

HEAT TRANSFER IN A BATCH

· FLUIDIZED BED

by

Richard T. Miskinis

Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Chemical Engineering at

the

Massachusetts Institute of Technology

1953

Signature of Author:

Signature of Thesis Supervisor:

Signature redacted

Signature redacted

487 Commonwealth Ave. Boston 15, Mass. May 26, 1953

Professor Earl B. Millard Secretary of the Faculty Massachusetts Institute of Technology Cambridge 39, Massachusetts

Dear Professor Millard:

In accordance with the regulations of the Faculty, the attached thesis entitled "Heat Transfer in a Batch Fluidized Bed" is hereby submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Chemical Engineering.

> Respectfully submitted, **Signature redacted**

Richard T. Miskinis

TABLE OF CONTENTS



## FIGURES



#### I. SUMMARY

Information om the transfer of heat within fluidized beds is necessary in their design for use in exothermic and endot hermic reactions. The primary burnose of this thesis hes been to investigate thermal effects within <sup>a</sup> fluidized bed.

The apparatus used in this work was constructed by the author and consisted of a 2 inch inside diameter column. It was heated at the bottom with an external heater and cooled at the top by a water jacket. The solid used was a mixture of No.'s 11, 13, 15, and 17 zlags beads.

The procedure consisted of imposing a vertical tempersture gradient across the column. When equilibrium had been reached the necsssarv measurements were taken and the conductivitv wes calculated using Fourier's law,  $Qw = k\Delta T/L$ . Studies of temperature profiles and temversture Fluctustions within the bed were also made.

The thermal conductivity was found to be independent of the distance between the heater and cooler sections, heat input to the bed, temperature drop across the test section and temperature level in the bed within the following renge of variables:

Distance between heater 14 inches to 26 inches and cooler

Heat input by heater 492 to 1340 BTU/hr.

 $\mathcal{A}$ 

Temperature drop across  $4.8$  to 23.0 $\degree$ F the test section Temperature at the test 116.1 to 275.7°F section bottom Superficisl air velocity 0.405 to 0.940 Ti./sec. Thermal conductivity 1700 to 11310 BTU/hr.-  $ft.$   $2F$ It was a function of the superficial air velocity through the bed and is represented by the following equation:

 $k = (V_B - 0.51)$  25000.

Vertical tempersture profiles within the bed were found to be linesr. Tempersture fluctuations were found to decrease as distance upward from the heater increased. Fluctuations in the temperature difference scross the test section were found to decresse with increasing air velocity.

 $\mathbb{R}$ 

#### I1, INTRODUCTION

A. General: Bince the use of fluidized beds in the catalytic cracking of petroleum in 1942, the applications of these beds in industrial ovrocesses has been stesdily increasing. They are now 21so used in the Fischer-Tropsch synthesis of hydrocarbons, the gasification of coal, and the distillation of shale oil. (5)

A fluidized bed is a suspension of finely divided solid particles in a fluidizing medium. The fluidizing medium may be either a gas or a liquid. In the following discussion, only <sup>a</sup> gas was used as the fluidizing medium.

There are four noticeable stages in the fluidization process. (6)

- L. At low gas velocities, there is no fluidization and the particles are supported by resting upon each other.
- 2. At somewhat higher air velocities, the quiescent stage is reached. Here the fluid velocity just balances the gravitational force on the particles, and they are supported by the fluidizing medium.
- 3. At still higher air velocities the turbulent stage is reached. This stage is characterized by rapid mixing of the solid particles. The mixing pattern 1s generally believed to consist of upward flow in the center of the column and downward flow along the walls. This stage is the

one ordinarily used in industrial processes.

4. Finally, at the highest air velocities, the particles sre lifted up and carried out of the bed by the air.

The primary advantage of fluidized beds is the excellent temverature control which can be obtained. This is possible because of the excellent mixing of the solids in the bed. These solids cerry most of the heat, resulting in a practically uniform temperature throughout the bed. Since most industrial processes have an optimum temperature at which they give a maximum yield, the importance of this close temperature control is readily recognizable.

Another advantage is the ease of removal or addition of solids from or to the bed. The solid particles may be used either as a catalyst for a reaction or as one of the resctants in <sup>2</sup> resction. When the resctants sre used as the solid particles, the removal of reaction oroducts from the bed 2nd the addition of fresh reactant is made easier. When the varticles are used as <sup>a</sup> catalyst in a reaction, addition of fresh catalyst and removal of spent catalyst is greatly simplified.

<sup>A</sup> third zdvantace is the high rate of heat transfer within <sup>a</sup> fluidized bed. This enshles rapid removal of heat from the bed in highly exothermic reactions, and rapid addition of heat to the bed for endothermic reactions.

One disadventage 1s possible back mixing of reaction products with the fresh resctants. This dilutes the reactants and lowers the yield from the maximum obtainable,

B. Object: Although fluidized beds have been in industrial use for approximately ten years, much of the data necessary for the design and analysis of these systems is still lacking. In particular, little work has been done in the field of internal heat transfer in fluidized beds. It is obvious that control of the temperature level and rate of heat flow is necessary for competent design.

In the past few years, several workers at M.I.T. have made studies of internal heat transfer in fluidized beds. It was the purpose of the author to try to substantiate the results of the previous workers and also to increase the number of varisbles studied by verying the distance between the heating and cooling elements. A second purpose was to obtain temperature fluctuation data to help make more clear the mixing patterns within these beds.

#### C. Previous Work:

1. Mixing Phenomena: The general psttern of solid mixing in fluldized beds has been shown to be vertical upward Flow in the center of the bed(core) and vertical downward flow along the bed walls(annulus). This pattern is modified by various amounts of cross mixing between the core and annulus.

Bart (2), by means of <sup>a</sup> tracer technique, investigated the mechanics of mixing. Using a three inch

diameter column, he initially charged the tracer Solid to the bottom half of the column and bulk solid to the other half. The fluidizing air was then turned on for a definite time interval, and was then shut off. Sections of the bed were then analyzed for the various amounts of tracer and bulk solid. He concluded that for column diameters of less than three inches and superficial air velocities of less than 1.5 feet per second, circulations followed the core 2nd annulus pattern. The velocities of the solids upward in the core was on the order of three times as great 2s the solid velocity downward in the snnulus. For the assumption of steady flow in a batch system, the amount of fluidized solid at a cross section must remein the seme. To account for this, he pronosed that either the cross-sectional sres of the annulus be three times the cross-sectional area of the core, or that the solid density in the annulus be three times the s0lid density in the core, or more likely, a combination of the two. He found that increases in air velocity resulted in a greater amount of side mixing probably due to turbulence, and that decreasing time of contact decreased net side mixing.

Carlsmith and Freund  $(3)$ , using silica gel nicrosvheres as the solid, found that at low velocities, core and annulus flow up the center and down the walls with side mixing between the two was most important. They also found that at lower air velocities,

6

rate of circulation increases with decreasing particle size and increasing air velocity. At higher air velocities the main effect of increased air velocity was to increase turbulence and side mixing. They state that the core to annulus area ratio is considerably less than one.

However, they found the core and annulus theory to be at best a crude approximation, dependent on three ouestionable assumbtions:

- 1. Constant solid velocity across the core.
- 2. Constant solid velocity scross the annulus,
- 3. Constant rate of side mixing between core and annulus.

2. Heat transfer: Trilling (9), found that heat transfer coefficients in fluidized beds were from <sup>2</sup> to <sup>150</sup> times larger than those of empty tubes or fixed beds with the same particle to tube diameter ratios at the same gas velocity. He suggested two possible reasons for this:

- I. Solid particle motion incresses the zas stream turbulence, eliminating core resistance and decreasing the thickness of the laminar film along the heat transfer surface.
- 2. The solid particles act as carriers of heat, transvorting it Doth radially and longitudinally throughout the bed.

He found that in <sup>211</sup> cases, the hest transfer coefficients increase with decreasing particle size. Also,

 $\subset$ 

at low solid concentrations, an increase in solid concentration generally increased heat transfer rates. Diameter of the containing vessel seemed to have no effect.

Bakal  $(1)$ , using a two inch inside diameter glass column with air as the fluidizing medium and No. <sup>13</sup> glass beads 2s the solid particles, found that the axial thermal conductivity of the fluidized bed increased with increasing superficial ges velocity. The column wes neated internally at the bottom and cooled at the top. He found k, the heat transfer coefficient to vary from 2750 to 10600 BTU/hr.-ft.- $\mathbf{F}$ . The heat transfer coefficient was calculated using Fourier's Law:

$$
\mathbb{Q}_{w^-} \text{ ka } \Delta_{\frac{T}{L}}
$$

where  $Q_w$  is the heat transfered in the bed from the nesting to the cooling section (heat carried out by the cooling water) in BTU/hr.

- <sup>A</sup> is the cross sectional area of the column in square feet.
- <sup>T</sup> <sup>18</sup> the temperature drop across the test section in  $\mathsf{P}_F$ .
- L is the length of the test section in feet.
- k is the heat transfer coefficient or thermal conductivity in BTU/hr.-ft. - °F.

McCord (8), used the same column as Bakal, again heating at the bottom and cooling at the top. Air was fluidizing medium and silica gel microspheres and glass beads were used as the solid particles. He found the thermal conductivity to be independent of the heat input to the bed, temperature level of the bed, temperature driving force through the bed, length of bed,. and weight of solids in the bed. He found that the thermal conductivity was a function of the superficial zas velocity, and recommended the use of the following equations.

For glass beads:  $k = 5700V_B^{-1.7}$  ( $V_B$  from 0.8 to 1.5 ft./sec.)

For microspheres:  $k = 7000V_B^{0.55}$  ( $V_B$  from 0.1 to  $0.6$  ft./sec.)

He found that the solids did not circulate in a smooth manner. For microspheres, they circulate up the center and down the sides, with considerable cross mixing. For glass beads under slugging conditions, violent cross mixing masks any circulation pattern. Taree mechanisms of solid mixing were pronosed:

- 1. 'he solids move up the center and down the sides in spurts.
- 2. The core of upflowing solids changes its radial position from time to time.
- Cross mixing occurs as slugs of solids transported from one redial position to another.

Camp and Eissenberg (4), used the same two inch inside dlameter glass column as Bakal and McCord, with the heater at the bottom and the cooler at the top. They used air as the fluidizing medium, and microspheres and No. <sup>13</sup> glass beads as the solid particles. The equations they arrived at are:

For glass beads:  $k = 6000V_B^2$ .1 For microspheres:  $k = 6900V_R^{0.38}$ 

They found that changing the length of the test section had no apparent effect on the vertical thermal conductivity.

Christensen  $(5)$ , using a three inch inside diameter glass column with a 29 inch test section, heater at the bottom and the cooler at the top, found the vertical thermal conductivity to be independent of the heat input to the bed, the temperature level of the bed, the temperature difference across the test section, and the amount of solid within the bed. It was <sup>a</sup> function of the superficial gas velocity. The equations he obtained for microspheres are:

 $k = 3500 + 4500 V_B$  (for  $V_B$  of 0.2 to 1.4 ft./sec.)

k =  $*500 + 1700 V_B$  (for  $V_B$  of 1.4 to 2.9 ft./sec.) He noted <sup>a</sup> discontinuity at 1.4 ft./sec., but made no sttempt to explain it. He found that vertical temperature profiles within the bed were linear.

D. Nature of the Work: The fluidized bed was <sup>a</sup> two inch inside diameter column with an external heater located at the bottom and a cooler located at the top. The fluidizing medium was air and the solid particles used were a mixture of No.'s 11, 13, 15, and 17 glass beads.

Two distances between the heater and cooler, 14 inches and 26 inches, were used. Temperature measurements were taken at the centerline of the bed. Vertical thermal conductivities have been calculated and plotted, and temperature fluctuation data has been plotted.

 $\frac{1}{2}$ 

#### IIT. APPARATUS

The apparatus used in this work (as shown in Fig. 1) was constructed by the author. It consisted of a two inch inside diameter column. The bottom calming section was 15 inches in height and was made of glass. It was vacked with cuarter inch glass beads to insure even distribution of the air. Above these beads was a <sup>200</sup> mesh screen to support the bed znd further distribute the incoming air. Before the air entered the calming section, it was psssed through <sup>a</sup> filter packed with glass wool to eliminate any entrained oil in the air. Also preceding the calming section were an orifice to measure sir flow rate and & thermometer to messure entrance air temperature. A pressure tap was located at the air orifice to record static air pressure at the orifice.

The heater section was 15 inches long and was constructed of copper tubing. It was wound with Nichrome resistance wire and insulated by mica sheet. A voltmeter and an smmeter were introduced into the eircult to measure the power input, and a slide wire resistance enabled variation of the power input.

Two test sections were used. Both were made of zlass, but one was 12 inches long and the other was 24 inches long. +hev were interchsngeable on the column and were fastened to the heater and cooler sections with metal sleeves.



The cooler section was made of copper, and was <sup>15</sup> inches long. It was well baffled to insure complete mixing of the coolinz water and minimize variations in the exit water temperature. An orifice was used to measure the water flow rate. Thermometers were placed at the entrance and exit of the cooling section to record entrance and. exit water temperatures.

14

The expanded sectlon was <sup>24</sup> inches in overall length, and consisted of 12 inches of glass column directly over the cooler and 12 more inches of the expander itself. The purpose of the expanded section was to drop the solids back into the bed and eliminate solid entrainment. <sup>A</sup> thermometer was located at the top of the expanded section to record exit air temperature. The air from the expended section was then sent to a evelone separator, to disengage any solid that left the expanded section. These solids were then returned to the bed through a tube.

The heater and cooler sections were interchangeable, that is, the hester could be removed and the cooler could be nlaced in the position occupied by the heater.

Pressure taps and thermocouple probes were located just below the cooling section and just above the hezting section. Iron-Constentsn thermocouple wire wes used. The temperatures were recorded by a standard

potentiometer and a photoelectric potentiometer.

The entire column was insulated with a two inch lsyer of fiberglass pipe. Glass wool was nlaced in the cracks in the fiberglass pipe. This helped to reduce heat losses from the column.

#### IV. PROCEDURE

WW

When it was desired to make a run, the bed was first filled with enough solid so that the level of the bed after the air was turned on was above the top of the cooling section. After this was done the heat input and the water flow rate were then set at the desired values. At least three hours was then allowed for the bed to reach equilibrium. Equilibrium was determined by taking temperature readings within the bed. When the temperature at a given position in the bed was found to be reproducible, equllibrium was assumed. Then the following measurements were taken:

- 1. Temperature at the test section bottom.
- 2. Temperature at the test section top.
- 3. Pressure drop across the air orifice.
- 4, Entrance and exit air temperatures.
- 5. Static pressure at the zir orifice.
- 5. Pressure drop across the water orifice.
- T. Entrance and exit water temperatures.
- 8. Power input to the heater.
- 3. Pressure at the top and bottom of the Lest section.

Temperatures in the test section were obtained by averaging the values for a number of readings at five second intervals. This was necessary because the temperature in the bed fluctuated constantly.

Pressure drops across the air orifice also had to be taken as the average of <sup>2</sup> number of readings because the values recorded by the manometer fluctuated constantly. An sttempt was made to damp these fluctuations by pinch-clamping the air line just before it entered the column. but fluctuations still persisted.

Tn runs <sup>1</sup> through 15 the distance between the heating and cooling sections was <sup>26</sup> inches, while in runs <sup>16</sup> through <sup>25</sup> it was <sup>14</sup> inches.

The vertical tempersture profiles were obtained by taking temperature readings at five different vertical points within the bed. These temperatures were all taken at the centerline by means of <sup>a</sup> movable central thermocourle which ran the Y.ength of the test section.

Fluctuations in the bed temperature were obtained at the bottom of the test section and at 14 inches above the test section bottom. The values were taken at the centerline at five second intervals 2nd resd from <sup>a</sup> standard potentiometer,

Fluctuations in the vertical temperature difference across the test section were also recorded. Thermocouples at the test section bottom and at 26 inches above the test section bottom, at the centerline of the bed, were blcked against each other. Resdings were taken at five second intervals with a photoelectric potentiometer which recorded temperature differences.

#### V.. RESULTS

The results of this investigation are presented graphically in Figures 2 through 7. A complete tabulation of data and results is included in the appendix.

In Figure 2, the thermal conductivity k for glass beads is plotted against the superficial air velocity through the column for the <sup>25</sup> runs. The glass beads were under slugging conditions in all these runs. In runs <sup>1</sup> through 15, the distance between the heating and cooling sections was 26 inches. In runs 16 through 25, the distance between the two sections was 14 inches. The superficial zir velocity was varied from 0.405 to 0.940 ft./sec. Temperatures st the bottom of the test section ranged from 116.1°F to 275.7°F. The water flow rate was varied from <sup>95</sup> oounds/hr. to 192 pounds/hr. <sup>A</sup> straight line has been fitted to the data. Its equation is:

## $k=(V_B - 0.51)$  25000

In figure 3, two vertical temperature profiles are presented. Both profiles were taken when the distance between the heater and the cooler was 26 inches. The temperatures were taken at five points in the bed, all points being at the bed centerline but at varying vertical positions.

In Figures 3 and 4, instantaneous temperature fluctuations have beenplotted. The readings were taken with <sup>a</sup> standard potentiometer at five second intervals, The average value of the potentiometer readings corresponds to the zero. ordinste on the graphs with deviations from the 2verage plotted as vositive and negative deflections. In both figures, the distance between the heater and cooler was <sup>14</sup> inches. The fluctuation data was taken at the bottom of the test section and at 14 inches above the bottom. In Figure 4, the superficial air velocity was 0.635 ft./sec., while in Figure 5 it was 0.775 ft./sec.

In Figures <sup>6</sup> and 7, fluctuations in the temperature difference across the test section have been clotted. In these runs, the distance between the heater and cooler was 26 inches. Thermocouple probes at the centerline position and with vertical positions at <sup>O</sup> inches and <sup>26</sup> inches above the test section bottom were bucked against each other. Readings were taken at five second intervals with a photoelectric potentiometer which measured temperature differences. The average value of the fluctuations corresponds to the zero ordinate on the graphs, with deviations {rom the average plotted as positive and negative deflections. The superficial air velocities used were 0.653, 0.706, 0.776 and 0.859 ft/sec.



 $\bigcap$ 





 $\overline{\mathcal{C}}$ 



W





 $\mathcal{D}$  $\infty$ 

#### Vi... DISCUSSION CF RESULTS

A. Quantitative Results: In this study, the conductivity has been calculated using Fourier's law and considering the fluidized bed <sup>28</sup> <sup>2</sup> s0lid rod slong which the heat is transferred. The heat carried out by the cooling water hes been considered as the heat transferred vertically upward through the test section. This is justified because heat balances show the heat carried out by the cooling water to be on the order of 85% of the heat input from the heater, with the exception of a few runs which show hizher heat loss to the surroundings. The bed temperatures used in the calculations were taken at the bed centerline.

The values of thermal conductivity have been plotted against the superficial air velocity in Figure.2. A straight line has been fitted to the data. Its equation is:

# $k = (V_B - 0.51)$  25000

If the two scattered points at the left are discarded, the maximum deviation from the equation is 36%, and the average deviation is 18%. The larsest deviations sre found at the lower air velocities. This may partly be due to the fact that the bed was slugging in <sup>211</sup> runs, and the readings on the alr orifice manomster fluctuated constantly. Consecuently, =n average pressure drop reading had to be teken. Errors in the manometer reading tend to make for greater errors in the superficial air velocities

at low velocities thena4 higher ones because of the smaller absolute manometer readings at the lower air velocities. Also, the thermal conductivity 1s <sup>a</sup> very strong function of the superficial air velocity here, and small changes in the superficial air velocity represent much larger changes in the conductivity.

 $\omega$ 

 $\overline{2}$ 

In this study, the thermal conductivity was a much stronger function of the superficial sir velocity than in the investigations of Camp and Eissenberg(4), and McCord (8). Both of these other studies used a 2 inch inside diameter column with No. 13 glass beads as the solid. In this study, a 2 inch inch diameter column was also used, but the solid particles were a mixture of No.'s 11, 13, 15, snd 17 zlass bosds with the mejority of the solids being in the smaller particle size range. Also, the other workers had an internal heater while in this study an external heater was used. The above differences in the experimental conditions may explain the variance between the results of this study and the previous studies.

Within the range of variables studied, the thermal conductivity has been found to be independent of the distance between the cooling 2nd heating sections, the heat input to the bed, temperature. drop across the test section, and the temperature level in the bed. The conductivity increases in a linear fashion with increasing superficial air velocity. The ranges of the variables

#### studied were:

Distance between heater l4inches and 26 inches cooler.

Temperature drop across 4.8 to 23.0°F the test section.

Temperature at the test 116.1 to 275.7<sup>2</sup>F section bottom.

Heat input by heater. 492 to 1340 BTU/hr.

superficial air velocity. 0.405 to 0.940 ft./sec. Thermal conductivity 1700 to 11810 BTU/hr.-ft.<sup>2</sup>F

B. Qualitative Results: Figure 3 shows the vertical position in inches of test sectlon plotted sgainst the temperature at the position in  $\bullet$ F. These temperatures were taken at the centerline for five different vertical positions within the bed. The distance between the heater and cooler was 26 inches. The temperature orofiles show a practically linear decrease as the distances above the heater increase.

<sup>A</sup> study of temperature fluctuetions in the bed at the bottom of the test section 2nd 2t <sup>14</sup> inches above the test section bottom is presented in Figures <sup>4</sup> and 5. The distance between the heater and cooler was 14 inches. The temperatures were taken only at the centerline. The average fluctustion decreases at the further distance from the heater. <sup>A</sup> probable explanation, assuming that the air is at the same temperature zs the solid, 1s that these fluctuations are due to variations in solid temperature. As the hotter solid rises un from the heater

there is local overheating of the solid which has been in contact with the heater walls. This solid' begins to mix with the colder solid returning from the cooler. This mixing is probably not very complete at the lower positions in the bed. and the greater difference in temperatures of the solids at these lower positions results in greater temperature Tluctustions as the solids come in contact with the thermocouple bead. As the height above the heater lncreases, the hotter and colder solids are more thoroughly mixed and are more likely to be at the same temperature for a given position in the bed, resulting in smaller tempersturs fluctuations.

In Figures 6 and 7, fluctuations in the tempersture difference across the 26 inch test section at five second intervals are presented. The thermocouples were located at the centerline. 26 inches apart in vertical distance. They were bucked against each other and the fluctustions were obtained from. <sup>a</sup> photoelectric potentiometer whieh read the temperature difference.

These fluctuations are shown for four different superficisl air velocities. The fluctuations in tenmpersture difference tend to decresse at incressing superficisl air velocities. Since the bed was under slugging conditions, this decrease in Tluctuations at higher sir velocities 1s probably due to greater turbulence in the bed at the higher air velocities. The solid is better mixed at higher air velocities and hence at a more

uniform temperature for any portion of the bed. Thus Individual temperatures tend to fluctuate less at any ziven point in the bed, and therefore the sum or difference of two fluctuating temperatures tends on the average to be smaller.

 $\mathbf{z} \in \mathbb{R}^{n \times n}$  , where  $\mathbf{z}$ 

#### VII. CONCLUSIONS

1. Within the limits of this work, the thermal conductivity has been found to be independent of the distance between the heating and cooling sections, the heat input to the bed, the temperature drop across the test section, and the temperature level in the bed. The thermal conductivity is a function of the superficial air velocity through the bed. The relation is represented by the equation:

 $k = (V_R - 0.51)$  25000

2. Vertical temperature profiles at the centerline of the bed are linear, the temperature decreasing with increasing distance from the heater.

3. Temperature at any point in the bed fluctuated continuously. These fluctuations decrease in size as the distance from the heating section is increased.

4. Fluctuations in the temperature difference across the test section decrease with increasing superficial air velocity in the bed.

 $\alpha$ 

#### VIIT, RECOMMENDATIONS

l.. Further work should be done using the same apparatus with the positions of the heater and cooler reversed to determine whet effect this has on the thermal conductivity.

?. Further work should be done using microspheres and different sizes of glass beads to determine what the effect of particle gize is on the thermal conductivity.

3. Work should be done with columng having different cross-sectional aress to determine the effect of cross-sectional area on the conductivity.

4, Additional vertical temperature profiles, and also radial temperature profiles, should be obtained.

5.. Additional work should be done on the study of temperature fluctuations within the bed.

6.. The experimental conditions, such as slze Alstribution of the solid perticles, should be varied in an effort to stop sluzging and obtain good flulidization within the bed.

7. The pressure taps to the bed should be modified to prevent their clogging up with solld during operatlon,

APPENDIX

 $\tilde{\mathcal{M}}$ 

 $\lambda$ 

 $\mu$ 

 $\mathcal{A}^{\mathcal{A}}$  , and  $\mathcal{A}^{\mathcal{A}}$ 

# APPENDIX A. NOMENCLATURE

 $\sim$ 



34



## Subscripts



- Refers to air orifice calibration conditions.
- Refers to insulation.
- Refers to heater,

 $\alpha$ 

 $\mathcal{L}^{\pm}$ 

- Refers to air orifice operating conditions.
- Refers to cooling water.

APPENDIX B. SAMPLE CALCULATIONS

1. Calculation of k (all figures based on run No. 8 )

$$
\mathbb{Q}_W = W_W \times 1.8 \times (TW_O - TW_1)
$$

- $= 156 \times 1.8 \times (26.3 24.0)$
- $= 640$  BTU/hr.
- $T = 9.39F$
- $L = 2.17$  ft.
- A = 0.0225 sq. ft.
- $k = \frac{Q_W}{A_X} \frac{X L}{X T} = \frac{640 \times 2.17}{0.0225 \times 9.3} = 6590 \text{ BTU/hr} 1.5 9 \text{ F}$

2. Calculation of superficial air velocity

 $\Delta h_a = 21.2$  centimeters water

 $W_c = 0.00183$  pound mols per minute(from Fig. 9)

$$
W_0 = 0.00183 \sqrt{\frac{P_0}{P_C} \times T_C}
$$
 = 0.00183  $\sqrt{\frac{93.5}{78.3} \times \frac{546}{547}}$ 

= 0.00200 pound mols per minute

AVB = 0.00200 x 359 x 760 x 695 = 1.056 ft<sup>3</sup>/min.

$$
V_B = \frac{1.056}{0.0225 \times 60} = 0.786
$$
 ft./sec.

3. Heat input by the heater,

 $Q_h = 3.41 \times E \times I = 3.41 \times 69 \times 3.0 = 720 \text{ BTU/hr.}$ 

APPENDIX C. ESTIMATION OF HEAT LOSS FROM THE COLUMN

All calculations based on run No. 8.

- 1. Heat input:  $Q_h = 3.41 \times E \times T = 720 \text{ BTU/hr.}$
- 2. Heat to cooler:  $Q_c = 1.8 \times W_W \times (TW_O T_{w1})$  $= 640$  BTU/hr.
- 3. Losses through test section and heater section:
	- A. Temperature of glass wool

inner =  $230^{\circ}$ F

outer  $= 80 \text{ }^{\circ} \text{F}$ 

B. Thermal conductivity of glass wool

 $k = 0.028$  BTU/hr.-ft.-°F

C. Area of heat transfer

 $A = 2\pi(Ri_0 + Ri_1)$  $=$  3.14 x (40/12) x (4/12 + 2/12) = 5.23 sq. ft. where Ri<sub>o</sub> is the outside radius of the insulation, Ri, is the inside radius of the insulation, and L is the length of the section under consideration.

D. Estimated heat losses from the column

 $\frac{Q_{\text{L}}}{L} = \frac{k \text{ A} \Delta T}{L} = \frac{0.028 \times 5.23 \times 150}{3.33} = 65 \text{ BTU/hr}.$ Another source of heat loss is in the wires outside the bed leading to the heater. Also, the heat loss through the insulation around the heater is probably greater than here indicated because the heater is probably at a temperature considerably higher than 2300F

# APPENDIX D. SUMMARY OF DATA AND RESULTS



 $38$ 

#### APPENDIX E. ORIFICE CALIBRATIONS

B57

The water orifice was calibrated by timing the discharge of <sup>a</sup> known wabght of water. Fig. <sup>8</sup> gives the results as pounds of water per hour plotted against pressure drop across the orifice in centimeters of mercury -

The air orifice was calibrated using the gasometer in room  $3 - 054$  at M. I. T. The pressure drop across the orifice in centimeters of water was plotted on logarithmic paper (Fig. 9) sgainst the flow rate of air in pound mols per minute. The superficial zir velocity through the bed can then be obtained by the following method:

obtained from the plot. Then,

wing method:  
\nWe is obtained f:  
\n
$$
W_0 = W_0 \sqrt{\frac{P_0}{P_0} \times T_0}
$$
\n
$$
P_0
$$
\nis the present

where  $P_0$  is the pressure at the orifice during operation in centimeters of mercury,

> P<sub>c</sub> is the pressure at the orifice during calibration in centimeters of mercury.

T<sub>o</sub> is the temperature at the orifice during operation in OR.

T<sub>c</sub> is the temperature at the orifice during calibration in  $^{\circ}$ R. Then,

 $AV_B = W_0 \times 359 \times 76.0 \times T_B$ PB x 460

where AV<sub>R</sub> is the volume of air flowing through the test

sotion in cubic feet per minute.

P<sub>B</sub> is the average bed pressure in centimeters of mercury.

 $T_B$  is the average bed temperature in  $\bullet$ R. Then

 $V_B = \frac{AV_B}{A}$ , giving the superficial air velocity through the bed.







### APPENDIX F. SUPPLEMENTARY INFORMATION

1. Solids: Screen analysis



The solids were a mixture of No.'s 11, 13, 15, and 17 glass beads.

2. Column:

The column diameter was 2.06 inches.

#### APPENDIX G. IITERATURE CITATIONS

- Bakzl, R., "Internal Heat Transfer in Fluidized 1. Beds", S.M. thesis, Chem. Eng., M.I.T., (1951)
- Bari, R., "Mixing of Fluldized Solids in Small  $2.$ Diameter Columns<sup>M</sup>, Sc.D. thesis, Chem. Eng., M.I.T., (1950)
- Carlsmith, R.S., and Freund, G.A., "Mechanisms  $\overline{3}$ . of Solid Mixing in Batch Fluidization", S.M. thesis, Chem. Eng., M.1.T., {1930)
- Camp, J.R., and Eissenberg, D.M., "Thermal Effects 4. Within <sup>a</sup> Batch Fluidized Red", S.B. thesis, Chen. Eng., M.I.T., (1952)
- Shristensen, D.A., "The apparent Thermal Conduct-5. lvity of <sup>2</sup> Batch Fluidized Bed", 5.B. thesis, Chem, Tnz., M.1.7., (1952)
- Gilliland, E.R., "Techniques of Contacting Fluids 6. and Solids", Can. Chem. Proc. Ind., Aug., (1950)
- leva, M., Welntraub, M., 2nd Grummer, M., "Hest . 7. Trensmission Throush Fluidized Beds-of Fine Particles", Chem. Eng. Prog., 45, 563-573, (1949)
- McCord, E.R., "Apparent Thermal Conductivity in 8. Batch Fluidized Beds", S.M. thesis, Chem. Eng., M.I.T., (1951)
- Trilline, C.A., "Hest Transfer Characteristics of  $9.$ Beds of Fluidized Solids", Sc.D. thesis, Chem. Eng., M.I.T., (1949)