1 in the delay grows more steeply in d under the
scheme using the trees of [BOSTT91].

The superiority of the scheme using the d completely unbalanced spanning trees
per node becomes even more apparent by studying the behavior of the steady-state
average queue-size per node. In evaluating this performance measure, we consider
a packet as stored at some node z only if = has yet to forward it towards one of its
neighbors; packets to start transmission(s) immediately are also included. Note that
a packet to be forwarded to several neighbors of z is assumed to occupy one unit of
buffer capacity, because it would be wasteful for z to create the necessary copies of the

packet prior to its transmission. In Figure 6.5, we have plotted the values of @ (for

117

1
141+ B multinode broadcast u -
A dsimult. multin. br. ,
/ ——
1.2 1+ ,
[]
Ve
v 1.0+ e 1
<D m
o 084 P .l
= ’
/
- Ve]
0.6 , e A
N BV
0 4 - /: A —
A
/
021+ P]
|] | | | |
0.0 T 4 4 } } +
5 6 7 8 9 10 11
d

1.2 i i i i i i
B muitinode broadcast
1.0+ A dsimult. multin. br. [] -1
-
”~
P
n - - A
0.8 1— .- -
- A
O Pd - '
~ .. F' 3
0.6+ -8 —
[g A
- .A‘ ' '
041+ A —
| | | | | |
0'24 5 6 7 8 9 10 11

Figure 6.5: Comparing the queue-sizes for the two non-idling scheme, for p = 0.15.

118

both schemes) with d varying from 5 to 10 and p = 0.15; these results were obtained
from the same simulation runs as the ones of Figure 6.4. It is seen that larger queues

are built under the scheme using the trees of the algorithm of [BOSTT91].

The above discussion implies that the scheme using the d completely unbalanced
trees per node is superior to that using the trees of the multinode broadcast algorithm
of [BOSTTI1]. The latter scheme is primarily of theoretical interest, due to its com-
plexity in implementation; indeed, the underlying trees of [BOSTT91] are rather com-
plicated and cannot be described in a concise way, unlike the completely unbalanced
spanning trees (see below). Thus, this scheme will not be considered any further. It
is an interesting open problem to generate a set of 2¢ simple spanning trees (one root-
ed at each node) so that no arc is contained in more than @(%) arcs; as argued in
§6.3.1, such a set of trees may possibly qualify for efficient direct routing of multiple

broadcasts.

The routing scheme using d completely unbalanced spanning trees per node is very
simple to implement; each packet can be forwarded correctly by the various interme-
diate nodes, provided that it only carries the identity of its origin and its tag-value
(indicating the adopted order of crossing the hypercube dimensions). In the next sec-
tion, we investigate the performance of this non-idling scheme further. Henceforth, we

shall be referring to it as the efficient direct scheme or simply the direct scheme.

6.5 APPROXIMATE ANALYSIS OF THE DIRECT SCHEME

In this section, we develop an approzimate model for analyzing the delay properties
of the eflicient direct scheme. Recall that under this scheme each packet is broadcast
along one of d particular completely unbalanced spanning trees rooted at the packet’s
origin; selection among the permissible trees is randomized, with all of them being a
priori equiprobable (see also §6.3.2). The scheme involves no idling, that is, packets

traverse the appropriate arcs as fast as possible, subject to contention.

As established in §6.3.3, the scheme is stable for all p < 1, which is the broadest
possible stability region. Regarding the steady-state average delay T per packet, we
only proved that lim, .o T = d 4+ 1. The behavior of T was further investigated by
means of simulations, and it was observed that T' d+—;—+@(d)p for small p; below, we

derive an approximate expression for T', which will be seen to be in excellent agreement

119

BT B B BRI v ,w mv b e e e or ome = v ot oo i

with the simulation outcomes when p is not large.

In the analysis to follow, it is assumed that the various random processes involved
are in steady-state. We fix a node z. Let Yk(i) be the number of packets waiting
to cross arc (z,r @ e;) at the beginning of the kth slot, including the packet to be
transmitted. Moreover, let By be the number of packets generated by node z during
the kth slot; since arc (z,z @ e;) belongs to all of the d trees that may possibly be
selected by a packet generated by z, all Bx newly generated packets will join the queue
for this arc. Also, let P,Em’i) be the number of packets received by node z (during the
kth slot) through arc (z @ em,z) and wishing to traverse arc (z,z @ e;). Notice that
P,g'"'i) € {0,1}; that is, all of these random variables are of the Bernoulli type. Clearly,
we have)

Vil =0 1t 4+ B+ Y P for k=1, (6.8)
m=1

recall that [a]t = max{«,0}.

By complete symmetry, the traffic is split evenly (on the average) among the various
arcs. Thus, each of them is busy at a particular slot with probability p. Using also

the definition of P,Em’i), we obtain
E[P{™)] = pgm,: , (6.9)
where g ; is the probability that a packet has to cross arc (z,z @ e;) given that it has

crossed arc (z @ e,,,z). In Appendix 6.A, we prove that

9l(m—i)modd] _ 1

Im,i = 2d 1 ’ V(m,i) € {17 oo 7d}2) (6'10)

notice that, by symmetry among the various nodes, the parameters (gm.i)(m,i)e{l,...,d}2
are independent of . Also, there holds g;; = 0, which is due to the fact that no packet

having crossed arc (z,z @ e;) attempts to cross arc (z @ e;, z).
Next, we introduce the following approzimating assumptions:

Assumption A: For any pair (m,1), the random variables (P,Em'i));.:l___, are taken

independent and identically distributed.

Assumption B: The processes (P,El‘i))kﬂ’___, cee ,(P,Ed'i))kﬂ,_‘_ are taken to be mu-

tually independent.

120

These two assumptions are of similar spirit as those in the approximate models
of [AbP86] and [GrH89]; note, however, that those models pertain to the problem of
multiple node-to-node communications of Chapter 5, which is considerably different

than the present routing problem.

In the analysis to follow, all the equalities to be derived are approximate (unless

otherwise specified), since they are based on the two assumptions above.

We define the random process (Ag))k=1,,,. as follows:

d
AVEB + Y P™Y. (6.11)
m=1
By)k=1,.. is (actually) a renewal process, and is independent of po _
, P ko k=1,
(P,gd")),m]’___. Thus, under our approximation, (Ay))k=1____ is taken as a renewal pro-
cess that assumes the distribution of a random variable A(Y). Since B, is a Poisson

random variable with mean), it follows from (6.9) and (6.11) that

d
E[AD =24 pgm.: (6.12)

m=1

and

d
var[A(i)] =+ Z Pgm,i(l — pgm,:)

m=1
d d
=A+p) gmi—pP" Y ghis (6.13)
m=1 m=1
where var[A(!)] denotes the variance of A). (We have also used the fact that P,Em'i)

is a Bernoulli process, for m = 1,...,d.) Using (6.10), we have

2[(m—i) modd] _ 1

d d
ng,izz od _1

m=1 m=1

R d

— 2[(m—i) modd]
d

1 d

— 21n—1 _
d

=1_2d_1_ (6.14)

121

AR W = BT W= EWSArewt a g * g mt mn wesem cn em o v e e e o

This together with (6.12), implies that

; _ d
E[A()]=/\+p(1—ﬁ)=p, (6.15)
where we have also used the fact p =)\%——1. This result is actually true and could have
been taken for granted, because E[A()] is the average traffic rate for arc (z,z @ e;),
which equals p. Furthermore, using (6.10) and reasoning as in proving (6.14), it follows

(after some algebra) that

a 1 1
2 d d
E = (4 -1)-2(2* -1] ;
m=1
this together with (6.13) and (6.14) implies that

var[A()] = p — p? d+ %(4" —1)—2(2% - 1)] : (6.16)

=i
G717
Furthermore, combining (6.11) with (6.8), we obtain
YO = 1t + 49 fork =1,... (6.17)

Since the arrival process (AS:));.:I,,__ was taken as a renewal process, it follows from
(6.17) that (Yk(i))k=1,__, may be approximated by the process of the number of cus-
tomers in a discrete-time G/D/1 queue with unit service time. [Recall the definition
of this queueing system in §2.2.1, and compare (2.1) with (6.17).] Let D9 be the
average delay associated with this queue; as usual, D9 includes the “service” time

[i.e., the transmission time over arc (z,z @ e;)]. Using (2.3) in §2.1.2, we have

E[AD(A® _1)]
2E[AV](1 - E[A¥)])
var[A)] 4 (E[A)])? — E[A()]
2E[AG)](1 — E[AD)])
1 var[A()]
T 3E[AO)(1 = E[AO)])

DW =1+

T2

Combining this with (6.15) and (6.16), we obtain

p-1, 1

2 T3) (1—(2,::)2 [d+%(4“—1)—2(2"—1)]), fori=1,...,d. (6.18)

122

Note that the above expression is independent of 7, which is due to complete symmetry

among the d dimensions of the hypercube.

So far, we have derived an approximate expression for the average delay suffered by
a packet while waiting to cross an arc of the ith type. The overall delay of a packet will
be approximated with the delay suffered in the longest path; this path consists of d
arcs, one from each of the d hypercube dimensions. Thus, using (6.18) and taking also
the average synchronization time into account, we obtain the following approximate

formula for the average delay per packet:

d

Tzg+m(l—(2—d§1—)2[d+%(4“—1)—2(2"—1)])+ (6.19)

D[=

For d not being very small (say d > 10), the above formula may be simplified to
the following:

d d P 1 P
T'~-—+——-(1-Z)+==d+=+d ,
2+2(1—p)(3)+2 +2+ 3(1 —p)
Furthermore, for small p, we have
1 d
Td+-+—-p. 6.20
+5 e (6.20)

As will be seen below, the approximate formula (6.19) is in excellent agreement with the
simulation outcomes, for p < 0.3. This together with (6.20) supports the conjecture
that, for small p, there holds T ~ d + 1 + ©(d)p. Also notice that the right-hand
quantity in (6.19) is bounded from above by d + % + %, and thus satisfies the
“ideal” performance objective presented in §3.2.3; unfortunately, (6.19) is only an

approximation.

Next, we investigate the accuracy of (6.19). In Table 6.1, we compare the simulation
outcomes for the 8-dimensional hypercube with the estimate given by (6.19) for d = 8;
each of the simulation outcomes was obtained over a period of 5,000 slots. Clearly,
there is ezcellent agreement between the experimental results and the corresponding
approximate estimate for T, for values of p ranging from 0.05 to 0.3; for all such values
of p, the magnitude of the relative error is less than 2%. In fact, the agreement for
values of p < 0.25 is striking; in all simulations performed, the relative error did not

exceed 1% for p < 0.25. Unfortunately, the accuracy of the approximate formula (6.19)

123

d=38
p Simulation Approximation Relative Error
0.025 8.553 8.569 0.19%
0.050 8.620 8.641 0.24%
0.075 8.671 8.718 0.54%
0.100 8.763 8.799 0.41%
0.125 8.831 8.884 0.60%
0.150 8.950 8.974 0.27%
0.175 9.064 9.070 0.07%
0.200 9.165 9.172 0.08%
0.225 9.307 9.280 -0.29%
0.250 9.480 9.396 -0.89%
0.275 9.620 9.519 -1.05%
0.300 9.808 9.652 -1.59%
0.325 10.032 9.794 -2.37%
0.350 10.246 9.947 -2.92%
0.375 10.524 10.112 -3.91%
0.400 10.733 10.291 -4.12%
0.425 11.002 10.486 -4.69%
0.450 11.295 10.699 -5.28%
0.475 11.712 10.931 -6.67%
0.500 12.201 11.187 -8.31%
Table 6.1

deteriorates gradually for p > 0.3. In Table 6.2, we investigate the accuracy of the

approximate formula (6.19) for different values of the hypercube dimension d; again,

excellent agreement is observed for all d = 5,...,10 under moderately light traffic

(namely, for p = 0.1, p = 0.15 and p = 0.2). The experimental results of Table 6.2

were obtained over periods of 1,000 slots.

APPENDIX 6.A

In this appendix, we prove equation (6.10) in §6.4; this equation is as follows:

Idm,i =

2[(m—i) modd] _ 1

24 -1

(6.4.1)

Recall that g¢,,,; denotes the probability that a packet has to cross arc (z,z @ ;)

124

p=0.10
d Simulation Approximation Relative Error
5 5.659 5.696 0.65%
6 6.705 6.729 0.31%
7 7.729 7.763 0.44%
8 8.725 8.799 0.85%
9 9.806 9.835 0.30%
10 10.819 10.871 0.48%
p=0.15
d Simulation Approximation Relative Error
5 5.800 5.811 0.19%
6 6.844 6.863 0.28%
7 7.881 7.918" 0.47%
8 8.933 8.974 0.46%
9 10.043 10.031 -0.12%
10 11.091 11.089 -0.02%
p = 0.20
d Simulation Approximation Relative Error
5 5.894 5.940 0.78%
6 7.001 7.002 0.01%
7 8.102 8.092 -0.12%
8 9.177 9.172 -0.05%
9 10.227 10.253 0.25%
10 11.379 11.335 -0.39%
Table 6.2

given that it has to cross arc (z @ en,,) (*); note that, as implied by (6.4.1), g ; is
independent of z.

Clearly, we have g;; = 0, which agrees with (6.A4.1) for m = i. Henceforth, we
assume that m # i.

We consider a fixed packet, denoted by P. Let I'; be the event that P is a j-packet,

namely that P crosses the hypercube dimensions under the order j,(jmodd) +1,...,
[(7 +d—2)modd| + 1; see also §6.3.2. Also, let A} be the event that P has to cross

(*) The expression “the packet has to cross arc (z,z @ e;)” should be interpreted as

follows: “arc (z,z @ e;) belongs to the tree selected by the packet”.

125

arc (z,z @ e;). Using this notation, we have

d
gm,i = Pr[AF|AZ®m] =) "Pr{Af|T; and AZ®e]. Pr[[;|AZ®em] . (6.4.2)

m m
J=1

Furthermore, we have

Pr[AZ®em|L;] - Pr[T}]

Pr[[;|AZ®em] = . (6.4.3)

’ Sy Pr{Az®em (L)) - Pr(Ty]
There holds Pr[I'}] = % for I = 1,...,d, because each of the d permissible trees has an
a priori probability of i— to be selected by the fixed packet P. Using this, it follows

from (6.4.3) that
Pr[A7®em|Tj]

Yr L Pr[Az®em|ry]

Pr[[;|AZPem] = (6.4.4)

Notice now that an I-packet generated at node y will have to traverse arc (z,z®e,,)
if and only if it will reach node z prior to crossing the mth dimension (possibly allowing
for z = y); recalling the order under which I-packets cross the hypercube dimensions,

it is seen that this occurs if and only if one of the following holds:
(a) m<land z; = Ym, -+, 21-1 = Yi—1;
(b) m >l and zm = Ym, " *,24 = Ydy21 = Y1, "+, 21—1 = Yi—1, with an obvious inter-
pretation for [= 1.
For fixed values of z, | and m, the above condition holds for 2[(m—!)modd] {ifferent

nodes y. Since each node is a priori equiprobable to have generated the fixed packet

P, it follows that
2[(m—l) mod d]

9d
Applying this with z = = @ e,,, and using (6.4.4), we obtain

Pr[AZ Y] =

1—1) mo —7)mod

Pr[T,|AZ®¢n] — 2l(m—j)modd] /od _ 9[(m—j) mod d] (6.4.5)

J=m Z;i=] 2[(m—1) modd]/2d 2d — 1 ’

where we have used the fact Zle 2l(m—l)modd] _ Z;’zl 20-1 =24 _ 1,

Combining (6.4.2) with (6.4.5), we have
d .
9[(m—j) mod d]

Im,i = Z PI‘[A::IFJ and Af’?em]zd*_]_ (GAG)

7=1

126

Conditioning on the union of the events I'; and AZ®¢m is equivalent to conditioning
on the fact “the j-packet P has to cross arc (z @ €n,z)”. Given this fact, P has
to cross arc (z,z @ e;), with probability 1, if and only if it does not cross the ith
dimension prior to crossing the mth dimension; otherwise, the probability that P has
to cross (z,z @ e;) equals 0. Again, recalling the order under which j-packets cross
the hypercube dimensions, it is seen that P will cross arc (z,z @ e;) if and only if one
of the following holds: j < m < i,0ori < j <m,or m <1i < j. Based on the above

discussion, we consider different three cases:

Case m <1 < d: Using (6.4.6), we have

m 2[(m—j) mod d) d 2[(m—]) mod d]
P ol b b o it
, 29 — 1 |~ 2¢ — 1
j=1 Jj=i+1
1 m 1 d
_ m—j d+m—j
e DILAREE T D DI
1=1 J=1+1
1 .
— T (Zm —14+ 2d+m—z _ 2m)
1 d4+m—1
= 2d _ 1 (2 - 1) ’

which proves (6.4.1) for the present case, since [(m —i)mod d] = d + m — 1.

Case m <1 = d: Using (6.4.6), we have

™ ol(m—j)mod d] LA 1
=1

i=1

which proves (6.A4.1) for the present case, since [(m — i) mod d] = [(m — d) mod d] = m.

Case m > 1: Using (6.4.6), we have

T 9[(m—j)modd] 1 m) 1)
m 1: — — 2"‘—] o 27'".—1 _ 1 ,
gmi= D Ty -1 2 271)
j=it+1 7=1t+1

which obviously proves (6.4.1) for the present case.

The above three cases establish (6.4.1) for m # ¢; since (6.4.1) is trivially true for
m = 2, the proof is completed. Q.E.D.

127

7. Multiple Broadcasts
in the Hypercube —
Part II: Indirect Schemes

In this chapter, we continue with our analysis of the routing problem introduced in
Chapter 6; namely, the dynamic problem of multiple broadcasts in the hypercube. In
our previous analysis, we have established the performance ob Jjectives for the schemes
of interest and we have investigated the performance of several direct schemes. In
this chapter, we analyze the performance of an indirect scheme and discuss some
variations thereof; our indirect scheme will prove to be rather efficient with respect to

the performance objectives set in §6.2.3.
7.1 AN INDIRECT ROUTING SCHEME

7.1.1 Introduction

Consider the following simple routing scheme: Allpackets are sent to a specific node,

which broadcasts them along a spanning tree emanating from itself. By pipelining

128

successive broadcasts, it is seen that this scheme can route only one broadcast per
slot; thus, stability can be maintained only if A\2¢ < 1, or equivalently p < %(1 — Z—ﬂ)
Therefore, the boundary-value of the stability region is O(%). The reason for this
poor performance is that only a fraction % of the available hypercube arcs are used for

broadcasting the packets.

The above discussion leads to the following idea: We consider the d disjoint spanning
trees T ... T(4) introduced in [JoII89] (see §2.1.4). We assume that each packet
is sent to one of nodes ey, ..., eq; each root node e; broadcasts the packets it receives
along spanning tree 7(). If each of the d trees receives the same amount of traflic,
then, stability may possibly be maintained even for p = ©(1). A routing scheme of
this spirit is presented in the next subsection and analyzed thereafter. Since packets
are not broadcast directly by their respective origins, the scheme to be presented is

characterized as indirect, contrary to the schemes introduced in §6.3.

It will be established rigorously that the routing scheme to be analyzed is stable for
all p < 2(1 — 55) ~ 2, while it satisfies T ~ 3d+1 + 2p for small p. Thus, this scheme
meets the performance ob jectives set in §6.2.3. It will also be seen to be deadlock-free
when implemented with ©(d) buffer capacity per node. In addition to the analysis, we
discuss potential methods for devising even better indirect routing schemes, and we
present some related open problems. Finally, in §7.4, we compare the efficient direct

and indirect schemes.
7.1.2 The Rules of the Routing Scheme

In what follows, we present the set of rules for routing the packets. Rules A, B and
C are the main ones, and require that a packet is sent to the root of one of the trees
TM, ..., T from where it is actually broadcast; transmissions towards the roots
may only be performed every three slots, while the rest of the time is dedicated to
transmissions heading away from the roots. Rules D and E are only introduced for

analytical tractability.

Rule A: Each packet generated at some node selects the tree along which it
will be broadcast. Selection is randomized, with the only permissible trees being
T ..., T@; each of them is assigned an a priori probability %. Different packets

make their selections independently.

129

T a- - an e e

Rule B: Counsider a packet, originating at some node y, that has chosen tree 7(9),
This packet must be sent to the root e; of this tree, which will actually perform the
broadcast; the path to be followed is the reverse of the path from e; to y that is
contained in 7). That is, this packet will traverse the reverse of those arcs of 79
that lead from e; to y. Note that packets generated by the root nodes ey,...,eq also
follow Rules A and B, as well as the rules presented below. Thus, it may occur that a
packet generated by node e,, is sent to some other root e;, in order to be broadcast
along 70,

Rule C: Consider an arc (z, z@e;) belonging to 7(), while its reverse arc (z@®e;, z)
belongs to some other of the d disjoint trees, say to 7(™). Because of Rule B, it is
possible that some packet to be broadcast along 7(™) has to traverse arc (z, z@e;) while
heading towards the root node e,,; we impose the restriction that such an arc traversal

is permissible only every three slots. In order to make this rule more specific, we define

Codéf{t > 0:tmod3 = 0}, Cldéf{t >0:tmod3 =1} and Czdéf{t > 0:tmod3 = 2}.

Arc (z,z @ e;) may be traversed by packets that have selected tree 7() (wlere the
arc belongs) ouly during time slots in C; U C;. Moreover, this arc may be traversed
by packets that have selected tree 7(™) [where its reverse arc (z @ e;, z) belongs] only
during time slots in Co. Thus, every three slots, each of the d trees is reversed, and
all of its arcs point towards its root. Slots in the set Cy are actually used for sending
packets to the respective root nodes, while slots in the set C; U C; are used for the
broadcasts. As mentioned in §2.1.4, arcs of the form (0,e;) do not belong to any of

the d disjoint trees; these d arcs are only used during slots in Cy.

Rule D: Consider a packet generated at some node y that has selected tree 79 If
y is not a leaf of T(9) | then before the packet considers to cross the first arc of its path
to e;, it has to traverse one virtual arc located at node y (see Figure 7.1, for d = 3).
Such arcs may be traversed only during slots in Cy. It is assumed that packets to be
routed along different trees have to cross different virtual arcs, even if they have been
generated at the same node. It is straightforward that virtual arcs can be realized by

appropriately delaying packets in their respective origins.

Rule E: Every root node e; has a pair of buffers B; and B,. Consider a packet that
has selected tree 7(/); let node y be the origin of this packet. If y belongs to the largest
subtree Tl(j) of T() | then the packet will be placed in buffer By; if y belongs to any

130

subtree other than ’.Tl(j) (or if y = ej), then it will be placed in buffer B;; see Figure
7.1. (The notation for the d subtrees of 7(/) is similar to that introduced in §2.1.3.)
During slots ¢ + 1,t 4 2, with ¢ € Cy, root node e; broadcasts one packet from each of
buffers B; and B;. Which of the two packets will be broadcast first is determined by
tossing a fair coin. In the case where one of the two buffers is empty, only one packet
is broadcast; again, the slot when the broadcast will start is determined by tossing a

fair coin. Of course, if both By and B, are empty, then no further action is taken.

As already mentioned, Rules D and E are introduced for analytical tractability;
instead of commenting on them at this point, we proceed with the analysis of the
routing scheme, which will reveal the raison d’ étre for these rules. More discussion

on the proposed scheme is presented in §7.3.

virtual
are N 101 000 O ool 011
b R
actual N
-
o 00 0101 0110 0101T 111
f i ft

md 110
f f

Figure 7.1: Introducing the virtual arcs and buffers B; and B,
in 7 in the 3-cube.

131

7.2 PERFORMANCE ANALYSIS OF THE INDIRECT SCHEME

In this section, we analyze the performance of the indirect routing scheme introduced

in §7.1. First, we establish some technical results to be used in the analysis to follow.
7.2.1 Auxiliary Results v

First, we consider a tree 7 of n paths of the same length, with all paths having their
final arc in common. Packets arrive at the starting nodes sy, ..., s, of the paths and
exit only at the common end f (see Figure 7.2a); packets are stored in the intermediate
nodes of the tree (if necessary) and are forwarded as soon as possible. All packet
transmissions start at the beginning of slots and each of them lasts for one slot. We
claim that if we collapse all paths into a single path P (with the same length as before)
and we combine the arrival processes, then the departure process at node f will remain
the same (see Figure 7.2b). This result is proved in Lemma 7.1, and it is basically a

consequence of synchronization and pipelining.

Figure 7.2a: The tree T of paths. Figure 7.2b: The single path P.

In the context of the tree T of paths, we denote by A;(¢) the number of packets
that arrive at node s; just before the end of slot t. Moreover, we denote by F(t) the

number of packets that depart from node f at slot ¢; clearly, F(¢) equals either 0 or 1.

132

Sn

T n o O s

Figure 7.3 The simple case for Lemma 7.1.

In the context of the single path P, we define A(t) and F(t) in a similar way. All the
above processes are defined for ¢t = 0,...; both systems start operating at time ¢ = 0.

The result to be proved is as follows:

Lemma 7.1: If A(t) = 3.0, Ai(t) for t = 0,..., then F(t) = F(¢) for t =0,... m
Proof: First, we consider the case where all paths have length 2 (see Figure 7.3).
We denote by M(t) a binary variable that equals 1 if and only if there is some packet
buffered at node m of the tree 7 just before the end of slot ¢. The variable M(t) refers

to the single path P, and is defined in a similar way. Below, we prove that
F(t)=F(t) and B(t)= M(t), fort=0,... (7.1)

The proof will be done by induction on t.

Clearly, we have M(0) = M(0) = 0 and F(0) = F(0) = 0, which proves (7.1) for
t = 0. Next, we assume that the induction hypothesis holds for all ¢ € {0,...,t*};
based on this, we shall prove that it holds for ¢ = t* + 1, as well. Indeed, we have
F(t* +1) = M(t*), because a packet may depart from the tree 7 at the end of
slot * + 1 only if it were present at node m at the end of slot ¢*. Similarly, we
have F(t* + 1) = M(¢*). By the induction hypothesis, we have M(t*) = M(t*);
thus, it follows that F(¢* 4+ 1) = F(t* + 1), which establishes the first part of (7.1)
for t = t* + 1. There remains to show that M(t* + 1) = M(¢* + 1). We have
M(t* +1) = 1 if and only if some packets that arrived at the tree by the end of slot

133

" emn ARO[e - = e = e oawe g w ve g

t* have not departed by the end of slot ¢t* + 1. That is, we have M(¢* + 1) = 1 if
and only if E:;o S A > Z::,J'l F(t). Similarly, we have M(t* + 1) = 1 if and
only if 20 A(t) > Ti_t F(t). Recall now that A(t) = 7, Ay(t) for t = 0,...,
by assumption. Moreover, we have F(t) = F(t) for t = 0,...,t* (by the induction
hypothesis) and we have established that F(t* + 1) = F(¢* 4+ 1). Thus, it follows that
if M(t* 4+ 1) = 1 holds then M(¢* + 1) = 1 also holds, and vice versa. Clearly, this
implies that M(#* 4+ 1) = M(t* 4+ 1); the proof of (7.1) for t = t* + 1 is complete.
Now that the lemma has been established for the simple case in Figure 7.3, the

result is easily extended for the general case in Figure 7.2. It suffices to progressively

collapse the paths of the tree T, starting from the lowest level. Q.E.D.

Lemma 7.1 holds even if packets arrive according to some continuous time process,
provided that all packet transmissions start at the beginning of slots. Also, the lemma
still holds if packet transmissions can only start at the beginning of slots numbered
0,A,... and each transmission lasts for A slots. On the other hand, Lemma 7.1 does
not hold if some of the paths have different length than the others; nevertheless, we are
still able to prove an interesting result applying to such a case; this result is discussed

next.

We now consider a tree 7 consisting of n paths with possibly different lengths
li,...,1n; see Figure 7.4, where [; = 4 and [,, = 2. Again, new packets enter the tree
at the leaves and exit at the common end f. For each of the starting nodes s;,..., sy,
new packets are now assumed to arrive according to a Poisson processes with rate \;
arrivals at different starting nodes are mutually independent. Transmissions may only
start at the beginning of slots numbered 0, A, ..., and each of them lasts for A slots.
Let D denote the steady-state average delay per packet induced in the tree 7. Below,
we present the stability condition for 7 and the expression for D; these results are

proved in Appendix 7.A.
Lemma 7.2: The tree 7 of paths is a stable queueing system if and only if AnA < 1.

Moreover, in the stable case, the steady-state average delay D per packet is given as

follows:

- 3 AnA A &
D:Ab*mh;;“—“- .

Lemma 7.2 will be seen to be very useful in the subsequent analysis.

134

U —

. et NN verygm— s g e e =

Figure 7.4 The tree T of paths with different lengths.

7.2.2 The Condition for Stability

We begin with an observation to be used throughout the analysis. In particular, we
notice that packets routed along different trees do not interfere at all, in the following
sense: Two such packets will never attempt to traverse the same arc at the same time.
Indeed, if both packets are under broadcast, then they cannot collide, because they
have to traverse disjoint sets of arcs. (Recall that the d trees used for routing are
disjoint.) If both packets are heading towards the respective root nodes, again their
paths are disjoint. (Notice that the d disjoint trees remain disjoint after reversing
their arcs.) Even if these packets have been generated at the same node and are still
traversing the corresponding virtual arcs, they cannot collide, as guaranteed by Rule
D. Finally, if one of the packets is under broadcast and the other is heading towards
the corresponding root, then they may not both take a step at the same time, because
of Rule C.

Since packets routed along different trees do not interfere, we may analyze the
performance of the scheme separately for each tree. In fact, we have to consider only
one of them, because the d trees are isomorphic and are treated symmetrically by

the routing rules. Tor the rest of the analysis, we analyze the queueing phenomena

135

involving packets routed along 71,
First, we derive the condition for stability of the scheme:

Proposition 7.3: The indirect scheme under analysis is stable if and only if

p<§(1-l). (7.2)

Proof: Clearly, after a packet starts being broadcast, it does not encounter any addi-
tional contention, because successive broadcasts are pipelined. Thus, the traffic load
that can be accommodated by the scheme is determined exclusively by the processes
of packets departing from buffers By and B,. Due to Rule E, these two processes are
independent; hence, the stability region of the scheme coincides with the intersection

of the stability regions obtained by counsidering each of buffers B; and B,.

First, let us consider the set of all paths leading to buffer By of e;. Since these
paths originate from nodes in the largest subtree '1'1(1J of T, they have their final arc
in common [namely, arc (e; @ €1, €1)]; see Figure 7.1. Moreover, because of Rule C,
all transmissions in these paths take place every 3 slots; finally, due to the virtual arcs
added in the non-leaf nodes of 7{!) (see Rule D), all new packets are now generated
at “leaves”, each fed by a Poisson process with rate %. (Notice that, due to Rule D,
each non-leaf node of T7(!) is converted to a “leaf” hanging from a virtual arc.) These
properties of the set of paths leading to buffer B; allow us to apply Lemma 7.2 with
A =3, n =241 and with % instead of A\. (Recall that By is in charge of all packets
originating in the largest subtree T](l), which contains 29! nodes; see §2.1.3.) Thus,
the set of these paths is stable if and only if 332"_1 < 1; by the definition of p in (7.1),

this condition is equivalent to (7.2).

Next, we consider the process of packets departing from buffer B; of e;. The
paths leading to this buffer do not have their final arc in common. Nevertheless, the
process departing from B; is the same as if these paths were sharing their final arcs;
this is due to the fact that packets depart from B, one-by-one and every three slots
(because of Rule E), which would also hold if the paths leading to B, had their final
arc in common. Again, we may apply Lemma 7.2 with A = 3, n = 2¢-1 and with
% instead of A\. (Recall that all nodes that do not belong to subtree 7-1(1) send their
packets to buffer B,; since ’.T](l) contains 2¢~! nodes, there are 24~ nodes remaining,
including eq.) Thus, it follows that the set of paths leading to B, is stable if and only
if 3-3—2"_1 < 1, which is equivalent to (7.2).

136

U

So far, we have established that both sets of paths leading to buffers B; and B, are
stable if and only if (7.2) holds. Thus, as argued in the beginning of the proof, condition

(7.2) is necessary and suflicient for our routing scheme to be stable. Q.E.D.

7.2.3 Derivation of the Average Delay and the Average Queue-Size

Next, we derive the expression for the steady-state average delay T per packet under

our indirect scheme.

Proposition 7.4: The average delay T for the indirect scheme under analysis is given

as follows:
3p
2[%(1 - 21) - P]

Proof: The delay T' may be expressed as the sumn of two terms R and V, where R

T=3d+1+

is the average time for a packet to reach e; and exit from the corresponding buffer,
and V is the average additional timne until the packet’s broadcast is completed. As
already argued in the proof of Proposition 7.3, the set of paths leading to buffers B,
(resp. B3) of e satisfies the conditions of Lemma 7.2 with A = 3, n = 2¢-1 and with
A

5 instead of A; thus, the average time R, (resp. R;) elapsing until a packet exits from

B, (resp. B;) is given as follows:

241

3 332d4-1 3 (1)
= 3[5 + 2(1 - 3&2:!-1)] + 2d—1 Z =3, (7.3)
d i=1
and
d
3 35241 3 =
R2:3[§+2(1_332d_1)]+2d_1 Z;l,. _3, (7.4)

where lﬁj) is the llength of the ith path leading to buffer B; (for j = 1,2), with paths
numbered arbitrarily. Since each of buffers By and B; is in charge of broadcasting the
packets originating from 29! hypercube nodes, an arbitrary packet routed along 7!
is equally likely to be traveling in either of the two sets of paths. Thus, using (7.3)

and (7.4), we have

241 241

L 3 332" 3 (1) (2)
R=3(Ri+R) =32+ i _dggzd—l)] + 53[; o ; (] 3. (1)

137

v pegegge e eyl

291 4(1) 241 4(2) . . ’
Clearly, Y207 6/ + 21 L equals the sum of the Hamming distances H(y,e1) of

all nodes y from root ey plus a unit contribution per non-leaf node in T1): the latter

contribution accounts for the virtual arcs added by Rule D. We have

291

Y o) = 35(y) =

k=0

because there are (;:) nodes at Hamming distance k from each fixed node z; also note
that 7V has 29-! non-leaf nodes, because it is a completely unbalanced spanning tree
(see §2.1.3). Therefore, it follows from (7.5) that

3 33241

lh:q§+2ﬂ-3$%4)

3
| gzt 420 3

3 3p
2 202(1 — 3¢) — #l

where we have also used the definition of p, namely pdéf/\zj—d‘—l.

Once a packet exits from the corresponding buffer, the time required for its broad-
cast 1o be completed depends on the slot when the broadcast starts. Thus, if the
broadcast starts at a slot in Cy, then it is completed in time [g] +d — 1. If the broad-
cast starts at a slot in Cz, then it is completed in time Lg_l +d. Since both these events

occur with probability 1 (because of Rule E), it follows that

R L I

Recalling the definitions of R and V/, it is seen that

T-R+V .. (7.8)

The correction term —3 is due to the following fact: In estimating R, each packet is
considered as departing from Bj (or from B;) at some time (t + 3) € Co, while the
packet actually starts being broadcast either at time t + 1 or at ¢+ 2; thus, an average

of % slots per packet is counted in both R and V. The proof is completed by combining
(7.6), (7.7) and (7.8). Q.E.D.

It follows from Proposition 7.4 that, under light traffic, we have T~ 3d + 1 + %p.

Therefore, the delay induced by the scheme under analysis meets the objective set in

138

§6.2.3. It is also worth noting that the first-order term in T is ©(1)p, contrary to the
efficient direct scheme, for which the corresponding term was observed to be O(d)p
(see §6.5).

Next, we study the steady-state average queue-size Q per node. Under our indirect
scheme, the statistics of the queue-size at a node z depend on the position of z in
each of the d disjoint trees. (Note that there was no such asymmetry under the direct
schemes of §6.3.3.) For example, node 0 is a leaf in all d trees; hence, node 0 only
stores packets of its own, which implies that the queues built therein are relatively
short. In order to obtain an “overall” estimate of the sizes of the queues built in the
various nodes, we now define @ as =; of the average total number of packets stored in

the entire network. (The number of packets stored at each node is determined in the

same way as in the definition of Q in §6.4.) Below, we derive the expression for Q.

Proposition 7.5: There holds

3d 2¢4 -2 d 3 17 3
Q=""p +3p (—d+—+ 7 id) =

4724 1 221127 6 202(1-24)—p]

Proof: This proof is similar to that of Proposition 7.4. First, we consider only packets
that have chosen tree T(1). Let N be the average total number of such packets stored

in the network. By symmetry, we have

dN -
Q= TR (7.9)
Clearly, there holds
N =N, + Ny, (7.10)

where N, is the average total number of packets heading towards root e; (including
the ones already in buffers By and B;) and Ny is the average total number of stored
packets undergoing broadcast. Since successive broadcasts are pipelined, each non-
leaf node of TV stores (at each slot) at most one of the packets undergoing broadcast
along T, Each of the two buffers B; and B, is fed at a rate of 3%‘2"’—1 (see the proof
of Proposition 7.3); since these two buffers are served alternately (because of Rule
E), the steady-state probability that a non-leaf node (excluding e;) stores a packet

undergoing broadcast equals 332‘1‘1; root e; is excluded from the calculation of NNy,

139

o g eeg g v e F— TSI

because the packets stored there will be taken into account in the computation of N,.

Since T1) has 29~! non-leaf nodes, it follows from the above discussion that

A 24-1(24-1 —1
Ny = (2471 1) <332d—1) =3p éd —). (7.11)

On the other hand, applying Little’s formula, we have

A
N, = (332“) Ri + (3%2“) R, (7.12)

where each of the two terms accounts for the contribution of the sets of paths leading
to buffers By and B, respectively. Recall that R; (resp. R;) is the average time until
a packet exits from B, (resp. B;); see also the proof of Proposition 7.4. Using the
fact Ry + R; = 2R [see (7.5)] and (7.6), it follows from (7.12) that

A 2¢ 3 3p
N.=2 3——2""1)R=3 “d+3) 7.13
(3 ”2d—1(2 * *2{%(1—%:)—p1) (T13)

Notice, however, that in the above expression for V., a packet whose broadcast starts
at time (t+1) € C; is also considered as stored in the corresponding buffer at time ¢+ 2.
Therefore, with probability %, the topmost packet in buffer By (resp. B;) contributes
to N, an average of 2 instead of 1. (Notice that a packet stays at the top of the buffer
B,y or B; for only one “frame” of 3 slots.) Since B; (resp. B;) is non-empty at time
t € Cy with probability equal to its average total input rate (namely, 3%2‘1_]), it is seen
that the contribution of By (resp. B;) to N, was overestimated by %(3;’}-2‘1_1)(1 - %)
Therefore, the correct expression for N, is that of (7.13) reduced by 324-1. (This
correction is similar to that introduced at the end of the proof of Proposition 7.4.)
Thus, it follows from (7.13) that

24 (3 17 3p
N.=3 —d+ — .
P31 (2 % *2[%(1—2%)—,)1)

Combining this with (7.10) and (7.11), we obtain

2d-1(24-1 1) 24 (3 17 3p
N = 3p—- [2d4 = ;
ey P\ 3 Tt aEa o) — 4
this together with (7.9) proves the result. Q.E.D.

140

Proposition 7.5 implies that, for small p, we have Q ~ %ipg—::—i + 3p27d_—1(—§-d + %);

when d is not very small, this simplifies to Q ~ %“ -

7.3 DISCUSSION ON THE SCHEME — FURTHER RESULTS

Relatively to the complexity of our routing problem, the indirect scheme introduced
in §7.1.2 has proved to be rather tractable analytically. Since the d trees used for
routing are disjoint, Rules A, B and C resulted in the decoupling of packets that are
routed along different trees. Thus, queueing analysis within each of the d trees was done
separately, which was very convenient. Furthermore, due to Rule E, packets routed
along the same tree 7()) were split into two non-interfering classes; namely, the class
of packets originating in the largest subtree Tl(j), and the class of packets originating
elsewhere. Finally, by introducing the virtual arcs (Rule D), the performance measures
of each of the two classes were derived by means of Lemma 7.2, which proved to be a

rather powerful result.

As already argued, our indirect scheme meets the performance objectives set in
§6.2.3. Though rather satisfactory, the stability properties of the scheme are (unfor-
tunately) non-optimal, since the scheme becomes unstable for p ~ % It is rather
unlikely that the load factor p would ever approach this stability limit in a practical
application (see §6.2.3); nevertheless, some further improvement of this upper limit
may be desirable, since it would also improve the delay properties for moderate loads.
In this section, we investigate potential methods for improving the stability properties
of the scheme. We also discuss the issue of deadlock prevention, when implementing

our indirect scheme with finite buffers.
7.3.1 Limitations on the Stability Properties

Under our indirect scheme, one third of the time (namely, all slots in Cy) is dedicated
to performing transmissions towards the roots ey, ..., eq; see Rule C. However, these
transmissions constitute a very small portion of those performed overall. Indeed,
consider a packet that is generated at some node y, which is at Hamming distance
k from root e;. If this packet selects to be routed along 7¢(7), then it will undertake
k +2?—1 transmissions; k of them are required for the packet to reach e; (due to Rule
B) and the rest 2¢ — 1 are undertaken during the broadcast performed by the root €j.

In fact, k of the transmissions heading away from the root are redundant, because they

141

bring the packet to nodes that have already received it.

The above discussion seems to suggest that Rule B and especially Rule C result in
a considerable decrease of the maximum load factor that can be accommodated by the

routing scheme. However, this claim is not correct, as proved below.

Proposition 7.6: Consider a routing scheme that splits evenly the packets of each
individual node among the d trees 7(1),... T(4); each packet assigned to tree 7(9 is
only permitted to use the arcs of 7(9) together with their reverse arcs. Then, such a
sclieme may be stable only if

p< ;(1 _ %) . (7.14)

Proof: We fix some j € {1,...,d — 2}. We consider node e; @ e;j1;, which is the
neighbor of e; through the (5 + 1)st dimension; similarly, e; @ e;; is the neighbor of

ej+1 through the jth dimension.

In the context of tree 7(), the hypercube dimensions are crossed in the order
7+1,...,d,1,...,7; see §2.1.4. Therefore, the largest subtree Tl(j) is hanging from
node e;@e;;1. This implies that all packets originating at any node of T](j) and routed
along 77 have to traverse arc (ej @ ejt+1,€;5), in order to be received by root e;. Since
subtree T](j) contains 2¢4-1 nodes, these packets represent an average total demand for
224-1 transmissions over arc (e; ® e;11,€;) per time unit. (Recall that the packets of

each individual node are split evenly among the d trees.)

In the context of tree 7(+1), the hypercube dimensions are crossed in the order
J+2,...,d,1,...,7 + 1. Therefore, nodes e; ® e+ and e, comprise the second small-
est subtree Td(ﬂ'l), which is hanging node from e; @ ej1; node e; is a leaf. Clearly, all
packets generated at any node other than e; and routed along 7+ have to traverse
arc (€; @ e;11,€;), in order to be received by e;. These packets represent an average

total demand for 2(2¢ — 1) transmissions over arc (e; @ e; 1,€;) per time unit.
d J j+1,€5) P

Any routing scheme may be stable only if the average total demand per time unit for
transmissions over any fixed arc is smaller than unity. Considering arc (e; @ €41, €;),
it follows from the previous discussion that any routing scheme of the class specified

in the proposition may be stable only if

Ad—l A d
z Z(2d _ 1:
2 + =(1) <1;

142

s e e mor. . m — e

recalling the definition of p (namely pdéf)\zdd_l), it is seen that the inequality above is

equivalent to (7.14). Q.E.D.

Notice that the right-hand quantity in (7.2) is very close to that in (7.14), even for
moderately small values of d; e.g., for d = 8 they differ by 0.26%, while for d = 10
they differ by 0.065%. Thus, the stability region under our indirect scheme is nearly
optimnal over the class of schemes specified in Proposition 7.6; in fact, it is not known

whether the stability region given by (7.14) is attainable by any such scheme.

It should also be noted that, given Rules A and B, the choice of Rule C was not
“accidental”. Indeed, consider Rule C in its most general version, by assuming that
transmissions towards the roots are performed over K successive slots, while the broad-
casts are performed over L successive slots; it will be shown that K = 1 and L = 2
(which coincides with Rule C) constitutes the best choice. We focus on the packets
routed along tree 7(1). Since only L such packets may be broadcast every K + L slots,
it follows that stability may apply only if

32“’(1{ + L)< L; (7.15)

moreover, every A + L slots, only K packets generated in the largest subtree 7-1(1) may

be forwarded to root ey through arc (e; @ ey, e;); thus, the inequality

52*’—1(1(+L)< K

d
is also necessary for stability. This together with (7.15) implies that there should hold
A L 2K
Zod i . 7.1
y <mm{K+L’K+L} (7.16)

It is easily seen that the right-hand quantity in (7.16) is mazimized for L = 2K. Thus,
choosing K = 1 and L = 2 gives the most favorable potential stability region. This
stability region is actually attained by our scheme, because, for K = 2L, inequality
(7.18) coincides with the sufficient condition for stability (7.2).

7.3.2 Potential Methods for Improving the Stability Properties

In this subsection, we discuss some modifications in the rules of §7.1.2 that could
possibly result in improvement of the stability properties of the scheme; unfortunately,

most of the results to be presented are negative.

143

We shall be using the terminology input load of a subtree Ti(j) to denote the average
number of packets per slot that are generated at nodes of '];(j) and select to be routed
along 7). Under Rule A, the input load of Ti(j) equals %Zd_i, forz = 1,...,d,
because Ti(j) contains 2¢¢ nodes; see §2.1.3. Thus, there are large discrepancies in
the input load received by the various subtrees. This also became apparent in the
proof of Proposition 7.6; we showed there that the stability properties of our scheme
are limited by the bottlenecks created in the arcs from which the largest subtrees are
hanging.

The above discussion suggests the following potential improvement on the scheme:
If it were possible for all subtrees Tl(j), e ,'];(j) to receive the same (or approximately
the same) input load (for j = 1,...,d), then the throughput properties of the scheme
would improve significantly (*). In fact, if perfect balancing of the input load were
possible for all d trees, then the scheme would be stable for values of the load factor
close to %; this would be attained by dedicating (for each tree 7(9) one slot out
of every d + 2 to transmissions towards root e;, and the remaining d + 1 slots to

broadcasting one packet originating at each of the subtrees of 7/ and at ;. In the

proposition to follow, we show that this is not possible.

Proposition 7.7: It is not possible to split the input traffic in such a way that each
subtree receives O(x\fi—:) input load.]

Proof: The underlying idea of this proof is that there exist too many small subtrees.

Let :* = [2log, d]. Subtrees ’Z;(.j),... ,’111') contain a total of 24~ +1 _ 1 podes,
which is ©(fi-j) (Recall that Ti(j) contains 24~ nodes.) Therefore, the total input load
of the subtrees Ti(.j), e ,Td(j) together with the root e; is O(/\%;). This conclusion holds
for j = 1,...,d. Thus, the d(d — [2log, d] + 1) smallest subtrees of all d trees receive
a total input load of O(/\z;-). During each slot, a total of A2¢ packets (on the average)
are generated within the entire hypercube network. Thus, the total input load of the

remaining d(i* — 1) largest subtrees (T](j), . ,71(.121)j=1 s A2 — 0(/\%). Since

i* = [2log, d], it follows that some of these subtrees will receive an input load of
d
2\ 7ikg)- Q.E.D.

(*) In light of Proposition 7.6, this could occur only after modifying Rule A in such a

way that each node y is not confined to evenly split the packets it generates among
the d trees 71, ... T(d),

144

The above result is rather discouraging. Note, however, that Proposition 7.7 implies
that nearly perfect load balancing is not possible. On the other hand, it is conceivable
that some improvement on the throughput properties of the scheme could be attained
by a different kind of balancing. In particular, suppose that it is possible to partition
the various subtrees of each tree (including the root) in L classes and balance the

total input load per class. Then, by “serving” these classes in a round-robin mode, the
P P g)

L
L+1°

balancing corresponds to L = d+ 1, but this has already been proved to be impossible.

scheme would be stable for values of the load factor close to Note that perfect
Our indirect scheme balances the load between two classes. One class consists of the
largest subtree Tl(j) and the other consists of the remaining subtrees together with
the root e;. By Rule E, the two classes are served in a round-robin mode. It is an
open problem whether or not load balancing with more than two classes is feasible. A

negative result to be proved below suggests that this open problem is rather hard.

As already argued, load balancing with more than two classes can ouly be attained
if Rule A is modified; the most general form of a rule for splitting packets among the

d trees is as follows:

Rule A': Each node y splits its packets as dictated by Rule A, except for the fact
that tree 7() is assigned an a priori probability g;(y), with Z;':] gi(y) = 1.

Let us now consider a class of splitting rules to be referred to as localized. Under
such a rule, all packets generated at nodes within the same subtree Ti(j) assign the
same a priori probability to tree 7(4); hence the terminology localized. To clarify this
definition, let ¢;(y) denote the index of the subtree of 71 where node y belongs; that
is, there holds ¢;(y) =1if y € ’Z;(j); a splitting rule such as Rule A’ is called localized
if ¢;(y) depends only on i;(y), for j = 1,...,d and for all nodes y. Such a rule would
be simpler to implement than one where some of the gj(y)’s depend on the entire
vector (i1(y),... ,2d(y)). Unfortunately, it appears that Rule A is the only localized

rule treating the underlying d trees symmetrically.

Proposition 7.8: Rule A is the only legitimate localized splitting rule that treats the
d trees TW ... T(d symmetrically. [
Proof: Clearly, all nodes y belonging to the same subtree Ti(j) satisfy ¢;(y) = ri,
where 7; depends neither on y nor on j (because of symmetry among the d trees).

Below, we show that r; = ¢1‘i for : = 1,...,d, which implies that Rule A is the only

145

legitimate rule of the specified type.

Since the jth dimension is the last to be crossed in a path of 7(9) (see §2.1.4), node
0 is a leaf of this tree and constitutes the smallest subtree ’.Td(j) ; this property applies
for ;j = 1,...,d. Thus, using the fact Z;l___l g;(0) = 1, we obtain ry = %. A similar
argument shows that node (1,...,1) belongs to TI(J) for j = 1,...,d; this immediately

proves that r; = %.

There remains to show that r; = % for + = 2,...,d — 1; the proof will be done by
induction on . We assume that r; = .- = r;_; = %i for some ¢ € {2,...,d - 1};
based on this, we show that r; = %. (The fact r; = ﬁ has already been proved.) We
denote by Z the node with the following binary identity: 2, =0 form =1,...,i -1,
and £, = 1 for m = i7,...,d. Recall now that the order of crossing the hypercube

dimensions in the paths of tree 7(7) is as follows:
(jmodd) +1,[(5 + 1)modd] + 1,...,[(j +d — 1) modd] + 1.

This implies that z € 7:(_13 fory=1,...,1 -2, while 2 € ’T](j) forj=:-1,...,d—-1,
and Z € '1;(‘1). Using also the fact Z?=] g;(2) =1, we obtain

i—2 d-1
Ti—j + Z rm+ri=1,
j=1 j=i—1
or equivalently
i—1
ri+(d—i+1l)ry+r=1;
j=2
this together with the induction hypothesis ry = -+ =r;_, = 7.1‘ implies that r; = %.
The proof of the result is now complete. Q.E.D.

Proposition 7.8 implies that Rule A is the only symmetric way of splitting the input
traffic so that all packets generated at nodes within the same subtree Ti(j) assign the
same a priori probability to tree 7(J). Therefore, load balancing with more than two
classes would definitely require that each of the parameters ¢;(y) depends on the entire
vector (i1(y),... ,24(y))- Based on this, we believe that the problem of further load
balancing is rather hard, if at all solvable. Moreover, because of the inherent imbalance
of the d disjoint spanning trees, we only expect a minimal improvement (if any) on

the stability region.

146

The above discussion motivates us to consider the problem of imbedding d balanced
disjoint spanning trees in the d-cube; recall that a spanning tree is characterized as
balanced if it has d subtrees of approximately the same size. If such an imbedding is
possible, then Rule A would remain as in §7.1.2; the input load received by the various
subtrees would automatically be balanced. Thus, stability would be maintained for all

p <1 —o0(1). The aforementioned imbedding problem is open.
7.3.3 Deadlock Prevention

So far in our analysis, we have assumed that each node has infinite buffer capacity.
Of course, in practical applications all nodes have finite buffer capacity, and buffer

overflow may often occur.
There are basically two approaches for dealing with buffer overflow at a node z:

(a) Packets waiting to cross an arc incoming to « are blocked, until there is empty space

available in the buffer of z.

(b) Packets continue to arrive at «, and they are dropped if there is no empty space in

the buffer of z.

Under the second approach, it is possible that packets are partly broadcast; that is,
it may occur that a packet is not received by all nodes. On the other hand, the first
approach runs the risk of a deadlock. Thus, it is rather important that our indirect
scheme is deadlock-free. This is due to the decoupling of packets routed along different
trees and to the fact that all simultaneous transmissions along the same tree are
pointing at the same “direction”. (That is, all packets are heading either towards
or away from the corresponding root.) Hence, there never arises a group of packets
blocking one another in a “cyclic” pattern. Therefore, even a buffer capacity of two
units per node and per tree 7() is sufficient to guarantee that no deadlock will ever
occur; one unit of buffer capacity is dedicated to packets heading towards root e,

while the other unit is dedicated to packets already undergoing broadcast along 79,

It follows from the above discussion that when implementing the indirect scheme
with buffer capacity ©(d) per node, all packets admitted in the network are guaranteed

- to be broadcast in finite time. In fact, the same statement applies even in the presence
of other packet transmissions (not necessarily broadcasts), provided that each of these

packets also is routed along one of the d disjoint trees and conforms to Rules B and C.

147

7.4 COMPARISON OF THE VARIOUS ROUTING SCHEMES

In this section, we briefly compare the indirect scheme analyzed in §§7.1-7.3 to the
efficient direct scheme of §§6.3-6.5 (namely, the non-idling scheme using d complete-
ly unbalanced spanning trees per node). Both of them exhibit satisfactory stability
properties; of course, the direct scheme is preferable with this respect, because it at-
tains the optimal stability region. Henceforth, we focus on the delay properties of the

schemes and on the sizes of the queues involved.

As argued in §6.5, the direct scheme appears to satisfy T' ~ d + % + gp for small p.
On the other hand, the indirect scheme satisfies T ~ 3d + 1 + %p for small p; thus, it is
outperformed by the direct scheme with respect to delay under light traffic. This is due
to the fact that the zero-order term in T is larger under the indirect scheme. Notice
however that the indirect scheme analyzed in this chapter exhibits idling, due to the
periodic alternation of the directions of the arcs; see Rule C of §7.1.2. Avoidance of this
idling phenomenon would improve the delay, especially in light traffic. In particular,
after eliminating Rule C from our indirect scheme, there holds lim, o, T = 3—:; in order

not to break continuity at this point, we prove this result in Appendix 7.B.

We lLiave performed simulation runs for the non-idling version of our indirect scheme;
in fact, the simulated scheme did not involve any redundant transmissions (see the
beginning of §7.3.1). Not surprisingly, it appeared that, for fixed p, the first-order
term in the delay T for this scheme increases with d; see Figure 7.5. This is due to
the fact that packets routed along different trees interfere in the non-idling version of
the scheme; in fact, each packet may now interfere with packets routed along all of the
other trees. Despite the decrease in the delay T' attained by eliminating idling, the

direct scheme is still preferable; see Figure 7.6.

Notice that both direct and indirect schemes (including the non-idling one) belong
to the oblivious class defined in §6.2.2. Thus, their delay properties are limited by
the lower bound of Proposition 6.2, namely T = (d + l—fp). It is an interesting
open question to devise an oblivious scheme for which T' = ©(d + 1%;)- Looking at
Proposition 7.4, it is seen that the indirect scheme would satisfy this property if it were
stable for all p < 1, instead of p < %(1 — 2]—4) Thus, if the imbedding of d balanced
disjoint trees is feasible (see the end of §7.3.2), then the corresponding delay may come

close to meeting the lower bound for oblivious schemes.

148

S5 3 e e Aamn a s te e et f e reame sy

18 f————+—+—+—
X p=0.15
14 1+ u p=0'20 _-'- —t
- 'H
1.2+ [3 -1
a 1.0+ ‘."' /,% —
— ¥ -
[} 1 Lt -~ * .
e 08 o -7 ,
-~ A
0.6-_ .. /%’ .,-‘... T
-~ 'A
-
0.4 1 ¥ A —]
A A
0.2+ : o
0.0 | | | | —
4 5 6 7 8 9 10 11
d

Figure 7.5: The first-order term in the delay induced by the non-idling version

of the indirect routing scheme.

20 i] i i
A direct scheme
¥ indirect sch. (non-idl.)
- K~
-x- X
¥ =X
*

Tt .A..--A-"“""A -1
5 - —
0 | | | |
0.0 0.1 0.2 0.3 0.4

P

Figure 7.6: Comparing the delay induced by the two schemnes, for d = 8.

149

PR B et ———— = -

20— ———+——+
A
181 A directscheme —
X indirect sch. (non-idl.)
&
161 . .
%
S 14t A _
A.' ,/
¥
124~ _ . _
Lt 7
A%
l. /
10l 3 _
A -
X
0.8 | [| | ' |
4 5 6 7 8 9 10 11
d

Figure 7.7: Comparing the average queue-size) per node

under the two schemes, for p = 0.30.

Next, we compare the values of the average queue-size Q for the various schemmes;
the points for the indirect scheme of §7.1.2 were computed by using Proposition 7.5,
while the ones for the other two schemes were obtained experimentally. (Notice the
peculiar behavior of @ for the indirect scheme of §7.1.2; this is due to the non-dominant
term in the expression of Proposition 7.5, which is non-negligible for small values of
d.) As revealed by Figure 7.7, the non-idling version of the indirect scheme is the
most efficient one with respect to queue-sizes. It is worth noting that, for fixed P,
the queue-size () grows more slowly with d under the non-idling indirect scheme. In
order to make the comparison even more clear, we have also plotted the mazimum
queue-sizes M observed in the various simulation runs corresponding to Figure 7.7;
each simulation lasted for 1,000 slots. Again, the non-idling indirect scheme is superior

to the direct one; see Figure 7.8.

Finally, we discuss the issue of deadlock prevention, when implementing the routing
schemes with finite buffers. As proved in §7.3.3, the indirect scheme (in its original
version) is deadlock-free when implemented with ©(d) buffer capacity per node. Re-

garding the non-idling indirect scheme, again deadlocks can be prevented by dedicating

150

i i i i i i
131+ -1
A direct scheme
X indirect sch. (non-idl.) A
11+ A A —
S oL _
A x* *
7+ X X ¥ b3 —
A
5 | ! | | ! !

4 5 6 7 8 9 10 11

Figure 7.8: Comparing the maximum queue-size M (over all nodes)

under the two schemes, for p = 0.30.

(at each individual node) constant buffer capacity to packets routed along each tree
T(); packets heading towards root e; should have access to different buffers from those
used by packets traveling away from e;. Despite the contention among packets routed
along different trees, there never arises a group of packets blocking the buffer of one
another in a “cyclic” pattern. As for the direct scheme, deadlocks can be prevented
by using one of the standard techniques, such as that of “structured buffer pool” in-
troduced by Raubold and Haenle [RaH76]. According to this well-known technique,
the buffer of each node of the d-cube should be partitioned in several segments, with
the :th segment being accessible only to packets already having traversed i — 1 arcs.
Therefore, a buffer capacity of ©(d) per node is required to prevent deadlocks, both for
the direct and the non-idling indirect schemes. Thus, in principle, all of our schemes
can be made deadlock-free, even in the presence of other packet transmissions. Since
deadlock prevention techniques often result in degradation of the throughput, it is
not clear which technique is the most appropriate for each routing scheme. However,
it is expected that, under deadlock prevention, both the original and the non-idling
indirect schemes perform considerably better than the direct one, because they are

“inherently” deadlock-free. Further investigation of these issues exceeds the scope of

151

-

our research.

The conclusion drawn from the previous discussion is that the direct scheme is
preferable under light traffic (because it induces smaller delays) and under very heavy
traflic (because it maintains stability, unlike the indirect schemes). On the other hand,
the non-idling indirect scheme may be preferable under moderate traffic, because it
involves smaller queues. Finally, under moderate traffic, deadlock prevention is more

straightforward for the two indirect schemes.

APPENDIX 7.A

In this appendix, we prove Lemma 7.2 of §7.2.1, which refers to the tree 7 depicted
in Figure 7.4; recall that each of the leaves of 7 is fed by a Poisson process with rate
A; also, transmissions may only start at the beginning of slots numbered 0, A,...and

each of them lasts for A slots. The result to be established is as follows:

Lemma 7.2: The tree 7 of paths is a stable queueing system if and only if AnA < 1.
Moreover, in the stable case, the steady-state average delay D per packet is given as

follows:
- 3 AnA
D:A[E 1—/\11,A]+nzl_ "

Proof: First, notice that the average total number of packets generated per interval
of A slots equals AnA; since only one packet may depart from the tree during such an

interval, it follows that the condition AnA < 1 is necessary for stability.

We consider the tree 7 obtained from 7 by adding a tandem of I* —; incoming arcs
to each leaf s;, where = max{ly,...,ln}; thus, all paths of the new tree 7 have the
same length [*. For the tree T of Figure 7.4, we have {* = 4, and the corresponding
tree 7 coincides with the one of Figure 7.2a. The new tree 7 is assumed to operate
as T; that is, again transmissions may only start at the beginning of slots numbered

0,4,... and each of them lasts for A slots.

Furthermore, let us couple the arrivals in the two trees 7 and 7. A straightforward
inductive argument shows that the departure process from 7 is a delayed version of
that from 7; that is, the jth departure time in 7 is greater than (or equal to) the jth
departure time in 7, for j = 1,... (Notice that, for a single path such as that of Figure

7.2b, the departure process is delayed when the path is augmented.) Therefore, on

152

a sample-path basis, tree T contains at least as many packets as tree T; this implies

that if T is stable, then 7 is stable as well.

Notice now that we may apply Lemma 7.1 and collapse the paths of tree T, because
all of them have the same length. (Recall the comments on the validity of Lemma 7.1
in more general cases, following its proof in §7.2.1.) Thus, regarding its departure
process, tree 7 is equivalent to a tandem P of [* identical deterministic servers (each
with service time A) fed by a Poisson process with rate An; in all servers of this
tandem, service may only start at the beginning of slots numbered 0, A, ... Clearly,
no queueing takes place in the servers of tandem P ezcept for the first one. Thus,
P constitutes a stable queueing system if and only if its first server does so, namely
if and only if AnA < 1. Furtherinore, it is an immediate consequence of Lemma 7.1
that the total number of packets contained in tree 7 at any time ¢ is the same as that
in the context of tandem P. Hence, the stability condition for 7 coincides with that
for P; thus, T is stable if and only if AnA < 1. Using the conclusion of the previous
paragrapl, it follows that the original tree 7 is also stable if AnA < 1; this is the same
as the necessary stability condition of 7, which was derived in the beginning of the

proof. Henceforth, we assume that stability applies.

Next, consider a single path, such as the one presented in Figure 7.2b; assuiming
that the arrival process feeding this path is Poisson, it is obvious that the steady-
state statistics of the corresponding departure process do not depend on the length of
the path (provided that the path has non-zero length). Using this property, and a
straightforward inductive arguiment, the following result may be proved: At each non-
leafnode where streams of packets merge, the processes feeding the node have the same
steady-state statistics in both trees 7 and 7. Consider now an arc shared by packets
originating from multiple leaves; our previous conclusion implies that this arc induces
the same average delay per packet in both trees. Recall now how 7 was constructed
from the original tree 7. Observing also F igures 7.4 and 7.2, it is apparent that 7 can
be obtained from 7 by eliminating a tandem of {* —I; contention-free arcs for each leaf
si; the arcs eliminated should be among the ones traversed by the packets originating
at s; prior to meeting with packets generated elsewhere. We have already proved that
each arc shared by packets originating from multiple leaves induces the same average
delay in both trees. Hence, the average delay D per packet in the context of T equals

that induced in 7 (namely, D) reduced by the average time spent per packet in the

153

TR ST MW

g gy o

contention-free arcs that must eliminated from 7 (to yield 7). A packet originating at
leaf s; would spend A(I* —I;) time units in these arcs; since a typical packet is equally

likely to originate at any of the leaves sq,...,s, of 7, it follows that

p=p-2 Z(l* l). (7.4.1)

i=1

Notice now that, by the equivalence of tree 7 with tandem P, the two systems
induce the same steady-state delay D per packet. Tle first server of P operates as a
discrete-time Af/D/1 queue with synchronization (see §2.2.2); thus, the average delay
D, per packet induced by this server may be derived by applying (2.6) with An instead
of A. It follows that

D, = A[g + ﬁ] (7.4.2)
Since no queueing takes place in the rest of the servers of tandem P, we have
D =D, + A" -1);
this together with (7.4.2) implies that
D=A[g+ﬁ] FAU*—1).
Combining this with (7.4.1), we obtain the expression for D. Q.E.D.

APPENDIX 7.B

In this appendix, we prove the following result (mentioned in §7.4): After eliminat-

ing Rule C from our indirect scheme, there holds lim, o T = 37".

Indeed, focusing on a particular tree 7(9, let m(z) denote the maximum distance
between node & and any other node, when only arcs of 7(9) and its reverse are con-
sidered. Under the non-idling version of the indirect scheme, packets routed along

different trees interfere; nevertheless, it can be seen that

(7.B.1)

l\DII—‘

: 1
,E‘B%,T—TZ

154

PRt s npe g el e mert me 4 e et m e o - er b o

DR T T T

the right-hand quantity equals the average of the maximum propagation time per
packet, with the term % accounting for the average synchronization delay. For z € Tl(j) ,
there holds m(z) = H(z,e;)+d—1, because thereis a node in the second largest subtree
,1—2(1') at distance d — 1 from root ej; this follows from the construction of a completely
unbalanced spanning tree. Similarly, for = ¢ Tl(j), there holds m(z) = H(z,e;) + d,

because the largest subtree 7—1(1') has depth d. Since Tl(j) has 2¢-1 nodes, we have

291 291
Y mle) = (=102 +d2 + 3 H(z,e1) = (3d — 1)24°7, (7.B.2)
z=0 . z=0

where we have used the fact V‘Z S H(z,er) Ek 0 (:) = d2?-1. Combining (7.B.2)
with (7.B.1), it follows unmedlately that lim,_,o T’ = 32. Q.E.D.

155

TR 0CE W [e

.

g e e e weamey

8. Conclusion

In this section, we present a summary of this Ph.D. Thesis, and we discuss some

directions for further research.

8.1 SUMMARY OF THIS RESEARCH

Our research is focused on routing problems for message-passing parallel computers.
We analyzed several problems of communications among the various processors. Such
communications arise during the distributed solution of large numerical problems,
and they are performed through an underlying interconnection network. Most of our
analysis is related to the popular binary hypercube network; we also investigated more
general issues, and developed analytical tools that are applicable to other networks

too.
The routing problems of interest may be classified in two categories:

(a) Static problems, where all packets to be transmitted are available at the same time,
and the communication task is to be performed only once, and in the absence of

other packet transmissions.

156

G == L et ot ceg e am weeree e

(b) Dynamic problems, where packets are generated at random times, over an infinite

time-horizon; thus, several communication tasks may interfere with each other.

Static problems pertain to synchronous computation; in devising an algorithm for such
a problem, the primary objective is to attain fast completion of all transmissions in-
volved. On the contrary, dynamic problems pertain to certain models of asynchronous
computation where it is assumed that processors are not synchronized periodically.
Regarding dynamic problems, the objective is to devise routing schemes that make ef-
ficient use of the communication resources available (thus attaining high throughput),
while not introducing large queueing delays; these two performance criteria are often

in opposition with each other, and an appropriate compromise has to be made.

In our analysis, we considered routing problems from both categories. First, we
analyzed two static problems: The total exchange task in the hypercube, for which
we derived an unimprovable algorithm (with respect to its completion time); and the
task of simultaneous broadcasts by a subset of hypercube nodes, for which we derived
an efficient algorithm applying to all possible subsets of broadcasting nodes. However,
the main focus of our research was on dynamic routing problems. In particular, we
analyzed the problem of multiple node-to-node communications in the hypercube; we
proved that a simple greedy routing scheme has very good performance, thus resolving
an important open question of the routing literature. This scheme was analyzed by
means of a new approach, treating the hypercube as a queueing network with deter-
ministic servers; the various performance measures are expressed by simple formulae,
involving only the basic parameters of the problem. An interim proposition of the
analysis enabled the extension of the results to the butterfly and to other crossbar
networks. Of similar spirit was the approach used in the analysis of our second dy-
namic routing problem, namely that of multiple broadcasts in the hypercube; for this
we developed several efficient routing schemes. Even though this problem is rather
intractable analytically, a considerable part of the analysis is exact; at certain points,
however, we resorted to approximations and simulations. All of the aforementioned
routing algorithms and schemes can be easily implemented in a distributed fashion.
Also, all schemes considered for the dynamic problems are of the on-line type, meaning

that all routing decisions are made on the basis of past information only.

The field of routing in interconnection networks is rather extensive. Even though

157

considerable work has already been done, there still remain several interesting prob-
lems to be investigated; in the next subsection, we discuss some directions for further

research.

8.2 DIRECTIONS FOR FURTHER RESEARCH

Static routing problems have received extensive attention in the routing literature.
Numerous algorithms have been devised for a variety of communication tasks, under
several different models. Somewhat surprisingly, slightly different problems may have
entirely different solutions (even in the context of the same network), especially if
unimprovable algorithms are sought. Thus, there arises a need for a unified approach
to devising fast algorithms for static problems. Such approaches have already been
presented in the literature; however, none of them deals with the most general class
of tasks where each message is broadcast to a subset of processors. We believe that
analysis of such tasks (under a unified framework) constitutes an interesting direction

for further research.

Regarding the dynamic routing problems analyzed, certain related questions are
still open. Thus, for the problem of multiple node-to-node communications in the
hypercube, an important question is to investigate the performance of greedy schemes
other than the one we analyzed. Also, our greedy routing scheme has yet to be analyzed
under the assumption of finite buffer capacity. Finally, the analysis of adaptive schemes
such as deflection routing or adaptive shortest-path routing seems to constitute a rather
interesting as well as challenging class of open problems. As for the problem of dynamic
broadcasts in the hypercube, our approach fell short of investigating the performance
of a certain routing scheme that was observed to be rather efficient; further exact

analysis of this scheme is an interesting (yet hard) open question.

The literature on dynamic routing problems is somewhat limited, relatively to their
importance. The two dynamic problems analyzed in this Ph.D. Thesis constitute
special cases of communication problems arising in general purpose computation. In
this general context, it is often the case that packets received by a node influence
the generation of subsequent packets, as well as their lengths or their destinations.
In our opinion, analyzing such general problems seems to be a very interesting and

challenging direction for further research.

158

[AbP86)

[Ale82]

[BeG87]
[BeT89)]

[BGSTS7)

[BoH82j

[Bor87]

S T

References

S. Abraham and K. Padmanabhan, “Performance of the Direct Binary n-Cube
Network for Multiprocessors”, Proceedings of the 1986 International Conference on
Parallel Processing.

R. Aleliunas, “Randomized Parallel Communication”, Proceedings of the 1st ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 60-72.

D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall.

D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall.

C. Bouras, J. Garofalkis, P. Spirakis, and V. Triantafillou, “Queueing Delays in
Buffered Multistage Interconnection Networks”, Dept. of Computer Science, Tech-

nical Report 289, New York University.

A. Borodin and J.E. Hopcroft, “Routing, Merging and Sorting on Parallel Models
of Computation”, Proceedings of the 1jth Annual ACM Symposium on Theory of
Computing, pp. 338-344.

A.A. Borovkov, “Limit Theorems for Queueing Networks, Part I”, Theory Probab.
Appl., vol. 31, pp. 413-427.

159

[BOSTT91]

[Bru71]

[ChS86]

[DaS87]

[Ede91]

[Gal90]

[GrG36|

[GrH89]

[HaC37

[Hwa87]

[JoH89]

(Kle75]
(KoK77]

D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis, “Optimal
Communication Algorithms for Hypercubes”, J. Parallel Distrib. Comput., vol. 11,
pp. 263-275.

S.L. Brumelle, “Some Inequalities for Parallel-Server Queues”, Operations Research,
vol. 19, pp. 402-413.

Y. Chang and J. Simon, “Continuous Routing and Batch Routing on the Hyper-
cube”, Proceedings of the 5th ACM Symposium on Principles of Distributed Com-
puting, pp. 272-281.

W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in Multiprocessor In-
terconnection Networks”, IEEE Trans. Comput., vol. C-36, pp. 547-553.

A. Edelman, “Optimal Matrix Transposition and Bit Reversal on Hypercubes: All-
to-All Personalized Communication”, J. Parallel Distrib. Comput., vol. 11, pp.
328-331.

R.G. Gallager, “Discrete Stochastic Processes”, Course Notes, Dept. of Electrical

Engineering and Computer Science, M.I.T.

A.G. Greenberg and J. Goodman, “Sharp Approximate Models of Adaptive Routing

in Mesh Networks”, preliminary report.

A.G. Greenberg and B. Hajek, “Deflection Routing in Hypercube Networks”, pre-

print.

B. Hajek and R.L. Cruz, “Delay and Routing in Interconnection Networks”, In
A.R. Odoni, L. Bianco, and G. Szago (Eds.), Flow Control of Congested Networks,
Springer-Verlag.

K. Hwang, “Advanced Parallel Processing with Supercomputer Architectures”,
Proc. IEEE, vol. 75, pp. 1348-1378.

S.L. Johnsson and C.-T. Ho, “Optimum Broadcasting and Personalized Communi-
cation in Hypercubes”, IEEE Trans. Comput., vol. C-38, pp. 1249-1267.

L. Kleinrock, Queueing Systems, Vol. I: Theory, John Wiley.

H. Kobayashi and A.G. Konheim, “Queueing Models for Computer Communications
Systems Analysis”, IEEE Trans. Commun., vol. COM-25, pp. 2-29.

160

[LaF80]

[Lei90]
[LeL90]

[LeR38]

[LMRSS]

[MiC87]

(Min89]

[Pip84]

[RaH76]

[Ran87]

[Ros83]
(SaS85]

[StT91]

R.E. Ladner and M.I. Fischer, “Parallel Prefix Computation”, J. A CM, vol. 27, pp.
832-838.

F.T. Leighton, “Average Case of Greedy Routing Algorithms on Arrays”, preprint.

T. Leighton and C.E. Leiserson, “Theory of Parallel and VLSI Computation”, Lab-
oratory for Computer Science, Report LCS/RSS 6, M.I.T.

T. Leighton and S. Rao, “An Approximate Max-Flow Min-Cut Theorem for Uniform
Multicommodity Flow Problems with Applications to Approximation Algorithms”,
Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 422-431.

T. Leighton, B. Maggs, and S. Rao, “Universal Packet Routing Algorithms”, Pro-
ceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science,
pp. 256-269.

D. Mitra and R.A. Cieslak, “Randomized Parallel Communications on an Extension
of the Omega Network”, J. ACM, vol. 34, pp. 802-824.

S.E. Minzer, “Broadband ISDN and Asynchronous Transfer Mode”, IEEE Commu-
nications Magazine, vol. 27, pp. 17-57.

N. Pippenger, “Parallel Communication with Limited Buffers”, Proceedings of the

25th Annual IEEE Symposium on Foundations of Computer Science, pp. 127-136.
E. Raubold and J. Haenle, “A Method of Deadlock-Free Resource Allocation and

Flow Control in Packet Networks”, Proceedings of the 3rd International Conference

on Computer Communications, pp. 483-487.

A. Ranade, “How to Emulate Shared Memory”, Proceedings of the 28th Annual
IEEE Symposium on Foundations of Computer Science, pp. 185-194.

S.M. Ross, Stochastic Processes, John Wiley.

Y. Saad and M.H. Schultz, “Data Communication in Hypercubes”, Dept. of Com-
puter Sciences, Research Report YALEU/DCS/RR-428, Yale University.

G.D. Stamoulis and J.N. Tsitsiklis, “Optimal Distributed Policies for Choosing
Among Multiple Servers”, Report LIDS-P-2021, Laboratory for Information and
Decision Systems, M.I.T.

161

[Upf84]

[VaB81]

[VaB91]

[Val82]

[Val89]

[Var90]

[Wal88]

G- M e S My maa e - e R g

E. Upfal, “Efficient Schemes for Parallel Communication”, J. ACM, vol. 31, pp.
507-517.

L.G. Valiant and G.J. Brebner, “Universal Schemes for Parallel Communication”,
Proceedings of the 13th Annual ACM Symposium on Theory of Computing, pp.
263-277.

E.A. Varvarigos and D.P. Bertsekas, “New Optimal Broadcasting Algorithms for
Hypercube Networks”, preprint.

L.G. Valiant, “A Scheme for Fast Parallel Communication”, SIAM J. Comput., vol.
11, pp. 350-361.

L.G. Valiant, “General Purpose Parallel Architectures”, Report TR-07-1989, Aiken

Computation Laboratory, Harvard University.

E.A. Varvarigos, “Optimal Communication Algorithms for Multiprocessor Comput-
ers”, Report CICS-TH-192, Center for Intelligent Control Systems, M.I.T.

J. Walrand, An Introduction to Queueing Networks, Prentice-Hall.

162

