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ABSTRACT
ESSAYS IN ECONOMIC THEORY

Michael Rothschild

Submitted to the Department of Economics on May 16, 1969 in partial
fulfillment of the requirement for the degree of Doctor of Philosophy.

This thesis consists of three self-contained but related essays.
The first examines the effect which a cost of changing its capital
stock has on the investment behavior of the firm. Cost of adjustment
functions have been used to justify the use of distributed lags in
econometric studies of investment., It 1s sometimes forgotten that this
justification depends on the convexity of the cost of adjustment function.
We argue that convexity is not a compelling assumption and show that
non-convex cost of adjustment functions have implications different from,
but no less interesting than, convex ones. In particular they provide a
justification for the familiar distinction between fixed and variable
factors of production,

In the second essay we attempt to answer the question: when 1s a
random variable Y riskier than a random variable X? We show that two
seemingly different approaches to this question, formalizing the
intuitive concept that the density of X has less weight in its tails
than that of Y and tracing the implications of the fact that risk
averters prefer X to Y, lead to the same criterion for determining when
Y is riskler than X. This criterion is not the same as that of mean-
variance analysis. That it is more appealing seems to us obvious; that
it is tractable, that is, that it can be used to give answers to ques-
tions of economic interest, 1s demonstrated.

In the final essay a model of firm behavior under conditions of
changing demand is presented. The distinction between fixed and variable
factors of production is used to examine the effects of changing demand
on firm actions. The difficulties of defining increased variability
in demand are discussed. For a special case, where these difficulties
are absent, it is shown that profits decrease as the variability of
demand increases, The effects of increasing variability of output on
costs of production and choice of technique are examined. Econometric
implications of the model are discussed briefly.

Thesis supervisor: Franklin M. Fisher

Title: Professor of Economics
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Chapter 1

ON THE COST OF ADJUSTMENT

Much of the current interest in cost of adjustment functions stems
from their ability to provide a rigorous theoretical justification for the
use of distributed lags in econometric studies of investment behavior.1
It is sometimes forgotten how critically this justification depends on the
assumption that the cost of adjustment function is convex. In this essay
we argue that other forms of the cost of adjustment function are plausible-
and examine the dependence of the firm's investment program on the nature of
the cost of adjustment function. In particular, we show that while convex
cost of adjustment functions lead to distributed lags, other forms will
cause the firm to operate with an unchanging capital stock in changing market
conditions -- market conditions which would, were there no cost to adjustment,
lead the firm to alter its capital stock. The firm adapts to changing
market conditions by adjusting its labor force. Thus, non-convex cost of
adjustment functions provide an explanation for the familiar distinction
between fixed and variable factors of production.

. The organization of this essay is as follows: In Section I we develop
a simple general model of the profit-maximising firm and demonstrate, under
rather restrictive assumptions, the existence of an optimal investment
program. Section II examines the relation between the cost of ad justment
function and the firm's investment program in the context of static ex-

pectations. Section III summarizes the results and suggests how they may

lsee e.g., [11, [2], (4] and [5].
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be extended. Most of these results may be found in Eisner and Strotz [1];
our model is somewhat different from theirs, our derivations somewhat more

rigorous, and our emphasis and interpretations very different.

I
THE MODEL
(a) Production
The firm produces output with a neoclassical production function
Q = Q(K,L) which is twice continuously differentiable, homogeneous of degree

one and concave,

(b) Revenue and Sales

The firm is a monopolist, facing market conditibns at time t, des-
cribed by a revenue function R(Q,t), which we assume to be bounded above
and strictly concave in Q for all t. Since the model allows no inventories,
sales are necessarily equal to or less than production. We could allow the
firm to sell less than it produces -- free disposal -- but since it always'
costs the firm something to produce output, nothing would be gained by

doing so.

LThis 1s not strictly true; if it is possible to produce output without
labor, the firm may find itself with an inherited capital stock -- which it
does not want to change because of adjustment costs -- which will produce by
itself more output than will maximize revenue. It is trivial to take care
of this case by allowing the firm to sell less than it produces. This is a
rare case and the gain of taking account of it is slight; the cost in terms
of complexity of notation is great and we ignore it,



(c) Labor
At time t the firm may hire as much labor, L, aé it desires at the

wage rate w(t). This wage represents the only cost of using labor.

(d) Quasi-rents

Let
G(K,t) = Max R(Q(K,L),t) - w(t)L.

120
Clearly G(K,t) represents the quasi-rents which the firm gains from having
a capital stock K in tire t. We now prove
Lemma 1: G(K,t) is a strictly concave function of K.
Proof: Suppressing the argument t, we must show that if

A~

K = J)K; + (1- 1)Kz for 0 < A < 1 and K; # Ko then
G(K) > AG(Ky) + (1 - A)G(K2) .
Let L, satisfy R(Q(K,Li)) = G(Ki) and Ti = Q(K,Li) for 1=1,2, and define

i
'f’by L= ALy + (1 -~ A)Ls. The first order conditions for maximization

require that the wage equal the marginal revenue product of labor, or that
] -
R (Ti)QZ(Ki :Li) = W.

Thus, if K; # Kz, T, # T2. Since Q 1s concave and R strictly concave, we
have

Q(K,I) 2 )Q(K;,Ly) + (1 - A)Q(Kz,Lz) = T.
and

R(T) > AR(Ty) + (1 = )\)R(T2).



However,
G(K) > R(T) - wL
> AR(TL) = wLy) + (1- A)(R(T2) - wLz)
= AG(Ky) + (1- N)G(K2)

as was to be shown.

(e) Capital

We assume that the firm rents capital, paying a charge of p(t)K

for the use of K units of capital in period t.

(f) Changes in the Capital Stock, the Cost of Adjustment

For simplicity we assume that there is no depreciation. It will be
apparent that dropping this assumption will complicate our results without
altering their Spirit.1 Changes in the capital stock come about through
investment or disinvestment, that is, capital grows or declines according
to the fule.

(L) K. =K

t t-1 + It'

The firm pays a cost every time it changes 1its capital stock, that is, there

is a cost of adjustment function C(I) with the following properties:

(2.1) Cc(0) =0
(2.11) C(I) >0 for I #0
(2.1i1) Sign C'(I) = Sign I for I # O.

C is zero if and only if I is zero, and is an increasing function of the

absolute value of I. (2.iii) also implies that C'(I) exists everywhere

LWe could introduce depreciation into the model without altering our results
at all, simply by defining the argument of the cost of adjustment function,
see (2) below, to be net rather than gross investment.



éxcept at 0. Since C has a minimum at O, iva'(O) exists, it is neces-
sarily equal to O.

If the cost of adjustment function is cohvex, that is, if as the
scale of investment, or disinvestment, increases in any one period, the
unit cost of investment, or disinvestment, increases, the firm will distri-
bute its response to a change in the optimal capital stock through several
periods, rather than concentrate it in one period, We prove this below
rigorously. Here we merely note that this result justifies use of distributed
lags in econometric work. For this reason, most of the interest in cost of
adjustment functions has centered on convex cost of adjustment functions,
The arguments given as to why the cost of adjustment function should be
convex are quite weak., Eisner and Strotz 11, p.77] give two: The first is
that as the firm increases its demand for investment goods in a single
period pressure will be put on the supply of investment goods whiéh will
lead to an increase in the price of investment goods. Our model is that of
a firm which is a price taker in factor markets; for it such considerations
are clearly inappropriate. The second argument is that there are '"increasing
costs associated with integrating new equipment into a going concern:
reorganizing production lines, training workers, etc." This is simply an
assertion, and hardly a compelling one. Decreasing costs are just as plausible
as increasing costs. Eisner and Strotz' examples will do as well as any to
demonstrate this point. No reason is seen why training necessarily entails
increasing costs. Training involves the use of information (once one has
decided how to train one worker, one has in effect decided how to train any

number of them), which is a classic cause of decreasing costs, Furthermore,



the process is subject to some indivisibilities, It requires at least

one teacher to train one worker. Presumably no more teachers are required
to train two or three workers. Although there may be practical limits on
teacher-trainee ratios which, coupled with the expenses involved in adminis-
tering large training programs, could cause decreasing returns to set in
eventually, it seems likely that at low levels of activity, increasing
rather than decreasing returns would be characteristic of training programs.
Similarly, reorganizing production lines involves both the use of information
as a factor of production -- once one has decided how to reorganize ome
production line one has figured out how to reorganize two, three or n --

and indivisibilities -- one may not be able to reorganize only half or a
tenth of a productive line,

Indivisibilities and the use of information as a factor of production
would seem to be plausible components of much of what we would want to
include under the rubric of adjustment costs. It is possible that there
are some fixed costs to adjustment which are incurred whenever the capital
stock is changed, regardless of how much it is changed. These fixed costs
could represent such things as shut-down time -- it is necessary to stop
the plant for a while to install new equipment -- or a break in period
necessary to get the plant running again, or a portion of planning cost
incurred simply because there were changes in the capital stock but which
is independent of the size of the change. This is sufficient to establish
that there is no compelling a priori reason to restrict our interest in
adjustment costs to convex cost of adjustment functions. Below we examine

the implications of other cost of adjustment functionms.



(g) Profits and the Optimal Capital Stock
Let

€)) V(K,t) = G(K,t) - p(t)K.

Then V(K,t) represents the profits the firm can make at time t if it has
~capital stock K. V(K,t) is a strictly concave function of K (as G(K,t) is).
Since G(K,t) is bounded above, V(o ,t) = - « and V(K,t) attains its maximum
on [0,*]. Let Kt be the unique maximizing K. K*.is a function ofvmarket
conditions,

K* = K*(w,R(Q),p).

(h) Maximization

The firm discounts cash flows received in period t by the discount
factor r(t). We assume that the firm's investment policy is designed to
maximize discounted cash flows. That is, the firm chooses the sequence

of investment (I) to maximize
() L {1} = I (V(KR,E) - C(I))E(E)

subject to

Kt = Kt-l + It

which, of course, implies that .(-ﬁ} is a function of K We shall have

0.
. . . 2,4 ? ¢,
occasion to stress this fact by writing \,({i},Ko) instead of x,{?}.
Before we can proceed, we must examine the conditions under which
¢
the series on the RHS of (4) converges., Obviously, for all LI},

G .‘.IJ S tél [V(Kt,t)]r(t)

so that



(5) () V(KE, ) IT(e) <

is a sufficient condition forQ(ii} to be bounded above. We shall assume

that (5) holds in what follows. It is a condition with some bite; if

maximum one period profits are growing at rate g (i.e., V(K:,t) = V(Kf,l)(1+g)t)
and the discount rate is constant at r (r(t) = (1+r)-t), then (5) will hold
only if the discount rate is greater than the growth rate., If V(K:,t) is

constant or bounded then (5) is equivalent to

(6)

a necessary condition for almost any economically sensible action. (If (6)
failed, the value of a consol paying a mill a millennium would be infinite.)

As we wish to maximize-(,(l}, we are not concerned that ﬁiﬁli be

—~

i} such that

bounded below for all {L} only that there exist some
?;§'> - =, . If there are no {1} such that d_iI} > 0, the firm will

not stay in business,

(i) Existence of the Optimum Program

We prove in this section that our problem is well defined, that is,
that an optimum program exists., This may seem obvious and trivial, but the
method of proof is somewhat novel and may be useful in other contexts.

We shall make somewhat stronger assumptions than are strictly necessary in
order to make the outlines of the argument as clear as possible. It will
be clear that the proof can be modified so as to be appropriate in a con-
siderably more general setting. Specifically, we assume that the maximum

one period profit 1is bounded, or



(7) | V = sup V(K*(t),t) < =
t

that the optimal capital stock is bounded,

(8) K = sup K¥(t) & o0;
t

and that the rental price of capital is bounded,

(9 o =sup o(t) <.
t

It is clear that (7) and (8) are sufficient to guarantee (5) -- that ,(, iI;
is bounded above.

It seems clear that if Kt is bounded, it will never pay to invest so
much as to have a larger capital stock than K}':f. This is the content of
Lemma II: Let Yff be an investment program 1f ?(t >M = Max(Ko,E) for any
t, there is an {I'} such that, |

ERITRRAIN

A
Proof: Let t, be the first t such that Kt: > M. Then either

1
(10) ﬁta < M for some tp > t;
or
(11) Kt > M for all t > t, .
: \' l\\ ] = = ] = - '
We define _kI | as follows. For t < t,, let It It’ let Itl M -K £,-1

A VoS
=M-K < I . 1If (10) holds, let I! = O for t; < t <tz and
t1-1 t'| t

~ A~ A A
1 — - < t -
It2 = th M < It2 {since Kte-l s> M), and for t > to, It It' If (11)

A
holds let Itlz = 0 for t > t;; in either case V(Kt':,t) ?_V(Kt,t) for all t

while C(I}) & c(I,) for all t and o(1y ) < C(ftz) so that {I'} > & {'f} .
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(v r~s
This means that if there is an optimal program [If, then Kt <M

which implies both that

(12) I <M
and
(13) V(K(E),£) > - pM.

We can thus restrict our search for an optimum to programs satisfying (12)
and (13). This fact and soﬁe notation, is all we need to prove that an
optimum exists. We use the symbol # to denote Cartesian product. If E!
is the real line, by H = gEl, we denote the space of real sequences. In
what follows we consider H as a topological space endowed with the product
topology. Let B = [-M,M]. If Hy = fB, then a way of stating (12) is to
say that we need only look for a maximum to I:ﬁi on HB. Note that HB --
the Cartesian product of compact sets -- is itself compact.l To show an
optimum exists we then merely néed show that\( is a continuous mapping and
the result follows from the fact that a continuous real valued function on a
compact set achieves its maximum.

We cannot however be so direct; instead we show that there is a

continuous function\%ron HB which has the property that if {i? maximizes7ﬂ_,

{f} must maximize Ki. Define U(K(t),t) as Max(V(K(t),t), - Sﬁ), and let
S tzl [U(K(t),t) = C(I)]r(t). It is clear from (13) that if
(w\

;I% maximizes\ﬂtit maximizes,{ as well., Thus, it remains to show that7w

-

is continuous. It 1Is hardly surprising that this crucial step of the

argument depends on (6).

lThis is the well-known Tychnoff theorem. See any topology book, [3, p.143].
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We show that"" is continuous by showing that for any II\ H‘B and
any ; > O there is an open set S of HB containing -.‘12; such that }I'{- ~ 8
S~ ~
implies

| w1 - ‘nd’iﬂ <E.

Spnbelt t=b i Wb _pb
Let " 31y = I, (U(K,»t) - C(I,))r(t). By convention [" ="M, and
L= Y. IER =V 4 IBM[ + C(M) + C(-M) then 'U(K(t),t) + C(I)| <R

s~

for all t when 1\[{ £ HB.

. . “y tu .
By (6) there is T(t£) such that! /T( 1 I I <R téT(L)r(t) < &/4 for
all LI} € HB. Also since U(K,t) and C(I) are continuous, there is a

< 25 for all t < T(¢) implies

§ > 0 such that |1é - ?tl

RO} | < ere

A o
Now define S as § = # A, where A = (It - o0,I_ +§) for t & T(€) and A =B
t .
for t » T(¢). S is an open set in HB If I'} £ S then,

|'/‘»:’_ tI - ;? ) = ‘DT“){ )’[T(E_)H{II\}
T(E) (0 “ bl '
kY - 'L’T(g)+1z15i £

h( T(c) \ } ),LT(t)i.I.\l

A
V’ZT(;;)HLIVT * \WZT(L)+1{I;}!

< E/2+ ¢la+ &4 = €.
This completes the proof of
Theorem III_ Conditions (6) through (9) guarantee the existence of an optimum

program.
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If C is convex -- a contingency which includes the linear case
c(I) =‘X11 -- then / is a strictly concave function of E}} and the

optimal program is unique.

II

OPTIMAL INVESTMENT POLICY UNDER STATIC EXPECTATINNS

(a) Static_ Expectations

It is always simpler to analyze dynamic problems when assumptions are
made which remove the dynamics from the problem. This case is no exception.
We begin our analysis of optimal programs with the case where nothing is
expected to change. That is, we assume that the firm expects present market
conditions; as represented by p(t), w(t), and R(Q,t) to persist forever.
This allows ué to write
(14) V(K,t) = V(K).

We further assume that the discount rate is constant, or that
-t
(15) r(t) = (l4xry .

These assumptions are sometimes referred to as static expectations.
It is not assumed that static expectations are correct. It is a paradox
whose familiarity is one of the signs of the low level of development of
the principles of dynamic analysis in economics that the assumption that the
firm expects no future changes is used to analyze 1t§ response to present,
unanticipated changes. The firm is assumed to be initially in equilibrium,

which in our problem means that its capital stock is at -- or near, see

subsection (f) below -- K*, when market conditions change, changing with them
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V(K) and K*. Static expectations, the assumption that the firm expects

these changes to be permanent, simplifies considerably the problem of analyzing
what the firm does when such changes occur. It is, of course, an unreasonable
assumption and we would like to know how crucially our results depend on it.

In Section III we suggest tﬁat, at least for concave and linear cost of
adjustment functions, the analysis of the case of static expectations affords

a good deal of insight into firm behavior under more general and more
reasonable assumptions.

We make the further assumption that
*
(16) Ky < K*.

Although this assumption is innocent, 1t is not without content. It is
clear that if the firm stays in business, it really does not matter if we
analyze investment or disinvestment. However, it might be that no matter
what the firm did, it could not make a profit. In such a case the firm's
best policy would be simply to go out of business. Its capiltal stock would
not follow the rule set out in equation (1), The firm would not incur the
cost of changing the capital stock described in (2). In short, our model
would not apply to such a firm, TIf K* > KO, this cannot be the case. For
since V(K) 1s strictly concave, V(K*) > V(KO) 2 V(0) = 0. The firm could
make a profit were it simply to retain K, . and do no investing.

For K* { K. we have no such guarantee that the firm would not do best

0
by going out of business. (Consider, for example, the case where K¥ = 0
and V(K) < O for all K > 0.) If the firm chooses to stay in business,

the analysis we are about to give applies to the firm's disinvestment



14

poiicy with only a few obvious sign changes. If the firm chooses to go
out of business, its behavior is very simple to analyze, and not very in-
teresting. It is, for example, clear that there is an optimal policy --
that of declaring immediate bankruptcy -- which yields a total profit of O.
Thus the assumption that K* > Ko has no essential consequence beyond the

agreement to limit our analysis to non-trivial cases,

(b) Some Useful Lemmas and Conventions

This subsection lists some tools and conventions we will need in our
investigation of the optimal program and its dependence on the cost of
ad justment function.

The argument of the proof of Lemma II, can be trivially adapted to
prove,

Lemma IV: If (14) to (16) hold, and I' 1is an optimal program, then

(17) I/ >0 for all t
and
(18) Ké < K* for all t.

If in any period it makes sense to do no investing, the problem
will, because of (14) and (15), look no different in the next period, and
it will not pay to invest then, or in the following period and so on. This
is the content -- and except for some technical details -- the proof of
Lemma V: If there are static expectations and [;? is an optimal program
for which Ié = 0, then there is an optimal program {i} such that ft+j =0

for j any non-negative integer.
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Proof: Clearly it will suffice to prove the assertion for the case j =1,

¢_'t-1

P RPN . 1 -
Define {1 | by 1t =1, I {19 maximizes X ({T ,K), then {1 " ¢

t+s
t!
:

SN . ; ) ~ (D
maximizes_ﬁ_(i}j,Ké_l) and zI | maximizes z (LI;,K&) = (1;f,xé_1) since

“ s te_135
I = 0. The preceding equality holds for any {I}. Thus {1 t lf naximizes
o (a
e (tﬁs,Ké). Define 1I¢ by
£ =1 fors<t
s s =

A

1 = K; for s > t

s+1
Then {i; maximizes Z’({I},Ko) and £t+1 = Ié = 0 which is what was to be
proved.

We observed above that 1if C'(0) exists it must be equal to 0. 1In
the proofs to follow this is an inconvenience, but an avoidable one.
Consider a function C such that for I 2 O,IE(I) = C(I) which also has the
property that'é'(O) exists and is equal to C'+(0), the right hand deriva-
tive of C at 0.1 We have shown that the optimal program must satisfy (17).
Thus, it is clear that if {I| maximizes i1} - ;gl[v(xt) - E(1)] (141) "¢
subject to (1) and (17) it also maximizes.(ii}} subject to (l). In what

follows, we shall adopt (17) as a restriction and assume that C '(0)

exists and is not necessarily equal to O.

(c¢) Convex Cost of Adjustment Functions and Distributed Lags

In subsection I(f) we asserted that if adjustment costs were convex,
then the response to change in market conditions would not be concentrated
in one period, but would be distributed over several. In the context of

static expectations a stronger theorem can be proved.

1
’cl+(I) so exists since C is piecewise monotonic.
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Theorem VI: If C is twice differentiable and strictly convex, (C'"(I) > O
for all I), thea, if fx's is optimal, I} ” 0 implies I! > O for all t,
This theorem says that if a firm responds at a111 to changes 1in market
conditions, its response will be distributed over all time, tﬁat is,
investment will never stop. It is, of course, the justification for the
use of distributed lags in econometric work.

Proof: Assume I} > O and there is a t such that Ié = 0. We may, without

loss of generality, assume that t = 2, If (I' maximizes(za( Ii,K.),
L Tl RV

L - 2 ., .
ZI t maximizes Xf({}},Ké_z).) By Lemma V and the uniqueness of the
optimal program I} . = O for all j > 0. Thus, I} and I} must be the solution

2+j
to the following problem:

&

(P) Max ) H(I;,I2) = V(Ry + T1) - (D) + 2, V(Ky + I + I2)(l+7) -t
11)12_0

~C(Iz)(l4r) L

= V(Kg + I1) - C(Iy) + V(Ky + I; + 12)1-'1

+ C(Ig)(1+r)-1.

We prove the theorem by showing that (P) cannot possibly have a solution

with I, > O and I, = 0. The maximizing Ii satisfy Hi(Ii,Ié) < 0 and

Ii Hi(I-'.,Ie) = 0 for 1=1,2. We must have then, H,(I},I%) = 0, or
V'(KO + I} + 1%
= C'(I]).

1 [}
V(K0+ I}) + =

1Thi.s is a necessary condition. If the change in market conditions is
slight, the firm may do no investing at all, See subsection II(f) below.
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Since I5 = 0, this becomes
V'K, + ID) Q'l'_’—’)- = c'(1}).
From Ho(I},I%) 10, we have

] 1
\'s (Ko + I3) c'(0)
T - 1l4r

Rearranging and combining, we have:
c'(11) < C'(0),

which is impossible since I} > 0 and C"(I) > O. This contradiction completes

the proof.

(d) Concave and Linear Adjustment Cost Functions

If the cost of adjustment function is concave or linear it would
seem that the best policy for the firm would be to take advantage of de-
creasing costs of investment and concentrate its response to changes in
market conditions in a single period. We demonstrate this in

Theorem VII: 1If there are static expectations and if C is strictly concave

or 1inear,1 then if {I;} is an optimal program there is at most one t such
that I£'> 0.

Proof: We prove this by assuming that 1} > 0, and I3 >0 and proving a
contradiction. It will be apparent how the same method may be applied to

] '
the case when It and It+k are greater than zero.

1Concave or linear for I%L 0, that is.
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We begin by isolating the contribution of 1% to L {I'}. Let

.
D = V(K' .) - V(K - Is). Since fI'} is optimal, K": < K* and Dt > 0.

'
t+l

As V is concave and Ié > 0, Dt is monotone decreasing, in particular

(g

w 3
The contribution of I} to I 'f can then be written as

AZ s ) = 13 D - caniun .

N

¢ 3 N
Since ?I"1 is optimal, A,-*\’,(Ié,-‘LI'Jf) > 0. Consider the program 1‘1} defined
by
A A
I, = I + 13; 12=0;I=Iéfort>2.

We wish to isolate once again the contribution of the additional investment
. # {A) (~
of I5 in period 1 to ‘\tlr -- which we shall write as A,,C(Ié,{l ) -- and

compare it to A ,-;f(Ié). The cost of the investment is
(19) C(I] + I2) - C(I]) & C(Id)

as C is concave and increasing. The addition to cash flow in each period
A AN N
is Dt where D, = D; and Dt = Dt-l for t > 1. Since Dt is monotone decreasing,
D, 2 Dt and
(/\‘

A £ (I Ih = 15 D40 - (e(ITy) + C(1)) 1 (1) 7

> (t‘_‘gl Dt(1+r)1-t - (1)) (L4r)

AZ (1L T > a Ly, Th.
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‘., -
ZAA LD
Therefore, 5»{}} £<Zi§}3'. If C is strictly concave, the inequality in
. N B ~ "

(19) will be strict, as I} > o0, and .J (&} >.Iif;'j so that {Iﬁ is not
optimal, If C is linear, the optimal program is unique and {?'} cannot be
"\
J

5 (/\ L
optimal if;: LI} = . i « Thils completes the proof.

[adl
Thus, investment takes place in one period only. If it yields

positive returns, that is 1f
< QK -t -1
AL = (2o V(KD (I4r) 7 - c(D)(14r) "> 0

where I is the optimal one period investment, then it will be more profit-
able to invest in the first period ﬁhan in any later period. For the
returns from investing in the kth period are z&;f(;)(1+r)-k which is at

a maximum if k = 1 and if AL (I) > 0. If AL(I) = 0, it does not matter in -
what period investment takes place, or indeed, whether it takes place at

all. 1In this case the optimal investment program is not unique.

(e) More General Cost of Adjustment Functilomns

There 1s no reason to believe that cost of adjustment functions are
necessarily either convex or concave. Fortunately, there is no difficulty
in extending our results to more general functions, to those which are
plecewise convex or concave., This class includes functions which are
initially concave -- reflecting indivisibilities in the adjustment process --
and later convex -- reflecting the increasing costs of the disruption
caused by large-scale hurried changés which we feel on a priori grounds are
likely to be prevalent.

Piecewise concave and convex adjustment functions lead to investment

programs which are a combination of the infinitely distributed programs of
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convex adjustment functions and the one shot programs of concave adjust-
ment functions. It is easy to construct cost of adjustment functions of
this general type which will call for investing in two, three, four or

any finite number of periods so that the consideration of these more

general cost of adjustment functions destroys the simple dichotomy between
one shot and infinitely distributed responses to market changes. Nonetheless,
the pattern of investment is dominated by the shape of the cost- of adjust-
ment functions near zero in the following sense: only if C is convex near
zero can investment continue forever. The reason is that for any optimal
program, zIt { @« so that for any I there is a T such that t > T implies

It < I. Thus after a finite number of periods, only tﬁe first part (the
first convex portion or the first concave portion) of the cost of adjustment
functions is relevant. Only if this part is convex c#n investmen§ continue
forever. 1Initial convexity is not sufficient to guarantee that investment
will take place forever for its effects can, in some cases, be washed out

by later concavity. Consider a function which is initially linear and

later strongly concave, see Figure 1.

Cc(I) FIGURE 1
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It leads to a one-period investment program. If the function is changed just
slightly so that its first segment is now convex and if the discrepancy
between K* and KO is large enough that the concave part of the function is
relevant, a one-period investment program will still be in order. If the

discrepancy between K* and K, is small, then only the convex part of the

0
function will be relevant and an infinite investment program may be optimal,
In this example, the character of the investment program depends not only
on the nature of the cost of adjustment function, but also, and crucially,
on the initial conditions of the problem, en the relation between Ko and K¥,

We examine another and more significant case of this dependence in the

following subsection.

(f) Senmsitivity
Suppose adjustment costs are linear, that C(I) = aiflj. Then

investment is bunched in the first period and the optimal investment program

is found by solving the following problem,

Q@ Max H(I)

o -t -1
V(K +I) T, (4+r) "5 - (D) (1+r)
170 0 7 =l

(1+r) "1 [v(xo+1)-1L’;‘f)- - c(D)].
If I' is the optimal investment, then,
H'(I) < 0 and I'H'(I") = O,
or if I' > 0, then I' must be a solution to H'(I) = 0, so that,
' = (L '
(20) \Y (KO+I) (1+r) C'(I).
In the linear case, this becomes

] ' = WaRIR
(20") V' (KD = () -
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It is entirely possible that (20') will have no positive solution.

Let K be the unique solution to V'(K) = (If;oac . Then if
Ko.> E, the optimal investment program will be one of no investment at all.
If K. < K then I' = K - K, is the optimal investment program.

0 0

This result easily generalizes to cases of convex and concave cost
of adjustment functions. In the convex case, if there is investment in the
first period there will be investment in every period. But for there to
be any investment at all, it must be that investment in the first period
yields a profit, or that the problem (Q) has a positive solution. But (Q)
has a positive solution only if (20) has a‘solution. Since C is convex,
the RHS of (20) is an increasing function of I bounded below by C'QO)IE;.

The LHS of (20) is a decreasing function of I bounded above by V'(Ko))>v'(x*)=o.

A solution is, therefore, possible only if

(21) V(K > C'(O)Ir? .

Since K, can be arbitrarily close to K*, (21) will be satisfied for arbitrary
Ko only if €'(0) = 0. Thus, unless C'(0) = O small changes in market
conditions which will lead to no investment whatsoever.

The same argument and the same conclusions can be made for concave
adjustment cost functions. The condition that all changes in market con-
ditions lead to changes in the capital stock rather than simply changes in
the optimal capital stock is that C'(0) = 0. This, because of (2), is only

possible if C 1s convex around or in a neighborhood of zero.
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III

SUMMARY AND EXTENSIONS

We may summarize our results for the case of static expectations as
follows:

If adjustment costs are concave or linear, the entire response to a
change in market conditions is concentrated in the first period following
the change. If adjustment costs are strictly convex, if the firm responds

at all to the change it will plan to distribute its response over all time.

The nature of the firm's response to changes in market conditions depends
| critically on initial conditions, on the distance between the firm's

inherited capital stock, K., and the new desired capital stock, K*. Unless

o’
C'(0) = 0, for which convexity near 0, is a necessary but not a sufficient
condition, the firm will not in general respond to small changes in market
conditions. For general C, the nature of the response may depend on the

size of the change.

We now turn to the question of how these results may be extended beyond
static expectations to more general, and more realistic, circumstances. We
have little insight to offer in the strictly convex case. For the concave
case, it is clear that the analysis is not much affected. Suppose the firm
faces a sequence of market conditions, represented by a V(K,t) for each t.
Suppose further, that for some periods market conditions do not change,
that V(K,t) = V(K,t+j) for j=1,...,k. Then the argument of Theorem VII
can be adapted to prove that the firm will hold a single capital stock in
periods t to t+k, that, if the firm responds at all to the change in market
conditions from those prevailing in period t-l1 to those of period t to
t+k, it will concentrate its response in the first period of the new con-

ditions. Furthermore, if instead of the V(K,j) being identical for
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j=t,...,t+k, they are merely very similar, then the argument of the last
subsection can be adapted to show that the firm may not choose to respond
to all the minor changes in market conditions occurring between t and t+k
and decides instead to save on adjustment costs by making do with a single
capital stock and adjusting to changes in market conditions by varying the
amount of labor it employs.

This phenomena, the firm adjusting to changes in market conditions,
by changing one factor of production and not the other, is the basis of
the classical distinction between fixed and variable factors of production.
We have shown that while strictly convex adjustment costs may justify the
use of distributed lags in econometric work, concave and linear adjustment
costs provide a rigorous theoretical justification for the distinction
between fixed and variable factors of production. We show in Chapter 3

below that this distinction is not without econometric implicationms.
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Chapter 2

THE RISK ANALYSIS OF CHOICES INVOLVING UTILITY

In discussing economic behavior under uncertainﬁy, we often argue
that economic agents make decisions so as to maximize the expected value of
some function; that is, if X is a random variable with cumulative distribu-
tion function G and X is a control parameter, we hypothesize that the
economic agent will choose A so as to maximize |

S U(x,50)d6(x) .

The first order condition for maximization is
AU(x, ¢ _
JECES TR

We often are interested in the response which economic agents make to an
increase or decrease in the variability or uncertainty of X. For instance
we would like to know the effect on savings decisions of an increase in
the riskiness of investment opportunities. In this paper we give a simple
general method for answering such questions. To do this, it is essential to
define what is meant by an increase in the riskiness of a random variable.
There seems to be three possible approaches to this question.

We could try and formalize what seems to be the intuitive meaning of an
increase in the variability of the distribution of X. Second, we could
seek to characterize the class of changes implied by the commonly accepted
definitions of risk aversion. Suppose, for example, X repreeents wealth,

we could agree to call all those changes in the distribution of X which

would make a risk averter worse off (and a risk lover better off) as

- 26 -
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incregses in the riskiness of X and then try to discover what class of
changes in the distribution of X had this property. A third approach
entails characterizing the distribution of X with a few parameters and then
describing increases in the variability of X in terms of changes in these
parameters. The familiar analysis of distributions in mean-variance terms
is an example of this approach. Since we are dealing here with mattefs of

definition as much as of analysis, there is no strict sense in which one

~ approach could be said to be more correct than any other., This fact,

however, is not a license for agnosticism or for the suspension of judgment.
Definitions are chosen for their consistency. For this reason, it is of
some interest to note that the first two questions lead to the same answer
while the third does not. To us, this is yet another reason for abandoning
mean-variance analysis in the theory of behavior under uncertainty and

seeking more general approaches, like those to be presented below.

I. A DEFINITION OF INCREASING RISK

(a) Mean Preserving Spreads

Intuitively, what we mean by a random variable increasing in varia-

-bility is that the tails of the distribution gain weight at the expense of

1The problem is not a new one, nor is our approach completely novel; our
result is, we think, new. Our interest in this topic was whetted by Peter
Diamond [3]. R. M. Solow used a device similar to our Mean Preserving Spread
to compare lag structures in [10]. The problem of "stochastic dominance"
ls a standard one in the (statistics) operations research literature.

For other approaches to the problem see, for instance, [2], which takes

a tack similar to our Sectiom 2.2, Sinee this paper was written, papers
by Hadar and Russel [5] and Hanoch and Levy [3] have come to our attention
which contain reSults similar to ours.
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the center, It is easy to make this notion precise, Suppose that f is a
density function defined on a closed interval [x, ;]. (Figure 1), Consider
a step function s(x) on this interval satisfying the following conditions:

(1) s(x) =X >0fora< x<a+t;b<x<b+t
s(x) = -xX fora+d<x<a+d+t;b-d<x<b-d+t

0 otherwise

s(x)
where
(2) a+d<b-d

Such a function is pictured in Figure 2, If

o < f(x) fora+d<x<a+d+t

and b -d< x<b-d+¢t

then g(x) = f(x) + s(x) > 0 for all x. Furthermore, (1) implies that
fs(x)dx = 0, so _)rg(x)dx = /f(x)dx and if f is a density function so is
g.1 As Figure (3) shows, g differs from f in that g has more probability
weight in its tails and less in its center.

Straightforward calculation will show that fxs(x)dx = 0 so that
fxf(x)dx = fxg(x)dx. For this reason we call such a function as s(x) a
Mean Preserving Spread (MPS). It seems reasonable to agree that g is
riskier than f if it can be obtained from f by a MPS. . Whatever definition

of greater riskiness we adopt, we would certainly require that it be

1When not otherwise specified, the limits of integration are the endpoints
of the closed interval over which the functions in question are defined.
We shall also write fs(x)dx as fS(x).
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£(x)
X X
Figure 2
s(x)
a+d  at+d+t b-d b-d+t
a+tt b b+t
Figure 3

g(x) = £(x) + s(x)
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transitive., That is if g 1s riskier than h which is in turn riskier than
f, then we would like to say that g is riskier than f£. We then could
tentatively define a relationship in the set of distribution functions by

saying that g is more variable than f if there exist MPS's 8, such that
3 g =f+ Esi'

There is no conceptual reason to require the sum in (3) to have a finite
number of terms. However, since the space of density functions is not
complete, we would have to be exceptionally careful if we were to allow
infinite sums on the RHS of (3). Considerations of mathematical convenience
of this sort make i; desirable to phrase a definition of greater variability
in terms of distribution functions rather than density functions. This is
easy toodo. All that is required is the integration of (1), and by impli-

X .
cation, (3). Let F(x) = i- f(y)dy and define G(x) and S(x) similarly.

We say that two random va:iables with cumulative distribution functions

F and G differ from each other by a MPS if G = F + S where S is the integral
of a MPS. (See Figure 4, the integral of Figure 2.) We would say then
that G is riskier than F if S=G - F is the sum of integrals of MPS's.

The question is, is there any simple criterion for determining whether the
difference between two distributions could be accounted for by a sequence

of MPS's? The answer is yes, but before we find the criterion, let us

consider a second intuitive approach to the problem of defining riskiness.
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S(x)

FIGURE 4

(b) Distribution Functions

There is another approach that we could take. In Figure 5 we have
drawn the distribution function for X, a sure thing with mean M, and the
distribution functlion for a random variable Y with same mean as X, Finally,
we have drawn a third distribution Z which is a convex combination (mixture)
of the two distributions, and therefore has the same mean. It is reasonable
to say that the distribution which is a mixture of a safe and a risky
distribution is '"safer" than the risky distribution. There is no reason,
however, to restrict ourselves to considering only distributions which
intersect at their mean. More generally, we could say if two distributions
have the same mean and intersect only once, the one which is initially
below the other (and therefore has less weight in the tail) is safer than the
other. Now let us consider three distributions, F, G, and H, all of which
have the same mean. There is a unique value of x, x;, for which F = G,
and F$ G as x $ x,, and there is a unique value of x, x» # x,, for which

G=H, and G S H as x$ xo. F is safer than G, and G is safer than H.
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Once again we would like our definition to imply transitivity, that is, we
would like to say that F is safer than H. Since F and H intersect twice,
it is necessary to examine another characterization of the relationship

between F and G (and G and H) to explore the implications of transitivity.

M
FIGURE 5

Let
) S(x) = G(x) - F(x).
Then

y -
(3) T(y) =j S(x)dx 20 for x <y < x,

x
(6) | T(x) = 0,

and there exists a x £ R < ;, such that
(7 S(x) 2 0 as x 2 %

We may use integration by parts to show that (6) is equivalent to the

statement that F and G have the same mean:
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x % x % _
j xdF-L xdG=x(F-G)] -j(F-G)dx=0-T(x)=0
X X X X

Condition (5) follows immediately from (6) and (7).

If we say that one distribution is safer than another if (5) and
(6) hold (but not necessarily (7)), then if F is safer than G and G is
safer than H, clearly F is safer than H. More generally, if M and N are
distribution functions and 1f there exists a sequence of functions,

S1s eeey Sj .+, satisfying (5) and (6), such that,

M=N+ ZSi

then under this definition M is riskier than N, since the difference between
M and N

M-N-= Z‘.Si =3

satisfies (5) and (6). We now ask whether given two arbitrary distributions,
M and N, such that the difference S satisfies (5) and (6), can S be-written
as the sum of sequence of functions satisfying (5), (6) and (7)? This
question is answered affirmatively by

Theorem 1. Let S(x) be a function of bounded variation1 on [x, x] with

S(x) = S(x) = 0. Then the following are equivalent:

(A) S(x) satisfies (5) and {6); and

1The restriction to functions of bounded variation is no restriction at all.
We are concerned only with characterizing functions which could be the dif-
ference between two distribution functions. Since the latter are monotonic,
their difference is perforce of bounded variation. The restriction (6) can
be viewed as a normalization.
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(B) For every & >0, there exist functionssi(x), i=1,...,M

satisfying (5), (6) and (7) such that

M
J iélsi(x) - S(x)|dx< €

Proof: We have already observed that (B) lmplies (A). We demonstrate the

reverse implication with a constructive argument which will be familiar to
those who recall the development of the indefinite integral from elementary
calculus. We approximate S(x) from above by a step function, each of whose
steps consists of an integral number of the same size boxes. By pairing
boxes above and below the axis we show that the step function can be cloéely
approximated by a sum of functions each of which satisfies (5), (6), and

(7). Let (P) = Pg» *reeree P be a partition of [x, x] with apjg p.'i - pj-l

= (; - x)/n for all j. Since S is of bounded variation, it can be written
as the difference between two monotone increasing functions:

S(x) = U(x) - V(xX) .

Let
Then _ - _
x @) - Uil -x
i 4 n n
x Ve - V@I -
02zZV.ap, -} V(x)dx 2 ==,
J J X - n n
Define

= - >
Rj Uj Vj’ R_1 2 s(x) for xe [Pj-l’ pj].



Then

X

: X
(
R.op, =2 UAP, - V.A.>j U(x)dx - © V(x)dx =
Z R, 0P, jAPy - TV 8Py T (x)x_Jx (%)

X

Thus _
' & C+D
0< ZR,AP. -J S(x)dx <
- J J x = n
We now define Qj as a rationalvnumber such that
0< - R, <1l/n
-QJ j
so _
x
2Q.Ap., > Z R,/ > S(x)dx.
QJ Py 2 JL\Pj_J( (%)
Hence

x |
0<zQ,ap, -] SGIdx = 2@ - R) APy + I RjAP,

X
1 (x - x) /;
S; = + Z R AP -)x S(x)dx
§-x+c+n=§
s n n

Becausé Qj is rational, we can write Q

3
are integers, and lc.j > 0. Define k = ‘ﬂkj, and M, = hj

= M, /k
Q MJ./

3

= hj/kj , where h

X

Jﬁ S(x)dx

.3

=0

-j‘x S(x)dx

X

]

T k;.
hy

and k

Then

3
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Consider the step function Q(x) defined by Q(x) = Qj for

X & [pj - pj-l)’ j=1,...,n. We know that Q(x) 2> S(x) for all x so that

y y
j Q(x)dx jf s(x)d(x) > O .
X

X - X

=9

The jth step of Q(x) consists of IMj| boxes of size B = %( o

The boxes are stacked below the axis if Mj 4« 0 and above the axis if Mj‘> Of
Let us number all the boxes above the axis, starting at the first interval
of the partition P for which Mj > 0, and working up and‘ then to the right.
See Figure 6. This figure displays two properties which we shall exploit.

First, there are more boxes above the axis than below. This must be the case

for if M+ (= 2z Mj) is the number of boxes above the axis amd

M.>0
J
M (= 2 IM.|) the number of boxes below the axis, then
M.<0 7
J x x + - + -
0o =f S(x) f_j Q(x) = (M - M)B sothat M > M . For
X E - * E
future reference we note that (M - M )B _/;J |Q(x) - S(x) |dx < o

X

Second, if we define j+(i) as the interval in the partition in which the ith

box above the axis occurs (i < M+) and define j-(i) as the interval in
which the 1! box below the line appears, then 3%(1) < 37(1). For, suppose

;7 < 3T, (Bquality is not an alternative.) Then clearly

PiT(1)+1 y
Q(x) £ -B < 0. But, by hypothesis,j
X ' X

y .
Q(x) 3] S(x) 2 0 for
%

all y.
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For 1 < i< M, define S;(x) as follows:

~~
e L

for x& (pj"'(i) R pj+(i)+1)

for x E'(p_]-(i) ’ Pj'(1)+1)

(7]
[N
”~~
tJ
N
|
ya
[}
ol

L 0 otherwise.

Clearls s, (x) satisfies (5), (6), and (7) with ?ci = Piteay4n

By construction
M+

Q(x) = ;Z; S;(x) + " - w)s.

Therefore

S]zs, 0 - s

< j'lzsi(x) -qe + flae) - smf

£ % + % = _Zn_E { t. for n sufficiently large

This completes the proof.

37
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It is clear that integrals of MPS's satisfy (5), (6), and (7).
" The functions Si(x) constructed in the proof of Theorem II are not, however,
integrals of MPS's -- as the latter are shaped like trapezoids and the
former like rectangles. They are, however, limits of integrals of MPS's,

and therefore we may use the proof of Theorem I to establish

Theorem II. Let S(x) be a function of bounded variation defined on some
closed interval [x, x] satisfy S(x) = S(x) = 0. Then the following are
equivalent: '

(A) S satisfies (5) and (6).

(B) For any £ > 0, there exist functions Si(x), i=1,...,M

such that each S, is an integral of an MPS and

i

M |
,J~|1§1 5,(0) - S0 [dx < £

(c) Definition of % .

These theorems allow us to give the following simple and easy to
apply definition of greater or lesser riskiness of random variables, which

is the most extensive generalization of the rather clumsy notion of MPS's.

Definition 1. If F and G are two distribution functioms, defined on

- <
[x, x], then F v G (read G is more variable than F) if and only if

S(x) = G(x) - F(x) satisfies (5) and (6) above.
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<
Theorem III. v is a partial order on the set of all distribution

functions defined on [x, x], considered as a subset of L,(x, X). By this

we mean that we consider F = G if and only if F = G a.e., or

JFG0) - 6(x) |dx = 0.}

Proof: It is immediate that s— is transitive and reflexive, We need only
-, < < 7

show that F % G and G v F implies F = G a.e. If F v G and G -‘?F, then

there are S; and S, satisfying (5) and (6) such that F = G + S; and

y
G =F+ S, so S; + S = 0. Let Ti(y) =j Si(x)dx. Then
: X

-y
= [S1(x) + S2(x)] = Ta(y) + Ta(y)

but since Ti(y) 20, T;(y)= 0. We prove that this implies Si(x) =0 a.e,
Since Si(x) is of bounded variation its discontinuities form a set of
measure zero. Let us call this set N, Define

0 for xe N

S1(x)

S:(x) otherwise.

Then
Y 4
J S;:(x) =_) S,(x) = T,(y) .
X

Suppose there is an % such that ASJI(;:\) # 0, say 'Agl(ﬁ) > 0, then 'Ei(x) 70
for xe& (::\ - £, X + &) for some € > O (since g,l(x) is continuous at ':\:).

Therefore Tl(:/c\ - &)< Tl(;:\ + &), a contradiction.

llt should also be observed that if F = G, and H is any other distribution
defined over the interval [x, x], AF + (1 - ,\)H < G+ (1 - H for
B SN T
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It is important to emphasize that %-1s a partial rather than a
complete ordering. It is almost as interesting to know which distribu-
tions are not comparable with respect to riskiness as which are. We

return to this point later,

(d) Risk aversion

This definition is compatible with the standard definition of risk
aversion. A risk averter is a person Qith a concave Von-Neuman Morgenstern
utility function. We should expect, if our definition were a good one, that
an increase in risk would leave such a person worse off -- decrease his
expected utility -- while an increase in risk would raise his expected

utility. This is the content of

< (¥ . x
Theorem IV, If F v G and U(x) is concave, then'> U(x)dF(x)'{;L U(x)dG(x).
%

-y B T
Proof: Let S =G - F and T(y) =,L S(x)dx. Thus if U" exists it is non-

positive and we may prove the theorem simply by integrating by parts twice:

X X - X -X
J U(x) dF (x) } U(x)dG(x) = -J U(x) dS(x) =J U' (x) S(x) dx
x Jx x x

T(x)U"(x)dx 20 .

More generally, since U is concave it is absolutely continuous (which the

y Yt (x) dx
reader may demonstrate by showing that U(y) - u(x) fj- U' (x)dx =)ﬁ +
- - S R R 4




where U' and U_;_ are the left and right hand derivatives of U). We may
therefore write

X X =73
- U(x)ds(x) =j U'(x)S(x)dx =J U' (x)dT(x)
4 X %

where U'(x) is the Radon-Nikodym derivitive of the measure induced by U.
(See Feller [4], pp.136-138.) T is continuous and U' monotonic so the

second mean value theorem of the integral calculus guarantees the existence of

A
an x such that

-— A

X X X
j U' (x)dT(x) = u'@f dT(x) + U' (%) L dr(x) = [U'(x) - U'()IT(D > o.
X E X

We now show that our definition of increasing risk is the widest

definition which is consistent with the standard definition of risk aversion.

Theorem V. If

— —

X x
J U(x)dG(x) :J U(x)dG(x)
Jx X

‘for every convex funtion U, then F % G.

y
Proof: Let S = G-F and T(y) =j S(x)dy. Since U(x) = x and V(x) = -x
X

are both convex
X X
j xdS(x) >0 and - xds(x) 2 0,
X /1_5




- X
so xdS(x) = O or T(x) = 0. It remains to show that T(y) 2 0. For
Jx
fixed y let by(x) = Max(y-x,0). Then by(x) is convex and by hypothesis

X d ry
Y :}x by(x) S(x) —/}_( (y-x)ds(x)

ry
= yS(y) i} xdS(x)
X

Integrating by parts we see that

"y P+ s
- xéS(x) = =-xS(x) 4+ S(x)dx
A 2

= =yS(y) + T(y).

Therefore _

X
T(y) =j‘x b (x)ds(x) 20

1
as was top be provedas

1We are indebted to David Wallace for the present form of this proof.
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-y
If F and G have the same mean, bufj [F(x) - G(x)]dx = T(y) changes
X

sign, F and G cannot be ordered. Then there always exists two concave
functions, U, and Up, such that ‘;UIdF(x)_>JfU1dG(x) while _fﬁng(x)<‘jﬁ2dG(x);
i.e, there is some risk averse individual who prefers F to G, and anothgr
who prefers G to F. Similarly, given any differentiable function, U, which,
over the interval [x, ;] is neither concave nor convex, then there exists
distribution functions, F, G, and H, F‘%-G %-H, such that ;KU(X)dF <.fU(x)dG
and | U(x)dH < | U(x)dG. |

In short, % defines the set of all concave functions; 1i.e, a

function U is concave if and only if X % Y implies EU(X) > EU(Y).

(e) Mean variance analysis

Consider the following ordering on the set of all distribution
functions with the same mean; X g'Y if EX® > EY®., By arguments closely
analogous to those used earlier, it can be shown that a function U is
quadratic if and only 1f X :TY implies EU(X) < EU(Y). An immediate conse-
quence of this is that if U(x) is any non-quadratic concave function, then
there exists random variables xi, i=1,2,3, all with the same mean such
that EXT < EXZ and EXZ < EX3 but E(U(Xy)) < EU(X2) < EU(X,), i.e. the
ranking by variances and the ranking by expected utility are different.
Some further properties of the ordering 3 should be noted. First, 2 is a
complete ordering of the set of distributions with the samé mean, i.e, if

F and G have the same mean, either F E-G or G §:F. Secondly, if F é G then

F < G. This follows as an immediate consequence of Theorem IV, since the

>
variance is a convex function. However, even if F E-G, . F may not be
>
o G, nor G 2 F.

comparable to G, under the partial ordering %, i.e. neither F v v
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Eobin has conjectured that mean-variance analysis may be appropriate
if the class of distributions -- and thus the class of changes in distri-
butions -- is restricted. This is true but the restrictions required are
as far as is presently known, very severe, Tobin's proof-is (as he implicitly
recognizes in [13, p.20-21]) valid only for distributions which differ
only by ''location parameter," (See Feller [4, p.134] for a discussion of
this classical concept.) That is, Tobin is only willing to consider changes
in.distributions from F to G if there exist a and b (a > 0) such that
F(x) = G(ax + b). Such changes amount only to a change in the centering
of the distribution and a uniform shrinking or stretching of the distribu-
tion -- equivalent to a change in units.

There has been some needless confusion along these lines about the
concept of a two-parameter family of distribution functions. It is un-
deniable that all distributions which differ only by location parameters
form a two-parameter family. In general, what is meant by a "two-parameter
family"? To us a two-parameter‘family of distributions would seem to bé
any set of distributions such that one member of the set would be picked
out by selecting two parameters. As Tobin has put it, it is "one such that
it is necessary to know just two numbers in order to describe the whole
distribution."” Technically that is, a two-parameter family is a mapping
from EZ into the space of distribution funccions.1 It is clear that for
this broad definition of two-parameter family, Tobin's conjecture cannot

possibly hold, for nothing restricts the range of this mapping.

1Or from some subset of E°; we might restrict one or both of our parameters
to be non-negative, :
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Other definitions of two-parameter family are of course possible,
They involve esé.entially restrictions to ''mice" mappings from EZ into f:he
space of distribution functions, e.g. a family of distributions with an
explicit algebraic form containing only two parameters which can vary. It
is easy, however, to construct examples where if the variance, 6~ 2, changes

with the mean,/u , held constant, ={¢] changes sign in the interval
d52

- y
(x, x] where T(y, q’z,/u) =J F(x; ¢ 2,/4); i.e. there exist individuals
% .

with concave utility functions who are better off with an increase in

variance.

1Consider, for instance, the family of distributions defined as follows:

(a, ¢ >0)

// - .

F(x; a,0) A Xt 1-.25/a¢x<1+2 - .5/c-a
i ex + .75 - 3c 1+ 2 - .5/c-a&x<3+.25/c
|
|1 x >3+ .25/c

Two members of the family with the same mean but different variances are
depicted in Figure 7(a). They clearly do not satisfy (5). The density
functions are illustrated in Figure 7(b).
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1I. THE EFFECTS OF INCREASING RISK

Our original problem was to examine the effect of an increase in

risk on some control parameter of , where ( was chosen to maximize

(8) {u(x, c)dr(x)

The first order condition for utility maximization is

9) J@-I-%%t&)-di'(x) =0

Assume there is a unique solution to (9), x * and, that, in the neighborhood
of »{ %, J. 1is monotone decreasing in’x;.l Then if qx’(x,oc) is a convex
(conéave) function of X, an increase in riskiness will lead to an increase
(decrease) in Eqﬂi(x,af). But since EU_ (X,x *) = 0, before the change,

now EU, (X,o.%) > O (< 0). Hencew. * is increased (decreased). In any
particular problem, the question becomes one of ascertaining the conditions
under which g%,(x,uC) is concave (convex) in X. We examine below four

problems of some economic interest.

(a) Savings and uncertaintyz

There are at least two stories of how uncertainty about the rate of
return on savings affects the savings rate, (i) A risk averse individual,
in order to ensure his "minimum standard of living' saves more in the face

of uncertainty. (1i) A risk averse individual is discouraged from saving

1We assume U < O for all (x , x) in the relevant region. In the

examples below we shall have occasion to demonstrate the uniqueness of *,

2For a fuller discussion of this and related problems, see [6,12].
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by the uncertaihty of the return -- "a bird in the hand is worth two in
the bush." We shall show that whether the savings rate increases or decreases
(in our simplified model) depends on whether relative risk aversion [1,9]
is less than or greater than unity.

We consider a risk averse individual who has a given wealth, Wos
" which he wishes to allocate between consumption today and consumption
tomorrow. What he does not consume today, he invests; at the end of the
period his investment yields the random return e per dollar invested. He
wishes to allocate wo between the two periods to maximize two period

expected utility,
Edu(cy) + (1-§ (u(ca)} = E[UC(1-8)W ) + (1- 5)U(sW e)]

where s is the savings rate and S the pure rate of time preference. The

necessary and sufficient condition for utility maximization is that
U'((l-s)wo) =E [U'(swoe) (1-§)e

Whether s decreases or increases as risk increases depends on whether
U'(Cz)e is concave or convex in e, which can be shown after some manipu-
lation to depend on whether

U"(C2) (1-R(C2)) - U'(C2)(R'(C2)) § O

where R(C) = -U"(C)C/U'(c)‘is relative risk aversion and Cp = sW e is
consumption in the second period. If relative risk aversion is constant,
savings is unaffected if relative risk aversion is unity (the Bernoulli
utility function), decreased if it is less than unity, increased if it is
greater, If relative risk aversion is increasing, but less than or equal

to one throughout the relevant range, then savings are increased.



49

(b) A Multi-stage plannigijrobleml

Consider a simple economy in which the final consumption good is

produced by labor and an intermediate commodity y,
Q = F(Lz,y)
while y is produced by labor alone:
y = C(Ly)
The economy faces an overall labor constraint L, so
L, + Lo =1L,
In the absence of uncertainty, maximization of Q simply requires
F, = FoG'.
Assume that there is uncertainty associated with the production of y:
y = G(Ly) + e
where e has mean zero., We wish to maximize EQ; we require
E[F, - FxG'] = 0

If e becomes more variable, what happens to L, (and Lz?). This depends on °

the sign of
Fi22 - G'F222 -
Assume F is a constant elasticity of substitution production function:

F(La,y) = (130 + (1- 5)y ™™ 1/°

Lrhis problem was posed to us by M. Weitzman.
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1
where 5, the elasticity of substitution is given by, 4 = 77— Since

14p °
F is concave and homogeneous of degree one, Fpo < O and

Fozo = =(Fyozlo + F22)/y

Thus if Fy;p5- < O, then Fppp > 0 and Fiop - G'F222 < 0 and an increase in

uncertainty will call for an increase in Lp. It can be shown that if

2p+l zp-l-l)

Z =Fly and H = & (l4p)/y > O, then Foo = H *» (5 2 . Since
Foo < 0, b(2) = ¢) 22p+1 - Z°+1) < 0. Furthermore,
dz
Fi22 = Faz; = Hb'(2) a.
Since «d;l‘—z > 0, the sign of b'(Z) determines the sign of Fop;.
2

Observe that sign b'(Z) = sign zb'(Z), while 2'b(z) = b(@Z) + (205227 -p22Pthy,

If G >1, then 0« p< 1 and 2p & Zp+14 pf-zzm'l from which it follows
that zb'(Z) < (l+p)b(2) < O. Thus if ¢ > 1, increases in uncertainty will
lead to the allocation of more labor to the earlier stage of production.
Consider the other extreme case, where Q is produced by a fixed
coefficients production function Q = min(Lg,y).. Theﬁ 1f ¢ is the distri-

bution function of e

l‘Lg"G(Ll) ) .
[G(Ly) + eldy (e) + La(l -V (L2 .- G(Ly1))

EQ) =

~L-L1 (6(L1) _ _
) (6(Ly) + el (&) + (@ - L)L =¥ @ - L, - G(L))

- o

so that maximization of K requires

[6'(Ly) + 1]¥ (L - L, - G(Ly)) = 1.
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The second order conditions are satisfied, since G " § __¢5(c' - 1)2< o,
where ¢ is the density function corresponding to # ; hence there is a unique
maximum. Whether L, increases or decreases depends solely on whether
w”(f - L, - G(L,)) increases or decreases; either is clearly possible.
Note that if y is also produced by a constant returns to scale production
function

y =L

then the optimal value of L; is simply given by

1

F(L - 2L,) = 5

so what happens to L, depends completely on whether the mediam of e

increases or decreases,

(c) A portfolio problem

An individual with initial wealth of wo, wishes to allocate a fixed
amount of wealth, wo, between money, which yields a zero rate of return,
and a risky asset which yields a random rate of return e, so as to maximize

the expected utility of his terminal wealth:
EU(W) = E (U(W (1 + ae)))

where a is the fraction of his wealth invested in the risky asset. U is
assumed to be concave. A necessary and sufficient condition for utility
maximization 1is

EU'e = 0

What happens to a if e becomes riskier depends on whether U'e is concave or

convex, i.e. whether

u'(l - R+ woA) + u'(woA' -R") 20,
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where, as before, R = -U"W/U', the Arrow-Pratt measure of relative risk
aversion,and A = -U"/U', the measure of absolute risk aversion., A suf-

ficient condition for an increase in uncertainty leading to an increased
allocation to the safe asset is that relative risk aversion be less than or
equal to unity, and that absolute risk aversion be nqn-increasing and
relative risk aversion be non-decreasing. The Bernoulli utility function
clearly satisfies these conditioms.

Observe that taxation of earnings from investments amounts to a
particular kind of change in the‘distribution of the payoff from an in-
vestment. The results we obtain here are much weaker than thg corresponding
results for the effect of an income tax with full loss offset, but they
are identical to those obtained in [11] for an income tax with no loss
offset. Such a tax can be viewed as a mean preserving reduction in risk
plus a reduction in mean (see Figure 8), by shifting the distribution to
the left. The latter will lead to an increase in the demand for the safe
asset if there is decreasing absolute risk aversion, a condition already
included in the conditions for a mean preserving reduction in risk leading

to an increase in the demand for the safe asset.

(d) Choice of output level for a competitive firm

In the examples considered so far, the conditions we have obtained
under which unambiguous statements about the effects of increased variability
have been essentially identical to those obtained earlier in comparisons
between safe and risky situations. There are however problems in which the

latter comparisons can be made under weaker conditions than the former.
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After tax distribution
’

Pre tax distri-
bution

FIGURE 8
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In the notation of Section 3.1, in a certain situation, we choose ' so that

rzs

Uy (x,%) =0
Whetherseizcz *, where -x. * is the solution to (9), depends simply on whether
Ay “
BU  (x,%) ¢ U(Ex,<x)
Jensen's inequality allows us to make unambiguous statements whenever U
' is concave or convex in x; but this is the same condition under which we
have been able to make unambiguous statements for a wider class of problems.
In the following problem,however, we can make unambiguous statements even
when the first order condition is neither concave nor convex.
Consider a competitive firm which must decide today on the level
of output tomorrow, although the price, p of output Q 1is uncertain. It

wishes to maximize expected utility of profits, U(T7), where U is concave1

and where

= - CQ)

where C(Q) is the cost function, and is convex.vA necessary and sufficient

condition for an optimum is that

E'U'g '

= %*

EU € @)

If the producer is risk neutral or if there is no variability in p, profit

maximization requires price equal marginal cost,

‘ A
Ep = C'(Q).

1For a discussion of the case of constant absolute risk aversion, see [8].
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1 -
Q* < Q as %@3 Ep, i.e., as E[(U' - EU')Y(p - E(p))] < O. But since

U" < 0, U'(p) T U'(E(p)) as p 2 E(p), so E[(U' - EU)(p - E(p))] =

E[(U' - U'(Ep))((p) - E(p))] < O. Hence, there is always less output

under uncertainty than under certainty.

35
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Chapter 3

CHANGING DEMAND: ITS COSTS AND CONSEQUENCES

This paper uses the familiar distinction between fixed and variable
factors of production to examiné the effects of changing demand on firm
behavior. This distinction, central to the classical theory of the firm
makes little sense if attention focuses only on the short run or, if
equivalently, the firm is conceived of as operating in a static certain
world.

The first section of this paper shows how varying market conditions
justify distinguishing between the two classes of productive factors. The
source of this variation may be either changes through time or random
fluctuations., The formal equivalence of a dynamic model of firm behavior
with a model of firm behavior under uncertainty is demonstrated and the
relationship of changes over time with random fluctuations is discussed.
The equiQalence of the time and uncertainty models is useful for it makes it
possible to use the results of chapter two on the definitions and conse-
quences of increased variation in both models. |

In section II random demand functions are discussed; the diffi-
culties of defining increased variability in demand are examined. The
effects of increased variability on profits are explored in a special case,
which avoids these difficulties, 1In section III the consequences of |
increased variability in output on costs of production and factor pro-
portions are discussed.

- 57 -
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I

FIXED AND VARIABLE FACTORS OF FRODUCTION

The standard theory of the firm funs roughly as follows. A firm may
prodﬁce an output Q by combining variable factors L which it buys with
fixed factors K which it already has on hand. The amount of variable factors
required to produce Q depends on K; that is, Q is a function of K and L,

Q = Q(K,L). For any fixed K this function can be inverted to give L as a
function of Q,L = L(Q,K). If C = C(L) is the cost of hiring variable
factors in amount L then the variable cost to a firm with fixed factors in
amount K of producing an output Q is M(Q;K) = C[L(Q;K)]. A revenue curve
R(Q) gives the revenue the firm receives as a function of the amount it
sells. The firm chooses output so as to ﬁaximize its cash flow

G(Q,K) = R(Q) - M(Q;K). If cash flow is maximized at Q*, profits will be
C(Q*,K) less the cost of the fixed factor of production, T(K). Clearly Q¥
is a function of K and thus so are profits; ] (K) = G(Q,K) - T(K). If the
firm could choose K, it would do so in such a way as to maximize T (K).
But if the firm is allowed to choose K, the distinction between fixed and
variable factors of production is embarrassingly bereft of content. On
the other hand, if K is simply assumed given, the théory does not say much
about what effects the demand for fixed as opposed to variable factor of
production.

To restore meaning to the distinction between fixed and variable
factors of production is straightforward. We need only recognize that the

short run is but a part of the long run and lift the firm out of a static
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certain world and puts it in a richer, dynamic or uncertain world.1

We assume that instead of operating in only one epoch, the firm operates

in different epochs with different market conditions. The fixed factor

of production is distinguished from the variable factor in that the firm

is constrained to operate with one level of the fixed factor through these
different epochs, while it may adjust the amount of the variable factor

it uses to different market conditions. We may conceive of these different
epochs either as different periods in tine or as different states of the
world in an uncertainty context. The firm is presumed to maximize a
weighted sum of its profits in the various epochs in which it operates --
the weights being discount factors in the time interpretation and probability
weights in the uncertainty interpretation. We shall continue to use K to
refer to fixed factors of production and L to variable factors. We assume
that the firm has a neo-classical production function. That is Q(K,L) is
homogeneous of degree one (constant returns), concave (diminishing returns),

and has as many continuous derivatives as the argument requires,

(a) Time interpretation

The firm is to operate from time 6 to time 5(2 < 5) with a fixed
capital stock K. It can adjust L(®), the amount of labor it hires to market °
conditions at time O, defined by a revenue function R(Q,0) and a wage rate
w(8). We showed in chapter one that the existence of cost of adjustment
functions may lead the firm to behave in just this way. We analyze now the

implications of the firm having to operate from 8 to ® with a single

1Our approach is similar to that taken by Stigler (4] and Hart [2].
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capital stock. We assume that it can adjust L(®), the amount of labor it
hires, at each moment of time to market conditions.

Revenue is a function of time and sales, R = R(S5,0). The firm is
assumed to sell all it produces, i.e., S = Q(K,L), so we shall generally
make no distinction between sales and output and write R = R(Q,8). For
all @, R(Q,9) is a strictly concave function of Q > 0, that is, marginal
revenue is a decreasing function of sales., It is convenient as well as
sensible to assume that zero revenue is gained by selling nothing, that
is, R(0,0) = 0. We shall alsc assume that R(Q,9) is bounded above for
all o.

If w(0) is the cost of hiring ome unit of labor in period O,

a firm with capital stock K will choose L so as to gain a cash flow of

n G(K,0) = max |RQ(K,1)) - W(OIL] .
. L>O

This maximum clearly exists and is finite since R(Q,6) is bounded. The

firm discounts cash flow received in period 8 by 5(8) > 0. Lf p(>0) is

the cost, discounted to 8, of renting one unit of capital from 6 to ©
(we assume no physical depreciation during the period) the profits of a

firm with capital stock K are given by

0
(2) V(K) = Jg G(K,0) 5(8)de - oK.

Since we shall take & to be bounded -- it is reasonable to assume
jf 7 1 -- V(K) is also bounded above. We have shown (Lemma I, Chapter 1)

that G(K,8) is strictly concave. From‘this it follows immediately that

V(K) is a strictly concave function of K. This guarantees that V is
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continuous, differentiable almost everywhere and that first order condi-

tions for a maximum are both necessary and sufficient.

(b) Uncertainty Interpretation

The same model can be used to analyze the behavior of a firm which
is uncertain about market conditions and must choose the amount of capital
which it will use before it finds out either the cost of labor or the
demand function it faces. Once these are known, the firm does the best
it can given the decision it has already made about the fixed factor of
production. Let R(Q,0) be a family of revenue functions indexed by the
random variable @, Different values of @ represent different states of the
world. The cost of hiring a unit of labor is a function of the state of
the world. The cost of hiring a unit of labor is a function of the state
of the world, w(8). It is convenient to assume that © belongs to some
closed interval [9;5] and has a distribution function, F(8); F(8) =0,

F'(0)

F(E} = 1., Assume for the moment F(@) is differentiable so that £(0O)
is a density function, We assume R and w satisfy the conditions set out

above and define again G(K,8) = max {R(Q,O) - w(G)i}. If r is the cost
L 20

hiring one unit of capital -- which is independent of 6 --

w(K,9) = G(K,0) - rK

gives the maximum profits which the firm can make given that it has decided
to hire K units of capital and that the state of the world turned out

to be ©. If the firm is an expected profit maximizer, it will try to choose
-9
K so as to maximize w(K) = E{w(K,9)] = j G(K,0)f(0)de - rK. We will call
’ 9
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this maximum W *(K). That 1is, T} *(K) = max T (K). The argument used
K

above to prove V(K) concave and bounded applies to T7(K). The only mathematical
difference between the time and uncertainty interpretation is that the function‘
used to weightcash flow in the time interpretation did not integrate to

unity while the function weighting G(K,9) 1n the uncertainty interpretation

is a probability demsity function and perforce its integral is one. This

is not an essential difference for we can reformulate the time problem to

make 1t equivalent to the uncertainty problem. Let

Y= S (9)de.
%9

Then if K maximizes V(K), it also maximizes

9
1/y V(K) = J{ G(K,8)£(9)d6 - rk where £(9)
)

, TT..((K)

J;§El and r = p/y .1

1Nothing about the uncertainty problem requires that the distribution
function F(@) be differentiable., If @ has a discrete distribution, we
may define V(K) by

T () = :i_“o G(K,8,)P, - K,

or using Stieltjes integrals, combine both cases by writing

W) = jg/ G(K,0)dG(8) - rK.

The interpretation of these equations for the time problem is straight
forward. A discounting function which gives weight to only a countable
number of time periods is a discounting function appropriate for use in
discrete time problems.
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The equivalence of the time and uncertainty formulations is con-
venient, for it suggests that the tools of probability theory may be used
to analyze both models; in particular chapter two's definition of increasing
variability may be applied to variationin time. We discuss in the next
section how this definition may be applied to demand functionms. Before
doing so it will be well to examine somewhat more closely the relation of
random variables to functions which vary over time. After exploring this
connection we shall for the most part use the language of probability
theory to discuss the model.

Suppose f(t) is a function on (0,1). Then we may define a distri-

bution function on the range of f as follows:

(3 6(x) = ule:£(e) < x}

—

wherelce-ﬂg denotes the measure of the set A. Clearly G is an increasing

non-negative function with G(-«) = 0 and G(») = 1 so that G is a distri-
bution function. If f is defined on (0,T) we can similarly define a dis-
tribution function by G(x) = % ét{}:f(t) < x}. Every function £(t) on (O0,T)
corresponds to a distribution function and thus a random variable. If

f(t) and %(c) correspond to G and 6 then we shall say that f is more
variable than t if and on}y if 8 s G where % is the partial ordering
defined in chapter two. This may seem somewhat at odds.with common usage
for it pays no attention to the order of increase or decrease in f(t).

It would, for example, allow us to say that a smoothly rising monotonic

function was more variable than one that jumped about all the time,
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In Figure 1; for example, f(t) could be more variable than g(t).

(t)

(v

Figure 1
Nonetheless, even though this convention may appear an unnatural wrench of
the language, it is appropriate for our model. In it the cost of adjustment
depends on neither speed of adjustment nor on the number of turning points.
What counts is how much the firm has to adjust, how long in toto the firm
spends in a particular position, not how often it moves in or out of that
position.

Discounting complicates matters, but not seriously, If f(t) is
defined on [0,T], but what happens at t is discounted back to time O by
b(t)( >0), it would still be possible to define a distribution function
G(x) = % /i{t: f(t) S_x} but it would be misleadiﬁg. For our purposes we
need a new measure, one which reflects the weighting provided by the discount

function., It is easy to form a distribution function which reflects the
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fact that what happens at t is more important than what happens at t + t!

Consider first the case where f(t) is a step function. Let BJ%, ...,a{n]

be a partition of [0,T] and define f(t) by

f(t) = fi for ""1_1< t _(_ O‘"i; i= 1, sesy I

Further suppose that what happens between Q:i-l and > o is worth bi'

We are going to stretch and/or contract the interval [0,T] in a way which

reflects this discounting.

1
Let, ) H i=1,...,n, and /60 =x_ =0,

(0]
Consider a new function fb(t) defined on (0,/3n) by

= . ,/;, g <~ o
fb(t) fi’ for , (o1 < t -~ /Ai

Then G(x) = j%— o4 [t fb(t) x] is a distribution function which reflects

A n
the fact that different weights are given to what happens at different times.

The same trick works for continuous functions., Let b(t) > O denote
t

the weight accorded f(t) at time t. Definelgf(t) = b(&)dt. If £(t)

?
“0
is defined on [0,T], we consider fb(t) defined on [0, (T)] by

. -1
£(8) = £[5 7 ().

Since b(t) > 0,2 (t) is monotone increasing and thus invertiblé. The
distribution function corresponding to f(t) discounted by b(t) is given

by G(x) = [AM] ™ (£, (8) < x].
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II

INCRBASING VARIABILITY OF DEMAND

How is the firm's behavior changed by its inability to vary both
factors of production? What are the effects on profit, output, and employ-
ment of factors? It is questions like these which this model provokes and
we shall now try to answer them, To begin, it is useful to note that if
demand and wages are constant, it makes no difference at all if some factors
of production are fixed and some variable., If R(Q,0) = R(Q) and w(8®) = w
for all 91 then the firm will obviously in each period of time choose to
operate with the same labor force., The freedom to change the labor force
is worth nothing. Similarly, if the firm could costlessly change its
capital stock it would not choose to do so. The constraint that the firm may
not vary its capital stock is no constraint at all if demand is constant.
However, if demand is not constant, the firm probably will choose to change
its labor force and would, if it could, change its capital stock to adjust
‘to different market conditions. Only if demand varies does it matter that
the firm cannot adjust all factors of production costlessly and instantan-
eously. One suspects that, in some sense, the more demand varies the more
it matters, the more would, for example, the profits a firm could make if it
could vary both factors of production exceed those it could make if capital
were fixed. Unfortunately, this conjecture is so vaguely and loosely phrased
that we cannot decide whether it is true or false, To do so, it is necessary
to give rather precise mathematical content to the notion of increasing

variability of demand.

1We henceforth assume that wages are constant in order to focus on the effects
of changing demand.
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This is very difficult as the demands we are considering are not

capable of summary by a few -- or even a countable number of -- parameters.

-

Although the partial ordering, %, defined in chapter two does a reasonable

job of classifying random variables as more or less variable, it cannot in
general be applied to demand functions indexed by a random variable, The
structure of démand can be described by a selection and a weighting of some
revenue functions from among all possible revenue functions. (Technically,
one could describe the structure of demand by a measure on the space of all
concave functions.) It is not clear what one would in general mean by a
change in the structure of demand which increased the variability of demand,
but we imagine that one requirement would be, that if output were produced
at constant marginal cost, and profits maximized by setting production at
the point at which marginal revenue equalled marginal cost, then an increase
in the variability of demand would result in an increase, or at the very
least no decrease, in the variability, of output. It 1is, however, easy to
give an example of a change in demand which with one cost structure leads
to an increase in the variability of output and which with another leads
_to a decrease in the variability of output.

In Figure 2 are drawn four marginal revenue curves, (Q is represented
on the horizontal axis). The configuration A,B is the same as the con-
figuration C,D. We may define a structure of demand by assigning weights to
these curves. One such demand structure D might involve weighting each of
the curves equally. In an obvious notation

D= (P, = 1/4; P, = 1/4; P, = 1/4; P_ = 1/4).

B C D
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Another possible structure D' involves weighting only curves A and D

| - = . = 0- = 0 =
D' = (PA 1/2; P 0; P 0; Py 1/2).

Is the move from D to D' an increase or decrease in the variability
of demand? If the (constant) marginal cost is S, output is unchanged by
the shift in demand, if it is greater than S, the shift in demand leads to
an increase in the variability of output. But if cost is less than S, the
shift in demand leads to a decrease in the variability of output. Clearly
our question has no answer,

This is a dramatic demonstration of the rather obvious fact that
there exists no reasonable complete ordering of random demand functions
with respect to variability. In the rest of this section we shall consider
a special case where the random demand functions depend simply on a single
random variable and may be reasonably ordered by é. This is the case of
multiplicative uncertainty which has appeared, with slightly different
interpretations, in other models of firm behavior under uncertainty.

(See, e.g., Zabel [6]).

Suppose that

(3) R(Q,9) = P(Q/x(€))Q

where x is some positive function of © -- in the uncertainty interpretation
of the model x(0) is simply a random variable -- and P(z) is an ordinary
demand function giving price as a function‘of its argument. We assume that
P(z) is twice continuously differentiable, the requirement that R(Q,9) be
concave in Q for all @ is equivalent to

(4) P'"(z)z + 2P'(z) < O for all z > O.
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This specification of the way in which demand changes has three notable
properties: First, we can consider x(9) as a measure of the strength of
demand at ©. If x(0) doubles, the entire demand curve is shifted out
(horizontally in Figure 3) by a factor of two. Twice as much can be sold
at the same price. In thg time interpretation of the model x could be
some function of‘9 and represent seasonal ebbs and flows of demand. 1In
the context of a growth model x(8) = ego could represent exponentially
growing demand or x(@) = b8 + c linearly growing demand. The growth inter-
pretation is more plausible than the seasonal interpretation; we could
consider x(0) to represent the number of people at time O in the market
for Q, as time passes, the market grows but individuals' tastes1 -- as
represented by their demand curves -- remain constant, Thus the growth of
the market is accounted for by aggregating ever more of the same shaped
demand curves. Such growth is described by (3). Not all changes in demand
are. For example, the difference in the summer and winter demand for air
conditioners is more likely to be caught by Figure 4 than Figure 3. The
shift from the higher and relatively inelastic P(Q,Os) to the lower and
relatively elastic P(Q,Ow) cannot be described by (3).

Second, equation (3) represents the multiplicative uncertainty on
which Edward Zabel [6] has based his model of monopoly behavior under un-

certainty. In our model it is arbitrary whether we write R(Q,0) or R(P,0),

1It is unneceesary to assume that all individuals have the same tastes;
we require only that people of different types enter -- and leave -- the
market in the same proportioms.




x(8) =~

FIGURE 3
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FIGURE 4
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for, once @ is known, the firm is assumed to know its entire deﬁand curve,
On any single demand curve, P is an invertible function of Q; knowledge of
one implies knowledge of the other, Some models of firm behavior under
uncertainty -- e.g., Mills [3], Zzabel [6] -- assume that the demand curve
itself is unknown, that the firm sets a price P and that the quantity
demanded in a random variable which is a function of @. For his model

Zabel chooses the specification

(3 _ Q(P,8) = x(8) Y(P)

where ¥'(P) is an ordinary non-stochastic demand function. Mills chose to

analyze the case where uncertainty entered additively
Q(P,8) = ¥(P) + x(8).

It is easy to see that (3) is equivalent to (5), although it should be
emphasized that the way in which zabel's model works is quite different
from the way in which our model works. Since P(2) in (3) is an ordinary
demand function, we may invert it and write Q/x(8) = ¥ (P), from which (5)
follows immediately. | |

The third useful fact about the specification (3) is that R(Q,8) =
P(Q/x(8))Q is homogeneous of degree one in Q and x.

If equation (3) describes demand, it is natural to define an
increase in the variability of demand as an increase in the variability
of x(8). As we have argued that x(8) scales the intensity of demand or
the number of people in the market at 8, this definition is sensible.

We adopt it. We are now in a position to prove the conjecture with which
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we began Section II, that as the variability of demand increases, the
difference between the pfofits1 the firm could make if all factors were
freely variable and the profits the firm could make if some factors of
production were fixed -- in other words, the cost of not being able to A
vary some factors of ptoductibn -- increases as the variability of demand
increases. We begin by examining what happens to profits if all factors
are variable, In this case, for any r and w factor proportions are chosen
for all @ so as to minimize unit costs of production.

If we define this minimum by

(6) c = Min weL + r-K,
L’o0
k>0
Q(K,L) =1

the firm's cost function 1s linear; for all @, the cost of producing Q
is ¢Q. The firm maximizes profits by choosing Q(8) so that marginal

revenue equals marginal cost, or

(7) P'(Q(0)/x(0)) (Q(R)/x(8)) + P(Q(6)/x(8)) = c.

The right-hand side of (7) is a function of -- and by (4) a decreasing
function -- of the ratio Q(8)/x(®). Thus if (7) has a solution2 it is

unique and of the form

1In this section, ''profits'" refer to average or expected profits in the
sense of Section I, unless the context clearly implies the contrary,

21f (7) has no solution, it is never possible to sell any Q at profit.
In Section I we required that there exist a z such that P'(z)z < c; thus
(7) can fail to have a solution only if sup P'(z)z < ¢ or if marginal --

z
and in this case average -- cost exceeds marginal revenue at all levels of
sales, The question of the exlstence of a solution to (7) depends only on
the function P and not on x(9).
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(8) Q(e)/x(8) =<

for some constant ¥ . Thus the price at which output is sold is a constant,

say P = P(X). From (5) we see that revenue is a linear function of x(9)

R(Q(9),0) = x(8) P ¥(P), and from (8) we see that cQ(0) = cxx(8), thus profits

at © are given by

T(©) = x(8) (F ¢ (P - cex) = x(0)B
where B is some positive constant, and expected profits by
T* = E{T(8)] = E[x(8)B] =/A(B.
~7j* is only a function of the mean of x(8). We have proved
Theorem I. If demand is given by (3), 7% (maximum expected profits when

all factors of production are variable) is unaffected by increases in the
variability of demand.

Next, we show that 7 *(K) (maximum expected profits when K is a fixed
factor) decreases as the variability of demand increases, It is necessary

first to prove

Lemma II. If g(x,y) is homogeneous of degree one, twice continuously

differentiable, and g,,< O, then gzp < O and g is concave.

Proof: From Euler's theorem we have

X
;gll = - 812 = ¥822,

so that g;, = (i)2 goo and gy; and goz are necessarily of the same sign.
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Concavity is equivalent to the matrix

811 g12 \
Bir2 822 //
being negative semi-definite. Since g;;< O, by the well-known theorem

on principal minors, H will be negative semi-definite if det H > 0. But
det H = g1,822 - 812~ = 8112(§92 - 8112(592 = 0.
This completes the proof.

We now prove

Theorem III: Increases in the variability of demand decrease T *(K) when

demand is given by (3).

Proof:

Ti*(K) = Max E[Max P(QSE;EL) Q(K,L) - wL] - rK
K L x(8)

or, in an adaptation of the notation of Section I,

T*(K) = Max E[G(K,x())] - TK.
K

If we can show that G(K,x)1 is a concave function of x for all K, then an
increase in the variability of x will decrease E[G(K,x)] for all K and
7 *(K) will necessarily decrease,

For fixed K, let X = A%; + (1- A)xo and define L, by G(K,x,) =

Q(K,L,) A ~
P(———)Q(K,L,) - wL, and Q, by Q, = Q(K,L,). Define L by Q(K,L) =
x; i i i i i

AQ; + (1-A)Qo. From the concavity of the production function Q, it

A o~
follows that L <L = AL; + (1- A)Ls. By the definition of G,

1We drop the argument 6 when this can be done without confusion.
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G(K,%) > P(Ml:—;-)-) QK,L) - Wi

> P(Qf%i-’-m(x,b -k

>MP@Q1/x1)Qq = wLy] + (1- 1) [P(Q2/%2)Q2 - wLz]
= AG(K,x;) + (1- A)G(K,x2).

A -~
The first step follows from the fact that L < L, the second from the

concavity of P(Q/x)Q in Q and x (Lemma II)., This completes the proof.

Conslder

F*(K,L) = Max E[Ti(Q,x(8))]
Q

That [*(K,L) (maximum expected profits when all factors of production are
fixed) decreases as the variability of x(©) increases is an immediate --
and hardly astoniéhing -- consequence of Lemma II which tells us that

7 (Q,x(9)) is concave in x for all Q.

It is clear that T *(K,L) < *(K) £ T* since any strategy available
to the firm when one (both) factor(s) of production 1s (are) fixed, is
available to the firm whén no (one) factor(s) of production are (is) fixed.

We illustrate these concepts with an example. Consider the firm

~with a Cobb-Douglas production function

Q=KL 0: 321
which faces a constant elasticity demand curve,

ol 1-0-

(9 P@Q,9) = (@/8)"°; R(Q,0) = QP(Q,0) = 87Q
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where uc'l 1s the elasticity of demand. To assure concavity of the
revenue function we must have the elasticity of demand greater than unity
or 0< & 1. If r and w are the rental prices of capital and labor,

then

1-4 Vel

¢ = w/(1-5)) 7 (x/p)

is the cost of producing one unit of output at best factor proportioms.

We now examine the behavior of the firm in the three cases distinguished
above. In case 2 the firm is allowed to vary both factors of production
ex post, i.e., after demand is known; in case 1, it may change only its
labor force ex post, in case O both factors of production and the level

of output and sales are chosen ex ante, before demand is known. In case 2
the firm will always choose to operate at optimal factor proportions and
the unit cost of output will be e¢. Thus, the firm will choose Q(8) so as

to maximize R(Q(0),0) - cQ for each 8. Thus, we must have that

aaggaqgo 2,0 _ .
or
Q®) = ¢ ¥ (1.t ™e

We find price as function of output by substituting in the demand function
(9): P2(8) = c/l-« which is independent of 6. Since price is constant’
for all 0,

P2 = E(P2(0)) = c/(l-x) .

Profits on the other hand change as 8 does

TTE(O) = Qoc((l- %)/c)((l-%),q_)



so that

o = E(T2(0)) = soc (Lot )/e) (272

where < = E(9).
In case O when the firm chooses both factors of production (as
well as the level of output) ex ante it will also produce at minimum

average cost. Thus, it will choose Q so as to maximize

E(R@Q,0)) - @ =+, @' - o
where
(10) M = E(0%).
Thus,
(1'06)‘Lo }/og
Q, = ( - )
while
_ 00(‘ gl-a’.z
Py(8) = e
and,
Py = E(P,(®)) = (l-x)/c
‘so that e St ) 1-0¢ 1-% 1/ 1/
ITO(Q) =c [0 (L-0¢) A - (1-x)
and 1/ 1-C
) — ol
g = E(Mg) =+ X ((1-x)/¢) .

Case 1, when the firm chooses capital ex ante and labor ex post,
is more tedious to analyze. We begin by inverting the production

function to get labor as a function of Q and K. Then cash flow for a
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given choice of K,Q, and © is given by

F - Gl
(11) e gty

Q(K,0) is chosen to maximize (l1l). Substituting this maximizing Q into

(11) we find after considerable manipulation that, in the notation of

Section I,
¥ Y < (-x)d
cx,0) = V1Y (1= ¥yw I-Yg 1-¥ 1-%
where
(12) = (1-a)(1-,8)

Choosing K* to maximize E(G(K,0)) - rK, we find that

1-Y

LY Ly
Kk = (l-X Lila; (1_/3')3/0&5 A- [/{(16‘2()] X .
T3

Substituting K* into the results already obtained we find P,(8), Qa(®)
and 171(9).and their expected values, P;, Q;, and ;. All these results
are summarized in Table 1, which gives P(8), Q(©) and Tr(®) and their
expected values for all three cases.

The most interesting aspect of Table 1 is line 6 which states that

1/a
expected profits are a constant times a function of the form A where
81
) . _~ ~s
a5 = X,8, = 1—(_-‘?, and a = 1, Since we know that [I5 > m, 2 To and

since a; and a, are arbitrary except that they satisfy 0 £ 8, & & <1,

this constitutes a proof of the fact that

p(a) = o M2 en m(x)H IR
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is a non-decreasing function of a for 0< a < 1. From this we can prove
Lemma IV. P(a) is non-decreasing for all positive a,

1
Proof: Suppose a' > a >0, Then a/a'< l. Let Y = 'X'a . Then,

N ] ] .
a/a I]a /a < E(Y). Raising each side of this inequality to the 1/a'EE

power, we have

/a')]1/a /a'

(EC(Y)? < !

or,

a'_a/a' l/a

E(x8Ha/atyt/a

= EAxI1H17? ¢ Eqx® 12,

We will find this well-known inequality -- which can also be obtained from
Holder's inequality -- useful in what follows.
We use it now to show that W&, expected profits when one factor is

variable and the other factor is fixed, increase as the output elasticity

of the variable factor increases. '?i is a constant timeﬁ/ug-lﬁs where
§.=L%/@x,+f}(l-;n)) 1s an increasing function of (1-4) the output elasticity
of labor. This is a reasonable result, particularly considering the

extreme values of 771; when ‘,Cf= 0, 5=1and 7, = Wp; and if 8= 1,

& =, and M, = ’ﬂb. If output is produced by labor alone, as &= 0
implies; then the constraint that capital must be chosen before demand

is known as no constraint; if output is produced by capital alone, as

/5 = 1 implies, the freedom to hire labor, but not capital, ex post is

worth nothing.

This is not a ceteris paribus result. The constant which multiplies

/nglla depends on ¢, minimum average costs, which is a function of r, w, and/é.
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Thus, we cannot be sure that T, increases aS/d decreases unless r and w

change so as to hold ¢ constant, or unless r/w > //1-4. This last

condition stems from writing iT; = f(c)/uJ 1/¢ and observing that

£'(c) < O while % >0 if and only if r/w > f#(1l-/4), as can be seen by
- d log ¢

examining d/? .

It is interesting to note that average price is lowest in case 1.

PO = P, and
Py= (U, y P (ot y ) [E(Y)]-'G,‘(EV(Y/‘?_))‘POA
1-Y Co1-) .
1-¥ . But, E(Y/O)ll/é < E(Y) since 4 < 1, Take each side to

whéxre Y = ©
the & LD . -3 -4 /3
e, — power and multiply by (E(Y)) 7 to get [E(Y)] "~ (E(Y")) < 1.

Therefore, P, < P = PO .
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III

INCREASING VARIABILITY OF OUTPUT

Embedded in each profit maximizing problem is a cost minimizing
problem. In this section we investigate it; for the most part we shall
use the language appropriate to the uncertainty interpretation of the
model. 1Ia each state of the world the firm sells a quantity of output
S(8). Thus S$(0) is a random variable with a distribution function F(S)

defined by:

F(5) =« {A} T} {0 £AIS(O) < 5}

where @ ranges over the set A. The firm which maximizes expected profits
will choose its fixed and variable factors of production so as to minimize
the expected cost of producing S(@). If K and L represent fixed and
variable factors of production and w is the price of L and r that of K
then the variable cost of producing S(©) given an ex ggggechoice of K

is 4 (K,5(9)), the solution to

(13) Min w.L subject to F(K,L) > S(O).
L20

Total costs for state @ are C(K,S(9)) = ,4(L,5(9)) + r*K and expected costs
are C(K) = r«K + EQS (K,S(O)).1 The firm which maximizes expected profits,

. . 2
must choose K so as to minimize expected costs of production.

1The notation for C parallels that for w.

2Since W*(K) = E[R(S(8),Q)] - C(K), for a given random variable S(©),
W *(K) is maximized only if C(K) is minimized.
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$(8) is a random variable; we can hse the technidues of the
previous section to analyze the effects of increases in the variability
of sales on costs and the employment of factors of production. The rela-
tionship between changes in the distribution of demand and those of sales
is not clear cut -- as a glance at the example of the last section makes
appallingly clear. We would conjecture that in most cases increases in
the variability of demand lead to decreases in average sales, and perhaps
to increases in some, but not all, measures of dispersion which take
account of this shift in expected value. We have not studied extensively
the nature of the relationship between changes in the distribution of
demand and of sales. We doubt that any general results are to be had.
Nonetheless there is good reason (aside from the obvious one that at
present this is what we can do), for wanting to examine the effects of
increases in the variability of saies. This concept of sales appears
quite naturally in at least two models of firm behavior. Consider a firm
which must1 meet a random demand. An electric utility supplying power
to a city is a good example. The firm's customers are all plugged into
the power utility; to use power they simply turn on appliances. The utility
has no choice as to whether to sell power to its customers. It treats
the total amount of power which it supplies at any instant as a random
variable, We may easily imagine that the firm has fixed (e.g., a steam

generator) and variable factors (e.g., coal), which it combines to produce

1Or pay a penalty, of which more later,
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electricity. The firm's task is to pick the size of the fixed factor of
production which minimizes expected costs, Another model of firm behavior
of which sales are an important component is a slight variant of the model
of section I. Suppose a monopolistic firm names a price, P, at which it
will sell output and that orders, which we assume that the firm must meet,
are a random variable which is a function of 6. We can reasonably ask
in such a model what happens when S(P,0) becomes more variable.

The reader may object that the last two models are unrealistic.
While S(©) has no natural bound, our models would have the firm produce
whatever was ordered. If the elasticity of substitution is low, this may
mean that our results, particularly those concerning the choice of K will
be dominated by extremely high S's of low probability. For example, if
the production function is of the fixed coefficients type, Q = min(K,L),

then K = supS(8) is necessary if the firm is to meet all orders. This is
BEA

clearly unreasonable. If S(8) = 1000 for 6¢A' and S(8) = 1 for GtA-A'
if/A»(A')(/-(A) < .001, no reasonable model would prediét that the firm
would hold a capital stock of 1000 to meet the slight (less than 1 in 1000)
chance that it will need a capital stock greater than one. If the firm
should, by chance, encounter orders for a 1000 units of output it will
simply not meet them, paying-some sort of penalty rather than incurring
the cost of keeping around a large idle capital stock.

We can take account of this objection if we expand our model to
include n factor production functions. That is, K, instead of being a

single kind of machine is now a vector of j fixed factors of production



86

and L is a vector of n-j variable factors. We still require that Q(K,L)

be homogeneous of degree one and concave. Moving from 2 to n factors
enriches our model considerably without altering most of our results.1
variable factors can be interpreted to include both rental markets for
what are ordinarily fixed factors and penalty costs for failing to meet
orders. The firm may choose to rent machines for short periods of
exceptionally high demand. The model now also allows us to consider
different types of labor some of which are fixed and others of which are
variable. A penalty cost for not filling orders is simply a rental market
for the variable factor of production, units of the final product. The

rental price of this input is the penalty cost for not filling orders.2

(a) Effects on Costs

We expect that as S(®) increases in variability expected costs

increase. This is an immediate consequence of
Lemma V. +/(K,S) is a convex function of S.
————————— /

Proof: For any fixed K let S = AS; + (1-\)S2, 0 S A = 1. We must show
that A/ (K,S;) + (1- A)3 (K,S2) ZJA(K,S). Let L, satisfy /4 (K,8;) = wely
and let Q; = Q(K,L) 2 Sy for i=1,2. Since Q is concave, Q(K, ALy+(1- A)Lz2)

~

Q(K,i) > AS1+ (1-A)sz = S. Therefore /-;3(1(,"3’) > wel = \(weLy)+(1-A) (w-L2)

A/A(K,S1) + (1= Q) £(K,S2).

1'].‘he proofs of section II go through with only minor changes.

2This is formally indistinguishable from an electric utility supplying its
customers by buying electricity from another utility. This model can
incorporate convex as well as linear penalty costs.
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This lemma implies that expected variable costs for any choice of K
increase (or at least do not decrease) as the variability of demand increases.
Thus expected costs when K is chosen to minimize expected costs must also;

increase. We have proved

‘Theorem VI, C*(K) increases as the variability of sales increases.

This theorem has an interesting implication. A reasonable measure
of the relative efficiency of firms producing the same output and facing
the same factor prices is costs of production. If we imagine two identical
firms, one of which faces a more variable demand than the other, the first
firm will produce at a higher average cost than the second, and tﬁus appear
to be less efficient than the first even though technically they are
identical. If we compare two economies, each made up of the same kind of
firms and one economy is subject to more fluctuations in demand -- both
aggregate and in composition -- than the other then the first economy will

appear to be technically behind the second.

(b) Effects on the Demand for Factors

Since increases in the variability of output ihcrease costs, they
must increase the employment of some inputs. It is not in general
possible to say which inputs are increased by increases in the variability
of sales. It can be shown that, in the two-factor case, if the production
function is of the constant elasticity (CES) class, then, if the elasticity
of substitution (¢) is less than, or equal to, unity, increases in the
variability of output incréase K. If o> 1 their effect ié not clear cut,
In the polar case of perfect substitutibility (& =«9) it is possible to

show that some increases in variability increase K and others decrease it.
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A more interesting question to ask is: what is the effect of
variable demand on factor proportions? If output were constant, then the
firm would choose its labor-capital ratio (i'= %) so as to minimize unit

costs. First order conditions for cost minimization are that the marginal

. QK dL r
rate of substitution, (m = — = - — )be equal to —. Since m is
QL dK Q=0 w

a function of .f we may write

(14) = m(/).

€|

If output is random expected cost minimization implies different conditionms.
For any K,/i(K,Q) = wL(Q;K) where L(Q;K) is the amount of labor necessary
to produce Q with a capital stock of K. Expected costs are then,

C(K) = rK + w JL(Q;K)dQ.

First order conditions forminimization are that C'(K) = O or that

T _ L d(L(Q;K)) d
w o TJ dK Q.
dQ=0
But,
Q
d .
LdKK =-‘_K=-mu)’
dQ=0 L

so that efficiency with random output requires that
(15) = = E(m(,))
or that r/w equal the expected marginal rate of substitution.
For the special case of the CES production functiom, Q = (LSK-p
+ (1-;’;)L-p)-1/p,vwhere0 = 1/(1+p), and

(16) () = (oo 4 - 2 BT
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so that (14) implies that /Z', the labor-capital ratio when demand is
constant, is given by

) - rd ,l-o .0
(7 7= ) .
If demand is random then we may substitute (16) into (15) to obtain:

'

L o s G

H

where K* is the capital stock chosen to minimize expected costs.

This last equation implies that

r 1-4. )1 1/
S (=5 - (K*

[

/

7 E[L@kn 7 1,

or

.
1

T 1-4 E(L o
_()( _L_E"_)-'
-
Let ¢ = E(%; = Eéél be the expected or average labor-capital ratio

) = 1/a

when output varies., Then, [ F ¢ as E(L )g’ %\E(L). But, we know ffom

1. We have thus proved

%

Lemma IV that E(LY/ )Y

AVITAN

E(L) as

Theorem VII, If(T > 1, the firm producing a varying output with a fixed
capital stock according to a CES production function will, on the average,
use more labor intensive techniques of production than it would if output
were constant or‘both K and L were allowed to vary. If 4 < 1, then the
reverse holds. If & = 1, the Cobb-Douglas case, ? =

Consideration of polar cases shows that this is a reasonable result.
1If 9 = 0, fixed coefficients, the firm will have to keep a capital stock

large enough to produce the largest output which it is going to produce
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in any state of the world. In any state of the world when output is not
at its maximum some capital will be idle and the labor-capital ratio will
be less than that consistent with full employment of both factors. Now,
consider the case of perfect substitutability, 0" = co. We may choose units
so as to write the production function as Q = K + L. Then, if r < w, no
labor will be employed if sales are constant. If sales vary the firm may
choose to meet high demand by employing some labor rather than keeping

a large idle capital stock on hand. If the firm hires any labor at all
it will raise the average labor-capital ratio above zero, the value of
the optimal labor-capital ratio when demand is constant. If r > w, the
firm will hire no capital whether demand is fixed or varying.

This result can explain the disparity between the wage and the
marginal product of labor which Thurow [5] has observed. Thurow estimated
a production function for the U.S. priyate economy from data on output,
capital, and labor. He then used the estimated production function to
calculate a marginal product of labor series and compared this series
with observed data on employee compensation. He found that from 1929
to 1965 the wage was always much lower than the marginal product of labor.
Thurow offered several explanations of his finding. Our model suggests
another. If our model describes the U.S. economy -- an heroic assumption
but surely one which strains the imagination only a little more than
those implicit in Thurow's work (all that is required beyond the exis-
tence of an aggregate production function of thé CES class is that there
be a cost to changing the capital stock which is described by & function

which is not convex near zero)-- then the disparity which Thurow observes
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is explained by a low elasticity of substitution. For, 1i£0 < 1, then
each firm will, according to Theorem VII, on the average use légg‘labor
intensive methods of production than factor price ratios would imply if
demand were gonstant. Thus, the marginal product of labor will on the
average be higher than whét it would be if output were constant. But,

lif output were constant the marginal product of labor would equal the wage
rate; if output ;aries, it must be greater than the wége.

We do not suggest that this 1is the correct éxplanation of Thurow's
results, We only wish to point out that this model of firm behavior has
rather different implications than models which assume that all factors
of production are variable, We emphasize this point by considering the
problem of estimating production functions. Because.reliable data on
capital are very hard to come by, many estimation procedures rest on the
presumed identify of wages with the marginal product'of labor. 1In our
model t%e wage is not the marginal product of labor; assuming that it is
will lead to biases in estimation. This is easily illustrated by exami-
nation of the method proposed by Arrow, Chenery, Minhas and Solow [l] for
estimating the elasticity of substitution. If the production function

is of the CES class then

log%= - o log (1-3) +(i'log§)£

if w = K then we may estimate,

oL

(18) log % = A+ 1 logwHe,

~
and take ', as an estimate of ¢6°. Suppose we estimate (18) for a cross
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section of firms which treat capital as a fixed factor of production and
labor as a variable factor. It seems reasonable to assume on the average
that firms with high output per man will be using less labor than factor
price ratios would indicate and thus that wages would be lower than the
marginal product of labor. For firms operating at low output per man, the
reverse is likely to be the case., The observed relationship between |
log w and log % will have a lower slope than that of the actual relation-
ship between log K and log gu (See Figure 5). /31 the estimate of

oL L .
will bb biasedbdownward.1

1Theorem>VII implies that the estimate of the intercept term will be
biased as well,
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