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ABSTRACT

Fully polarimetric data convey additional information regarding the remotely
sensed media and thereby provide more accurate identification and classification of
terrain types in sensor imagery. For applications in polarimetric remote sensing, elec-
tromagnetic wave models describing wave propagation and scattering mechanisms are
presented, experimental data and theoretical results are compared, and corresponding
polarization signatures are discussed.

Geophysical media usually contain inhomogeneities in a random manner and
often stratified into multiple layers. For such media, polarimetric multi-layer aniso-
tropic random medium models are developed. The models are started with simple
scatterers of uniform size, spheroidal shape, and two-phase mixing; then, the complex-
ity is increased for multi-species media with multi-phase and distributions of scatterer
orientations, sizes, and shapes which are varied under dynamic environmental con-
ditions. Scattering effects of the random media are described by three-dimensional
correlation functions with variances and correlation lengths corresponding to the
fluctuation strengths and the physical geometry of the inhomogeneities, respectively.
With proper consideration of singularities in the dyadic Green’s function, the strong
fluctuation theory is used to calculate effective permittivities which account for the
modification of wave speed and attenuation in the presence of the scatterers. The
distorted Born approximation is then applied to obtain correlations of the scattered
fields. In the derivation of the scattered fields, phase information is preserved and
multiple wave interaction between the inhomogeneities and the layer boundaries are
incorporated in the dyadic Green’s function for layered media. From the correlations
of the scattered fields, covariance matrices, Mueller matrices, and polarization sig-
natures are calculated in terms of scattering coefficients to characterize polarimetric
scattering properties of the geophysical media.

The models are used to obtain theoretical resuits for experimental data com-
parisons at microwave frequencies. For vegetation, data from a soybean canopy are
compared not only as a function of incident angle but also over an extended period
of time since multi-temporal data are available. Polarization signatures correspond-
ing to various growth stages of the soybean show temporal variations which reveals
the effect of the soil surface and the change in biophysical parameters. For sea ice,
theoretical and experimental backscattering results are matched over the available
range of incident angles. Polarization signatures for sea ice of different types with
and without snow cover are calculated. Special features observed in the signatures
pertaining to the different ice types are related to the polarimetric scattering coef-
ficients and explained physically. Thermal variations of sea ice characteristics and
structures are also considered.

Thesis Supervisor: Jin Au Kong
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Chapter 1
Introduction

1.1 Description of the Thesis

In this thesis, electromagnetic wave models derived from Maxwell’s equations for
applications in polarimetric remote sensing of geophysical media are presented. The
models will be layered, anisotropic, and fully polarimetric as compared to many
existing models which are for conventional remote sensing. Moreover, the models
will cover media started with simple scatterers of uniform size, spheroidal shape,
and two-phase mixing; then, the complexity is increased for multi-species media with
multi-phase and distributions of scatterer orientations, sizes, and shapes which are
varied under dynamic environmental conditions.

First considered is a review on the analytic wave, modified radiative transfer,
and traditional radiative transfer theories. Polarimetric descriptions such as scatter-
ing matrix, covariance matrix, Mueller matrix, Stokes vector, polarization signature,
and polarimetric scattering coefficients are then discussed. Theoretical models are
developed in the subsequent chapters increasingly in physical complexity along with
experimental result comparisons, interpretations, and simulations for various media
including snow, sea ice, and vegetation at microwave frequencies. From the models,
effective permittivities of the media are calculated with the extended strong fluctu-
ation theory and polarimetric scattering coeflicients are derived under the distorted

Born approximation. The last chapter will summarize the thesis.

- 23 —



24 1. Introduction

1.2 Review of Theoretical Models

With the advances of sensor technology especially the airborne and space borne SAR
with multi-frequency and multi-polarization capability, remote sensing of geophysi-
cal media has drawn considerable efforts on experimental campaigns and theoretical
models. In the modeling of the media, theoretical models are developed based on dif-
ferent fundamental principles, assumptions, and approximations resulting in various
domains of validity for certain physical processes which require a variety of model
input parameters. It is the purpose of this section to review the theoretical models.
Considerations will be given to the model realism, commonalities, and incompat-
ibilities. The realism herein signifies the incorporation of the dominant physical
processes, the applicability of the models to the commonly encountered geophysical
characteristics, and the realizability of input parameters either observable or infer-
able from measured data. The commonalities and incompatibilities are thereby the
intercomparison of models in terms of the model realism as specified. These tasks

necessitate a systematical review methodology.

a. Review Methodology

Theoretical models for remote sensing of geophysical media are reviewed systemati-
cally as illustrated in the chart of Figure 1.2.1. Formulated from Maxwell’s equations,
the theoretical models can be classified into the analytic Wave Theory (WT) and the
Modified Radiacive Transfer (MRT') theory which is a more rigorous version of the
traditional Radiative Transfer (RT) theory. The WT and MRT are therefore closely
related and both can account for the coherent effect of wave propagation in differ-
ent directions. Though similar in form to the MRT, the RT is based on the energy

transport equation which deals directly with the wave intensity.
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MAXWELL'S
EQUATIONS
1
1 Y
WAVE THEORY: MRT THEORY: RT THEORY:
INTEGRAL EQS. MRT EQS. AT ECS.
1. BORN APPROXIMT. 1. ITERATIVE
2. DISTORTED BORN [ < 2. EIGENANALISIS *
APPROXIMATION 3. INV. IMBEDDING
r r
SOLUTIONS: SOLUTIONS: SOLUTIONS:
I. SINGLE SCAT. 1. MULTIPLE SCAT. 1. MULTIPLE SCAT.
2. DOUBLE SCAT 2. COHERENT EFFT. 2. OTHER EFFECTS
| [y b
RANDOM MEDIUM

Cont. or Discr.

Figure 1.2.1 Review chart for theoretical models

For each theory, there are several methods under various approximations for
obtaining solutions utilizing the concept of continuous or discrete random medium.
In WT, wave equations are transformed into integral equations and often solved with
the Born, the distorted Born, or the renormalization method. The MRT and RT
equations have been solved with the method of iteration, discrete ordinate eigen-
analysis, or invariant imbedding. Consequently, the solutions are restricted in the
corresponding regions of validity and requiring different forms of input parameters.
From the assumptions, the approximations, and the solution methods, the obtained
results can be seen as to account for which physical processes applicable in which
physical conditions and structures. The commonalities and incompatibilities of the
models can thus be recognized. By following this methodology, the theoretical mod-
els for remote sensing will be reviewed in the categories of the analytic wave, the

modified radiative transfer, and the traditional radiative transfer theories.
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b. Analytic Wave Theory

In the analytic wave theory, wave equations are derived directly from Maxwell’s equa-

tions. To obtain analytical solutions, approximations are necessary. Among those
are the Rytov and the Born approximations. In the Rytov approach, the field in a
medium with randomly embedded inhomogeneities is expressed in terms of a complex
phase in the exponent of an exponential function to describe the distortion of the
phase front and the attenuation of the wave due to scattering. The resulting equation
governing the complex phase is a nonlinear wave equation which can be linearized
by applying the Rytov approximation and the solution can then be obtained. In the
Born method, the field is written in form of an integral equation exactly derivable
from the wave equation with the use of dyadic Green’s functions. The solution is
obtained by truncating an iterative series expression of the integral equation. While
both approximations require weak fluctuations on the inhomogeneous permittivity of
the random medium, the Rytov approximation can have a larger range of validity in
the fluctuation strength. The Born approximation, however, is a simpler and can be
applied more generally without a priori knowledge of the field [1].

With the Born approximation, the medium has been modeled with an isotropic
two-layer [2], isotropic multi-layer [3], anisotropic two-layer [4], or isotropic-anisotro-
pic three-layer configuration [5] to calculate the conventional scattering coefficients.
The number of layers is herein defined as equal to the number of interfaces; thus, an
n-layer configuration contains n + 1 different regions. In polarimetric remote sens-
ing, Mueller and covariance matrices which characterize fully polarimetric scattering
properties of the media are calculated for an isotropic two-layer [6] or an anisotropic
two-layer configuration [7]. Physically, the first order Born approximation corre-
sponds to the single scattering process and the second order corresponds the double
scattering and so on. In isotropic random media containing spherical scatterers, the

depolarization giving rise to the cross polarization return is due to the second and
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higher order term (multiple scattering) [6,8]. Stronger depolarization effect can come
from the first-order term (single scattering) in anisotropic random media [4,7] and
non-spherical scatterers [58]. As discussed, the Born approximation is limited to
weak fluctuations in sparse and tenuous media.

For denser or less tenuous media, improvements on the Born approximation
are necessary. The distorted Born approximation has been applied in the modeling
of random media [9-12]. This approximation takes into account the dissipation and
scattering losses and also the modification of wave speed due to the embedded scat-
terers; therefore, multiple scattering has been considered to some extent. Physically,
the first order distorted Born approximation describes the single scattering process of
the mean field and can also be interpreted as the first-order multiple scattering pro-
cess. Another method for the improvement is the renormalization technique which
has been carried out to the first order [13], second order [14], and higher order for a
half-space isotropic random medium [15]. For a two-layer anisotropic medium, the
renormalization has been applied to derive the Dyson equation for the mean field
and the Bethe-Salpeter equation for the scattered field which are respectively solved
under the nonlinear and the ladder approximations [16].

For media with strong permittivity fluctuations, the strong fluctuation theory
is used in conjunction with the distorted Born approximation. In the strong fluctua-
tion theory [17], the Dyson equation is derived with the renormalization method and
solved with the bilocal approximation. In the bilocal approximated Dyson equation,
the observation and the source points in the random medium can coincide with each
other to give rise to the singularity in the dyadic Green’s function. The singularity
needs be taken into account properly by decomposing the Green’s function into a
principal value part and a singular part corresponding to the source exclusion vol-
ume. The singular part of the Green’s function is determined by the elimination of

secular term and depends on the shape of the exclusion volume. By using the strong
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fluctuation theory, effective permittivities and variances of the random medium are
obtained for isotropic and anisotropic random media [17,18]. Scattering coefficients
are then calculated under the distorted Born approximation with the effective per-
mittivities for the mean dyadic Green’s function. In conventional remote sensing, the
method has been applied to an isotropic half-space of snow [19], an anisotropic half
space [20], an isotropic-anisotropic three-layer configuration [21], and an isotropic
two-layer configuration with second-order distorted Born approximation [22]. In re-
mote sensing of vegetation, the strong fluctuation theory is thus applicable to both
sparse or dense canopy. For sea ice, embedded brine inclusions are usually small
compared to a wavelength in microwave frequency range and have a permittivity
distinctively higher than that of the background ice; the strong fluctuation theory is
suitable in this case.

To characterize the random media mentioned in the above methods, either the
continuous or the discrete random medium can be used. For the continuous model,
the medium has been described by three-dimensional correlation functions with vari-
ances and correlation lengths corresponding to the fluctuation strengths and the phys-
ical geometries of the scatterers, respectively. The inputs to the continuous model
are the variances, the correlation lengths, the background mean permittivities, the
thicknesses of the layers, and the directions of wave incidence and scattering. If the
strong fluctuation theory is used, the inputs are correlation lengths, the constituent
permittivities and fractional volumes in the random medium, the layer thicknesses,
and the incident and scattering directions. The continuous model has been used
in [2-10,13-18,20,21]. In the discrete model, the inhomogeneities are considered as
discrete scatterers embedded in a background medium and the inputs are the per-
mittivities, the fractional volumes, the shapes, the sizes, the orientation distributions
of the scatterers, the permittivity of the background, the layer thickness, and the in-

cident and scattering directions [11,12]. The continuous and discrete models can be
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seen as related in the sense that the correlation functions can be derived for a given
set of discrete scatterers with specified size and shape distributions (25} or can be cb-
tained from digitized images of the discrete scatterers in the random medium [24,26].
Further approximations have been made in the derivations of effective permittivities
or the mean field such as the low-frequency [11,12,17] or the Foldy approximation
[11,12], respectively. The low-frequency approximation requires the size of the scat-
terers to be small compared to the wavelength and the Foldy approximation requires
weak permittivity fluctuations. These approximations can be relaxed at the expense

of mathematical complication.

RIRENNNE
\/“ AV,

(c) (d)
Figure 1.2.2 Interaction processes between boundaries and scatterer

An important advantage of the analytic wave theory is the preservation of
phase information. Derived from wave equations of layered media with the use of

dyadic Green’s functions which are available in [3,27-29], WT solutions contain all
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multiple interactions due to the boundaries at the layer interfaces; therefore, all co-
herent effects for wave propagation in different directions such as constructive and
destructive interferences are included. The interactions due to the interface bound-
aries are illustrated in Figure 1.2.2 where the dots represent the continuing multiple
reflection and transmission processes at the boundaries. As observed from the figure,
the scattered field is composed of four interaction processes in the isotropic media;
consequently, the first-order covariance of the scattered field has 16 terms. For an
anisotropic medium, each of the waves either going up or down can be ordinary or
extraordinary waves resulting in 16 terms for the fields and 256 terms in the first-
order covariance [7]. For vegetation canopy such as rice field with an underlying
water layer, the upper-boundary is negligible. Nevertheless, if the attenuation in
the canopy is not too high, then the water-boundary effect due to the terms of the
types (b-d) in Figure 1.2.2 are significant and the interference effects are important.
For a dry-snow layer, the medium is not too lossy at microwave frequencies and the

boundary effect are essential.

c. Modified Radiative Transfer Theory

In an effort to reformulate the phenomenological radiative transfer theory which
is based on the energy transport equation [30-32], Maxwell’s equations are used to
derive the RT equation. From an examination of the relationship between the RT
theory and Maxwell’s equations in random media [33], it is found that the RT equa-
tion can be obtained from Maxwell’s equations under certain conditions: the fields
are either statistically quasi-homogeneous or highly directional as in a laser beam,
the scattering effect is weak and the permittivity fluctuations are small and nearly
statistically stationary. The weak fluctuation condition allows the ignorance of the
fluctuation part of the Green’s function in the covariance integral of scattered field;
this approximation is equivalent to the ladder approximation for the Bethe-Salpeter

equation [34].
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When there exist interface boundaries, the mean field can propagate in differ-
ent directions due to the transmission and reflection at the boundaries. Because of
the treatment fundamentally with intensity in RT theory, the RT equation does not
account for the coherent effect. In this case, the MRT theory is necessary to provide
additional terms which accommodate the coherent effect due to wave propagation in
different directions. In this theory, the scattered intensity are seen to be given rise to
by both the mean intensity and the scattered intensity itself. Thus, the coherent and
the multiple scattering effects are accounted for. In the two-layer case with a ran-
dom medium having one-dimensional laminar structure [35] or a half-space random
medium with three-dimensional correlation function [36], the MRT equations are de-
rived with the Dyson equation for the mean fields and the Bethe-Salpeter equation
for the scattered fields. The two-variable expansion technique is used to solve for the
mean Green’s function from the Dyson equation under the nonlinear approximation.
The ladder approximation is 'then applied to the Bethe-Salpeter equation to obtained
the MRT equations. The coherent effect is shown to be more significant for random
medium with weaker fluctuation strength [35]. Thus, unless the layered medium is
very highly scattering, the coherent effect is important since it comes from the mean
field which is the zeroth-order solution.

In a two-layer isotropic case, the method used in [35,36] is applied to obtain
the MRT equations [37]. The first-order MRT results for the copolarized backscatter-
ing coefficients oy, and o,, are compared to the results in WT with the first-order
Born approximation. The comparison shows that the results from the two different
methods have the same solution structure but the attenuation in the Born approxi-
mation accounts only for dissipation while the attenuation in the MRT method has
an additional term due to the scattering loss [37]. Consequently, the Born results for
the backscattering coefficients are higher than those of MRT. Physically, this is due

to fact that the additional scattering loss has a shielding effect on the scatterer. In
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the very low scattering limit, the Born and MRT approaches, however, give the same
results. When the variance of the permittivity fluctuations is increased, the shielding

effect due to scattering becomes more important and the two results deviate.

(c) (d)

Figure 1.2.3 RT includes only (a) and (b) while MRT include all interactions

Recently, MRT equations are obtained for incoherent electromagnetic field
intensities of ordinary and extraordinary waves in a two-layer anisot. >pic random
medium [38]. The MRT results in [38] include the incoherent-field multiple scattering
terms which are neglected in the first-order renormalization method. Similar to the
WT, the MRT can account for the coherent effect. In the backscattering direction,
the MRT equations include terms responsible for the phenomenon of backscatter-
ing enhancement which has been observed in laboratory controlled experiments [39].
Examples of these terms due to the coherent effect of constructive interferences are

shown in Figure 1.2.3 [38] where the dashed arrows represent the complex conju-
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gates of the continuous-arrow term. As reviewed in this section, the MRT equations
obtained by using the Dyson equation under the nonlinear approximation and the
Bethe-Salpeter equation under the ladder approximation can account for the multi-
ple scattering and the coherent effect. In [33-37], correlation functions are used to
characterize the random media and the models thus require the same physical input
parameters as discussed in the last section. Further discussions on solution methods
of the MRT equations are considered in the next section for RT equations since the

two equation forms are similar. -

d. Radiative Transfer Théory

The traditional radiative transfer theory is phenomenologically based on the energy
transport equation [30-32]. In this theory, the propagation and scattering of the
electromagnetic field intensity are described in terms of the Stokes vector governed
by the energy transport equations. Constituents of the RT equations are an extinction
matrix, a phase matrix, and an emission vector. The extinction matrix characterizes
the attenuation due to both absorption and scattering losses. The phase matrix
describes the coupling of electromagnetic intensities from other directions into the
direction under consideration. The emission vector depicts the source due to thermal
emission which can be neglected in the active remote sensing since the emission
source is usually small compared to the radar transmitted and scattered signals.
Furthermore, ‘the inhomogeneity of temperature, scattering, or absorption profiles
and the effects of rough interfaces can be included in the RT equations. Both the
continuous and the discrete random medium concepts can be used in the derivations
of the constituents in the RT equations [30-32,49].

The RT equations are integro-differential equations whose solutions can be
obtained with different methods [30-32,40]. In the iterative method, the scattering is
considered as a small perturbation. The solutions to the RT equations are then writ-

ten as a perturbation series. Each order in the series can be calculated by iteration
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of the previous order by using the scattering parameter as the iterative parameter;
therefore, the iterative method is applicable only to random media with weak scatter-
ing effects. In the discrete ordinate-eigenanalysis method, the RT integro-differential
equations are solved numerically by discretizing the propagation directions into a
finite number of directions to transform the integro-differential equations into a sys-
tem of ordinary differential equations with constant coefficients which can be solved
by eigenanalysis; this method is applicable for media with homogeneous profiles. For
random media with inhomogeneous profiles of temperature, scattering, or absorp-
tion, the method of invariant imhedding is used. In this method, the RT equations
with the boundary values are converted into first-order ordinary differential equa-
tions with initial values. The initial value problem is started at zero slab thickness
and then stepped forward in layer thickness. To incorporate the volume and rough
surface scatterings in the RT theory [32,40-45], the rough interfaces are considered
by modifying the boundary conditions of the RT equations and the matrix-doubling
method has been developed to account for both scattering mechanisms.

Concerning only with the intensities of electromagnetic waves, the RT theory
can phenomenologically account for more complexity in the random media. Ran-
dom media with isotropic scatterers with specified particles size distributions have
been treated with Mie scattering [46]. For nonuniform absorption, scattering, and
temperature profiles, the method of invariant imbedding has been applied to media
with laminar and three-dimensional random fluctuations {47]. The problem of multi-
layer media has also been considered for two-layer configuration with Mie [48] and
Rayleigh [49] scattering and for three-layer configuration with continuous random
medium [50]. For nonspherical scatterers, the T-matrix method is used to calculate
the scattering function of each individual particle and a rotation matrix is used to
relate the T-matrix to the principal frame for given probability density function of
the Eulerian angles which describe the orientation of the particles [51]. RT theory has
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been applied to cylindrical structure [52], vertically oriented spheroidal particles [53],
randomly oriented circular discs [54], randomly positioned and oriented ellipsoids
[565], and elliptic shape [56]. For dens= and nontenuous media with small spheri-
cal particles, dense medium radiative wave equations are obtained from the Dyson
equation under the quasicrystalline approximation with coherent potential and the
Bethe-Salpeter equation under the ladder approximation of correlated scatterers [57].
With more complexity, the RT theory thus requires more input parameters such as
the shape, size, and orientation of the scatterers together with their distributions and
also the parameters for curface roughness.

In comparison to the RT theory, the MRT equations has the form of RT
equations; thus, the RT solution methods such as the iterative and the eigenanalysis
techniques are applicable to obtain MRT solutions. As discussed, the RT theory
can account for more medium complexity, such as surface roughness, compared to
the WT and MRT theories. For surface roughness, incoherent sum of the volume
and surface scatterings are applied [3,5]. This incoherent sum does not accommo-
date the multiple-scattering interaction between the rough surface and the volume
inhomogeneities as taken into account in the RT theory. However, the RT theory
cannot account for the coherent effect as in the WT and MRT theories. This is due
to intensity basis of the RT theory. Examples of terms that are included in the MRT
but not in RT theory are shown on Figure 1.2.3. Thus, the RT thecry is applicable
in cases where the coherent effects are negligible; for instance, a layer of vegetation

that is dense and lossy so that the effect of the lower boundary is not important.

e. Summary

Theoretical models have been reviewed in this section. The RT theory can account
for more complicated properties of the media but ignores the phase information
which is important to polarimetric remote sensing with monostatic radar. The MRT

can account for both the phase and the multiple scattering but involves with more
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mathematical complexity which limits the applicability to simple media. The WT
can account for the coherent effect and all the multiple interaction between medium
interface and scatterer, the multiple scattering to some extent, and rather complex
medium characteristics. In this thesis, the WT is chosen to develop theoretical models
for applications in polarimetric remote sensing of geophysical media whose polarimet-
ric scattering properties can be described with many methods discussed in the next

section.

1.3 Polarimetric Descriptions

To describe electromagnetic polarization properties, various methods have been de-
vised. In 1852, Sir George Stokes [59] introduced four quantities, known as the Stokes
parameters, to characterize a beam of partially polarized light. The Stokes parame-
ters were later (1888) modified by Lord Rayleigh [60] in his treatment of “Interference
of Polarized Light”. As a geometrical representation, Poincaré [61] denoted polariza-
tion states with points on a sphere called the Poincaré sphere. In 1948, Mueller [62]
considered the Stokes parameters as components of a vector which, due to “the effect
of an optical instrument,” could be transformed into another vector by a real 4 x 4
matrix. Expressed in two orthogonal polarimetric components, the incident and the
scattered fields are related by the Jones matrix [63] or the complex scattering matrix
[64,65]. To characterize the polarimetric scattering properties of random media, the
covariance matrix is defined by the product of the polarimetric feature vector and its
transposed complex conjugate [66]. Various forms of the Mueller matrix, or Stokes
matrix, and other polarimetric descriptions [67-79] have been used. In the following

subsections, the polarimetric descriptions used in this thesis are considered.

a. Scattering Matrix

Let an incident electric field (E;) propagate in the direction of incident wave vector
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h(ko,)

Figure 1.3.1 Coordinate systems
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ko: and illuminate the scatterer giving rise to the scattered field (E,) propagating in

the direction of scattered wave vector ko, as shown in Figure 1.3.1. Associated with

the incident field, Cartesian coordinate system (fz(ko,,?),i)(ko,.-), l::o‘) , connoted as the

incident basis, is defined with respect to vertical direction 2 of the global Cartesian

coordinate system (Z,%,2) as follows

- _ 2 X Fo; . N — E,.-Xﬁ(ko,.-)
h(kos) = —IE ” Eoil y  B(kosi) m

koi = Eo,-/‘zo,-| with Ko = ki + kyii) + kosiZ

Similarly, scattered basis (ﬁ(ko,,),ﬁ(ko.,)ﬁo.) is determined by

T zZx 750- - Fo. X ﬁ(kOu)

= koy,) = e ,
h(kou) ['2 < F o"l ’ ‘v( 0 ) ‘ko. < h(ko,,)
I;Oo = EOo/IFOaI with EO. = soi + kg.ﬂ + k0302

(1a)

(1b)

(1¢)

(1d)
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In (1), the incident and the scattered wave vectors can be expressed in terms of the
angles in Figure 1.3.1 such that 8, = 6y and ¢o, = ¢o; + 7 in the backscattering
direction.

Expressed in the incident basis, E,; and E,; are the components of E; in
directions ﬁ(ko,.-) and 9(ko,;), respectively. For scattered field E, , the components
in the scattered basis are E,, along fz(ko,.) and FE,, along f)(i:o,,). This coordinate
connotation will be convenient for the subsequent derivation of the scattered field.

The incident and scattered fields are then related by scattering matrix F defined by

et — [ En ek [fhh Ihe ] [Ehi ]
= F. = . (2)
r -Eﬂ' T fvh fvt E"'

Ehc
E'l

where factor €**7/r is the spherical wave transformation and scattering matrix ele-
ment f,, is for scattered polarization u and incident polarization v with g and »
being h or v.

In the backscattering direction, relation f,, = f,» holds for reciprocal me-
dia when E, is delineated in the incident basis. Note that the transformation of
backscattered field E, from the scattered basis to the incident basis results in the

sign changes of f,, and f,,. Hereafter, only backscattering is considered.

b. Covariance Matrix

The polarimetric backscattering information pertaining to a remotely sensed geo-
physical terrain can be conveyed in form of polarimetric feature vector X defined

with illuminated area A and the scattering matrix elements in the expression

fon

_ . 4 2 _ikr

X = ill’lg V 1:; er fhv (3)
fv'

As an ensemble average of the product between polarimetric feature vector X

and its transposed complex conjugate x! , covariance matrix C characterizes the
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fully polarimetric scattering properties of the geophysical media; explicitly,

fh’lfh*h fM-fl: fhhf:l
T=(X-X)=tm (| st fufts uft|) (4)

f"fh*h f"fh*' f" '*'

where the asterisk denotes the complex conjugate and the angular brackets are for
the ensemble average. It is obvious from (4) that the covariance matrix is hermitian.

In the above definitions of the polarimetric feature vector and the covariance
matrix, reciprocity relation fi, = f,» has been implied for the reciprocal media
under consideration. Consequently, no loss of information results from dismissing
fon - It should be noted that the reciprocity relation elicits the implementation of the

scattered-to-incident basis transformation.

c. Mueller Matrix

The scattering effects of geophysical terrain can also be described by the Mueller
matrix which relates the Stokes vectors of the incident and the scattered fields. For

the incident field, the Stokes vector is

[ L ] [ Ini + L ]
— Qt’ I s Im’
L=| |=|" (5)
U, U;
Vil L W

where the components of I; are defined based on the linear poizrimetric components

of E; and the free-space intrinsic impedance 7 in the following equations

Em'E:; ’ I; = En'E: (6a)

Im (E..Ey;) (6b)
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For the field backscattered from reciprocal media, the Stokes vector has the form

U,

L
3

LV

(I + 1L,
L, - I,
U,

v,

(7)

whose components are defined with the ensemble averages of the scattered field com-

ponents as

Ih,=lh
7o
L. =2 lim
7
U, =2 lim
]
V=2 lim
i

4nr?

7 (BuEL)

41rr <E,,E':,>

41rr

Re(E..Ey,)

41rr

Im(E,,E},)

(82)
(8b)
(8¢)

(8d)

Relating the incident to the scattered Stokes vectors, Mueller matrix M de-

picts the backscattering effect by

o~
i
N

~
I

- M,
M,
My,
M,

M, M M,
My, My M|

M32 MSS M84

M, M, M, i

-t

(9)

In the incident basis, the Mueller matrix is a 4 X 4 matrix composed of 16 elements

which are derived from equations (2,5-9) and written in terms of the scattering matrix

elements as

. 4n 1
My = fim — 5
M, = lim 27 1

5 <.fhhf:l; + 2fne fry + f'vf::>

= A.—’oo A 2 <fhhfhh fvvf,,) = Mn
M,3 = lim —-Re (f,,,.f,“ + f,“f"> = M,

My, = }lf'i A
4 1
Mzz = et il

—Im (fnfoo + frofi) = —My

= li A 2 f).};fm. 2fh'f}w +av'fvv>

(10a)
(10b)
(10c)
(10d)

(10e)
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My = lim —Re (fnfit — fraft) = Ma (10f)
My, = lim —Im(f,.,.fh. frufih) = My (10g)
My = lim —Re (Fanfl + fruf) (10R)
My, = lim —Im(f,.,.f,,) = -Mes (10i)
My = lim —Re (Fanfon = Frufm) (10)

For given transmit and receive antenna polarizations, the received power is

proportional to a scattering coefficient defined in terms of the Mueller matrix as

[70,77,80)

o(ay, B 4, B;) = (11)

where T denotes the transpose and Mueller matrix M is symmetrized by diagoneal
matrix T whose diagonal elements are T}, = T3; = Tys = —Tye = 1. Stokes vector

I, in (11) depends on orientation angle a,, and ellipticity angle 3, (Figure 1.3.2)

as follows
[ I ] [ 1
_ Qm cos 2a,, cos 23,
I, = = I, (12)
U, sin 2a,, cos 23,
| Vi | | sin 23,

with antenna operating mode m = i for transmitting (incident) and m = r for
receiving. The orientation angles vary from 0° to 180° with 0° corresponding to
h and 90° to & direction. The ellipticity angles range from —45° to 45° with 0°
corresponding to linear, positive values to right-hand, and negative values to left-hand
waves. The polarization states can be described geometrically by the Poincaré sphere
with the upper hemisphere for right-hand polarizations and the lower for left-hand
[81]. If the same antenna is used for both transmitting and receiving, the transmit
and receive polarizations are identical and the corresponding scattering cross section

is called the copolarized signature [80].
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-

a Polarization ellipse

b Polncaré sphere

Figure 1.3.2 Geometrical representations of polarizations.

d. Scattering Coefficients

For polarimetric backscattering, the scattering coefficients are defined by [7]

. 41l'1" <Em E:.)
Tprvn = ill_..% A Eﬂ' E:: (13)
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where subscripts p, v, 7, and k can be h or v. The components of the scattered
field in (13) are obtained by measuring the h and the v returns while the incident
field is transmitted exclusively with h or v polarization. From (2), this measurement
procedure can be described mathematically by the following equations relating the

scattered to the incident field components

skr ik

€ €

By, = (furEri + funEni)lg im0 = _r_ferﬂ' (14a)
e'kr et

By =— (forEri + funBui)lp, iz = — fonBu (14b)

Substituting (14) in (13) renders polarimetric backscattering coefficient o,,,« in

terms of scattering matrix components

Ourvn = }1_1.11 Y (fuff:n (15)

By means of (15), the covariance matrix can be expressed with the backscat-

tering coeflicients as
Ohnhh  Chbhe  Thhov

6 = o':m‘. Ohohv  Thove (1 6)

* * :
ahhvv Thove Tvoov

in which diagonal element opuan, Onens , and 0,.., are conventional backscattering
coefficient o4, 04, and o,,, respectively. Normalized to & = osusn, the covariance

matrix can be formed as
1 Bve 7
C=c|f*ve e &€ (17)
p*vA e v

where intensity ratio 4 and e and correlation coefficient p, B, and £ are

a!"' a v
7=, e= (182)

- Thhov Ohhhe Ohyve

=o' ﬂ=w—:, £=;—ﬁ

(18b)
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In terms of the polarimetric backscattering coefficients, the Mueller matrix

elements can also be written as

M, = %(UM..M. + 20hons + Toves) (19a)
M, = %(am.u. — Oyowe) = My (19b)
M3 =Re (Onnhe + Onovs) = My (19¢)
My, =Im (Gunno + Ohowo) = —My ~ (19d)
M, = -;—(om.:.;. — 20 hoho + Tovvo) (19¢)
M3 =Re (Onahe — Ohoovs) = Ma (191)
Mas =Im (Ohnhe — Onoee) = —Mag (19g)
Mss =Re (Ohnoo) + Thono (19h)
My =Im (Ohes) =—Mas (19i)
My =Re(Tunos) — Thono (19j)

The use of the reciprocity relation for the media under consideration has been
implied in the expressions for the covariance and the Mueller matrices. As seen from
(16) and (19), both matrices are fully expressible with the complete set of polari-
metric backscattering coefficients containing 9 independent parameters and therefore
convey the same information regarding the terrain scattering properties. In the sub-
sequent chapters, the polarimetric backscattering coefficients will be derived with
the scattered field in the scattered basis for reciprocal geophysical media with a
layer configuration. Then, the scattered-to-incident basis transformation is applied

to calculate the covariance and the Mueller matrices.



Chapter 2

Layer Model with
Spheroidal Scatterers

2.1 Introduction

Presented in this chapter is a three-layer isotropic-anisctropic random medium model
which can account for fully polarimetric backscattering from geophysica.l media under
the effects of precipitation such as sea ice under snow or vegetation under fog. The
model configuration in Figure 2.2.1 has four different regions separated by three
interfaces. The covering layer is modeled as an isotropic random medium. The middle
layer is described as an anisotropic random medium due to the preferred alignment
of nonspherical scatterers. The underlying layer is considered as a homogeneous
half space. The scattering effects of the random media are characterized by three-
dimensional correlation functions of spheroidal form with variances and correlation
lengths corresponding to the fluctuation strengths and the physical geometries of
the scatterers, respectively. The strong fluctuation theory is used to calculate the
effective permittivities and the distorted Born approximation is then applied to obtain

the complete set of polarimetric backscattering coefficients.

2.2 Configuration and Formulation

The scattering configuration is depicted in Figure 2.2.1. Region 0 is air with real
permittivity € . Region 1 is a scattering medium with isotropic scatterers randomly

- 45 —
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ko z
Bo;
Region 0 Ho, €0

n
I
(=]

. isotropic -
Region 1 ran. dol:n Ho, €(7)

Z=—d1

. anisotropic —
Region2 "S9Pl 4o, e(F)

Z=—d2

Region 3 Bo, €3

Figure 2.2.1 Scattering configuration

embedded such as snow or fog whose electrical property can be characterized by inho-
moger.eous permittivity €, (7). Region 2 contains nonspherical scatterezs constituting
an anisotropic random medium such as sea ice or vegetation which has spatially de-
pendent permittivity €;(7). Region 3 is the underlying half space with homogeneous
permittivity es. The three regions are assumed to have identical permeability u.
The infinite planar interfaces at location z = —d, and z = —d, in Cartesian coordi-
nate system (Z, 9, 2) are shown in Figure 2.2.1. Due to the preferred alignment of the
nonspherical scatterers, the medium in region 2 is considered as effectively uniaxial
with optic axis 2’ tilted off the z-axis by angle 9 in the yz-plane as illustrated in
Figure 2.2.2.

In the phasor notation defined with e~** [81], time-harmonic total field
Eo(7), E,(7), and E,(F), respectively in region 0, 1, and 2, satisfy the following

wave equations

V x V x By(F) - k;i'g-)ﬁ,(r) =0 )

V x V x Ey(F) — k:f’—e(oﬂE,(F) =0 (3)
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z i
Figure 2.2.2 Geometry of scatterer in region 2
where the free-space wavenumberis ko = w,/1€; and w is the angular frequency. In
the remote sensing of geophysical media, strong permittivity fluctuations are often
encountered. The strong fluctuation theory [17] is therefore necessitated in the cal-
culations of the random-medium effective permittivities. Deterministic permittivity
= e,j, where T is the unit dyadic, and ,3 are introduced in both sides of (2)

and (3), respectively, and the following vectors for m =1 and m = 2
6Bu(r) - Ealr) = K ["‘”’%] Eu(?) @

are treated as the effective sources so that wave equation (2) and (3) for the scattering

random media become
V x V x En(F) - kg% - Bn(F) = K2Qp(7) - Enm(7) (5)

The permittivities in €, and &, are determined by the elimination of secular terms
[17]). Physically, €, and &, are the effective permittivity tensors in the very low
frequency limit where the scattering loss is negligible compared to the absorption loss
[32].

In form of an integral equation, the total field in region m = 0,1,2 is the
superposition of the mean field and the scattered field; explicitly,

En(r) = BN + K2 [ 8% Coa(5,72) - TulFa)  BnlFa) Q)

n=1
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Mean field E ,,,(r) is the solution to the hofnogeneous wave equations where the
effective sources vanish in the absence of the scatterers. As a particular solution to
the inhomogeneous wave equations in the presence of the scatterers in region n =
1,2 occupying volume V,, the scattered field in (6) is the integrals of the products

between the effective source and dyadic Green’s functions ﬁm,.(w", Tn) defined by
V X V X G (F, Ta) — kg-‘-;? G (F, 7o) = 6(F — )T 1)

where first subscript m in ﬁ,,.,.(F, Ta) denotes the observation region containing
observation point 7, second subscript n stands for source region n = 1,2 containing
source point 7,, and §(F —7,) is the Dirac delta function. When m # n signifying
observation point 7 is outside source region n within which 7, is restricted, the
Dirac delta function in the right-hand side of (7) vanishes. It is also obvious from (7)
that an observation point in a scattering region can coincide with a source point in
the same region (m = n = 1,2) thus giving rise to the singularity of dyadic Green’s
function ﬁ,.,.(?, Ta) which can be decomposed into a principal value part and a Dirac

delta part
Gon(Fy7n) = PVGon(F,7,) — 6(F —~ )k, n=1,2 (8)

Dyadic coefficient ?,. is conformed with the shape of the source exclusion volume and
determined ~  ae condition of secular-term elimination [17]. With the decomposed
Green’s function of (8), the singular part in the integrand on the right-hand side of
(6) for m = n can be extracted and then combined with total field E,.(7) on the

left-hand side to form external field F,(F) in scattering region n =1,2

Fu(F) = [T+ 5. - Qu(7)] - Eu(7) (9)

In terms of external field F,(7), the vector source of (4) can be redefined by intro-
ducing scatterer ?n(‘f) such that

k3, (F) - Fu(F) = K3Q,(F) - En(7) (10)
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It follows from (10) that scatterer ?“(F) for the isotropic (n = 1) and the anisotropic

(n = 2) random media are

LM=0.0-T+5 0.0 (11)

By applying the distorted Born approximation [11,17,19,20] to (6) with the
new definition of the sources in (30), the total field observed in region 0 is
Eo(F) = EQ(F) + k2 z / @7 (Gon(7,70)) - Eu(Fa) - (Fal(a)) (12)
n=1
where isotropic effective permittivity €,y = e.,,,j for region 1 and uniaxial permit-
tivity €45 for region 2 are used to calculate the mean dyadic Green’s functions and
the mean fields. The polarimetric scattering coefficients can then be obtained with
the following correlation of the scattered field in (12)
2,¥,%

(Butr) Fo) = 33 3% K5 [, 4, 872 o7

n=114,5,k,im

 [(Gonss (7, 7o) W Fur(Fa))] - [(Goma(F, 7)) Fum(2))] ™ (13)

For random media n =1 and n = 2, C¢juim(Ta,72) in (13) is the jklm element of

fourth-rank correlation tensor ﬁ;,.(?,,,ﬂ) defined as

Consim(Tas72) = (€nia(Fa)Ehim(72)) (14)

With specified correlation functions, the polarimetric scattering coefficients can thus
be obtained after the effective permittivities of the random media are calculated as

shown in the next section.

2.3 Effective Permittivities

The strong permittivity fluctuation theory [17] is used to derive the effective per-
mittivities of the random media. The singularities of the dyadic Green’s functions in

the bilocal approximated Dyson’s equations are accounted for and the low-frequency
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approximation is applied to obtain the results for the isotropic and the anisotropic
random media. The derivations are done in the frequency domain with the Fourier-
transforin method. The isotropic random medium is characterized with a correlation
function of spherical form and the anisotropic random medium is described with a
correlation function of spheroidal form. When the spheroidal form is reduced to
spherical, the anisotropic result is confirmed with the isotropic case. Followed is
the calculations of effective permittivities first for the isotropic and then for the
anisotropic random media.

Consider an isotropic random medium composed of a host medium with per-
mittivity €, and randomly embedded scatterers with permittivity ¢,; and total
fractional volume f,; where subscript 1 is used for the isotropic random medium
in accordance to the notation in Figure 2.2.1. By introducing auxiliary permittivity
€, into the wave equation as in (5), dyadic Green’s function G,,(F,7,) satisfies the
inhomogeneous differential equation of the form (7). Subscripts g1 is used here to
indicate that _ﬁ,l(F, 71) corresponds to a medium with permittivity €, . To account
for the singularity, G (F,71) = Ga(F —71) is decomposed as in (8) with S; = S,T

for the Dirac delta part. By using the following definition for the Fourier transform
" (= 1 ® TT/ (T kT
Cn(r) = 55 /_ _dk Cyu(R) (15)

the dyadic Green’s function in the frequency domain is found to be

I EE D(k) = k* — k3,
D(k) ~ kLD(R) "R {

591(7‘;) = (16)

ki = wipen
Under the bilocal and the low-frequency approximations [17], the effective permit-
tivity of the isotropic random medium is composed of a quasi-static part (e,;) and
a correction part

- = = =0) = q1-1 =(0)
€y = €l + €o[i- Egrr® Sl] “Eun (7)

The correction part in (17) physically accounts for the modification in the wave speed

and attenuation due to the scattering effect of the scatterers. For j,m = z,y, 7, the
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0
jm element of ?(,”)1 is related to the Green’s function (16) in the following manner

0) 2,9,% ®© o _ —
o)y = 3 T0m {8 [~ & Cu®)], 2a®+[B],}  (®)
*l -0
To arrive at (18), the correlation function has been defined as

Perintm(T1,77) = (€1a(F1)€um (77)) (19a)

and the random medium has been assumed to be statistically homogeneous so that

(19a) can be written as
Cajuim(F1,77) = Fejuim(Tr — 1) = I'ﬁ}umRa(ﬂ - 7) (19b)

where R (7 = 7, — 7;) is the normalized correlation function such that R, (0) is
equal to 1. In (18), ¥, (k) is the Fourier transform of the normalized correlation
function R (7) defined as

- 1 o0 =
MOEF [ dr Ra(7) &% (20)
In the isotropic random medium, ?1(F1) is a scalar multiple of the unit dyadic I and
non-zero coefficient I‘g},,,,,, are

I‘g.)iklm = (£1x(T1)Eum(T1)) = 6ar {hj' = (21)

Jm=z,y,z
For a spherically symmetric correlation function, it is seen from (17-21) that the

effective permittivity of the isotropic random medium is independent of direction

and expressed as a scalar multiple of I

€ode1 (Lo + 51) =
I 22
T— 40 I+ 5:) 5, (22)

g = egpnl = [6,1 +

where I, is the integral of the product between a diagonal element of the dyadic

Green’s function and the correlation function in the frequency domain

L=k [ & [Ca(®)], 3a(F) (23)
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Due to the isotropy of the medium, any diagonal element (jj = zz, yy, or zz) of
the dyadic Green’s function (16) can be used in (23) to yield an identical result for
I,. For an isotropic random medium characterized by an exponential correlation

function of spherical form with correlation length £,, R,,(F) is expressed as

Ry(F) = exp (—f-) (24a)

1
whose Fourier transform is obtained by carrying out the integration (20) in the spher-

ical coordinates to yield

a
m3(1 + k2£3)?
With the use of (24b), the integration (23) is then carried out analytically by a change

& (k) = (24b)

of variables into the spherical coordinates. The result for I, is

€o 392 +1 . 499

I = -
BT WOV v PRy

(25)

Coeflicient S;, which conforms with the shape of the source exclusion volume, can
be determined by requiring the cancelation of the frequency dependent terms in (18)

so that the secular term is eliminated. For the isotropic case, S, is thereby obtained

S1 = —llmIo = — (26)

w=0 36,1

The elimination of the secular term also imposes the condition of zero-mean on the

scatterer tensor
(&@)=0 (27)
Condition (27) and (26) together with definition (11) and (4) for n = 1 determine

auxiliary permittivity €, with the relation

() @+ (Epm) 2o (28)

When the value of ¢, is obtained, variance & is found from (21)

9 2
ba =9 (551 + 25,1) (1= fu)+ (5-1 + 2591) fu] (29

€
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In summary of the isotropic case, the isotropic effective permittivity is calculated with

(22) where €, 6, Lo, and S, are given by (28), (29), (23), and (26), respectively.

Consider now an anisotropic random medinum composed of a host medium
with permittivity €; and embedded nonspherical scatterers with permittivity e,
and total fractional volume f,;. The scatterers with a preferred alignment direc-
tion and an azimuthal symmetry effectively give rise to the uniaxial anisotropy of
the random medium whose optic axis is the 2’ axis in Cartesian coordinate system
(&',9',2') illustrated in Figure 2.2.2. The principle for deriving the anisotropic effec-
tive permittivity is the same as in the previous paragraph; however, the anisotropy
of the medium needs be accounted for. In this case, an appropriate form of auxiliary

permittivity &,; is

€g3p' 0 0
ggg = 0 €g2p’ 0 (30)
0 0 €g2s’

Equation (30) is expressed in the primed coordinate system shown in Figure 2.2.2.
This coordinate system is used to calculate the effective permittivity of the anisotropic
random medium and a rotation transformation with tilt angle 3 is then applied to
transform the result into unprimed Cartesian coordinate system (Z,%,2). Corre-
sponding dyadic Green’s function ﬁ,,(?") is decomposed as in (8) with the Dirac

delta part having uniaxial dyadic coefficient

Sw 0 0
S;=|0 S 0 (31)
0 0 S,

According to the Fourier transform definition (15) where the subscript 1 is replaced

by 2 and 7 and k are respectively changed to ¥ and F, dyadic Green’s function
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5,,(?’) has frequency-domain version '@”,,(F) written as

k2 —kLk, 0
=, 1
Goalk) = | —kik, k2 0|+
’2( ) (k;z-i'k;z)Do(k) v
0 0 o0
k2 KK, 0 (32)
LR PAIYY. 0 —_kE __
(k2 + k2)D. (%) @ k2,,.D.(F)
0 0 PE(RZ+EP).
- g2z’
where D,(F), D.(F), k2, and k2, are defined as follows
D(E)=k2+ k2 + k2 — k2, (332)
— k?
D.(E)=k2+ f(k},’ + kP - kl,) (33b)
g2z’
k:’ﬁ' = wzl‘l‘oeczﬁ" k:z;' = wzl‘ofgzs' (33C)

Similar to (17), the effective permittivity of the anisotropic random medium is com-

posed of a quasi-static part and a scattering-effect part

= = = =0 =1-1 =0)

Eepra(') = €2 + eO[i — &gz 52] &t (34)
where 7' indicates the primed coordinate system and the jm element of effective

=(0)
scatterer £, under the low-frequency approximation is of the form (37) with sub-

script 1 changed to 2 and j,m =z',y/, 2

10t
z,Y,5

0) ® = — e
E(cm],-m = 2; T him {kg / dF [Cpa(F)], 2ea(F) + [5] ,,,} (35)
k, —oo
The statistically homogeneous anisotropic random medium is described with fourth-
rank correlation tensor ﬁg(?'",,?;') = (?,(F’,)?,(F‘,")) where &,(7,) is a diagonal tensor

in the primed coordinates; thus, the non-zero elements of -ﬁ,(ﬁ,ﬁ) = Tea(7, — 73)

are
Leajuim(7) = b¢ap Rea(7') ,  smim = {"-"",' """" (36a)
yyzas,yyyy
rtﬂjklm(F‘) = 5ezs'R¢z(F') y Jhim = 1's's's (36b)
Teajuim(T') = 82 Rea(F') ,  shim = {..'.‘.‘.’ '.,,:.‘. (36¢)
s'z'2'a’, 2'2'y'y
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where ¥ = 7, — 7; and element I'gjum(7') is defined with a normalizing variance

Teajnim(T =0) = (£32j2(F2)1m(73)) = I‘e,,,,,m which can takes on the value of é¢,, 6¢2.,
or 8¢y such that Rg(0) = 1. For an azimuthally symmetric correlation function, it

is observed from (30-36) that €., ,(#') is uniaxial and expressed with the permittivity

tensor
€grzr 0 0
€n(P)=] 0 egr2y 0 (37a)
0 0 €eppas’
€06¢2p(1r + Sapr)

Eetp2p = €g3pr T 1- 6{3#(1;' + S’P’)Su"

606‘3‘: (I‘: + Sle)
1 —6£23’(Iz' + Szz')Sh‘
where I,; and I, are the integrals in the frequency domain of the products between

(37b)

€efp2:r = €g350 +

the corresponding diagonal element of the dyadic Green’s function and normalized
correlation function &,(k) defined as in (20) with the subscript 1 changed to 2 and

% and 7 to k£ and 7. In the cylindrical coordinates, integral I,, and I, are
L=k f ¢’ / k! / dk(—k;2)

k2
ke = Kooy &, (K 38
[kn + kn(egzpl/egh') k:zp'] 62( ) ( av)

I, =k /o ig' [ “dkE, K dk,

sin’¢’ (k2 — k- 2)k? cos’rﬁ' ] —
. + P..(k 38b
[ k;’ + .’c;’ kgw k" + lc"(e,, o /C,z.') ,zpl 62( ) ( )

For an anisotropic random medium characterized by an exponential correlation func-

tion of spheroidal form with correlation length £,,, and £,,., R3(7) is expressed as

- zn + 2 z:z
Re(7) = exp (—J 7_3!“' + ZT) (392)
20’ 25

whose Fourier transform is obtained by carrying out the Fourier integration in the

cylindrical coordinates or by applying the scaling theorem on (24b) to yield

l;p":l'
172(1 + k;’e;pl + k;’eg,:)z
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With the use of (39b), the integrations in (38) can then be carried out analytically
by effectuating the integrations over ¢', using contour integration technique for the

integrations over k;, and then performing the integrations over k. The result for

I,, is determined as follows

Lo=—2%(7 1+ 1)) (402)

egh'

__a'yfva'yt v— Z 19 +C -1 V=¢
Z= 53 [ 2 — tan 3. (40b)
ay? [1+a o 19,,(a+2)—(b+au3,, T 1
Rt RV S VR » (45e)
‘: e U
a = a7tz -1, a= L y Y= 2 ’ z' = kﬂp‘e;z' (40d)
ngpr e:,:
2
¢ =ayjvl,, 6=M, do=b-1, J.=b+¢( (40e)

Integral I, involves additional terms in the dyadic Green’s function and the result

is found to be

L= (B -T-T)vad, (G-B-T)+3E+Z-3) (a1

p‘

e T e e )] e

2«9[ -7z (5 - %)] (#1e)

w= i [t o (- ) o

I:,z,s = z:,:,s(a =1), Vop = kol (41e)

Diagonal element S,3,, and Sy, of dyadic coefficient ?, in the singular part of the
Green’s function for the anisotropic medium are obtained by requiring the cancelation

of the frequency dependent terms in (35) to eliminate the secular terms. Derived from
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(35), (40), and (41), coefficient S,;,, and S, are

S2p = —limI, = Eeﬁo;:/-—; [(1 +a)tan™! y/a — \/E] (42a)
(1 + a)

Sz;l = —]imI‘l =
w0

[va—tan™* va] (42b)

€poay/a
Similar to (27), the zero-mean condition is imposed on scatterer ?,(?) for the elim-
ination of the secular terms. This condition together with (42) aad definition (11)
and (4) for n = 2 in the primed coordinate system determine auxiliary permittivity
€,2 in the following manner

P53 e e o B (89

(662 - ngs')(l - fn) (6.3 — €g35/ )fn
€0 + Sa(€2 — €g250) €0+ Sau(€a — €garr)

=0 (43b)

Numerical values of €5,, €./, Sz, and S;,, are obtained by solving (42) and (43)
iteratively. A suggested scheme for the iteration is to initially assign €3, = €2,r = €3
then use (42) to find S, and S,,, which are subsequently employed to recalculate

€52, and €y, with (62) rearranged as

foa(€sz — €52p0) €0+ Sap{€sa — €52,0)
(1= f2) €+ Sap(€s — €g3p0)

f-z(ﬁaz - eg?s’) € + st'(ebz - 5,2;')
(1 - foz) € 1+ Sz;'(ﬁaz - eg!z‘)

Eggpl = €p3 + (448.)

€g2z0 = €p3 +

(44b)

The iteration is repeated until a required accuracy is achieved. Equation (44) indi-
cates that small fractional volume f,; leads to a fast conversion rate for the iterative
solution and explains why the background permittivity has been chosen as the initial
value for the auxiliary permittivities. After €., €,/, Siy, and S,,, are computed,

variance 8¢y, O¢arr, and 8¢y are found from (36)

— €p2 — €Egap’ 2 B €02 —Eqapr 2
6{3?'_ [€o+52p'(€53—-e’zp,) (1 _fl3)+ [€o+53,4(€.3-—€,:pe)] fa) (458)

6s=,'=[ e L )121—f.=)+[ 2 S )]}.z (45b)

50+323'(552-'Eg2z' €o+Sz,l(€,3—€’3,:
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In summary of the anisotropic case, the anisotropic effective permittivity tensor is
calculated in the primed coordinate system of Figure 2.2.2 with (37) where €920y €g2s1s
S20, and S, are obtained by iterating (44) and (42) and then &, 8¢ssry e, I,
and I.. are determined by (45a-c), (41), and (40), respectively. To transform the

result into the unprimed coordinate system, the following operation is applied

1 0 0
Tgr2 =Ty - €412(*) -.f:x with Ty =10 cosy sin (46)
0 -—siny cosvy
where T,,. is the transformation matrix which rotates a vector by angle 3 from the
primed coordinates to the unprimed coordinates. After the rotation, the anisotropic

effective permittivity, which is a symmetric tensor in the (%,7,%) system, is related

to tilt angle 3 by
€eff 22z 0 0

€2 = | 0 egpay  Egpay: (47a)

0 egray  Eeppais

€epraze = €eff2p' 3  Eeffays = Eeffasy

€atays = (€ugpasr — Eugpap) COS Y SIDY
(47b)

Eetfayy = Eefapr COS” P + Eqppa,e sin’

€utfass = €qppap SN’ P + €gpa01 COS* P
In this section, the effective permittivities of the isotropic and anisotropic
random media have been derived. It is necessary to note that the principal branch cut
of square root /w for complex number w has been chosen such that —7 < argw < 7
where argw denotes the argument of w. Also, inverse tangent tan™' w for complex

number w is determined by

14w

—w

tan~lw = %lnw, with w, = (48)

where Inw, is the natural logarithm of w, on the principal Riemann sheet |w,| > 0

and —7 < argw, < .



2.3 Effective Permittivities . 59

Auxiliary permittivity €, of the isotropic random medium as obtained is the
same as the Polder and van Santen mixing formula [19]; thus, auxiliary permittivity
€52 of the anisotropic random medium obtained in a similar manner can be considered
as a more generalized version. Related to the auxiliary permittivity and the shape
of the exclusion volume, the dyadic coefficient of the Dirac delta part in the Green'’s
function is also derivable with a surface integration over a limiting equicorrelation

surface and proved to satisfy the following condition [82]

256415,, +325, -1 (49)

0 €o
where ¢, = €;,, = € and S, = 5, = S5, for the isotropic case or €, = €3, €, =
€2:y Sp = S3, and S, = S,,, for the anisotropic case.
As mentioned earlier, the anisotropic effective permittivity becomes isotropic
when the spheroidal correlation function is reduced to spherical. This is the case

when ¢,, approaches ¢,,. and it is trivial to show that

‘u]’i"gh’ S’d = la;];i'!‘]llan’ Sz“ (508')
till;i-r'%)-‘ e!’ﬁ' = "’];i_i-i".’ egz‘l (50b)

The limit (50a) has the form of (26) and consequently the variances in (45) have
the same limit of the form (29) since ¢, and ¢, approach to the same limit as
indicated in (50b). To prove that I, and I,. have the same expression of the form
(25) as £3,, — £,,., attention must be given to the afore chosen branch cuts. For
instance, v/—( is —i/{ instead of iy/(; this is because w = —( — —k2, 63, as
£2p0 — €3, and w is thus in the third quadrant of the complex w plane so that /w
is consequently in the fourth quadrant due to the chosen branch cut of the square
root. The value of /—( so obtained is identical to —i/{ and not to i1/C. The proof
is then straight forward.

In deriving the effective permittivities, the low-frequency and the bilocal ap-

proximations have been used. The low-frequency approximation is valid if k¢, < 1
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for the isotropic case or kgpfzy < 1 and kgaply < 1 for the anisotropic case.’
This approximation results in the ignorance of the spatial dispersive characteristics
of the inhomogeneous media. In this case, the bilocal approximation further requires
that I[? ;}”],-m} < 1 with n =1 for the isotropic or n = 2 for the anisotropic case.
This condition allows more simplification on the permittivity results (22) and (37)
where the denominators can be approximated to be unity.

When the low-frequency condition is removed, the spatial dispersion of the
random media is manifested in the dependence of the effective scatterers on wave

vector k as

BB, = 3 T { % [ @),
 [BealF —F) + 2ealF + )] + [Bu], ) (51)

The effective permittivities are still calculated with (17) or (34) with the effective
scatterer (51) replacing the low-frequency version. In this case, the bilocal approxi-
mation is valid when |[?,”,‘('E)]_.,~,,.| < 1. From (17), (34), and (51), it is observed that
the effective permittivities are even functions of wave vector k and can be expressed
with symmetric tensors. The random media under consideration are therefore recip-
rocal as physically expected. Besides the above approximation, the use of the Fourier
transform in this section implies that the media are unbounded in the calculations of
the effective permittivities. In the next section, the effective permittivities is used to
obtain the dyadic Green’s function of the layer random medium which accounts for

the multiple reflections, refractions, and transmissions at the medium interfaces.

2.4 Dyadic Green’s Functions

In this section, the mean dyadic Green’s Functions (DGFs), needed in the calculation
of the scattered field correlation (13), is presented for the three-layer configuration.
Rather than directly calculating (ﬁo,.(?, ’f,)) for observatior. point ¥ in region 0 and
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source point 7, in region n, (ﬁ,.o(F, ¥, )) are obtained for the source in region 0
and the observation in region n and the needed DGFs are then deduced from the
symmetric relation
(Con(7,7.)) = (Con(Fo 7)) (52)
In this method [29,32,81], vector wave equations are first written for the DGFs sub-
jected to the appropriate boundary conditions at the interfaces and radiation con-
ditions at infinite distances above and below the interfaces. Next, the Cartesian
coordinate systems corresponding to upgoing and downgoing waves in the layers are
shown. The DGF's can then be solved in terms of transmission and reflection coeffi-
cients for the upgoing and downgoing waves. This procedure for obtaining the DGF's
are detailed in the subsequent paragraphs.
Consider the source in region 0 at 7, above interface z = 0. The DGFs

observed in regions n = 0,1,2,3 are governed by vector wave equations as follows

V x V x (Gool7,7.,)) — k3 - (Goo(F, 7)) = 8(F —7,)T, 220 (53a)

V x V x (Guolmi7.) — B2 (Guo(F, 7)) = 0, 02224, (53b)
V x V x (Gao(F,7.)) = kgi‘e’oﬁ (Gl 7)) =0, —~di 222> —d, (53¢c)
V x V x (Gao(F,7.)) — kge;f (GaolF, 7)) =0, —dy >z (53d)

The boundary conditions call for the continuity of % x (ﬁ,o) and 2 X V x (ﬁ,.o)
at the interfaces where the tangential electric and magnetic fields are continuous,

respectively. The boundary conditions can be written explicitly as

2 (?oo(ﬁ F‘)> =Ex <EIO(F.,_?')> } at 2=0 (54a)
2 x V x (Gool7, 7)) = 2 x V x (Gro(F, 7.))

2 (Guo(r, 7)) = 2 x (Gl 7)) } at z = —d, (54b)
z2xV x <Gm(1‘,1‘.)> =2 X V X <G20(r)rl))

Z X <E,o\=,?.)) =2X ﬁw(r,r,» 1 _
z2xV x <Gzo(1',?,)> =2xV x (Eso(‘i‘,f.)) J atz= d: (540)
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To express the solutions for the DGFs physically in terms of upgoing and down-
going waves, Cartesian coordinate systems are defined to coincide with directions
of electromagnetic fields and Poynting vectors. In the same manner as (1), coordi-
nate system (R(k2,),5(k2,),k?), corresponding to upgoing (w = u) and downgoing

(w = d) waves in the isotropic media (n = 0,1,3), are determined by

!

) s xF k. x h(k*

Ake) = 2255 (ke ) = Fa X RO (55a)
zZ X k,. lk“ X h’(k:s)

kr =F,/[F.| with K, =k + kg +k2,2 (55b)

where the z components of the wave vectors are related as follows

2 —
ks, =k, =kn,=[k2—ki—k3, with k:={“’ peny n=0,3 (56)

Wpegp, n=1

For the effective anisotropic medium (n = 2) with optic axis 2, the ordinary and
extraordinary waves propagating in the upgoing and downgoing directions call for

four different coordinate systems. Corresponding to the ordinary waves, coordinate

system (o(k3,), &(kg,), by) are defined by

B(ks) = X B arp) = Ko X ORL) (57a)
|2' X k:| lkz X a(k;ﬂz)
ky =K /[F;| with & =k + kg + k52 (57b)

where the z components of the ordinary upgoing (w = ou) and the ordinary down-

going (w = od) wave vectors are

k;: = —k: = k;‘ = ‘/k; - k: with k: = w’p.e,”,,, (58)

Corresponding to the extraordinary waves in the anisotropic medium, coordinate
system (5(kg,), &(k3,), 37) are defined by

'
X
2 A(L% Y
’ )e(ku-
2 x 3]

7

N>

33 x o(k3,)
|73 x o(ky,

o(k3,) = , & =33/ (59)

4

b
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where the extraordinary upgoing wave (w = eu) and the extraordinary downgoing

wave (w = ed) vectors are determined by

—w

k, =k, + k,j+ k5,2 with w = eu,ed (60a)
koo = — S 1
€epfazs €eft3ss
“\R2eranrarans — Rlegap€araes — bleapap €apa (60b)
e €etrays 1
ki =— ——k, —
€ef2:s €eff2s:
+ (3earasrarans — k2earapearans — kiearap earan (60c)

and unit ray vector 3§ [81] of the extraordinary waves are parallel to

—w

3} =S - ky = egpaccka? + (€qpagyhy + €qpaysk3,) 9
+ (€cpaeyky + €ogp2:5k3, )2, with w = eu,ed (61)
The above definitions of the unit vectors are physically descriptive. Unit vector & is
parallel to TE, 9 to TM, & to ordinary, and & to extraordinary wave polarizations.
For wave vector E:, all the lateral components are k, = ¢k, + §k, due to the phase
matching condition and the z components are calculated from dispersion relations.
Poynting vectors are all in the directions of wave vectors except for extraordinary

waves whose Poynting vectors are in the directions of 37 given by (61).

In terms of upgoing and downgoing waves, solutions for the DGFs are

: iky- ¥,
=, _ U e © e o' ls
(Guori7) = g5 [ ke [ by
Py A =
{ B Thee)
+ [Rua(EIR(k)Fo T + Bau(B)o(k5,)e o 7] AE)
g4 _
+ o(k3,)eto Ta(ke,)
+ [RaEIRE)F T + BB o0k o 7] a(ks) )

2,>220 (62a)
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(i) = g [0 [

{ [Dlhh(kp)h(k:,)ezk T +Dlho(kp)v(k )clk ] h(kgs)
+ [OmEDARL)T T + U (B )o(k )T 7] i)

+ Dl.»(k,)h(k:,)e"“ T 4 Dyua(E,Jo ()1 ] B(k2)

+ [TrEhk)EF T 1 U (B o0k) T 7] o(h,)}

0>z>—d, (62b)

—iky- 7,
(a-zo("' 7'.)) = —/ dk, / dlc, e

{ Dzho(kp)o(k )ezk, r+D3k¢(kp)e(k )ezk,‘- d i‘(kgx)
+ [, o) 4 Uk ] il

[ g0d _ _ ged ]
+ | Dana(RrJo(k32 %3 T 4 D, (B,)e(ked)etRs T o(kd)

+ [OraB o) T + U (B el 7] (k)
—d:_ 2z2 —dz (620)

-—zk T,

(ﬁm(ﬁr,))—— / dk, f k2"

{ [pa@aheasye® 7+ Th.(k,)a(k:.)e"‘f’"] Mk

* [""'».(E.)fz(k::.)e"‘ﬁ'F +1:.('E,)e(k:.)e‘53'?] "’(k:,)}
-dy >z (62d)

DGF coefficient R’s, U’s, D’s, and T’s can be calculated directly from the boundary
conditions in (54). To facilitate the calculation and the interpretation, the matrix
method [81] is used to express the DGF coefficients in terms of Fresnel reflection and
transmission coefficients. These expressions are determined by considéring amplitude
vector A, of upgoing waves and B, of downgoing waves in region n = 0,1,2,3. In

this method, amplitude vectors of waves propagating away and toward each interface
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Region 0 -ﬁo\ / -A-o

z=0
Region 1 A / B,

z=—-d
Region 2 Eg\ A

z=—d,

Region 3 \fs

Figure 2.4.1 Amplitude vector 4, are for upgoing waves, B, are for downgoing
waves, and the arrows represent the propagation directions

as shown in Figure 2.4.1 are related with matrix equations

4] [Ba Tw] [Bo]
== = |- (63a)

B, | Too Rio] |4
[ —A-! ] [ ﬁl? -T-ﬂl -_B-l T

==l =" (63b)

B, |Ts Ra) |A4s

Z’ [ .R” —

—|=1= | B (63¢)
| B, | | T'3s

Observed from (62), the amplitude vectors are also connected to incident amplitude

vector B, by

— = —  [Ru(,) R.,.(F,)] -

A, =Ro-Bo = i gy (64a)
| Rao(%5)  Reo(k,)

B.=3..5= | ) D""(k’)] B, (64b)
L D 1he (Ep) D 1ve (EP)
[ Usan —p 1eh Ip . ‘

A4, =0, -B,= (f) v (_)]-B (64c)
. Ulh-(kp) Ul"(kp)

B=D, oz | 0 D’"('"’)] .B (64d)
_Dzh(Ep) Dhc(EP)
.Uﬂho _p 2vo _p

A, =0.-Bo= (f) v (ﬁ)]-ﬁ (64e)
| Usne(ks)  Usee(kp)
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th(zp) F.

T.(5)] (640

Equation system (63) is readily solved for the downgoing and upgoing amplitude

vectors in terms of B, and the results are then compared to (64) to obtain the

following DGF coefficient matrices

ﬁo = ﬁol + L'yo - (ﬁn + T Ry -T 12) =1 (65a)
—_— — —_— r— — — = == -1 =
1= [I- —_— 10 * (EIJ + 21 Rza F M 12)] 01 (65b)
=1 = r_Rlz + =z1 =za .T. ?12 =1 (65c¢)
=z = ? . =1: =1 (65d)
ﬁz — ﬁza . _f- ?12 fl (65e)
Ts=Tau-T -T1s Dy (65f)
where T = (T — =n =33)—1 and the reflection and transmission matrices are
= [ Roan 0 = [ Rionn 0
Ro, = y o= (66a)
0 ROlvo 0 Rlo"
= [ Tou,p. 0 — [ I‘IOMD 0
TOI = ) T1o = (66b)
L 0 Tolv' L 0 TIOvv

— " 12k, dy Riann eizk;‘d‘Rn-n

Ry = . orw 66¢
" Lez2kud1 Riane ei2ki,dy Rizve (06¢)

—_— [ ei(k;f - k;:)dl Rnoo ei(k;: - k;:)dl Rzlco

E = g € o g e (31 66d
* _e‘(k:: - kz: )dl Ri10e e'(kif - kz‘ dl Rzlu] ( )

= .e;(k;: - k:s)dl T:,zho et(k;f - k:‘)dlﬂzvo.

T, = iy 1 66e
1 -ez(sz - k:‘)dl lekc e’(kz‘: - k:‘)d11’u" § ( )

= -ei(k;t — k32)d: Taron ei(k:* - k;:)lezmu-

Ta=| .cu  1ou 1w Lew 66£
7 i e’("’u - kz: )dl an ez(klx - k!x )dl T?lu i ( )

_ ek —kDdg,,  Gilkn —kDdp

R = 1y ew f1.en [ 66
» _e"(kzs - k;:)dszM e’(ku - k?:)dszu.] ( g)

- r ei(ks, — k;:)d’sz eilka, — k;‘d)d’Tzacu

Tu=1| . . . 66h
® _e’(k:z — k33 )d’Tzso- ez(k:, - k3:)d’Tzac- (968)
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in which the exponents carry phase factors due to the locations of the interfaces and
Fresnel reflection and transmission coefficient R’s and T’s are given in Appendix A.
The above results vividly describe the physical processes of wave interaction in the

layer media. For instance, amplitude vector B; of downgoing waves in region 2 is

spelled out from (64d) and (65d) as

-Fg =f'

N

12+ Dy - By (67)

which can be interpreted as the incident wave B, from region 0 propagates down
into region 1 (fl -B,), transmits through the interface between region 1 and region 2
(Tu .D, -B,), and multiply reflects between the interfaces of region 2 (f-%u D, -B,).
This completes the derivation of the DGF's corresponding to the source in region 0
in integral form (62).

For latter calculations of the scattering coefficients involving the effective
sources in the scattering regions (n = 1,2), dyadic Green’s function <ﬁm(1",?,)>
and <503(F, F.)) need be obtained by applying the symmetry relation (52) requir-
ing the transposition of the corresponding DGF's in the last paragraph and the sign
changes of k, and k, respectively to —k, and —k,. After the integrations are car-
ried out with the two-dimensional saddle point method [67,81], the results for the
DGFs in the radiation field are

— etkor S
<G%(F’F-))= P ik, Pega(kpr2), n=1,2 (68)

where p, = &z, + §y, and dyadic coefficient §,(k,,z,) are defined as
5u(Fpy 22) = (kS [Dunn(—F)h(kS ) Fis% — Dy (—F,Yo(kt, Je ™ Fis™]
- —_— s *1,8 _ .1 d
SRR ANC A AR AN AL ALY
— 9(k3,) [Duan(—F)h(kE)eTHRie% — Dy (< F,)o(ky,)eFi: %]

- f’(ké‘,)[Ut.»(—ﬁp)ﬁ(kf,)e_ik:‘z‘ - Ux--(—Fp)ﬁ(kf,)e_ikf‘z'] (692)
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Fa(Foy 22) = B(kS,) [Dano(—F,)olksz)e ™ a2 — Dipo(=F, )e(hsz)e —R5s ]
+ fz(k:,)[Uzho(—ﬁp)a(k;:)e-i’cifz- — Unn(—F,)e(kd)e k3]
— 8(k3,) [Davol(—F,)o(k52)e ™52 — D, (=, Ye(ksr)etHii =]

— 5(k3,) [Uneol =B, )o(k5h)e K52 — U, (<K, )e(ksd)e k5% (69b)

In summary, the DGFs are obtained in (69) where all the coefficients are
determined by (64-66) and Appendix A. With the available DGFs, the scattering

coefficients are derived in the next section.

2.5 Scattering Coeflicients

The polarimetric backscattering coefficients are defined by (13) in Chapter 1 based
on ensemble averages of scattered fields. As indicated in (13), the averages are
calculated with spatial integrations over products of the DGFs, the mean fields, and
the correlation functions. The DGF's have been obtained; next shown are the mean
field and the correlation functions. The integrations are then carried out to derive
the scattering coefficients.

The mean external fields in the scattering regions (n = 1,2) can be approxi-

mated as the corresponding homogeneous solutions to the wave equations
=71 g EG n [y e’
V x V x (Fa(7)) - kg'Tf(F,,(r)) =0, n=1,2 (70)

which are solved subjected to the boundary conditions at interface z = 0, —d,, —d,.

For incident field E,; = [ﬁ(ko,‘-)EM-i-i:(ko,i)E.‘-] e*%7 the mean fields can be written as
(Fu(7)) = P Po(kpyz), n=1,2 (71)

where subscript i indicates the incident wave, 7 = Zz + §y is the lateral space,
ki = 2kei + Gkyi = ko(2 sinOo; cos do; + §5in By sin ¢y;) is the lateral component of

incident wave vector ko, and polarization vector P,(k,z) are determined by
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Py(kpi,z) = B [Du.;.(k )h(km)e’kmz + Dy (B )o(K2,) ezkmz]
+ By Umh(k,.)h(km)e’kmz + Unne (B )o(k2,) ezkmz]

+ Eﬂ Dlvh(km)h(kl‘.)ezklttz + Dl"(k”)v(kln)eiku.Z]

+ Eui[Uran(Fp)h(k3,.)eRin? 4 Upyo (B )o(ht s etFin] (72a)
Py(kpiyz) = En [Dz;.,(k )o(kz")e‘k:nz + Dane(Fps)e(R2, )ezkmz]
+ B Uzho(k )o(k,”)ezk’”z + Uz;..(k )e(kzn)eZk,“z]

+ E. Dz.,(E,.)o(k,“)e'kznz + Dy (R )& (k) ezkmz]

+ Ey Um(km)o(kzn)eak"‘z + Uzu(km)e(kzn)ezk’”z] (72b)

with z components of the wave vectors defined in the same manner as (56), (58),
and (60b,c) by changing kZ,, k., and k, respectively to k2,;, k., and k,,.

The correlation functions are defined by (14) in the spatial domain. To fa-
cilitate the integration of (13), Fourier transforms of the correlation functions are

introduced for the statistically homogeneous scattering media under consideration
Cfnjhlm(?'n F:) = /_ dﬁﬁnjklm(ﬁ)e-i;(?ﬂ—a) y n=1,2 (73)

For the isotropic random medium (n = 1), the non-zero elements of spectral density
®1;1m(B) are simply

31(B) = B1jimm(B) = 6:2c(B) (74)
where ®,(B) is defined as in (20) and functionally given by (24b) in conformity

with the correlation function used to find the isotropic effective permittivity. For a

two-constituent medium, variance §, is

€1
€ + 2€g1

G,l

of fo

€o

61 = 9 (1 fol) +

€1 + 269 fn] (75)
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For the anisotropic random medium (n = 2), the correlation functions (73) speci-
fied in the untilted coordinate system (Z,7,2) are derived by applying the rotation

transformation iﬁ on scatterer ?,(F;) in the tilted coordinate system (2',%',2') so

that
C?cs (?2 ) 0 0

EE) =Ty &5F) Ty =| 0 &™) Eae(Fa) (76)

0 £Zzy (F2) 623: (F2 )
where the elements of ?,(F,) have the form of (47b) with €., replaced by ¢,.

The scatterer elements in the untilted coordinates are then used in (14) to find the
anisotropic correlation functions whose spectral densities can be obtained from the

following spectral densities defined in the tilted coordinates as

‘I’w(ﬁ )= ‘I’zz'zlz's'(ﬁ' ) = &3, ‘I’ez(ﬁ' ) (77a)
Q?:'(B‘) = Q!z's';':’(ﬁ') = 62:’Q€2(F) (77b)
ch'(ﬁ) = ‘pzz'z's'z'(ﬁ' )= 5zc'ng(F) (77¢)

where ®¢,(8') is functionally determined by (39b) in conformity with the correla-
tion function used to calculate the anisotropic effective permittivity. For the two-

constituent anisotropic random medium, the variances in (77) are
2

2

€32 — €20/ €2 — €2y

F —— g 1-f, +' s 78a
% €0+ S2p( €33 —€g2,) (1=£a) €0+ Sap (€12 —€g2p1) fu (782)

2
€p2 — €gaz¢ €53 — €42/

bapr = ) 1—f.2)+ ’ p 78b
? €0+ Sas (€33 — €250) (1-fa) ‘50'*'32:'(5-2_%2:') Jo (78b)

. *
€p3 — €Eg3pr €p3 — €g3s/
8 “ - ; ] [ ] l - !
? \_€0+Sip’(552_€g2p‘) €o+szz'(€bz"€yh‘) ( f 3)

. *
€2— €g2p €3— €g2s/
+ A T8¢
| €0 +Szp'(€.2 —fgzp')] [€o+Szx'(5n2_ ng;')] f ? ( )

Due to the invariant property of the Fourier transform under the rotation transfor-

mation, spectral density Q,,-.,,n(ﬁ) in the untilted coordinates can functionally be

related to those given in (77) with

B¢a2(B) = B2(8.=B., B, =By cost—B,sin, B,= B,sintp + B, cosyp) (79)
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In the untilted coordinates, the rotation transformation together with the above

invariant property give the anisotropic spectral densities

q’zjum(ﬁ) = 5zmm§ez (B) (80)

where non-zero variance 8;j4,, are dependent on the tilt angle 9 as

32202 = b3pr (81a)
Br2eyy = Spyyeg = G2y COS? P + 83or sin’ (81b)
b1209s = O20esy = 8yine = bhryee = (820 — &3p) sindp cos pp (81c)
2205z = Onyuy = 82 SID* P + 8300 cOS® P (81d)
Sayyyy = baps cos*tp + 8,, sin* P + (850 + 63, sin’ P cos? P (81e)
bayyy: = Gayysy = 5:;.” = 5:.,“

= (630 — 83, ) cos® P sintp + (85,0 — 6a,) sin® 3 cos P (81f)
bavyss = 3pnyy

= (83 + 83.:) 5in’ 9 cos? P + 8,0 cos® ¢ + &5, sin* 2 (81g)

62yxyz = ‘Szyuy = 62:;’3,3 = 62:yzy

= (830 + B20r — 6300 — 6%, sin® 1 cos? ¢ (81h)
Sayess = Gruyas = 8y = 63,4y

= (632 — 83)sin® 1 cos P + (8350 — 630s) cos® 9P sin P (81i)
635ass = b3, sin* 9 + 8, cos* ¥ + (820 + 65 ) sin’ 9 cos? (813)

The correlation of the scattered field can now be found by substituting into
(13) the dyadic Green’s functions (68), the means fields (71), and the correlation
functions (73). To enable the calculation of the scattering coefficients according to
(13) in Chapter 1, correlations of the scattered field components are actualized in the
manner of (14, Chapter 1)
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=\ ¥ =Y\ Eﬂ'E:i
(En(MELD) = s

® _ ¢ ST T R iR ik B ).3°
{k; /;,,,dﬂp_/ dp, / dp? e'*eiRe=P )71 g=i(ksi=ky~P,) 7]

:z::: /_ :dﬂ. [ :dzl _/: odldz; B, (B)e~P-er=51)

“ 915 (Bos 21) Firi (Bpiy 21) 000 m (Fps 2 ) Frrn (B iy 22)

+13 ["dB, [ dp, [ dps Fn TP PsgmiGnF B

zf / :dﬂ. /: ;d:iz: __4323 Bajuim(B)e P (52755

Juklm da

* Gaui (Fﬁ s23)Far (Em )y 23 )g:yl (Epa z3 )]::;m (-k-m 123) } (82)

where B = B, + 8., B, = £f, + #B,, subscript s, v, 7, and k can be & or v,
and DGF element g,,;(k,,z,) and normalized mean field component Fori(kyy2,) for

n=1,2 and j = %,4,% are defined as

G (Ros 2a) = [A(RS,) - Tu(Fpr 20)] - 5 (83a)
f,.,,-(ﬁ,,.-,z,.) = E;1<F0(Fu)) 3

(83b)

E,;=0

The integrations in (82) are carried out with the procedure in [4]: the integrals over
P, give Dirac delta function 47%§(k,; —%, —PB,), the integrals over B, then effectuate

Ep = kyi—k,,and the integrals over pn formilluminated area A. Then (82) becomes

(B (FIEL(F)) = BB A

=

{ﬂf /mdﬂ. /‘:leI /_:dz{’ 8,(B, =Fp—k,, B, )e (115

-0 -

. glm’(Em % )fu,- (Epﬁ, z )gfm(gpa zf)f'ﬂ...(zm zy)

= * — — o r i T T —iB8.(22—23)
+ 30 [ a8, [ den [ 55 Bajun(B, =FuFyu )0

gk dm -

* G3uj (Fm 23)Fark (-Em' 123 )g:yl (Fpa 23)F, :um(zﬂ" yZ3 )} (84)
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It is observed from the forms of g’s and F’s that all the polarization vectors and
coefficient D’s and U’s can be taken out of the integrations in (84). Retained inside
the integrations are the spectral densities and the exponential terms which account
for the upgoing and downgeing propagation of the mean fields and the scattered
fields. Furthermore, ¢y, = ¢o; + # and 8y, = 0y in the backscattering direction

so that k, = —k, and k?, = k¥,

v.; for wave type w = u,d in region n = 1 or

w = ou,od, eo,ed in region n = 2. Also note that the z components of the upgoing
and the downgoing wave vectors in region 1 differ only by a minus sign. Consequently,

the following integrals are defined te simplify the calculation

It = /: a:‘zﬂzqh(?Em 8.) /; (:‘,izl e (Ps=ra)es -‘},iz:ei(p.—““)‘; (85a)
win (T T R il )
= / B, B3;xim(2K i B )/ dzye™B=mre)e g?;e“ﬁ--“")'; (862)
min (e P ()

For the isotropic random medium, integral Z¢*¢ involves 16 quantities since a, b, c,
and d each has two possibilities of —1 and 1. The integrations over vertical space
z, and 27 are readily carried out and the integration over 3, is performed with the
residue theorem in the contour integration method. From Appendix D, the result for
Tobed

18

chcd

261 e~ V(®as—rca)ds
wly [(ms — K1)} (Kap — KF)?(Kap — Kea)
+ L — Pi(k1) — @u(Y) (872)

(Kea — £1)*(Kea — K7 ) (Kea — Kas)

where x, = i€~',/1 + 4k%¢2 and quantities P;(x,) and @,(xy) are

: dl ei(s,—s..)d,

(251)% (51 — k) (%1 — Kea)

1 — e‘(“i‘“.b)dn + e—i(u..—sg‘)dl

(2,1 )3(%1 — Ka3)(K1 — Kea)

pl(ﬁl) =
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SRR S ] (87b)

Ky Ky — Ky R — Ked

id, e“(": ~nea)dy
(26 Y (kY — ka)(K] — Kea)
+ e~ (A1 —Kea)ds
(263 P (nF — ma)(KY — Kea)
1 1 1 ]
+

— +
g S A

Ql("r) =

(87¢)

For the anisotropic random medium, integral ZZ%;, involves 256 quantities since p,
g, 7, and s each has four possibilities of ou, od, eu, and ed. As in the isotropic
case, the integrations over vertical space z; and 22 are readily carried out and the
integration over B, is performed with the residue theorem in the contour integration

method. From Appendix D, the result for I3/, is

P — .262jhlme;p,£33: e-‘(“'c“‘r-)da
2jkim — 1|’£g (n’q _— n,)z(n" — "'3*)2(’5" — IC,.)
e‘.(“r. —Kpg )dl . ]
= Paxs) - 88
+ (Krs — K2)2(Krs — KE)3(Kyy — Kypq) 2(k2) — Qa(x;) (88a)

in which the square of length £; is £ = £3, sin’ ¢ + £2, cos®y, pole K, is
Ky = L3%[~ky(B, — 8,)sin(29) + i\ [(1+4k%6,)L3+4k%6, 8, |, and quantities

Pi(x:) and Q;(k7) are determined as follows

i(dz - dl)e-‘(“’-“")d' e“""“n)di

(2iIme;)* (K2 — Kpg)(K2 — K:r.)
e""("n—lt")d, + e—i(n"—s,.,)d,

T | CiTmmy (% = ) — )

Pa(rs) =

e—‘(“: —Kyrg )dl e‘l("i ~Kypy )da

 (2Imea)A (ks — Kpg) (3 — "n)]

1 1 1
) 88b
[iImK’ +K3—N” + K,z—’g'.] ( )
i(dz —_ dl)e“(“;-n")d‘ e-i(ﬁ;"ﬁp.)dz
(2ImAZ (K] — Kpe) (KT — K.,)
e‘.(“;“"n)d: e-i(u; —Keo)d3

T ImRT P (RF — ) (5T — os)

1 1 1
' [ilm'c:‘ ™ e m-] (88c)

Qi(x7) =
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Figure 2.5.1 Wave scattering processes

b

a Same directions b Opposite directions

Figure 2.5.2 Correlations of waves multiply interacting with the boundaries. Thin
arrows represent complex conjugates of thick-arrow terms

The polarimetric backscattering coefficients are now obtained by applying re-
sults (87) and (88) to (84) and then making use of definition (13, Chapter 1). From
the observation on the forms of the DGF and mean field coefficients, the scattering

coefficients can be expressed conveniently as

ou,od
-1,1 eu,ed 8,y,8
Ourvn = Wk; 2. “I’::r‘l,:::zl y +1I’k; z: .Zl ‘I’::r.jl‘p;::.lmzajb;m (89)
a,%,¢, 2,078 5 b m

where all coefficient ¥’s are given in Appendix B and C. The scattering coefficients
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obtained in (89) is for the scattered field expressed in the scattered basis. To change
to the incident basis, simply take the negative of o4,,» and o,,s.. As calculated, the
scattering coeflicients are composed of 16 terms from the isotropic random medium
and 256 terms from the anisotropic random medium. For the isotropic random
medium, a scattered field can be an upgoing or a downgoing wave which is excited by
an upgoing or a downgoing mean field as depicted in Figure 2.5.1. Therefore, there
are 4 possibilities for the total scattered field and its correlation thus consists of 16
terms. For the anisotropic random medium, a scattered field can be an upgoing or
a downgoing wave excited by an upgoing or a downgoing mean field and each wave
type can be ordinary or extraordinary. Therefore, there are 16 possibilities for the
total scattered field and thus its correlation consists of 256 terms. Furthermore, all
multiple interactions between the waves and the boundaries are accounted for and all
correlations of waves with same and different propagation directions are included. For
instances, Figure 2.5.2a represents a correlation of waves multiply interacting with
the boundaries and propagating in the same directions and Figure 2.5.2b illustrates
a correlation of waves propagating in opposite directions.

In this section, the random medium model is formulated and the polarimetric
backscattering coefficients are obtained under the distorted Born approximation with
the strong permittivity fluctuation theory. In the next section, the model is applied
to study the polarimstric backscattering properties from layer random media. Con-
sideration is also given to the polarization signatures of the media and their relations

to the corresponding covariance matrices are explained.

2.6 Results and Discussion

a. Two-layer Configuration

For geophysical media with a two-layer configuration, the three-layer model is ap-



2.6 Results and Discussion 7

plied with the top scettering layer removed by setting its thickness and variances
to zero. The reduced model is used to investigate the polarimetric backscattering
directly from an uncovered anisotropic random medium such as sea ice. Consider an
electromagnetic wave at 9 GHz incident on a random medium composed of an ice
background with permittivity e; = (3.15 +10.002)¢, and a 3.0%-volume fraction of
vertically oriented (¢ = 0) brine inclusions with permittivity e,, = (38 + i41)e, and
correlation length £;,, = 0.5 mm and £,,, = 1.5 mm for which the strong fluctuation
theory (SFT) gives the variances of §,, = 1.48, §,,, = 14.9, and 6, = 4.57 — 11.08
and the uniaxial effective permittivity tensor with €, = (3.37 + ¢0.034)¢, and
€22 = (3.85+10.374)¢o as shown in Figure 2.6.1. The thickness of the random medium
is 1.7 m and the permittivity of the underlying sea water is €3 = (45.0 + 140.0)e,.
To point out the anisotropy effect on the polarimetric backscattering, a compari-
son is made with an isotropic random medium with the same parameters except
&y = L3, = 0.5 mm for which the SFT yields §,, = 8, = §» = 2.53 and
€3, = €3, = (3.43410.047)¢,. For both the untilted anisotropic and the isotropic ran-
dom media, cross term o4, Opany , and Cpeee are zero under the first-order distorted

Born approximation rendering the covariance matrix of the form

O 0 Onnes 1 0 o7
C=|{0 0 o or C=c| 0 0 0 (90)
a':hu 0 o P*\/;? 0 Y

Conventional backscattering coeflicient o4, and o,, are plotted as a function
of incident angle in Figure 2.6.2 for the two-layer untilted anisotropic (a) and the
isotropic (b) cases. As observed from Figure 2.6.2, o,, crosses over o, for the
anisotropic case whereas, for the isotropic case, o,, is higher than o, over the
range of incident angles under consideration. The distinction of the conventional
backscattering coefficients, o,, and oy,, associated with the two different random
media is, however, not as obvious as that of the polarimetric correlation coefficient p

as indicated in Figure 2.6.3 where the untilted anisotropic random medium manifests
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Figure 2.6.1 Parameters for the two-layer configuration
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Figure 2.6.2 Conventional backscattering coeficients: (a) untilted anisotropic
random medium, (b) isotropic random medium

its characteristics in p with magnitude and phase inversely related to the incident
angle while the isotropic random medium p simply has the value of approximately
1.0 over the range of incident angles. These results can be explained based on the
physical characteristics of the random media. In the anisotropic random medium,
the effective complex wave vectors of the ordinary and the extraordinary waves are
different; therefore, the h-polarized wave corresponding to the ordinary wave and the
v-polarized wave corresponding to the extraordinary wave have different propagation

velocities and attenuation rates which result in the separation of the scattering centers
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of the two wave types. At normal incident angle, there is no distinction between the
h and the v waves for the untilted random medium, the two waves are correlated,
and thus the correlation coefficient p has the value of unity. As the incident angle
is increased, the two waves become increasingly distinctive and less correlated; thus,
the correlation coefficient takes on a complex value with decreased magnitude and
phase. For the isotropic random mzdium, the distinction between the 2 and the v
waves is only due to the boundary effect and the good correlation of two wave types
leads to the correlation coefficient of value close to unity.

To illustrate the effect of the scatterers tilted in a preferred alignment di-
rection, consider now the anisotropic random medium as described in the previous
example but with non-zero tilt angle. For instance, let ¢ = 10°,20° and ¢o; = 0°. In
this case, the correlation coefficient p also contains information about the tilting as
shown in Figure 2.6.3. It is observed that the maximum magnitude of p is at normal
incidence in the untilted case and moves to a larger incident angle as the tilted angle
becomes larger. Also, the phase of p does not change sign for the case of 3 = 0°
whereas, in the tilted cases, the phase of p changes sign at the incident angle where
the magnitude of p is maximum. Furthermore, it should be noted that the tilting
results in non-zero cross terms and the corresponding covariance matrix become fully
populated. As shown in this subsection, the covariance matrix describes the fully
polarimetric scattering property of the remotely sensed media and thus can be used

for the identification and the classification of terrain types.

b. Three-layer Configuration

To identify the effect of the covering top layer on the backscattering from the lower
layer, the components of covariance matrices are compared between a two-layer con-
figuration such as the bare sea ice in subsection 2.6a and a three-layer configuration
such as the sea ice with snow cover. In Figure 2.6.4, the covering dry-snow layer

is a low-loss isotropic random medium of thickness d; = 0.1 m composed of an air
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Figure 2.6.4 Parameters for the three-layer configuration

background with permittivity €;, = ¢ and a 20%-volume fraction of ice particles
with permittivity ¢, = (3.15 4 :0.002)¢, and correlation length ¢, = 0.3 mm for
which the SFT gives the variance of §, = 0.39 and the isotropic effective permittivity
of €4y = (1.29 +10.0003)¢o; the middle and the underlying regions are, respectively,
the sea ice with vertical brine inclusion over the sea water with the same physical
parameters as in the two-layer configuration.

Displayed in Figure 2.6.5 are the plots of o, and o,, as a function of incident
angle for the two-layer and the three-layer configurations. The comparison shows that
both o, and o,, are enhanced due to the effect of the dry-snow cover whose ice
particles introduce more backscattering. Moreover, the boundary effect is recognized
in form of the oscillations on o,; and o,,. The oscillations can also be seen clearly
on the phase of the correlation coefficient p in Figure 2.6.6b. As compared to the
two-layer case, the absolute value of the phase of p for the three layer is smaller
over the range of incident angle. Physically, this is due to the isotropic covering

layer, which characteristically exhibits its isotropy in p with a small phase, partially
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Figure 2.6.5 Conventional backscattering coeficients for the two-layer and three-
layer conflgurations

masks the scattering effect of the lower anisotropic random medium. The magnitude
of p, however, exhibits very weak oscillations while clearly retaining the almost
same characteristics as observed directly from the two-layer configuration as seen
in Figure 2.6.6b. Thus, the correlation coefficient p can carry information from
both the covering low-loss isotropic layer and the lower tilted anisotropic layer in a
rather distinctive manner. If the top layer is more lossy, both o4, and o,, can be
diminished and the boundary-effect oscillations can be depressed. As illustrated, the
three-layer model can account for the effect of the top scattering layer covering a

geophysical medium whose characteristics can be recognized from the polarimetric

covariance matrix.

c. Polarization Signatures

For given polarizations of the transmitter and the receiver, (11) can be used to
synthesize the scattering coefficient which is similar to the polarization signature

defined in [80]. When orientation angle ; = @, = o, and B; = 8, = 8., the
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Figure 2.6.7 Copolarized signature normalized to o,, for the two-layer configu-
ration at 0y = 40°
copolarized signature can be displayed with a three-dimensional plot with the vertical
axis for the normalized signature and the horizontal plane for a. and B.. In this
subsection, the copolarized signature is shown for the bare sea ice and compared
with that of the snow-covered sea ice. The forms of the displayed signatures and
their relations to the corresponding covariance matrices will be explained.

Consider the 9-GHz wave incident at 8,; = 40° on the sea ice with vertical

brine inclusions. The corresponding covariance matrix is

1 0 (0.83 £~29.5°),/7

C=112x10"? 0 0 0 (91)

(0.83 £429.5°) /7 O ~ = 0.915
The copolarized signature is shown in Figure 2.6.7 where the variation is seen in both
a. and (.. To illustrate the variation in a., the copolarized signature normalized to

ons for linear polarization is plotted in Figure 2.6.8 where the normalized signature
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Figure 2.6.8 Linearly copolarized signature normalized {o o, for the two-layer
configuration at 8, = 40°
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Figure 2.6.9 Signature distortion track of the two-layer conflguration

at a = 90° has the value of 0.915 which is the ratio ¥ = &,,/oa in covariance
matrix (91) and the undulation also depends on the correlation coefficient p. For

the variation in S., the signature at a fixed value of a. increases to a maximum
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and then decreases. The variation over the polarization plane (a.,8.) makes the
signature look like being distorted. To describe this distortion, a “signature distor-
tion track” is defined as the plot of 8. at which the signature is maximum as a
function of «. such that 8o(a.,B.)/8B. = 0. This plot tracks the locations of the
local maxima of the copolarized signature over the polarization plane. The result
of the signature distortion track for the bare sea ice is shown in Figure 2.6.9 which
indicates that a maximum copolarized scattering coefficient can be obtained with an
h (a. =0°180°) or v (a. = 90°) polarization and with an elliptical polarization
for other orientation angles. To explain the cause of the distortion, the phase of p
in the covariance matrix (91) is artificially set to zero which consequently gives the
signature in Figure 2.6.10a where the distortion disappears as seen in Figure 2.6.10b.
Thus, the distortion is due to the non-zero phase of p which can come from the
anisotropy of the random medium as discussed in subsection 2.6a. Furthermore, the
distortion track is symmetric about the v polarization (a = 90°,8 = (°) due to the
azimuthal symmetry of the untilted anisotropic random medium. Consider an az-
imuthally symmetric random medium whose polarimetric backscattering properties

are characterized with a covariance matrix of the form [83]
10 oy
ﬁ = Opp 0 [ 0 (92)

PV 0

which is more general than (90). In this case, the distortion track equation is

90/06. = onnsin2f. [(y — 1) cos2a, — (v + 1 — 4e) cos® 2a, cos 23,
— 2,/7Rep cos 2(3.(1+sin’ 2a, )] +204/Imp sin 2c, cos 48. =0 (93)
from which the properties of the signature distortion track can be deduced. If

Im(p) = 0, (93) has solution 8. = 0 for any given orientation angle a, and the

track is just the straight line at (. of zero value signifying the disappearance of
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the distortion. Also, the invariance of (93) under the change of a. and B. re-
spectively to (180° — a.) and —pf. implies the symmetry about the v polarization
(e = 90°, 8. = 0°). When e =0 as in (90), these track properties still remain.

The pedestal is also observed in Figure 2.6.6. To explain the existence of the
pedestal, the pedestal height is calculated from (11, Chapter 1) by setting 8. = +45°

(circular polarizations) for the case of (92)

o(Be = £45°) /o = ¢ + 5 [(1+1) — 2y Rep] (94)

Obviously from (94), the pedestal height is composed of two terms: the first term e
can come from the depolarization due to multiple scattering [83] and the second term
can come from the anisotropy of the random medium. For the untilted anisotropic
random medium under consideration, the pedestal height is therefore non-zero even
thought the cross term e is not accounted for. In this case, the pedestal is due to
the anisotropy and the boundary effects.

For the snow covered sea ice with the three-layer configuration in Figure 2.6.4,

the covariance matrix at the incident angle of 6, = 40° is

1 0 (0.84 (-13.2°),/7
C=134x10" 0 0 0 (95)
(0.84 £+13.2°),/7 0 v = 0.85

The corresponding copolarized signature and the signature distortion track are dis-
rlayed in Figure 2.6.11. Compared to the two-layer case, the three-layer signature is
less distorted and the pedestal height is lower. This is due to the masking effect of
the isotropic covering layer which renders the anisotropic characteristics of the lower
scattering layer less pronounced.

Polarization signatures of random media with two and three layers have been
shown in this subsection. The forms of the copolarized signatures and the pedestal
heights are explained with the components of the covariance matrices from which the

polarimetric scattering properties are readily recognized.
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2.7 Summary

In this chapter, the fully polarimetric backscattering coefficients have been obtained
from the layer model with spheroidal scatterers. The top layer is modelled as an
isotropic random medium, the middle layer as an anisotropic random medium, and
the underlying layer as a homogeneous medium. The strong fluctuation theory is used
to calculated the effective permittivities of the scattering layers and the distorted
Born approximation is applied to derive tne scattered fields. The dyadic Green’s
functions are used in the calculations and the backscattering processes are explained.
The model can be applied to the remote sensing of both bare and covered geophysical
media as illustrated for the case of bare and snow covered sea ice. The physical infor-
mation conveyed in the elements of the covariance matrices are discussed especially
for the correlation coefficient p. The copolarization signatures for the layer random
media are obtained with the Mueller matrices and explained with the scattering co-
efficients contained in the covariance matrices. Since the fully polarimetric scattering
coefficients convey more information about the remotely sensed media as compared
to the conventional scattering coefficients, the polarimetry provides a better means

for the identification and classification of the geophysical media.



Chapter 3

Model with Random
Spheroidal Scatterers

3.1 Introduction

In this chapter, the layer configuration with scattering regions containing randomly
oriented spheroidal scatterers is considered. The scatterers are modeled with a
spheroidal correlation function with random orientation described by a probability
density function of the Eulerian rotation angles. The extended strong permittivity
fluctuation theory [58] is used to calculate the effective permittivity and the distorted
Born approximation is applied to obtain the polarimetric scattering coefficients. The
model accounts for multiple interactions due to medium interfaces, coherent effects
of wave propagation, and first-order cross-polarized returns.

The chapter is organized into six sections. Section 3.2 presents the derivation
of the effective permittivity with the extended strong fluctuation theory for an inho-
mogeneous medium with embedded spheroidal scatterers having random orientation.
Section 3.3 shows the calculation of the polarimetric scattering coefficients, under
the distorted Born approximation, from the scattering regions in the layer configura-
tion. Section 3.4 discusses the results for soybean monitored temporally from early
to fully grown until late stages. Section 3.5 assesses the use of scattering coefficients
for inversion of vegetation biomass and soil moisture. In the polarimetry aspect,

physical insight provided by the theoretical model is used to explain the behavior

-91 ~
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of the covariance matrices and the corresponding polarization signatures calculated

with Mueller matrix. Finally, section 3.6 summarizes this chapter.

3.2 Effective Permittivity

In Chapter 2, spheroidal scatterers in the random medium have a preferred align-
ment described by a global correlation function with a fixed axial direction. For an
inhomogeneous medium such as a vegetation canopy, the leaves, for example, can
be oriented in a random manner. In this case, a correlation function corresponding
locally to a scatterer is used in the derivation of the effective permittivity with the
strong permittivity fluctuation theory extended to account for the random orienta-
tion of the scatterers. When the average process is performed over all orientation
angles, the effective permittivity is isotropic as expected from the geometry of the
random orientation.

Consider an inhomogeneous medium composed of a host medium with permit-
tivity ¢, and embedded spheroidal scatterers with permittivity ¢, and total fraciional
volume f,. By introducing auxiliary permittivity €, into the wave equation, dyadic
Green’s function ﬁ,(?,i"‘) satisfies the inhomogeneous differential equation of the
form (5, Chapter 2) where the subscript m for the layer number is dropped. The
singularity is accounted for by decomposing ﬁ,(?,?‘) = ﬁ,(? — 7) into a principal
value part and a Dirac delta part with dyadic coefficient S the as in (8, Chapter 2).
The effective permittivity of the random medium is composed of a quasi-static part
and a scattering-effect part which accounts for the modification in the wave speed

and attenuation [17,58]

= %: + 50[7 - ?cu : (§>]_1 ' ?cff 1)

where auxiliary permittivity €, and dyadic coefficient S are determined by the

condition of secular-term elimination, and the effective dyadic scatterer ?,” under
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Figure 3.2.1 Geometry of a spheroidal scatterer

the low-frequency approximation is given by

o), = [[&1 [ asp(1,87)
S (1 [ B.@)], 2@+ ()| )
k - V1189
in which I‘glm is the variance, ﬁ, is the isotropic Green’s function (16, Chapter
2), ®, is the Fourier transform of the normalized local correlation function, and
p(¥s,¢y) is the probability density function of Eulerian orientation angle ¥, and ¢,
illustrated in Figure 3.2.1. The effective permittivity as obtained is approximated by
truncating the series in the renormalization method. The validity condition for the

approximation is IE,”] L_m £ 1.

The spheroidal scatterer is described with a normalized local correlation func-

R(F) = exp (-\J =i+ F) 3)

with correlation length £, and £,. in the local coordinates corresponding to the

tion of the form

principal axes of the scatterer. The correlation lengths are related to the physical
geometry of the scatterer and can be estimated from the size and the shape of the
scatterer as shown in [58] for small scatterer and low fractional volume. This local

correlation function can be used to describe a scatterer with needle-like or disc-like
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shape. The Fourier trans*-rm &, of (3) is the same as (39b, Chapter 2). For ran-

domly oriented scatterers w' .1 no preferred direction, the probability density functic.

of orientation is

P(¥;,¢;) = siny, /(47)

(4)

The derivation of the effective permittivity is similar to the procedure in Chap-

ter 2 and the integrations over the Eulerian angles are straight forward [58]. Followed

is the result showing how the effective permittivity is calculated. First, €, = e,? and

S= diag(S,,S,,S.) are obtained by iterating

fo[260(e) + ()] + (1 = £.) [26 () + £(6)] =0

S, = [(1+a)tan! va - Va]

26,:\/5
S0 = 202 [Va - tan va)

where the quantities £,/(e), €./(e), and a are respectively defined as

- €%
£P‘( ) €o+S¢(£—€,)
bule) = eo+S,.(e—e,)
2 . £,
a=+v"-1 with 1=

the averaged dyadic coefficient <-—.S_’—> is then calculated from (6a) and (6b)

Nll

(5) = ( =S, + S)I_EZ;

and finally the effective scatterer is determined by

?.ﬂ - [§e:(e. )&+ 5,0+ 1e:,(e.) (1 + 50| T

- 1) [3E@ T +5,) + 360 (L + 5] T

(5a)

(5b)

(5¢)

(62)

(6b)

(6c)

(7)

(8)
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in which I,, comes from the integration of the product between the correlation func-

tion and the 2'z'-element of the dyadic Green’s function

L = 2’“3(1 +1)) (9a)

ﬁ

I‘=~_§7£; \/:Z+19.+C(g_tan-lﬂ)] (9b)

d. 9.9 Vi,
I,= [+au,,,+19,(a+2)—-(b+ay3, (%_tm_l 17 )]

20| 9 3.3, /7. (8c)

2
yx' kzla': ¢= 7 g:'s b=7 +C, o=b—-1, 4, =b+¢( (Qd)

a

and I, comes from the integration of the product between the correlation function

and the p'p’-element of the dyadic Green’s function

3

(10b)

é w[” ;- "“:‘)]

w—.(i““ V3.

%= g | 7 (5 —vact )| (10¢)

As seen from the above expressions, the effective permittivity €, = e.,,j is
isotropic. In the next section, the effective permittivity is used to obtain the complete
set of polarimetric backscattering coefficients under the distorted Born approximation

by using dyadic Green’s function (DGF) of the layer configuration.

3.3 Scattering Coeflicients

The same layer configuration in Chapter 2 is used here except that the scatterers in
both regions 1 and 2 are spheroidal and allowed to be randomly oriented. The polari-
metric backscattering coefficients are defined by (13, Chapter 1) based on ensemble
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averages of scattered fields. The averages are calculated with spatial integrations
over products of the DGF's, the mean fields. and the correlation functions as follows

(o) Foi)) = 3 38 [t ["dbyotr, 60 o) 7t Casm(ri i1, 1)

lJ" llm

. [<001.',‘(7" 71))<Fu(7_'1)>] . |"'Gom(F F;))(th(F;»]
+ 3 K [y [a4,0(81.9) [, @73 [ 475 Corium(72,73: 4, 8)

'.,hlm

- [(Gons (7)) (Fustm)] - [(Gona(F, 7)) Fam(3))]” (11)

The DGF's and the mean fields are given in Chapter 2; the correlation functions need
to be determined next. The integrations are then carried out to derive the scattering
coefficients.

The correlation functions C’s in (11) are defined in the spatial domain with

Coeninim(TnsTry Y1, 84) = <Enjb(7»)€:zm(7‘7.)|¢f(?n),¢'.'(7—'n)> » n=12 (12)

To facilitate the integration of (11), Fourier transforms of the correlation functions

are introduced for the statistically homogeneous scattering media under consideration

Consaim(Fns 723 %5, 65) = / B, m(B)e- P | p =12 (13)

which is expressed in the global coordinate system (Z,§,%) and related by the

Eulerian rotation transformation (¢;,1,;) to those in the local coordinate system

(-' ~1 ~r)

an’(ﬁ‘) = q’ﬁ:’:':':'(F) = ‘Sn#QGn(F) (143)
20i(B) = Bussrsrst(B) = b0 Ben(B) (14b)
an’(F) = Qﬁz’a'x’x’(F) = 6nc'¢£ﬁ(F) (14‘:)

where ®,,(B') is the Fourier transform of (3) and the variance §,’s in (14) are

€pn —
€o+5n¢(ftm €gn)

_f,,. (15a)

6,.,1 =

enn—
( +Snp'(5m—‘:n)
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3 ]
65..—6” » 6.,,—69.;
6,.,:: 1'_ m m 15b
€0+Saz'(ebn_egn) ( 4 )+’€0+Suu(€.n_€”) ( )
- q %
€pmn—€ €n—€
6,“:: Cad e 1- m
.50+Snp‘(ebn—egn), .50+Su:'(ebn—€!ﬂ). ( f )
. q %
€n— €Egn €sn—€gn
”m 1
+ | €0+ Snp(€n—€gm) | [ €0+ Sns(€in—€gn) d (15¢)

Due to the invariant property of the Fourier transform under the rotation transforma-
tion, spectral density ®,ju(8) in the global coordinates can functionally be related
to those given in (14) with

an(ﬁ) = QEu(ﬂ; = ﬂa cos ¢! + ﬂy sin ¢!)
B, = —B. sin ¢; cos; + B, cos ¢; cosp; — P, sinyy,
B, = —P. sin ¢;sinp; + B, cos @y sinyp, + B, cos ;) (16)

In the global coordinates, the rotation transformation together with the above in-

variant property give the spectral densities of the form

8.j1im(B) = bnjuim®¢a (B) (17)

where variance §,jum are dependent on angle ¢; and 9, as

Sajrim = OnpTpin Tpim + OncTpjs Teim + 5:¢:szquzm + bnp TyjnTiim (18)

in which matrix ?p and T, are defined as follows

T,=I-T, (19a)

cos? ¢y + sin’ gy cos?yh;  sin g cos ¢, sin® ¢, sin ¢, sin 1, cos ¥,

Nl

o sin@; cos ¢y sin’ ¢,  sin® @, + cos? ¢, cos? ¢h; — cos ¢y sinp, cosp, | (19b)
sin ¢; siny; cos ¥, ~ €08 ¢ sin P, cos Py sin’ ¢, J
The correlation of the scattered field can now be found by substituting into

(11) the dyadic Green’s functions of the layer medium, the means fields, and the
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correlation functions. From the observation on the forms of the DGF and mean field

coefficients, the scattering coefficients can be expressed conveniently as

= ir -,1 z,,2
Ourn = kS [y [(dopp(r,8y) 1 Y Wik, (Wi TL
a,b,ec,dj.k,lm
[ 2 dv 3,93 - ,
+ukl [ag, [Cdomvren) 3 Y w9k, (20)
0 PiliTes 5.k, Im

Note that region 2 now becomes isotropic due to the random orientatior: of the scat-
terers. Thus, the ordinary and extraordinary waves degenerate into one characteristic
wave either going down (d) or up (u) and the coefficients ¥,’s are derived from
those in Chapter 2 by letting €53 = €473y = €472: - For region 1, coefficient ¥,’s
are simply

‘I,::r,jk = S;p,jI:r,h (21)

in which coefficient vector 7:, from the mean field are given by

T, = Dun(R)h(kL) + Duna (Yo (kS,;) (22a)
T}y = Uia(Ra)R(RL:) + Uina (B )o (KL, (22b)
I, = Dy, (Fn)o(ki) + Din(Fm)h(RS,,) (22¢)
I}, = Un(RuYi(ks,) + Unan(B)R(kr) (22d)

and coefficient vector §:“ from the Green'’s function are given by

Sir = Dun(=F,)h(K},) — Duna(=F,)o(KL,;) (23a)
Sin = Usa(=F,)h(kL.;) — Usna(—F,)o(RL,q) (23b)
St = Diu(—K,)o(kL,.) — Duaa(—F,)A(kL,) (23¢)
Ste = Uia(=k,)0(kL,.) — Usan(—F,)A(kL,:) (23d)

The integrations Ijjii. and I3f;. are carried out with the method described in

Chapter 2. The result for Z2%¢ s

15kim
Ic?cd — izsljhlmtzp:eul e-‘(“-t-ﬂec)dx
1jkim L% (Kab — 1) (Kap — £F)*(Kap — Kca)

1 = P) - Ql(nf)] (243)

(Kea — K1)*(Kea — £F)(Kea — Kap

+
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in which the square of length £, is £} = £,sin’¢; + £, cos®4p;, pole x, is
K1 = L7 [~kg(B,. — 8,) sin(tpy ) cos(py) +iy/(1+ k%8, ) L2+ k3,8, ], with kg, =
koi cos(@i — ¢7) — kp, cos(¢, — @) and kgy = kyisin(¢: — ¢;) — k,, sin(4, — ¢;) and

quantities P;(x,) and Q,(xy) are determined as follows

idl ei(n;—u.;)dg
(2iImk, )2 (k1 — Kas) (K1 — Kea)

1 — eilri—ras)ds + e H(rar—rca)ds

Pi(x1) =

(2:Imk, )2 (K1 — Kap)(K1 — Keq)

N+ =t ] (24b)

ilmr, K1 —Kap Ky — Kl

id, e—t’(n: —Ked)dy
= Tmnd P (RF = ) (5F = Fod)
e—i(ls: —A’-c‘)d]

t Tmrr ) (nF — Fa)(RF — od)

Q1(l€f)

1 1 1
: 24
[ilmn’l" + K¥ — Kap + k¥ — K,cd] (24c)
The result for I3, from region 2 is
26,; ml2 Loy —i(Rpg—rire)da
i = 1= [ T
L3 (Kpg — K3)*(Kpq — K5 ) (Kpg — Krs)
e"("""‘n)d! p " os
s e v R bl (25)

in which the square of length £; is L] = £, sin’ ¢, + £2,, cos®¢;, pole K, is
Ko = L3 [~key(B, — 8,) sin(ihy) cos(¢y) + i\ /(1 + k3 8,) L3 +k2%, 8,4, ], and quan-

tities Pi(x;) and Qs(x)) are determined as follows

i(dz — d], )e—i(Kz —“'.)dl ei(K: —Kpq )dg

(2iIme; )2 (k3 — Kpg)(K2 — K.,)

e-—i(n"—-s,,)d; + e—i(n"—s,-.)d,
-+ -
(26Imk;)? (ks — Kpg)(K2 — Kry)

e—i(nz—sn)dn ei("ﬂ-"n)d3

" (2iImea)?(ka — Kpg) (s — n,.)]
-[1+1+1] (25b)

tIme, K3 —Kpg K32 — K,

pz(ng) =
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Z(dg — dl)e‘(“;-“yc)dx e—$(x3~rrs)ds
(2ilmn:)2(n;‘ - nP!)(N;‘ - K’")
ei(‘; —Kpq)d1 e-‘(ﬂ; —Kps)ds
(2Imad 2k — kpp)(KF — K4,)

. ilms - "';‘_"?94—":"'%.

The remaining integrations over ¢; and ¥; can be carried out numerically

Qz("’;) =

(25¢)

in general or analytically in the low-frequency case. The scattering coefficients ob-
tained in (20) is for the scattered field expressed in the scattered basis which can be
changed to incident basis by taking the negative of ... and o,,4.. Furthermore, the
scattering effects of the rough boundaries at the medium interfaces are estimated by
incoherently adding the total contribution from the rough surface scattering taking
into account the propagation loss through the medium; formulas for rough surface
scattering are in [32,81].

In this section, the effective permittivity is derived with the extended strong
fluctuation theory and the polarimetric backscattering coefficients are obtained under
the distorted Born approximation. In the next section, the model is applied to study
the polarimetric scattering properties from vegetation. Polarization signatures and

their relations to the corresponding covariance matrices are also investigated.

3.4 Results and Discussion

a. Azimuthal Symmetry

For an azimuthally symmetric random medium, cross term ox44, and o4,., are zero

rendering the covariance matrix of the form

Ohn 0 Onnoo 1 0 oy
C=|0 o O oo C=o| 0 e O (26)
Opbos 0 T P 0y

The model presented in this chapter gives non-zero cross term o3, under the first-

order distorted Born approximation. This result is due to the nonspherical shape of
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the scatterers. However, higher-order contribution to o3, is neglected.

The covariance matrix of the form (26) is considered for terrain media with a
two-layer configuration such as azimuthally symmetric vegetation over soil. In this
case, the three-layer model is applied with one of the scattering regions removed by
setting the layer thickness and the fluctuation variances to zero. The model is used
to investigate the polarimetric backscattering directly from an agricultural field such

as soybean for which scattering data and detail ground truth are available.

b. Conventional Backscattering

The soybean data are provided by Dr. T. Le Toan of Centre d’Etude Spatiale des
Rayonnements. Backscattering coefficients oxs, 0,,, and o3, of wave frequency
5.3 GHz and 0-50° incident angle together with ground truth were measured at 10
different growth stages of the soybean from 17 July to 30 September 1986. The
scattering configuration of the soybean canopy is illustrated in Figure 3.4.1 for the
parameters taken on 8-07-86. The ground truth data are summarized in Table 3.4.1
including: canopy height d in meter (m), volumetric water content m, of the canopy
in kilogram per cubic meter (kg/m®), vegetation fractional volume f, in percent (%),
volumetric water content m, of the underlying soil in percent (%), rms height o, and
surface correlation length ¢, of the assumed Gaussian rough soil surface in centimeter
(cm).

From table 3.4.1, it is observed that the rough soil surface slope tends to be
smoother while m, and f, increase then decrease as the soybean grows. However,
the water content f, in vegetation approximated by f, = m,/(10f,) (for m, in
kg/m® and f, in %) linearly decreases with time indicating that the older soybean
is less moist. From the ground truth, leaf and soil dielectric constants are estimated
from [84] and [85], respectively. The correlation lengths £, and £, in Table 3.4.2 for
disc-like leaves together with the ground truth are input in the model to obtain the
theoretical results.



102 3. Model with Random Spheroidal Scatterers

o

koi

Boi
€0, [ f = 5.3 GHz

Soybean canopy : 8-07-86
€fr2 = (1.05+10.0202) o
L3 =6.5mm £, =.2mm
fractional vol f, = 0.29 %

—_————— e ———eer—~——~  z = —(0.44 m
Underlying soil :
{,=140cm o,=1.6 cm
€3 = (11.94i2.34)ep, p

Figure 3.4.1 Scattering conflguration of soybean canopy

Date | d (m) | m, (kg/m’) | £, (%) | m, (%) | o. (ecm) | & (cm)
7-17-86 | 0.200 0.93 0.11 28.0 1.7 14
7-25-86 | 0.290 1.41 0.18 21.0 1.7 14
8-07-86 | 0.440 1.99 0.29 26.0 1.6 14
8-14-86 | 0.520 3.92 0.60 32.0 1.6 14
8-20-86 | 0.590 5.23 0.87 15.8 1.5 13
8-28-86 | 0.680 4.59 0.89 33.4 14 13
9-03-86 | 0.745 4.15 0.88 19.8 1.3 12
9-12-86 | 0.825 2.84 0.68 12.0 1.2 12
9-19-86 | 0.790 2.10 0.50 29.6 1.2 12
9-30-86 | 0.735 1.11 0.29 25.0 1.2 12

Table 3.4.1 Ground truth data for soybean

Date | 7-17 | 7-25 | 8-07 | 8-14 | 8-20 | 8-28 | 9-03 | 9-12 | 9-19 | 9-30
£, 7.5 7.5 6.5 5.5 4.5 3.5 3.2 5.0 5.8 7.5

£, 0.10 { 0.10 | 0.20 | 0.30 | 0.30 | 0.25 | 0.30 | 0.40 | 0.40 | 0.40

Table 3.4.2 Correlation lengths for soybean (in mm)
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The comparisons for conventional backscattering coefficients of the soybean
are shown in Figures 3.4.2-3.4.11 over the range of incident angles from 0° to 50°
and in Figure 3.4.12 at 20° incident angle over the growth time. For copolarized
returns oy, and 0,,, the theoretical and experimental results are in good agreement.
By comparing the contributions from the scattering due to the soybean canopy and
the scattering due to the rough soil surface, the trend observed in o3, and o,,
can be interpreted physically. At small incident angles, the rough surface scattering
contribution is important when the total attenuation of the soybean, especially at
low vegetation fractional volume, allows the soil surface to be seen by the wave.
The rough surface contribution, however, rapidly diminishes as the incident angle
increases. At larger incident angles, the volume scattering due to the soybean canopy
becomes dominant and the copolarized returns slowly decrease as the incident angle
increases. These scattering mechanisms explain why the returns are high near normal
incident angle, decrease rather quickly up to incident angle about 20°, and slowly
decrease as the incident angle increases to 50°. However, the theoretical predictions
are higher on the first and last dates where the vegetation fractional volumes are low.
In those cases, the rough surface characterization with rms height o, and surface
correlation length ¢, are sensitive to the backscattering coefficients which can vary
as much as +1.5 dB when o, and ¢, change within +10% of the measured values
as shown in Figures 3.4.13 and 3.4.14. For cross polarized return o;,, the theoretical
values are lower than the experimental data. This is due to the fact that scatterers
with elongated shape such as stems and higher-order contribution to the cross term
are neglected in the calculation of volume, surface, and volume-surface scattering.
An interesting observation is the high correlation between fractional volume and the
lateral correlation length £, of the disc-like leaf shape. The correlation coefficient is

—0.966 indicating the inverse relation between the two parameters.
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3. Model with Random Spheroidal Scatterers

SOYBEAN : July—17-1986
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Figure 3.4.2 Backscattering coefficients of the soybean canopy :" H and continuous
curve for o,,, V and dash curve for o,,, and X and dash-dot curve for o,,; letters
are for experimental data and curves for theoretical results
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Figure 3.4.3 Backscattering coefficients of the soybean canopy : H and continuous
curve for o, V and dash curve for o,,, and X and dash-dot curve for o,,; letters
are for experimental data and curves for theoretical results
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SOYBEAN : August—07-1986
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Figure 3.4.4 Backscattering coefficients of the soybean canopy : H and continuous
curve for o,;, V and dash curve for o,,, and X and dash-dot curve for o,,; letters
are for experimental data and curves for theoretical results

SOYBEAN : August—14-1986
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Figure 3.4.5 Backscattering coeflicients of the soybean canopy : H and continuous

curve for cxy, V and dash curve for o,,, and X and dash-dot curve for o,; letters
are for experimental data and curves for theoretical results
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SOYBEAN : August—-20-1986
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Figure 3.4.6 Backscattering coefficients of the soybean canopy : H and continuous
curve for o,, V and dash curve for o,,, and X and dash-dot curve for o5,; letters
are for experimental data and curves for theoretical results

SOYBEAN : August—28-1986
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Figure 3.4.7 Backscattering coefficients of the soybean canopy : H and continuous
curve for o,;, V and dash curve for o,,, and X and dash-dot curve for o;,; letters
are for experimental data and curves for theoretical results
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SOYBEAN : September—03—1986

T T T g

c -
—
-—

Backscattering Coefficient (dB)

Incident Angle (degrees)

Figure 3.4.8 Backscattering coeflicients of the soybean canopy : H and continuous
curve for o,,, V and dash curve for o,,, and X and dash-dot curve for o,,; letters
are for experimental data and curves for theoretical results

SOYBEAN : September—12-1986
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Figure 3.4.9 Backscattering coefficients of the soybean canopy : H and continuous
curve for o5, V and dash curve for o,,, and X and dash-dot curve for o,,; letters
are for experimental data and curves for theoretical results
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SOYBEAN : September—19-1986
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Figure 3.4.10 Backscattering coefficients of the soybean canvpy : H and contin-
uous curve for o,;, V and dash curve for o,,, and X and dash-dot curve for o}.;
letters are for experimental data and curves for theoretical results

SOYBEAN : September—30-1986
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Figure 3.4.11 Backscattering coeflicients of the soybean canopy : H and contin-
uous curve for ox,, V and dash curve for o,,, and X and dash-dot curve for o,;
letters are for experimental data and curves for theoretical results
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SOYBEAN : Incident Angle at 20°
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Figure 3.4.12 Backscattering coefficients of the soybean canopy : H and contin-
uous curve for o, V and dash curve for o,,, and X and dash-dot curve for o3
letters are for experimental data and curves for theoretical results
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Figure 3.4.13 Sensitivity of backscattering coefficients (7-17) : continuous curve
uses measured values of rough soil surface, dash and dash-dot curve the rough
surface values varied within +10%
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Figure 3.4.14 Sensitivity of backscattering coefficients (9-30) : continuous curve
uses measured values of rough soil surface, dash and dash-dot curve the rough
surface values varied within +10%

c. Polarimetric Backscattering

To investigate the polarimetric scattering properties, the physical parameters of the
soybean are used as input to the model to calculate the correlation coefficient p
between the copolarized returns and to simulate the polarization signature of the
soybean with the Mueller matrix.

As an example, the polarimetric backscattering of the soybean at the growth
stage of 8-07-86 is studied in this section. At incident angle of 40° where the scat-

tering from the soybean canopy is dominant, the covariance matrix is

1 0 (0.70 £-1.2°)\ /7
C=016| - 0 e = 0.050 0 (27)
(0.70 £41.2°)\ /4 0 ~ = 0.63

From (27), the magnitude of p is 0.70 and the phase is —1.2°. The magnitude of
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p is obviously lower than unity; this is an indication of the nonspherical shape of
the scatterers. If the scatterers have spherical shape, the magnitude of p will be
close to 1 [Chapter 2]. The small phase of p, in this case, indicates that the effective
permittivity of the soybean has the isotropic characteristics which allows the 2 and
the v waves to propagate with the same speed and attenuation rate and thus does
not result in the separation of scattering centers of the wave types. Therefore, the
distinction between the two wave types is mainly due to the boundary effect giving
rise to the small phase of p.

The elements of the covariance matrix (27) are used to calculate the Mueller
matrix which is used in (11, Chapter 1) to obtain the signature of the soybean.
The copolarized signature is shown in Figure 3.4.15 which exhibits local maxima
at h and v polarizations and the symmetry about the v polarization manifesting
the azimuthal symmetry of the soybean. The signature also shows the existence of
the pedestal, contributed by the cross term e and the imbalance between (y + 1)
and 2,/7Rep [Chapter 2], which is physically due to the nonspherical shape of the
scatterers. Another feaiure of the copolarized signature is the signature distortion
track (SDT) defined as the curve of 8 whose value corresponds to the local maximum
return for a given a. The SDT is a description of how the signature is distorted.
The corresponding signature distortion track (SDT) of the signature in Figure 3.4.15
is plotted in Figure 3.4.16 revealing very weak distortion due to the small phase of
p as a result of the random medium isotropy. As illustrated, the fully polarimetric
scattering coefficient convey information about physical and structural properties of
the random medium. For all other growth stages, the corresponding copolarized

signatures will be simulated in the next section.
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Figure 3.4.16 Signature distortion track of soybean at 40° incidence (8-07)
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3.5 Assessment for Inversion

In the last section, the theoretical results are shown to compare well with backscat-
tering data for soybean from early to late growth stage. In this section, a set of
input data will be prepared based on the trend of the physical parameters observed
in the measurements. Then, the data will be input into the random medium model
to simulate the backscattering coeflicients for soybean under various radar configu-
rations and soybean conditions. As an approach towards inversion problem for soil
moisture and/or vegetation fractional volume (biomass), the simulation will be used
to investigate the optimum radar configuration and determine the soybean condition
under which the interested physical parameters are invertible. First, the trends ob-
served during the growth of soybean are taken into account to prepare a set of input
parameters for use in the simulation. Then a radar configuration is investigated for
application in the inversion application. Next, the simulation results of backscatter-
ing coefficients are calculated from the model with the biophysical input parameters
to look for suitable vegetation condition. Furthermore, polarization signature sim-
ulation over different growth stages of the soybean is studied to acquire structural

information of the vegetation.

a. Observations on Biophysical Parameters

For vegetation canopy such as soybean, biophysical parameters are interrelated;
therefore, their trends in the growth of the vegetation must be imposed on the sim-
ulation to obtain physically meaningful results. With that purpose, the soybean
parameters are studied in this section.

The temporal ground truth of the soybean in Table 3.4.1 shows that the vege-
tation fractional volume f, increases to a maximum value and then decreases. This
trend is illustrated in Figure 3.5.1 with the measured data represented by the dot

circles and the continuous fitting curves which will be used later for the simulation of
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backscattering coeficients. Since the fractional volume of the soybean is temporally
double-valued, it is useful to classify the growth stage into: young stage before the
soybean attains the maximum fractional volume, fully grown when the volume is
maximum, and old stage afterwards.

By using the relation f, = m,/(10f,) (for m, in kg/m® and f, in %), the
volumetric water content in soybean is found to decreases linearly as the soybean
grows. This moisture reduction is clearly seen in Figure 3.5.2 where the dot circles
are from measured data and the negatively inclined line is the linear fitting. From the
fits of f, and m,, temporal curve for volumetric water content m, of the soybean
canopy is obtained and compared with measured data as shown in Figure 3.5.3.

As mentioned in the previous section, the correlation length £, and the veg-
etation fractional volume f, are highly correlated with the negative correlation co-
efficient of —0.966 indicating their inverse relation graphed in Figure 3.5.4 with
dot-circle measured data and the fitting line. Then, this line together with f, from
young to old stage are used to deduce the temporal £, curve to compare with the data
in Figure 3.5.5. The correlation length £,, corresponding to the effective thickness
of the leaves, tends to increase with time as observed in Figure 3.5.6.

From Figure 3.5.7, the soybean height grows linearly until an old stage then
decreases. For the soil roughness, the general trend reveals a temporal smoothening
effect as seen from Figure 3.5.8. The soil moisture, however, is rather random (see
Figure 3.5.9) and does not show any correlation with other biophysical parameters.
Thus, the soil moisture can be treated as an independent variable.

In summary, each biophysical parameter of the soybean follows a trend as
the vegetation grows. The trends and interrelation of the parameters are fitted with
curves which will be used later for simulation to account for the temporal and in-
terrelated variations of the soybean canopy. Due to the random behavior, the soil

moisture can be used as an independent parameter.
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o
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Days from July—17-1986

Figure 3.5.1 Temporal variation of soybean fractional volume (f,) : dot circles
are for data and the continuous curve is the fitting
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Figure 3.5.2 Temporal moisture reduction in soybean (f,) : dot circles are for
data and the continuous curve is the fitting
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Volumetric Water Content (kg/m?>)

Days from July—17-1986

Figure 3.5.3 Temporal variation of soybean canopy water content (m,) : dot
circles are for data and the continuous curve is the fitting
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Figure 3.5.4 Relation of correlation length {, and vegetation fractional volume
f, : dot circles are for data and the continuous curve is the fitting
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Figure 3.5.5 Temporal variation of correlation length £, : dot circles are for data
and the continuous curve is the fitting
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Figure 3.5.8 Temporal variation of correlation length £, : dot circles are for data
and the continuous curve is the fitting
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Figure 3.5.7 Temporal variation of canopy height d : dot circles are for data and
the continuous curve is the fitting
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Figure 3.5.8 Temporal smoothening effect on soil surface : dot circles are for
data and the continuous curve is the fitting
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Figure 3.5.9 Random behavior of soil moisture (m,): dot circles are measurements

b. Radar Configuration for Inversion

In this section, the conventional backscattering coefficients are simulated for the
range of incident angles from 0 to 50° to determine which polarizations and incident
angles can be use for inversion of soil moisture. The simulation is carried out by using
the input parameters of the first date 7-17-86 (early stage) and the last date (late
stage) from Tables 3.4.1 and 3.4.2 and volumetric soil moisture is varied from 2% to
30%. Those dates are chosen because the soybean is not so dense that the underlying
soil can be seen by the wave. The cross polarized returns o), are low and require
accurate measurement and calibration; thus, the copolarized returns, which are more
sensitive to the soil moisture, are more suitable for the inversion. The simulation of
owm and o,, are plotted in Figure 3.5.10 for the early stage and Figure 3.5.11 for
the late stage. The results show that as soil moisture increases the backscattering

coefficients increase. At incident angles larger than 15°, oxs has higher sensitivity to
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the soil moisture than o,, does. This is because the soil boundary has stronger effect
on o, that o,,. At incident angles smaller than 15°, o, and o,, have similar
behavior due to more similar boundary effect on both types of returns. Furthermore,
the returns are more sensitive to the soil moisture than at the larger incident angle
due to the shorter effective wave path in the lossy soybean canopy. Thus, both o,
and o,, at small incident angles are more useful for the inversion. However, near
normal incident angles are not necessarily better. The sensitivity study on the ‘soil
roughness condition in the previous section indicates that incident angles between
10° and 15° are less susceptible to the soil roughness condition. With consideration
of the inversion, the incident angle of 10° is chosen for either o4, or o,, for further

simulation under different vegetation conditions in the next subsection.

SOYBEAN : Eorly Stage SOYBEAN : Early Stage
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Figure 3.5.10 Simulation for early stage soybean : volumetric soil moisture is
m,=2,5,10,15,20,25,30% respectively corresponding to curves from bottom to top
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Figure 3.5.11 Simulation for late stage soybean : volumetric soil moisture is
m, =2,5,10,15,20,25,30% respectively corresponding to curves from bottom to top

c. Vegetation Condition for Inversion

In this section, the input parameters obtained with the curves from subsection 3.5a
and the radar configuration chosen in subsection 3.5b are used to simulate backscat-
tering coefficients of various soybean condition under the constrains of temporal and
interrelated biophysical variations. This simulation is to determine which growth
stage of the soybean is sensitive to the soil moisture and thus can be used to obtain
simulated data for acquiring empirical formulas in the application to the inversion
problem. The simulation is done according to the growth stages of the soybean:
from the early stage, throughout the young stage, up to the fully grown soybean, and
throughout the old stage to the late stage. The backscattering coefficients o, and
0., are simulated as functions of vegetation fractional volume f, and volumetric soil
moisture content m, and presented in two different formats in Figure 3.5.12 for the

younger soybean and Figure 3.5.13 for the older soybean. The results suggest that
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the early young stage and the late old stage when the vegetation fractional volume
is than 0.3% are sensitive to the soil moisture and the simulated data can be used
to obtain the empirical formulas. At the suggested low fractional volume and low
incident angles, the scattering coefficients, however, depend on both the fractional
volume and soil moisture. The simulations in Figures 3.5.16-3.5.19 show that, at 40°
incidence, o,, depends ouly on fractional volume and therefore favorable for inver-
sion of the fractional volume. Then the results can be used with data at low incident

angles to retrieve soil moisture.
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Figure 3.5.12 Simulation of o0,, for young soybean at 10° incident angle
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Figure 3.5.15 Simulation of ¢,, for old soybean at 10° incident angle
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Figure 3.5.17 Simulation of ¢,, for young soybean at 40° incident angle
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Figure 3.5.18 Simulation of o), for old soybean at 40° incident angle



126 3. Model with Random Spheroidal Scatterers

A

2%

Backscattering Coefficient (dB)

+ 5%
« 10X
—-15F o 15% -
x  20%
| o 25%
a 30X
® 35%
" M 1 " 1 1 " 1 A g
0 0.5 1

Fractiona! Volume (%)

Figure 3.5.19 Simulation of o,, for old soybean at 40° incident angle

d. Polarization Signatures of Scybean

To study the polarimetric scattering properties, the physical parameters of the soy-
bean are used as input to the model to calculate the polarization signatures (40°
incident angle) of the soybean at 10 different growth stages shown in Figure 3.5.20
from mid-July to the end of September 1986. The first observation is that all the sig-
natures have a pedestal; this is due to the non-spherical shape of the soybean leaves.
Another observation is that the signatures have almost no distortion; this indicates
the azimuthal symmetry of soybean canopy. The signatures also show lower saddle
when the soybean fractional volume is lower especially on the first and last dates;
this is an indication of whether the wave can reach the soil surface. Thus from the
polarization signatures of the soybean, structural information on the soybean canopy

can be obtained.
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Figure 3.5.20 Copolarized signatures of soybean at 10 different growth stages in
chronological order from a to j: In each plot, the long horizontal axis is for orien-
tation angle a [0,180°], the short horizontal axis for ellipticity angle g [-45°,45°],
and the vertical axis for normalized signature (also see Fig. 4.3 in Chapter 3)



128 3. Model with Random Spheroidal Scatterers

3.6 Summary

In this chapter, the fully polarimetric backscattering coefficients have been obtained

with the layer random medium model. The extended strong fluctuation theory is
ased to calculated the effective permittivities of the scattering layers and the dis-
torted Born approximation is applied to derive the scattered fields. The dyadic
Green’s functions are used in the calculations and the backscattering processes are
explained. The model is applied to explain the backscattering from a soybean canopy.
The leaves are considered to have disc-l1’ke shape with random orientation. The in-
formation conveyed in the elements of the covariance matrix is discussed especially
for the correlation coefficient p. The copolarized signatures for the layer random
media are obtained with the Mueller matrix and explained in the context of polari-
metric scattering coefficients. The complete set of polarimetric coefficients convey
additional information on the remotely sensed vegetation as compared to the con-
ventional scattering coefficients and thus provide a better means for identification
and classification.

Further comparisons with polarimetric scattering data together with ground
truth will provide more affirmative validation of the existing models. For vegetation
with more complicate physical and structural properties, further model development
is necessary to incorporate the complexity. Experimental data are therefore necessi-
tated to validate the new theoretical developments. For fully polarimetry, measured
polarimetric scattering coefficients with accurate calibration need be obtained to
compare with theoretical results. Sensitivity study using validated model will pro-
vide directions for application to inversion of vegetation parameters.

In the last section, the random medium model is used to simulate backscat-
tering coeflicients for application to inversion. The temporal and interrelation of
biophysical parameters are studied and taken into consideration in the simulation.

The results indicate that o, and o,, at incident angles between 10° and 15° under
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early young stage or late old stage of the soybean with vegetation fractional volume
less than 10% can be used for inversion of soil moisture. The simulated copolarized

signatures at various growth stages of the soybean also reveal structural information

of the canopy.



130



Chapter 4

Model with Random
Ellipsoidal Scatterers

4.1 Introduction

In this chapter, the layer configuration with scattering regions containing ellipsoidal
scatterers is considered. The scatterers are modeled with an ellipsoidal correlation
function with the orientation described by a probability density function of the Eu-
lerian rotation angles. The orientation of the scatterers is vertically aligned and
azimuthally random. The strong permittivity fluctuation theory is extended to cal-
culate the effective permittivity and the distorted Born approximation is applied to
obtain the polarimetric scattering coefficients. The model is then applied to remote
sensing of sea ice.

The chapter is organized into six sections. In the next section, the effective
permittivity of the inhomogeneous medium is derived with the extended strong fluc-
tuation theory. Section 4.3 presents the calculation of the polarimetric scattering
coefficients, under the distorted Born approximation, from the scattering regions in
the layer configuration. Section 4.4 shows the comparison between the theoretical
results and experimental measurements in the microwave frequency range for first-
year sea ice. Section 4.5 simulates polarization signatures and discusses polarimetric

scattering properties of sea ice. The chapter is finally summarized in section 4.6.

- 131 -
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4.2 Effective Permittivity

In an inhomogeneous medium such as sea ice, sea water is trapped in an ice medium
in form of brine inclusions which are usually ellipsoidal. The ice tends to grow verti-
cally downward rendering the ellipsoidal inclusions aligned preferably in the vertical
direction. In the absence of sea current, the minor axes of the ellipsoids are hori-
zontal random as seen in Figure 4.2.1. A correlation function corresponding locally
to a scatterer is used in the derivation of the effective permittivity with the strong
permittivity fluctuation theory extended to account for the horizontally random ori-
entation of the scatterers. When the average process is performed over orientation
angle ¢, shown in Figure 4.2.2, the effective permittivity is a uniaxial tensor with

vertical optic axis describing the azimuthal symmetry of the inhomogeneous medium.

Figure 4.2.1 Drawing of a horizontal section of sea ice : the double-headed arrows
denote the azimuthal orientations of the ellipsoidal brine inclusions
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Figure 4.2.2 Geometry of an ellipsoidal scatterer

Let ¢, be the permittivity of the host medium and ¢, be the permittivity
of the embedded ellipsoidal scatterers occupying a total fractional volume of f,.
Similar to the method in Chapter 3, auxiliary permittivity €, is introduced into the
wave equation for latter consideration of the singularity in dyadic Green’s function
G,(7,7). The singularity is accounted for by decomposing ﬁ,(?,?‘) = ﬁ,(ﬁ-‘—?‘) into
a principal value part and a Dirac delta part with dyadic coefficient K which, in this
case, is a diagonal tensor with three distinctive diagonal elements S,., S, and S..
in the local coordinates (z',y’,2') which is related to the global coordinates (z,y, z)

by the Eulerian rotation tensor
cos¢p, sing; O
T= —sing; cos¢; 0 (1)
0 0 1

The effective permittivity of the inhomogeneous medium is composed of a
quasi-static part and a scattering-effect part which accounts for the modification in

the wave speed and attenuation

€y =6+ GOF = ?.” . <§>]-l ’ ?.” (2)
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where auxiliary permittivity €, and dyadic coefficient S are determined by the
condition of secular-term elimination, and the effective dyadic scatterer ?,” under

the low-frequency approximation is given by

[l = [ 820 S Thn {12 [0 [ 2®) + B} @
k,l s s

in which I‘gl,,,, is the variance, E, is the isotropic Green’s function (32, Chapter
2) which is invariant under the azimuthal Eulerian rotation (2), ® is the Fourier
transform of the normalized local correlation function, and p(¢;) is the probability
density function of orientation angle ¢;. As obtained, the effective permittivity is
approximated by truncating the series in the renormalization method. The validity
condition for the approximation is I[E-‘” (F)] I’_m < 1.

The ellipsoidal scatterer is described with a normalized local correlation func-

tion of the form

Re(F) = exp (-—J %’ + %3 + ;,') (4a)
with correlation length £,., £, and £, in the local coordinates corresponding to
the minor, the meridian, and the major axes of the scatterer. In this model, the
correlation lengths are related to the effective size and shape of the scatterers. This
local correlation function is more general and reducible to spheroidal or spherical

shape. Derived from (4), the Fourier transform &, is

ezl yle‘l
71-2(1 + kl![i + kﬂ + kIZez )2

z “z!

2,(F) = (4b)

For the horizontally random orientation with no preference in azimuthal direction,

the probability density function of orientation is simply

p(d;) = 1/(2m) (5)

To calculate the effective permittivity according to (2), §, and <§> need be

determined. Due to the global azimuthal symmetry, auxiliary permittivity €, in the
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coordinate (z,y,z) has the uniaxial form

g 0 0
=0 ¢, 0 (6)
0 0 e

whose elements are subjected to the condition (?) =0

& 0 0
@ = [dgy po)T ([0 & 0|)-T
0 0 &
ftb 00
| o &+& o )=0 )
0 0 2§,

In (7), local quantities £, £, and £, are related to the elements of S by

o= ori S
(9 = o — (8b)
€x(e) = €+ S"(ey: €5:) (8¢)

where € can takes on the value of ¢, in a scatterer or ¢, in the background medium.
By combining (7) and (8), ¢, and ¢,, can be written as

€ — €gp 2¢€9 + (Sz' + S!')(e‘ —_ e!P)
1—f, 2e+ (S + Sv’)(eb — €gp)

€ + Sa(€s — €5,) €0+ Sy(€s — €5p)
€ + Sur(e, —€5,) €+ Sy(e, —€gp)

€, — €4 € + S,r(éb - e,,)
1—-f, €+ S.(e, —€g)

The average dyadic coefficient <§> in the global coordinates is obtained by the

69P=€5+ft

(9a)

€gs = eb+.fn

(9b)

averaging integration over the probabili:y density function of orientation

S, 0 0
(By=[ a1 54T |0 5 0|.T
0 0 9.
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Ser + Sy 0 0 S, 0 0
= % 0 S=: + Syl 1] = 0 Sp 0 (10)
0 0 2S, 0 0 S,
where S.., S,/, and S,, are derived from the secular elimination condition [17] which
renders
6071 cos ¢ -1 _
S, = ¢ ol [(1+a)tan™ va - V3] (11a)
eo'y sin’ ¢ R
Sy = / 4 e [(1 +a)tan" va - va] (11b)

So=[["a6 2otk [Va- tan v (11¢)

where the integrations over ¢ can be carried out numerically and a, <., and «, are

defined as

e=ay’-1, a=-% (12a)
€50
1 [cos?¢ sin’¢ -4
v = . ( o, + z ) (12b)
1 [cos’¢ sin’¢ -4
VY= = e—s' ( Z:, + e:' ) (120)

1 (cos’cﬁ sin’ ¢)-& (124)

EL\ 6 o,

’l

Also due to the azimuthal symmetry, the effective scatterer tensor £, has

the uniaxial form

§trp O 0
?.ﬂ = 0 felfo 0 (13)
0 0 &

which is obtained by substituting the Green’s function, the correlation function, and
the probability density function of orientation into (3). The integration method has
been discussed in Chapter 2 and 3. Followed is how to calculate ?,” :

ute = 3 [Bew (L + 5) + 8 (B + 5,.)] (14a)
&cf}z = 65:' (Ix' + Ss') (14b)
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The variance §;’s in (14) are determined by

_ 1 i - 1
€@—€ €,—€

5 ! = Ld 1— P + £ [}

¢ _€o+S,l(€b—€gp)4 ( f ) _€o+sz'(€o "'e!P). f ?
[ g—¢ 1 [ e, —e€ 1

Seor = b~ Cgp 1— ARE s — Cgp A
i | €0+ Sy —€gp) (1=£) | €0+ Syr(€, —€5p) | fu

8 6;,—6,, W 21 [ e.—e’l 1’
e _5(‘)"‘A9‘:I(€b'—€gs)d ( —f‘)+ _50+le(€.—€,1)_ f.
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(15a)

(15b)

(15¢)

To complete the derivation of the anisotropic effective permittivity, expressions for

I, I,, and I,, are found. The result for I, is

I"=./ re,(I‘-‘- )

* V.

'I;_ "‘72“{;’7 \/1’7 g;-_((__t \/-—-?)]

d__ Y [1+a' gz’ 1’°(a’+2)—(b+avgs' E_ -1 1
By e, YT e 2~
gz' = k:pﬁ' ? k:p = w’/.l,oe” ? C - a7 gt'
b=gj—-+—c-, d,=b—-1, J.=b+(

a

For I.., the result is expressed as follows
L.= d¢ ( 2} sin’ I3 + £.4% cos’d I})
I -a[(.'[‘ -I)+ (I +Ia——)]

L=L-T-I

7= LT[+ T (5 )

(16a)

(16b)

(16¢)
(16d)

(16e)

(17a)
(17b)
(17¢)
(17d)

(17e)

(17£)

(17g)



138 4. Model with Random Ellipscidal Scatterers

From the symmetry, I,.(f.,8y,0.) = L/(£y, £y, €,.). Explicitly, the result for I, is
2r k3 o . .
Iy = ["dp 2 (Biytcos’$ I3 + Ly} sin®s I3) (18)

Substituting &, <§>, and ?,” in (2) yields the uniaxial effective permittivity

tenscr €, whose lateral and vertical elements are, respectively

€etto = €gp + €olepso/ (1 — Spatsp) (192)

Eefps = €gs + €olegys /(1 — Seesss) (19b)

As seen from the above expressions, effective permittivity €, is anisotropic
with optic axis in the vertical direction. In the next section, the anisotropic effective
permittivity is used in the derivation of the polarimetric backscattering coeficients

under the distorted Born approximation with Green’s function (DGF) of the layer

configuration.

4.3 Scattering Coefficients

The layer configuration in Chapter 2 is used here except that the scatterers in the
random media are more general in terms of shapes and orientations. The scatterers
in region 1 are allowed to be randomly oriented spheroids as described in Chapter
3. In region 2, the scatterers are ellipsoids vertically aligned and randomly oriented
in azimuthal directions. Definition (13, Chapter 1) is used to calculate polarimetric
backscattering coefficients with ensemble averages of scattered fields. The averages
are calculated with spatial integrations over products of the DGF's, the mean fields,

and the correlation functions as follows

(Bou(7) - Eo (7)) = :‘i:,.. ks /; d, /o"qu; ACTA)) /v dr, fv 47 Covjum(F2: 351, 61)
) [(Gm‘f(i’ F1)><Flk(?l)>} : [(Gow(F, ﬁ))(an(ﬁ»]*
+ "j’;z’;’m k; ‘/0‘2"d¢l p2(¢j) /;,sz‘/V,dF; szjklm(Fz,F;; ¢I)

. [(Gozij(Tan»(Fu(?z))] . [(Go:a(F,Fg»(Fzm(f_';))]* (20)
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The DGFs and the mean fields have been obtained in Chapter 2; the correlation
functions need to be determined next. The integrations are then effectuated to derive
the scattering coefficients.

The correlation functions C'’s in (20) are defined by (12, Chapter 2) for region

1. In region 2, the correlation functions in the global spatial domain are

Ceajuim(F2s 75 b1) = (€23a(T2)E3im (72)| 65 (7)) (21)

To facilitate the integration of (20), Fourier transforms of the correlation functions

are introduced for the statistically homogeneous scattering media under consideration
Ceajnim(T3, 73, @) = / dB®;juim(B)e 7 (22)
)

which is expressed in the global coordinate system (%,7,2) and related by the Eule-
rian rotation transformation T (1) to the following non-zero correlations in the local

coordinate system (%', 2')

B0 (B) = Brorewrar(B) = 6200 Bea(B) (232)
Bsary(B) = Brureryy(B) = b2y B2(B) (23b)
B0 (B) = Bserarsrnr(B) = 6200 8ca(B) (23¢)
Baye(B) = Bayyew(B) = b2y Bea(B) (234)
Bayy(B) = Bayyryry(B) = b2y ®ea(B) (23e)
Byy2(B) = Bryyrsrsr(B') = b2y Bea(B) (23f)
B2 (B) = Bryaraar(F) = 62000 ea(B) (23g)
Bosy(B) = Bassyy(B) = 6309 22(B) (23h)
00 (B) = Brvrws(B) = 2008 (B) (231)

where &,,(8) given in (4b) is the Fourier transform of (42) and the variance §;’s in

(23) are

(l-fd)"'

€p2— eg!p
€o+ SZ:'(ebz - ngp)

82:'3' =

2
€2 — eg:p
) 24a
eO+SZz'(eaz_eg2p) f ? ( )
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T v [V P e S

b=t 0t s (24c)
O e [ [

+ | &0+ ;z':;:: - €520) ] Leo+ .sz:(—ef: = e,,,): ”}'z = b (244)
b=tz [amsczen] -
€,3— €43, €52 —€g3, 1 *

+ | €0+ S22r(€22—€425) | | €0+ Saar(€sa—e€g2:) ] fir = b3z (24¢)
= v | e (8

| e R M

Based on the invariant property of the Fourier transform under the rotation trans-

formation, spectral density ®;;jum(B) in the global coordinates can functionally be

related to those given in (24) with

®¢:(B) = B¢z(B. = B, cos ¢ + By sin gy,
ﬁ; = —p, sing; + B, cos ?s,

B,

= ﬂ:)

(25)

In the global coordinates, the rotation transformation together with the above in-

variant property cast the anisotropic spectral densities into the form

Q?jklm(ﬁ) = 5zjum‘1’ez(_ﬂ-)

where variance zjum are dependent on the Eulerian angle ¢; as

S2inim = (62222 Tozju + O2yre Tyyin + 6250etTesin) Teim

(26)
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+ (63=‘y’Tszjh + 62y'y' yyik + szz'y'I'ujk) Tyylm .
+ (62=’:'Tzzjk + 62g‘:'Tyyjk + 623':'Tujh) Tulm (27)

The Eulerian rotation has been applied to arrived at (27) where T'’s are elements of

the following transforming tensors

cos® ¢, sing;cos¢; 0

T.. = | sin @y cos ¢y sin” @, 0 (28a)
0 0 0
[ sin’ ¢y —singscosg; 0

T,, = | —sin ¢, cos ¢, cos? ¢, 0 (28b)
i 0 0 0
[0 0 O

T.=|0 0 0|=T-T,.-T,, (28¢)
0 0 1

By substituting the above correlation functions, the dyadic Green’s functions
of the layer medium, and the mean fields into (20), the correlations of the scattered
field can now be found. Rearranging all the coeflicients from the DGF and mean

fields, the scattering coefficients can be written as

< 2% -1,1 =z,49,z
e =7k [ty [(dy pi(0rsdy) T 3 Wk T
a,b,c,d j,k,i,m
ou,od
. 2x ev,ed 2,9,2 *
rrk [doy pa(4y) 3 D VUL TE (29)
PrsT8 J kM

As mentioned previously, region 2 contains scatterers with preferred vertical align-
ment which effectively render the medium anisotropic. The ordinary and extraordi-
nary waves going down and up give rise to 216 terms in the second terms of (26) as
discussed in Chapter 2. All coefficient ¥,’s as well as I}j;i have been derived in

the previous chapters. For Z37;., the result is

i 2835ximlasrlay bag { e (kre=rri)da

qre
I;jllm WL; (np' -_ K’):(NP' - n: )2(Nn - nf‘)

ei("'o —Kpe)d1

N —Pyen) Qz(nf)] (30)

(Krs — K2)*(rrs — K3 )2 (K0s — Kpq)
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where the functional form of P;(x;) and Q,(x;) are respectively given in (25b-c,

Chapter 3) with length £; = £;,,. In this case, pole x, is

Ky =iL7N 1+ k3,0, + k3,03, (31)

The remaining integrations over Eulerian angles can be carried out numerically.
When low-frequency condition is valid, the integrations are done analytically (see
Chapter 5). It is worth noting again that (29) expresses the scattering coefficients in
the scattered basis which can be transformed to incident basis by changing the sign
of Onrox and ourax. The scattering effect of the rough boundaries at the medium
interfaces can also be estimated by incoherently adding the total contribution from
the rough surface scattering with consideration of the propagation loss to calculate
the scattering coeflicients. Compared with the model in Chapter 2 for the case of
vertically oriented spheroids, the new model gives higher co-polarized backscattering
coefficients due to higher total cross section of the ellipsoids for the same fractional
volume. Another difference is that the new model provides non-zero cross-polarized
backscattering in the first-order distorted Born term whereas the former can only
account for the cross-polarized return in the second or higher order term when the
spheroids are vertically oriented.

In this section, the strong fluctuation theory is extended to calculate the effec-
tive permittivity of an inhomogeneous medium containing ellipsoidal scatterers. The
ellipsoids are aligned in the vertical direction but randomly oriented in azimuthal di-
rections. Effectively, the inhomogeneous medium becomes uniaxial with vertical optic
axis. To calculate the polarimetric backscattering coefficients, the distorted Born ap-
proximation is invoked and the dyadic Green’s function for the layer configuration
including the anisotropic layer is used. In the next section, the theoretical results
are compared with experimental data for sea ice. The model is then applied to study
the polarimetric scattering properties and polarization signatures from different ice

types.



4.4 Results and Discussion 143

4.4 Results and Discussion

a. Data Comparisons

In this subsection, theoretical results are compared with experimental measurements
for backscattering coefficients at 9 GHz as a function of incident angle. The scattering
configuration is illustrated in Figure 4.4.1: layer 1 is air, layer 2 is sea ice, and layer 3
is sea water. The radar backscatter data were taken for the thick first-year sea ice near
Point Barrow, AK [86). The ice layer was 1.65-m thick and contained brine inclusions.
From ground-truth data, it has been inferred [87] that the brine had a permittivity of
€, = (38441)e, and occupied a fractional volume of f,; = 4.5%. The background ice
permittivity was estimated to be €, = (3.15 + 0.002)¢, and the permittivity of sea
water to be ¢; = (45 + i140)e;,. With correlation length ¢,,» = 0.70 mm, ¢,,. = 0.25
mm, and ¢,,» = 1.20 mm, the theoretical results match well with the experimental
data, as shown in Figure 4.2.2, for co-polarized backscattering coefficient o5, and
o,, at large incident angles and cross-polarized backscattering coefficient o,, over

the range of incident angles.

N

koi
Boi

€0y 4 f=9.0 GHz
z=0m

e = (3.15+i0.002) ¢

€1, = (38.0 + i41.00) €0

Cor. lengths: £34+,8yy1, 81

Fractional vol f;, = 4.5%
z=-165m

Underlying medium :
€2 = (45.0+$40.00) ¢

Figure 4.4.1 Scattering conflguration of sea ice with flat surface
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Figure 4.4.2 Backscattering from thick first-year sea ice with flat surface

The disagreement in the co-polarized backscattering coefficients at small in-
cident angle is due to the scattering from rough surface. In the configuration of
Figure 4.4.1 the upper boundary has been assumed to be flat and the rough surface
scattering has been ignored. To account for the surface effect, the top interface is
now considered to be a Gaussian rough surface described with standard deviation
o, = 0.60 mm and correlation length £, = 1.5 cm as depicted in Figure 4.4.3. The
rough surface contribution is incoherently added to the volume scattering. The com-
parison between theoretical and experimental results for the co-polarized returns is
much improved at the low incident angles as seen in Figure 4.4.4. For this surface, the
additional contribution to the cross-polarized return is small and is actually ignored

in the Kirchhoff model applied in this case. The cross-polarized return therefore

remains unchanged.
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Figure 4.4.3 Scattering configuration of sea ice with rough surface
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Figure 4.4.4 Backscattering from thick first-year sea ice with rough surface
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The results have shown that the scattering from the brine inclusions is dom-
inant at large incident angles while the contribution from the rough surface is im-
portant at small incident angles for co-polarized returns. The cross-polarized return
due to the inclusions comes from the first-order term under the distorted Born ap-
proximation in this model. The spheroidal model in Chapter 2 would result in a zero
value of cross-polarized backscattering coefficient o,, under the first-order approxi-
mation in this case because the scatterers are vertically aligned. The previous model,
however, can give rise to significant value of ,, when the alignment direction of the
scatterers is tilted off the vertical direction. As a difference between the two models,
the vertical ellipsoid model predicts a decreasing trend in o,, as the incident an-
gles increases as seen in Figures 4.4.2 and 4.4.4 whereas the tilted spheroidal model
indicates a maximum o,, at certain incident angle depending on the tilt and the
azimuthal incident angles. The fully polarimetric measurements were not made in
the experiment. To study the polarimetric scattering properties of sea ice, the model
will be used to simulate polarimetric data and signatures as discussed in the next

subsection.

b. Polarimetric Simulation

Due to the azimuthal symmetry and non-zero o,, in this model, the covariance
matrix - .aave the form of (92, Chapter 2). To investigate how the covariance ma-
trix and the corresponding polarization signature relates to and corveys information
regarding different ice types, polarimetric data are simulated for three different cases
of sea ice described in Figures 4.4.5-4.4.7. In Figure 4.4.5, the parameters are chosen
to simulate first-year sea ice. Figure 4.4.6 shows the sea ice covered under a layer
of dry snow. In Figure 4.4.7, the top part of the ice contains air bubbles, as seen in
mulii-year sea ice, and the lower part contains brine inclusion with lower fractional

volume.
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90; f=5 GHz
€o
z=0m

& = (3.15 + $0.0015)e,
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—14m

€y = (60.0 + i34.0)€0

Figure 4.4.5 Scattering configuration of Case 1

€o
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—01m
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Figure 4.4.6 Scattering configuration of Case 2
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00,‘ f =5 GHZ

€o
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€, = (3.15 4 10.0015)e¢,
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- 35 m
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Figure 4.4.7 Scattering configuration of Case 3

The conventional backscattering coefficients for the three cases are compared
in Figure 4.4.8. Case 2 gives higher returns than Case 1 since the snow layer in-
troduces more low-loss scatterers and affects the transmission and reflection at the
boundaries whose effect is responsible for the oscillations in the curves. Case 3 yields
much higher returns as compared to the other two cases due to the low loss and
the scattering effect of the air bubbles. Other than the differences in the absolute
intensity levels, the behavior of the conventional backscattering coefficients generally
follow the decreasing trend with increasing incident angles. Figure 4.4.9 presents the
results for the magnitude and phases of the correlation coefficient p between the
vertical and horizontal returns. In the magnitude of p, Case 2 follows rather closely
the same characteristics as in Case 1 since the loss of the dry snow cover is still low
enough for the wave to “see” the lower ice layer which is the same as in Case 1. Case
3 has |p| close to 1 due to the dominant isotropic property of the top part of the ice.
The phase of p reveals a clear distinction between the ice in Case 3 and the ice in
Cases 1 and 2 with and without the snow cover. In such manner, the polarimetric

element p conveys further information related to the structure of the sea ice.
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Figure 4.4.9 Correlation coeficient between vertical and horizontal returns
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The co-polarization signatures of the ice are synthesized in Figure 4.4.10,
4.4.11, and 4.4.12 for Cases 1, 2, and 3, respectively. The signatures are shaped
by the characteristics of the sea ice. All signatures are symmetrical around the
mid-point of the polarization surface (corresponding to vv polarization); this is a
manifestation of the azimuthal symmetry. Case 1 and 2 have pedestal higher than
Case 3 due to the stronger depolarization effect of the ellipsoidal brine inclusions in
the ice for the former cases. The signatures of Case 1 and 2 are also more distorted
than Case 3. This is because the h and v waves, corresponding to the ordinary and
extraordinary waves, in the anisotropic ice propagate at different speed and suffer
different attenuation resulting in the separation of the scattering centers of the wave
types which causes a large phase in p. As discussed in Chapter 2, it is the phase of
p that gives rise to the distortion in the polarization signatures. The polarization

signatures thereby reveal the characteristics of the remotely sensed media.

Figure 4.4.10 Co-polarized signature of the ice in Case 1
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Figure 4.4.12 Co-polarized signature of the ice in Case 3
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3.6 Summary

In this chapter, the model with ellipsoidal scatterers have been considered. The
ellipsoids are aligned vertically and oriented randomly in azimuthal directions. The
derivations of the effective permittivity with the extended strong fluctuation theory
and the polarimetric scattering coefficients under the distorted Born approximation
are presented. In this model, the cross-polarized return is obtained from the first-
order distorted Born approximation. The theoretical results compare well with the
measured data for thick first-year sea ice and the scattering mechanisms are explained.
From the polarimetric simulation, it is shown that covariance matrices as well as
polarization signatures convey further information regarding the characteristics and
structure of the media as compared to the conventional backscattering coefficients.
The model, however, only accounts for one type of scatterers in a host medium with

two-phase mixing. Multi species model will be presented in the next chapter.



Chapter 5

Model with Multiple
Species of Scatterers

5.1 Introduction

Geophysical media usually contain inhomogeneities of more than one types with
different sizes, shapes, and permittivities. This chapter presents the layer configura-
tion with scattering regions containing many species of scatterers. Each species can
have size and shape distinctive from the others. Furthermore, the inhomogeneous
media are multi-phase mixing since permittivities of the species can be different.
The scatterers are modeled with correlation functions having spherical, spheroidal,
or ellipsoidal form and random orientations. The model is then used to derive the
effective permittivity and the bolarimetric scattering coefficients.

The chapter is organized into six sections. Section 5.2 studies the scatterer
correlztion to determine the modeling correlation functions. Section 5.3 presents the
derivation of the effective permittivity with the extended strong fluctuation theory
for the multi-species medium. Section 5.4 shows the calculation of the polarimetric
scattering coefficients under the distorted Born approximation. Section 5.5 discusses
effects of scatterer shapes and multiple species on effective permittivities, backscat-
tering coefficients, and polarimetric correlation coefficients. The chapter is finally

summarized in section 5.6.

- 153 —
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5.2 Scatterer Correlation

In the previous chapters, the inhomogeneous medium is composed of a host medium
and one type of scatterers. In more general cases, multiple species need be included
in the model to account for different types of scatterers. To describe the species
in the theoretical model, an examination of the scatterer correlation is necessary to
determine the correlation functions.

Consider an inhomogeneous medium composed of two different types of scat-
terers (species 1 and 2) in a background medium (species 3). The permittivity of

species ¢ is ¢ and the corresponding fractional volume is f;. It is obvious that

h+fit+tfa=1 1)
An arrow of arbitrary length 7, is used to measure the probability p;; of finding the
arrow head in species j while the tail is fixed in species : [87,88]. Since the arrow

head has to be in one species or the others, probability p;; must satisfy the following

equations
Putpaztps=1 (2a)
P+ Patpis=1 (2b)
) Par tPaz+pas=1 (2¢)

It is also observed that fixing the tail in species ¢ to find the head in species j is
equivalent to fixing the tail in species j to find the head in species i. This leads to

the following conditions of equivalence

fip1a = fapn (3a)
fapas = fspsa (3b)
feps1 = fipis (3¢)

In (2) and (3), there are 3 unknown and 6 equations. The following tliree quantities

are therefore chosen to complete the system of equations for determining p;;

P12 = f2T1a(%o) (4a)
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Pas = f3T2s(To) (4b)
Pa1 = fiTs1(7o) (4¢)
where T,;(To) is called the dissimilar function defined by the ratio of p;; (i # j) to

the fractional volume f; for a given vector 7o. Letting Y;;(7o) = T;i(To) and making

use of (3) render

pn = [iT2 (%) (5a)
P32 = f2T33(Fo) (5b)
P1s = f3113(To) (5¢)

The probability p;; discussed above is now used in the formalism of the strong
fluctuation theory to investigate the correlation of the scatterers. With the auxiliary
permittivity tensor denoted by §,, local fluctuating tensor ?,. of species 1 is then

defined with dyadic coefficient —?‘- corresponding to exclusion volume of species ¢

= _1-t
Z=?(7€Spe¢ies i) = e‘;ef [f_*_?i. &I—e,]

(6)

whose correlation can be expressed in the binomial form as [89]

(fjk(o)flm(F0)> = fi (Puijréum + Pr2é1jalaim + Pra€ijsésim)
+ f2 (Pn€ajabum + Pa2€ajrnbaim + Paséajxbaim)

+ f3 (Pa1€sjnéum + Paaésjulaim + Paslajrbaim) (7

In matrix form, the scatterer correlation (7) can be written as

fipn fikz fipis 3
(fju(ﬂ)&m(ﬂ)) =[bn &ain Coinl: | faPn faPna  faPas | - | am
| fsPar  fsPs2a  faDss Eaim
LR hfr hf] [bum
—[&in &in Gl | i foifs Fifs|: | éum (8a)
fofy f3fs fefs]l Léam
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Ru(To) Ria(Fo) Ris(Fo)] [éum

=[&e &air &aja]- [ Ra(Fo) Ras(Fo) Ras(Po) |- |€um | (8D)
Rs1(To) Rsa(To) Ras(To)] | éaim

where the second term in (82) does not affect the result due to the condition of secular

elimination [17] which requires
Fibuje + fabaju + fabajn = 0 (9)
Equation (8b) is a result of the following definition of R;;(7)
Rii(To) = fimi; — fif; (10)
which, from (1) and the properties of p;;, is subjected to the conditions

Rij(To) = R;i(To) and Za:Rij(FO) =0 (11)

J=1

Explicitly, R;;(Fo) is expressed in terms of the fractional volumes and T;i(To) as

Ru(To) = fifa (1 — T1a(F0)) + fifa (1 — T15(Fo)) (12a)
Ry(To) = fafi (1 = Tar(Fo)) + fafa (1 — T2s(Fo)) (12b)
Ras(To) = fafi (1 — Tas(Fo)) + fafa (1 — Taa(7o)) (12¢)
Ry3(To) = —f1f (1 — T1a(70)) (12d)
R1a(Fo) = —fifs (1 — T1s(o)) (12¢)
Ri5(Fo) = —fafa (1 — Tas(T0)) (12f)

The components of the scatterer corelation can now be related to the R;;(7,) by

(€m(0)6im (T0)) = Exjabuim Bur(Fo) + Exjabarm Raa(Fo) + Exjabisim Res(Fo)
+ ';' (&r52éatm + Eajaiim) (Raa(Fo) — R33(Fo) — Rya(To))
+ % (Laaéaim + Eainéaim) (R1s (7o) — R33(7o) — Rys(70))

+ % (§17x€am + €ajnbum) (Ras(To) — Rus(7o) — Ras(Fo))  (13)
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When the fractional volumes of the inhomogeneities are low (i.e. fi,f; < fs), the
correlation between two different types of inhomogeneities is ignored and (12a-c) can

be approximated as

Ri(To) = fifs (1 — T13(70)) (14a)
Ra(To) = fafs (1 — T1s(7o)) (14b)
Rag(?o) ~ Ru(T‘o) + R:g(?o) (140)

Defining Ri(7o) = (1 — T;s(7)) and substituting (14) and (13) yields

(&i1(0)eim(o)) = fufs (usn — &ain) (buim — Esim) Rae(To)
+ fafs (Eajn — E32) (Eaim — Eaim) Rae(To) (15)

For a medium containing N types of scatterers with permittivity ¢, and
fractional volume f;, in a background medium with ¢, and f,, scatterer correlation

(15) is generalized into

(fjk(o)&m(ﬂ» = i Fiofo (&iin — &vin) (bum — Euim) Rig(Fo) (16)

=1
where {yun is defined with (6) for ¢; = ¢ and S; = S,. Note that (16) is reduced
to the formulas of two-phase mixing in [17,58]. In the low fractional approximation,
(16) indicates how the correlation functions for different species of the scatterers are
related to form the overall correlation <£,-,,(0)£;,,.(Fo)). This form will be used in the
next section to derive the effective permittivity of the inhomogeneous medium with

multiple species.

5.3 Effective Permittivity

The effective permittivity of the random medium is composed of a quasi-static part
and a scattering-effect part corresponding to the first and second term, respectively,

in the following expression

€y =&+ ‘Oﬁ - ?.ﬂ : <§>]-l ' ?.” (17)
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where auxiliary permittivity €, and dyadic coefficient S are determined by the
condition of secular-term elimination, and the effective dyadic scatterer ?,” under

the low-frequency approximation is given by

Eusl,. = 2": > [ [ [ st pm)
S e (1 [ B8], 2B + 5], }

in which subscript ¢ stands for species i, p(a,,7) is the probability density function

(18)

@B,

of orientation, ﬁg is the isotropic Green’s function (16, Chapter 2), ®,, is the
Fourier transform of the normalized local correlation function, and I‘f?},‘,m is the

local variance of species i defined as

P.('gum(;") = fifo (i — Evjie) (Gitm — Ebim) : (19)

As obtained, the effective permittivity is an approximation and the validity condition

Eall, <1

The method to derive the effective permittivity has been discussed in the

is

previous chapter for spherical and randomly oriented spheroidal scatterers. Here,
the derivation for multiple species including randomly oriented ellipsoidal scatterers
is considered. The principal coordinate system (z',3y',2') of a local ellipsoid is related
to the global coordinate system (z,y,z) by Eulerian angle a, 3, and v asillustrated
in Figure 5.3.1. The rotation « (0 < a < 27) is about 2’ axis, 3 (0 < 8 < 7) about

% axis, and 7 (0 <y < 27) about 2, axis are described with the following relations

[, ] (z" [ cosa sina 0] [z
n|=Ts-|ly| =|-sina cosa 0] - v (20a)
| 2y | 2 ] 0 0 1] L2
EN [2,] [cosB 0 —sinB] [=,
Va|=Ts-|ul=]| 0 1 0 |0 (20b)
[ 2, | 21 [ sin 0 «cos8 | |z
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T
y|=T,-
b4
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siny 0 z3
—~siny cosy O Ys
0 1 23
(a)
cosa sina 0
Ta= —sina cosa 0
0 0 1
(b)
cosf 0 —sinf
Tp = 0 1 0

sin@ 0 cosf

cosy

i'_-., = | —siny

0

siny 0
cosy 0
0 1

159

(20¢)

Figure 5.3.1 Eulerian angles : (a) a is the rotation angle about z’ axis, (b) S is
the rotation angle about y, axis, and (c) 7 is the rotation angle about z; axis
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and the resultant Eulerian transformation which rotates the global to the scatterer

coordinates is
" 7

z z z

, = — = = 1-1

¥y | =Ty =[f‘1'Tﬂ'Ta] ly| =

| 2’ z z

'cos'rcosﬂcosa—sin'ysina —sinycosBcosa —cosysina sinfBcosa z

cosycosfBsina + sinycosa —sinycosBsina+cosycosa sin@Bsine | - Y
—cosysin sinysin cos z

(21)

To find ¢,, the condition of secular elimination (?(F)) = 0 is imposed

&)= [[r [[a6 [ "de ple,8,m) T [f.?,, "> f.-.?.] T (22

=1

For random orientation of non-spherical scatterers, the probability density function

of orientation is

p(e, B,7) = sin§/(8n%) (23)
which renders §; isotropic and, as shown in Appendix E, casts condition (22) into
1 N ‘
3 Fo(boor + by + Eoar) + D foo (biar + &iye + f-'t')] =0 (24)
=1
In (24), £’s are defined by (6) and explicitly written in the local coordinates as
‘ ot () = €— €
f-s’(e) = &8 z (5) € + Sg,:(é _ G,) (253)
‘ —f (o) — €— ¢
. ﬁw (é) €'y y (6) € + S,',I(C - fg) (25b)
€—¢
Et't'(e) = giz':'(e) = g (250)

€0 + Sizi(e — ¢;)
where i = 1,2,...,N for the scatterer species or ¢ = b for the background; ¢ can
takes on the value of ¢;, in a scatterer of species ¢ or ¢ in the background medium.
The dyadic coefficient S: for spherical and spheroidal scatterers have been
derived in the previous chapters. For ellipsoidal correlation function of the form

Ri(7) = exp (—J L ;2—) (263)

iz’ iy’ (ry
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in which correlation length ¢;,., £, and £, are in the local coordinates corre-
sponding to the minor, the meridian, and the major axes of an ellipsoidal scatterer

of species i. The corresponding Fourier transform &;¢ is

lu'e-y'eu'
1|-2(1 + klz 2, + kn[z .+ klz "')3

By (F) = (26b)

With the above correlation function, element S;.., S;,, and S;,, are derived from

the secular elimination condition and the symmetry of the ellipsoid. The results are

Y — > 60(1 + a) -1
Siar(linr igry binr) = /o @ e [V@ — tan™* /] (272)
Siy'(eiz' [ zs'y', eix') = Six'(eiz‘ ’ ei:’) e-'y') (27b)
Siz‘ (Zic‘ ’ lt'y' ’ eiz’) = Ss‘x'(eis' ’ et'y' ’ eis') (270)

where the integrations over ¢ can be carried out numerically and a; and 4; are

defined as

a =v]-1 (28a)
cos’¢  sin’ ¢) -}
i = 28b
T ( 71'3.‘ * 10':1' ( )
eis‘
Yizt = ’e‘—"' y Yy = 2"‘{7 (28(:)

For the background medium, the dyadic coefficient S is just the average of the

species components

5= (fif?) (f:f) @

=1 =1

Then, the average dyadic coefficient (?) in (17) is determined by

Sz O 0
(3)= Z;ff d'rfdﬁ/ do p(e, )T | 0 S, o0 |-T
0 0 S
(Sb" + Sb" + Sbl')I + 2 f” (Sta' + Su‘ + Su') I SI (30)

=1
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Equations (24) and (30) are used to solve for ¢, and S’s with an iteration method.

The effective scatterer ?w is next obtained to calculate the effective permit-

eff*
To facilitate the derivation, the following principal variances are defined in the local

tivity according to (17). First, consider the variances in expression (18) for

coordinates based on (19)

igine = Signrjo = fis fo (&ie — &ajr) (inr — Eonr) (31)
In the global coordinates, the Eulerian transformation rotates the variances to
I‘ng)'hlm = Oigz'2'AzjkQzim + 8ifa'y'acjhaylm + siez'x'azjka'zlm

+ 5.-“-,-0,”-30.,,,,. + 6,~€,ry,a”-,,ay,m + 5,-“:,:%,-,,(1,,,,,

+ 8igerzrQsjraim + Bigsry' CrinOyim + Sigarsr QrjnGatm (32)

where a;i;’s have been defined in Appendix E. Now, let the quantity in the brackets
in (18) be

Mum(¥) = K [_dE [G,(F)], 2() + [B],, (33)
In the local coordinates, 7;(7') is a diagonal tensor whose elements are
Mjyr = Mg = Ljr + Sy, J' =2y, 2 (34)

where I;;; involves the integration of dyadic Green’s function and correlation func-

tion. The results for I,. is

ax —€ .

Le= [ d¢ B+ TY) (35a)

oo W [V=( St (m 2 vV—=¢
1= 243 [ 3, oz VA (350)

_i[1+a,-u:,, 19,(a..-+2)-—(b+a,-v:‘,) L
7 ] N RV PR » (85¢)
V;‘, = kzls?s' ’ k; = wzl"'oeg y (= 7.‘2":;' (35&)
2

b=2tC 5 —bo1, 9 =b+¢ (35¢)

a;
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The symmetry of the ellipsoid is used to find I,. and I,. which are simply
Io'y’(eis' ’ eiy' ’ lv‘z') = Is‘s‘(e-’a" by ’ li") (36)
Ll' (eiz' ’ e"y' 9 zis’) = Iis' (lt't’ ’ zl'y' ) ei") (37)

To rotate 7;(#') into the global coordinates, the Eulerian transformation is

applied. The elements of 7;(#) in the global coordinates are

Nikt = Niz' Qzkt + TNiy' Ayt + Miz' Qi = Ntk (38)

Variance I' in (32) and quantity n in (38) are combined to define

0 Z,¥,% z,¥,8
0
tgir)n = Z rgf}klm”ikl = Z 5;'5-'-'77.'..'
k,l 9w

(a'ﬁaja'vzma'wss + a\usjavymavzy + al;zjdv:mauzz
+auyjava:ma'wy= + a'uyjavymaww + auyjavzmau'z

+a‘uzjavcmawxs + a'utjqivma”‘! + a‘“‘ja’""a“'") (39)

After the integration over the Eulerian angles, the effective scatterer tensor for species

i from (39) becomes

= i x ax =0) 1 -
€é¢fj = /; d‘y o dﬂ o da p(a, ﬂ,’r) f.- = § (6«.1.:7’.‘.: + 6‘;“1,:17.": + 6,'(,:,'17,',!)1 (40)

Another method to find (40) is to carry out all tensor operations involving I'’s and
7’s in the local coordinates and then rotate the result into the global coordinates
where Appendix E is readily applicable to arrive at (40). Substituting (40) in (18)
and using the result in (17) yields elements of the effective permittivity
- €o o =
€gr = | + go Z; (SicsraThiar + Sigyry Ty + 5:::';'17‘-;')] I (41)
The effective permittivity, as indicated in (41), is isotropic due to the random
orientation of the scatterer species. The above result for the effective permittivity

of an inhomogeneous medium containing many ‘species will reduce to the result of
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single scatterer species in the previous chapters. In the next section, the effective
permittivity is used to obtain the complete set of polarimetric backscattering coeffi-

cients under the distorted Born approximation and the Green’s function of the layer

configuration.

5.4 Scattering Coeflicients

The same layer configuration in Chapter 2 is used except that regions 1 and 2
hosts multiple species of scatterers which are ellipsoidal and randomly oriented. The
polarimetric backscattering coefficients are defined by (13, Chapter 1) with ensemble
averages of scattered fields. The averages are calculated with spatial integrations

over products of the DGF's, the mean fields, and the correlation functions as follows

(Eo:(F) . E:.(F» = i:;.- ii:m k3 /olhd"/ /:dﬂ /:'da pla, B,7)

. Vdﬂ/‘;dﬁ’ Ceerjrim(T1, 713 @, 8,7)

- [(Gorss (7, 7)) (Fun(F2))] - [<G01¢,(F,F‘;)><F1,,.(F‘;)>]*

+3 3 K [y [48 [ dap(ar,)

t=1 i,j,k,I,m

. dﬂ/ dfgctfzjhlm(FZ)F:;a1.B77)
Vs Va
%
. [<G025j(Fng)>(F2h(F2)>] . [(Gozu(F,Fg»(FM(F;))] (42)
where ¢ stands for the scatterer species t, N, is the number of species in region 1,
and N, the number of species in region 2. The DGFs and the mean fields are given

in Chapter 2. The correlation functions need to be determined next to derive the

scattering coefficients.

The correlation functions C'’s in (42) are defined in the spatial domain with
Cignjtim(Tn, Tas &, B,7) = <€tnjk(?u)fzulm(ﬁ)|a(Fn))ﬂ(Fn)a 7(711)) , n=12 (43)

In (43), n represents region n = 1,2. To facilitate the integration in (42), Fourier
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transforms of the correlation functions are introduced
Cignjrim(Fas Toi @, B,7) = / BB mjiim(B)e PO | n=1,2 (44)

which is expressed in the global coordinate system (&,%,z) and related by the ro-
tation transformation with Eulerian angles (a,f3,v) to those in the local coerdinate
system (2',9',%'). ®emjum is a product of a variance part and a functional part
written as

Qtnjklm(ﬁ) = rmjhlmétfn(y) (45)

Variance I'ynjuim are defined the local coordinates as in (19) but the last term in the

product is complex conjugated, namely

I‘tnjhlm(i,) = fincfbn (ftnjl - fbujk) (Etnlm - £lmlm)* (46)

After the Eulerian rotation to the global coordinates, I'¢njum becomes
Z,9,3
Ptnjhlm = E stn"a&jhaﬂm
=6tnc'u'azjlaalm + stn-'y'a:jhaylm + 6ln.'s'azjbaxlm

+6tny'c’a'yjha'alm + Jtny'y' a'yjbaylm + Jtny’s’ayjkallm

+6tﬂx’z'azjba=lm + 6lnx'y'a'zjhaylm + 6¢nx's’a:jka:lm (47)
where the principal variances §’s in the local coordinates are

6mj'k' = 6:“','1 = inlfbu (etnj' - &Mj') (ftnb' - £bub')* (48)

When the integration of probability density function of random orientation is applied

to the variances in (47), the averaged variance, for latter consideration, is defined as
2,¥:8 r g b1 4

Bt = 3 Govw [ 1 [ 46 [ ds p(0,,7) Gusatuim (49)

There are 729 integrations over the Eulerian angles in (49) among those 540 integra-

tions turn out to be zero. The non-zero results are reported in Appendix F.
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With the above correlation functions, the correlation of the scattered fields
can now be determined to calculate the polarimetric scattering coefficients. All in-
tegrations in (42) can be carried out analytically except the triple integration over
the Eulerian angles which may be intensive in computer time for numerical solution.
Under the low-frequency approximation, analytical solution, which is very fast in
computer time, is obtained and the result is expressed as

Ny -1,1 =z,y.:
Curvn = 7RG 30 30 Vi Ui Wit

t=1 a,b,c,d j,k,1,m
Nﬂ dl“ z,9,%

+kg >0 3 Y Ui AV Wiim (50)

t=1 p,q,72 5,k,I,m

Coefficient ¥’s have been derived earlier. For region 1, quantity W', in (50) is

ax : r
Watn = [ dv [(dB [ da p(a,B,7) TujuumI (1)
where the integral I3’ is approximated under the low frequency condition as

©0 — 0 . 0 . o
It = [ 4B, @ui(2F ) [ dm e Ommen [ dzp il

-dl

—i(nap—Kca)dy __ 1
~ 27i®4,(0) [e ]

(52)

Kap — Ked
From (49), (51), and (52), it is seen that W35, is simply
Wiisim = Berjumly™ (53)
Similarly for region 2, the quantity W51, in (50) is
i x i

Wi = [ dv [ 48 [ do oo, B,7) TauimZF (54)
where the integral I7;"’ under the low frequency approximation is
-a1

co - -dl . . .
B = [ dB, ®uel2Fp,B.) [ das e Oomrmies [ dzg oioumnn

-d32

= 27i®,2¢(0) [e

—$(Rpg~Rrs)ds __ e-i(u,.-—n..)d.]

PR (55)
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Then from (49), (54), and (55), it is recognized that W3l is
Wiiim = Bujunlly™ (56)

Note that the above results for the polarimetric scattering coefficients are expressed
in the scattered basis. Both scattering regions in this configuration contain multiple
species of ellipsoidal and the layers are isotropic due to the random orientation. This
concludes the derivation.

In the last two sections, the effective permittivity and the polarimetric scatter-
ing coeflicients have been obtained. In the next section, the model is applied to study
the polarimetric scattering properties from vegetation. Effects of scatterer shape and

multiple species are considered.

5.5 Results and Discussions

a. Effect of Scatterer Shapes

The model in this chapter accounts for various shapes which can be spherical, prolate
or oblate spheroidal, or ellipsoidal in general. For an inhomogeneous medium with
a fixed number of scatterers and fractional volume, the shape of the scatterers is a
significant factor on the effective permittivity and the scattering coefficients of the
medium. The shape of ice grains in snow is particularly subjected to temperature
and environmental variations. To study the effect of the scatterer shape, consider
a layer medium described in Figure 5.5.1. The scattering region consists of an air
background and embedded scatterers of 20% fractional volume and permittivity
€1, = (3.15 +70.002)¢, for ice at 5 GHz. The underlying medium has a permittivity
of € = (6.0.4+70.6)¢;, which is in the permittivity range for soil.

Four different shapes of the scatterers are investigated: spherical, prolate
spheroidal, oblate spheroidal, and ellipsoidal. The fractional volume and the number

of scatterers are kept the same in all cases and the non-spherical scatterers are ran-
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domly oriented. For the ellipsoidal shape, the longest correiation length is taken to
be equal to that of the prolate spheroidal shape, the shortest correlation length is the
same as that of the oblate spheroid, and the meridian correlation is chosen by setting
the surface area (defined by the two longer correlation lengths) identical to that of the
oblate spheroid. The correlation lengths and the calculated effective permittivities
corresponding to the various shapes are reported in Table 5.5.1. It is seen that the
effective permittivity is increasing when the scatterer shape varies from spherical, to
prolate spheroidal, and then to oblate spheroidal forms. The permittivity results for
the ellipsoids and oblate spheroids are similar due to the similar cross sections of the

scatterers in the two cases.

ko z
boi
€0, K f=5.0GHz
z=0m
e1s = (1.00 + 0.000) €0
€1, = (3.15+i0.002) ¢
Cor. lengths: ll:’atly’t tl‘l
Fractional vol f;, = 20%
z=-0.3m

Underlying medium :
€2 = (6.00+i0.600) ¢o

Figure 5.5.1 Scattering configuration

Shape Ly, £y ¢, €1
Spherical 0.15 mm 0.15 mm 0.15 mm (1.29+11.95 x 107*) &

Prolate 0.05 mm 0.05 mm 1.35 mm (1.31 +12.27x 107*) ¢

Oblate 0.58 mm 0.58 mm 0.01 mm (1.33+12.63 x 107*) ¢
Ellipsoidal 1.35 mm 0.25 mm 0.01 mm (1.32+172.64 x 107*) &

Table 5.5.1 Correlation lengths and effective permittivities
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The differences in the scatterer shape are also manifested in the scattering
coefficients. Shown in Figure 5.5.2 are the copolarized backscattering coefficients
where the oscillations are due to the boundary effect as discussed in Chapter 2. The
copolarized backscattering increases as the scatterer cross section increases from the
spherical, to prolate, and then to oblate spheroidal form. The copolarization results
for the ellipsoidal and the oblate spheroidal forms are therefore similar. For cross-
polarized returns, the spherical case gives zero value under the first-order distorted
Born approximation. Cross-polarized backscattering coefficients for non-spherical
scatterers are plotted as a function of incident angles in Figure 5.5.3. The oblate
spheroids provides the highest returns while the ellipsoids and the prolate spheroids
have similar cross-polarization effect due to the same size in their longest correlation
lengths. As illustrated, the ellipsoids behave as a hybrid between the oblate and the

prolate spheroids.
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o
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Figure 5.5.2 Copolarized backscattering coefficients : H = oy, and V =o,,
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~ The common feature in all of the cases for the different shapes are the effective
isotropy of the inhomogeneous medium. For non-spherical scatterers, the medium is
rendered isotropic by random orientation with no preferred direction. The scattering
centers of horizontal and vertical waves are therefore not separated as opposed to the
anisotropic medium in Chapter 2. This results in correlation coefficient p, defined by
(18b) in Chapter 1, between the h and v waves with a small phase. The magnitudes
of p plotted in Figure 5.5.4 show a similar variation as a function of incident angles

for the different shapes of the scatterers.

b. Effect of Multiple Species

In Chapter 3, the soybean canopy is modeled effectively with disc-like scatterers and
the effect of needle-like scatterers has been ignored. The multi-species model in this
chapter includes the coexistence of the disc-like and needle-like scatterers. In this
case, the effect of the multiple species is studied with the configuration described in
Figure 5.5.5 which corresponds to the soybean on 9-03-86 in Chapter 3. Now, needle-
like scatterers are introduced into the canopy by allocating part of the total fractional

volume to the new scatterer species whose permittivity is taken to be the same as that

of the disc-like scatterers. The needle-like form is depicted by a prolate spheroidal -

shape with correlation lengths of 0.3 mm and 5.0 mm. Three cases are considered
here: Case 1 has 100% oblate spheroids, Case 2 has 85% oblate and 15% prolate,
and Case 3 has T0% oblate and 30% prolate spheroids. The calculated effective
permittivities in Table 5.5.2 indicate an increase as more needle-like scatterers are
introduced.

Backscattering coefficients decrease, as seen in Figure 5.5.6, for increasing
needle-like species which renders the scatterer total cross section smaller. Again due
to the effective isotropy, the phase of correlation coefficient p is small for the cases
under consideration. While the magnitude of p for different mixtures are similar

as indicated in Figure 5.5.7, intensity ratio e = o, /oan is higher for a mixture



172 5. Model with Multiple Species of Scatterers

containing more needle-like scatterers as shown in Figure 5.5.8. This will result in a

copolarized signature with higher pedestal signifying a stronger depolarization effeci.

™

koi
Bos
€0, 4 f=5.3 GHz
z=0m
Soybean canopy :
€esr1 = (1.07 +i0.0118) ¢
4Lp=32mm {,;=.3mm
fractional vol f;, = 0.88 %
z=-0.745m

Underlying soil :
(L, =120cm o,=13cm
€3 = (8.76 +11.49) ¢o, u

Figure 5.5.5 Scattering configuration

Oblate Prolate €y
Case 1 100 % 0 % (1.070 +0.0119) &
Case 2 85 % 15 % (1.072 +10.0134) &
Case 3 70 % 30 % (1.074 +i0.0148) ¢

Table 5.5.2 Species mixing and effective permittivities
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Figure 5.5.8 Intensity ratio e = o3, /oap

5.6 Summary

In this chapter, a layer model with scattering regions containing multiple species of
scatterers has been presented. The species are allowed to have different size, shape,
and permittivity. After the scatterer correlation is analyzed, the effective permittivity
of the multi-species medium is derived with the extended strong fluctuation theory.
The polarimetric scattering coefficients is then calculated under the distorted Born
approximation. The model indicates that non-spherical scatterers with larger cross
section give higher permittivity and backscattering. For a mixture of oblate (disc-
like) and prolate (needle-like) spheroids, the depolarization effect is stronger when
the disc-like portion is increased. The model laid out in this chapter paves the way for
an extension to account for more complexity of geophysical media where the multiple

species can have size and shape distributions considered in the next chapter.



Chapter 6

Model with Size and
Shape Distributions

6.1 Intr_oduction

Inhomogeneities in geophysical media are multifarious. The model presented in this
chapter accounts for the complexity of the multi-phase inhomogeneities with multipie
species characterized by orientation, size, and shapes distributions. The orientation
distribution of scatterers has been considered in previous chapters. The size variety
of scatterers in a species is described in terms of the number density or the fractional
volume as a function of normalized volumetric sizes. The shape variation affects
electromagnetic properties of the inhomogeneous media in a nonlinear manner. To
depict the various shapes of scatterers in a species, the scatterers with similar shape
are classified into a shape division treated as a subspecies. The model is then used
to derive the effective permittivity and polarimetric scattering coeflicients.

The chapter is composed of six sections. Section 6.2 presents the derivation of
the effective permittivity with the extended strong fluctuation theory for the multi-
species medium with orientation, size, and shape distributions. Section 6.3 shows
the calculation of the polarimetric scattering coefficients under the distorted Born
approximation. Section 6.4 adapts the model specifically to sea ice whose thermal
variation in structure and constituent characteristics are taken into consideration.

Section 6.5 compares the theoretical and experimental results, explains the physical

- 175 -
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mechanisms causing the thermal variation observed in sea ice, and studies the sensi-

tivities of the model input parameters. Section 6.6 finally summarizes the chapter.

6.2 Effective Permittivity

Geophysical media contain scatterers with complex properties. The multiple species
model in the last chapter need to be further developed to account for preferred
alignment, size and shape distributions of the scatterers. In this section, the strong
fluctuation theory is extended to derive the effective permittivity of the multi-species
medium with given orientation, size, and shape distributions.

Consider a.:l inhomogeneous medium composed of a background and a number
of scatterer species. A species is temporarily defined as a set of scatterers with same
permittivity. Auxiliary permittivity €, (quasi-static part) and dyadic coefficient S
are solved by iteration method from a set of nonlinear equations. From previous
chapters, it is observed that dyadic coefficient ?, representing the singularity, does
depend on the ratios of correlation lengths; i.e., the scatterer shape. Thus, it is
necessary to classify scatterers in each species into divisions treated as subspecies;
each contains scatterers of similar shape. To simply the matter, a species is now
redefined as a set of scatterers with the same permittivity and same shape. While
€, depends only on correlation length ratios, the scattering-correction part of the
effective permittivity does, however, depend on the scatterer size. The variation in
size of the scatterers in a species can therefore be accounted for with an integration
over the scatterer size distribution in the calculation of the scattering-correction part.

Let ¢, be the permittivity of the background medium containing N scatterer
species. The scatterers are ellipsoids with vertical alignment and random azimuthal
orientation. Permittivity ¢, is for species i occupying a fractional volume f;, in the
mixture. The effective permittivity of the inhomogeneous medium is composed of a

quasi-static part and a scattering-effect part corresponding to the first and second
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term, respectively, in the following expression

Gy =&+ 50‘,_ Eur - <_>] Ly (1)

where auxiliary permittivity €, and dyadic coefficient S will be derived from the
condition of secular-term elimination, and the effective dyadic scatterer ?,” under

the low-frequency approximation is

Eal,. = (}): (do [“dy [[48 [da paip)

> T {8 [_F B8], 2F)+ B, }| (@)

where subscript ¢ denotes species i(s) which depends on the sca.tterer shape. The

normalized volumetric size v is defined as the ratio of the volume of a scatterer ﬁn-
der consideration over the volume of the smallest scatterer of the same permittivity
regardless of shape. The integration over dv accounts for the size distribution in
the size range v; of the scatterers in species i. Quantity p;(a,(,7) is the proba-
bility density function of orientation given by (5, Chapter 4). ﬁ, is the anisotropic
Green’s function determined by (32, Chapter 2). ®;; is the Fourier transform of the

normalized local correlation function. Local variance of species i is I‘g:,’-,,,,,. defined as

1e1hlm(;") - .fu (”)fb (Euh fb.ii) (eilm - fbhn) (3)

Note that fractional volume f;,(v) of species i is a function of the normalized volu-
metric size v.

To derive the effective permittivity, the method in Chapter 4 for anisotropic
medium is combined with the method in Chapter 5 for multi-species mixture. The

condition of secular elimination (?(F)) = 0 is imposed to find €, = diag(e,, €gp, €5:)

&) = [ [(d8 [ do ol 8,) T“‘-[fz,+iﬁ,a Too (&

i=1
Carrying out the integration over the Eulerian orientation angles yields

fo(boer + Eoy) + ) fi(biar +&iy) =0 (5a)

=1

N
fobowr + 3 fibin =0 (5b)

=1
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In (5), €’s are related to coefficient S ’s and written in the local coordinates as

fu'(e) = §igrar (5) e+ Sw'( e” é,,) (63')
f-l (é) fw ,:(6) € + S't' (eﬂp E,,) (Gb)

€ — €,

f,.,,(e) = f‘.‘,,.(e) = € + S.'g'(é - 593)

(6¢)

where ¢ = 1,2,...,N for the scatterer species or ¢ = b for the background; ¢ can
takes on the value of ¢;, in a scatterer of species i or ¢, in the background medium.
Dyadic coefficient S, for ellipsoidal scatterer has been derived in Chapter 4 and the

result for species ¢ is

S = [ %‘;%2[(1 + ) tan" /& — /@] (7a)

fo"/., sin’ ¢ -1
Siy / U g (1 @) tan™ V& — /@] (7b)

S = [[as 2,,(1:3)_ [V — tan™ @] (7c)

where the integrations over ¢ are carried out numerically and e;, v;., and 7;, are

a=ay ~-1, a—Zﬁ (8a)
()
e (F )
=t (S8 )

Taking the average of the species S: renders dyadic coefficient S, for the background
medium

() )

=1 =1
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Then, the average dyadic coefficient (?) in (1) is determined by

S,',l 0 0
BN=3¢ [0y (48 [d T .lo s, ol.-T
<—> = §.fn./° 7'/0 ﬂ/o Q Pi(aaﬂ$7) : iy’ :
0 0 Si:'
Siz + Siyr 0 0 S, 0 0
N, f
=Y ? 0 Sier+Siy 0 |=|0 S, 0 (10)
=1
0 0 2S5, 0 0 S,

for fs, = fy. Then ¢,’s and S’s are solved from the above equations with an iteration
method.

To complete the derivation of the effective permittivity, the effective scatterer
needs be obtained. Due to the azimuthal symmetry, effective scatterer tensor ?,”

takes on the uniaxial form

§etto 0 0
=¢u =0 &g, O - (1)
0 0 fc”:
which is defined by (2) from which the following results are acquired
1 N
Sare =3 2. | @0 [bica (Lt + Siar) + bigy (Lyr + Siy)] (12a)
i(s)=1""
N
€¢”8 = E dv&i(:’ (Iis' + Siz') (12b)

i(s)=1""s

Variance é;¢’s in (12) are related to fractional volumes and local scatterer by

bigje = finfo (&isr — &oir) (&iv — &vt) (13)

Quantity I ’sin (12)is the integrations of products between Green’s function elements
and the correlation function. For ellipsoids with vertical alignment and random
azimuthal orientation, the results for I’s of scatterer species i can be summarized
as follows:

(a) For 2’ element

¥ ] 4 —
Le= [ dp =T, +T3) (142)

TEg,
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. _ arivaed [v=C  d.+( (7 -1 V""Z)]
Le==—a |0, Yo \z7 % &) (14b)
3 1+a,‘-y3 ' 1’ (a‘+2)—(b+a‘l” ' m
iy =a‘y [ 93 ° gs'/ {0 -1_*
V:‘. = k:pl'?‘, ’ k:p = w’p.oe,, ’ C = a73”:s‘ (14d)
3
b=ﬁ'ﬁ£-5, 9,=b-1, 9, =b+( (14¢)
(b)  For z' element
I, = 21rd(;b ks (t’ 4 sin’g I, + €242 cos’d I') (15a)
i A p iy’ Tiy i iz’ Viz i®
1 1
L=a|@-5-m)+ 1@ +7- ) (15b)
Li=-5;-1; (17¢)
_ ariVay _V—Z 1 (7 . . v—={¢
I = 2479, [ 3 +‘/1,—.(2 tan 73, (15d)
1 1 (o 1
=g [~ 7 (5 )| (1<)
_an [ 1 1 (o 1
I;“zaw,[ b+\/«.9‘,(2 v % (150)
L=Ta=1), G=T@=1), E=La=1) (1)
(¢) For y' element
- > k_g 2 _4 2, 70 3 4 2.3 Te
L, = A d¢ - (l,-,,'r,-, cos’ep I + £, sin"@ I,-¢) (16)

Substituting ,, (?), and z” in (1) finally yields the uniaxial effective per-
mittivity tensor €4 = diag(€qysp, €essps €ys:) Whose lateral and vertical elements are,

respectively
Eetto = €gp + €obepto/ (1 — Sp€esss) (17a)
€ugfs = €gs + €obegps /(1 — Siluss) (17b)

Depending on the structure and characteristics of the multi-species medium, the size

and the shape distributions can be measured by using digitized section images [90].
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The local correlation lengths corresponding to a scatterers can also be estimated by
setting the correlation volume to be equal to the volume of the scatterer with the
same axial ratios [88]. For an ellipsoid with major semi-axis a, meridian semi-axis

b, and minor semi-axis ¢, relations with correlation lengths are
l".lt"’lei'l = Cba(e)—lls ) l.-,./l,-,, = b/c N l,-,:/l;., = a/c (18)

The expressions in (17) indicate that effective permittivity €y, is anisotropic
with an optic axis in the vertical direction due to the azimuthal symmetry. The
derivation has been done for ellipsoidal scatterers which is more general and can be
reduced to the spheroidal or the spherical case. In the next section, the anisotropic
effective permittivity is used in the derivation of the polarimetric backscattering

coefficients under the distorted Born approximation for a layer configuration.

6.3 Scattering Coefficients

A layer configuration with four different regions as illustrated in Figure 2.2.1 is con-
sidered here. Region 0 and region 4 are homogenous. Region 1 is a multi-species
isotropic medium. Region 2 also contains multiple species of scatterers and becomes
anisotropic due to the vertical alignment of scatterers. The polarimetric backscatter-
ing coeflicients are defined by (13, Chapter 1) based on ensemble averages of scattered
fields expressed as follows

2,98

(Bol®) Bom)= 3. Y. &3 [do [y a8 [ "dx pules,8,m)

t(s)=1 4,5,k,1,m

. dﬂ/dﬁamkm(?uﬁ;”, a,ﬂ,'r)
Vi Vi

. [(Gouj(?,ﬂ»(ﬂk(‘?l))] . [(GOIil(F’F:))<F1m(F:)>]*

33 K /o iy /o "dB /o “da pa(, B,7)

t(s)=14,5,k,I,m

. vdﬁfvdﬁ’ Ciezjnim(T2, T35 v, @, 8,7)

- [(Gonsm ) )(Fus(m)] - [{Gonalm ) (BamrD)] " (19)
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where t(s) denotes scatterer species ¢ which depends on the scatterer shape, N, is
the number of species in region 1, and N, the number of species in region 2. Green’s
functions and mean fields are calculated with effective permittivities and results have
beea given in previous chapters.

In (19), correlation function C'’s are defined in the spatial domain with

Coenjiim(Tas 230, @, 8,7) = (€t (Fa)ini (F2)[0(Fa)s &(Fa), B(Fa), 7(7a)) , m=1,2
(20)
where n represents region n = 1,2. To facilitate the integration in (19), Fourier

transforms of the correlation functions are introduced

Ct(njhlm(FnaF:;v) a,f, 7) = / dﬁq,mj"m(ﬁ)e—iﬁ-(ﬂ-?.) , n=1,2 (21)

which is expressed in the global coordinate system (%,%,%) and related by the ro-
tation transformation with Eulerian angles (a,3,v) to those in the local coordinate
system (&',%,2'). Note that, for ellipsoids with vertical alignment and random az-
imuthal orientation, only rotation « is necessary. Spectral density ®¢njuim can be

written in terms of a variance and a normalized functional form as

@mjum(ﬁ) = Ptu,‘um‘bteu (_ﬂ- ) (22)

Variance I'ynjum of species ¢ and region n are defined the local coordinates with

Tenjiim() = fins fom (€unii = €ivin) (Entm — Eitm)” (23)

By applying the appropriate rotation to the variances and using the invariance of

Fourier transform under rotation transformation, the correlation functions can be
written in the global coordinates to calculate the scattering coefficients.

Polarimetric backscattering coefficients for the layer configuration can be cast

into the form

N, -1,1 =z,9,%

— 4 ab cd* abed
Turve = 7|'k° E E Z ‘rlur,jhwlwt,lm thljilm

t(s)=1 a,b,c,d j.k,I,m

ou,od
Ny ewed 3,9,3
+ Wk(‘) Z Z E ‘I"z’zr,jh ‘I,;;:,lm” tzjh.lm (24)

t(s)=1P.0:70 5.k, l,m
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Coefficient ¥’s have been obtained in previous chapters. For region 1, the quantity

Wil in (24) is

ar ] ax
Westn = [dv ["dy [48 [ dar pu(a, B,7) Tajuunti

(25)

which has been considered in Chapter 3 for spheroids and Chapter 5 for ellipsoids.

Similarly for region 2, the quantity W&, in (24) is
3

Yig 1 2
Wegim = [@0 ["dy ['48 [ da pa(e,8,7) Tpunlr

where the integral Iff™ for ellipsoids of species t in region 2 is

TPIre ;‘25tzmme¢z='em'em' e m
t3jkim 1r£,‘, (n.,, - n,)’(rc,., - N;' )’("n - nn)
i(“..—“'g)‘l
+ € — Pz(lﬁ:) - QI("':)]

(%rs — R2)* (5000 — 13)2(%rs — Kopy)
where Py(x;) and Qj(x]) are determined by

i(d2 _ dl )e—i(ngen,.)d; ei(u;—n”)th

(2Imer3)?(Ka — Kpq)(Ka — Kr4)
—i(Rpg—are)dy «-$(Ryg—=rre)da
" [ e +e

'Pz(Nz) =

(2iIme;)3 (k2 — Kpg)(Ka — Ky,)

e-‘(ﬂj-“rl)‘l e"(“"“!ﬂ )d’

- (20Ime,)*(Ks — Kpg)(Ka — K4,)

1 1 1
e+ +
llmﬂz K3 — Kpq Ky = Ky,
i(d, - dl )e"(“; —rpe)dy e-‘(ﬁ; ~Kpo)da
CHEy e ey
e¥(R3—npq)ds e—$(r3—nre)ds

T GImed Y (RF = rpa) (e — os)

Qz(":) =

1 + 1 + 1
ilmad k¥ —x,,  KY -k,

with length C,; = £,5,, and pole x; given by

K2 = L1 + Kially,, + K3y 0,

(26)

(27a)

(27b)

(27¢)

(28)
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For the ellipsoids, only rotation a is necessary and the triple integration over Eule-
rian angles reduced to one which can be carried out numerically together with the
integration over size v. The above results for the polarimetric scattering coefficients
are in the scattered basis which can be transformed to the incident basis if necessary.
In the next section, the model is specifically adapted to model sea ice with considera-

tion of thermal variation in the medium structure and the constituent characteristics.

6.4 Model for Sea Ice

Sea ice is a multi-species medium with multi-phase mixing. The background is ice
grown in columnar form as observed in congelation ice in many cases with horizontal
crystallographic C axes. When there is no directional force, such as sea current,
exerted during the growth process, the C axes are randomly oriented in azimuthal
directions. The background ice are actually ice platelets which sandwich sea water in
ellipsoidal pockets called brine inclusions. In addition, there are air bubbles embedded
in the ice. Sea ice is also very dynamic in thermal variation. When the temperature
changes, the ice structure varies and the constituent characteristics such as fractional
volume and permittivity also vary. The model developed in the previous sections
of this chapter is now specifically adapted to sea ice by using orientation, size, and

shape distributions of scatterers and incorporating the theyrmodynamics of sea ice.

a. Size Distribution

Due to high permittivity of the saline water at microwave frequencies, brine inclusions
have a strong effect on electromagnetic properties of sea ice. The size distribution of
the inclusions has been reporteﬂ to follow the power law [26]. Consider a power-law

distribution for number density n of scatterers with size v described by
n=nov ” (29)

where p is the power-law index and n, is the number density of brine inclusions of
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smallest size. The normalized volumetric size has been defined in section 6.2 as the

ratio of volume v, of an inclusion over the volume v,, of the smallest one; namely,

v =9,/v,, = f,/(nv,0) (30)

in which f, (let’s temporarily drop the species subscript) is the fractional volume of
inclusions with volume v,. From (30), the size distribution can also be represented

by fractional volume as
fo(v) = nov,v' ™ = fov' " (31)
for f,o being the fractional volume of the smallest inclusions. The size distribution
is thus specified when f,, and p are determined. This can be done when the total
fractional volume, the minimum, average, and maximum sizes of the brine inclusions
are measured.
Average volumetric size v, can be obtained by measuring the sizes of every

inclusions then taking the average. Mathematically, this process is described by

1/(1-2p)
-mnhlen-g e (E)T @

flll —fco ts0 flO

Another method of measuring the average volumetric size is to take the ratio of the

Vs

total fractional volume f,r over the total number density ny of the brine inclusions

normalized to the smallest volume v,4; i.e.,

N - (33a)
NrV,0

where the the total number density n~ is calculated by

nr = _/,"dvn(v) = ,/:md""o”"’ (33b)

Both (32) and (33) give the same result for the average volumetric size v,

o — 1-2p 3?1
ST 21-p) W01’

which is rearrange to solve for the power-law index p by iteration method from

_ 1 Vs — qUn 1 ) _1-2p
p—2ln'vuln( v.—q) 2’ with q-2(l—p) (35)

for p # -;— (34)
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and the following conditions are used to check the convergence of the solution

3(1-p)
v -1
Va -——'q;“(‘"l-‘—_-ﬁ'——l- (36&)
1/(1-3p)
o = (__.9_) (36b)
Vs — QUn

Note that the right hand side of (34) has to be positive since v, is positive. Further-

more, vy > 1 results in

3(1-p)
>0 = —/——=>0 37

which imposes the condition p € (0.5,1). The power index p can thus be determined
if v, and vy are known. For given v, and vy, if the solution for p is not possible,
a different law for size distribution should be considered.

The total fractional volume f,r of brine inclusions is calculated by integrating

over the size distribution
fo= [ dvs(v) = f%%i—;)—l . forp#l (38)
where vy = v,u/v,0 is the volumetric size of the largest inclusions. When the total
fractional volume is known from ground-truth data, f,o can be solved by using (38)
and the solution for the power-law index p to determine the power-law distribution
of sizes.
Now let’s examine how the size distribution changes with temperature. When
the temperature varies, volumes of individual brine pockets also vary. Assume that

the volumes of all brine pockets change at the same rate; i.e., for two different tem-

peratures Ty and T,
0(T) _ v(T)
”ao(To) ‘Uuo(T)

Also assume that new brine pockets do not appear nor existing brine pockets do

(39)

not disappear when the temperature vary; i.e., the density number of the pockets is

conserved. This signifies

f:(To) — fn(T) faO(TO) — flO(T)
o(T) " 0@ Y (T ~ vl(T)

(40)
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Let the size distribution at temperature T, be power law with power index p(To)
JFi(To) = fio(To) ! =37 (41)

Substituting (41) in (40) renders

fa(T) _ faO(TO) vl-:p(T.)

o(T) — o(To) (42)
From (39), (40), and (42), it is obvious that
fo(T) = fuo(T) v 2" (43)

Equation (43) indicates that the power index does not change as the temperature
varies when the above assumptions are reasonable. Thus, if ground-truth data are
not available at all temperatures under consideration, the index obtained at a tem-
perature may be used at a different temperature when there is no severe brine loss
and the ice is undeformed. Otherwise, ground truth has to be used to determine the
size distribution. For air bubbles, the size distribution is derived in the same manner
or, if ground truth is available, the size distribution can be obtained from section

images.

b. Shape Distribution

The shapes of brine inclusions have been observed as substantially ellipsoidal [91].
It is also observed from the thin sections [91] of sea ice grown at US Army Cold
Regions Research and Engineering Laboratory that only inclusions of small sizes has
a more rounded spheroidal form. Thus, a slowly varying logarithmic function is used

to describe the shape distribution

C.(‘U) = (eall - ecm)i% + €am (448’)
e(v) = (esnr — e.,.)%’; + eom (44b)

where axial ratio e, = a/c and e, = b/c. Subscript M and m are for maximum

and minimum values, respectively. This shape distribution implies that inclusions are
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substantially ellipsoidal at large and medium size and small sizes are more rounded.
When the temperature is increasing during a warming cycle, the shape of the inclu-
sions becomes more rounded. The variation on the sea ice structure is described with
reshaping factors operating on the maximum axial ratios e,» and e,n. Suppose the
maximum axial ratio e,n(7;) is at temperature T; and the highest temperature of
the warming cycle is T, at which the axial ratio is e,a(7},), then the axial ratio at

a temperature T between the low T, and the high T, assumes the form

esn(T') = [esne(To) — esnr(Ti)] {1 — exp[P(T — T3.)]} + esne(Th) (45)

where P is the reshaping index and the temperatures are in negative Celsius degrees.
Index P should not be too small such that the value of e, (T’) is rather preserved
at temperature T;. Similar formulas apply to e,p. This thermal variation describes
the smoothing process which makes the brine inclusions approach the more rounded
spheroidal form with increasing temperature. For air bubble, the shapes have been
considered as rather rounded in form of spheroid or sphere [26,91]. Therefore, the
shapes of air bubbles do not change as much as those of brine inclusions and assumed

to be unaffected by temperature.

c. Correlation Lengths

When thke size distribution is specified, local correlation lengths of a brine inclusion
can be calculated from (18). Furthermore, correlation lengths also vary as a function
of temperature since the size of an individual inclusion change with temperature. If
section images of sea ice are available at the temperatures under consideration, (18)
can be applied to find the correlation lengths. If the size measurements are only made
at a fix temperature T, the correlation lengths a different temperature T' may be
estimated under the assumptions in subsection 6.4a. From (40)

_1@
‘D,(T) - f:(To) ,(To) (46)
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The size distributions at different temperatures in (41) and (42) lead to the relation

fo(T) - f-O(T) vl-,,(r') = f.o(T)
L(To)  fuo(To) v2-27(T)  f,o(To)

Relation (46) and the ratios in (47) together with the definition of normalized volu-

(47)

metric size (30) give

— ”f:o(T)
”I(T) = an(TO) vOO(TO) (48)
Volume v,(T") and v,o(T5) of an ellipsoidal inclusion are calculated from the sizes as
o,(T) = %”-e.(T)e.(T)c’(T) (49a)
0.(T) = -eam(To)erm(To)e(To) (49b)

where m denotes the minimum. Substituting (49) in (48) and using (18) render the

local correlation lengths corresponding to the inclusion

2F,0(T) €arm(To)erm(To)]
670(To) _ea(T)es(T)

£(T) = e(T)e(T),  L(T) = eu(T)u(T) (50b)

l,:(T) =

cm(To) (50a)

which only requires measurements at temperature T,. Correlation lengths for air

bubbles can be obtained in the same manner.

d. Constituent Characteristics

As aforementioned, sea ice contains an ice background, brine inclusions, and air
bubbles. While the real part of ice permittivity is not sensitive to temperature,
the imaginary part is dispersive and varies with temperature. An empirical formula
to calculate the imaginary part of ice permittivity as a function of temperature at
microwave frequencies is given in [92]. For brine in sea ice, the permittivity is large
compared to that of ice and both real and imaginary parts decrease as frequency
increases. Empirical formulas to compute complex dielectric constants of brine in

terms of temperatures and microwave frequencies are reported in [93].
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The constituent phases in sea ice are related thermodynamically. When tem-
perature of sea ice varies, fractional volume of brine inclusions and air bubbles changes
accordingly. Based on phase equilibrium, Cox and Weeks [94] have provided equa-
tions for determining fractional volumes of brine inclusions and air bubbles in sea
ice in the temperature range of —2°C to —30°C. The required input parameters are
bulk ice density, salinity, and temperature. The salt Na,SO, - 10H,O crystalizes at
—8.2°C, however, the phase change is much stronger at about —23°C which is the
eutectic temperature of NaCl - 2H,;0 corresponding to the precipitation of the salt
(sodium chloride dihydride). This strong phase change causes a kink in the phase
curves as a function of temperature. At low temperature, sea ice therefore contains
solid salt. The presence of solid salt, however, is negligible even below the NaCl-2H,0

eutectic temperature [94].

6.5 Results and Discussion

a. Data Comparisons

In this section, the results calculated from the model is compared with experimen-
tal data. Relative permittivities of sea ice grown at US Army Cold Regions and
Research Engineering Laboratory (CRREL) were measured [91]. The measurements
were made with transmission method for wave normally incident of a slab of sea ice;
therefore, only permittivity ey, corresponding to ordinary wave were obtained and
the extraordinary components were not considered and would not be studied in this
section.

The sea ice slab was taken from an saline ice sheet (Sheet 85-3) to a laboratory
environment where the temperature was controllable. The measurements were made
at temperature intervals during progressive warming of the ice slab from —32°C to

—2°C for wave frequency of 4.8 GHz. The in situ salinity was 0.62% reduced to
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0.54% before testing and further reduced to 0.42% after testing due to brine loss
during the process. Only final bulk ice density of 0.866 g/cm® was reported. For a
given set of temperature, salinity, ice density, and wave frequency, fractional volumes
and permittivities of the constituents in sea ice are calculated from the empirical for-
mulas as discussed in section 6.4. Typically in this case, the total fractional volumes
of brine inclusions and air bubbles are in the order of 10%. The real part of ice
relative permittivity is 3.15 and the imaginary parts are in the order of 0.001. The
real and imaginary parts of the brine permittivities calculated from [93] are about
one order of magnitude higher than the real part of the ice relative permittivity.
For ice structure, the dendritic planes normal to the C axes show marginal tilt
of 2—4° and can be modeled as vertical. Two photographs of horizontal thin sections
before and after thermal modification were presented. It is seen from the photographs
that the C axes are randomly oriented in azimuthal directions. Initially at —30°C,
the minimum, average, and maximum of the minor semi-axes are estimated as 0.05
mm, 0.01 mm, and 0.30 mm, respectively. To calculate the power-law index for
brine inclusion, the normalized volumetric sizes are considered as the cubics of the
ratios of the above minor semi-axes; this gives the power index of 0.8945 for the
size distribution. The initial axial ratio e,n, for a brine inclusion of smallest size is
1 for the spheroidal shape. The maximum axial ratio e,y is roughly estimated to
be 8 to describe the substantially ellipsoidal shape of the large inclusions. Vertical
section images were also available but not large enough to see the structures of the
inhomogeneities; therefore, the sizes for major axes of the scatterers have to be chosen
and sensitivity analyses will be done to study the corresponding uncertainty. The
choice for the initial minimum and maximum major axial ratios are e,, = 2 and
e = 10 to cover the range of variation of the brine inclusion sizes. After the
thermal modification, the axial ratios for brine inclusions are taken to be e, = 1.5

and e, = 3 to account for the effect of rounded shapes. For air bubbles, the
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effect on the effective permittivity is not as strong as that due to brine inclusions.
Air bubbles are much more rounded than brine inclusions. The shape change in air
bubbles is therefore not large and the bubble form is considered as spheroid having
circular cross section as observed in the horizontal thin sections. The axial ratios of
air bubbles are taken to be uniform with ¢, =1 and e, = 2. The initial minor semi-
axes of air bubbles is taken to be the same as those of smallest brine inclusions and
thus the power index is also 0.8945. While the bubble shape is considered unchanged

thermaliy, the bubble size variation as a function of temperature is taken into account.
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Figure 6.5.1 Imaginary pert of effective permittivity: curve from theoretical
calculations only accounts for size distributions

To explain the behavior of sea ice permittivity observed in the experiment, the
theoretical model is first simplified to identify the responsible physical mechanisms
then the complexity is added to the more complete model to arrive at the better
description of the medium. For now, the brine loss during the warming process

is ignored and the shape of the brine inclusions is considered as uniform with the

—uriae
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average axial ratios e, = 3 and e, = 5 which are kept constant with respect to
temperature. The size distributions for both brine inclusions and air bubbles are,
however, included. The results from the calculation for the imaginary part of effective
permittivity ey, is plotted in Figure 6.5.1 together with the measured data obtained
from the experiment. In general, the theoretical curve shows an increasing trend as
temperature increases. This is due to the increase of scatterer fractional volumes at
higher temperature. The kink observed at about ~22°C (the calculations are made
at intervals of 2°C started from —30°C) is due to the phase change associated with
the precipitation of sodium chloride dihydride. The steep slope on the theoretical
curve in the higher temperature range is caused by the fast increase in scatterer
fractional volumes. Compared with the experimental data, the theoretical results are

too low at low temperatures and too high at high temperatures.
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Figure 6.5.2 Imaginary part of effective permittivity: curve from theoretical
calculations accounts for size and shape distributions and thermal variation in
the shapes of brine inclusions
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Figure 6.5.3 Imaginary part of effective permittivity: curve is obtained from the
complete model including all of the thermal variations

The shape distribution of brine inclusions and their shape variation due to
temperature are now considered. The brine inclusions are divided into 20 subspecies;
test calculations done with 99 subspecies indicate good convergence for results ob-
tained with 20 subdivisions. The results are shown in Figure 6.5.2. Compared to
the old theoretical results, the comparison between the new curve is higher at low
temperatures and lower at high temperatures. In the low temperature range, the
higher results are due to the existence of more substantially ellipsoidal brine inclu-
sions which have stronger depolarization effect and larger cross sections. At higher
temperatures, the effect of rounded inclusions are more prominent in the competition
with the increasing effect of higher fractional volumes to render the results to lower
values. Regarding the experimental data, the comparison is much better except at

temperatures higher than —8°C the calculated results are still larger than the mea-
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sured values. This is because the brine loss has not been accounted for. If the brine
loss represented by the decrease in salinity from 0.54% to 0.42% is incorporated
in the model by an assumed linear decrease in salinity from —8°C to —4°C, the
theoretical curve shown in Figure 6.5.3 explains all the trends observed in the experi-
mental data for the imaginary part of the effective permitiivity. The real parts of the
permittivity are presented in Figure 6.5.4 which indicates that the calculated values
are within 10% lower than the measured data. The analysis in this subsection is
based as much as possible on available ground-truth data. The lack of ground truth
information has necessitated some assumptions. The uncertainty associated with the

assumptions can be estimatad with a sensitivity analysis in the next subsection.
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Figure 6.5.4 Real part of effective permittivity: curve is obtained from the
complete model including all of the thermal variations

b. Sensitivity Analysis

The sensitivity analysis in this subsection is to estimate the uncertainty due to the
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assumptions made in the last subsection. First, as recognized from the model, the
shape effect is important. In Figure 6.5.5, the dash-dot curves are computed with
values of the axial ratios varied by +20% from those used in the last theoretical
calculation taken as the reference. The results show that the effect of ellipsoidal
shapes is most important in the middle range of temperatures. The insensitivity of
shape at —2°C is due to the rounded form of the scatterers and at low temperatures

due to low fractional volume of brine inclusions.
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Figure 6.5.5 Imaginary part of effective permittivity: solid curve is for reference
and dash-dot curves are obtained by varying the axial ratics by +20%

Another assumption is that the ice density 0.866 g/cm® has been used in all
of the previous theoretical calculations. This values should not be constant as the
salinity changes due to the brine loss. The sensitivity analysis of the ice density is
done by varying the density by +5% (to keep the variation within the density range

of gas-free sea ice) and the results are shown in Figure 6.5.6.

The sensitivity of the size distribution can also be studied by varying the
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maximum normalized volumetric size by +10% for example. This will affect the
power-law index and thus the size distribution of the brine inclusions and the air
bubbles. The calculations show results close to the reference curve indicating a
week sensitivity in this case due to the small size of the scatterers compared to the
wavelength. The sensitivity analysis in this subsection indicates that the assumptions

are rather reasonable or, at least, do not lead to too large deviation.
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Figure 6.5.6 Imaginary part of effective permittivity: solid curve is for reference
and dash-dot curves are obtained by varying the bulk ice density by +5%

6.6 Summary

This chapter presents an electromagnetic wave model which accounts for the com-
plexity of the multi-phase inhomogeneities with multiple species characterized by
orientation, size, and shapes distributions. The size variety of scatterers in a species
is described in terms of the number density or the fractional volume as a function of

normalized volumetric sizes. The shape variation is take into consideration by sub-
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dividing a species into many species based on the similarity in scatterer shapes. The
model also describes the effective anisotropy of the medium due te a preferred align-
ment of scatterers. For the multi-species medium with orientation, size, and shape
distributions, the effective permittivity of the inhomogeneous medium is derived with
the extended strong fluctuation theory. The polarimetric scattering coefficients are
then obtained under the distorted Born approximation. The model is suitable for
characterizing sea ice with embedded brine inclusions and air bubbles. The thermo-
dynamics of the constituents in sea ice is also included in the model to incorporate
the thermal variations in tne ice structure and properties. Comparisons of theoretical
results with measured data for sea ice permittivities from CRREL are made and the
trends observed from the experimental measurements are explained. Sensitivity of
model input parameters are analyzed to estimate the uncertainty in the parameter
assumptions or inaccuracies in ground truth measurements. This model provides an
analytical tool to study electromagnetic properties of sea ice and other geophysical

media under effects of varying environmental conditions.



Chapter 7
Summary

Electromagnetic wave models for polarimetric remote sensing of geophysical media
have been presented in this thesis. At the beginning of the thesis, a general review
has been done on the analytic wave, the modified radiative transfer, and the tra-
ditional radiative transfer theories. The radiative transfer theory can account for
more complicated properties of the media but ignores the phase information which
is important to polarimetric remote sensing with monostatic radar. The modified
radiative transfer theory considers both the phase and the multiple scattering but
involves with more mathematical complexity which limits the applicability to simple
media. The wave theory includes the coherent effect and all the multiple interaction
between medium interface and scatterer, the multiple scattering to some extent, and
rather complex medium characteristics. The wave theory is then chosen to develop
the theoretical models for applications in polarimetric remote sensing of geophysical
media.

Methods describing polarimetric properties of the media such as scattering ma-
trix, covariance matrix, Mueller matrix, Stokes vector, polarization signature, and
polarimetric scattering coefficients are then discussed. The complex scattering matrix
relates the incident and the scattered fields expressed in two orthogonal polarimet-
ric components. The covariance matrix is defined by the product of the polarimetric
feature vector and its transposed complex conjugate. Mueller matrix operating on in-

cident Stokes vector gives the scattered Stokes vector. Both covariance and Mueller
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matrices can be expressed in terms of polarimetric scattering coefficients defined
based on ensemble averages of scattered fields. Polarization signature is a graphi-
cal method of description. These methods are useful in characterizing polarimetric
properties of geophysical media.

The theoretical models are developed in the subsequent chapters increasingly
in physical complexity along with experimental result comparisons, interpretations,
and simulations for various geophysical media including snow, sea ice, and vege-
tation. In Chapter 2, the fully polarimetric backscattering coefficients have been
obtained from the layer model with spheroidal scatterers. The top layer is modelled
as an isotropic random medium, the middle layer as an anisotropic random medium,
and the underlying layer as a homogeneous medium. The strong fluctuation the-
ory is used to calculated the effective permittivities of the scattering layers and the
distorted Born approximation is applied to derive the scattered fields. The dyadic
Green’s functions are used in the calculations and the backscattering processes are
explained. The model results are illustrated for bare and snow covered sea ice. The
physical information conveyed in the elements of the covariance matrices are dis-
cussed especially for the correlation coefficient p. The copolarization signatures for
the layer random media are obtained with the Mueller matrices and explained with
the scattering coefficients contained in the covariance matrices.

In Chapter 3, the extended strong fluctuation theory is used tc calculate ef-
fective permittivities of scattering regions containing randomly oriented spheroidal
scatterers and the distorted Born approximation is applied to derive the scattered
fields from the layered media. The model is applied to explain the backscattering
from a soybean canopy. The leaves are considered to have disc-like shape with ran-
dom orientation. Theoretical results are compared with measured backscattering
coefficients oy, 0y, , and on, of wave frequency 5.3 GHz over the range 0-5( in-

cident angles for 10 different growth stages of the soybean. The copolarized returns
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are matched well but the calculated cross-polarized returns are lower than the mea-
surements because multiple scattering are ignored. Polarization signatures are then
simulated to study polarimetric properties of the soybean canopy. The model is also
used to investigate radar configurations and biophysical conditions for applications
in inversion of biomass and soil moisture.

Chapter 4 considers inhomogeneous media with ellipsoidal scatterers. The
ellipsoids are aligned vertically and oriented randomly in azimuthal directions. In
this model, the cross-polarized return is obtained from the first-order distorted Born
approximation. The theoretical results are shown to compare well with the measured
data for thick first-year sea ice and the scattering mechanisms are explained. From the
polarimetric simulation, it is shown that covariance matrices as well as polarization
signatures convey further information regarding the characteristics and structure of
the media as compared to the conventional backscattering coefficients. The model,
however, only accounts for one type of scatterers in a host medium with two-phase
mixing.

In Chapter 5, a layer model with scattering regions containing multiple species
of scatterers are presented. The species are allowed to have different size, shape, and
permittivity. After the scatterer correlation is analyzed, the effective permittivity
of the multi-species medium is derived with the extended strong fluctuation theory.
The polarimetric scattering coefficients is then calculated under the distorted Born
approximation. The model indicates that non-spherical scatterers with larger cross
section give higher permittivity and backscattering. For a mixture of oblate (disc-
like) and prolate (needle-like) spheroids, the depolarization effect is stronger when
the disc-like portion is increased. The model laid out in this chapter paves the way for
an extension to account for more complexity of geophysical media where the multiple
species can have size and shape distributions.

A model which accounts for the complexity of the multi-phase inhomogeneities
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with multiple species characterized by orientation, size, and shapes distributions is
developed in Chapter 6. The size variety of scatterers in a species is described in
terms of the number density or the fractional volume as a function of normalized
volumetric sizes. The shape variation is take into consideration by subdividing a
species into many species based on the similarity in scatterer shapes. The model
also describes the effective anisotropy of the medium due to a preferred alignment
of scatterers. For the multi-species medium with orientation, size, and shape dis-
tributions, the effective permittivity of the inhomogeneous medium is derived with
the extended strong fluctuation theory. The polarimetric scattering coefficients are
then obtained under the distorted Born approximation. The model is suitable for
characterizing sea ice with embedded brine inclusions and air bubbles. The thermo-
dynamics of the constituents in sea ice is also included in the model to incorporate
the thermal variations in the ice structure and properties. Comparisons of theoretical
results with measured data for sea ice permittivities from CRREL are made and the
trends observed from the experimental measurements are explained. Sensitivity of
model input parameters are analyzed to estimate the uncertainty in the parameter
assumptions or inaccuracies in ground truth measurements.

The models developed in this thesis provides physical insights into wave prop-
agation and scattering in geophysical media for applications in polarimetric remote
sensing. The models explain measured data and interpret polarimetric character-
istics of geophysical media. It has been shown that fully polarimetric data convey
additional information regarding the remotely sensed media and thereby provide
more accurate identification and classification of terrain types in radar imagery. The
models have been able to describe inhomogeneous media with layer configuration,
multi-species of multi-phase, orientation, size, and shape distributions. Mechanisms
responsible for physical trends observed in experimental have been identified by the

models. In the future, further theoretical developments together with validating ex-
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periments are necessary to account for more complex natural media incorporated in
a large scale system. The models for remote sensing can thus be used in the planning

of measurement campaigns and apply to data interpretation as a part of an operating

monitor of geophysical environment.
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Appendix A

Transmission and Reflection
Coefficients

The transmission and reflection coefficients are obtained by matching the boundary
conditions at the interfaces where the tangential components of the electric and
magnetic fields are continuous. The boundary conditions for the zeroth-order mean
fields can be written explicitly as
ZX(Fo(F)) =z x (F(F
2xV x 27‘)&?;% =2zX <V x(<)7"'>'1(F)) } atz=0 (&.12)
z2x(F(T)) =z x (Fy(7
z2xVx é—F—'IEFB =2zX <V x((gz(i)) } atz=—d (4.15)
Z2x (F3(F)) =z x (Fs(F
2 x V x EF,EFK =2x (V :(2,(7)) } te=—d (&.10)
The boundary conditions are satisfied by coefficients composed of half-space
Fresnel coefficients and phase factors as expressed in (66, Chapter 2). The phase
factors in the exponents account for the wave propagation to the boundaries. The
Fresnel reflection and transmission coefficients have been derived as shown in [29].
For the coordinate systems defined in Chapter 2, the Fresnel coefficients are given as
follows:

(1) At boundary z =0 between the isotropic media of region 0 and region 1
kOs - klz

Roinn = —Ryonn = Fou T Fu (A.2a)
_  K2ko, — K2k,
ROhm - RIOvo - kf"’o; + kgku (A.2b)
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At boundary z = —d, between isotropic region 1 and anisotropic region 2
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(A.30)

(A.3p)

(3) At boundary z = —d; between anisotropic region 2 and isotropic region 3

G.G.(k3, — ks.)
GdFe(kg, + kaz)

2k, k3.U, ,,,
—C.F (k3. — ks.)

- (kysin® + ks, cos ) sinep

k:sz“ ed eu o
UdFe (kZI - k?;) (k2z - ks,)

- (kysintp — ks, cos ) siny

R2300 =

R:aoe =

R28ea =

sin

1 2 o _:
Tason = —m"— + m (kp cos®p + kyk;, sin 1/:)

+ o (k2 cosp — kyks, sin )
p Ty

(A.da)

(A.4b)

(A.4c)

(A.4d)

(A.de)



208 Appendix A

ksk.k3, Rasoo . ksk. k3,

Tas0n = e sint — F G sin
k8R280¢ 02 _: 27.eu
+ A (kysz siny — k2k3; cos ?ﬁ)
k3k.Ris.. . Kk,
Tagen = A inty + %, Us sin
+ = Raseo (k’ cosp — kyk3 51n¢)
k.G,
Tzsn _ kskzkggRZ:ieo .

———k, 5o C. sin

k8R28u 02 _: eu
+ FFo T (k,,sz sin® — k2k;3; cos ¢)
+ 2 k’i 7 (k32 sin g — k2k32 cos 9)

In the above expressions, the following definitions have been used
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Appendix B
Isotropic Coefficients

Coefficient ¥2®

tor in the scattering terms of the isotropic random medium are derived

from Chapter 2 with (69a) for the DGF, (72a) for the mean field, and (83) for their
components which are combined to form ¥}  in the manner determined by the first
term in (82) and the definition in (85). All the exponential functions have been
incorporated into Z3**¢ and W3, are thus composed of s, U, s, and #s. For

backscattering, I’s and U's are evaluated at k,; and s and #s can be expressed in

terms of incident polar angle 6y; and incident azimuthal angle ¢; as

sin @o; | [ Ky, €OS do; |
. 1 )
h(krz) =] —cos ¢0l» ’ 6(k;.‘z) = E kl; sin ¢m (B.la)
| 0 | kosinby; |
sin ¢o; | [ —k,, cos do; |
h(ki)=|—cosdoi| , B(ki)= 7‘:1: —k,y, sin ¢o; (B.1b)
0 ] i ko sin 00,' ]
[ — sin @o; ] [ —F1. cOS o |
. e 1 )
h(krzi) = cos ¢05' ? v(klzi) = k—l _klz s ¢0i (B.].C)
0 i L ko sin 00.' i
[ — sin ;| [ ky. cOS do; |
ALY = | cosdos| , (KLY =£- k.. sin dos (B.1d)
1
| 0 | kosinfy |

The unit vectors of the polarization bases for the upgoing and downgoing waves
are shown in Figure B.1 to help ease the derivation and illustrate the backscatter-
ing processes. As seen from the figure, a and b respectively describe scattered and
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N,

-1-1 ab=-1+1 ab=+-1 ab=H+1

Figure B.1 Polarization bases for incident (thick lines) and scattered (thin lines)

waves : h = cross or dot circles, # = short arrows, k = long arrows; black circles
are for scatterer

incident wave types which can be upgoing or downgoing wave constituting the four
processes depicted in Figure 2.5.1. The algebra is straight forward and the results
for ¥$), can be written as follows:

(1)  For h-polarized return due to k-polarized transmission (hh)

Ui ' = — Dia(kn) — Do (ki) (B.2a)
Yo = — Duna(Ep)Usnn (k)

— k;? (k3 sin® 6o — k7,) Dine(Fpi)Usne (Rpi) (B.2b)
Uhin' = — Ua(kpi) Dinn (k)

— k7? (k3 sin’ 6os — k2,) Usne(Rwi) Dine (K,i) (B.2c)
Tt = = Ulu(kn) — Ui (k) (B.2d)

(2)  For h-polarized return due to v-polarized transmission (hv)
o' = = Duna (ki) Dron(Epi) — Dino(Rpi) Diws (Fri) (B.3a)
U5 = = Duna(Foi)Uson(R i)

- kl_z (k; Sinz 00‘ - k::) Dlh' (Eﬂ)Ulcv(Epi) (B.3b)
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‘I’il—hl;l =- Ulhh(Epi)Dlvh(Epi)

- kl-z (kg sin’ 0o; — kf‘) Uiho (-Epi)Dlvo(Epi) (B.3c)
UhH = — Uina(kpi)Uron(Bei) — Uso (B i) U100 (Ei) (B.3d)

(3)  For v-polarized return due to h-polarized transmission (vh)

Yion " = Dio(kp) Dinn(Rps) + Dioo (o) Dino(Koi) (B.4a)

C U = Dyou(k ) Ui (k)
+ k' (k2 sin® O — 2, ) Do (Bpi)Uho (Bi) (B.4b)

UETt = Uron(Kpi) Dinn(Ks)
+k° (k: sin” 6; — kf‘) Uson(Rpi) D1no (Kpi) (B.4c)
U = Uren(Bpi)Usna (B i) + Ut (ki) Usno (K i) (B.4d)

(4)  For v-polarized return due to v-polarized transmission (vv)

¥t = Diu(ka) + Di,, (ki) (B.5a)

lve lve

Yol - Dlvh(Fﬁ)Ulvh(Eﬂ)

lvv

+ k7 (k3 sin® 0oi — k7, ) Diae(Bi)Ures(Bin) (B.5b)
Ui = Uren(Rpi) Dron(Rii)

+ k7 (k3 sin® 8 — &2, ) Ure (Kii) Dios (B ) (B.5¢)
I = Upn(kp) + U (Rii) (B.5d)

With k? = k3 sin’ o + k2, and the definitions of W*") = U and WY = D,all of the

above expressions for¥s can be summarized as

T3, =+ W (k)W (k)

lur

+ ky? (k3 sin® 0o + abk}, ) WD () WS (F,i) (B.6)

where the minus signs are for 4 = h and the plus signs are for u = v.
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Appendix C
Anisotropic Coeflicients

Coeflicient W31, ., in the ;scattering terms of the anisotropic random medium are
derived from Chapter 2 with (83), (69b), and (72b) for the components of the DGF
and the mean field which are combined according to the second term in (82) and the
definition in (86) to form ¥%!, ... The results for the coefficients can be expressed as
follows:

(1)  For the h-polarized return due to the h-polarized transmission (hh)

Uivsx = Dano(—Fkp)Uzno(K )05 (k3 ou (ki (C.1)
Uonnix = Dano(—ko) Dano(k i )0; (k37 or(k35:) (C.2)
i = Dano(—F,)Unne (K, )05 (k33 Jea(K35:) (C.3)
Uonnis = Dano(—Fp) Dane(Epi)o; (k37 ex(k3Z:) (C.4)
‘Il‘,’:,‘:';k = Usno(—k, ) Uzno(k:)0; (k33 )0r (K3%;) (C.5)
‘I’;:,‘:‘j,‘ Usno(—k,)Dano(F )0 (k2 0s (K32,) (C.6)
U = Unna(—Top)Usne ()0 (k22)en (RE2,) (@)
Uoanin = Usno(—F,) Dane(Ki)o; (k37 )en(k3z;) (C.8)
Uonren = —Dane(—kp)Uzno(Kpi)e; (k3y or (K33:) (C.9)
Uinvir = —Dane(—k,) Dano(kei)e; (k33 )ou (k35:) (C.10)

nge = —Dane(—Fo)Uane (ks )e; (k32 er(k32:) (C.11)
Uonis = —Dane(—Fp) Dane (ki )e; (33 Jen(kss:) (C.12)
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Uannis = —Usne(—F,)Uzno (K, )e; (k53 on (k3n:) - (Ca3)
Uonnts = —Usne(—k,) Dano (k) e; (k2d)0r (k23,) (C.14)
ainse = —Usne(—Fp)Usne (R, )e;(R52)ex(Rss:) (C.15)
Wannge = —Uane(—F,) Dane (K, )e; (52 en(k5s:) (C.16)

(2)  For the h-polarized return due to the v-polarized transmission (hv)

Uohogr = Dano(— ~k)U300(K i )0 (ES2)or (2% (C.17)
sk = Dano(~F,) Dioo(kpi o5 (k32 )or (k3% (C.18)
Wihoit = Dano(—kp)Usoe (K )o; (k53 en (R5e:) (C.19)
Whet = Dano(—kp) Daoe (k)0 (k33 Jen(R3a:) (C.20)
o = Usno(—F,)Unoo(E i) 0; (k52)on (KSY,) (C.21)
ahosk = Usno(—K,)Daoo(k i )o; (k32)0n (k3%) (C.22)
Waein = Uano(—F,)Usoe (B, )05 (32 )en (k5% (C.23)
Woreit = Unno(—kp) Daoe (R )o; (k52 )er(R5s;) (C.24)
Wohodr = —Dane(—K,)Uno(Roi)e; (k52 )or(kim) (C.25)
Wohods = —Dane(—F,)Dioo(K i )e; (k52 )or (k3%;) (C.26)
Wohods = ~Dane(—F,)Usoe(Rpi)e; (k52 )er (ki) (C.27)
Wohods = ~Dane(—F,)Dage(R i )e; (k52 )en (ki) (C.28)
Uohost = ~Usne(—F,)Usoo(Rpn )e; (k58)0x (k5 (C.29)
ook = —Usne(—F,) Dok )e; (k5d) 0n (k5% (C.30)
aneis = —Usne(—Kp)Use(Fpi)ej (k32 )er (k5e) (C.31)
iheir = —Usne(=Fp) Daoe(Fpi)e; (k5d)er (kss;) (C.32)

(3)  For the v-polarized return due to the h-polarized transmission (vh)

Uoonin = ~Daso(—k,)Usno(k s )o; (k33 Jox (k33:) (C.33)
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(4)

ou od
‘yhh Jk -

oueu
‘I’zvh,jk -
ou ed
‘I,th Jk =
od ou
‘P‘th Jk =

od od
‘I‘hh Jk =

odeu
T:vh Jk =

oded
Q?vh Jk

—Dj,(— kP)Dz’lO(kP')oJ(k;:)o"(kkt)
Dz,o( kP)Uz’"(km)oJ(k )ek(kh')
D?vo( —Fk, )Dzhe(k )0, (k )ek(k:u)

~Usoo(~Fp)Uzno(Bpi )05 (k220w (K52
~Unoo(—k,) Dano(k )05 (k32 )0 (K3x:)
~Ussol =k, )Unne (ki )0; (37 )en (KS3:)
~Usoo(—F,) Dane(Kei)o; (k37 )ex (k53:)

‘I’;:)f:k = Dyoe(— p)UﬁhO(kp-)eJ(k;:‘)ok(kzn)

‘I,;:Iﬁk = Daye(— kp)DHO(km)eJ (k;:)ok(k:n)
sonts = Dage(—K,)Uzne(kpi)e;(ksy Jen(K5s:)
‘I,;:I:jk = Daoe(— kP)Dzh-(k )eJ(k;:)eh(an)

Tiarer = Usoe(—kp) Unnol(K i) € (K32 ) ox (Kgn:)
W5irt . = Usoe(—kp) Dano(ki ) e; (k5o )or(K32;)
o s = Usoe(—Fp)Uzne(E i )es(5e)er(K5n;)

Waonir = Usoe(—Fo) Dane(Fpi)e;(k35)ex(K55:)

For the v-polarized return due to the v-polarized transmission (vv)

TWW

2vv Jk

‘Pw od

vy _ﬂc

QO" eu

2vv :k

‘I,oued —

2vv,5k —
‘I,odou
2vv,5k =

odod
‘I'zvv Jk =

\I,od eu

vy Jk

Dﬂvo\ ’\’p}Uzva(k )Oj(k )Ok(k:u)
~D300(— kp)D2v°(km)°J(kzm:)ok(kzn)
~Djo0(— kP)U3°¢(kP')OJ (k3% )er(k3r)

D!vo( k )Dzve(k )OJ(k )ek(khi)

Uzvo( k )Uzvo(k )oj(k )ok(kzn)
~Use0(— p)Dﬁ'w(km)oJ (k;':)ok(k,“)
—Usoo — kp)Uhe(km)oJ (k Jer(k33:)
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(C.34)
(C.35)
(C.36)

(C.37)
(C.38)
(C.39)
(C.40)

(C.41)
(C.42)
(C.43)
(C.44)

(C.45)
(C.46)
(C.47)
(C.48)

(C.49)
(C.50)
(C.51)
(C.52)

(C.53)
(C.54)
(C.55)
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‘Pod ed

2vv,jk =

WG“W

2005k

\I,eu od

2vv,5k

‘Ptu ey

2vv,jk

‘I,;u ed

vv,jk =

~Usvo(—F,) Dase(kpi)oj (k37 en(k3z:)

= Dzve(-'-Ep)Uho(Epi)ej(k;:)ok(k;:i)
= Dzve(—EP)Dz"W(EP‘)eJ'(k;:)ok(k;:i)
= Daoe(—F,)Usoe(Rpi)e; (k52 )er (K5h:)

Dioe(—k,)Dage (ki )es (K52 )er (kss:)

‘p;::ujk = Uzve(_EP)UM(Fp‘)ej(k;:)ok (k3%:)

\I,edod

2vv,jk

‘I,ed eu

2vv,5k

‘I,ed ed

2vv,5k

= Usoe(—kp) Dok )ej (k37 )on (K32:)
= Uzve(—EP)UZVG(-Epi)ej(k;:)ek(k;:i)

= Uzoe(—Fo) Dioe(Koi)ej (k37 )en(R3z:)

Appendix C
(C.56)

(C.57)
(C.58)
(C.59)
(C.60)

(C.61)
(C.62)
(C.63)
(C.64)

where o; (or 0,) and e; (or ;) are the j,k = z,y,z components of unit vector 6 and

¢ defined in section 2.4. For backscattering, k, = —k,; and o0;(k2*), 0;(k3?), e;(kS),

and e;(k;;) are evaluated for the backscattered waves similarly to the procedure in

Appendix B.
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Correlation Integrations

D.1 Integrations for zs«

The integrations over z, and z{ in (85a) of Chapter 2 are carried out to give
1 — e’.(_ss"“ai)dl 1 — e-"(p--“:&)dl

ﬂz — Kab ﬂx — Ked

T = [ ~ d8,8,(2% 4, 8.) - (D.1)

Using (74) and (24b) from Chapter 2 for the isotropic correlation functions in (D.1)
yields

I = 5,087 ( A, + B,) (D.2)

where A, and B, are integrals over 5, defined as

1-— ei(ﬂ. —ras)dy + e (mea—ras)dy

Al = /;oodﬂz (,3,’£§ + 1 +4k:‘£¥)z(’3‘ _ chb)(ﬂz - K’cd) (D-3)
o —e~¥(Bs—rea)dr
31 = /—wdﬂz (ﬂ,’lf + 1 +4k;eg):(ﬂ‘ — Kmb)(ﬂz — ch) (D-4)

The integrations over S, in (D.3) and (D.4) are carried out with the contour
integration method. For A4,, the imaginary part of B, has to be positive for the
integral to converge. Thus, A, can be taken as the integral along the positively
oriented contour composed of the real 3, axis and the infinite semi-circle on the
upper half of the complex 3, plane and centered at origin 3, = 0. Note that the
integral over the semi-circle vanishes on account of Jordan’s lemma. The chosen
contour encloses simple poles at 8, = %4, k.4 (if the imaginary parts of the simple
poles are positive) and a double pole at 8, = &, = il'lm. Integral A, is
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therefore composed of the residue contribution from the enclosed poles. According

to the residue theorem, the result for A4, is

ei("cd-".i)dl
(k28 + 1+ 4k7,£3)*(Kap — Kca)
N 1
(K2} + 1+ 4k2,63)* (Kea — Kab)
idlei(":—&-b)dx
£4(ky — 6T )2 (K1 — Kap)(K1 — Kea)
1 —_ e’.("l“‘"-¥)dl + e‘i(ﬂc‘—l&.y)dl

T 24(rk1 — £F) (K1 — Kan) (K1 — Kea)

2 1 1
e + ] } (D.5)
Ky — Ky K1 — Kap K1 — KRed

Ay = 2mi { (if Imk,, > 0)

(if Imk.4 > 0)

For B,, the same contour integration method is used except that the infinite
semi-circle is in the lower half of the complex 3, plane for convergence of the integral.
The integration contour is now negatively oriented along the real 3, axis and the lower
semi-circle enclosing simple poles at 3, = Kq, %4 (if the imaginary parts of the simple

poles are negative) and a double pole at 8, = xf = —if~*,/1 + 4k2.£3. The result for
Bl is

ei(n“—n.b)dl
(K303 +1 4 4k2,62)*(Kap — Keca)
1 .
B 1+ B (r — ) (1 e <)
id, e—i(u:—n“ )ds
B(sF — k1) (KT — Ka)(KF — Kea)
e—3(k] —Kca)ds

- £§(n’1“ - h‘q)z(Nr - ’Cab)(ﬁr - K’cd)

2 1 1
D.6
nf—n1+nf—n,b+n’f—n“]} (D-6)

B, = 21ri{ (if Imx,, < 0)

Substituting (D.6) and (D.5) in (D.4) yields Z2*¢ which is rearranged to obtain

the result in (87) for the isotropic random medium.
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D.2 Integrations of zz7;,

J
The integrations over z; and z7 in (86a) are carried out to give
Lfim = ‘/; wdﬁz‘l‘zjum(2zp.-,ﬂ,)

e"(pi"",c)dl — e‘-(pl-",|)dl e-i(pn-"v-c)dl —_ e—i(ﬁ;—ﬁn)d:

ﬂz — Kpq ﬂz = Ky

(D.7)
Using (80), (79), and (39b) for the anisotropic correlation functions in (D.7) yields
1;:;1‘71; = 63iklme:p'eh'7r-2(-‘42 + Bz) (D.S)

where integral A, and B, are defined as

ei("r- —Rye )d: — e‘("r'dl —",gdﬂ) e‘.(di —dy )pl + e"("" —Kpg )d’

D’&Emﬂ:)(ﬂz — Kpg)(B: — Krs)

4= ["ap, (D.9)

B /wdﬂ _e‘("rndz-"‘,gdl)e-i(‘a-dl)pl
TS DA (2R, B.)(B. — ipa) (Be — i)
In (D.9) and (D.10), D(2k,:,B.) is a quadratic expression in 3, given by

(D.10)

D(2k,,B:) = £38; + 2kyi( 63, — £5,) sin(2¢)B:

+ [1 + 4k2,03, + 4k}, (€3, cos® ¢ + £, sin’ ¢)] (D.11)

with £2 = £, sin’ ¢ + £3,, cos? . The integrations over S, in (D.9) and (D.10) are
carried out with the contour integration method as in the last section of this appendix.
In consideration of the convergence, the contour for A; is taken to be positively
oriented along the real 3, axis and the upper infinite semi-circle and that for B, is
negatively oriented along the real (3, axis and the lower infinite semi-circle. Integral
I kim is thus composed of the contribution from the residues of two simple poles
at B, = Kpq,K,, and two double poles corresponding to the two zeros of quadratic
equation D(2k,,B.) = 0 at B, = K&} for ks = L3*[~ku(B,, — &,)sin(2¢) +
z\/ (14+-4k2,03,)L3+4k3.03 .63, ] - The residue theorem then gives the result in (107) for

the anisotropic random medium. Note that the anisotropic result approaches the iso-

tropic result in the limits of £,,, — £,, and d, — 0.
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Appendix E
Average over Eulerian Angles

This appendix show the average over the random orientation, described by Eulerian

angles, of the tensor ? The averaging integral is

{Em) = /ohd'f j[o'dﬂ [’da o8 T -E-T (E.1)

where the probability density function of the random orientation is p(a,B,7) =

sin 8/(87*) and rotation tensor T given by

cosycosfBcosa —sinysina —sinycosfBcosa — cosysina sinf cosa
T = |cosycosfBsina +sinycosa —sinycosfBsina + cosycosa sinfsina
—cosysinf sin-y sin 8 cosf3
(E.2)

Tensor ?(7“') in the global coordinates (z,y,z) is obtained with the rotation

operation
& 00 bee &oy &a:

i) =T &) T=T -|0 & 0| T=|b & & (E.3)
0 0 & b Loy Cu

Explicitly, the elements of ?('F') in the global coordinates are

Eze =Co (cosz ~ cos® B cos® a + sin® v sin® @ — 2 sin-y cos ¥ cos B sin a cos a)
+&, (cos2 ~ cos® Bsin’® a + sin® v cos? & + 2 sin~y cosy cos B sin a cos a)
+f,: (COS2 Y Sil:l.2 ﬁ) = ec'aaaa + &g'ayzs + fs’azzz (E’4a')
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Appendix E
ey = — &ar (sin-y cosy cos® B cos® @ + cos? v cos A sin a cos
— sin’ 4 cos Bsin a cos a — sin ~ cos v sin’ a)
— &y (sin 7 cos 7y cos’ Bsin® @ — cos? 4 cos B sin a cos a
+ sin’ v cos Bsin @ cos a — siny cos ~ cos? a)
— & (sin7y cos5in B) = €1 uay + Eyiyay + £uruny (E.4b)
[ =f,: (cos v sin B cos B cos’ a — sin-y sin Bsin @ cos a)
+&y (cos 7 sin 8 cos B sin® a + sin+y sin A sin a cos a)
+€:i (—cosysinBcos B) = €p10ze; + Eyr@yes + €200z, (E.4c)
§ye =Co'Oays + &y @yye + €iruyz = Euilany + Eyilyay + £00uay (E.4d)

E ——le Sill.2 Y COS2 ,B COS2 a4 (:OS2 Sil?l2 a+ 2 sin7 COSs 7y COs ,B sin a cos o
Yy Y
+&y sin’ Y COS2 ﬂ SiIl.2 a+ (:OS:l Y (ZOS2 a—2 sin"y COs 7y Cos ,3 Siﬁ acos o
v

+&or (sin’ vsin® B) = €uitayy + Eyrtyyy + Eutuyy (E.4e)

€y: = — & (sin-y sin B cos B cos® & + cosy sin B sin a cos @)

— &y (sin 7 sin B cos B sin’ & — cos~y sin B sin & cos a)

— &, (—sinysinBcos B) = €,1aay; + Eyyys + Lurlays (E.4f)
iz =€ai0p,e + §yysz + €000z = Epvazy, + €y ayz: + £20uas (E-4g)
ey =£:0Q,.y + £yayey + §oa,,y = £=‘a=y¢ + £y’a'w= + E“a'tv' (E'4h)

€. =6 (sin2 B cos® a) + &, (sin’ B sin® a) + &, cos’ 3

=§=’a’=zz + Ey’a‘yzz + Ez'azzs (E.4.i)

Integrating over the above elements yields

(6} = [[01 [6 [“darafm) e =S et b +6)  (B50)

(Qv) = /o”d7 ./:dﬂ /:fda p(a, B, 7) §y = %(fs' + & + &) (E.5b)
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<€n> = /ohd'y /otdﬂ _/:'da P(aa B,7) &z = %(fz' + &y + &) (E'5c)

<£zv> = (£v=> = _/;”d'f ./:dﬂ /oz*da P(e,B,7) & =0 (E.5d)
(6er) = (6 = [ v [[48 [ ple Br7) £ = 0 (E-5e)
<€wt> = <£sr> = _/ohd')'/ofdﬂ /onda (e, 8,7) &y =0 (E.5f)

For generality, subscript ¢ for the scatterer species ¢ and b for the background are
not included in the notation of ¢; (j' = z',3’,2') which can takes on the value of &
for scatterer species i = 1,2,3,..., N or &;. for the background. The results above

are used to obtain (24, Chapter 5). When ¢ is replaced by S, (30, Chapter 5) is

obtained.
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Appendix F
Coefficients in Variances

Polarimetric scattering coefficients in Chapter 5 involve the term Ay,jum Which are
integrals over the Eulerian angles of the probability density function of the random
orientation and the variances in the global coordinates. Ag¢njum is considered a
variance averaged over the orientation and defined by
Z,¥,2 ir [ 4 2%
Agnjrim = g Otnuv -/o dvy /o dg /o da p(a,8,7) GujrGoim

There are six subscripts associated with coeflicient a’s in the above equation. Each
subscript can be z, y, or z; therefore, there are 3° = 729 terms in total. After being
integrated, 540 terms becomes zero and the remaining non-zero terms are presented
in this appendix. The coeflicients a’s, given in Appendix E, come from the rotation
operation on the tensors. As an example, consider the following integration of the

product of the orientation probability and a...a...

sin 8

/0 2wal'xr :dﬁ fo " da P(,8,7) Gaealoss = /o 2’rd'r /o 8 /{, " da Py

2
. (cosz ~ cos? B cos® a + sin® v sin? & — 2siny cosy cos B sin o cos a)
ax x b sin ﬂ
= [ d d
/o Y 0 A 0 « 8n3

[ cos* v cos* B cos* a + sin* y sin* a + 4sin* v cos? v cos® B sin® @ cos®

+ 2 cos® v cos? B cos® a sin® v sin® @ — 4 cos? v cos? B cos® a sin v cos v cos B sin a cos
384

384 1
1920 5

—45in® v sin® a siny cos v cos B sin a cos a] =

Followed are all of the 189 non-zero results for the integrals in A,,;xm
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For uv = zz , the results are

[Tt 48 [ de p(,8,7) Gunatens = 1/5 (F.12)
[ [48 [da p(@,8,7) sty = 1/15 (F.1b)
/ iy [as [ "do p(@,8,7) Guastars = 1/15 (F.1c)
/ Tdvy [ [ o p(cyB,7) Gueyany = 1/15 (F.1d)
/o iy L "d8 /o e p(0,8,7) Ganyaye = 1/15 (F.1e)
/ dy [ [ e p(ctyB,7) Guerans = 1/15 (F.11)
[ (48 [ da p(a,,7) tunstune =1/15 (F.1g)
/o “dy /o a8 /o det p(t,B,7) Guyaany = 1/15 (F.1h)
[ty [48 [ da (e,7) agatnge = 1/15 (F.13)
[ty [[48 [da 5(a,8,7) torytuns = 1/15 (F.1j)
[ [48 [["dex pl,8,7) Gomony = 1/5 (F.1k)
[ar [[48 [da p(a:,7) aumyaens = 1/15 (F.11)
/o Tdy /o a8 /o “det Pt B7) Gugsage = 1/15 (F.1m)
/o "d’r fo B /o " da P(,8,7) Cays8zsy =1/15 (F.1n)
[T [48 [ da p(@,,7) tusstens =1/15 (F.10)
/o iy /o a8 /o da p(@,8,7) usatuse = 1/15 (F.1p)
fo “d'r /o 4B /o " da P(@,8,7) Gory@ay: = 1/15 (F.1q)
fo iy /o 4B /o “da P(@,8,7) orytesy = 1/15 (F.1r)
[Ttr [48 [da pla,8,7) ouustens =1/15 (F.15)
[ [48 [ de p(2,8,7) aunstury = 1/15 (F.1t)

/ohd’r [,'dﬂ f:da 2(2,8,7) @azs0z:c = 1/5 (F.1u)
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For uv = zy, the results are

fo 2“al‘r /o 4B /o “der (@, 8,7) Gz2slyes = 1/15 (F.2a)
[Tt [[48 [ da p(e,8,7) Gty = 2/15 (F.2b)
/o 2’rah /o 4p fo " der P(2 B27Y) Gerstyss = 2/15 (F.2¢)
[Tér [[48 [["da p(@,8,7) Graytey = ~1/30 (F.2d)
[T [[48 [ da p(c,8,7) Gueyrye = ~1/30 (F.2e)
[T [[48 [ “da p(e,8,7) Guestyus = ~1/30 (F.2f)
[ [[a8 [de p(@,8,7) avesayes = ~1/30 (F-2g)
/; “dy /o 48 A " doc (0, 8,7) Gayatiyey = ~1/30 (F.2h)
[Tt [@8 [de p(2,8,7) aupntyye = ~1/30 (F.2i)
[T [d8 [ dec pl,8,7) aupyayes = 2/15 (F.2i)
[ [a8 [ dec plc,8,7) Gupytny = 1/15 (F.2K)
[Ty (48 [ doc plet,B,7) 2emtnss = 2115 (F.21)
[y [d8 [ dec plc,8,7) anpsys = ~1/30 (F.2m)
[ar [[48 [[da p(@:6,7) armutyuy = ~1/30 (F.2n)
[ 48 [ de p(0,8,7) Gnsatyes = =1/30 (F.20)
/o 2’rﬂl'r /o 4B /o “de (@, 8,7) @zs20y.. = —1/30 (F.2p)
/o 2“a!'r j:'dﬂ fo “da P(@,3,7) Gasyyys = —1/30 (F.2q)
[Ty [[a8 [ der p(@,6,7) ausyyey = ~1/30 (F.2r)
fo 2’ral~/ /o 4B /o " de P(0, B,7Y) Gassyze = 2/15 (F.2s)
/ Ty [a] d p(y By7Y) Gursyyy = 2/15 (F.2t)

/ohd’r /:dﬂ /o " da p(a,B,7) @zs:0y:; = 1/15 (F.2u)
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For uv = zz, the results are

/ “dy [ “da p(a, B,7) Gusstuee = 1/15 (F.3a)
[ [48 [ da pla B,7) aunstny = 2/15 (F.3b)
/ iy [as | “de p(cty By7) Guenens = 2/15 (F.3¢)
[t [[48 [ de p(@,8,7) Gueytuny = =1/30 (F.3d)
/ “dy [ "do D0, B,7) Gueyuge = —1/30 (F.3e)
/ iy [ “da p(0ty B,7) Guesiees = —1/30 (F.31)
[ 48 [de p(@,8,7) Guectres = ~1/30 (F.3g)
/ iy [ “da D, B,7) Guyeuey = —1/30 (F.3h)
/ Ty [ “da p(a B,7) Gayatiaye = —1/30 (F.3i)
/ "y [ “da p(@, B,7) Guyyuee = 2/15 (F.3j)
[t [[48 [da pe ,7) aumyuny = 1/15 (F.3K)
[t (a8 [ de p(@,8,7) aupyanes = 2/15 (F.31)
/ iy [a] “da D, B, 7) Guysegs = —1/30 (F.3m)
/ Ty [ "da D0ty By7) Gaysany = —1/30 (F.3n)
[ ar [[48 [da p(@,8,7) tuustuns = ~1/30 (F.30)
/0 ”d'r [J 4B fo “da P(e,8,7) Gess0ss = —1/30 (F.3p)
[ty [[46 [ da p(e,8,7) tuuyauys = ~1/30 (F-3q)
[ [[48 [da p(a By Guryuny = ~1/30 (F.31)
[ay [[48 [ da p(e,8,7) Guretees = 2/15 (F.3s)
[ty [[48 [ da p(@,8,7) aussauy = 2/15 (F.3¢)

ffd‘f /otdﬂ /:tda ?(a,5,7) 8zsc0... =1/15 (F.3u)
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For uv = yz, the results are

/ iy / 4B / “do p(c B,7) Gyeetens = 1/15 (F.4a)
[ ax [d8 [ da ple,8,7) ayustuny = 2/15 (F.4b)
[ty [[48 [ dex ol B,7) ayuntnns = 215 (F.4c)
[ [[48 [ dx 5t B,7) ey = <1/30 (F.4d)
/ Ty / "B / “der (e B,7) Gyeyays = ~1/30 (F.de)
/o Ty /o 48 /o “da p(@, 8,7) dyesens = —1/30 (F.4f)
[ 48 [ de o(@,8,7) @yestnis = ~1/30 (F.4g)
[T [d8 [ der o(@,8,7) aypsteny = ~1/30 (F.4h)
[ [[48 [["dex plets 8,7 aypane = ~1/30 (F.4i)
/o hd‘y '/0 48 /o " da P(@,8,7) Gyyyaee = 2/15 (F.43)
[ty [[48 [da p(@,8,7) aypyae = 1/15 (F.4k)
[ar [(a [ de o(@,8,7) aypyts = 2715 (F.41)
[ar (48 [ der p(@,8,7) ayputeys = —1/30 (F.4m)
[ [48 [["dec ple B,7) ayyuany = ~1/30 (F.4n)
/o 2’ral'r /o 48 fo " da P(@,8,7) @yszlee: = —1/30 (F.40)
[ty [[48 ["de p(@,8,7) ayeetuse = ~1/30 (F.4p)
[ty [[48 ["da p(@,8,7) ayeyacss = ~1/30 (Fdq)
[ [[48 [ "dec pla, 8,7) ayuyuuy = ~1/30 (F.4r)
[ty [[48 [da p(@,8,7) ayesaeee = 2/15 (F.45)
[ty [[48 [da p(@,5,7) ayusaery =2/15 (F.4t)

_/ohd'Y /otdﬂ /o”d“ P(a, 8,7) ayss0... =1/15 (F.4u)
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For uv = yy, the results are

[[1 [[48 [ der p(@,8,7) eyuutiyen = 1/5 (F.50)
[[tr [[48 [ dex p(0,,7) ayestyry = 1/15 (F.5b)
[T [48 ["de p(@,8,7) aysats = 1/15 (F-5¢)
[T [48 [ de pe,7) ayuyyey = 1/15 (F.5)
[T [48 [ der p(e,7) ayeyaee = 1/15 (F-5e)
[ [48 [["dor plets,7) ayustyes = 1/15 (F.5f)
[ [48 [de p(@,8,7) ayustyee = 1/15 (F-5¢)
/0 ”d'r fo 48 /‘: “da P(a,8,7) ayyeayey =1/15 (F.5h)
[ [a8 [de (@,8,7) apstrns = 1/15 (F-5i)
[T [48 [da p(@,8,7) emsen = 1/15 (F.53)
[ [48 [ dr ples8,7) aruyrmy = 1/5 (F.5K)
/0 hd'r fo dp fo " de P(,8,7) Gyyyy:. = 1/15 (F.51)
[ [48 [ dar ple,7) ayputs = 1/15 (F.5m)
[T [[a8 [ e pl@,8,7) apte = 1/15 (F.5n)
[T [a8 [da p@,8,7) ayetye = 1/15 (F-50)
/o z’rcl’r /o 46 fo “da P(,8,7) ysay:e = 1/15 (F.5p)
[T [a8 [ e p(e,8,7) dyynys = 1/15 (F-50)
[ [48 [de (@,8,7) aymrey = 1/15 (F.57)
[ [48 [ dor ple ) ayustyes = 1/15 (F.5s)
[ [48 [ dor ple,7) ayusty = 1/15 (F.5¢)

/:d’r f;dﬂ /o Tda P(a,8,7) yssay:s = 1/5 (F5u)
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For uv = yz, the results are

/ iy [as “do p(c,,7) Gyentses = 1/15 (F.6a)
/ Ty [ “do p(ct, B,7) Gyeatyy = 2/15 (F.6b)
/0 dy /o 48 /o " do p(c B, 7) Gyeetans = 2/15 (F.6c)
[T [48 [do ple,8,7) ayayarey = ~1/30 (F.6d)
[Ty [48 [ e p(e,8,7) aymyeuys = ~1/30 (F.Ge)
/o Ty /o a8 /o e p(a, By7) Gyesans = —1/30 (F.6f)
[T [[48 [ e ple,8,7) eyestuee = ~1/30 (F-6g)
[ar [[48 [ da ple,8,7) aypeauny = ~1/30 (F.6h)
[ty [[a8 [ dec ple,8,7) ayputuns = =1/30 (F.61)
fo Ty /; dp fo " da P(@,8,7) Gyyy@:ea = 2/15 (F.65)
[ (a8 [ d pa,8,7) appyuny = 1/15 (F.6k)
[ty [[48 [ de p(as B,7) eyt = 2/15 (F.61)
[ [[48 [ da p(@,8,7) aypsanys = =1/30 (F.6m)
[ty [[48 [ dar ple, By) sty = ~1/30 (F-6n)
[ar [[48 [ da pl,8,7) @ysatues = ~1/30 (F.6o)
/o hdv /o 48 /o “da P(@,8,7) ay:z0..c = —1/30 (F.6p)
) /;"d:, [as [ de p(% B,7) Gyeyags = —1/30 (F.6q)
[T [a8 [ de p(@,8,7) ayoyt = ~1/30 (F-61)
/o iy /o 48 /0 Tda p(ay By ) yessne = 2/15 (F.6s)
[ [a8 [ da pl@,8,7) tysstury = 2/15 (F.6t)

f:tﬂh [dﬂ /o "da p(e,B,7) Gyestuns = 1/15 (F.6u)



234 Appendix F

For uv = zz, the results are

/ “dy [ “do p(0, B,7) Guantues = 1/15 (F.7a)
[t [[48 [ de o(@,8,7) Gurstuny = 2/15 (F.1b)
/ “dy [as | “da p(0, B,7) Guenuns = 2/15 (F.7c)
/ “dy [ “dox p(0t, By 7) Gumyuey = —1/30 (F.7d)
/ “dy [ “da p(cty B, 7) Gueyuye = —1/30 (F.7e)
/o “dy / 48 /o dot p(c, B,7) Grasans = —1/30 (F.71)
[ [[48 [ de p(e,,7) @rsstnse = ~1/30 (F.7g)
/ “dy i "B i " dot p(cty B,7) Grgatieny = —1/30 (F.7Th)
/o iy /o a8 /0 dee p(@, B,7) Guyetaye = —1/30 (F.T)
[t [[48 [ dex plecsB,7) euryene = 2/15 (F.75)
/ “dy / "8 / "da p(0y By Y) GryyGagy = 1/15 (F.7k)
[ty [[46 [ "da p(@,5,7) auyaen = 2/15 (F.71)
/o iy /o 4B _/o “da pla, B,7) GrysGey: = —1/30 (F.7m)
[ty [[48 [ "de p(@,B,7) aupeteny = ~1/30 (F.7n)
/o “dy /0 48 A “dot (e, 8,7) Guseans = —1/30 (F.7o)
[y [[48 [ dex plet,B,7) @ranene = ~1/30 (F.Tp)
[ty [[48 [ "da p(@,8,7) aueyaess = ~1/30 (F1q)
[ 48 [ de p(@,,7) Guryteny = —1/30 (F.70)
/o “dy /o a8 /o de p(0t, By7) Goretians = 2/15 (F.7s)
/ “dy [ “do p(ct, 8,7) @ertayy = 2/15 (F.Tt)

/:’d‘r /:dﬂ /o " do P(,8,7) @sss8e.. = 1/15 (F.7u)
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For uv =2y, the results are

/o dy /o 48 /o d p(e, B,7) Grentiyes = 1/15 (F.8a)
[ [[48 [do p(@,7) Gresty = 2/15 (F.8b)
/o Tdy /; 48 /0 o p(@, B,7) Gueetyes = 2/15 (F.8¢)
[ [d8 [ de p(@,,7) aueyyes = ~1/30 (F.8)
[ax (48 [ der p(@2,7) areyyes = ~1/30 (F8e)
[ [[48 [ da p(e,8,7) uestyes = ~1/30 (F.81)
(1 [[48 [ de ple,8,7) Gunstyee = ~1/30 (F.8g)
[ [48 [ "de p(e,8,7) Gmetyey = ~1/30 (F.8h)
[ [48 [ da ple,B,7) eumuarye = ~1/30 (F.8i)
[ [a8 [der p(@,7) aupstyes = 2/15 (F.8))
[ [48 ["do p(e,,7) @y = 1/15 (F.8k)
[ [[a8 [ de ple,8,7) aomses = 2/15 (F.8)
[ [[d8 [ der p(@8,7) Gupstyes = ~1/30 (F.8m)
fo hd'/ /o 48 /o " der P(2,8,7) Gry:0yzy = —1/30 (F.8n)
/o "y /o 48 /o "ot (0, £37) Gureyes = —1/30 (F.80)
/ dy / 4B / d p(@, By7) Garetyee = —1/30 (F.8p)
[ [d [ de p(e,8,7) ausyayes = ~1/30 (F8q)
[t [@8 [ da ple,8,7) ounpayey = ~1/30 (F.8)
[ [a [ de o(@,,7) aussayes = 2/15 (F.8s)
[ (a8 [der o(@,8,7) avesamy = 2/15 (F.8t)

/ohd‘r /o*dﬂ fo “de (@, B,7) @:::ay.. =1/15 (F.8u)
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For uv = zz, the results are

/; Tdy /o 48 /o “do p(0y B, ) Geeataee = 1/5 (F.9a)
/ dy [as do p(cy8,7) rentugy = 1/15 (F.9b)
Ji dy [a] do p(e, 8,7) Gueatars = 1/15 (F.9¢)
/ iy [as [ “da p(c B,7) @reyney = 1/15 (F.9d)
/ iy [as [ “do p(cy8,7) @eeynge = 1/15 (F.9¢)
/ "oy [[as [ da p(@,8,7) Guesres = 1/15 (F.9)
[t [(48 [ de (@,8,7) auestune = 1/15 (F.9)
[t [[48 [de ples8,7) sty = 1/15 (F.9h)
/o ”d'r /o 4B /o " da P(, ,7) Gsy20sy= = 1/15 (F.9)
[ [[48 [de plets8,7) Gumuen = 1/15 (F-9))
[ [[48 [[da ples B,7) youny = 1/5 (F.9K)
[ (a8 [["dor plo B,1) s = 1/15 (F91)
[ [a8 [ de o(@,8,7) aupstuns = 1/15 (F.9m)
[ [[48 [ dc plosB,7) gty = 1/15 (F-9n)
[ [(48 [ de p(@,8,7) aurstuns = 1/15 (F.90)
/o i /0 "48 /0 do p(cty B,7) Gereane = 1/15 (F.9p)
[y [48 [[doc pleyB,7) @uryuge = 1/15 (F.9)
[t [[48 [da p(e,8,7) Gurytuny = 1/15 (7.91)
[ty [[48 [da p(@,8,7) Gunstens = 1/15 (F.9)
[t [[48 [da p(e,8,7) tusstnsy = 1/15 (F.9t)

f:’d‘f fotdﬁ /O”da ?(2,8,7) G1448..: = 1/5 (F.9u)
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The results of the integrations show that many combinations of a’s have one

of the values: —-1/30, 1/15, 2/15, or 1/5. Actually, the results can be written

in compact forms due to the symmetry in the combinations of the subscripts. By

defining the averaging operator L as

L= /:'d‘r /otdﬂ /(;hda P, B8,7)

the non-zero terms can simply be expressed as

La'uvua'uvv = 1/5
Laﬂmacww = 2/15
La‘uvva«uww = Lauowawnw = La-uvwauwv = La'uwwa'ﬂau = 1/15

La\rvwanu = Laﬂma:ws = —1/30

where subscript =, s, u, v, or w can be z, y, or z.

(F.10)

(F.10a)
(F.10b)
(F.10c)
(F.10d)
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