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ABSTRACT

A method has been formulated for the dynamic analysis of
axisymmetric pile groups by expressing the displacement
components as a Fourier expansion in the azimuth. The
method is then implemented in a previously developed
program for the analysis of cylindrical foundations
embedded in layered media, based on a finite element
formulation.

Numerical verification of the method is achieved by a
comparison with the analysis of a 4 x 4 pile group based
on three dimensional continuum theory. Analyses are
presented investigating the effects of embedment on the
dynamic behavior of pile groups. It is determined that
the dynamic stiffness for horizontal and torisonal
excitation increase substantially more than those for
vertical and rocking excitation, with embedment.
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CHAPTER 1 - INTRODUCTION

1.1 Background

The construction of nuclear power plants and

offshore structures in the past few decades has

generated a need to analyse piles and pile groups

subject to dynamic loading. This need has resulted

in a considerable amount of research.

Most of the research on pile foundations in

the past, has dealt with static behavior (installation

effects, ultimate load capacity and settlement, lateral

resistance and deflection). The theory of beams on

elastic foundations has been the most commonly used

method of analysis because of its simplicity, versatility

and the fact that it gives reasonable results when

 oN

adequate values are used for the coefficient of

subgrade reaction. More rigorous and advanced

solution schemes based on the application of Mindlin's

fundamental solution for a point load in the interior

of a semi-infinite elastic solid have been developed

by Poulos (11, 12 13) and Benerjee (2,3). These

studies have demonstrated some important factors on

the behavior of pile groups, such as the dependence

of pile group stiffness on the spacing of the piles,

their rigidity and length, the distribution of loads

on the cap, as well as the material properties of both
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the soil and piles.

More recent research has dealt with the dynamic

behavior of piles. While the earlier studies were

primarily focussed on the dynamic response of single

piles, there are now studies dealing with the behavior

of pile groups. Wolf and Von Arx (15) used an

axisymmetric finite element formulation to obtain

Green's functions for ring loads, which were then

used to form the soil flexibility matrix. Nogami

(9) used an analytical solution for the problem of

axisymmetric vibration in a uniform soil stratum

underlain by rigid bedrock, and later extended the

solution to layered soil strata 10). Waas and

Hartman (14)used the general methodology of Wolf

and Von Arx, and developed an efficient scheme for

the computation of the Green's functions for ring

loads in the analysis of an axisymmetric arrangement

of piles. Most recently, Kaynia ( 8) formulated the

problem using three-dimensional continuum theory.

Kaynia obtained results for a variety of pile-soil

configurations and verified the validity of an

approximate method of analysis for a situation

involving dynamic loads proposed by Poulos.
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These studies have resulted in a few general

conclusions about dynamic behavior of pile groups:

the behavior of pile groups depends very much on the

frequency; the spacing and number of piles have a

considerable effect on the dynamic stiffness, but

only a minor effect on lateral seismic response; and

the interaction effects are stronger for more flexible

soll media.

What is still missing is the analysis of pile

foundations with embedded pile rafts. All of the above

research deals only with pile foundations with rafts

at grade level. When the pile foundation has a raft

that is below the grade level, the embedment can have

a substantial effect on the stiffness of the pile group,

primarily because of the confining of the peripheral

piles due to the overburden.

Problem and Solution Approach

Consider the embedded foundation shown in figure

1.1 which is assumed to exhibit cylindrical symmetry.

The foundation may or may not be in contact with the

 Ll .2

surrounding soil; in addition, it is supported by a

group of floating or end bearing piles (of circular

cross section) in concentric arrangements (fig. 1.2).
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Figure 1.2 Concentric Pile Groups with

Displacement Components
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Within each ring, the piles are assumed to be identical

(in length, diameter and stiffness) and spaced at regular

intervals; however, the piles may change from ring to

ring. Following the seminal work by Waas (14), we

assume that the displacement components for the piles

in each ring may be described by Fourier series in the

azimuth, an assumption that parallels the techniques

ased for solids of revolution, and results in a very

efficient solution for the problem at hand.

This appears to be an eminently sound approximation,

for 1f the piles were standing alone (without soil) and

the pile cap were given a prescribed displacement or

rotation, the displacements along the length of the

piles would satisfy the above expansion exactly. On the

other hand, if the soil were considered alone, without

the piles, it would also satisfy such an expansion

because of its cylindrical geometry. In the combined

soil-pile configuration, however, this no longer holds

exactly, because the soll reactions are concentrated at

dgcrets poluie in the rings; nevertheless, if the

angular distance between the piles in each ring is not

large, one may replace the concentrated forces by

aquivalent distributed tractions along the ring that
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vary smoothly with the azimuth; this substitution,

in turn ensures the applicability of the expansion

proposed above to the problem of concentric pile

arrangements.

This thesis presents the full development of the

method along the lines described in the previous

paragraphs, and its implementation into a program

developed for the analysis of cylindrical foundations

embedded in layered media, based on a finite element

formulation. The approach is verified by using a

case presented by Kaynia for a 4 x 4 pile group, and

then the effect of embedment is investigated using a

s0il-pile system compatible with a nuclear containment

structure
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CHAPTER 2 - Formulation of Method

2.1 Piles in Cylindrical Coordinates (Waas' model)

Consider a ring of piles exhibiting double

symmetry and connected to a rigid pile cap (fig. 2.1).
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Fig.2.1 Pile Ring Configuration
(a) Ring layout (note that there
must exist double symmetry).
(b) and (c) sign convention for
displacements.
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Assume that, within the ring, all of the piles are

identical in their lengths, diameters and stiffnesses.

All displacements can be expressed in terms of

components about the x-axis. The two components are

"symmetric" and "antisymmetric" (see fig. 2.2 and 2.3).

The symmetric component of diplacements for any

pile in the ring can be expressed as a function of the

nominal diplacements:

po

al

"|Ug |

|u
Z

,) o

u,. cos n@’
Vg cos né

-ug sin né
- 1 |yy, Sin ne

u_ cos né
z

5. Sin no

4 (2.1)

where n represents the Fourier mode (which will be

either 0 or 1, see section 3.2).

In the same manner the antisymmetric component

of displacements for any pile in the ring can be

expressed as a function of the nominal displacements:
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Mur! Uu,. sin ne
Yo sin ne

ug cos né

Yy, cos né

u, sin né

17, cos nb,

Yo

Ug|
Yo!

ua
(2.2)

Similar expressions hold also for the forces:

Vo. COS née

Mg CoS no

“Vg sin no

-M.. sin no
V V_ cos né

7 7

| J | sin ne.
zJ Z 7

v,
 Mg
Vel

 MN
v,
M

2 a

2.2 Pile Element Stiffness Matrix

- . RB

= sin ne
Mg sin no

8 CoS nb
M.. cos no

v, sin ne

| cos nb7, ~

(2.3)

Consider now a pile element of length IL (fig.2.4).

The relationship between the forces and displacements is:

 A
Cc
a

Mg
40
r
b

| Mg

|

1

K
as

{ba

a

Yq
5

K | £bb 0|vs)
(2.42)
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where, for the sign convention used, the elements

(2.4p)

(2.4¢)

(2.44)

of

the stiffness matrix are:
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axial load on the pile element

length of pile element
modulus of elasticity of pile element

moment of inertia of pile cross section

shear modulus of pile element

area of pile cross section

shape factor relating gross area to

shear area ( A= 7/6 for circular cross

sections)
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These stiffnesses include bending and shear effects,

plus a term reflecting the geometric nonlinearity due

to the axial load. The appendix includes the derivation

of the stiffnesses.

Pile Element Consistent Mass Matrix

The consistent mass matrix for a beam element is

well known and need not be elaborated on here. The matrix

is given here for reference only, using the present sign

convention as presented in figure 2.4.

The complete consistent mass matrix is:

ryeVe
a

 Mg
b

b
Mg

=

Mab |

| a’
r

Mpa Mop [50Ve

£5

-

a

lea

we)

[

Moa Man |

Myo My |

Ug)
- a

Yop
50

52.|
L

HEb
v, 2 (]zZ

..b1 2 | a,

—

 -—
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2,4 Pile Ring Stiffnesses and Masses

To find the stiffness matrix for a ring of pile

elements, define the transformation matrix, T, such

th PN
- +

*

J

2]3

Y

| NN

17
J

=

ty
;
vy

i

rr xVL &gt;)
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For the symmetric component of displacements, this is

u
+

Yeo
uQl

Yo
u

A

Vz|

cos no

nC3 “1 3

-gin ne

-91nN ne

cos né

-gin né6

Vo
ug|
-
-

Lt
7

| | 7)
Taking the stiffness equations, substitute equation

2 =~°

P = KU = KTU

and premultiply both sides by PT,
- MID ww Fermi =

Pond” TP = T°KTU = KU

w’"1ET 3

f
CL

(2.7)

— mT

K, T KT.

Since T is a diagonal matrix the elements of K,

are represented simply by

2
&gt;
-

A*)

The elements of the transformation matrix can have one

of three values
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cos n 21 mn
N

» 2m
S1ln n —|gmN

i.

. 2M

-S1ln n N m

Therefore, the summation term in equation 2.9 will

have one of three values

[WNY cos? n Zim
m=1

N

) sin n &amp;fn
m=1

N
* gin n 27 2m) inn NB cos n N

L m=1

C. i,

he J

where N is the number of piles in the ring For n=0

these terms reduce to

&gt; cos? (0) = N
m=1

N

) sin? (0) = 0
m=1

N

&gt; sin (0) cos (0) = 0
m=1
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For n=1 these terms reduce to

N

) cos? Zn = sz for N&gt;2
m=1

N

&gt; sin” 2 m = N/2
m=1

N

&gt; sin 2 m CoS Ba
m=1

for

m -_

 1\

0

 ~~ Zz

For convenience, the: following notation will be

used throughout the rest of the paper:

/
I
4

32 =

N

&gt; cos® n Elm =
m=1

N

) sin” n £0 =
m=1

N for n=0N/2 for n=1

{ for n=0
N/2 for n=1

Reordering the displacement components in the

stiffness equations 2.4, and modifying according to

equation 2.7 yields, for the symmetric component,

ga|;bv
_ a

Mg
b[m2  TT—

Kirv

A.

 |

Kym |

[u2]
ul
Ve

blve,

7 (2.10a)
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The same formulation holds for the mass matrix as

for the stiffness matrix, above. Formulating the mass

matrix in this way yields

5
Mg

[m2]

M77 [ i)
7
52)

2
"a Ka
\7

MVM

Myr Mm |)

[va
ve.

|M2

[
My My

ne &amp;,(ug)
4D0
Vp

|,.D
Yr

A rl
3

Myry My \Le

i]Zbv,
= cm 1/3 1/6 us

1/6 1/3 uy

a

H - 2b = S
M

Z

nr? 2 1
12 1 5 | os a

Jy
“D
Ys|

(2.11a)

(2.11b)

(2.11c)

(2.11c)

whee

r = radius of pile element

m = mass of pile element

and
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Myv = 20

- yl_-_mym = Myv 520
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156
sh 156
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—

| -22L  13L

-13L 221

 -—

uy? -312
-31% 417

Assembling n pile elements into the ring matrices

yields a simple matrix of a general form for either

atiffness or mass:

Pod” h x
R

Q fe (2.12)

Wllel

h = o2 for displacement vector

accereration vector

1
+L
= for displacement vector

acceleration vector

Q 1s a matrix of the form

[o
a)
(el

or

NY
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[a(1) B(1)
B(1) A(2) B(2)

B(2)
~N
ol

B(n)

R is of the form

"c(1) D(1)
-D(1) C(2) D(2)

_D(2)

Sa B(n) A(n+i )

R
D(n)

A

S is of the form

"E(1) F(1)
F(1) E(2) F(2)

-D(n) C(n+1).

F(2)

F(n)
|

Fn) E(n+1)
imi

For the stiffness matrix let

6P;
R= V.- 27,

them

S

T

L. P,
CM, Ti

= 7 V7 715

2E. TI. I
_ 171 1 ., 4
STL TEV C35 Ply
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2
oo Bil, Li, Bh

’ Ls 4 i 30

wn ire

EN

LILI3

"3
£4 = Li, al

1 12k, I; Gs As

A(1) = Ry

A(i) = Ry _,* Ry
A(nt1) = Ry

B(i) = -R.

c(1) = 5,

C(1) = S;- S;4
C(n+1) = -S,

D(i) = 8;

E(1) = 14

E(1) = T+ T,

E(n+t1) = 1

F(i) = Us

For the mass matrix let

Y

~
&gt;

I

120
420 1

-22
vo0 My

31.2
i20 Ms
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cher1

A(1) = Ry

A(i) = Ry* Ry
Anti) = R

n

B(1) = ae m;

c(1) = Sy

C(i) = S;-S;,
c(nt1) = -S

n

p(i) = 1303 pn,
L20 *

E(1) = T,

E(1) = T,+ 7, _,

E(n+tl) = Ta
F(i) = “JL: pn,

Loo T

Assembling the elements for axial translation yields a

matrix in the form of Q, above, where if vou let
~
&gt; B.A;

ray|

ther

A(1) = Sq

A(i) = S:+8:_4
A(n+l) = S,

B(i) = -8,

for stiffness. For mass let

7



28

1shen

A(1) = M,

AL) = M+ M,_,

A(n+l1) = M,

B(1) = M;/2 k

For the antisymmetric component of displacements

the formulation is the same, with only the c2 and S@

terms being reversed in the results.

The program BIAX, in which this formulation will be

implemented, works on up to three degrees of freedom.

In BIAX the degrees of freedom R, Z, and ©, correspond

to u,., u,, and uy in this formulation. Therefore, while

the assembling of the stiffness and mass matrices for

y, follows similarly to u, above, 1t is not presented
here.
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CHAPTER 3 - Implementation of Method

3.1 Introduction

This chapter discusses how the method formulated

in the previous chapter is implemented using the

program BIAX. The relevant aspects of the program are

presented first, then the extensions for the pile ring

formulation are discussed

3.2 Program BIAX

The program BIAX was developed by Kausel (5 )

for the analysis of cylindrical foundations embedded

in layered media. The program, which is based on a

finite element formulation, is capable of snslysing

problems of either external or seismic excitations,

and features a sophisticated transmitting boundary.

BIAX is based on a finite element formulation

for the dynamic analysis of axisymmetric foundations

resting on, and embedded in, viscoelastic soil layers

which in turn rest on a rigid halfspace of rock. The

program is capable of handling arbitrary non-axisymmetric

loads or displacements, using a Fourier expansion

method.

The geometry of the problem is broken into two

regions; a finite irregular region bounded by a
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em,
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Figure 3.1
Geometry of problem analysed with BIAX

semi-infinite layered far-field region (see fig. 3.1).

The irregular region is discretized by means of

pseudotridimensional toroidal finite elements of

arbitrary expansion order having three degrees of

freedom per nodal ring. The far field is represented

by a speclally designed consistent energy absorbing

boundary, where the dynamic stiffness matrix is

expanded in Fourier series about the axis, as are

the forces and displacements.

The finite element method performs a pseudo-

tridimensional analysis on solids of revolution by

dividing the problem into a number of uncoupled two

dimensional problems, and representing the unsymmetric

loading or displacements by an equivalent Fourier

series about the axis. The three dimensional
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nature of the problem is preserved by using three

degrees of freedom per nodal ring (u.. » Uy ug).
Since the Fourier series exhibits orthogonality,

each term in the loading series produces a displacement

set in the same Fourier mode as the prescribed loading

or displacements. If the prescribed loads (displacements)

do not vary too rapidly around the axis only a few terms

in the series may be sufficient for an accurate

Pepresewiailon. For the general motions under

consideration, BIAX uses only the first two modes in

the series. These are n=0 for vertical and torsional

excitation (axisymmetric modes), and n=1 for rocking

and swaying (plane-symmetric modes).

Extending BIAX for pile rings

When the stiffness and mass matricies for pile

elements are assembled for the pile ring, only two

groups of degrees of freedom are coupled; U4. with Ni

and ug with I. (see equation 2.12). The axial
translation and axial rotation terms are both

uncoupled from the other terms. Since BIAX uses only

three degrees of freedom (u,. » U, and ug), the other

three degrees of freedom in the formulation must be

condensed out. Since y, is uncoupled from the other

3.3
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displacements it can be left out of the final pile

ring matrices. As can be seen in equation 2.12, the

stiffness and mass matrices for Uy. with Yq and Ug with

Y,. are the same, and therefore both can be assembled

and have the stiffness matrix condensed as one set.

The resulting pile ring stiffness and mass matrices

to be assembled into the global matrices for the

finite element mesh are as follows:

‘or

Ve

+ 5%

Sy

“d
Ly

SE—

A

A

ei

[H-
Hf

re

for stiffnesses, and

12 ~ E In
~~

B
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-

Le

lm

4
E]

I&gt; ’

 1
-y

for masses, where

A' - is a ntl X ntl stiffness matrix resulting from

the condensation of the rotational degrees of

freedom from the stiffness matrix in equation

2.12

1 is the number of elements associated with the

pile ring
B ,C',and C', are matrices of the general form

aie B(1)B(1) A(2)

B(n)

B(n) A(n+1 |

where A is a vector of length n+l containing

the diagonal terms, and B is a vector of length

n containing the off diagonal terms. The elements
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of these vectors are specified in equation 2.12.

The result of this condensation is the following

uncoupled stiffness equations for the pile ring:
v — (2

FL C KU.
v= (2Pp, C KU,
RY,

Py = S KgUg

for the symmetric component, and

rlP/ S KU,
P' = $2 KU

zZ Zz
r 2

Py = C KoUg

for the antisymmetric component, where P' is the total

load component on the pile ring.

The loads used in the program BIAX are loads per

radian, so the stiffness equations must be modified to

reflect the proper load vector. If we let P be the

load per radian and P' be the total load on the pile ring,

the following relationships hold:

DOW
\ cos? noe de
0 a

2m
p | cos? ne de =

Zz nq
Pp!

2

2m &gt;
5 \ sin™ ne de =

0 ar

for the symmetric component, and
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2 5P, | sin” n® de =
nN

Pp!

2 5
P { sin”™ ne de =

Zz Jn
—)

7

Py
-2
| cos? noe de P3

for the antisymmetric component.

Nhen n=1 these relationships reduce to

P. = P/m

P= p/m
Py = PY/m

for both components, and with n=0

PF, = P/2

P, = P/2m
Pp = 0

for the symmetric component, and

P =0
r

P =0
Z

Pg = Py/2m
for the antisymmetric component.

Substituting these relationships into the stiffness

equations, and evaluating the constants ce and ge yvields:

For n=1

f

P
2

N
2 KU.

N
2m K.U,
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aPg = 27 KgUg

for both components, and for n=0

- NNP= 2w KpUp

 IPe 2m KU,

P. J

for the symmetric component, and

P =P 0

- N
Pg = 27 KgUg

for the antisymmetric component.

When n=0, the non-pile elements in BIAX also have

the Uo term of the stiffness equations uncoupled from
the other degrees of freedom, therefore we need not be

concerned about the symmetric and antisymmetric components

of displacements. We can then implement the stiffness

functions for the piles, in all cases, as

P. = Lku.

NP = —KTU
Z 27 ZZ

Py =
N
5+ KiUg

\ 7 1)



37

Where N is the number of piles in the ring and

Ke = Kp = Ky ©

These relationships are based on the terms c? and

S* which only hold as evaluated for N greater than two.

Since it is desirable to be able to use a single pile

in the center of the other concentric arrangements of

piles we must develop the stiffness function for this

special case.

The displacement components for a single pile at

the center of the cylindrical coordinate system are

 bp =u = ug =u,

a = u,

and the stiffness equations are

a

P. = K Up

P = KU,
Py = K. Ya

for n equal to one or zero. Converting the loads on the

pile to loads per radian yields
__1Pr "on XUp
__1P, =37% KU,
 1Pg 37 K.Ug

which is the same as equation 3.1 for N equal to one.
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Piles in Finite Element Mesh
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When the pile ring matrices are assembled with’

the soil and structural elements, the result is an increase

in the stiffness and mass of the soil (structural)

elements along the line of the pile (fig. 3.2). The

pile ring does not introduce any new nodes or result

in the separation of any soil elements. This makes it

easy to see that the stiffness of the pile ring, as

represented here, results in a continuous cylinder of

stiffening material with zero thickness and fon-zero

mass. This cylinder, along with the Fourier expansion

of the loads and displacements, constitutes the method

developed here.
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Chapter 4 - Results

L,1 Introduction

The objective of this chapter is to present numerical

results obtained with the formulation presented in Chapter

2, and to investigate the dynamic behavior of pile groups.

There are two quantities of interest in this study:

the dynamic stiffnesses of the pile groups corresponding

to horizontal, vertical, rocking and torsional modes

of vibration; and the seismic response of pile groups.

Results are presented to compare with those of Kaynia (8 )

to verify the validity of the formulation, then results

are presented to compare the behavior of embedded pile

foundations with non-embedded pile foundations.

The stiffnesses of the pile group, along with the

transfer function of the pile cap associated with a

seismic excitation, can be used, in the analysis of the

superstructure, to account for the foundation-structure

interaction effects. A conventional foundation-

structure interaction analysis consists of three steps:

1) the foundation stiffnesses (impedances) are computed,

to be used as "soll springs” ; 2) the motions of the

foundation with a rigid, massless superstructure are
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computed (kinematic interaction); 3) the base motions

computed in the kinematic interaction step are applied

to the structure mounted on the soil springs (inertial

interaction).

Throughout this chapter the following notation

is used for the material properties of the systems

being analyzed:

E = elasticity modulus

G== shear modulus

p = mass density

y = weight density

v = poisson ratio

 Bg = material damping

C= shear wave velocity
w = frequency of excitation

L = length of pile

d = diameter of pile

s (subscript) = refers to soil

(subscript) = refers to pile

4.2 Dynamic Stiffnesses of Pile Groups

4,2,1 Verification of Numerical Solution Scheme

In his report, Kaynia (8 ) has presented the dynamic

stiffness functions of various pile groups in a

viscoelastic halfspace. The 4 x 4 pile group can be
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Figure 4.1
Finite element mesh used

for 4 x 4 pile group.

taken and easily modified to more appropriately fit

the requirements of the formulation here, by relocating

the piles into two rings, as in figure 4.2, such that

the moment of inertia about the x-axis is the same as

the original group. This pile arrangement can then be

modelled using the finite element mesh as presented in

figure 4.1.

The following material and dimensional
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specifications are applied to match those used by Kaynia:

0.25 &amp; = ,00
~—

Pp
= = 0.70

D

EB
= = 10-2

D

S LZ: 2 3 15

Figures 4.3 through 4.6 present the dynamic

3stiffnesses of the pile group using both Kaynia's

results and the method presented here. The notation

used in these figures is described below:
wd

a ==

0 Cq

k. (a) = complex vertical stiffness of

the pile group

s(80) = complex swaying stiffness of

the pile group

kn(a,) = complex torsional stiffness

of the pile group

k.(a,) = complex rocking stiffness of

the pile group

&lt;&gt; (a,=0) = complex static vertical
stiffness of a single pile

&lt;&gt;(a_=0) = complex static horizontal

stiffness of a single pile
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Stiffness of 4 x 4
Pile Group
Solid Line - Kaynia
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N = total number of piles in the group

(=16)

These figures show a good correlation with the

results obtained using continuum theory by Kaynia, and

serve to verify the validity of the present approach.

4.2.2 Embedded versus Non-Embedded Pile Foundations

Two of the advantages of the method formulated

here are that a large number of piles may be analyzed

very efficiently and that an embedded pile foundation

may be analyzed. With these advantages in mind the

effect of embedment is investigated using a system

which is compatible with that of a nuclear containment

structure.

The finite element mesh analyzed here for the

embedded case is shown in figure 4.7 and for the non-

embedded case in 4.8 with the material properties listed

in table 4.1. Note that the non-embedded case 1s the same

as the embedded case, with the soil above the elevation

of the pile cap removed, and that the piles have pinned

connections to the pile cap. Figure 4.9 shows the

plan view of the pile layout. Note that the 185 piles

are represented in the finite element mesh as only six

pile rings.
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PROPERTY

C
.)

a

 H+
3

SOIL

125 pct
300 fps
0.40

350 ksf
980 ksf

PILE

150 pcf

0.40
350.x10° ksf
980.x10° ksf

5 ft.

Table 4.1

Material Properties

I
Pile Ring 1| 2 | 3 Cy 5 6
No. of piles in ring! 1 | 8 | 16 | 32 | 64 | 64

Table 4.2
Pile Ring Information

PE——

Mode of
Excitation

Vertical

Horizontal

Torsional

Rocking

Embedded Stiffness
(X,)

9.088 x 10°

3.439 x 10°

3.440 x 101%

5.70 x 101%

Non-embedded
Stiffness (K_)
8.226 x 10°

2.286 x 10°

2.109 x 101%

L.907 x 101%

Table 4.3
Static Stiffnesses
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The variation of stiffness with frequency are

presented for both embedded and non-embedded cases

in figures 4.10 through 4.13 for vertical, horizontal,

torsional and rocking stiffnesses, while the static

stiffnesses are presented in table 4.3.

The static values for vertical and rocking

stiffnesses increase by 10.5 and 17.0 percent,

respectively, as a result of the embedment, while the

corresponding increases for horizontal and torsional

stiffnesses are 50.4 and 63.3 percent, respectively.

This seems reasonable based on the idea of the confining

effect the overburden soil has on the peripheral piles.

The horizontal stiffnesses of the peripheral piles are

increased more than the vertical stiffnesses. Therefore,

the horizontal and torsional stiffnesses of the pile

group, which mobilize the horizontal stiffness of the

peripheral piles, increase more than the vertical

and rocking stiffnesses.

In figures 4.10 through 4.13 the stiffness

coefficients k and ¢ are:

k= Re |5a)
— aC a 1m | £2

where K() 1s the complex stiffness at frequency wu,

K(0) is the complex static stiffness and
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wR
a = =

0 Cq
where R is the radius of the cylindric foundation.

It is evident from these figures that the variation

of stiffness with frequency, for each mode of excitation,

is essentially the same for both embedded and non-

embedded pile foundations. It can be seen that the

real part (k) is generally slightly higher and the

complex part (c) is slightly smaller for the embedded

case than for the non-embedded case for each mode of

excltation.

It is important for the use of these values to

know that both the real (k) and complex (c) parts of

the stiffness are functions of the frequency of

excitation and the material damping, although the

effect of damping is usually neglected. The damping

effect could be accounted for using the correspondence

principle if necessary. The complex term in the

stiffness function (c) is related to the loss of

energy to the system as a result of travelling waves.

This effect is referred to as radiation damping.
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4,3 Seismic Response of Pile Groups

When determining the motion of the foundation

(kinematic interaction step of the foundation-structure

analysis) it is useful to look at the transfer function

for the acceleration of the pile cap. Figure 4.14

presents these transfer functions for the embedded and

non-embedded cases subject to a horizontal excitation

at the free surface, while figure 4.15 shows the phase

angle. It is obvious that for the unembedded case the

pile cap responds essentially the same as the free

surface, while the embedded case behaves differently,

filtering out some of the frequences around six cycles

per second but very little elsewhere. It may well be that

the transfer function for the embedded case is determined

more by the embedment than by the response of the pile

group. Therefore, any conclusions regarding the

response of embedded pile groups based on transfer

functions must be the result of further study.
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Chapter 5 - Conclusions

An approximate method of analysis has been developed

for the dynamic analysis of axisymmetric pile groups.

This method assumes that the displacement components

for the piles in each ring may be described by Fourier

series in the azimuth, an assumption that parallels

the techniques used for solids of revolution, and

results in a very efficient solution for the problem

at hand.

The formulation has been implemented into a

previously developed program for the analysis of

cylindrical foundations embedded in layered media,

based on a finite element formulation.

Verification of the numerical solution scheme was

achieved using a 4 x 4 pile group case presented by

Kaynia ( 8) who used three-dimensional continuum

theory. The agreement between the two methods was

quite good.
Dynamic analyses were performed on both an

embedded and non-embedded soil-pile group profile that is

compatible with that of a nuclear containment structure.

The system analyzed had 185 piles which were distributed

among six rings as an illustration of the efficiency of
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the approach. The analysis revealed that while the

embedded pile group had greater stiffness than the

non-embedded case, the variation of stiffness with

the frequency of excitation was essentially the same

with both cases. The horizontal and torsional

stiffness had a greater increase from the non-embedded

case to the embedded case than did the vertical and

rocking stiffnesses. This is due to the fact that

the overburden, in the embedded case, confines the

peripheral piles more to horizontal motions than to

vertical motions.
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APPENDIX A

Pile Element Stiffnesses

A.1 Introduction

For the implementation of

the method formulated in this

thesis it is desired to used the

complete stiffness matrix for a

pile element (fig. A.1)

including axial, bending and

shear effects, with consideration

given to nonlinear axial effects.

This appendix presents the

derivation of this complete

stiffness matrix using the

consistent geometric stiffness

matrix to account for the

a
Ad

7
a

u a aBel ¥ {v a
3

a

D
A

Z

4DB« D
3 yb bzr

b
Ya 3

Figure A.1

Pile Element

Sign Convention
aonlinear axial effect.

A.2 Stiffness Matrix

The combined general stiffness matrix for an element

equals the elastic stiffness matrix (ref. Clough and

Penzien)

K=K-K_
The elastic stiffness matrix, K, is derived below for

bending and shear effects. Later the consistent geometric
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stiffness matrix 1s presented, and the combined general

stiffness matrix is given in its final form.

A, Determination of Elastic Stiffness Matrix

From beam theory we know

dM = -Vdx

Integrating once, assuming the shear, V, is constant

ve get

M = -Vx + cy (A.1

Dividing the bending moment, M, by the flexural rigidity,

EI, and integrating yields

2
 ow = 1 =Vx1 = 4(2 Cop | +o, 7LA. 2)

The deflection of a pile or beam element considering both

shear and bending is given by

dydx + A Vx
TA

where A 1s a shape factor that depends on the geometry

of the cross section (A = 7/6 for circular cross sections).

Evaluating the integral results in a final expression

for the deflection

y
i Vx c, x”

ET =z + 5 + CoX + 2, T+
VX

C= (A.3)
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The stiffness coefficients for the pile element are

found by specifying certain boundary conditions on the

elements and solving equations A.1 through A.3 for

the three constants of integration. The stiffness

coefficients then correspond to the end forces required

to cause the given boundary conditions.

When evaluating the boundary value problems

following sign convention is used:

ao)! Sn

the

Condition 1:

u(o)(k- — a

Boundary Conditions:

y(0) = 0

dy (0) = ©

Constants of Integration:
JT~ —

ou Ld

“2 = CA = 0

+ Ju)

y(L) = 1

dy(L) = 0

End. Loads:

J = 10 + AL -1
12ET GA
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_ nf’ ant(0) Lier * &amp;)
3 -1

oy 2 Lf? Lar1(L) :( + +)

(A.4D)

‘A.4c)

Condition 2:

sorb — : TY = uw7

Boundary Conditions:

y(0) = 0

dy (0) = 0

y(L) = 0

dy (L) = 1

constants of Integration:
~ = EL , VL3 I, 5

2. = 0
—~-

tnd Loads:

J Lf? , a)
2 \12ET GA

ao)=ELFF(Lo+A)”L L |12EI GA

2 3 A -1 EI , L I’, ALi(L) = 5 +f [x GA

(A.5a)

(A.5Db)

(A.5c)

The elastic stiffness matrix for the pile element

using the sign convention presented in figure A.1 is as
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follows:
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Ro,Ty 2| Fp EI . L7o&gt; Vv T, TLV

and
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12ETI GA

Note that when the shear term in V' is removed the stiffness

matrix reduces to the well known stiffness matrix ignoring

shear deformations.

Consistent Geometric Stiffness Matrix

The geometric stiffness matrix provides consideration

for the force component acting in the same direction as

the original axis of the element, leading to additional

load components in the direction of the nodal displacements.

The element of the geometric stiffness matrix ko (1,3) is

equal to the force corresponding to degree of freedom 1

due to a unit displacement of degree of freedom Jj,

resulting from the axial force component in the element.

The consistent geometric stiffness matrix for the

pile element corresponds to equations A.6, where
5P
5L

A
eh

“aa
=P
10

L
30 FL

 il
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A.5 Combined General Stiffness Matrix

The final combined stiffness matrix equals the elastic

stiffness matrix minus the geometric stiffness matrix. The

final matrix is in the form of equations A.6 where

© sp “Lys 4 BP3 SV TG
-

Tr
HC1

2“Loy, P EL , LP.bb2 VT 10 TL "5 V3 ad

-V'+ 6p
5L

-L= V'+ 2
2 10

_ +7

Kab Kpa

a
TL

L_ 2
2 T 10
p—

ve— 5p
5L

$wr. &amp;2710

2BI, IP, 1 LT TL730FL

L v._BP5 VV ~ 70
=

ZzBEL , I,_4TL TLV - 30FL
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