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Abstract: The MicroBooNE liquid argon time projection chamber located at Fermilab is a
neutrino experiment dedicated to the study of short-baseline oscillations, the measurements
of neutrino cross sections in liquid argon, and to the research and development of this
novel detector technology. Accurate and precise measurements of calorimetry are essential
to the event reconstruction and are achieved by leveraging the TPC to measure deposited
energy per unit length along the particle trajectory, with mm resolution. We describe the
non-uniform calorimetric reconstruction performance in the detector, showing dependence
on the angle of the particle trajectory. Such non-uniform reconstruction directly affects
the performance of the particle identification algorithms which infer particle type from
calorimetric measurements. This work presents a new particle identification method which
accounts for and effectively addresses such non-uniformity. The newly developed method
shows improved performance compared to previous algorithms, illustrated by a 93.7%
proton selection efficiency and a 10% muon mis-identification rate, with a fairly loose
selection of tracks performed on beam data. The performance is further demonstrated by
identifying exclusive final states in νµCC interactions. While developed using MicroBooNE
data and simulation, this method is easily applicable to future LArTPC experiments, such
as SBND, ICARUS, and DUNE.

Keywords: Other experiments
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1 Introduction

Liquid argon time projection chambers (LArTPCs) are powerful neutrino detectors which
enable the study of topological and calorimetric signatures of particles produced in neutrino
interactions with millimeter spatial resolution [1–3]. These particles are reconstructed as
track-like (or simply tracks) if they deposit energy predominantly through ionization, or
shower-like (or simply showers), if the main energy loss mechanisms are bremsstrahlung
and pair production. Tracks are primarily associated with the reconstruction of muons,
protons, and pions, while showers are associated with electrons and photons. At typical
MicroBooNE energies, between hundreds of MeV to few GeV, hadrons do not produce
hadronic showers. However, thanks to the high resolution, if a LArTPC like MicroBooNE
were to be operated at larger energies, the different particles produced in hadronic showers
could be reconstructed individually. Energy lost by final state charged particles results in
the ionization of argon atoms. Trails of ionization electrons are detected by multiple wire
planes to provide a 3D image of the particles’ propagation through the detector. Particle
identification (PID), determination of the type of particle given its calorimetric measure-
ment, is performed by studying the profiles of each ionization electron trail. The left panel

– 1 –
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Figure 1. Left: example of a raw image of a νµCC interaction in MicroBooNE with two tracks in
the final state, as recorded on the collection plane. The deposited charge (color scale) is shown as
a function of wire number (x-axis) and time (y-axis). The ionization profiles of the two particles
are used to identify them as one proton and one muon. Right: a sketch of the relevant directions
and angle in the calorimetric reconstruction. The orange and blue arrows represent two possible
particle trajectories with different gamma angles and different local pitch values, represented by
their lengths. Black solid lines represent wires, spaced 0.3 cm apart. The dashed lines are perpen-
dicular to the wire-pitch direction, and make evident the connection between the angle γ and ∆x,
through eq. (2.1).

of figure 1 shows the collection plane projection of a muon neutrino charged current (νµCC)
interaction, in which two track-like particles are produced. These tracks are classified as
one proton and one muon, the two most common track-like particles in MicroBooNE, dif-
ferentiated by the different amounts of energy deposited per unit length at any given point
in their trajectories.

After a brief discussion of the MicroBooNE detector and reconstruction in section 2,
in section 3 we illustrate the angular dependence of LArTPCs’ calorimetric reconstruction.
In section 4, a review of the particle identification principles is presented. In section 5 we
address the central topic of the paper: a new method to perform particle identification
that more easily accounts for angular dependencies in calorimetric reconstruction. The
performance of this method is discussed in section 6, where the identification of different
muon neutrino interaction final states is presented.

2 The MicroBooNE detector and the calorimetric reconstruction of
tracks

The MicroBooNE detector is an 85 ton active mass liquid argon time projection chamber
(LArTPC) [4]. The drift direction (x), vertical direction (y), and the beam direction (z)
measure 2.56m, 2.33m, and 10.36m, respectively. The nominal electric field inside the TPC
is 273.9V/cm resulting in an electron drift velocity of 0.11 cm/µs. The drifted ionization
charge from particle interactions is read out by three wire planes spaced 0.3 cm apart, with
a 0.3 cm wire spacing, oriented vertically for the collection plane (Y plane), at +60 deg for
the first induction plane (U plane), and at -60 deg for the second induction plane (V plane).
The digitized charge on the readout wires is noise-filtered [5] and deconvolved [6, 7]. The

– 2 –
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Figure 2. In this schematic representation of the MicroBooNE LArTPC (see text for details), a
neutrino interacts in the detector, producing two charged particles in the final state. The ionization
is drifted towards the anode, and induces waveforms on the wire planes, which are displayed for the
V and Y planes. Figure taken from [4].

high signal-to-noise ratio of MicroBooNE’s TPC and cold electronics allow for the accurate
measurement of charge on all three wire-planes, an essential ingredient in reliable particle
identification. The data is represented as a set of three two-dimensional images (one for
each wire plane), with wire number plotted along the horizontal axis and drift time plotted
along the vertical axis. Each provides a two-dimensional projection of the charge deposited
in the event. An example is given in the left panel of figure 1.

The position and amount of charge deposited is characterized by the hit-finding pro-
cess: charge depositions on a given wire at a given time, called hits, are extracted through a
Gaussian fit to the waveforms [8]. Next, the Pandora multi-algorithm pattern recognition
framework [9] groups nearby hits into clusters. Clusters on the three planes are subse-
quently matched to reconstruct three dimensional particles. Each cluster is a projection
on a given plane of the charge deposited by a particle. The deposited charge is corrected
for detector effects to provide a spatially uniform response. For each hit in a cluster the
charge deposited is converted to deposited energy, providing a local measurement of the
energy ∆E along a three-dimensional distance ∆x extracted from the reconstructed tra-
jectory [10]. The conversion is performed with a multiplicative factor specific to the plane,
and correcting for the recombination of electron and ions [10, 11]. The three-dimensional
distance ∆x is called local pitch, and is computed as

∆x = 0.3 cm / cos(γ), (2.1)

– 3 –
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Figure 3. Normalized distributions of dE/dx for different local pitch in the low-local pitch regime
(left) and over the entire local pitch spectrum (right), as measured on the collection plane in a
sample of cosmic muons tracks in the MicroBooNE data.

where 0.3 cm is the wire spacing and γ is the three-dimensional angle between the local
direction of the track and the vector that connects adjacent wires (also called wire-pitch
direction), as illustrated in the right panel of figure 1. The angle γ ranges between 0
and 90 degrees, while ∆x takes values between 0.3 cm and infinity. Combined with the
measurement of ∆E, the ionization density dE/dx can be estimated for every hit.

3 Angular effects in calorimetric reconstruction

When measuring calorimetric information in a LArTPC, the fact that charge is drifted
along a particular direction (drift direction) and projected on wire planes with different
orientations makes the calorimetric reconstruction angle-dependent. Both dE/dx and the
precision with which it is measured depend on the direction of the ionization trace left by
the particle, even in a “perfect detector”, absent of detector effects and angle-dependent
detector response non-uniformity. The dependence appears primarily through the angle γ
illustrated in the bottom plot of figure 1. Because the angle γ relates directly to the local
pitch through a bijective function (eq. (2.1)), γ and local pitch can be used interchangeably,
and local pitch will be used in the rest of the article.

Measured dE/dx, even with a perfect detector, is angle-dependent because of intrinsic
statistical fluctuations in particle energy loss, which impact the probability density func-
tion of measurements when averaged over different travel distances (different local pitch).
A dE/dx distribution, typically described by a Landau function for small local pitch val-
ues [12], becomes narrower at larger local pitch and its most probable value moves to higher
dE/dx values while its average remains constant. This general geometrical effect applies
to all LArTPCs and is shown in figure 33.8 in [13].

The precision of dE/dxmeasurements also depends on the local pitch since the shape of
the signals induced on the wires by the drifting charge appears very different at lower local
pitch (< 0.7 cm) compared to larger local pitch (> 0.7 cm) [6], impacting hit reconstruction
and making measurements more precise at lower local pitch. Figure 3 illustrates these
effects as measured with cosmic ray tracks in MicroBooNE’s data. By requiring the tracks

– 4 –
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to cross the detector, this selection results in a clean set of relativistic muons, which are
minimum ionizing particles, with a constant average dE/dx. The left plot shows the
shape of the dE/dx distribution for different small local pitch values, where the peak of
the distributions shifts towards larger dE/dx values for larger local pitch, varying by 4%
in the low local pitch range (between 0.3 cm and 0.7 cm). The width of the distributions
increases at larger local pitch because the finite precision introduced by the detector smears
out the distribution more than the predicted shrinking induced by geometrical effects. The
right plot shows analogous distributions integrated over a wider range of local pitch values,
illustrating a major change in the shape of the distributions at very large local pitch. The
distributions for larger local pitch values show a second peak at smaller dE/dx values,
mainly populated by particles traveling parallel to the drift direction. These tracks induce
long signals in time, for which the Gaussian fit performed by the hit-finding process is not
sufficient. Therefore, such signals are fit by a sum of Gaussian shapes, for which the overall
number of hits, their positions, and their amplitudes are free parameters. The width is
fixed to reduce the degeneracy of the problem. The total deposited charge is therefore
segmented into multiple hits, leading to an underestimation of the hit charge and resulting
in smaller dE/dx values. These small and non-physical values of dE/dx encountered at
large local pitch are not correlated with the true dE/dx, bringing no additional information
and reducing the particle identification performance.

Only considering the dependence on the angle γ, which is the polar angle with respect
to the wire-pitch direction, is an approximation, as it encapsulates most, but not all the
angular dependence. A more complete analysis will consider the additional dependence on
the relative azimuthal angle, that, together with γ, uniquely describes the 3D trajectory.
Nonetheless, this approximation captures most of the angular dependence, significantly
improving particle identification performance.

4 Energy deposition profile and particle identification

Typical particle identification methods condense calorimetric information into a score used
to distinguish different particle species. The score is typically obtained by starting from
the measured dE/dx profile as a function of residual range — the distance of a given
energy deposition within the track from the endpoint of the track itself. This profile is
compared with the expectation for different particle hypotheses to choose the hypothesis
that best matches the data. The hypothesized dE/dx profile is computed by integrating
the Bethe-Bloch function for a given particle mass and charge. In performing this compar-
ison, the intrinsic statistical nature of dE/dx must be accounted for, as well as the angular
dependencies (described in the previous section) which also affect the shape of the dE/dx
distribution. As local pitch values are different on different readout planes, combining
the three wire plane measurements ensures that the calorimetric information provided by
the LArTPC in the entire 4π solid angle is fully leveraged for the purpose of performing
particle identification.

– 5 –
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5 The likelihood-based method for particle identification

The newly-developed method for particle identification accounts for angular dependen-
cies in calorimetric reconstruction and compensates for distortions at large local pitch by
efficiently combining the three wire plane measurements.

This method computes the likelihood for different particle hypotheses given the exper-
imentally measured dE/dx profile. The likelihood is based on a model which is computed
through an accurate description of the expected dE/dx probability density function.

5.1 The dE/dx probability density function

The dE/dx probability density function (PDF) for each particle type is the basic ingre-
dient of the likelihood calculation. In principle, the average dE/dx as a function of the
residual range could be estimated by integrating the Bethe-Bloch function before applying
detector reconstruction. However, a complete characterization of the dE/dx distribution
requires an analytic description of the intrinsic fluctuations of the ionization energy loss
and effect of the detector reconstruction. This is challenging given the very long compu-
tational time required and because there is no straightforward way to derive an analytic
description of the detector reconstruction. The dE/dx PDF is instead estimated from the
MicroBooNE simulation which incorporates all the described effects, as demonstrated in
the data/simulation comparisons in section 6.

The PDF is estimated through a three dimensional histogram of dE/dx, residual range,
and local pitch. The histogram is normalized so that for each combination of values of resid-
ual range and local pitch, the integral of the dE/dx distribution sums to one, providing an
estimate of the conditional PDF p(dE/dx|residual range, local pitch) that is not informed
by the underlying kinematics of tracks. This procedure is repeated for each plane and for
two particle species, namely muons and protons. The histograms are filled with hits asso-
ciated with well-reconstructed tracks produced in simulated neutrino interactions. These
tracks are required to be complete, meaning that more than 90% of the true deposited
charge is reconstructed. They are also required to be pure, meaning that more than 90% of
their reconstructed charge was deposited by a single particle. The tracks are also required
to be contained within a fiducial volume, where both the start and end points are at least
20 cm away from the boundaries of the TPC.

The dE/dx PDF is visualized through three series of examples in figure 4, where in each
row only one of the three parameters (residual range, local pitch, and plane, respectively)
is varied, while keeping the other two fixed. The PDF changes considerably, showing,
for example, a reduction of the dE/dx of the peak value at higher residual range and an
increase of the width at higher local pitch, justifying the need for such a construction as a
function of these three variables.

5.2 The likelihood ratio test statistic as PID score

Using the PDF previously constructed, the likelihood of any particle hypothesis can be
computed for each reconstructed track. Interactions of neutrinos in the GeV energy range
in liquid argon lead to comparable rates of muons, charged pions, and protons, making

– 6 –
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Figure 4. Expected dE/dx distributions for muon (blue) and proton (orange) hits. The top row
shows distributions on the collection plane, with a fixed value of local pitch, and three different
values of the residual range. The middle row shows distributions on the collection plane, with a
fixed value of the residual range, and three different values of local pitch. The bottom row shows
distributions on the three wire planes, with a fixed value of residual range and local pitch. As
expected, the peak dE/dx value reduces at higher residual range, passing from 11MeV/cm to
5.75MeV/cm, and to 4.25MeV/cm across the three bins under consideration for protons.

the classification between these particle species important. However, this paper will focus
on the binary classification problem of distinguishing muons from protons. As pions and
muons have very similar masses, the calorimetric separation of these two particle species
is not addressed in this paper, and pion tracks will appear as muon-like by means of this
algorithm. Kaons are instead very rare (approximately 0.1% of the events in MicroBooNE
are predicted to contain a kaon) and are omitted in this work.

The likelihood for a track is computed starting from the single-hit-likelihood:

Lhit(type|plane, dE/dx, rr, local pitch) = p(dE/dx|type, plane, rr, local pitch), (5.1)

where p stands for the PDF, type refers to muon or proton and rr stands for residual range.
The local pitch is measured locally, and it is generally different for each hit associated with
the same track, because of changes in track trajectory due to multiple Coulomb scattering.
The plane is included because the PDFs are significantly different for the different planes.
The single-plane-likelihood is computed by taking the product of the single-hit-likelihood
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for each hit on a given plane:

Lplane(type|plane, {dE/dx}i=1,...,N , {rr}i=1,...,N , {local pitch}i=1,...,N )

=
N∏
i=1
Lhit(type|plane, dE/dxi, rri, local pitchi), (5.2)

where i = 1, . . . , N indexes the hits on the plane under consideration. The three-plane-
likelihood, which is the likelihood for the entire track, is then computed as the product of
the single-plane-likelihoods for the three wire planes.

The likelihood defined this way is an approximation as it neglects correlations between
the charge measured on different wires and planes. However, fluctuations of the hit charge
are in general correlated among wires on different planes, as they record the same charge
through different projections. Moreover, the induced charge on neighboring wires and
correlated noise introduce additional correlations between the charge recorded on different
wires on the same plane [6, 7]. Modeling these correlations is in general complex, as they
depend on the geometry on a track-by-track basis. Neglecting such correlations and using
an approximation of the likelihood makes the method less optimal, and may result in a loss
of separation power. A possible discrepancy between the data and the simulation for the
values of dE/dx, which are the inputs of the PID method, could introduce a systematic
bias. However, as shown in the plots in section 6 where the data and the simulation are
compared, there is no evidence that this effect is important. In fact, all the correlation
and noise effects introduced previously are reproduced in the simulation [6, 7], and a
dedicated correction of the dE/dx distribution in angular bins is applied on top of the
overall calibration [10], making the simulation precise and accurate.

The likelihood is then used to compute the likelihood ratio test statistic, which is
employed to perform the classification task:

T (dE/dx, rr, local pitch) = L(muon|dE/dx, rr, local pitch)/L(proton|dE/dx, rr, local pitch),
(5.3)

where the indices running on wires and planes have been omitted here for simplicity, and
either a single-plane-likelihood (eq. (5.2)) or the three-plane-likelihood can be considered.

The binary classification problem of distinguishing protons from muons has the like-
lihood ratio as the most powerful statistical test, as proven by the Neyman-Pearson
lemma. It provides the largest classification efficiency for any given value of the mis-
identification rate.

For computational purposes, in the rest of article, instead of T , the PID score P will
be considered, defined as:

P = 2
π

arctan (log(T )/100). (5.4)

Computing the logarithm of T is convenient as it reduces to a sum of log-likelihoods rather
than a product of likelihoods. This bijective non-linear transformation of T does not
change the separation power of the method, but it constrains the value of the PID score
P, otherwise unbounded, between −1 and 1, making it easier to display.
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Figure 5. Comparison of the proton/muon separation power of different PID scores. The left plot
shows the ROC curves on the entire sample, and the right plot shows the area under the curve
(AUC) in bins of the track angle φ. The blue curves refer to the proposed PID score P using three
planes, the orange refer to the collection plane only P, whereas the green curves show the χ2 test
with respect to the proton hypothesis. The purple vertical line on the left plot slices the curves
at muon mis-identification rate 0.1, comparing the proton identification efficiencies of the three
methods at the same working point.

5.3 Performance of the particle identification

The performance of P is evaluated on a test sample of more than 20000 simulated protons
and muons, selected in the same manner as in section 5.1. The sample contains inclu-
sive neutrino interactions from the Booster Neutrino Beam (BNB) simulated with GENIE
v3.0.6 [14], using a tailored MicroBooNE tune [15]. A receiver operating characteristic
(ROC) curve is calculated from the test statistics distributions for the two particle types
and shown in the left plot of figure 5 for the three-plane P, for the collection plane only P,
and for the χ2 test with respect to the proton hypothesis, which represents the previous
state of the art [10]. The latter quantity, computed by comparing the data with the expec-
tation from Bethe-Bloch theory, has been used in several previous MicroBooNE analyses
and it is shown here as a reference for comparison. The ROC curves show the proton effi-
ciency as a function of the muon mis-identification rate, which are bounded between 0 and
1. For a given method, every possible cut value between −1 and 1 corresponds to a point
on the ROC curve. The performance is quantified at the working point with 10% of the
muons mis-identified as protons: the three-plane P provides 93.7% efficiency at selecting
protons compared to 83.4% for the collection plane only P and 81.6% for the χ2 test with
respect to the proton hypothesis. An overall measure of the separation power is defined
using the area under the ROC curve (AUC). When this metric is equal to 1, the variable
allows perfect separation at any working point, whereas a value of 0.5 represents a random
guess. The three-plane P scores a AUC of 0.977 compared to 0.955 for the collection-plane
only P and 0.838 for the χ2 test with respect to the proton hypothesis. The robustness
of the quoted performance is tested against detector systematic uncertainties. The perfor-
mance is evaluated on a series of simulations with a modified detector response to assess
the detector systematic uncertainty. This leads to an uncertainty on the proton efficiency
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of 1.2% at 10% muon mis-id. The uncertainty on the AUC is 0.002 units for the nominal
value of 0.976. This uncertainty is dominated by the modeling of electron-ion recombi-
nation. The statistical uncertainty on the efficiency and AUC determination is negligible.
The right plot of figure 5 shows the AUC in bins of the azimuthal angle φ of the track,
which describes the direction of the track on the plane orthogonal to the beam direction:
φ = 0◦,±180◦ refer to the drift direction and φ = ±90◦ refer to the vertical direction. Both
plots illustrate an overall improvement of the separation power with respect to the χ2 test
with respect to the proton hypothesis, and a mitigation of the dependence of the perfor-
mance on the track angle. Combining the three planes improves the separation power in
every angular region, especially for vertical tracks (φ ∼ ±90◦), where the collection plane
is the least effective.

6 Applications to physics cases

The following analyses were developed using data collected by MicroBooNE with the BNB
during winter and spring 2016. This data amounts to 4.8× 1019 protons on target (POT).
This data, in which neutrino interactions are present, is labeled as DATA Beam ON. The
prediction comes from a combination of the simulation of neutrino interactions and data
collected out of the beam windows, labeled as DATA Beam OFF. Even in events where a
neutrino interaction is present, O(10) cosmic rays cross the detector on average. Instead of
being simulated, cosmic ray waveforms are acquired out of the beam window and overlaid
to simulated neutrino interactions.

6.1 Proton-muon separation for tracks recorded on data

The first test performed is to verify if the result obtained in the simulation in section 5.3
holds also with neutrino data. Tracks are selected by requiring track-score> 0.5, a mea-
surement of the likeliness of a reconstructed particle to be a track, with values ranging
from 0 for shower-like particles to 1 for track-like particles. Track-score is provided by the
Pandora reconstruction. Tracks are also required to be reconstructed within 5 cm from the
vertex, and to be contained within a fiducial volume, defined as the set of points that are
at least 20 cm apart from every side of the TPC. Figure 6 shows the distribution of the PID
score for these tracks, comparing the data (black cross) with the simulation (stacked colored
histogram). Protons, reconstructed with a low P, populate the left side of the distribution.
These are well separated from lighter particles, such as muons and pions, which populate
the region at larger values of P. Tracks associated with cosmic rays are distributed along
the whole spectrum, as they can be induced by cosmic muons or by protons kicked out of
the argon nuclei. A peak at P ∼ 0 is also present. These are short tracks, for which there
is too little information to discriminate between the two hypotheses. In fact, log(T ) is
additive for each hit: the longer the track, the more hits, the larger log(T ) and thus P can
be. The simulation reproduces the shape of the data, confirming the performance studied
in the simulation. Two additional plots (figure 7) illustrate that P correctly identifies the
Bragg peaks, in good agreement with the theoretical prediction. Fully contained tracks,
with track-score> 0.8 and collection plane local pitch < 1 cm are selected in beam data
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Figure 6. Distribution of the three-plane P for neutrino-induced tracks selected in data and
simulation. The data (black cross) shows the difference between the DATA Beam ON and the
DATA Beam OFF, in order to remove the contribution from non-beam events. The simulation
(stacked histogram) is normalized to the same number of events observed in the data, and it is
broken down for different particle species. In the case the particle selected in the simulation is an
overlaid cosmic, it is assigned to the category “cosmic”. The uncertainties shown on the data points
are the expected statistical uncertainties from Poisson counting.
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of the range of local pitch under consideration (red lines). The two plots are normalized to the
maximum value in order to share a common color scale.
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Figure 8. 2D distribution of dE/dx and residual range measured on the three wire planes for
tracks identified as proton candidates in the data, with large collection plane local pitch.

events. The 2D distributions dE/dx vs residual range on the collection plane, for muon-
like tracks with P > 0.5, and proton-like tracks with P <−0.5, are plotted on the left and
right of figure 7, respectively. The two Bragg peaks are clearly visible and distinct. This is
possible because of the track local pitch requirement: selecting hits with small local pitch
ensures dE/dx is measured properly, resulting in physical and meaningful values. The
solid and dashed red lines show the theoretical prediction of the most probable value of the
dE/dx distribution for the extremes of the range of local pitch under consideration. The
core of the data distribution lies between the two bands, demonstrating good calorimetric
reconstruction for small local pitch.

6.2 Large collection-plane-local pitch tracks identified with the two induction
planes

The following example illustrates the efficacy of combining the calorimetric measurements
performed with the three wire planes. Figure 8 shows the 2D distribution of dE/dx and
residual range measured on the U, V, and Y planes, for proton candidate tracks with large
collection plane local pitch. Proton candidates are required to be fully contained, and to
have track-score> 0.8. Proton-likeness is required through P <−0.5. The collection plane
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local pitch is required to be larger than 1 cm: such tracks lie on the plane orthogonal to
the beam, traveling in directions where the calorimetric reconstruction is subject to large
distortion. For this set of tracks, only the induction planes exhibit the expected Bragg
peak: combining the three planes recovers the separation power by correctly classifying
protons whose calorimetric reconstruction is not accurate on one or more views.

6.3 Exclusive νµ selection

To further illustrate the separation power of P, a general νµCC selection targeting con-
tained events is performed, and the selected events are classified into different exclusive
channels. Events are selected similarly to the procedure in [16], adding a containment
requirement for all tracks reconstructed in the event, by requiring the start and end points
of each track to lie inside the fiducial volume, as described in section 6.1. First, a muon
candidate is chosen among the tracks attached to the vertex that are longer than 10 cm, by
selecting the one with the largest P value. The top plot of figure 9 shows the distribution
of P for muon candidates, showing a good separation between muon and proton tracks.
Selecting only events with a candidate with P > 0.2 rejects most of the proton background,
ensuring a pure selection of νµCC interactions.

Among the νµCC candidates, events with one additional reconstructed track (two-track
events) are selected. If correctly reconstructed, they result predominantly from νµCC in-
teractions with either one proton and no pions (νµCC0π1p) or one pion and no protons
(νµCC1π0p) in the final state. In general, the former case predominantly (but not solely)
results from quasi-elastic interactions while the latter is largely produced by the decay
of a ∆ resonance. The PID score of the second track (bottom left plot in figure 9) sep-
arates the two cases, with νµCC0π1p populating the left side while the νµCC1π0p are
located at positive values, because pions are indistinguishable from muons with this vari-
able. By considering the events with P ≤ 0, we obtain a sample of contained νµCC0π1p
interactions with 61% purity and 40% efficiency. By applying the reverse cut, P > 0,
we have a background rejection of 98%, which provides the basis for a selection of con-
tained νµCC1π0p interactions. For this signature, the large cosmic ray background requires
additional tailored background rejection. With a similar methodology, events with two ad-
ditional reconstructed tracks (three-track events), are selected. Events with two protons
and no pions in the final state (νµCC0π2p), predicted to be mainly induced by meson-
exchange current interactions and final state effects, can be distinguished from events with
one proton and one pion in the final state (νµCC1π1p), produced by a resonance decay.
Because the presence of a proton, identified by a large negative P, is common to the two
cases, the track with the largest PID score among the two additional tracks (bottom right
plot in figure 9) is used to discriminate between νµCC0π2p, on the left, and νµCC1π1p,
on the right. The cut P ≤ 0 provides a sample of contained νµCC0π2p interactions with
54% purity and 24% efficiency, while the reverse cut, P > 0, selects a sample of contained
νµCC1π1p interactions with 25% purity and 34% efficiency. In both cases the background
rejection is over 99.5%, emphasizing the difficulty of these selections, which could further
benefit from additional cut variables.
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Figure 9. PID score distributions for the muon candidate track (top), the second track in events
with two reconstructed tracks (bottom left), and the third track in events with three reconstructed
tracks (bottom right). The DATA Beam ON (black cross) is compared with the prediction based on
the sum of the simulation of neutrino interactions (stacked histogram) and DATA Beam OFF (gray
bars). The selections are based on reconstructed quantities, while the prediction is broken down
into different categories based on truth information. In the first plot the different colors correspond
to different particle types, while in the other two they correspond to different final states. The
uncertainties shown on the data points are the expected statistical uncertainties from Poisson
counting, while the hashed patches on the stacked histogram illustrate systematic uncertainties on
the prediction related to the simulation of the neutrino flux and interaction model.
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Demonstrating the classification of exclusive νµCC final states is a novel result for
liquid argon, and stems from the potential of the new PID score. Future analyses will
build on these examples, eventually leading to precise and detailed neutrino cross-section
measurements.

7 Conclusions

The capability to perform precise calorimetric measurements is one of the most impor-
tant factors that make LArTPCs powerful tools in the study of neutrino interactions. This
work illustrates a detailed study of the performance of the calorimetric reconstruction using
MicroBooNE data, the longest-operating LArTPC in a neutrino beam producing a large
dataset of GeV scale neutrino interactions. The first important observation is that the
calorimetric reconstruction performed by LArTPCs exhibits angular dependencies. Since
the charge is drifted in a specific direction, and projected onto wires oriented in three
different directions, both the dE/dx distribution that a perfect detector would measure
and the precision and accuracy with which dE/dx is actually measured depend on the
track direction. These effects are intrinsic to any wire-based readout LArTPC. When not
properly accounted for, they result in non-uniform and sub-optimal particle identification
performance. This work proposes a new likelihood-based method to perform particle iden-
tification which properly accounts for angular dependencies and mitigates their impact by
effectively combining the calorimetric measurements performed on the three wire planes.
It does so through the calculation of a likelihood derived from the detailed MicroBooNE
simulation. The resulting PID score shows greater separation power between proton and
muon-induced tracks, with smaller dependence on the track angle with respect to the pre-
vious PID method. This is quantified as a 94% proton selection efficiency with a 10% muon
mis-identification rate. The novel PID method expands the physics reach of MicroBooNE,
allowing highly effective separation of different final states, with only minor angular de-
pendency, as demonstrated by selecting exclusive final states originated by different νµCC
interaction modes. Future MicroBooNE analyses will incorporate this method in the event
selection strategy, leading to detailed cross section measurements. This methodology can
be exported to other present and future LArTPCs, making it an important ingredient to
address the ambitious liquid argon neutrino physics program moving forward.
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